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Internal problem ID [5834]
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ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
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Problem number: Example 3.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x2(1 + y2
)
= 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x2(y2 + 1

)
Where f(x) = x2 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = x2 dx

3



∫ 1
y2 + 1 dy =

∫
x2 dx

arctan (y) = x3

3 + c1

Which results in

y = tan
(
x3

3 + c1

)
Summary
The solution(s) found are the following

(1)y = tan
(
x3

3 + c1

)

Figure 1: Slope field plot

Verification of solutions

y = tan
(
x3

3 + c1

)
Verified OK.

4



1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2(y2 + 1
)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x2

dx

Which results in

S = x3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2(y2 + 1
)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x3

3 = arctan (y) + c1

Which simplifies to

x3

3 = arctan (y) + c1

Which gives

y = − tan
(
−x3

3 + c1

)

7



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2(y2 + 1) dS
dR

= 1
R2+1

R = y

S = x3

3

Summary
The solution(s) found are the following

(1)y = − tan
(
−x3

3 + c1

)
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Figure 2: Slope field plot

Verification of solutions

y = − tan
(
−x3

3 + c1

)
Verified OK.

1.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
x2) dx

(
−x2) dx+( 1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1

11



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 + arctan (y)

The solution becomes

y = tan
(
x3

3 + c1

)

Summary
The solution(s) found are the following

(1)y = tan
(
x3

3 + c1

)

Figure 3: Slope field plot
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Verification of solutions

y = tan
(
x3

3 + c1

)
Verified OK.

1.1.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x2(y2 + 1

)
This is a Riccati ODE. Comparing the ODE to solve

y′ = y2x2 + x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2, f1(x) = 0 and f2(x) = x2. Let

y = −u′

f2u

= −u′

x2u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 2x

f1f2 = 0
f 2
2 f0 = x6

Substituting the above terms back in equation (2) gives

x2u′′(x)− 2xu′(x) + x6u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1 sin
(
x3

3

)
+ c2 cos

(
x3

3

)

The above shows that

u′(x) = x2
(
c1 cos

(
x3

3

)
− c2 sin

(
x3

3

))

Using the above in (1) gives the solution

y = −
c1 cos

(
x3

3

)
− c2 sin

(
x3

3

)
c1 sin

(
x3

3

)
+ c2 cos

(
x3

3

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
Summary
The solution(s) found are the following

(1)y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
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Figure 4: Slope field plot

Verification of solutions

y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
Verified OK.

1.1.5 Maple step by step solution

Let’s solve
y′ − x2(1 + y2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= x2

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫
x2dx+ c1
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• Evaluate integral
arctan (y) = x3

3 + c1

• Solve for y

y = tan
(

x3

3 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=x^2*(y(x)^2+1),y(x), singsol=all)� �

y(x) = tan
(
x3

3 + c1

)
3 Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 30� �
DSolve[y'[x]==x^2*(y[x]^2+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan
(
x3

3 + c1

)
y(x) → −i
y(x) → i
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Internal problem ID [5835]
Internal file name [OUTPUT/5083_Sunday_June_05_2022_03_23_41_PM_21933921/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x2

1− y2
= 0

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − x2

y2 − 1
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Where f(x) = −x2 and g(y) = 1
y2−1 . Integrating both sides gives

1
1

y2−1
dy = −x2 dx

∫ 1
1

y2−1
dy =

∫
−x2 dx

1
3y

3 − y = −x3

3 + c1

Which results in

y =

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

2
+ 2(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

+

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

−

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2
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Summary
The solution(s) found are the following

(1)
y =

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

2
+ 2(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

(2)

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

+

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2

(3)

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

−

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2
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Figure 5: Slope field plot
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Verification of solutions

y =

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

2
+ 2(

−4x3 + 12c1 + 4
√
x6 − 6c1x3 + 9c21 − 4

) 1
3

Verified OK.

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

+

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2

Verified OK.

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

−

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2

Verified OK.

1.2.2 Solving as differentialType ode

Writing the ode as

y′ = x2

1− y2
(1)

Which becomes (
y2 − 1

)
dy =

(
−x2) dx (2)
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But the RHS is complete differential because

(
−x2) dx = d

(
−x3

3

)
Hence (2) becomes

(
y2 − 1

)
dy = d

(
−x3

3

)
Integrating both sides gives gives these solutions

y =

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

2 + 2(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3
+ c1

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4 − 1(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3
+

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2 + c1

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4 − 1(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3
−

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

2
+ 2(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3
+ c1

(2)

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

+

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2 + c1

(3)

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

−

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2 + c1
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Figure 6: Slope field plot
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Verification of solutions

y =

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

2
+ 2(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3
+ c1

Verified OK.

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

+

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2 + c1

Verified OK.

y = −

(
−4x3 + 12c1 + 4

√
x6 − 6c1x3 + 9c21 − 4

) 1
3

4
− 1(

−4x3 + 12c1 + 4
√

x6 − 6c1x3 + 9c21 − 4
) 1

3

−

i
√
3

(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3

2 − 2(
−4x3+12c1+4

√
x6−6c1x3+9c21−4

) 1
3


2 + c1

Verified OK.

1.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − x2

y2 − 1
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = − 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x2

dx

Which results in

S = −x3

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x2

y2 − 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2 − 1 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 − 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
3R

3 −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x3

3 = y3

3 − y + c1

Which simplifies to

−x3

3 = y3

3 − y + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x2

y2−1
dS
dR

= R2 − 1

R = y

S = −x3

3
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Summary
The solution(s) found are the following

(1)−x3

3 = y3

3 − y + c1

Figure 7: Slope field plot

Verification of solutions

−x3

3 = y3

3 − y + c1

Verified OK.

1.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2 + 1

)
dy =

(
x2) dx(

−x2) dx+(−y2 + 1
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = −y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0
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And
∂N

∂x
= ∂

∂x

(
−y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y2 + 1. Therefore equation (4) becomes

(5)−y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y2 + 1

)
dy

f(y) = −1
3y

3 + y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3 − 1
3y

3 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 − 1
3y

3 + y

Summary
The solution(s) found are the following

(1)−x3

3 − y3

3 + y = c1

Figure 8: Slope field plot

Verification of solutions

−x3

3 − y3

3 + y = c1

Verified OK.
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1.2.5 Maple step by step solution

Let’s solve
y′ − x2

1−y2
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
(1− y2) y′ = x2

• Integrate both sides with respect to x∫
(1− y2) y′dx =

∫
x2dx+ c1

• Evaluate integral

−y3

3 + y = x3

3 + c1

• Solve for y

y =

(
−4x3−12c1+4

√
x6+6c1x3+9c21−4

) 1
3

2 + 2(
−4x3−12c1+4

√
x6+6c1x3+9c21−4

) 1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 268� �
dsolve(diff(y(x),x)=x^2/(1-y(x)^2),y(x), singsol=all)� �
y(x) =

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 + 9c21 − 4

) 2
3 + 4

2
(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 + 9c21 − 4

) 1
3

y(x) = −

(
1 + i

√
3
) (

−4x3 − 12c1 + 4
√

x6 + 6c1x3 + 9c21 − 4
) 2

3 − 4i
√
3 + 4

4
(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 + 9c21 − 4

) 1
3

y(x)

=
i
(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 + 9c21 − 4

) 2
3 √3− 4i

√
3−

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 + 9c21 − 4

) 2
3 − 4

4
(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 + 9c21 − 4

) 1
3

3 Solution by Mathematica
Time used: 2.485 (sec). Leaf size: 320� �
DSolve[y'[x]==x^2/(1-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
3
√

−x3 +
√

x6 − 6c1x3 − 4 + 9c12 + 3c1
3
√
2

+
3
√
2

3
√

−x3 +
√
x6 − 6c1x3 − 4 + 9c12 + 3c1

y(x) →
i
(√

3 + i
) 3
√

−x3 +
√

x6 − 6c1x3 − 4 + 9c12 + 3c1
2 3
√
2

− 1 + i
√
3

22/3 3
√

−x3 +
√

x6 − 6c1x3 − 4 + 9c12 + 3c1

y(x) →
i
(√

3 + i
)

22/3 3
√

−x3 +
√

x6 − 6c1x3 − 4 + 9c12 + 3c1

−
(
1 + i

√
3
) 3
√

−x3 +
√

x6 − 6c1x3 − 4 + 9c12 + 3c1
2 3
√
2
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1.3 problem Example 3.3
1.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 36
1.3.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 36
1.3.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 38
1.3.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 39
1.3.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 43
1.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 46

Internal problem ID [5836]
Internal file name [OUTPUT/5084_Sunday_June_05_2022_03_23_44_PM_9927366/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 3x2 + 4x+ 2
2y − 2 = 0

With initial conditions

[y(0) = −1]
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1.3.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3x2 + 4x+ 2
2y − 2

The x domain of f(x, y) when y = −1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{y < 1∨ 1 < y}

And the point y0 = −1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
3x2 + 4x+ 2

2y − 2

)
= −3x2 + 4x+ 2

2 (y − 1)2

The x domain of ∂f
∂y

when y = −1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{y < 1∨ 1 < y}

And the point y0 = −1 is inside this domain. Therefore solution exists and is unique.

1.3.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
3
2x

2 + 2x+ 1
y − 1
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Where f(x) = 3
2x

2 + 2x+ 1 and g(y) = 1
y−1 . Integrating both sides gives

1
1

y−1
dy = 3

2x
2 + 2x+ 1 dx

∫ 1
1

y−1
dy =

∫ 3
2x

2 + 2x+ 1 dx

1
2y

2 − y = 1
2x

3 + x2 + x+ c1

Which results in
y = 1 +

√
x3 + 2x2 + 2c1 + 2x+ 1

y = 1−
√

x3 + 2x2 + 2c1 + 2x+ 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1−
√
2c1 + 1

c1 =
3
2

Substituting c1 found above in the general solution gives

y = 1−
√
x3 + 2x2 + 2x+ 4

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1 +
√
2c1 + 1

Warning: Unable to solve for constant of integration.

Summary
The solution(s) found are the following

(1)y = 1−
√
x3 + 2x2 + 2x+ 4
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1−
√
x3 + 2x2 + 2x+ 4

Verified OK.

1.3.3 Solving as differentialType ode

Writing the ode as

y′ = 3x2 + 4x+ 2
2y − 2 (1)

Which becomes

(2y − 2) dy =
(
3x2 + 4x+ 2

)
dx (2)

But the RHS is complete differential because(
3x2 + 4x+ 2

)
dx = d

(
x3 + 2x2 + 2x

)
Hence (2) becomes

(2y − 2) dy = d
(
x3 + 2x2 + 2x

)
Integrating both sides gives gives these solutions

y = 1 +
√

x3 + 2x2 + c1 + 2x+ 1 + c1

y = 1−
√

x3 + 2x2 + c1 + 2x+ 1 + c1
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Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1−
√
c1 + 1 + c1

c1 = −3
2 − i

√
3

2

Substituting c1 found above in the general solution gives

y = −1
2 −

√
4x3 + 8x2 − 2− 2i

√
3 + 8x

2 − i
√
3

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1 +
√
c1 + 1 + c1

Warning: Unable to solve for constant of integration.

Summary
The solution(s) found are the following

(1)y = −1
2 −

√
4x3 + 8x2 − 2− 2i

√
3 + 8x

2 − i
√
3

2
Verification of solutions

y = −1
2 −

√
4x3 + 8x2 − 2− 2i

√
3 + 8x

2 − i
√
3

2

Verified OK.

1.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x2 + 4x+ 2
2y − 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
3
2x

2 + 2x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
3
2x

2+2x+1
dx

Which results in

S = 1
2x

3 + x2 + x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x2 + 4x+ 2
2y − 2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 3
2x

2 + 2x+ 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R

2 −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
2x

3 + x2 + x = y2

2 − y + c1

Which simplifies to

1
2x

3 + x2 + x = y2

2 − y + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x2+4x+2
2y−2

dS
dR

= R− 1

R = y

S = 1
2x

3 + x2 + x

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

0 = 3
2 + c1
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c1 = −3
2

Substituting c1 found above in the general solution gives

1
2x

3 + x2 + x = 1
2y

2 − y − 3
2

Summary
The solution(s) found are the following

(1)1
2x

3 + x2 + x = y2

2 − y − 3
2

Verification of solutions

1
2x

3 + x2 + x = y2

2 − y − 3
2

Verified OK.

1.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2y − 2) dy =
(
3x2 + 4x+ 2

)
dx(

−3x2 − 4x− 2
)
dx+(2y − 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x2 − 4x− 2
N(x, y) = 2y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−3x2 − 4x− 2

)
= 0

And

∂N

∂x
= ∂

∂x
(2y − 2)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

44



Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x2 − 4x− 2 dx

(3)φ = −x3 − 2x2 − 2x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2y − 2. Therefore equation (4) becomes

(5)2y − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y − 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y − 2) dy

f(y) = y2 − 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3 − 2x2 + y2 − 2x− 2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3 − 2x2 + y2 − 2x− 2y
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Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

3 = c1

c1 = 3

Substituting c1 found above in the general solution gives

−x3 − 2x2 + y2 − 2x− 2y = 3

Summary
The solution(s) found are the following

(1)−x3 − 2x2 + y2 − 2x− 2y = 3
Verification of solutions

−x3 − 2x2 + y2 − 2x− 2y = 3

Verified OK.

1.3.6 Maple step by step solution

Let’s solve[
y′ − 3x2+4x+2

2y−2 = 0, y(0) = −1
]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(2y − 2) = 3x2 + 4x+ 2

• Integrate both sides with respect to x∫
y′(2y − 2) dx =

∫
(3x2 + 4x+ 2) dx+ c1

• Evaluate integral
y2 − 2y = x3 + 2x2 + c1 + 2x

• Solve for y{
y = 1−

√
x3 + 2x2 + c1 + 2x+ 1, y = 1 +

√
x3 + 2x2 + c1 + 2x+ 1

}
• Use initial condition y(0) = −1
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−1 = 1−
√
c1 + 1

• Solve for c1
c1 = 3

• Substitute c1 = 3 into general solution and simplify
y = −

√
(x+ 2) (x2 + 2) + 1

• Use initial condition y(0) = −1
−1 = 1 +

√
c1 + 1

• Solution does not satisfy initial condition
• Solution to the IVP

y = −
√

(x+ 2) (x2 + 2) + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 19� �
dsolve([diff(y(x),x)=(3*x^2+4*x+2)/(2*(y(x)-1)),y(0) = -1],y(x), singsol=all)� �

y(x) = 1−
√
(x+ 2) (x2 + 2)

3 Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 26� �
DSolve[{y'[x]==(3*x^2+4*x+2)/(2*(y[x]-1)),{y[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√
x3 + 2x2 + 2x+ 4
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1.4 problem Example 3.4
1.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 48

Internal problem ID [5837]
Internal file name [OUTPUT/5085_Sunday_June_05_2022_03_23_46_PM_57715086/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − 2√xy − y = 0

1.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
2√xy + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
2√xy + y

)
(b3 − a2)

x
−
(
2√xy + y

)2
a3

x2

−
(

y
√
xy x

−
2√xy + y

x2

)
(xa2 + ya3 + a1)−

(
x√
xy

+ 1
)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−
4(xy)

3
2 a3 − x2yb3 + 3x y2a3 + x3b2 + x2ya2 − xya1 +

√
xy xb1 −

√
xy ya1 + x2b1√

xy x2 = 0

Setting the numerator to zero gives

−4(xy)
3
2 a3 − x3b2 − x2ya2 + x2yb3 − 3x y2a3 −

√
xy xb1 +

√
xy ya1 − x2b1 + xya1 = 0

(6E)

Since the PDE has radicals, simplifying gives

−x3b2 − x2ya2 + x2yb3 − 4xy√xy a3 − 3x y2a3 − x2b1 −
√
xy xb1 + xya1 +

√
xy ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y,√xy}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2,
√
xy = v3}

The above PDE (6E) now becomes

(7E)−v21v2a2−3v1v22a3−4v1v2v3a3−v31b2+v21v2b3+v1v2a1+v3v2a1−v21b1−v3v1b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v31b2+(b3− a2) v21v2− v21b1− 3v1v22a3− 4v1v2v3a3+ v1v2a1− v3v1b1+ v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−4a3 = 0
−3a3 = 0
−b1 = 0
−b2 = 0

b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(2√xy + y

x

)
(x)

= −2√xy

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2√xy
dy

Which results in

S = − y
√
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
2√xy + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
y

2x 3
2

Sy = − 1
2
√
x
√
y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

√
xy

x
3
2
√
y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
√
y

√
x
= − ln (x) + c1

Which simplifies to

−
√
y

√
x
= − ln (x) + c1

Which gives

y = ln (x)2 x− 2 ln (x)xc1 + c21x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2√xy+y

x
dS
dR

= − 1
R

R = x

S = −
√
y

√
x

Summary
The solution(s) found are the following

(1)y = ln (x)2 x− 2 ln (x)xc1 + c21x
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Figure 10: Slope field plot

Verification of solutions

y = ln (x)2 x− 2 ln (x)xc1 + c21x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*diff(y(x),x)-2*sqrt(x*y(x))=y(x),y(x), singsol=all)� �

− y(x)√
xy (x)

+ ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.182 (sec). Leaf size: 19� �
DSolve[x*y'[x]-2*Sqrt[x*y[x]]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4x(2 log(x) + c1)2

55



1.5 problem Example 3.5
1.5.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 56
1.5.2 Solving as first order ode lie symmetry calculated ode . . . . . . 59

Internal problem ID [5838]
Internal file name [OUTPUT/5086_Sunday_June_05_2022_03_23_49_PM_67090161/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − −1 + y + x

x− y + 3 = 0

1.5.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)
d

dX
Y (X) = −−1 + Y (X) + y0 +X + x0

−X − x0 + Y (X) + y0 − 3
Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
y0 = 2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − Y (X) +X

−X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= − Y +X

−X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y +X and N = X−Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u− 1

u− 1
du
dX =

−u(X)−1
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−u(X)−1
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 + 1 = 0

Or
X(u(X)− 1)

(
d

dX
u(X)

)
+ u(X)2 + 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u2 + 1
X (u− 1)
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Where f(X) = − 1
X

and g(u) = u2+1
u−1 . Integrating both sides gives

1
u2+1
u−1

du = − 1
X

dX

∫ 1
u2+1
u−1

du =
∫

− 1
X

dX

ln (u2 + 1)
2 − arctan (u) = − ln (X) + c2

The solution is

ln
(
u(X)2 + 1

)
2 − arctan (u(X)) + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

Y (X)2
X2 + 1

)
2 − arctan

(
Y (X)
X

)
+ ln (X)− c2 = 0

Using the solution for Y (X)

ln
(

Y (X)2
X2 + 1

)
2 − arctan

(
Y (X)
X

)
+ ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 2
X = x− 1

Then the solution in y becomes

ln
(

(y−2)2

(1+x)2 + 1
)

2 − arctan
(
y − 2
1 + x

)
+ ln (1 + x)− c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(

(y−2)2

(1+x)2 + 1
)

2 − arctan
(
y − 2
1 + x

)
+ ln (1 + x)− c2 = 0

Figure 11: Slope field plot

Verification of solutions

ln
(

(y−2)2

(1+x)2 + 1
)

2 − arctan
(
y − 2
1 + x

)
+ ln (1 + x)− c2 = 0

Verified OK.

1.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y + x− 1
−x+ y − 3

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(y + x− 1) (b3 − a2)

−x+ y − 3 − (y + x− 1)2 a3
(−x+ y − 3)2

−
(
− 1
−x+ y − 3 − y + x− 1

(−x+ y − 3)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ y − 3 + y + x− 1

(−x+ y − 3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 + x2b2 − x2b3 − 2xya2 + 2xya3 + 2xyb2 + 2xyb3 − y2a2 − y2a3 − y2b2 + y2b3 + 6xa2 − 2xa3 + 2xb1 − 4xb2 − 2xb3 − 2ya1 + 4ya2 + 2ya3 + 6yb2 − 2yb3 + 4a1 − 3a2 + a3 + 2b1 − 9b2 + 3b3
(x− y + 3)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 − x2b2 + x2b3 + 2xya2 − 2xya3 − 2xyb2 − 2xyb3 + y2a2
+ y2a3 + y2b2 − y2b3 − 6xa2 + 2xa3 − 2xb1 + 4xb2 + 2xb3 + 2ya1
− 4ya2 − 2ya3 − 6yb2 + 2yb3 − 4a1 + 3a2 − a3 − 2b1 + 9b2 − 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 + 2a2v1v2 + a2v

2
2 − a3v

2
1 − 2a3v1v2 + a3v

2
2 − b2v

2
1 − 2b2v1v2 + b2v

2
2

+ b3v
2
1 − 2b3v1v2 − b3v

2
2 + 2a1v2 − 6a2v1 − 4a2v2 + 2a3v1 − 2a3v2 − 2b1v1

+ 4b2v1 − 6b2v2 + 2b3v1 + 2b3v2 − 4a1 + 3a2 − a3 − 2b1 + 9b2 − 3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v21 + (2a2 − 2a3 − 2b2 − 2b3) v1v2
+ (−6a2 + 2a3 − 2b1 + 4b2 + 2b3) v1 + (a2 + a3 + b2 − b3) v22
+ (2a1 − 4a2 − 2a3 − 6b2 + 2b3) v2 − 4a1 + 3a2 − a3 − 2b1 + 9b2 − 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a2 − a3 − b2 + b3 = 0
a2 + a3 + b2 − b3 = 0

2a2 − 2a3 − 2b2 − 2b3 = 0
2a1 − 4a2 − 2a3 − 6b2 + 2b3 = 0

−6a2 + 2a3 − 2b1 + 4b2 + 2b3 = 0
−4a1 + 3a2 − a3 − 2b1 + 9b2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 2b2 + b3

a2 = b3

a3 = −b2

b1 = b2 − 2b3
b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1 + x

η = y − 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 2−
(
− y + x− 1
−x+ y − 3

)
(1 + x)

= −x2 − y2 − 2x+ 4y − 5
x− y + 3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2−2x+4y−5
x−y+3

dy

Which results in

S = ln (x2 + y2 + 2x− 4y + 5)
2 +

2(−1− x) arctan
( 2y−4
2+2x

)
2 + 2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y + x− 1
−x+ y − 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y + x− 1
x2 + y2 + 2x− 4y + 5

Sy =
−x+ y − 3

x2 + y2 + 2x− 4y + 5

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2 − 4y + 2x+ 5)
2 − arctan

(
y − 2
1 + x

)
= c1

Which simplifies to

ln (y2 + x2 − 4y + 2x+ 5)
2 − arctan

(
y − 2
1 + x

)
= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y+x−1
−x+y−3

dS
dR

= 0

R = x

S = ln (x2 + y2 + 2x− 4y + 5)
2 − arctan

(
y − 2
1 + x

)

Summary
The solution(s) found are the following

(1)ln (y2 + x2 − 4y + 2x+ 5)
2 − arctan

(
y − 2
1 + x

)
= c1
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Figure 12: Slope field plot

Verification of solutions

ln (y2 + x2 − 4y + 2x+ 5)
2 − arctan

(
y − 2
1 + x

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)=(x+y(x)-1)/(x-y(x)+3),y(x), singsol=all)� �

y(x) = 2 + tan
(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x+ 1) + 2c1

))
(−x− 1)

3 Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 59� �
DSolve[y'[x]==(x+y[x]-1)/(x-y[x]+3),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
1− 2(x+ 1)

−y(x) + x+ 3

)
+ log

(
x2 + y(x)2 − 4y(x) + 2x+ 5

2(x+ 1)2

)
+ 2 log(x+ 1) + c1 = 0, y(x)

]
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1.6 problem Example 3.6
1.6.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 67
1.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 71

Internal problem ID [5839]
Internal file name [OUTPUT/5087_Sunday_June_05_2022_03_23_52_PM_37258556/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

y + (x− 2 sin (y)) y′ = −ex

1.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x− 2 sin (y)) dy = (−y − ex) dx
(y + ex) dx+(x− 2 sin (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y + ex

N(x, y) = x− 2 sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y + ex)

= 1

And
∂N

∂x
= ∂

∂x
(x− 2 sin (y))

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y + ex dx

(3)φ = xy + ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x− 2 sin (y). Therefore equation (4) becomes

(5)x− 2 sin (y) = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2 sin (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2 sin (y)) dy

f(y) = 2 cos (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy + ex + 2 cos (y) + c1

69



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy + ex + 2 cos (y)

Summary
The solution(s) found are the following

(1)xy + ex + 2 cos (y) = c1

Figure 13: Slope field plot

Verification of solutions

xy + ex + 2 cos (y) = c1

Verified OK.
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1.6.2 Maple step by step solution

Let’s solve
y + (x− 2 sin (y)) y′ = −ex

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y + ex) dx+ f1(y)

• Evaluate integral
F (x, y) = xy + ex + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x− 2 sin (y) = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −2 sin (y)

• Solve for f1(y)
f1(y) = 2 cos (y)

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = xy + ex + 2 cos (y)
• Substitute F (x, y) into the solution of the ODE

xy + ex + 2 cos (y) = c1

• Solve for y
y = RootOf (−x_Z− ex − 2 cos (_Z) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((exp(x)+y(x))+(x-2*sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

ex + xy(x) + 2 cos (y(x)) + c1 = 0

3 Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 19� �
DSolve[(Exp[x]+y[x])+(x-2*Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[xy(x) + 2 cos(y(x)) + ex = c1, y(x)]
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1.7 problem Example 3.7
1.7.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 73
1.7.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 78

Internal problem ID [5840]
Internal file name [OUTPUT/5088_Sunday_June_05_2022_03_23_55_PM_49293309/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_rational]

6
y
+
(
x2

y
+ 3y

x

)
y′ = −3x

1.7.1 Solving as differentialType ode

Writing the ode as

y′ =
−3x− 6

y

x2

y
+ 3y

x

(1)

Which becomes (
3y2
)
dy =

(
−x3) dy + (−3x(xy + 2)) dx (2)

But the RHS is complete differential because(
−x3) dy + (−3x(xy + 2)) dx = d

(
−y x3 − 3x2)

Hence (2) becomes (
3y2
)
dy = d

(
−y x3 − 3x2)
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Integrating both sides gives gives these solutions

y =

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

6 − 2x3(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3
+ c1

y = −

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

12 + x3(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3
+

i
√
3

(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3

6 + 2x3(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3


2 + c1

y = −

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

12 + x3(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3
−

i
√
3

(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3

6 + 2x3(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

6
− 2x3(

−324x2 + 108c1 + 12
√

12x9 + 729x4 − 486c1x2 + 81c21
) 1

3
+ c1

(2)y = −

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

12
+ x3(

−324x2 + 108c1 + 12
√

12x9 + 729x4 − 486c1x2 + 81c21
) 1

3

+

i
√
3

(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3

6 + 2x3(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3


2

+ c1

(3)y = −

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

12
+ x3(

−324x2 + 108c1 + 12
√

12x9 + 729x4 − 486c1x2 + 81c21
) 1

3

−

i
√
3

(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3

6 + 2x3(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3


2

+ c1
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Figure 14: Slope field plot
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Verification of solutions

y =

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

6
− 2x3(

−324x2 + 108c1 + 12
√

12x9 + 729x4 − 486c1x2 + 81c21
) 1

3
+ c1

Verified OK.

y = −

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

12
+ x3(

−324x2 + 108c1 + 12
√

12x9 + 729x4 − 486c1x2 + 81c21
) 1

3

+

i
√
3

(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3

6 + 2x3(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3


2

+ c1

Verified OK.

y = −

(
−324x2 + 108c1 + 12

√
12x9 + 729x4 − 486c1x2 + 81c21

) 1
3

12
+ x3(

−324x2 + 108c1 + 12
√

12x9 + 729x4 − 486c1x2 + 81c21
) 1

3

−

i
√
3

(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3

6 + 2x3(
−324x2+108c1+12

√
12x9+729x4−486c1x2+81c21

) 1
3


2

+ c1

Verified OK.
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1.7.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3 + 3y2

)
dy = (−3x(xy + 2)) dx

(3x(xy + 2)) dx+
(
x3 + 3y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x(xy + 2)
N(x, y) = x3 + 3y2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(3x(xy + 2))

= 3x2

And
∂N

∂x
= ∂

∂x

(
x3 + 3y2

)
= 3x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3x(xy + 2) dx

(3)φ = y x3 + 3x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3 + 3y2. Therefore equation (4) becomes

(5)x3 + 3y2 = x3 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 3y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
3y2
)
dy

f(y) = y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y x3 + y3 + 3x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y x3 + y3 + 3x2

Summary
The solution(s) found are the following

(1)yx3 + y3 + 3x2 = c1
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Figure 15: Slope field plot

Verification of solutions

yx3 + y3 + 3x2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 326� �
dsolve((3*x+6/y(x))+(x^2/y(x)+3*y(x)/x)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

−12x3 +
(
−324x2 − 108c1 + 12

√
12x9 + 729x4 + 486c1x2 + 81c21

) 2
3

6
(
−324x2 − 108c1 + 12

√
12x9 + 729x4 + 486c1x2 + 81c21

) 1
3

y(x) = −

(
1 + i

√
3
) (

−324x2 − 108c1 + 12
√
12x9 + 729x4 + 486c1x2 + 81c21

) 1
3

12

−
(
i
√
3− 1

)
x3(

−324x2 − 108c1 + 12
√

12x9 + 729x4 + 486c1x2 + 81c21
) 1

3

y(x)

=
12i

√
3x3 + i

(
−324x2 − 108c1 + 12

√
12x9 + 729x4 + 486c1x2 + 81c21

) 2
3 √3 + 12x3 −

(
−324x2 − 108c1 + 12

√
12x9 + 729x4 + 486c1x2 + 81c21

) 2
3

12
(
−324x2 − 108c1 + 12

√
12x9 + 729x4 + 486c1x2 + 81c21

) 1
3
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3 Solution by Mathematica
Time used: 4.542 (sec). Leaf size: 331� �
DSolve[(3*x+6/y[x])+(x^2/y[x]+3*y[x]/x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

−81x2 +
√

108x9 + 729 (−3x2 + c1) 2 + 27c1
3 3
√
2

−
3
√
2x3

3
√

−81x2 +
√

108x9 + 729 (−3x2 + c1) 2 + 27c1

y(x) →
(
−1 + i

√
3
) 3
√

−81x2 +
√
108x9 + 729 (−3x2 + c1) 2 + 27c1
6 3
√
2

+
(
1 + i

√
3
)
x3

22/3 3
√

−81x2 +
√
108x9 + 729 (−3x2 + c1) 2 + 27c1

y(x) →
(
1− i

√
3
)
x3

22/3 3
√

−81x2 +
√

108x9 + 729 (−3x2 + c1) 2 + 27c1

−
(
1 + i

√
3
) 3
√

−81x2 +
√

108x9 + 729 (−3x2 + c1) 2 + 27c1
6 3
√
2
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1.8 problem Example 3.8
1.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 84
1.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 86
1.8.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 90
1.8.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 94
1.8.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 99

Internal problem ID [5841]
Internal file name [OUTPUT/5089_Sunday_June_05_2022_03_23_58_PM_10799289/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByIn-
spection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y2 − xy + x2y′ = 0

1.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)2 x2 − x2u(x) + x2(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2

x
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Where f(x) = − 1
x
and g(u) = u2. Integrating both sides gives

1
u2 du = −1

x
dx∫ 1

u2 du =
∫

−1
x
dx

−1
u
= − ln (x) + c2

The solution is

− 1
u (x) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
+ ln (x)− c2 = 0

−x

y
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)−x

y
+ ln (x)− c2 = 0
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Figure 16: Slope field plot

Verification of solutions

−x

y
+ ln (x)− c2 = 0

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(−x+ y)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 11: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(−x+ y)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= − ln (x) + c1

Which simplifies to

−x

y
= − ln (x) + c1

Which gives

y = x

ln (x)− c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(−x+y)
x2

dS
dR

= − 1
R

R = x

S = −x

y
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Summary
The solution(s) found are the following

(1)y = x

ln (x)− c1

Figure 17: Slope field plot

Verification of solutions

y = x

ln (x)− c1

Verified OK.

1.8.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(−x+ y)
x2

This is a Bernoulli ODE.
y′ = 1

x
y − 1

x2y
2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = − 1
x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
yx

− 1
x2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

− 1
x2

w′ = −w

x
+ 1

x2 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = 1
x2

Hence the ode is

w′(x) + w(x)
x

= 1
x2

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ)

(
1
x2

)
d
dx(xw) = (x)

(
1
x2

)
d(xw) = 1

x
dx

Integrating gives

xw =
∫ 1

x
dx

xw = ln (x) + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = ln (x)
x

+ c1
x

which simplifies to

w(x) = ln (x) + c1
x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= ln (x) + c1

x
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Or

y = x

ln (x) + c1

Summary
The solution(s) found are the following

(1)y = x

ln (x) + c1

Figure 18: Slope field plot

Verification of solutions

y = x

ln (x) + c1

Verified OK.

93



1.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
xy − y2

)
dx(

−xy + y2
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy + y2

N(x, y) = x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−xy + y2

)
= −x+ 2y

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
xy2

is an integrating factor.
Therefore by multiplying M = y2 − xy and N = x2 by this integrating factor the ode
becomes exact. The new M,N are

M = y2 − xy

xy2

N = x

y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x

y2

)
dy =

(
−−xy + y2

x y2

)
dx(

−xy + y2

x y2

)
dx+

(
x

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy + y2

x y2

N(x, y) = x

y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−xy + y2

x y2

)
= 1

y2

And

∂N

∂x
= ∂

∂x

(
x

y2

)
= 1

y2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xy + y2

x y2
dx

(3)φ = ln (x)− x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y2
. Therefore equation (4) becomes

(5)x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x)− x

y
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (x)− x

y

The solution becomes
y = x

ln (x)− c1

Summary
The solution(s) found are the following

(1)y = x

ln (x)− c1

Figure 19: Slope field plot

Verification of solutions

y = x

ln (x)− c1

Verified OK.
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1.8.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y(−x+ y)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x
− y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = − 1

x2 . Let

y = −u′

f2u

= −u′

− u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2
x3

f1f2 = − 1
x3

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−u′′(x)
x2 − u′(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 ln (x)
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The above shows that
u′(x) = c2

x

Using the above in (1) gives the solution

y = c2x

c1 + c2 ln (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x

c3 + ln (x)

Summary
The solution(s) found are the following

(1)y = x

c3 + ln (x)

Figure 20: Slope field plot
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Verification of solutions

y = x

c3 + ln (x)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve((y(x)^2-x*y(x))+x^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

ln (x) + c1

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 19� �
DSolve[(y[x]^2-x*y[x])+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

log(x) + c1
y(x) → 0
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1.9 problem Example 3.9
1.9.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 102
1.9.2 Solving as first order ode lie symmetry calculated ode . . . . . . 104
1.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 109

Internal problem ID [5842]
Internal file name [OUTPUT/5090_Sunday_June_05_2022_03_24_01_PM_50793666/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y − (x− y) y′ = −x

1.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x− (x− u(x)x) (u′(x)x+ u(x)) = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
x (u− 1)
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Where f(x) = − 1
x
and g(u) = u2+1

u−1 . Integrating both sides gives

1
u2+1
u−1

du = −1
x
dx

∫ 1
u2+1
u−1

du =
∫

−1
x
dx

ln (u2 + 1)
2 − arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0
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Figure 21: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

1.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x+ y

−x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ y) (b3 − a2)

−x+ y
− (x+ y)2 a3

(−x+ y)2

−
(
− 1
−x+ y

− x+ y

(−x+ y)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ y

+ x+ y

(−x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 + x2b2 − x2b3 − 2xya2 + 2xya3 + 2xyb2 + 2xyb3 − y2a2 − y2a3 − y2b2 + y2b3 + 2xb1 − 2ya1
(x− y)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 − x2b2 + x2b3 + 2xya2 − 2xya3 − 2xyb2
− 2xyb3 + y2a2 + y2a3 + y2b2 − y2b3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 + 2a2v1v2 + a2v

2
2 − a3v

2
1 − 2a3v1v2 + a3v

2
2 − b2v

2
1

− 2b2v1v2 + b2v
2
2 + b3v

2
1 − 2b3v1v2 − b3v

2
2 + 2a1v2 − 2b1v1 = 0

105



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v21 + (2a2 − 2a3 − 2b2 − 2b3) v1v2
− 2b1v1 + (a2 + a3 + b2 − b3) v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0

−a2 − a3 − b2 + b3 = 0
a2 + a3 + b2 − b3 = 0

2a2 − 2a3 − 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x+ y

−x+ y

)
(x)

= −x2 − y2

x− y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2

x−y

dy

Which results in

S = ln (x2 + y2)
2 − arctan

(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x+ y

−x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ y

x2 + y2

Sy =
−x+ y

x2 + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Which simplifies to
ln (x2 + y2)

2 − arctan
(y
x

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x+y
−x+y

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 − arctan

(y
x

)
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Summary
The solution(s) found are the following

(1)ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Figure 22: Slope field plot

Verification of solutions

ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Verified OK.

1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x+ y) dy = (−y − x) dx
(x+ y) dx+(−x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

N(x, y) = −x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(x+ y)

= 1
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And
∂N

∂x
= ∂

∂x
(−x+ y)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2+y2

is an integrating factor.
Therefore by multiplying M = x + y and N = −x + y by this integrating factor the
ode becomes exact. The new M,N are

M = x+ y

x2 + y2

N = −x+ y

x2 + y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x+ y

x2 + y2

)
dy =

(
− x+ y

x2 + y2

)
dx(

x+ y

x2 + y2

)
dx+

(
−x+ y

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

x2 + y2

N(x, y) = −x+ y

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x+ y

x2 + y2

)
= x2 − 2xy − y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
−x+ y

x2 + y2

)
= x2 − 2xy − y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x+ y

x2 + y2
dx

(3)φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
− x

y2
(

x2

y2
+ 1
) + f ′(y)

= −x+ y

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+y
x2+y2

. Therefore equation (4) becomes

(5)−x+ y

x2 + y2
= −x+ y

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + y2)

2 + arctan
(
x

y

)
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Summary
The solution(s) found are the following

(1)ln (x2 + y2)
2 + arctan

(
x

y

)
= c1

Figure 23: Slope field plot

Verification of solutions

ln (x2 + y2)
2 + arctan

(
x

y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve((x+y(x))-(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
−2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 36� �
DSolve[(x+y[x])-(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 1

)
− arctan

(
y(x)
x

)
= − log(x) + c1, y(x)

]
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1.10 problem Example 3.10
1.10.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 116
1.10.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 120
1.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 124

Internal problem ID [5843]
Internal file name [OUTPUT/5091_Sunday_June_05_2022_03_24_03_PM_18778660/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′ − y

2x − x2

2y = 0

1.10.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + y2

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y2

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = x2

4 + c1

Which simplifies to

y2

2x = x2

4 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+y2

2xy
dS
dR

= R
2

R = x

S = y2

2x

Summary
The solution(s) found are the following

(1)y2

2x = x2

4 + c1
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Figure 24: Slope field plot

Verification of solutions

y2

2x = x2

4 + c1

Verified OK.

1.10.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x3 + y2

2xy
This is a Bernoulli ODE.

y′ = 1
2xy +

x2

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) =
x2

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x + x2

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x + x2

2
w′ = w

x
+ x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = x2
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Hence the ode is

w′(x)− w(x)
x

= x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
x2)

d
dx

(w
x

)
=
(
1
x

)(
x2)

d
(w
x

)
= x dx

Integrating gives

w

x
=
∫

x dx

w

x
= x2

2 + c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = 1
2x

3 + c1x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = 1
2x

3 + c1x

Solving for y gives

y(x) =
√
2
√
x (x2 + 2c1)
2

y(x) = −
√
2
√
x (x2 + 2c1)
2
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Summary
The solution(s) found are the following

(1)y =
√
2
√
x (x2 + 2c1)
2

(2)y = −
√
2
√

x (x2 + 2c1)
2

Figure 25: Slope field plot

Verification of solutions

y =
√
2
√

x (x2 + 2c1)
2

Verified OK.

y = −
√
2
√

x (x2 + 2c1)
2

Verified OK.
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1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
x3 + y2

)
dx(

−x3 − y2
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − y2

N(x, y) = 2xy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 − y2

)
= −2y

And
∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2yx((−2y)− (2y))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−x3 − y2

)
= −x3 − y2

x2
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And

N = µN

= 1
x2 (2xy)

= 2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 − y2

x2

)
+
(
2y
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − y2

x2 dx

(3)φ = −x2

2 + y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
x
. Therefore equation (4) becomes

(5)2y
x

= 2y
x

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2

2 + y2

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + y2

x

Summary
The solution(s) found are the following

(1)−x2

2 + y2

x
= c1

Figure 26: Slope field plot
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Verification of solutions

−x2

2 + y2

x
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)=y(x)/(2*x)+x^2/(2*y(x)),y(x), singsol=all)� �

y(x) = −
√
2
√
x (x2 + 2c1)
2

y(x) =
√
2
√

x (x2 + 2c1)
2

3 Solution by Mathematica
Time used: 0.194 (sec). Leaf size: 56� �
DSolve[y'[x]==y[x]/(2*x)+x^2/(2*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x2 + 2c1√
2

y(x) →
√
x
√
x2 + 2c1√
2
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1.11 problem Example 3.11
1.11.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 129
1.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 131
1.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 135
1.11.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 139
1.11.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 141

Internal problem ID [5844]
Internal file name [OUTPUT/5092_Sunday_June_05_2022_03_24_07_PM_77953227/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y

t
− y2

t
= −2

t

1.11.1 Solving as separable ode

In canonical form the ODE is

y′ = F (t, y)
= f(t)g(y)

= y2 + y − 2
t
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Where f(t) = 1
t
and g(y) = y2 + y − 2. Integrating both sides gives

1
y2 + y − 2 dy = 1

t
dt∫ 1

y2 + y − 2 dy =
∫ 1

t
dt

ln (y − 1)
3 − ln (y + 2)

3 = c1 + ln (t)

The above can be written as(
1
3

)
(ln (y − 1)− ln (y + 2)) = 2c1 + ln (t)

ln (y − 1)− ln (y + 2) = (3) (2c1 + ln (t))
= 6c1 + 3 ln (t)

Raising both side to exponential gives

eln(y−1)−ln(y+2) = e3c1+3 ln(t)

Which simplifies to

y − 1
y + 2 = 3c1t3

= c2t
3

Summary
The solution(s) found are the following

(1)y = −2c2t3 + 1
c2t3 − 1
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Figure 27: Slope field plot

Verification of solutions

y = −2c2t3 + 1
c2t3 − 1

Verified OK.

1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + y − 2
t

y′ = ω(t, y)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηy − ξt)− ω2ξy − ωtξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 15: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(t, y) = t

η(t, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂y

)
S(t, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dt

=
∫ 1

t
dt

Which results in

S = ln (t)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, y)Sy

Rt + ω(t, y)Ry
(2)

Where in the above Rt, Ry, St, Sy are all partial derivatives and ω(t, y) is the right hand
side of the original ode given by

ω(t, y) = y2 + y − 2
t

Evaluating all the partial derivatives gives

Rt = 0
Ry = 1

St =
1
t

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + y − 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for t, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 +R− 2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R− 1)
3 − ln (R + 2)

3 + c1 (4)

To complete the solution, we just need to transform (4) back to t, y coordinates. This
results in

ln (t) = ln (y − 1)
3 − ln (y + 2)

3 + c1

Which simplifies to

ln (t) = ln (y − 1)
3 − ln (y + 2)

3 + c1

Which gives

y = e3c1 + 2t3
e3c1 − t3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dt

= y2+y−2
t

dS
dR

= 1
R2+R−2

R = y

S = ln (t)
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Summary
The solution(s) found are the following

(1)y = e3c1 + 2t3
e3c1 − t3

Figure 28: Slope field plot

Verification of solutions

y = e3c1 + 2t3
e3c1 − t3

Verified OK.

1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, y) dt+N(t, y) dy = 0 (1A)
Therefore (

1
y2 + y − 2

)
dy =

(
1
t

)
dt(

−1
t

)
dt+

(
1

y2 + y − 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, y) = −1
t

N(t, y) = 1
y2 + y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂t

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1
t

)
= 0
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And
∂N

∂t
= ∂

∂t

(
1

y2 + y − 2

)
= 0

Since ∂M
∂y

= ∂N
∂t
, then the ODE is exact The following equations are now set up to solve

for the function φ(t, y)
∂φ

∂t
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. t gives ∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
−1
t
dt

(3)φ = − ln (t) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both t and y.
Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+y−2 . Therefore equation (4) becomes

(5)1
y2 + y − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + y − 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + y − 2

)
dy

f(y) = ln (y − 1)
3 − ln (y + 2)

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (t) + ln (y − 1)
3 − ln (y + 2)

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (t) + ln (y − 1)
3 − ln (y + 2)

3

The solution becomes

y = −2 e3c1t3 − 1
e3c1t3 − 1

Summary
The solution(s) found are the following

(1)y = −2 e3c1t3 − 1
e3c1t3 − 1

Figure 29: Slope field plot
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Verification of solutions

y = −2 e3c1t3 − 1
e3c1t3 − 1

Verified OK.

1.11.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (t, y)

= y2 + y − 2
t

This is a Riccati ODE. Comparing the ODE to solve

y′ = −2
t
+ y

t
+ y2

t

With Riccati ODE standard form

y′ = f0(t) + f1(t)y + f2(t)y2

Shows that f0(t) = −2
t
, f1(t) = 1

t
and f2(t) = 1

t
. Let

y = −u′

f2u

= −u′

u
t

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(t)− (f ′

2 + f1f2)u′(t) + f 2
2 f0u(t) = 0 (2)

But

f ′
2 = − 1

t2

f1f2 =
1
t2

f 2
2 f0 = − 2

t3

Substituting the above terms back in equation (2) gives

u′′(t)
t

− 2u(t)
t3

= 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(t) = c1t
3 + c2
t

The above shows that

u′(t) = 2c1t3 − c2
t2

Using the above in (1) gives the solution

y = −2c1t3 − c2
c1t3 + c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −2c3t3 + 1
c3t3 + 1

Summary
The solution(s) found are the following

(1)y = −2c3t3 + 1
c3t3 + 1
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Figure 30: Slope field plot

Verification of solutions

y = −2c3t3 + 1
c3t3 + 1

Verified OK.

1.11.5 Maple step by step solution

Let’s solve

y′ − y
t
− y2

t
= −2

t

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(y+2)(y−1) =
1
t

• Integrate both sides with respect to t∫
y′

(y+2)(y−1)dt =
∫ 1

t
dt+ c1

• Evaluate integral
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ln(y−1)
3 − ln(y+2)

3 = c1 + ln (t)

• Solve for y

y = t3(ec1 )3−3 e3c1 t3−1
t3(ec1 )3−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.438 (sec). Leaf size: 22� �
dsolve(diff(y(t),t)=-2/t+1/t*y(t)+1/t*y(t)^2,y(t), singsol=all)� �

y(t) = −2c1t3 − 1
c1t3 − 1

3 Solution by Mathematica
Time used: 1.263 (sec). Leaf size: 43� �
DSolve[y'[t]==-2/t+1/t*y[t]+1/t*y[t]^2,y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1− 2e3c1t3
1 + e3c1t3

y(t) → −2
y(t) → 1
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1.12 problem Example 3.12
1.12.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 143

Internal problem ID [5845]
Internal file name [OUTPUT/5093_Sunday_June_05_2022_03_24_10_PM_796261/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′ + y

t
+ y2 = −1

1.12.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (t, y)

= −y2t+ t+ y

t

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y

t
− 1− y2

With Riccati ODE standard form

y′ = f0(t) + f1(t)y + f2(t)y2

Shows that f0(t) = −1, f1(t) = −1
t
and f2(t) = −1. Let

y = −u′

f2u

= −u′

−u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(t)− (f ′

2 + f1f2)u′(t) + f 2
2 f0u(t) = 0 (2)

But

f ′
2 = 0

f1f2 =
1
t

f 2
2 f0 = −1

Substituting the above terms back in equation (2) gives

−u′′(t)− u′(t)
t

− u(t) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(t) = c1 BesselJ (0, t) + c2 BesselY (0, t)

The above shows that

u′(t) = −c1 BesselJ (1, t)− c2 BesselY (1, t)

Using the above in (1) gives the solution

y = −c1 BesselJ (1, t)− c2 BesselY (1, t)
c1 BesselJ (0, t) + c2 BesselY (0, t)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −c3 BesselJ (1, t)− BesselY (1, t)
c3 BesselJ (0, t) + BesselY (0, t)

Summary
The solution(s) found are the following

(1)y = −c3 BesselJ (1, t)− BesselY (1, t)
c3 BesselJ (0, t) + BesselY (0, t)
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Figure 31: Slope field plot

Verification of solutions

y = −c3 BesselJ (1, t)− BesselY (1, t)
c3 BesselJ (0, t) + BesselY (0, t)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> searching for a solution in terms of Whittaker functions
<- solution in terms of Whittaker functions successful

<- Abel AIR successful: ODE belongs to the 1F1 2-parameter class`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 35� �
dsolve(diff(y(t),t)=-y(t)/t-1-y(t)^2,y(t), singsol=all)� �

y(t) = −iBesselK (1, it) c1 − BesselJ (1, t)
BesselK (0, it) c1 + BesselJ (0, t)

3 Solution by Mathematica
Time used: 0.189 (sec). Leaf size: 43� �
DSolve[y'[t]==-y[t]/t-1-y[t]^2,y[t],t,IncludeSingularSolutions -> True]� �

y(t) → −BesselY(1, t) + c1 BesselJ(1, t)
BesselY(0, t) + c1 BesselJ(0, t)

y(t) → −BesselJ(1, t)
BesselJ(0, t)
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1.13 problem Example 3.14
1.13.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 147

Internal problem ID [5846]
Internal file name [OUTPUT/5094_Sunday_June_05_2022_03_24_13_PM_25223300/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.14.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_dAlembert]

y′y − ay′
2 = −x

1.13.1 Solving as dAlembert ode

Let p = y′ the ode becomes

−a p2 + py = −x

Solving for y from the above results in

y = −x

p
+ ap (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1
p

g = ap

Hence (2) becomes

p+ 1
p
=
(

x

p2
+ a

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
p
= 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ia− ix

y = ia+ ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

p(x)
x

p(x)2 + a
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
p2

+ a

p+ 1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 1
p (p2 + 1)

q(p) = pa

p2 + 1

Hence the ode is

d

dp
x(p)− x(p)

p (p2 + 1) = pa

p2 + 1

The integrating factor µ is

µ = e
∫
− 1

p
(
p2+1

)dp

= e
ln

(
p2+1

)
2 −ln(p)

Which simplifies to

µ =
√
p2 + 1
p

The ode becomes

d
dp(µx) = (µ)

(
pa

p2 + 1

)
d
dp

(√
p2 + 1x
p

)
=
(√

p2 + 1
p

)(
pa

p2 + 1

)
d
(√

p2 + 1x
p

)
=
(

a√
p2 + 1

)
dp

Integrating gives
√
p2 + 1x
p

=
∫

a√
p2 + 1

dp
√
p2 + 1x
p

= a arcsinh (p) + c1

Dividing both sides by the integrating factor µ =
√

p2+1
p

results in

x(p) = pa arcsinh (p)√
p2 + 1

+ c1p√
p2 + 1
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which simplifies to

x(p) = p(a arcsinh (p) + c1)√
p2 + 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y +
√
y2 + 4ax
2a

p = −−y +
√
y2 + 4ax
2a

Substituting the above in the solution for x found above gives

x =

(
y +

√
y2 + 4ax

) (
a arcsinh

(
y+
√

y2+4ax
2a

)
+ c1

)√
2

2
√

y
√

y2+4ax+2a2+2ax+y2

a2
a

x =

(
−y +

√
y2 + 4ax

) (
a arcsinh

(
−y+

√
y2+4ax
2a

)
− c1

)√
2

2
√

2a2+2ax−y
√

y2+4ax+y2

a2
a

Summary
The solution(s) found are the following

(1)y = −ia− ix
(2)y = ia+ ix

(3)x =

(
y +

√
y2 + 4ax

) (
a arcsinh

(
y+
√

y2+4ax
2a

)
+ c1

)√
2

2
√

y
√

y2+4ax+2a2+2ax+y2

a2
a

(4)x =

(
−y +

√
y2 + 4ax

) (
a arcsinh

(
−y+

√
y2+4ax
2a

)
− c1

)√
2

2
√

2a2+2ax−y
√

y2+4ax+y2

a2
a
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Verification of solutions

y = −ia− ix

Verified OK.
y = ia+ ix

Verified OK.

x =

(
y +

√
y2 + 4ax

) (
a arcsinh

(
y+
√

y2+4ax
2a

)
+ c1

)√
2

2
√

y
√

y2+4ax+2a2+2ax+y2

a2
a

Verified OK.

x =

(
−y +

√
y2 + 4ax

) (
a arcsinh

(
−y+

√
y2+4ax
2a

)
− c1

)√
2

2
√

2a2+2ax−y
√

y2+4ax+y2

a2
a

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 246� �
dsolve(x+y(x)*diff(y(x),x)=a*(diff(y(x),x))^2,y(x), singsol=all)� �
−

√
2
(
y(x)+

√
4ax+y(x)2

)
arcsinh

(
y(x)+

√
4ax+y(x)2

2a

)
2 + x

√
y(x)

√
4ax+y(x)2+2a2+2ax+y(x)2

a2
+ c1y(x) + c1

√
4ax+ y (x)2√

y(x)
√

4ax+y(x)2+y(x)2+2a(a+x)
a2

= 0√
−2y(x)

√
4ax+y(x)2+2y(x)2+4a(a+x)

a2
x−

(
y(x)−

√
4ax+ y (x)2

)(
− arcsinh

(
−y(x)+

√
4ax+y(x)2

2a

)
+ c1

)
√

−2y(x)
√

4ax+y(x)2+2y(x)2+4a(a+x)
a2

= 0

3 Solution by Mathematica
Time used: 1.371 (sec). Leaf size: 71� �
DSolve[x+y[x]*y'[x]==a*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve

x = −
aK[1] log

(√
K[1]2 + 1−K[1]

)
√

K[1]2 + 1

+ c1K[1]√
K[1]2 + 1

, y(x) = aK[1]− x

K[1]

 , {y(x), K[1]}
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1.14 problem Example 3.15
1.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 155

Internal problem ID [5847]
Internal file name [OUTPUT/5095_Sunday_June_05_2022_03_24_30_PM_71446160/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.15.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − y2a2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = ya (1)
y′ = −ya (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
ya

dy =
∫

dx

ln (y)
a

= x+ c1

Raising both side to exponential gives

e
ln(y)
a = ex+c1
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Which simplifies to

y
1
a = c2ex

Summary
The solution(s) found are the following

(1)y = (c2ex)a

Verification of solutions

y = (c2ex)a

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1
ya

dy =
∫

dx

− ln (y)
a

= x+ c3

Raising both side to exponential gives

e−
ln(y)
a = ex+c3

Which simplifies to

y−
1
a = c4ex

Summary
The solution(s) found are the following

(1)y = (c4ex)−a

Verification of solutions

y = (c4ex)−a

Verified OK.
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1.14.1 Maple step by step solution

Let’s solve
y′2 − y2a2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= a

• Integrate both sides with respect to x∫
y′

y
dx =

∫
adx+ c1

• Evaluate integral
ln (y) = ax+ c1

• Solve for y
y = eax+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2-a^2*y(x)^2=0,y(x), singsol=all)� �

y(x) = c1eax
y(x) = c1e−ax
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3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 31� �
DSolve[(y'[x])^2-a^2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−ax

y(x) → c1e
ax

y(x) → 0
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1.15 problem Example 3.16
1.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 158

Internal problem ID [5848]
Internal file name [OUTPUT/5096_Sunday_June_05_2022_03_24_32_PM_70360323/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.2 FIRST ORDER ODE.
Page 114
Problem number: Example 3.16.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 = 4x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2x (1)
y′ = −2x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

2x dx

= x2 + c1

Summary
The solution(s) found are the following

(1)y = x2 + c1
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Verification of solutions

y = x2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−2x dx

= −x2 + c2

Summary
The solution(s) found are the following

(1)y = −x2 + c2

Verification of solutions

y = −x2 + c2

Verified OK.

1.15.1 Maple step by step solution

Let’s solve
y′2 = 4x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2dx =

∫
4x2dx+ c1

• Cannot compute integral∫
y′2dx = 4x3

3 + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)^2=4*x^2,y(x), singsol=all)� �

y(x) = x2 + c1
y(x) = −x2 + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 23� �
DSolve[(y'[x])^2==4*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2 + c1
y(x) → x2 + c1
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2 Chapter 3. Ordinary Differential Equations.
Section 3.3 SECOND ORDER ODE. Page 147

2.1 problem Example 3.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
2.2 problem Example 3.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
2.3 problem Example 3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
2.4 problem Example 3.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
2.5 problem Example 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
2.6 problem Example 3.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
2.7 problem Example 3.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.8 problem Example 3.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
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2.1 problem Example 3.17
2.1.1 Solving as second order linear constant coeff ode . . . . . . . . 161
2.1.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 163
2.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 167

Internal problem ID [5849]
Internal file name [OUTPUT/5097_Sunday_June_05_2022_03_24_34_PM_42517123/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ − 3y = 0

2.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
Where in the above A = 1, B = −2, C = −3. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx − 3 eλx = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ− 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = −2, C = −3 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√

−22 − (4) (1) (−3)

= 1± 2

Hence
λ1 = 1 + 2
λ2 = 1− 2

Which simplifies to
λ1 = 3
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(−1)x

Or
y = e3xc1 + c2e−x

Summary
The solution(s) found are the following

(1)y = e3xc1 + c2e−x
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Figure 32: Slope field plot

Verification of solutions

y = e3xc1 + c2e−x

Verified OK.

2.1.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 20: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1

(
e4x
4

)

165



Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e4x
4

))

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e3x
4

Figure 33: Slope field plot

Verification of solutions

y = c1e−x + c2e3x
4

Verified OK.
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2.1.3 Maple step by step solution

Let’s solve
y′′ − 2y′ − 3y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 2r − 3 = 0

• Factor the characteristic polynomial
(r + 1) (r − 3) = 0

• Roots of the characteristic polynomial
r = (−1, 3)

• 1st solution of the ODE
y1(x) = e−x

• 2nd solution of the ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1e−x + c2e3x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−x + c2e3x

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22� �
DSolve[y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c2e

4x + c1
)
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2.2 problem Example 3.18
2.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 170
2.2.2 Solving as second order linear constant coeff ode . . . . . . . . 170
2.2.3 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2.2.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 174
2.2.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 178

Internal problem ID [5850]
Internal file name [OUTPUT/5098_Sunday_June_05_2022_03_24_35_PM_26496268/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

s′′ + 2s′ + s = 0

With initial conditions

[s(0) = 4, s′(0) = −2]
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2.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

s′′ + p(t)s′ + q(t)s = F

Where here

p(t) = 2
q(t) = 1
F = 0

Hence the ode is

s′′ + 2s′ + s = 0

The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

2.2.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

As′′(t) +Bs′(t) + Cs(t) = 0

Where in the above A = 1, B = 2, C = 1. Let the solution be s = eλt. Substituting this
into the ODE gives

λ2eλt + 2λ eλt + eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 2, C = 1 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)

√
(2)2 − (4) (1) (1)

= −1

Hence this is the case of a double root λ1,2 = 1. Therefore the solution is

s = c1e−t + c2t e−t (1)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

s = e−tc1 + t e−tc2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting s = 4 and t = 0
in the above gives

4 = c1 (1A)

Taking derivative of the solution gives

s′ = −e−tc1 + c2e−t − t e−tc2

substituting s′ = −2 and t = 0 in the above gives

−2 = −c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 4
c2 = 2

Substituting these values back in above solution results in

s = 2t e−t + 4 e−t

Which simplifies to
s = 2(t+ 2) e−t

Summary
The solution(s) found are the following

(1)s = 2(t+ 2) e−t
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(a) Solution plot (b) Slope field plot

Verification of solutions

s = 2(t+ 2) e−t

Verified OK.

2.2.3 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

s′′ + p(t) s′ +
(
p(t)2 + p′(t)

)
s

2 = f(t)

Where p(t) = 2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
2 dx

= et

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)s) ′′ = 0(
ets
) ′′ = 0
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Integrating once gives (
ets
)′ = c1

Integrating again gives (
ets
)
= c1t+ c2

Hence the solution is

s = c1t+ c2
et

Or
s = c1t e−t + c2e−t

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

s = c1t e−t + c2e−t (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting s = 4 and t = 0
in the above gives

4 = c2 (1A)

Taking derivative of the solution gives

s′ = e−tc1 − c1t e−t − c2e−t

substituting s′ = −2 and t = 0 in the above gives

−2 = c1 − c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 2
c2 = 4

Substituting these values back in above solution results in

s = 2t e−t + 4 e−t

Which simplifies to
s = 2(t+ 2) e−t
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Summary
The solution(s) found are the following

(1)s = 2(t+ 2) e−t

(a) Solution plot (b) Slope field plot

Verification of solutions

s = 2(t+ 2) e−t

Verified OK.

2.2.4 Solving using Kovacic algorithm

Writing the ode as

s′′ + 2s′ + s = 0 (1)
As′′ +Bs′ + Cs = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = se
∫

B
2A dt
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Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(t) = 0 (7)

Equation (7) is now solved. After finding z(t) then s is found using the inverse trans-
formation

s = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 22: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in s is found from

s1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2
1 dt

= z1e
−t

= z1
(
e−t
)

Which simplifies to
s1 = e−t

The second solution s2 to the original ode is found using reduction of order

s2 = s1

∫
e
∫
−B

A
dt

s21
dt

Substituting gives

s2 = s1

∫
e
∫
− 2

1 dt

(s1)2
dt

= s1

∫
e−2t

(s1)2
dt

= s1(t)
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Therefore the solution is

s = c1s1 + c2s2

= c1
(
e−t
)
+ c2

(
e−t(t)

)
Initial conditions are used to solve for the constants of integration.

Looking at the above solution

s = e−tc1 + t e−tc2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting s = 4 and t = 0
in the above gives

4 = c1 (1A)

Taking derivative of the solution gives

s′ = −e−tc1 + c2e−t − t e−tc2

substituting s′ = −2 and t = 0 in the above gives

−2 = −c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 4
c2 = 2

Substituting these values back in above solution results in

s = 2t e−t + 4 e−t

Which simplifies to
s = 2(t+ 2) e−t

Summary
The solution(s) found are the following

(1)s = 2(t+ 2) e−t
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(a) Solution plot (b) Slope field plot

Verification of solutions

s = 2(t+ 2) e−t

Verified OK.

2.2.5 Maple step by step solution

Let’s solve[
s′′ + 2s′ + s = 0, s(0) = 4, s′

∣∣∣{t=0}
= −2

]
• Highest derivative means the order of the ODE is 2

s′′

• Characteristic polynomial of ODE
r2 + 2r + 1 = 0

• Factor the characteristic polynomial
(r + 1)2 = 0

• Root of the characteristic polynomial
r = −1

• 1st solution of the ODE
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s1(t) = e−t

• Repeated root, multiply s1(t) by t to ensure linear independence
s2(t) = t e−t

• General solution of the ODE
s = c1s1(t) + c2s2(t)

• Substitute in solutions
s = e−tc1 + t e−tc2

� Check validity of solution s = e−tc1 + te−tc2

◦ Use initial condition s(0) = 4
4 = c1

◦ Compute derivative of the solution
s′ = −e−tc1 + c2e−t − t e−tc2

◦ Use the initial condition s′
∣∣∣{t=0}

= −2

−2 = −c1 + c2

◦ Solve for c1 and c2

{c1 = 4, c2 = 2}
◦ Substitute constant values into general solution and simplify

s = 2(t+ 2) e−t

• Solution to the IVP
s = 2(t+ 2) e−t

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve([diff(s(t),t$2)+2*diff(s(t),t)+s(t)=0,s(0) = 4, D(s)(0) = -2],s(t), singsol=all)� �

s(t) = 2 e−t(t+ 2)

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 15� �
DSolve[{s''[t]+2*s'[t]+s[t]==0,{s[0]==4,s'[0]==-2}},s[t],t,IncludeSingularSolutions -> True]� �

s(t) → 2e−t(t+ 2)
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2.3 problem Example 3.19
2.3.1 Solving as second order linear constant coeff ode . . . . . . . . 181
2.3.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 183
2.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 187

Internal problem ID [5851]
Internal file name [OUTPUT/5099_Sunday_June_05_2022_03_24_37_PM_94357119/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ + 5y = 0

2.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
Where in the above A = 1, B = −2, C = 5. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + 5 eλx = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 5 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = −2, C = 5 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√
−22 − (4) (1) (5)

= 1± 2i

Hence

λ1 = 1 + 2i
λ2 = 1− 2i

Which simplifies to
λ1 = 1 + 2i
λ2 = 1− 2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = ex(c1 cos (2x) + c2 sin (2x))

Summary
The solution(s) found are the following

(1)y = ex(c1 cos (2x) + c2 sin (2x))
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Figure 37: Slope field plot

Verification of solutions

y = ex(c1 cos (2x) + c2 sin (2x))

Verified OK.

2.3.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + 5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 24: Necessary conditions for each Kovacic case

184



The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = ex cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1

(
tan (2x)

2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex cos (2x)) + c2

(
ex cos (2x)

(
tan (2x)

2

))

Summary
The solution(s) found are the following

(1)y = c1ex cos (2x) +
c2ex sin (2x)

2

Figure 38: Slope field plot

Verification of solutions

y = c1ex cos (2x) +
c2ex sin (2x)

2

Verified OK.
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2.3.3 Maple step by step solution

Let’s solve
y′′ − 2y′ + 5y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 2r + 5 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (1− 2 I, 1 + 2 I)

• 1st solution of the ODE
y1(x) = ex cos (2x)

• 2nd solution of the ODE
y2(x) = ex sin (2x)

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1ex cos (2x) + c2ex sin (2x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)� �

y(x) = ex(c1 sin (2x) + c2 cos (2x))

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 24� �
DSolve[y''[x]-2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c2 cos(2x) + c1 sin(2x))
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2.4 problem Example 3.21
2.4.1 Solving as second order linear constant coeff ode . . . . . . . . 189
2.4.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 192
2.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 197

Internal problem ID [5852]
Internal file name [OUTPUT/5100_Sunday_June_05_2022_03_24_38_PM_53342084/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 2y′ − 3y = 3x+ 1

2.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = −3, f(x) = 3x+ 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ − 3y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −2, C = −3. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx − 3 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ− 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = −3 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√

−22 − (4) (1) (−3)

= 1± 2

Hence
λ1 = 1 + 2
λ2 = 1− 2

Which simplifies to
λ1 = 3
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(−1)x

Or
y = e3xc1 + c2e−x

Therefore the homogeneous solution yh is

yh = e3xc1 + c2e−x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−x, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−3A2x− 3A1 − 2A2 = 3x+ 1

Solving for the unknowns by comparing coefficients results in[
A1 =

1
3 , A2 = −1

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x+ 1
3

Therefore the general solution is

y = yh + yp

=
(
e3xc1 + c2e−x

)
+
(
−x+ 1

3

)
Summary
The solution(s) found are the following

(1)y = e3xc1 + c2e−x − x+ 1
3
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Figure 39: Slope field plot

Verification of solutions

y = e3xc1 + c2e−x − x+ 1
3

Verified OK.

2.4.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 26: Necessary conditions for each Kovacic case

193



The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1

(
e4x
4

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e4x
4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ − 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2e3x
4

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e3x
4 , e−x

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−3A2x− 3A1 − 2A2 = 3x+ 1

Solving for the unknowns by comparing coefficients results in[
A1 =

1
3 , A2 = −1

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x+ 1
3

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e3x

4

)
+
(
−x+ 1

3

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e3x
4 − x+ 1

3
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Figure 40: Slope field plot

Verification of solutions

y = c1e−x + c2e3x
4 − x+ 1

3

Verified OK.

2.4.3 Maple step by step solution

Let’s solve
y′′ − 2y′ − 3y = 3x+ 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r − 3 = 0

• Factor the characteristic polynomial
(r + 1) (r − 3) = 0

• Roots of the characteristic polynomial
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r = (−1, 3)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2e3x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 3x+ 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x e3x

−e−x 3 e3x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 4 e2x

◦ Substitute functions into equation for yp(x)

yp(x) = − e−x
(∫

(3x+1)exdx
)

4 + e3x
(∫

e−3x(3x+1)dx
)

4

◦ Compute integrals
yp(x) = −x+ 1

3

• Substitute particular solution into general solution to ODE
y = c1e−x + c2e3x − x+ 1

3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)-3*y(x)=3*x+1,y(x), singsol=all)� �

y(x) = c2e−x + e3xc1 − x+ 1
3

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 28� �
DSolve[y''[x]-2*y'[x]-3*y[x]==3*x+1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ c1e
−x + c2e

3x + 1
3

199



2.5 problem Example 3.22
2.5.1 Solving as second order linear constant coeff ode . . . . . . . . 200
2.5.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 203
2.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 208

Internal problem ID [5853]
Internal file name [OUTPUT/5101_Sunday_June_05_2022_03_24_40_PM_47116087/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 3y′ + 2y = e2xx

2.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −3, C = 2, f(x) = e2xx. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 3y′ + 2y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −3, C = 2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 3λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 3λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −3, C = 2 into the above gives

λ1,2 =
3

(2) (1) ±
1

(2) (1)
√
−32 − (4) (1) (2)

= 3
2 ± 1

2
Hence

λ1 =
3
2 + 1

2

λ2 =
3
2 − 1

2

Which simplifies to
λ1 = 2
λ2 = 1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(2)x + c2e

(1)x

Or
y = c1e2x + c2ex

Therefore the homogeneous solution yh is

yh = c1e2x + c2ex

201



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e2xx

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2xx, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x, e2xx}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e2x + A2e2xx

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1e2x + 2A1x e2x + A2e2x = e2xx

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2 , A2 = −1

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e2x
2 − e2xx

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2ex

)
+
(
x2e2x
2 − e2xx

)
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Summary
The solution(s) found are the following

(1)y = c1e2x + c2ex +
x2e2x
2 − e2xx

Figure 41: Slope field plot

Verification of solutions

y = c1e2x + c2ex +
x2e2x
2 − e2xx

Verified OK.

2.5.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 3y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = −3 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 28: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3
1 dx

= z1e
3x
2

= z1
(
e 3x

2

)
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Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3

1 dx

(y1)2
dx

= y1

∫
e3x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(ex))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 3y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex + c2e2x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e2xx
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2xx, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x, e2xx}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e2x + A2e2xx

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1e2x + 2A1x e2x + A2e2x = e2xx

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2 , A2 = −1

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e2x
2 − e2xx

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e2x

)
+
(
x2e2x
2 − e2xx

)
Summary
The solution(s) found are the following

(1)y = c1ex + c2e2x +
x2e2x
2 − e2xx
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Figure 42: Slope field plot

Verification of solutions

y = c1ex + c2e2x +
x2e2x
2 − e2xx

Verified OK.

2.5.3 Maple step by step solution

Let’s solve
y′′ − 3y′ + 2y = e2xx

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
(r − 1) (r − 2) = 0

• Roots of the characteristic polynomial
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r = (1, 2)
• 1st solution of the homogeneous ODE

y1(x) = ex

• 2nd solution of the homogeneous ODE
y2(x) = e2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2e2x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = e2xx

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex e2x

ex 2 e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e3x

◦ Substitute functions into equation for yp(x)
yp(x) = −ex

(∫
x exdx

)
+ e2x

(∫
xdx

)
◦ Compute integrals

yp(x) = e2x
(
1 + 1

2x
2 − x

)
• Substitute particular solution into general solution to ODE

y = c1ex + c2e2x + e2x
(
1 + 1

2x
2 − x

)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=x*exp(2*x),y(x), singsol=all)� �

y(x) = ((x2 + 2c1 − 2x+ 2) ex + 2c2) ex
2

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 33� �
DSolve[y''[x]-3*y'[x]+2*y[x]==x*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

x
(
ex
(
x2 − 2x+ 2 + 2c2

)
+ 2c1

)

210



2.6 problem Example 3.23
2.6.1 Solving as second order linear constant coeff ode . . . . . . . . 211
2.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 214
2.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 219

Internal problem ID [5854]
Internal file name [OUTPUT/5102_Sunday_June_05_2022_03_24_41_PM_35209794/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y = 4 sin (x)

2.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = 4 sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(cos (x) c1 + c2 sin (x))

Or
y = cos (x) c1 + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = cos (x) c1 + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{cos (x)x, sin (x)x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1 cos (x)x+ A2 sin (x)x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) + 2A2 cos (x) = 4 sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = −2, A2 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −2 cos (x)x

Therefore the general solution is

y = yh + yp

= (cos (x) c1 + c2 sin (x)) + (−2 cos (x)x)
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Summary
The solution(s) found are the following

(1)y = cos (x) c1 + c2 sin (x)− 2 cos (x)x

Figure 43: Slope field plot

Verification of solutions

y = cos (x) c1 + c2 sin (x)− 2 cos (x)x

Verified OK.

2.6.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 30: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (x)

216



Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = cos (x) c1 + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 sin (x)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{cos (x)x, sin (x)x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1 cos (x)x+ A2 sin (x)x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) + 2A2 cos (x) = 4 sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = −2, A2 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −2 cos (x)x

Therefore the general solution is

y = yh + yp

= (cos (x) c1 + c2 sin (x)) + (−2 cos (x)x)

Summary
The solution(s) found are the following

(1)y = cos (x) c1 + c2 sin (x)− 2 cos (x)x
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Figure 44: Slope field plot

Verification of solutions

y = cos (x) c1 + c2 sin (x)− 2 cos (x)x

Verified OK.

2.6.3 Maple step by step solution

Let’s solve
y′′ + y = 4 sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (−I, I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = cos (x) c1 + c2 sin (x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 4 sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)

yp(x) = −4 cos (x)
(∫

sin (x)2 dx
)
+ 2 sin (x)

(∫
sin (2x) dx

)
◦ Compute integrals

yp(x) = sin (x)− 2 cos (x)x
• Substitute particular solution into general solution to ODE

y = cos (x) c1 + c2 sin (x) + sin (x)− 2 cos (x)x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+y(x)=4*sin(x),y(x), singsol=all)� �

y(x) = (c1 − 2x) cos (x) + sin (x) (c2 + 2)

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 20� �
DSolve[y''[x]+y[x]==4*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−2x+ c1) cos(x) + c2 sin(x)
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2.7 problem Example 3.24
2.7.1 Solving as second order change of variable on y method 1 ode . 222
2.7.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 225
2.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 228

Internal problem ID [5855]
Internal file name [OUTPUT/5103_Sunday_June_05_2022_03_24_43_PM_39382539/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2x2y′ +
(
x4 + 2x− 1

)
y = 0

2.7.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2x2

q(x) = x4 + 2x− 1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x4 + 2x− 1− (2x2)′

2 − (2x2)2

4

= x4 + 2x− 1− (4x)
2 − (4x4)

4
= x4 + 2x− 1− (2x)− x4

= −1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2x2

2

= e−x3
3 (5)

Hence (3) becomes

y = v(x) e−x3
3 (4)

Applying this change of variable to the original ode results in

e−x3
3 (v′′(x)− v(x)) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(1)x + c2e

(−1)x

Or
v(x) = c1ex + c2e−x

Now that v(x) is known, then

y = v(x) z(x)
=
(
c1ex + c2e−x

)
(z(x)) (7)

But from (5)

z(x) = e−x3
3

Hence (7) becomes

y =
(
c1ex + c2e−x

)
e−x3

3

224



Summary
The solution(s) found are the following

(1)y =
(
c1ex + c2e−x

)
e−x3

3

Verification of solutions

y =
(
c1ex + c2e−x

)
e−x3

3

Verified OK.

2.7.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 2x2y′ +
(
x4 + 2x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2x2 (3)
C = x4 + 2x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1
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Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 32: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

226



Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x2
1 dx

= z1e
−x3

3

= z1
(
e−x3

3

)
Which simplifies to

y1 = e−
x
(
x2+3

)
3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x2

1 dx

(y1)2
dx

= y1

∫
e−

2x3
3

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
e−

x
(
x2+3

)
3

)
+ c2

(
e−

x
(
x2+3

)
3

(
e2x
2

))
Summary
The solution(s) found are the following

(1)y = c1e−
x
(
x2+3

)
3 + c2e−

x
(
x2−3

)
3

2
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Verification of solutions

y = c1e−
x
(
x2+3

)
3 + c2e−

x
(
x2−3

)
3

2

Verified OK.

2.7.3 Maple step by step solution

Let’s solve
y′′ + 2x2y′ + (x4 + 2x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..4

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x2 · y′ to series expansion

x2 · y′ =
∞∑
k=0

akk x
k+1

◦ Shift index using k− >k − 1

x2 · y′ =
∞∑
k=1

ak−1(k − 1)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk
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Rewrite ODE with series expansions

2a2 − a0 + (6a3 − a1 + 2a0)x+ (12a4 − a2 + 4a1)x2 + (20a5 − a3 + 6a2)x3 +
(

∞∑
k=4

(ak+2(k + 2) (k + 1)− ak + 2ak−1k + ak−4)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − a0 = 0, 6a3 − a1 + 2a0 = 0, 12a4 − a2 + 4a1 = 0, 20a5 − a3 + 6a2 = 0]

• Solve for the dependent coefficient(s){
a2 = a0

2 , a3 =
a1
6 − a0

3 , a4 =
a0
24 −

a1
3 , a5 =

a1
120 −

a0
6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 2ak−1k − ak + ak−4 = 0
• Shift index using k− >k + 4(

(k + 4)2 + 3k + 14
)
ak+6 + 2ak+3(k + 4)− ak+4 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+6 = −2kak+3+ak+8ak+3−ak+4

k2+11k+30 , a2 = a0
2 , a3 =

a1
6 − a0

3 , a4 =
a0
24 −

a1
3 , a5 =

a1
120 −

a0
6

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)+2*x^2*diff(y(x),x)+(x^4+2*x-1)*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−
x
(
x2−3

)
3 + c2e−

x
(
x2+3

)
3

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 34� �
DSolve[y''[x]+2*x^2*y'[x]+(x^4+2*x-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

− 1
3x
(
x2+3

)(
c2e

2x + 2c1
)
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2.8 problem Example 3.26
2.8.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 231
2.8.2 Solving as second order change of variable on x method 2 ode . 236
2.8.3 Solving as second order change of variable on y method 2 ode . 244
2.8.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 251

Internal problem ID [5856]
Internal file name [OUTPUT/5104_Sunday_June_05_2022_03_24_44_PM_61124771/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE.
Page 147
Problem number: Example 3.26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_2", "second_or-
der_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

p x2u′′ + qxu′ + ru = f(x)

2.8.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Au′′(x) +Bu′(x) + Cu(x) = f(x)

Where A = x2p,B = qx, C = r, f(x) = f(x). Let the solution be

u = uh + up

Where uh is the solution to the homogeneous ODE Au′′(x)+Bu′(x)+Cu(x) = 0, and up

is a particular solution to the non-homogeneous ODE Au′′(x)+Bu′(x)+Cu(x) = f(x).
Solving for uh from

p x2u′′ + qxu′ + ru = 0
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This is Euler second order ODE. Let the solution be u = xr, then u′ = rxr−1 and
u′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2p(r(r − 1))xr−2 + qxrxr−1 + r xr = 0

Simplifying gives
pr(r − 1)xr + qr xr + r xr = 0

Since xr 6= 0 then dividing throughout by xr gives

pr(r − 1) + qr + r = 0

Or
p r2 + (−p+ q) r + r = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
p− q +

√
p2 − 2qp− 4pr + q2

2p

r2 = −−p+ q +
√
p2 − 2qp− 4pr + q2

2p

Since the roots are real and distinct, then the general solution is

u = c1u1 + c2u2

Where u1 = xr1 and u2 = xr2 . Hence

u = c1x
p−q+

√
p2−2qp−4pr+q2

2p + c2x
−−p+q+

√
p2−2qp−4pr+q2

2p

Next, we find the particular solution to the ODE

p x2u′′ + qxu′ + ru = f(x)

The particular solution up can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)up(x) = u1u1 + u2u2
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Where u1, u2 to be determined, and u1, u2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

u1 = x
p−q+

√
p2−2qp−4pr+q2

2p

u2 = x−−p+q+
√

p2−2qp−4pr+q2
2p

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

u2f(x)
aW (x)

(3)u2 =
∫

u1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of u′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣u1 u2

u′
1 u′

2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣
x

p−q+
√

p2−2qp−4pr+q2
2p x−−p+q+

√
p2−2qp−4pr+q2

2p

d
dx

(
x

p−q+
√

p2−2qp−4pr+q2
2p

)
d
dx

(
x−−p+q+

√
p2−2qp−4pr+q2

2p

)
∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣
x

p−q+
√

p2−2qp−4pr+q2
2p x−−p+q+

√
p2−2qp−4pr+q2

2p

x
p−q+

√
p2−2qp−4pr+q2

2p
(
p−q+

√
p2−2qp−4pr+q2

)
2px −

x
−

−p+q+
√

p2−2qp−4pr+q2
2p

(
−p+q+

√
p2−2qp−4pr+q2

)
2px

∣∣∣∣∣∣∣∣∣
Therefore

W =
(
x

p−q+
√

p2−2qp−4pr+q2
2p

)−
x−−p+q+

√
p2−2qp−4pr+q2

2p
(
−p+ q +

√
p2 − 2qp− 4pr + q2

)
2px


−

(
x−−p+q+

√
p2−2qp−4pr+q2

2p

)x
p−q+

√
p2−2qp−4pr+q2

2p
(
p− q +

√
p2 − 2qp− 4pr + q2

)
2px
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Which simplifies to

W = −x
p−q+

√
p2−2qp−4pr+q2

2p x−−p+q+
√

p2−2qp−4pr+q2
2p

√
p2 − 2qp− 4pr + q2

px

Which simplifies to

W = −
x− q

p

√
p2 + (−2q − 4r) p+ q2

p

Therefore Eq. (2) becomes

u1 = −
∫

x−−p+q+
√

p2−2qp−4pr+q2
2p f(x)

−x2x− q
p

√
p2 + (−2q − 4r) p+ q2

dx

Which simplifies to

u1 = −
∫

−x−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(x)√
p2 + (−2q − 4r) p+ q2

dx

Hence

u1 = −

∫ x

0
−α−

3p−q+
√

p2+(−2q−4r)p+q2

2p f(α)√
p2 + (−2q − 4r) p+ q2

dα


And Eq. (3) becomes

u2 =
∫

x
p−q+

√
p2−2qp−4pr+q2

2p f(x)
−x2x− q

p

√
p2 + (−2q − 4r) p+ q2

dx

Which simplifies to

u2 =
∫

−x
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(x)√
p2 + (−2q − 4r) p+ q2

dx

Hence

u2 =
∫ x

0
−α

−3p+q+
√

p2+(−2q−4r)p+q2

2p f(α)√
p2 + (−2q − 4r) p+ q2

dα
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Which simplifies to

u1 =
∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα√
p2 + (−2q − 4r) p+ q2

u2 = −
∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα√
p2 + (−2q − 4r) p+ q2

Therefore the particular solution, from equation (1) is

up(x) =

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2−2qp−4pr+q2
2p√

p2 + (−2q − 4r) p+ q2

−

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−−p+q+

√
p2−2qp−4pr+q2

2p√
p2 + (−2q − 4r) p+ q2

Which simplifies to

up(x)

=

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2+(−2q−4r)p+q2

2p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

Summary
The solution(s) found are the following

(1)u

=

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2+(−2q−4r)p+q2

2p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

+ c1x
p−q+

√
p2−2qp−4pr+q2

2p + c2x
−−p+q+

√
p2−2qp−4pr+q2

2p
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Verification of solutions
u

=

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2+(−2q−4r)p+q2

2p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

+ c1x
p−q+

√
p2−2qp−4pr+q2

2p + c2x
−−p+q+

√
p2−2qp−4pr+q2

2p

Verified OK.

2.8.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

u = uh + up

Where uh is the solution to the homogeneous ODE Au′′(x)+Bu′(x)+Cu(x) = 0, and up

is a particular solution to the non-homogeneous ODE Au′′(x)+Bu′(x)+Cu(x) = f(x).
uh is the solution to

p x2u′′ + qxu′ + ru = 0

In normal form the ode

p x2u′′ + qxu′ + ru = 0 (1)

Becomes

u′′ + p(x)u′ + q(x)u = 0 (2)

Where

p(x) = q

xp

q(x) = r

p x2

Applying change of variables τ = g(x) to (2) gives
d2

dτ 2
u(τ) + p1

(
d

dτ
u(τ)

)
+ q1u(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ q

xp
dx
)
dx

=
∫

e−
q ln(x)

p dx

=
∫

x− q
pdx

= p x1− q
p

p− q
(6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
r

p x2

x− 2q
p

= r x
−2p+2q

p

p
(7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
u(τ) + q1u(τ) = 0

d2

dτ 2
u(τ) + r x

−2p+2q
p u(τ)
p

= 0

But in terms of τ

r x
−2p+2q

p

p
= pr

(p− q)2 τ 2

Hence the above ode becomes

d2

dτ 2
u(τ) + pru(τ)

(p− q)2 τ 2
= 0
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The above ode is now solved for u(τ). The ode can be written as(
d2

dτ 2
u(τ)

)
(p− q)2 τ 2 + pru(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
u(τ) = τ r, then u′ = rτ r−1 and u′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

(p− q)2 τ 2(r(r − 1))τ r−2 + 0rτ r−1 + pr τ r = 0

Simplifying gives
(p− q)2 r(r − 1) τ r + 0 τ r + pr τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

(p− q)2 r(r − 1) + 0 + pr = 0

Or (
p2 − 2qp+ q2

)
r2 +

(
−p2 + 2qp− q2

)
r + pr = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −−p+ q +
√
p2 − 2qp− 4pr + q2

2 (p− q)

r2 =
p− q +

√
p2 − 2qp− 4pr + q2

2p− 2q
Since the roots are real and distinct, then the general solution is

u(τ) = c1u1 + c2u2

Where u1 = τ r1 and u2 = τ r2 . Hence

u(τ) = c1τ
−−p+q+

√
p2−2qp−4pr+q2
2(p−q) + c2τ

p−q+
√

p2−2qp−4pr+q2
2p−2q

The above solution is now transformed back to u using (6) which results in

u = c2

(
p x

p−q
p

p− q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

+ c1

(
p x

p−q
p

p− q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

Therefore the homogeneous solution uh is

uh = c2

(
p x

p−q
p

p− q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

+ c1

(
p x

p−q
p

p− q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q
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The particular solution up can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)up(x) = u1u1 + u2u2

Where u1, u2 to be determined, and u1, u2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

u1 =
(
px x− q

p

p− q

) p
2p−2q

(
p x1− q

p

p− q

)− q
2p−2q

(
p x1− q

p

p− q

)−
√

p2−2qp−4pr+q2
2p−2q

u2 =
(
px x− q

p

p− q

) p
2p−2q

(
p x1− q

p

p− q

)− q
2p−2q

(
px x− q

p

p− q

)√
p2−2qp−4pr+q2

2p−2q

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

u2f(x)
aW (x)

(3)u2 =
∫

u1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of u′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣u1 u2

u′
1 u′

2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q

d
dx

(px x
− q

p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q

 d
dx

(px x
− q

p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q

(
px x

− q
p

p−q

) p
2p−2q

(
p x

− q
p

p−q
−x

− q
p q

p−q

)
x

q
p (p−q)

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−

√
p2−2qp−4pr+q2

2p−2q

(2p−2q)x −

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−

√
p2−2qp−4pr+q2

2p−2q
q

(
p x

− q
p

p−q
−x

− q
p q

p−q

)
x

q
p (p−q)

(2p−2q)px −

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−

√
p2−2qp−4pr+q2

2p−2q √
p2−2qp−4pr+q2

(
p x

− q
p

p−q
−x

− q
p q

p−q

)
x

q
p (p−q)

(2p−2q)px

(
px x

− q
p

p−q

) p
2p−2q

(
p x

− q
p

p−q
−x

− q
p q

p−q

)
x

q
p (p−q)

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q

(2p−2q)x −

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q
q

(
p x

− q
p

p−q
−x

− q
p q

p−q

)
x

q
p (p−q)

(2p−2q)px +

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q √
p2−2qp−4pr+q2

(
p x

− q
p

p−q
−x

− q
p q

p−q

)
x

q
p (p−q)

(2p−2q)px

∣∣∣∣∣∣∣∣∣∣∣∣∣
Therefore

W

=


(
px x− q

p

p− q

) p
2p−2q

(
p x1− q

p

p− q

)− q
2p−2q

(
p x1− q

p

p− q

)−
√

p2−2qp−4pr+q2
2p−2q



(

px x
− q

p

p−q

) p
2p−2q

(
p x

− q
p

p−q
− x

− q
p q

p−q

)
x

q
p (p− q)

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q

(2p− 2q)x

−

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q

q

(
p x

− q
p

p−q
− x

− q
p q

p−q

)
x

q
p (p− q)

(2p− 2q) px

+

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q √
p2 − 2qp− 4pr + q2

(
p x

− q
p

p−q
− x

− q
p q

p−q

)
x

q
p (p− q)

(2p− 2q) px



−


(
px x− q

p

p− q

) p
2p−2q

(
p x1− q

p

p− q

)− q
2p−2q

(
px x− q

p

p− q

)√
p2−2qp−4pr+q2

2p−2q



(

px x
− q

p

p−q

) p
2p−2q

(
p x

− q
p

p−q
− x

− q
p q

p−q

)
x

q
p (p− q)

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q

(2p− 2q)x

−

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q

q

(
p x

− q
p

p−q
− x

− q
p q

p−q

)
x

q
p (p− q)

(2p− 2q) px

−

(
px x

− q
p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q √

p2 − 2qp− 4pr + q2
(

p x
− q

p

p−q
− x

− q
p q

p−q

)
x

q
p (p− q)

(2p− 2q) px
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Which simplifies to

W =

√
p2 − 2qp− 4pr + q2

(
p x

1− q
p

p−q

) p
p−q
(

p x
1− q

p

p−q

)− q
p−q

xp

Which simplifies to

W = x− q
p

√
p2 + (−2q − 4r) p+ q2

p− q

Therefore Eq. (2) becomes

u1 = −
∫ (

px x
− q

p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q

f(x)

x2p x
− q

p
√

p2+(−2q−4r)p+q2

p−q

dx

Which simplifies to

u1 = −
∫ x

−2p+q
p f(x) (p− q)

(
p x

p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

p
√

p2 + (−2q − 4r) p+ q2
dx

Hence

u1 = −


∫ x

0

α
−2p+q

p f(α) (p− q)
(

pα
p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

p
√

p2 + (−2q − 4r) p+ q2
dα


And Eq. (3) becomes

u2 =
∫ (

px x
− q

p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q

f(x)

x2p x
− q

p
√

p2+(−2q−4r)p+q2

p−q

dx
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Which simplifies to

u2 =
∫ x

−2p+q
p f(x) (p− q)

(
p x

p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

p
√
p2 + (−2q − 4r) p+ q2

dx

Hence

u2 =
∫ x

0

α
−2p+q

p f(α) (p− q)
(

pα
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

p
√
p2 + (−2q − 4r) p+ q2

dα

Which simplifies to

u1 = −

(p− q)

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

dα


√
p2 + (−2q − 4r) p+ q2 p

u2 =

(p− q)

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

dα


√
p2 + (−2q − 4r) p+ q2 p

Therefore the particular solution, from equation (1) is

up(x) =

−

(p− q)

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

dα

(px x
− q

p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
p x

1− q
p

p−q

)−
√

p2−2qp−4pr+q2
2p−2q

√
p2 + (−2q − 4r) p+ q2 p

+

(p− q)

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

dα

(px x
− q

p

p−q

) p
2p−2q

(
p x

1− q
p

p−q

)− q
2p−2q

(
px x

− q
p

p−q

)√
p2−2qp−4pr+q2

2p−2q

√
p2 + (−2q − 4r) p+ q2 p

242



Which simplifies to

up(x)

=

(p− q)
(

p x
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q


∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

dα

(p x
p−q
p

p−q

)√
p2+(−2q−4r)p+q2

p−q

−

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

dα




√
p2 + (−2q − 4r) p+ q2 p

Therefore the general solution is

u = uh + up

=

c2

(
p x

p−q
p

p− q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

+ c1

(
p x

p−q
p

p− q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q



+


(p− q)

(
p x

p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q


∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

dα

(p x
p−q
p

p−q

)√
p2+(−2q−4r)p+q2

p−q

−

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

dα




√
p2 + (−2q − 4r) p+ q2 p


Summary
The solution(s) found are the following

(1)u = c2

(
p x

p−q
p

p− q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

+ c1

(
p x

p−q
p

p− q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

+

(p− q)
(

p x
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q


∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

dα

(p x
p−q
p

p−q

)√
p2+(−2q−4r)p+q2

p−q

−

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

dα




√
p2 + (−2q − 4r) p+ q2 p
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Verification of solutions

u = c2

(
p x

p−q
p

p− q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

+ c1

(
p x

p−q
p

p− q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

+

(p− q)
(

p x
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q


∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q−
√

p2+(−2q−4r)p+q2

2p−2q

dα

(p x
p−q
p

p−q

)√
p2+(−2q−4r)p+q2

p−q

−

∫ x

0 α
−2p+q

p f(α)
(

pα
p−q
p

p−q

) p−q+
√

p2+(−2q−4r)p+q2

2p−2q

dα




√
p2 + (−2q − 4r) p+ q2 p

Verified OK.

2.8.3 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Au′′(x) +Bu′(x) + Cu(x) = f(x)

Where A = x2p,B = qx, C = r, f(x) = f(x). Let the solution be

u = uh + up

Where uh is the solution to the homogeneous ODE Au′′(x)+Bu′(x)+Cu(x) = 0, and up

is a particular solution to the non-homogeneous ODE Au′′(x)+Bu′(x)+Cu(x) = f(x).
Solving for uh from

p x2u′′ + qxu′ + ru = 0

In normal form the ode

p x2u′′ + qxu′ + ru = 0 (1)

Becomes

u′′ + p(x)u′ + q(x)u = 0 (2)

Where

p(x) = q

xp

q(x) = r

p x2
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Applying change of variables on the depndent variable u = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not u.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + nq

x2p
+ r

p x2 = 0 (5)

Solving (5) for n gives

n = p− q +
√
p2 − 2qp− 4pr + q2

2p (6)

Substituting this value in (3) gives

v′′(x) +
(
p− q +

√
p2 − 2qp− 4pr + q2

px
+ q

xp

)
v′(x) = 0

v′′(x) +

(
p+

√
p2 + (−2q − 4r) p+ q2

)
v′(x)

px
= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) +

(
p+

√
p2 + (−2q − 4r) p+ q2

)
u(x)

px
= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −

(
p+

√
p2 + (−2q − 4r) p+ q2

)
u

px
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Where f(x) = −p+
√

p2+(−2q−4r)p+q2

px
and g(u) = u. Integrating both sides gives

1
u
du = −

p+
√

p2 + (−2q − 4r) p+ q2

px
dx∫ 1

u
du =

∫
−
p+

√
p2 + (−2q − 4r) p+ q2

px
dx

ln (u) = − ln (x)−
√
p2 − 2qp− 4pr + q2 ln (x)

p
+ c1

u = e− ln(x)−
√

p2−2qp−4pr+q2 ln(x)
p

+c1

= c1e− ln(x)−
√

p2−2qp−4pr+q2 ln(x)
p

Which simplifies to

u(x) = c1x
−

√
p2−2qp−4pr+q2

p

x

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1p x
−

√
p2−2qp−4pr+q2

p

√
p2 − 2qp− 4pr + q2

+ c2

Hence

u = v(x)xn

=

− c1p x
−

√
p2−2qp−4pr+q2

p

√
p2 − 2qp− 4pr + q2

+ c2

x
p−q+

√
p2−2qp−4pr+q2

2p

=
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p

(
c2
√

p2 + (−2q − 4r) p+ q2 x

√
p2+(−2q−4r)p+q2

p − c1p

)
√

p2 + (−2q − 4r) p+ q2

Now the particular solution to this ODE is found

p x2u′′ + qxu′ + ru = f(x)
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The particular solution up can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)up(x) = u1u1 + u2u2

Where u1, u2 to be determined, and u1, u2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

u1 =
√
xx− q

2px

√
p2−2qp−4pr+q2

2p

u2 =
√
xx− q

2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

u2f(x)
aW (x)

(3)u2 =
∫

u1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of u′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣u1 u2

u′
1 u′

2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣
√
xx− q

2px

√
p2−2qp−4pr+q2

2p
√
xx− q

2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p

d
dx

(
√
xx− q

2px

√
p2−2qp−4pr+q2

2p

)
d
dx

(
√
xx− q

2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p

)
∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣
√
xx− q

2px

√
p2−2qp−4pr+q2

2p
√
xx− q

2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p

x
− q

2p x

√
p2−2qp−4pr+q2

2p

2
√
x

− x
− q

2p q x

√
p2−2qp−4pr+q2

2p

2
√
x p

+ x
− q

2p x

√
p2−2qp−4pr+q2

2p
√

p2−2qp−4pr+q2

2
√
x p

x
− q

2p x

√
p2−2qp−4pr+q2

2p x
−

√
p2−2qp−4pr+q2

p

2
√
x

− x
− q

2p q x

√
p2−2qp−4pr+q2

2p x
−

√
p2−2qp−4pr+q2

p

2
√
x p

− x
− q

2p x

√
p2−2qp−4pr+q2

2p
√

p2−2qp−4pr+q2 x
−

√
p2−2qp−4pr+q2

p

2
√
x p

∣∣∣∣∣∣∣∣∣
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Therefore

W =
(
√
xx− q

2px

√
p2−2qp−4pr+q2

2p

)x− q
2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p

2
√
x

− x− q
2p q x

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p

2
√
x p

− x− q
2px

√
p2−2qp−4pr+q2

2p
√
p2 − 2qp− 4pr + q2 x−

√
p2−2qp−4pr+q2

p

2
√
x p


−

(
√
xx− q

2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p

)x− q
2px

√
p2−2qp−4pr+q2

2p

2
√
x

− x− q
2p q x

√
p2−2qp−4pr+q2

2p

2
√
x p

+ x− q
2px

√
p2−2qp−4pr+q2

2p
√
p2 − 2qp− 4pr + q2

2
√
x p


Which simplifies to

W = −x− q
px

√
p2−2qp−4pr+q2

p
√
p2 − 2qp− 4pr + q2 x−

√
p2−2qp−4pr+q2

p

p

Which simplifies to

W = −
x− q

p

√
p2 + (−2q − 4r) p+ q2

p

Therefore Eq. (2) becomes

u1 = −
∫ √

xx− q
2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p f(x)

−x2x− q
p

√
p2 + (−2q − 4r) p+ q2

dx

Which simplifies to

u1 = −
∫

−x−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(x)√
p2 + (−2q − 4r) p+ q2

dx
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Hence

u1 = −

∫ x

0
−α−

3p−q+
√

p2+(−2q−4r)p+q2

2p f(α)√
p2 + (−2q − 4r) p+ q2

dα


And Eq. (3) becomes

u2 =
∫ √

xx− q
2px

√
p2−2qp−4pr+q2

2p f(x)
−x2x− q

p

√
p2 + (−2q − 4r) p+ q2

dx

Which simplifies to

u2 =
∫

−x
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(x)√
p2 + (−2q − 4r) p+ q2

dx

Hence

u2 =
∫ x

0
−α

−3p+q+
√

p2+(−2q−4r)p+q2

2p f(α)√
p2 + (−2q − 4r) p+ q2

dα

Which simplifies to

u1 =
∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα√
p2 + (−2q − 4r) p+ q2

u2 = −
∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα√
p2 + (−2q − 4r) p+ q2

Therefore the particular solution, from equation (1) is

up(x) =

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
√
xx− q

2px

√
p2−2qp−4pr+q2

2p√
p2 + (−2q − 4r) p+ q2

−

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
√
xx− q

2px

√
p2−2qp−4pr+q2

2p x−
√

p2−2qp−4pr+q2
p√

p2 + (−2q − 4r) p+ q2
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Which simplifies to

up(x)

=
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p

((∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

√
p2+(−2q−4r)p+q2

p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
))

√
p2 + (−2q − 4r) p+ q2

Therefore the general solution is

u = uh + up

=


− c1p x

−
√

p2−2qp−4pr+q2
p

√
p2 − 2qp− 4pr + q2

+ c2

x
p−q+

√
p2−2qp−4pr+q2

2p



+


x−

−p+q+
√

p2+(−2q−4r)p+q2

2p

((∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

√
p2+(−2q−4r)p+q2

p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
))

√
p2 + (−2q − 4r) p+ q2



=
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p

((∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

√
p2+(−2q−4r)p+q2

p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
))

√
p2 + (−2q − 4r) p+ q2

+

− c1p x
−

√
p2−2qp−4pr+q2

p

√
p2 − 2qp− 4pr + q2

+ c2

x
p−q+

√
p2−2qp−4pr+q2

2p

Summary
The solution(s) found are the following

(1)u

=
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p

((∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

√
p2+(−2q−4r)p+q2

p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
))

√
p2 + (−2q − 4r) p+ q2

+

− c1p x
−

√
p2−2qp−4pr+q2

p

√
p2 − 2qp− 4pr + q2

+ c2

x
p−q+

√
p2−2qp−4pr+q2

2p
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Verification of solutions
u

=
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p

((∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

√
p2+(−2q−4r)p+q2

p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
))

√
p2 + (−2q − 4r) p+ q2

+

− c1p x
−

√
p2−2qp−4pr+q2

p

√
p2 − 2qp− 4pr + q2

+ c2

x
p−q+

√
p2−2qp−4pr+q2

2p

Verified OK.

2.8.4 Solving using Kovacic algorithm

Writing the ode as

p x2u′′ + qxu′ + ru = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = x2p

B = qx (3)
C = r

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2qp− 4pr + q2

4x2p2
(6)
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Comparing the above to (5) shows that

s = −2qp− 4pr + q2

t = 4x2p2

Therefore eq. (4) becomes

z′′(x) =
(
−2qp− 4pr + q2

4x2p2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 34: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2p2. There is a pole at x = 0 of order 2. Since there is no odd order pole
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larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Unable to find solution using case one

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −2qp+ 4pr − q2

4x2p2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = (−2q−4r)p+q2

4p2 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

=
{
2, 2− 2

√
1 + (−2q − 4r) p+ q2

p2
, 2 + 2

√
1 + (−2q − 4r) p+ q2

p2

}

Since the order of r at ∞ is 2 then let b be the coefficient of 1
x2 in the Laurent series

expansion of r at ∞. which can be found by dividing the leading coefficient of s by the
leading coefficient of t from

r = s

t
= −2qp− 4pr + q2

4x2p2

Since the gcd(s, t) = 1. This gives b = −1
2 . Hence

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {2}

The following table summarizes the findings so far for poles and for the order of r at
∞ for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2
{
2, 2− 2

√
1 + (−2q−4r)p+q2

p2
, 2 + 2

√
1 + (−2q−4r)p+q2

p2

}
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Order of r at ∞ E∞

2 {2}

Using the family {e1, e2, . . . , e∞} given by

e1 = 2, e∞ = 2

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(2− (2))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
2

(x− (0))

)
= 1

x

Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1

Now that p(x) is found let

φ = θ + p′

p

= 1
x
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Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

x
+ (2q + 4r) p− q2

4x2p2
= 0

Solving for ω gives

ω = p+
√
p2 − 2qp− 4pr + q2

2px

Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ p+

√
p2−2qp−4pr+q2

2px dx

= x
p+

√
p2+(−2q−4r)p+q2

2p

The first solution to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
qx

x2p dx

= z1e
− q ln(x)

2p

= z1
(
x− q

2p

)
Which simplifies to

u1 = x
p−q+

√
p2−2qp−4pr+q2

2p

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx
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Substituting gives

u2 = u1

∫
e
∫
− qx

x2p dx

(u1)2
dx

= u1

∫
e−

q ln(x)
p

(u1)2
dx

= u1

− p x−
√

p2+(−2q−4r)p+q2

p√
p2 + (−2q − 4r) p+ q2


Therefore the solution is

u = c1u1 + c2u2

= c1

(
x

p−q+
√

p2−2qp−4pr+q2
2p

)
+ c2

x
p−q+

√
p2−2qp−4pr+q2

2p

− p x−
√

p2+(−2q−4r)p+q2

p√
p2 + (−2q − 4r) p+ q2




This is second order nonhomogeneous ODE. Let the solution be

u = uh + up

Where uh is the solution to the homogeneous ODE Au′′(x)+Bu′(x)+Cu(x) = 0, and up

is a particular solution to the nonhomogeneous ODE Au′′(x) +Bu′(x) +Cu(x) = f(x).
uh is the solution to

p x2u′′ + qxu′ + ru = 0

The homogeneous solution is found using the Kovacic algorithm which results in

uh = c1x
p−q+

√
p2−2qp−4pr+q2

2p − c2p x
−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

The particular solution up can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)up(x) = u1u1 + u2u2
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Where u1, u2 to be determined, and u1, u2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

u1 = x
p−q+

√
p2−2qp−4pr+q2

2p

u2 = − p x−
−p+q+

√
p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

u2f(x)
aW (x)

(3)u2 =
∫

u1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of u′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣u1 u2

u′
1 u′

2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣∣∣
x

p−q+
√

p2−2qp−4pr+q2
2p −p x

−
−p+q+

√
p2+(−2q−4r)p+q2

2p√
p2+(−2q−4r)p+q2

d
dx

(
x

p−q+
√

p2−2qp−4pr+q2
2p

)
d
dx

−p x
−

−p+q+
√

p2+(−2q−4r)p+q2
2p√

p2+(−2q−4r)p+q2



∣∣∣∣∣∣∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣∣∣∣∣∣
x

p−q+
√

p2−2qp−4pr+q2
2p −p x

−
−p+q+

√
p2+(−2q−4r)p+q2

2p√
p2+(−2q−4r)p+q2

x
p−q+

√
p2−2qp−4pr+q2

2p
(
p−q+

√
p2−2qp−4pr+q2

)
2px

x
−

−p+q+
√

p2+(−2q−4r)p+q2
2p

(
−p+q+

√
p2+(−2q−4r)p+q2

)
2x
√

p2+(−2q−4r)p+q2

∣∣∣∣∣∣∣∣∣∣∣
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Therefore

W

=
(
x

p−q+
√

p2−2qp−4pr+q2
2p

)x−
−p+q+

√
p2+(−2q−4r)p+q2

2p

(
−p+ q +

√
p2 + (−2q − 4r) p+ q2

)
2x
√

p2 + (−2q − 4r) p+ q2


−

− p x−
−p+q+

√
p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2


x

p−q+
√

p2−2qp−4pr+q2
2p

(
p− q +

√
p2 − 2qp− 4pr + q2

)
2px


Which simplifies to

W = x
p−q+

√
p2−2qp−4pr+q2

2p x−−p+q+
√

p2−2qp−4pr+q2
2p

x

Which simplifies to

W = x− q
p

Therefore Eq. (2) becomes

u1 = −
∫ −p x

−
−p+q+

√
p2+(−2q−4r)p+q2

2p f(x)√
p2+(−2q−4r)p+q2

x2p x− q
p

dx

Which simplifies to

u1 = −
∫

−x−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(x)√
p2 + (−2q − 4r) p+ q2

dx

Hence

u1 = −

∫ x

0
−α−

3p−q+
√

p2+(−2q−4r)p+q2

2p f(α)√
p2 + (−2q − 4r) p+ q2

dα


And Eq. (3) becomes

u2 =
∫

x
p−q+

√
p2−2qp−4pr+q2

2p f(x)
x2p x− q

p

dx
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Which simplifies to

u2 =
∫

x
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(x)
p

dx

Hence

u2 =
∫ x

0

α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α)
p

dα

Which simplifies to

u1 =
∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα√
p2 + (−2q − 4r) p+ q2

u2 =
∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
p

Therefore the particular solution, from equation (1) is

up(x) =

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2−2qp−4pr+q2
2p√

p2 + (−2q − 4r) p+ q2

−

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

Which simplifies to

up(x)

=

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2+(−2q−4r)p+q2

2p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2
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Therefore the general solution is

u = uh + up

=

c1x
p−q+

√
p2−2qp−4pr+q2

2p − c2p x
−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2



+


(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2+(−2q−4r)p+q2

2p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2


Summary
The solution(s) found are the following

(1)u = c1x
p−q+

√
p2−2qp−4pr+q2

2p − c2p x
−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

+

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2+(−2q−4r)p+q2

2p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

Verification of solutions

u = c1x
p−q+

√
p2−2qp−4pr+q2

2p − c2p x
−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

+

(∫ x

0 α−
3p−q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x

p−q+
√

p2+(−2q−4r)p+q2

2p −

(∫ x

0 α
−3p+q+

√
p2+(−2q−4r)p+q2

2p f(α) dα
)
x−

−p+q+
√

p2+(−2q−4r)p+q2

2p√
p2 + (−2q − 4r) p+ q2

Verified OK.

260



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 259� �
dsolve(p*x^2*diff(u(x),x$2)+q*x*diff(u(x),x)+r*u(x)=f(x),u(x), singsol=all)� �
u(x)

=
x

−q+p+
√

p2+(−2q−4r)p+q2

2p c2
√

p2 + (−2q − 4r) p+ q2 + x−
q−p+

√
p2+(−2q−4r)p+q2

2p c1
√

p2 + (−2q − 4r) p+ q2 + x
−q+p+

√
p2+(−2q−4r)p+q2

2p

(∫
x−

3p−q+
√

p2+(−2q−4r)p+q2

2p f(x) dx
)

− x−
q−p+

√
p2+(−2q−4r)p+q2

2p

(∫
x

−3p+q+
√

p2+(−2q−4r)p+q2

2p f(x) dx
)

√
p2 + (−2q − 4r) p+ q2

3 Solution by Mathematica
Time used: 1.17 (sec). Leaf size: 342� �
DSolve[p*x^2*u''[x]+q*x*u'[x]+r*u[x]==f[x],u[x],x,IncludeSingularSolutions -> True]� �
u(x)

→x−
√
p
√
r

√
p2−2p(q+2r)+q2

pr −p+q

2p

x

√
r

√
p2−2p(q+2r)+q2

pr√
p

∫ x

1

f(K[2])K[2]
−3p−

√
r

√
p2−2(q+2r)p+q2

pr
√
p+q

2p

√
p
√
r
√

p2−2(q+2r)p+q2

pr

dK[2]

+
∫ x

1
−f(K[1])K[1]

−3p+
√
r

√
p2−2(q+2r)p+q2

pr
√
p+q

2p

√
p
√
r
√

p2−2(q+2r)p+q2

pr

dK[1] + c2x

√
r

√
p2−2p(q+2r)+q2

pr√
p + c1
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3.1 problem Example 3.29
3.1.1 Solving as second order change of variable on y method 1 ode . 263
3.1.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 266

Internal problem ID [5857]
Internal file name [OUTPUT/5105_Sunday_June_05_2022_03_24_47_PM_25745770/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[_Lienard]

sin (x)u′′ + 2 cos (x)u′ + sin (x)u = 0

3.1.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

u′′ + p(x)u′ + q(x)u = 0 (2)

Where

p(x) = 2 cos (x)
sin (x)

q(x) = 1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 1−

(
2 cos(x)
sin(x)

)′
2 −

(
2 cos(x)
sin(x)

)2
4

= 1−

(
−2− 2 cos(x)2

sin(x)2

)
2 −

(
4 cos(x)2

sin(x)2

)
4

= 1−
(
−1− cos (x)2

sin (x)2

)
− cos (x)2

sin (x)2

= 2

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

u = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2 cos(x)

sin(x)
2

= csc (x) (5)

Hence (3) becomes

u = v(x) csc (x) (4)

Applying this change of variable to the original ode results in

2v(x) + v′′(x) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 2. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + 2 eλx = 0 (1)
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Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (2)

= ±i
√
2

Hence

λ1 = +i
√
2

λ2 = −i
√
2

Which simplifies to

λ1 = i
√
2

λ2 = −i
√
2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β =
√
2. Therefore the final solution, when using Euler relation, can

be written as
v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

v(x) = e0
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

Or

v(x) = c1 cos
(
x
√
2
)
+ c2 sin

(
x
√
2
)
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Now that v(x) is known, then

u = v(x) z(x)

=
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

(z(x)) (7)

But from (5)

z(x) = csc (x)

Hence (7) becomes

u =
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

csc (x)

Summary
The solution(s) found are the following

(1)u =
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

csc (x)

Verification of solutions

u =
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

csc (x)

Verified OK.

3.1.2 Solving using Kovacic algorithm

Writing the ode as

sin (x)u′′ + 2 cos (x)u′ + sin (x)u = 0 (1)
Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = sin (x)
B = 2 cos (x) (3)
C = sin (x)

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
1 (6)

Comparing the above to (5) shows that

s = −2
t = 1

Therefore eq. (4) becomes

z′′(x) = −2z(x) (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 35: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(
x
√
2
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2 cos(x)
sin(x) dx

= z1e
− ln(sin(x))

= z1(csc (x))

Which simplifies to

u1 = cos
(
x
√
2
)
csc (x)

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
− 2 cos(x)

sin(x) dx

(u1)2
dx

= u1

∫
e−2 ln(sin(x))

(u1)2
dx

= u1

(√
2 tan

(
x
√
2
)

2

)
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Therefore the solution is

u = c1u1 + c2u2

= c1
(
cos
(
x
√
2
)
csc (x)

)
+ c2

(
cos
(
x
√
2
)
csc (x)

(√
2 tan

(
x
√
2
)

2

))

Summary
The solution(s) found are the following

(1)u = c1 cos
(
x
√
2
)
csc (x) +

c2
√
2 sin

(
x
√
2
)
csc (x)

2
Verification of solutions

u = c1 cos
(
x
√
2
)
csc (x) +

c2
√
2 sin

(
x
√
2
)
csc (x)

2

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(sin(x)*diff(u(x),x$2)+2*cos(x)*diff(u(x),x)+sin(x)*u(x)=0,u(x), singsol=all)� �

u(x) = csc (x)
(
c1 sin

(√
2x
)
+ c2 cos

(√
2x
))
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3 Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 51� �
DSolve[Sin[x]*u''[x]+2*Cos[x]*u'[x]+Sin[x]*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �

u(x) → 1
4e

−i
√
2x
(
4c1 − i

√
2c2e2i

√
2x
)
csc(x)
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3.2 problem Example 3.30
Internal problem ID [5858]
Internal file name [OUTPUT/5106_Sunday_June_05_2022_03_24_49_PM_35055999/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.30.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_3rd_order , _missing_x], [_3rd_order , _missing_y], [

_3rd_order , _with_exponential_symmetries], [_3rd_order ,
_with_linear_symmetries], [_3rd_order , _reducible , _mu_y2], [
_3rd_order , _reducible , _mu_poly_yn ]]

Unable to solve or complete the solution.

Unable to parse ODE.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying 3rd order ODE linearizable_by_differentiation
differential order: 3; trying a linearization to 4th order
trying differential order: 3; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(diff(_b(_a), _a), _a))*_b(_a)^2-(diff(_b(_a), _a))*_b(_a)*(2*(diff(_b(_a), _a))-_b(_a)) = 0,

symmetry methods on request
`, `2nd order, trying reduction of order with given symmetries:`[0, _b^2], [1, 0], [0, _b]� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 38� �
dsolve(3*diff(y(x),x$2)^2-diff(y(x),x)*diff(y(x),x$3)-diff(y(x),x$2)*diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = c1

y(x) =
LambertW

(
− e

c3+x
c1

c2c1

)
c1 − c3 − x

c1

3 Solution by Mathematica
Time used: 3.622 (sec). Leaf size: 79� �
DSolve[3*(y''[x])^2-y'[x]*y'''[x]-y''[x]*(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → log

(
InverseFunction

[
− 1
#1 − c1 log(#1) + c1 log(1 + #1c1)&

]
[x+ c2]

)
− log

(
1+ c1InverseFunction

[
− 1
#1 − c1 log(#1) + c1 log(1+#1c1)&

]
[x+ c2]

)
+ c3
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3.3 problem Example 3.32
3.3.1 Solving as second order change of variable on x method 2 ode . 274
3.3.2 Solving as second order change of variable on x method 1 ode . 276
3.3.3 Solving as second order change of variable on y method 2 ode . 279
3.3.4 Solving as second order integrable as is ode . . . . . . . . . . . 281
3.3.5 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
3.3.6 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
3.3.7 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 287
3.3.8 Solving as exact linear second order ode ode . . . . . . . . . . . 292
3.3.9 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 294

Internal problem ID [5859]
Internal file name [OUTPUT/5107_Sunday_June_05_2022_03_24_51_PM_9413660/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_change_of_vari-
able_on_x_method_1", "second_order_change_of_variable_on_x_method_2",
"second_order_change_of_variable_on_y_method_2", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer , [_2nd_order , _linear , `_with_symmetry_ [0,F(x)]`]]

y′′ − xy′

−x2 + 1 + y

−x2 + 1 = 0
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3.3.1 Solving as second order change of variable on x method 2 ode

In normal form the ode (
x2 − 1

)
y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = − 1

x2 − 1

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

x
x2−1dx

)
dx

=
∫

e−
ln(x−1)

2 − ln(1+x)
2 dx

=
∫ 1√

x− 1
√
1 + x

dx

=
√
(x− 1) (1 + x) ln

(
x+

√
x2 − 1

)
√
x− 1

√
1 + x

(6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 1

x2−1
1

(x−1)(1+x)

= −1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1
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Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(1)τ + c2e

(−1)τ

Or
y(τ) = c1eτ + c2e−τ

The above solution is now transformed back to y using (6) which results in

y = c1
(
x+

√
x2 − 1

) √
x2−1√

x−1
√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1√

x−1
√
1+x

Summary
The solution(s) found are the following

(1)y = c1
(
x+

√
x2 − 1

) √
x2−1√

x−1
√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1√

x−1
√
1+x

Verification of solutions

y = c1
(
x+

√
x2 − 1

) √
x2−1√

x−1
√
1+x + c2

(
x+

√
x2 − 1

)− √
x2−1√

x−1
√
1+x

Verified OK.

3.3.2 Solving as second order change of variable on x method 1 ode

In normal form the ode (
x2 − 1

)
y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = − 1

x2 − 1
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Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
− 1

x2−1

c
(6)

τ ′′ = x

c
√
− 1

x2−1 (x2 − 1)2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

x

c
√

− 1
x2−1 (x2−1)2

+ x
x2−1

√
− 1

x2−1
c(√

− 1
x2−1
c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
− 1

x2−1dx

c

=

√
− 1

x2−1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
c

Substituting the above into the solution obtained gives

y = c1 cos
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

Summary
The solution(s) found are the following

(1)
y = c1 cos

(√
− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))
Verification of solutions

y = c1 cos
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

+ c2 sin
(√

− 1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

))

Verified OK.
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3.3.3 Solving as second order change of variable on y method 2 ode

In normal form the ode (
x2 − 1

)
y′′ + xy′ − y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = x

x2 − 1
q(x) = − 1

x2 − 1

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n

x2 − 1 − 1
x2 − 1 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
+ x

x2 − 1

)
v′(x) = 0

v′′(x) + (3x2 − 2) v′(x)
x3 − x

= 0 (7)

Using the substitution

u(x) = v′(x)
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Then (7) becomes

u′(x) + (3x2 − 2)u(x)
x3 − x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(3x2 − 2)
x (x2 − 1)

Where f(x) = − 3x2−2
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = − 3x2 − 2

x (x2 − 1) dx∫ 1
u
du =

∫
− 3x2 − 2
x (x2 − 1) dx

ln (u) = − ln (1 + x)
2 − ln (x− 1)

2 − 2 ln (x) + c1

u = e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)+c1

= c1e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)

Which simplifies to

u(x) = c1√
1 + x

√
x− 1x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

=
√
x− 1

√
1 + x c1

x
+ c2

Hence

y = v(x)xn

=
(√

x− 1
√
1 + x c1

x
+ c2

)
x

= c1
√
x− 1

√
1 + x+ c2x
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Summary
The solution(s) found are the following

(1)y =
(√

x− 1
√
1 + x c1

x
+ c2

)
x

Verification of solutions

y =
(√

x− 1
√
1 + x c1

x
+ c2

)
x

Verified OK.

3.3.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 − 1

)
y′′ + xy′ − y

)
dx = 0

−xy +
(
x2 − 1

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = c1

x2 − 1

Hence the ode is

y′ − xy

x2 − 1 = c1
x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(1+x)
2

Which simplifies to

µ = 1√
x− 1

√
1 + x
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The ode becomes

d
dx(µy) = (µ)

(
c1

x2 − 1

)
d
dx

(
y√

x− 1
√
1 + x

)
=
(

1√
x− 1

√
1 + x

)(
c1

x2 − 1

)
d
(

y√
x− 1

√
1 + x

)
=
(

c1

(x2 − 1)
√
x− 1

√
1 + x

)
dx

Integrating gives

y√
x− 1

√
1 + x

=
∫

c1

(x2 − 1)
√
x− 1

√
1 + x

dx

y√
x− 1

√
1 + x

= −
√
x− 1

√
1 + xxc1

x2 − 1 + c2

Dividing both sides by the integrating factor µ = 1√
x−1

√
1+x

results in

y = −(x− 1) (1 + x)xc1
x2 − 1 + c2

√
x− 1

√
1 + x

which simplifies to

y = −c1x+ c2
√
x− 1

√
1 + x

Summary
The solution(s) found are the following

(1)y = −c1x+ c2
√
x− 1

√
1 + x

Verification of solutions

y = −c1x+ c2
√
x− 1

√
1 + x

Verified OK.

3.3.5 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv
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This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2 − 1
B = x

C = −1
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2 − 1

)
(0) + (x) (1) + (−1) (x)

= 0

Hence the ode in v given in (1) now simplifies to

x3 − xv′′ +
(
3x2 − 2

)
v′ = 0

Now by applying v′ = u the above becomes(
x3 − x

)
u′(x) +

(
3x2 − 2

)
u(x) = 0
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Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(3x2 − 2)
x (x2 − 1)

Where f(x) = − 3x2−2
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = − 3x2 − 2

x (x2 − 1) dx∫ 1
u
du =

∫
− 3x2 − 2
x (x2 − 1) dx

ln (u) = − ln (1 + x)
2 − ln (x− 1)

2 − 2 ln (x) + c1

u = e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)+c1

= c1e−
ln(1+x)

2 − ln(x−1)
2 −2 ln(x)

Which simplifies to

u(x) = c1√
1 + x

√
x− 1x2

The ode for v now becomes

v′ = u

= c1√
1 + x

√
x− 1x2

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1√
1 + x

√
x− 1x2

dx

=
√
x− 1

√
1 + x c1

x
+ c2

Therefore the solution is

y(x) = Bv

= (x)
(√

x− 1
√
1 + x c1

x
+ c2

)
= c1

√
x− 1

√
1 + x+ c2x
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Summary
The solution(s) found are the following

(1)y = c1
√
x− 1

√
1 + x+ c2x

Verification of solutions

y = c1
√
x− 1

√
1 + x+ c2x

Verified OK.

3.3.6 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as (
x2 − 1

)
y′′ + xy′ − y = 0

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 − 1

)
y′′ + xy′ − y

)
dx = 0

−xy +
(
x2 − 1

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = c1

x2 − 1

Hence the ode is

y′ − xy

x2 − 1 = c1
x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(1+x)
2
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Which simplifies to

µ = 1√
x− 1

√
1 + x

The ode becomes

d
dx(µy) = (µ)

(
c1

x2 − 1

)
d
dx

(
y√

x− 1
√
1 + x

)
=
(

1√
x− 1

√
1 + x

)(
c1

x2 − 1

)
d
(

y√
x− 1

√
1 + x

)
=
(

c1

(x2 − 1)
√
x− 1

√
1 + x

)
dx

Integrating gives

y√
x− 1

√
1 + x

=
∫

c1

(x2 − 1)
√
x− 1

√
1 + x

dx

y√
x− 1

√
1 + x

= −
√
x− 1

√
1 + xxc1

x2 − 1 + c2

Dividing both sides by the integrating factor µ = 1√
x−1

√
1+x

results in

y = −(x− 1) (1 + x)xc1
x2 − 1 + c2

√
x− 1

√
1 + x

which simplifies to

y = −c1x+ c2
√
x− 1

√
1 + x

Summary
The solution(s) found are the following

(1)y = −c1x+ c2
√
x− 1

√
1 + x

Verification of solutions

y = −c1x+ c2
√
x− 1

√
1 + x

Verified OK.

286



3.3.7 Solving using Kovacic algorithm

Writing the ode as (
x2 − 1

)
y′′ + xy′ − y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3x2 − 6
4 (x2 − 1)2

(6)

Comparing the above to (5) shows that

s = 3x2 − 6

t = 4
(
x2 − 1

)2
Therefore eq. (4) becomes

z′′(x) =
(

3x2 − 6
4 (x2 − 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 36: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 2
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 1)2. There is a pole at x = 1 of order 2. There is a pole at x = −1
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 2 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 2 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 3
16 (x− 1)2

+ 9
16 (x− 1) −

9
16 (1 + x) −

3
16 (1 + x)2
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For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decompo-

sition of r given above. Therefore b = − 3
16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
For the pole at x = −1 let b be the coefficient of 1

(1+x)2 in the partial fractions decom-
position of r given above. Therefore b = − 3

16 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

4
α−
c = 1

2 −
√
1 + 4b = 1

4
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3x2 − 6

4 (x2 − 1)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3x2 − 6
4 (x2 − 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
4

1
4

−1 2 0 3
4

1
4

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2
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Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = 3
2 then

d = α+
∞ −

(
α+
c1 + α+

c2

)
= 3

2 −
(
3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(+)[

√
r]c1 +

α+
c1

x− c1

)
+
(
(+)[

√
r]c2 +

α+
c2

x− c2

)
+ (+)[

√
r]∞

= 3
4 (x− 1) +

3
4 (1 + x) + (0)

= 3
4 (x− 1) +

3
4 (1 + x)

= 3x
2x2 − 2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

3
4 (x− 1) +

3
4 (1 + x)

)
(0) +

((
− 3
4 (x− 1)2

− 3
4 (1 + x)2

)
+
(

3
4 (x− 1) +

3
4 (1 + x)

)2

−
(

3x2 − 6
4 (x2 − 1)2

))
= 0

0 = 0
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The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 3

4(x−1)+
3

4(1+x)

)
dx

= (x− 1)
3
4 (1 + x)

3
4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x

x2−1 dx

= z1e
− ln(x−1)

4 − ln(1+x)
4

= z1

(
1

(x− 1)
1
4 (1 + x)

1
4

)

Which simplifies to
y1 =

√
x− 1

√
1 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2−1 dx

(y1)2
dx

= y1

∫
e−

ln(x−1)
2 − ln(1+x)

2

(y1)2
dx

= y1

(
− x√

x− 1
√
1 + x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x− 1
√
1 + x

)
+ c2

(√
x− 1

√
1 + x

(
− x√

x− 1
√
1 + x

))
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Summary
The solution(s) found are the following

(1)y = c1
√
x− 1

√
1 + x− c2x

Verification of solutions

y = c1
√
x− 1

√
1 + x− c2x

Verified OK.

3.3.8 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2 − 1
q(x) = x

r(x) = −1
s(x) = 0

Hence

p′′(x) = 2
q′(x) = 1

Therefore (1) becomes

2− (1) + (−1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx
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Substituting the above values for p, q, r, s gives

−xy +
(
x2 − 1

)
y′ = c1

We now have a first order ode to solve which is

−xy +
(
x2 − 1

)
y′ = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = c1

x2 − 1
Hence the ode is

y′ − xy

x2 − 1 = c1
x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(1+x)
2

Which simplifies to

µ = 1√
x− 1

√
1 + x

The ode becomes
d
dx(µy) = (µ)

(
c1

x2 − 1

)
d
dx

(
y√

x− 1
√
1 + x

)
=
(

1√
x− 1

√
1 + x

)(
c1

x2 − 1

)
d
(

y√
x− 1

√
1 + x

)
=
(

c1

(x2 − 1)
√
x− 1

√
1 + x

)
dx

Integrating gives
y√

x− 1
√
1 + x

=
∫

c1

(x2 − 1)
√
x− 1

√
1 + x

dx

y√
x− 1

√
1 + x

= −
√
x− 1

√
1 + xxc1

x2 − 1 + c2
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Dividing both sides by the integrating factor µ = 1√
x−1

√
1+x

results in

y = −(x− 1) (1 + x)xc1
x2 − 1 + c2

√
x− 1

√
1 + x

which simplifies to

y = −c1x+ c2
√
x− 1

√
1 + x

Summary
The solution(s) found are the following

(1)y = −c1x+ c2
√
x− 1

√
1 + x

Verification of solutions

y = −c1x+ c2
√
x− 1

√
1 + x

Verified OK.

3.3.9 Maple step by step solution

Let’s solve
(x2 − 1) y′′ + xy′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − xy′

x2−1 +
y

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′

x2−1 −
y

x2−1 = 0

• Multiply by denominators of ODE
(−x2 + 1) y′′ − xy′ + y = 0

• Make a change of variables
θ = arccos (x)

• Calculate y′ with change of variables
y′ =

(
d
dθ
y(θ)

)
θ′(x)

• Compute 1st derivative y′
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y′ = −
d
dθ

y(θ)√
−x2+1

• Calculate y′′ with change of variables

y′′ =
(

d2

dθ2
y(θ)

)
θ′(x)2 + θ′′(x)

(
d
dθ
y(θ)

)
• Compute 2nd derivative y′′

y′′ =
d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

• Apply the change of variables to the ODE

(−x2 + 1)
(

d2
dθ2 y(θ)
−x2+1 −

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2

)
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y = 0

• Multiply through

−
(

d2
dθ2 y(θ)

)
x2

−x2+1 +
d2
dθ2 y(θ)
−x2+1 +

x3
(

d
dθ

y(θ)
)

(−x2+1)
3
2
−

x
(

d
dθ

y(θ)
)

(−x2+1)
3
2
+

x
(

d
dθ

y(θ)
)

√
−x2+1 + y = 0

• Simplify ODE
d2

dθ2
y(θ) + y = 0

• ODE is that of a harmonic oscillator with given general solution
y(θ) = c1 sin (θ) + c2 cos (θ)

• Revert back to x
y = c1 sin (arccos (x)) + c2 cos (arccos (x))

• Use trig identity to simplify sin (arccos (x))
sin (arccos (x)) =

√
−x2 + 1

• Simplify solution to the ODE
y = c1

√
−x2 + 1 + c2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)-x/(1-x^2)*diff(y(x),x)+y(x)/(1-x^2)=0,y(x), singsol=all)� �

y(x) = c1x+ c2
√
x− 1

√
x+ 1

3 Solution by Mathematica
Time used: 0.177 (sec). Leaf size: 97� �
DSolve[y''[x]-x/(1-x^2)*y'[x]+y[x]/(1-x^2)==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → c1 cosh

2
√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1

− ic2 sinh

2
√
1− x2 arctan

(√
1−x2

x+1

)
√
x2 − 1
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3.4 problem Example 3.33
Internal problem ID [5860]
Internal file name [OUTPUT/5108_Sunday_June_05_2022_03_24_53_PM_20418152/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _reducible

, _mu_y_y1], [_2nd_order , _reducible , _mu_xy ]]

Unable to solve or complete the solution.

x2yy′′ − x2y′
2 + y2 = 0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
<- quadrature successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve(x^2*y(x)*diff(y(x),x$2)=x^2*(diff(y(x),x))^2-y(x)^2,y(x), singsol=all)� �

y(x) = 0
y(x) = c2x e−c1x+1

3 Solution by Mathematica
Time used: 0.212 (sec). Leaf size: 15� �
DSolve[x^2*y[x]*y''[x]==x^2*(y'[x])^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2xe
c1x
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3.5 problem Example 3.34
Internal problem ID [5861]
Internal file name [OUTPUT/5109_Sunday_June_05_2022_03_24_54_PM_13785063/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.34.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

y′′′ − 3y′′ + 3y′ − y = 4 et

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 3y′′ + 3y′ − y = 0

The characteristic equation is

λ3 − 3λ2 + 3λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = 1
λ3 = 1
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Therefore the homogeneous solution is

yh(t) = c1et + t etc2 + t2etc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = et

y2 = t et

y3 = ett2

Now the particular solution to the given ODE is found

y′′′ − 3y′′ + 3y′ − y = 4 et

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

4 et

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{et}]

While the set of the basis functions for the homogeneous solution found earlier is

{t et, ett2, et}

Since et is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{t et}]

Since t et is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{ett2}]

Since ett2 is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{ett3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1ett3
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The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

6A1et = 4 et

Solving for the unknowns by comparing coefficients results in[
A1 =

2
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
2 ett3
3

Therefore the general solution is

y = yh + yp

=
(
c1et + t etc2 + t2etc3

)
+
(
2 ett3
3

)

Which simplifies to

y = et
(
c3t

2 + c2t+ c1
)
+ 2 ett3

3

Summary
The solution(s) found are the following

(1)y = et
(
c3t

2 + c2t+ c1
)
+ 2 ett3

3
Verification of solutions

y = et
(
c3t

2 + c2t+ c1
)
+ 2 ett3

3

Verified OK.
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 22� �
dsolve(diff(y(t),t$3)-3*diff(y(t),t$2)+3*diff(y(t),t)-y(t)=4*exp(t),y(t), singsol=all)� �

y(t) = et
(
2
3t

3 + c1 + tc2 + t2c3

)
3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 34� �
DSolve[y'''[t]-3*y''[t]+3*y'[t]-y[t]==4*Exp[t],y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
3e

t
(
2t3 + 3c3t2 + 3c2t+ 3c1

)
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3.6 problem Example 3.35
Internal problem ID [5862]
Internal file name [OUTPUT/5110_Sunday_June_05_2022_03_24_56_PM_17758930/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.35.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 2y′′ + y = 3 sin (t)− 5 cos (t)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 2y′′ + y = 0

The characteristic equation is
λ4 + 2λ2 + 1 = 0

The roots of the above equation are

λ1 = i

λ2 = −i

λ3 = i

λ4 = −i
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Therefore the homogeneous solution is

yh(t) = e−itc1 + t e−itc2 + eitc3 + t eitc4
The fundamental set of solutions for the homogeneous solution are the following

y1 = e−it

y2 = t e−it

y3 = eit

y4 = t eit

Now the particular solution to the given ODE is found

y′′′′ + 2y′′ + y = 3 sin (t)− 5 cos (t)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(t)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (t)Wi(t)
aW (t) dt

Where W (t) is the Wronskian and Wi(t) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (t) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (t). This is given by

W (t) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−it t e−it eit t eit

−ie−it e−it(−it+ 1) ieit eit(it+ 1)
−e−it e−it(−2i− t) −eit eit(2i− t)
ie−it e−it(it− 3) −ieit −eit(it+ 3)


|W | = 16 e2ite−2it
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The determinant simplifies to

|W | = 16

Now we determine Wi for each Ui.

W1(t) = det


t e−it eit t eit

e−it(−it+ 1) ieit eit(it+ 1)
e−it(−2i− t) −eit eit(2i− t)


= −4 eit(i+ t)

W2(t) = det


e−it eit t eit

−ie−it ieit eit(it+ 1)
−e−it −eit eit(2i− t)


= −4 eit

W3(t) = det


e−it t e−it t eit

−ie−it e−it(−it+ 1) eit(it+ 1)
−e−it e−it(−2i− t) eit(2i− t)


= −4 e−it(−i+ t)

W4(t) = det


e−it t e−it eit

−ie−it e−it(−it+ 1) ieit

−e−it e−it(−2i− t) −eit


= −4 e−it

Now we are ready to evaluate each Ui(t).

U1 = (−1)4−1
∫

F (t)W1(t)
aW (t) dt

= (−1)3
∫ (3 sin (t)− 5 cos (t)) (−4 eit(i+ t))

(1) (16) dt

= −
∫

−4(3 sin (t)− 5 cos (t)) eit(i+ t)
16 dt

= −
∫ (

−(3 sin (t)− 5 cos (t)) eit(i+ t)
4

)
dt

= −
(∫

−(3 sin (t)− 5 cos (t)) eit(i+ t)
4 dt

)
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U2 = (−1)4−2
∫

F (t)W2(t)
aW (t) dt

= (−1)2
∫ (3 sin (t)− 5 cos (t)) (−4 eit)

(1) (16) dt

=
∫

−4(3 sin (t)− 5 cos (t)) eit
16 dt

=
∫ (

−(3 sin (t)− 5 cos (t)) eit
4

)
dt

= 5t
8 − 3it

8 + 3 e2it
16 − 5ie2it

16

U3 = (−1)4−3
∫

F (t)W3(t)
aW (t) dt

= (−1)1
∫ (3 sin (t)− 5 cos (t)) (−4 e−it(−i+ t))

(1) (16) dt

= −
∫

−4(3 sin (t)− 5 cos (t)) e−it(−i+ t)
16 dt

= −
∫ (

−(3 sin (t)− 5 cos (t)) e−it(−i+ t)
4

)
dt

= −
(∫

−(3 sin (t)− 5 cos (t)) e−it(−i+ t)
4 dt

)

U4 = (−1)4−4
∫

F (t)W4(t)
aW (t) dt

= (−1)0
∫ (3 sin (t)− 5 cos (t)) (−4 e−it)

(1) (16) dt

=
∫

−4(3 sin (t)− 5 cos (t)) e−it

16 dt

=
∫ (

−(3 sin (t)− 5 cos (t)) e−it

4

)
dt

=
∫

−(3 sin (t)− 5 cos (t)) e−it

4 dt

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
−
(∫

−(3 sin (t)− 5 cos (t)) eit(i+ t)
4 dt

))(
e−it
)

+
(
5t
8 − 3it

8 + 3 e2it
16 − 5ie2it

16

)(
t e−it

)
+
(
−
(∫

−(3 sin (t)− 5 cos (t)) e−it(−i+ t)
4 dt

))(
eit
)

+
(∫

−(3 sin (t)− 5 cos (t)) e−it

4 dt

)(
t eit
)

Therefore the particular solution is

yp =
(∫

(−3 sin (t) + 5 cos (t)) e−it(i− t) dt
)
eit

4 −
(∫

(−3 sin (t) + 5 cos (t)) eit(i+ t) dt
)
e−it

4 +
3
((5

3 − i
)
t e−it +

(1
2 −

5i
6

)
eit +

(5
3 − i+

(
−1 + 5i

3

)
t
)
sin (t) +

(5
3 + i

)
t cos (t)

)
t

8
Which simplifies to

yp = −
(∫

(−3 sin (t) + 5 cos (t)) (− sin (t) + cos (t) t) dt
)
cos (t)

2 −
(∫

(−3 sin (t) + 5 cos (t)) (sin (t) t+ cos (t)) dt
)
sin (t)

2 −
5t
((

−3
5 + i− 4t

)
cos (t) + 3 sin(t)(−5+i+4t)

5

)
16

Therefore the general solution is

y = yh + yp

=
(
e−itc1 + t e−itc2 + eitc3 + t eitc4

)
+

−
(∫

(−3 sin (t) + 5 cos (t)) (− sin (t) + cos (t) t) dt
)
cos (t)

2

−
(∫

(−3 sin (t) + 5 cos (t)) (sin (t) t+ cos (t)) dt
)
sin (t)

2

−
5t
((

−3
5 + i− 4t

)
cos (t) + 3 sin(t)(−5+i+4t)

5

)
16


Which simplifies to

y = (c4t+ c3) eit + (c2t+ c1) e−it

−
(∫

(−3 sin (t) + 5 cos (t)) (− sin (t) + cos (t) t) dt
)
cos (t)

2

−
(∫

(−3 sin (t) + 5 cos (t)) (sin (t) t+ cos (t)) dt
)
sin (t)

2

−
5t
((

−3
5 + i− 4t

)
cos (t) + 3 sin(t)(−5+i+4t)

5

)
16

307



Summary
The solution(s) found are the following

(1)

y = (c4t+ c3) eit + (c2t+ c1) e−it

−
(∫

(−3 sin (t) + 5 cos (t)) (− sin (t) + cos (t) t) dt
)
cos (t)

2

−
(∫

(−3 sin (t) + 5 cos (t)) (sin (t) t+ cos (t)) dt
)
sin (t)

2

−
5t
((

−3
5 + i− 4t

)
cos (t) + 3 sin(t)(−5+i+4t)

5

)
16

Verification of solutions

y = (c4t+ c3) eit + (c2t+ c1) e−it

−
(∫

(−3 sin (t) + 5 cos (t)) (− sin (t) + cos (t) t) dt
)
cos (t)

2

−
(∫

(−3 sin (t) + 5 cos (t)) (sin (t) t+ cos (t)) dt
)
sin (t)

2

−
5t
((

−3
5 + i− 4t

)
cos (t) + 3 sin(t)(−5+i+4t)

5

)
16

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.625 (sec). Leaf size: 45� �
dsolve(diff(y(t),t$4)+2*diff(y(t),t$2)+y(t)=3*sin(t)-5*cos(t),y(t), singsol=all)� �
y(t) = (5t2 + (8c3 − 6) t+ 8c1 − 10) cos (t)

8 −
3 sin (t)

(
t2 +

(
−8c4

3 + 10
3

)
t− 8c2

3 − 2
)

8

3 Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 56� �
DSolve[y''''[t]+2*y''[t]+y[t]==3*Sin[t]-5*Cos[t],y[t],t,IncludeSingularSolutions -> True]� �

y(t) → 1
16
((
10t2 + 2(−3 + 8c2)t− 25 + 16c1

)
cos(t)

+
(
−6t2 + 2(−15 + 8c4)t+ 3 + 16c3

)
sin(t)

)
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3.7 problem Example 3.36
Internal problem ID [5863]
Internal file name [OUTPUT/5111_Sunday_June_05_2022_03_24_59_PM_9958800/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.36.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ − y′ + y = g(t)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ − y′ + y = 0

The characteristic equation is

λ3 − λ2 − λ+ 1 = 0

The roots of the above equation are

λ1 = −1
λ2 = 1
λ3 = 1
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Therefore the homogeneous solution is

yh(t) = e−tc1 + c2et + t etc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−t

y2 = et

y3 = t et

Now the particular solution to the given ODE is found

y′′′ − y′′ − y′ + y = g(t)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(t)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (t)Wi(t)
aW (t) dt

Where W (t) is the Wronskian and Wi(t) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (t) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (t). This is given by

W (t) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−t et t et

−e−t et et(t+ 1)
e−t et et(t+ 2)


|W | = 4 e−te2t

311



The determinant simplifies to

|W | = 4 et

Now we determine Wi for each Ui.

W1(t) = det

 et t et

et et(t+ 1)


= e2t

W2(t) = det

 e−t t et

−e−t et(t+ 1)


= 2t+ 1

W3(t) = det

 e−t et

−e−t et


= 2

Now we are ready to evaluate each Ui(t).

U1 = (−1)3−1
∫

F (t)W1(t)
aW (t) dt

= (−1)2
∫ (g(t)) (e2t)

(1) (4 et) dt

=
∫

g(t) e2t
4 et dt

=
∫ (

g(t) et
4

)
dt

=
∫

g(t) et
4 dt
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U2 = (−1)3−2
∫

F (t)W2(t)
aW (t) dt

= (−1)1
∫ (g(t)) (2t+ 1)

(1) (4 et) dt

= −
∫

g(t) (2t+ 1)
4 et dt

= −
∫ (

g(t) (2t+ 1) e−t

4

)
dt

= −
(∫

g(t) (2t+ 1) e−t

4 dt

)

U3 = (−1)3−3
∫

F (t)W3(t)
aW (t) dt

= (−1)0
∫ (g(t)) (2)

(1) (4 et) dt

=
∫ 2g(t)

4 et dt

=
∫ (

g(t) e−t

2

)
dt

=
∫

g(t) e−t

2 dt

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(∫

g(t) et
4 dt

)(
e−t
)

+
(
−
(∫

g(t) (2t+ 1) e−t

4 dt

))(
et
)

+
(∫

g(t) e−t

2 dt

)(
t et
)

Therefore the particular solution is

yp =
(∫

g(t) etdt
)
e−t

4 −
(∫

g(t) (2t+ 1) e−tdt
)
et

4 +
(∫

g(t) e−tdt
)
t et

2
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Therefore the general solution is

y = yh + yp

=
(
e−tc1 + c2et + t etc3

)
+
((∫

g(t) etdt
)
e−t

4 −
(∫

g(t) (2t+ 1) e−tdt
)
et

4 +
(∫

g(t) e−tdt
)
t et

2

)

Which simplifies to

y = e−tc1+et(c3t+ c2)+
(∫

g(t) etdt
)
e−t

4 −
(∫

g(t) (2t+ 1) e−tdt
)
et

4 +
(∫

g(t) e−tdt
)
t et

2

Summary
The solution(s) found are the following

(1)
y = e−tc1 + et(c3t+ c2) +

(∫
g(t) etdt

)
e−t

4

−
(∫

g(t) (2t+ 1) e−tdt
)
et

4 +
(∫

g(t) e−tdt
)
t et

2
Verification of solutions

y = e−tc1+et(c3t+ c2)+
(∫

g(t) etdt
)
e−t

4 −
(∫

g(t) (2t+ 1) e−tdt
)
et

4 +
(∫

g(t) e−tdt
)
t et

2

Verified OK.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 64� �
dsolve(diff(y(t),t$3)-diff(y(t),t$2)-diff(y(t),t)+y(t)=g(t),y(t), singsol=all)� �

y(t) = −
(∫

(2t+ 1) g(t) e−tdt
)
et

4 +
(∫

e−tg(t) dt
)
ett

2

+
(∫

etg(t) dt
)
e−t

4 + c2e−t + et(c3t+ c1)

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 106� �
DSolve[y'''[t]-y''[t]-y'[t]+y[t]==g[t],y[t],t,IncludeSingularSolutions -> True]� �

y(t) → e−t

∫ t

1

1
4e

K[1]g(K[1])dK[1] + ett

∫ t

1

1
2e

−K[3]g(K[3])dK[3]

+ et
∫ t

1
−1
4e

−K[2]g(K[2])(2K[2] + 1)dK[2] + c1e
−t + c2e

t + c3e
tt
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3.8 problem Example 3.37
3.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 318

Internal problem ID [5864]
Internal file name [OUTPUT/5112_Sunday_June_05_2022_03_25_02_PM_40711304/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.37.
ODE order: 5.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_missing_y"

Maple gives the following as the ode type
[[ _high_order , _missing_y ]]

y(5) − y′′′′

t
= 0

Since y is missing from the ode then we can use the substitution y′ = v(t) to reduce
the order by one. The ODE becomes

−v′′′′(t) t+ v′′′(t) = 0

Since v(t) is missing from the ode then we can use the substitution v′(t) = w(t) to
reduce the order by one. The ODE becomes

−w′′′(t) t+ w′′(t) = 0

Since w(t) is missing from the ode then we can use the substitution w′(t) = r(t) to
reduce the order by one. The ODE becomes

−r′′(t) t+ r′(t) = 0

Integrating both sides of the ODE w.r.t t gives∫
(−r′′(t) t+ r′(t)) dt = 0

−r′(t) t+ 2r(t) = c1
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Which is now solved for r(t). In canonical form the ODE is

r′ = F (t, r)
= f(t)g(r)

= 2r − c1
t

Where f(t) = 1
t
and g(r) = 2r − c1. Integrating both sides gives

1
2r − c1

dr = 1
t
dt∫ 1

2r − c1
dr =

∫ 1
t
dt

ln (−2r + c1)
2 = ln (t) + c2

Raising both side to exponential gives
√
−2r + c1 = eln(t)+c2

Which simplifies to
√
−2r + c1 = c3t

But since w′(t) = r(t) then we now need to solve the ode w′(t) = − c23e2c2 t2
2 + c1

2 .
Integrating both sides gives

w(t) =
∫

−c23e2c2t2
2 + c1

2 dt

= −c23e2c2t3
6 + c1t

2 + c4

But since v′(t) = w(t) then we now need to solve the ode v′(t) = − c23e2c2 t3
6 + c1t

2 + c4.
Integrating both sides gives

v(t) =
∫

−c23e2c2t3
6 + c1t

2 + c4 dt

= −c23e2c2t4
24 + c1t

2

4 + c4t+ c5
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But since y′ = v(t) then we now need to solve the ode y′ = − c23e2c2 t4
24 + c1t2

4 + c4t + c5.
Integrating both sides gives

y =
∫

−c23e2c2t4
24 + c1t

2

4 + c4t+ c5 dt

= −c23e2c2t5
120 + c1t

3

12 + c4t
2

2 + tc5 + c6

Summary
The solution(s) found are the following

(1)y = −c23e2c2t5
120 + c1t

3

12 + c4t
2

2 + tc5 + c6

Verification of solutions

y = −c23e2c2t5
120 + c1t

3

12 + c4t
2

2 + tc5 + c6

Verified OK.

3.8.1 Maple step by step solution

Let’s solve
−y(5)t+ y′′′′ = 0

• Highest derivative means the order of the ODE is 5
y(5)

• Isolate 5th derivative
y(5) = y′′′′

t

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y(5) − y′′′′

t
= 0

• Multiply by denominators of the ODE
y(5)t− y′′′′ = 0

• Make a change of variables
s = ln (t)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to t , using the chain rule

y′ =
(

d
ds
y(s)

)
s′(t)
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◦ Compute derivative

y′ =
d
ds

y(s)
t

◦ Calculate the 2nd derivative of y with respect to t , using the chain rule

y′′ =
(

d2

ds2
y(s)

)
s′(t)2 + s′′(t)

(
d
ds
y(s)

)
◦ Compute derivative

y′′ =
d2
ds2 y(s)

t2
−

d
ds

y(s)
t2

◦ Calculate the 3rd derivative of y with respect to t , using the chain rule

y′′′ =
(

d3

ds3
y(s)

)
s′(t)3 + 3s′(t) s′′(t)

(
d2

ds2
y(s)

)
+ s′′′(t)

(
d
ds
y(s)

)
◦ Compute derivative

y′′′ =
d3
ds3 y(s)

t3
−

3
(

d2
ds2 y(s)

)
t3

+
2
(

d
ds

y(s)
)

t3

◦ Calculate the 4th derivative of y with respect to t , using the chain rule

y′′′′ =
(

d4

ds4
y(s)

)
s′(t)4 + 3s′(t)2s′′(t)

(
d3

ds3
y(s)

)
+ 3s′′(t)2

(
d2

ds2
y(s)

)
+ 3
(
s′′′(t)

(
d2

ds2
y(s)

)
+
(

d3

ds3
y(s)

)
s′(t) s′′(t)

)
s′(t) + s′′′′(t)

(
d
ds
y(s)

)
+
(

d2

ds2
y(s)

)
s′(t) s′′′(t)

◦ Compute derivative

y′′′′ =
d4
ds4 y(s)

t4
−

3
(

d3
ds3 y(s)

)
t4

+
5
(

d2
ds2 y(s)

)
t4

+
3

 2
(

d2
ds2

y(s)
)

t3 −
d3
ds3

y(s)

t3


t

−
6
(

d
ds

y(s)
)

t4

◦ Calculate the 5th derivative of y with respect to t , using the chain rule

y(5) =
(

d5

ds5
y(s)

)
s′(t)5 + 4s′(t)3s′′(t)

(
d4

ds4
y(s)

)
+ 9s′(t) s′′(t)2

(
d3

ds3
y(s)

)
+ 3
(
s′′′(t)

(
d3

ds3
y(s)

)
+
(

d4

ds4
y(s)

)
s′(t) s′′(t)

)
s′(t)2 + 6s′′(t) s′′′(t)

(
d2

ds2
y(s)

)
+ 3
(
s′′′′(t)

(
d2

ds2
y(s)

)
+
(

d3

ds3
y(s)

)
s′(t) s′′′(t) +

(
d4

ds4
y(s)

)
s′(t)2s′′(t) +

(
s′′(t)2 + s′′′(t) s′(t)

) (
d3

ds3
y(s)

))
s′(t) + 3s′′(t)

(
s′′′(t)

(
d2

ds2
y(s)

)
+
(

d3

ds3
y(s)

)
s′(t) s′′(t)

)
+ s(5)(t)

(
d
ds
y(s)

)
+
(

d2

ds2
y(s)

)
s′(t) s′′′′(t) +

(
d3

ds3
y(s)

)
s′(t)2s′′′(t) + (s′′′′(t) s′(t) + s′′(t) s′′′(t))

(
d2

ds2
y(s)

)
◦ Compute derivative

y(5) =
d5
ds5 y(s)

t5
−

4
(

d4
ds4 y(s)

)
t5

+
11
(

d3
ds3 y(s)

)
t5

+
3

 2
(

d3
ds3

y(s)
)

t3 −
d4
ds4

y(s)

t3


t2

−
26
(

d2
ds2 y(s)

)
t5

+
3

−
6
(

d2
ds2

y(s)
)

t4 +
5
(

d3
ds3

y(s)
)

t4 −
d4
ds4

y(s)

t4


t

−
3

 2
(

d2
ds2

y(s)
)

t3 −
d3
ds3

y(s)

t3


t2

+
24
(

d
ds

y(s)
)

t5

Substitute the change of variables back into the ODE d5
ds5 y(s)

t5
−

4
(

d4
ds4 y(s)

)
t5

+
11
(

d3
ds3 y(s)

)
t5

+
3

 2
(

d3
ds3

y(s)
)

t3 −
d4
ds4

y(s)

t3


t2

−
26
(

d2
ds2 y(s)

)
t5

+
3

−
6
(

d2
ds2

y(s)
)

t4 +
5
(

d3
ds3

y(s)
)

t4 −
d4
ds4

y(s)

t4


t

−
3

 2
(

d2
ds2

y(s)
)

t3 −
d3
ds3

y(s)

t3


t2

+
24
(

d
ds

y(s)
)

t5

 t−
d4
ds4 y(s)

t4
+

3
(

d3
ds3 y(s)

)
t4

−
5
(

d2
ds2 y(s)

)
t4

−
3

 2
(

d2
ds2

y(s)
)

t3 −
d3
ds3

y(s)

t3


t

+
6
(

d
ds

y(s)
)

t4
= 0

• Simplify
d5
ds5 y(s)−11 d4

ds4 y(s)+41 d3
ds3 y(s)−61 d2

ds2 y(s)+30 d
ds

y(s)
t4

= 0

• Isolate 5th derivative
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d5

ds5
y(s) = 11 d4

ds4
y(s)− 41 d3

ds3
y(s) + 61 d2

ds2
y(s)− 30 d

ds
y(s)

• Group terms with y(s) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d5

ds5
y(s)− 11 d4

ds4
y(s) + 41 d3

ds3
y(s)− 61 d2

ds2
y(s) + 30 d

ds
y(s) = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(s)

y1(s) = y(s)
◦ Define new variable y2(s)

y2(s) = d
ds
y(s)

◦ Define new variable y3(s)
y3(s) = d2

ds2
y(s)

◦ Define new variable y4(s)
y4(s) = d3

ds3
y(s)

◦ Define new variable y5(s)
y5(s) = d4

ds4
y(s)

◦ Isolate for d
ds
y5(s) using original ODE

d
ds
y5(s) = 11y5(s)− 41y4(s) + 61y3(s)− 30y2(s)

Convert linear ODE into a system of first order ODEs[
y2(s) = d

ds
y1(s) , y3(s) = d

ds
y2(s) , y4(s) = d

ds
y3(s) , y5(s) = d

ds
y4(s) , d

ds
y5(s) = 11y5(s)− 41y4(s) + 61y3(s)− 30y2(s)

]
• Define vector

→
y (s) =



y1(s)
y2(s)
y3(s)
y4(s)
y5(s)


• System to solve
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d
ds

→
y (s) =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −30 61 −41 11


· →y (s)

• Define the coefficient matrix

A =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −30 61 −41 11


• Rewrite the system as

d
ds

→
y (s) = A · →y (s)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A


0,



1
0
0
0
0




,


1,



1
1
1
1
1




,


2,



1
16
1
8
1
4
1
2

1




,


3,



1
81
1
27
1
9
1
3

1




,


5,



1
625
1

125
1
25
1
5

1






• Consider eigenpair

0,



1
0
0
0
0




• Solution to homogeneous system from eigenpair
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→
y 1 =



1
0
0
0
0


• Consider eigenpair

1,



1
1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = es ·



1
1
1
1
1


• Consider eigenpair

2,



1
16
1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair
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→
y 3 = e2s ·



1
16
1
8
1
4
1
2

1


• Consider eigenpair

3,



1
81
1
27
1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 4 = e3s ·



1
81
1
27
1
9
1
3

1


• Consider eigenpair

5,



1
625
1

125
1
25
1
5

1




• Solution to homogeneous system from eigenpair
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→
y 5 = e5s ·



1
625
1

125
1
25
1
5

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4 + c5

→
y 5

• Substitute solutions into the general solution

→
y = c2es ·



1
1
1
1
1


+ c3e2s ·



1
16
1
8
1
4
1
2

1


+ c4e3s ·



1
81
1
27
1
9
1
3

1


+ c5e5s ·



1
625
1

125
1
25
1
5

1


+



c1

0
0
0
0


• First component of the vector is the solution to the ODE

y(s) = c2es + c3e2s
16 + c4e3s

81 + c5e5s
625 + c1

• Change variables back using s = ln (t)
y = c2t+ 1

16c3t
2 + 1

81c4t
3 + 1

625c5t
5 + c1

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve(diff(y(t),t$5)-1/t*diff(y(t),t$4)=0,y(t), singsol=all)� �

y(t) = c3t
5 + c5t

3 + c2t
2 + c4t+ c1

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 33� �
DSolve[y'''''[t]-1/t*y''''[t]==0,y[t],t,IncludeSingularSolutions -> True]� �

y(t) → c1t
5

120 + c5t
3 + c4t

2 + c3t+ c2
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3.9 problem Example 3.38
3.9.1 Solving as second order ode missing x ode . . . . . . . . . . . . 326
3.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 328

Internal problem ID [5865]
Internal file name [OUTPUT/5113_Sunday_June_05_2022_03_25_03_PM_89277202/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], _Liouville , [_2nd_order , _reducible ,

_mu_x_y1], [_2nd_order , _reducible , _mu_xy ]]

xx′′ − x′2 = 0

3.9.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable x an independent variable.
Using

x′ = p(x)

Then

x′′ = dp

dt

= dx

dt

dp

dx

= p
dp

dx
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Hence the ode becomes

xp(x)
(

d

dx
p(x)

)
− p(x)2 = 0

Which is now solved as first order ode for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= p

x

Where f(x) = 1
x
and g(p) = p. Integrating both sides gives

1
p
dp = 1

x
dx∫ 1

p
dp =

∫ 1
x
dx

ln (p) = ln (x) + c1

p = eln(x)+c1

= c1x

For solution (1) found earlier, since p = x′ then we now have a new first order ode to
solve which is

x′ = c1x

Integrating both sides gives ∫ 1
c1x

dx =
∫

dt

ln (x)
c1

= t+ c2

Raising both side to exponential gives

e
ln(x)
c1 = et+c2

Which simplifies to

x
1
c1 = c3et

Summary
The solution(s) found are the following

(1)x =
(
c3et
)c1

Verification of solutions

x =
(
c3et
)c1

Verified OK.

327



3.9.2 Maple step by step solution

Let’s solve
xx′′ − x′2 = 0

• Highest derivative means the order of the ODE is 2
x′′

• Define new dependent variable u
u(t) = x′

• Compute x′′

u′(t) = x′′

• Use chain rule on the lhs
x′( d

dx
u(x)

)
= x′′

• Substitute in the definition of u
u(x)

(
d
dx
u(x)

)
= x′′

• Make substitutions x′ = u(x) , x′′ = u(x)
(

d
dx
u(x)

)
to reduce order of ODE

xu(x)
(

d
dx
u(x)

)
− u(x)2 = 0

• Separate variables
d
dx

u(x)
u(x) = 1

x

• Integrate both sides with respect to x∫ d
dx

u(x)
u(x) dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (u(x)) = ln (x) + c1

• Solve for u(x)
u(x) = x ec1

• Solve 1st ODE for u(x)
u(x) = x ec1

• Revert to original variables with substitution u(x) = x′, x = x

x′ = x ec1

• Separate variables
x′

x
= ec1
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• Integrate both sides with respect to t∫
x′

x
dt =

∫
ec1dt+ c2

• Evaluate integral
ln (x) = t ec1 + c2

• Solve for x
x = et ec1+c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 14� �
dsolve(x(t)*diff(x(t),t$2)-diff(x(t),t)^2=0,x(t), singsol=all)� �

x(t) = 0
x(t) = ec1tc2

3 Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 14� �
DSolve[x[t]*x''[t]-(x'[t])^2==0,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → c2e
c1t
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3.10 problem Example 3.39
Internal problem ID [5866]
Internal file name [OUTPUT/5114_Sunday_June_05_2022_03_25_07_PM_84169406/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.39.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 4y′′′ + 3y′′ − 4y′ − 4y = f(x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 4y′′′ + 3y′′ − 4y′ − 4y = 0

The characteristic equation is

λ4 + 4λ3 + 3λ2 − 4λ− 4 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1
λ3 = −2
λ4 = −2
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + x e−2xc3 + c4ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = x e−2x

y4 = ex

Now the particular solution to the given ODE is found

y′′′′ + 4y′′′ + 3y′′ − 4y′ − 4y = f(x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−x e−2x x e−2x ex

−e−x −2 e−2x e−2x(1− 2x) ex

e−x 4 e−2x 4 e−2x(x− 1) ex

−e−x −8 e−2x (−8x+ 12) e−2x ex


|W | = 18 e−xe−4xex
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The determinant simplifies to

|W | = 18 e−4x

Now we determine Wi for each Ui.

W1(x) = det


e−2x x e−2x ex

−2 e−2x e−2x(1− 2x) ex

4 e−2x 4 e−2x(x− 1) ex


= 9 e−3x

W2(x) = det


e−x x e−2x ex

−e−x e−2x(1− 2x) ex

e−x 4 e−2x(x− 1) ex


= (−6x+ 8) e−2x

W3(x) = det


e−x e−2x ex

−e−x −2 e−2x ex

e−x 4 e−2x ex


= −6 e−2x

W4(x) = det


e−x e−2x x e−2x

−e−x −2 e−2x e−2x(1− 2x)
e−x 4 e−2x 4 e−2x(x− 1)


= e−5x
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (f(x)) (9 e−3x)

(1) (18 e−4x) dx

= −
∫ 9f(x) e−3x

18 e−4x dx

= −
∫ (

f(x) ex
2

)
dx

= −
(∫

f(x) ex
2 dx

)
= −

(∫
f(x) ex

2 dx

)

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (f(x)) ((−6x+ 8) e−2x)

(1) (18 e−4x) dx

=
∫

f(x) (−6x+ 8) e−2x

18 e−4x dx

=
∫ (

−(3x− 4) f(x) e2x
9

)
dx

=
∫

−(3x− 4) f(x) e2x
9 dx

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (f(x)) (−6 e−2x)

(1) (18 e−4x) dx

= −
∫

−6f(x) e−2x

18 e−4x dx

= −
∫ (

−f(x) e2x
3

)
dx

= −
(∫

−f(x) e2x
3 dx

)
= −

(∫
−f(x) e2x

3 dx

)
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U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (f(x)) (e−5x)

(1) (18 e−4x) dx

=
∫

f(x) e−5x

18 e−4x dx

=
∫ (

f(x) e−x

18

)
dx

=
∫

f(x) e−x

18 dx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−
(∫

f(x) ex
2 dx

))(
e−x
)

+
(∫

−(3x− 4) f(x) e2x
9 dx

)(
e−2x)

+
(
−
(∫

−f(x) e2x
3 dx

))(
x e−2x)

+
(∫

f(x) e−x

18 dx

)
(ex)

Therefore the particular solution is

yp =
((∫

f(x) e−xdx
)
e3x − 9

(∫
f(x) exdx

)
ex + 6x

(∫
f(x) e2xdx

)
− 2
(∫

(3x− 4) f(x) e2xdx
))

e−2x

18
Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x + x e−2xc3 + c4ex

)
+
(((∫

f(x) e−xdx
)
e3x − 9

(∫
f(x) exdx

)
ex + 6x

(∫
f(x) e2xdx

)
− 2
(∫

(3x− 4) f(x) e2xdx
))

e−2x

18

)

Which simplifies to

y =
(
c4e3x + c1ex + c3x+ c2

)
e−2x

+
((∫

f(x) e−xdx
)
e3x − 9

(∫
f(x) exdx

)
ex + 6x

(∫
f(x) e2xdx

)
− 2
(∫

(3x− 4) f(x) e2xdx
))

e−2x

18
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Summary
The solution(s) found are the following

(1)y =
(
c4e3x + c1ex + c3x+ c2

)
e−2x

+
((∫

f(x) e−xdx
)
e3x − 9

(∫
f(x) exdx

)
ex + 6x

(∫
f(x) e2xdx

)
− 2
(∫

(3x− 4) f(x) e2xdx
))

e−2x

18
Verification of solutions

y =
(
c4e3x + c1ex + c3x+ c2

)
e−2x

+
((∫

f(x) e−xdx
)
e3x − 9

(∫
f(x) exdx

)
ex + 6x

(∫
f(x) e2xdx

)
− 2
(∫

(3x− 4) f(x) e2xdx
))

e−2x

18

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 83� �
dsolve(diff(y(x),x$4)+4*diff(y(x),x$3)+3*diff(y(x),x$2)-4*diff(y(x),x)-4*y(x)=f(x),y(x), singsol=all)� �
y(x)

=
((∫

f(x) e−xdx
)
e3x + 18 e3xc1 − 9

(∫
f(x) exdx

)
ex + 6x

(∫
f(x) e2xdx

)
+ 18c3ex + 18c4x− 2

(∫
f(x) (3x− 4) e2xdx

)
+ 18c2

)
e−2x

18
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3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 128� �
DSolve[y''''[x]+4*y'''[x]+3*y''[x]-4*y'[x]-4*y[x]==f[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → e−2x

(
x

∫ x

1

1
3e

2K[2]f(K[2])dK[2] + ex
∫ x

1
−1
2e

K[3]f(K[3])dK[3]

+ e3x
∫ x

1

1
18e

−K[4]f(K[4])dK[4] +
∫ x

1
−1
9e

2K[1]f(K[1])(3K[1]− 4)dK[1] + c2x

+ c3e
x + c4e

3x + c1

)
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3.11 problem Example 3.40
3.11.1 Solving as second order change of variable on y method 1 ode . 337
3.11.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 340
3.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 343

Internal problem ID [5867]
Internal file name [OUTPUT/5115_Sunday_June_05_2022_03_25_09_PM_21333835/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

u′′ − (1 + 2x)u′ +
(
x2 + x− 1

)
u = 0

3.11.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

u′′ + p(x)u′ + q(x)u = 0 (2)

Where

p(x) = −1− 2x
q(x) = x2 + x− 1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 + x− 1− (−1− 2x)′

2 − (−1− 2x)2

4

= x2 + x− 1− (−2)
2 −

(
(−1− 2x)2

)
4

= x2 + x− 1− (−1)− (−1− 2x)2

4
= −1

4
Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

u = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −1−2x

2

= e
x(1+x)

2 (5)

Hence (3) becomes

u = v(x) e
x(1+x)

2 (4)

Applying this change of variable to the original ode results in

e
x(1+x)

2 (4v′′(x)− v(x)) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 4, B = 0, C = −1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

4λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

4λ2 − 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 4, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (4) ±
1

(2) (4)
√
02 − (4) (4) (−1)

= ±1
2

Hence

λ1 = +1
2

λ2 = −1
2

Which simplifies to

λ1 =
1
2

λ2 = −1
2

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
( 1
2
)
x + c2e

(
− 1

2
)
x

Or
v(x) = c1e

x
2 + c2e−

x
2

Now that v(x) is known, then

u = v(x) z(x)
=
(
c1e

x
2 + c2e−

x
2
)
(z(x)) (7)

But from (5)

z(x) = e
x(1+x)

2
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Hence (7) becomes

u =
(
c1e

x
2 + c2e−

x
2
)
e

x(1+x)
2

Summary
The solution(s) found are the following

(1)u =
(
c1e

x
2 + c2e−

x
2
)
e

x(1+x)
2

Verification of solutions

u =
(
c1e

x
2 + c2e−

x
2
)
e

x(1+x)
2

Verified OK.

3.11.2 Solving using Kovacic algorithm

Writing the ode as

u′′ + (−1− 2x)u′ +
(
x2 + x− 1

)
u = 0 (1)

Au′′ +Bu′ + Cu = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −1− 2x (3)
C = x2 + x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ue
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)
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Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then u is found using the inverse trans-
formation

u = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 40: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

u1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1−2x

1 dx

= z1e
1
2x+

1
2x

2

= z1
(
e

x(1+x)
2

)
Which simplifies to

u1 = ex2
2

The second solution u2 to the original ode is found using reduction of order

u2 = u1

∫
e
∫
−B

A
dx

u2
1

dx

Substituting gives

u2 = u1

∫
e
∫
−−1−2x

1 dx

(u1)2
dx

= u1

∫
ex

2+x

(u1)2
dx

= u1(ex)

Therefore the solution is

u = c1u1 + c2u2

= c1
(
ex2

2

)
+ c2

(
ex2

2 (ex)
)

Summary
The solution(s) found are the following

(1)u = c1e
x2
2 + c2e

x(x+2)
2
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Verification of solutions

u = c1e
x2
2 + c2e

x(x+2)
2

Verified OK.

3.11.3 Maple step by step solution

Let’s solve
u′′ + (−1− 2x)u′ + (x2 + x− 1)u = 0

• Highest derivative means the order of the ODE is 2
u′′

• Assume series solution for u

u =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · u to series expansion form = 0..2

xm · u =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · u =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert xm · u′ to series expansion form = 0..1

xm · u′ =
∞∑

k=max(0,1−m)
akk x

k−1+m

◦ Shift index using k− >k + 1−m

xm · u′ =
∞∑

k=max(0,1−m)+m−1
ak+1−m(k + 1−m)xk

◦ Convert u′′ to series expansion

u′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

u′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions
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2a2 − a1 − a0 + (6a3 − 2a2 − 3a1 + a0)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak+1(k + 1)− ak(2k + 1) + ak−1 + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − a1 − a0 = 0, 6a3 − 2a2 − 3a1 + a0 = 0]

• Solve for the dependent coefficient(s){
a2 = a1

2 + a0
2 , a3 =

2a1
3

}
• Each term in the series must be 0, giving the recursion relation

k2ak+2 + (−2ak − ak+1 + 3ak+2) k − ak + ak−2 + ak−1 − ak+1 + 2ak+2 = 0
• Shift index using k− >k + 2

(k + 2)2 ak+4 + (−2ak+2 − ak+3 + 3ak+4) (k + 2)− ak+2 + ak + ak+1 − ak+3 + 2ak+4 = 0
• Recursion relation that defines the series solution to the ODE[

u =
∞∑
k=0

akx
k, ak+4 = 2kak+2+kak+3−ak−ak+1+5ak+2+3ak+3

k2+7k+12 , a2 = a1
2 + a0

2 , a3 =
2a1
3

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(u(x),x$2)-(2*x+1)*diff(u(x),x)+(x^2+x-1)*u(x)=0,u(x), singsol=all)� �

u(x) = ex2
2 c1 + c2e

x(x+2)
2
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3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 24� �
DSolve[u''[x]-(2*x+1)*u'[x]+(x^2+x-1)*u[x]==0,u[x],x,IncludeSingularSolutions -> True]� �

u(x) → e
x2
2 (c2ex + c1)
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3.12 problem Example 3.41
3.12.1 Solving as second order linear constant coeff ode . . . . . . . . 346
3.12.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
3.12.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 351
3.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 356

Internal problem ID [5868]
Internal file name [OUTPUT/5116_Sunday_June_05_2022_03_25_10_PM_46278530/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.41.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 6y′ + 9y = 50 e2x

3.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 6, C = 9, f(x) = 50 e2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 6y′ + 9y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 6, C = 9. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 6λ eλx + 9 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 6λ+ 9 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 6, C = 9 into the above gives

λ1,2 =
−6

(2) (1) ±
1

(2) (1)

√
(6)2 − (4) (1) (9)

= −3

Hence this is the case of a double root λ1,2 = 3. Therefore the solution is

y = c1e−3x + c2x e−3x (1)

Therefore the homogeneous solution yh is

yh = c1e−3x + x e−3xc2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

50 e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−3x, e−3x}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

25A1e2x = 50 e2x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e2x

Therefore the general solution is

y = yh + yp

=
(
c1e−3x + x e−3xc2

)
+
(
2 e2x

)
Which simplifies to

y = e−3x(c2x+ c1) + 2 e2x

Summary
The solution(s) found are the following

(1)y = e−3x(c2x+ c1) + 2 e2x
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Figure 45: Slope field plot

Verification of solutions

y = e−3x(c2x+ c1) + 2 e2x

Verified OK.

3.12.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 6. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
6 dx

= e3x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 50 e3xe2x(
e3xy

) ′′ = 50 e3xe2x

Integrating once gives (
e3xy

)′ = 10 e5x + c1

Integrating again gives (
e3xy

)
= c1x+ 2 e5x + c2

Hence the solution is

y = c1x+ 2 e5x + c2
e3x

Or
y = 2 e2x + c1x e−3x + c2e−3x

Summary
The solution(s) found are the following

(1)y = 2 e2x + c1x e−3x + c2e−3x

Figure 46: Slope field plot

350



Verification of solutions

y = 2 e2x + c1x e−3x + c2e−3x

Verified OK.

3.12.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 6y′ + 9y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 6 (3)
C = 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 42: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6
1 dx

= z1e
−3x

= z1
(
e−3x)

Which simplifies to
y1 = e−3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6

1 dx

(y1)2
dx

= y1

∫
e−6x

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−3x)+ c2

(
e−3x(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 6y′ + 9y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−3x + x e−3xc2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

50 e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−3x, e−3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

25A1e2x = 50 e2x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e2x

Therefore the general solution is

y = yh + yp

=
(
c1e−3x + x e−3xc2

)
+
(
2 e2x

)
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Which simplifies to
y = e−3x(c2x+ c1) + 2 e2x

Summary
The solution(s) found are the following

(1)y = e−3x(c2x+ c1) + 2 e2x

Figure 47: Slope field plot

Verification of solutions

y = e−3x(c2x+ c1) + 2 e2x

Verified OK.
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3.12.4 Maple step by step solution

Let’s solve
y′′ + 6y′ + 9y = 50 e2x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 6r + 9 = 0

• Factor the characteristic polynomial
(r + 3)2 = 0

• Root of the characteristic polynomial
r = −3

• 1st solution of the homogeneous ODE
y1(x) = e−3x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x e−3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−3x + x e−3xc2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 50 e2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−3x x e−3x

−3 e−3x e−3x − 3x e−3x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−6x

◦ Substitute functions into equation for yp(x)
yp(x) = −50 e−3x(∫ e5xxdx−

(∫
e5xdx

)
x
)
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◦ Compute integrals
yp(x) = 2 e2x

• Substitute particular solution into general solution to ODE
y = x e−3xc2 + c1e−3x + 2 e2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)+6*diff(y(x),x)+9*y(x)=50*exp(2*x),y(x), singsol=all)� �

y(x) =
(
2 e5x + c1x+ c2

)
e−3x

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25� �
DSolve[y''[x]+6*y'[x]+9*y[x]==50*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−3x(2e5x + c2x+ c1
)
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3.13 problem Example 3.42
3.13.1 Solving as second order linear constant coeff ode . . . . . . . . 358
3.13.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
3.13.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 363
3.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 368

Internal problem ID [5869]
Internal file name [OUTPUT/5117_Sunday_June_05_2022_03_25_12_PM_65165470/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 4y′ + 4y = 50 e2x

3.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −4, C = 4, f(x) = 50 e2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 4y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −4, C = 4. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 4λ eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 4λ+ 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −4, C = 4 into the above gives

λ1,2 =
4

(2) (1) ±
1

(2) (1)

√
(−4)2 − (4) (1) (4)

= 2

Hence this is the case of a double root λ1,2 = −2. Therefore the solution is

y = c1e2x + c2e2xx (1)

Therefore the homogeneous solution yh is

yh = c1e2x + x e2xc2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

50 e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e2xx, e2x}
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Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e2xx}]

Since e2xx is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1e2x = 50 e2x

Solving for the unknowns by comparing coefficients results in

[A1 = 25]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 25x2e2x

Therefore the general solution is

y = yh + yp

=
(
c1e2x + x e2xc2

)
+
(
25x2e2x

)
Which simplifies to

y = e2x(c2x+ c1) + 25x2e2x

Summary
The solution(s) found are the following

(1)y = e2x(c2x+ c1) + 25x2e2x
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Figure 48: Slope field plot

Verification of solutions

y = e2x(c2x+ c1) + 25x2e2x

Verified OK.

3.13.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −4. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−4 dx

= e−2x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 50 e−2xe2x(
y e−2x) ′′ = 50 e−2xe2x

Integrating once gives (
y e−2x)′ = 50x+ c1

Integrating again gives (
y e−2x) = x(c1 + 25x) + c2

Hence the solution is

y = x(c1 + 25x) + c2
e−2x

Or
y = c1x e2x + 25x2e2x + c2e2x

Summary
The solution(s) found are the following

(1)y = c1x e2x + 25x2e2x + c2e2x

Figure 49: Slope field plot
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Verification of solutions

y = c1x e2x + 25x2e2x + c2e2x

Verified OK.

3.13.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 4y′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

363



Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 44: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4
1 dx

= z1e
2x

= z1
(
e2x
)

Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4

1 dx

(y1)2
dx

= y1

∫
e4x

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 4y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e2x + x e2xc2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

50 e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e2xx, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e2xx}]

Since e2xx is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1e2x = 50 e2x

Solving for the unknowns by comparing coefficients results in

[A1 = 25]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 25x2e2x
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Therefore the general solution is

y = yh + yp

=
(
c1e2x + x e2xc2

)
+
(
25x2e2x

)
Which simplifies to

y = e2x(c2x+ c1) + 25x2e2x

Summary
The solution(s) found are the following

(1)y = e2x(c2x+ c1) + 25x2e2x

Figure 50: Slope field plot

Verification of solutions

y = e2x(c2x+ c1) + 25x2e2x

Verified OK.
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3.13.4 Maple step by step solution

Let’s solve
y′′ − 4y′ + 4y = 50 e2x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 4r + 4 = 0

• Factor the characteristic polynomial
(r − 2)2 = 0

• Root of the characteristic polynomial
r = 2

• 1st solution of the homogeneous ODE
y1(x) = e2x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = e2xx

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e2x + x e2xc2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 50 e2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e2x e2xx
2 e2x 2 e2xx+ e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e4x

◦ Substitute functions into equation for yp(x)
yp(x) = −50 e2x

(∫
xdx−

(∫
1dx
)
x
)

368



◦ Compute integrals
yp(x) = 25x2e2x

• Substitute particular solution into general solution to ODE
y = x e2xc2 + 25x2e2x + c1e2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=50*exp(2*x),y(x), singsol=all)� �

y(x) = e2x
(
c1x+ 25x2 + c2

)
3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 23� �
DSolve[y''[x]-4*y'[x]+4*y[x]==50*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x
(
25x2 + c2x+ c1

)
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3.14 problem Example 3.43
3.14.1 Solving as second order linear constant coeff ode . . . . . . . . 370
3.14.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 373
3.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 378

Internal problem ID [5870]
Internal file name [OUTPUT/5118_Sunday_June_05_2022_03_25_14_PM_98685473/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 3y′ + 2y = cos (2x)

3.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 3, C = 2, f(x) = cos (2x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 3y′ + 2y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 3, C = 2. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 3λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 3λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 3, C = 2 into the above gives

λ1,2 =
−3

(2) (1) ±
1

(2) (1)
√

32 − (4) (1) (2)

= −3
2 ± 1

2
Hence

λ1 = −3
2 + 1

2

λ2 = −3
2 − 1

2

Which simplifies to
λ1 = −1
λ2 = −2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(−1)x + c2e

(−2)x

Or
y = c1e−x + c2e−2x

Therefore the homogeneous solution yh is

yh = c1e−x + c2e−2x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (2x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2x) , sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (2x) + A2 sin (2x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 cos (2x)− 2A2 sin (2x)− 6A1 sin (2x) + 6A2 cos (2x) = cos (2x)

Solving for the unknowns by comparing coefficients results in[
A1 = − 1

20 , A2 =
3
20

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (2x)
20 + 3 sin (2x)

20

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x)+ (−cos (2x)

20 + 3 sin (2x)
20

)
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2e−2x − cos (2x)
20 + 3 sin (2x)

20

Figure 51: Slope field plot

Verification of solutions

y = c1e−x + c2e−2x − cos (2x)
20 + 3 sin (2x)

20

Verified OK.

3.14.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 3y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 3 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 46: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
1 dx

= z1e
− 3x

2

= z1
(
e− 3x

2

)
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Which simplifies to
y1 = e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

1 dx

(y1)2
dx

= y1

∫
e−3x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x)+ c2

(
e−2x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 3y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−2x + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (2x)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2x) , sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (2x) + A2 sin (2x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 cos (2x)− 2A2 sin (2x)− 6A1 sin (2x) + 6A2 cos (2x) = cos (2x)

Solving for the unknowns by comparing coefficients results in[
A1 = − 1

20 , A2 =
3
20

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (2x)
20 + 3 sin (2x)

20

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2e−x

)
+
(
−cos (2x)

20 + 3 sin (2x)
20

)

Summary
The solution(s) found are the following

(1)y = c1e−2x + c2e−x − cos (2x)
20 + 3 sin (2x)

20
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Figure 52: Slope field plot

Verification of solutions

y = c1e−2x + c2e−x − cos (2x)
20 + 3 sin (2x)

20

Verified OK.

3.14.3 Maple step by step solution

Let’s solve
y′′ + 3y′ + 2y = cos (2x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3r + 2 = 0

• Factor the characteristic polynomial
(r + 2) (r + 1) = 0

• Roots of the characteristic polynomial
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r = (−2,−1)
• 1st solution of the homogeneous ODE

y1(x) = e−2x

• 2nd solution of the homogeneous ODE
y2(x) = e−x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−2x + c2e−x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = cos (2x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−2x e−x

−2 e−2x −e−x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−3x

◦ Substitute functions into equation for yp(x)
yp(x) = −e−2x(∫ e2x cos (2x) dx

)
+ e−x

(∫
ex cos (2x) dx

)
◦ Compute integrals

yp(x) = − cos(2x)
20 + 3 sin(2x)

20

• Substitute particular solution into general solution to ODE
y = c1e−2x + c2e−x − cos(2x)

20 + 3 sin(2x)
20

379



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=cos(2*x),y(x), singsol=all)� �

y(x) = −e−2xc1 + c2e−x − cos (2x)
20 + 3 sin (2x)

20

3 Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 37� �
DSolve[y''[x]+3*y'[x]+2*y[x]==Cos[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
20 sin(2x)− 1

20 cos(2x) + e−2x(c2ex + c1)
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3.15 problem Example 3.44
3.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 383

Internal problem ID [5871]
Internal file name [OUTPUT/5119_Sunday_June_05_2022_03_25_16_PM_20762596/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.44.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 6y′′ + 11y′ + 6y = 2 sin (3x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 6y′′ + 11y′ + 6y = 0

The characteristic equation is

λ3 + 6λ2 + 11λ+ 6 = 0

The roots of the above equation are

λ1 = −3
λ2 = −2
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + e−3xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = e−3x

Now the particular solution to the given ODE is found

y′′′ + 6y′′ + 11y′ + 6y = 2 sin (3x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

2 sin (3x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (3x) , sin (3x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−3x, e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (3x) + A2 sin (3x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−6A1 sin (3x) + 6A2 cos (3x)− 48A1 cos (3x)− 48A2 sin (3x) = 2 sin (3x)

Solving for the unknowns by comparing coefficients results in[
A1 = − 1

195 , A2 = − 8
195

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (3x)
195 − 8 sin (3x)

195

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x + e−3xc3

)
+
(
−cos (3x)

195 − 8 sin (3x)
195

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e−2x + e−3xc3 −
cos (3x)
195 − 8 sin (3x)

195
Verification of solutions

y = c1e−x + c2e−2x + e−3xc3 −
cos (3x)
195 − 8 sin (3x)

195

Verified OK.

3.15.1 Maple step by step solution

Let’s solve
y′′′ + 6y′′ + 11y′ + 6y = 2 sin (3x)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
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y′3(x) = 2 sin (3x)− 6y3(x)− 11y2(x)− 6y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 2 sin (3x)− 6y3(x)− 11y2(x)− 6y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−6 −11 −6

 · →y (x) +


0
0

2 sin (3x)


• Define the forcing function

→
f (x) =


0
0

2 sin (3x)


• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 −11 −6


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3,


1
9

−1
3

1


 ,

−2,


1
4

−1
2

1


 ,

−1,


1
−1
1





• Consider eigenpair
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−3,


1
9

−1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−3x ·


1
9

−1
3

1


• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e−2x ·


1
4

−1
2

1


• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 3 = e−x ·


1
−1
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(x) =


e−3x

9
e−2x

4 e−x

− e−3x

3 − e−2x

2 −e−x

e−3x e−2x e−x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−3x

9
e−2x

4 e−x

− e−3x

3 − e−2x

2 −e−x

e−3x e−2x e−x

 · 1

1
9

1
4 1

−1
3 −1

2 −1

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


e−3x − 3 e−2x + 3 e−x 3 e−3x

2 − 4 e−2x + 5 e−x

2
e−3x

2 − e−2x + e−x

2

−3 e−3x + 6 e−2x − 3 e−x −9 e−3x

2 + 8 e−2x − 5 e−x

2 −3 e−3x

2 + 2 e−2x − e−x

2

9 e−3x − 12 e−2x + 3 e−x 27 e−3x

2 − 16 e−2x + 5 e−x

2
9 e−3x

2 − 4 e−2x + e−x

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)
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◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


− cos(3x)

195 − 8 sin(3x)
195 + 3 e−x

10 − 6 e−2x

13 + e−3x

6

−8 cos(3x)
65 + sin(3x)

65 − 3 e−x

10 + 12 e−2x

13 − e−3x

2
3 cos(3x)

65 + 24 sin(3x)
65 + 3 e−x

10 − 24 e−2x

13 + 3 e−3x

2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


− cos(3x)

195 − 8 sin(3x)
195 + 3 e−x

10 − 6 e−2x

13 + e−3x

6

−8 cos(3x)
65 + sin(3x)

65 − 3 e−x

10 + 12 e−2x

13 − e−3x

2
3 cos(3x)

65 + 24 sin(3x)
65 + 3 e−x

10 − 24 e−2x

13 + 3 e−3x

2


• First component of the vector is the solution to the ODE

y = (260c1+390)e−3x

2340 + (585c2−1080)e−2x

2340 + (2340c3+702)e−x

2340 − cos(3x)
195 − 8 sin(3x)

195

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$3)+6*diff(y(x),x$2)+11*diff(y(x),x)+6*y(x)=2*sin(3*x),y(x), singsol=all)� �

y(x) = −cos (3x)
195 − 8 sin (3x)

195 + c1e−3x + c2e−2x + c3e−x

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 44� �
DSolve[y'''[x]+6*y''[x]+11*y'[x]+6*y[x]==2*Sin[3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 8
195 sin(3x)− 1

195 cos(3x) + e−3x(ex(c3ex + c2) + c1)
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3.16 problem Example 3.45
3.16.1 Solving as second order linear constant coeff ode . . . . . . . . 389
3.16.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 392
3.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 397

Internal problem ID [5872]
Internal file name [OUTPUT/5120_Sunday_June_05_2022_03_25_18_PM_76771421/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.45.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 4y = x2

3.16.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 4, f(x) = x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 4. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (2x) + c2 sin (2x))

Or
y = c1 cos (2x) + c2 sin (2x)
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Therefore the homogeneous solution yh is

yh = c1 cos (2x) + c2 sin (2x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (2x) , sin (2x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

4A3x
2 + 4A2x+ 4A1 + 2A3 = x2

Solving for the unknowns by comparing coefficients results in[
A1 = −1

8 , A2 = 0, A3 =
1
4

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2

4 − 1
8

Therefore the general solution is

y = yh + yp

= (c1 cos (2x) + c2 sin (2x)) +
(
x2

4 − 1
8

)
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Summary
The solution(s) found are the following

(1)y = c1 cos (2x) + c2 sin (2x) +
x2

4 − 1
8

Figure 53: Slope field plot

Verification of solutions

y = c1 cos (2x) + c2 sin (2x) +
x2

4 − 1
8

Verified OK.

3.16.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 49: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (2x)
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Which simplifies to
y1 = cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (2x)
∫ 1

cos (2x)2
dx

= cos (2x)
(
tan (2x)

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (2x)) + c2

(
cos (2x)

(
tan (2x)

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (2x) +
c2 sin (2x)

2
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]
While the set of the basis functions for the homogeneous solution found earlier is{

sin (2x)
2 , cos (2x)

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

4A3x
2 + 4A2x+ 4A1 + 2A3 = x2

Solving for the unknowns by comparing coefficients results in[
A1 = −1

8 , A2 = 0, A3 =
1
4

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2

4 − 1
8

Therefore the general solution is

y = yh + yp

=
(
c1 cos (2x) +

c2 sin (2x)
2

)
+
(
x2

4 − 1
8

)
Summary
The solution(s) found are the following

(1)y = c1 cos (2x) +
c2 sin (2x)

2 + x2

4 − 1
8
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Figure 54: Slope field plot

Verification of solutions

y = c1 cos (2x) +
c2 sin (2x)

2 + x2

4 − 1
8

Verified OK.

3.16.3 Maple step by step solution

Let’s solve
y′′ + 4y = x2

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
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r = (−2 I, 2 I)
• 1st solution of the homogeneous ODE

y1(x) = cos (2x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (2x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (2x) + c2 sin (2x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x2

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)

yp(x) = − cos(2x)
(∫

x2 sin(2x)dx
)

2 + sin(2x)
(∫

cos(2x)x2dx
)

2

◦ Compute integrals
yp(x) = x2

4 − 1
8

• Substitute particular solution into general solution to ODE
y = c1 cos (2x) + c2 sin (2x) + x2

4 − 1
8
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+4*y(x)=x^2,y(x), singsol=all)� �

y(x) = sin (2x) c2 + cos (2x) c1 +
x2

4 − 1
8

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 30� �
DSolve[y''[x]+4*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

4 + c1 cos(2x) + c2 sin(2x)−
1
8
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3.17 problem Example 3.46
3.17.1 Solving as second order linear constant coeff ode . . . . . . . . 400
3.17.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 403
3.17.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 408

Internal problem ID [5873]
Internal file name [OUTPUT/5121_Sunday_June_05_2022_03_25_19_PM_74831686/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.46.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 4y′ + 3y = x3

3.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −4, C = 3, f(x) = x3. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 3y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −4, C = 3. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 4λ eλx + 3 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 4λ+ 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −4, C = 3 into the above gives

λ1,2 =
4

(2) (1) ±
1

(2) (1)
√
−42 − (4) (1) (3)

= 2± 1

Hence
λ1 = 2 + 1
λ2 = 2− 1

Which simplifies to
λ1 = 3
λ2 = 1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(1)x

Or
y = e3xc1 + c2ex

Therefore the homogeneous solution yh is

yh = e3xc1 + c2ex
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A4x
3 + A3x

2 + A2x+ A1

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

3A4x
3 + 3A3x

2 − 12x2A4 + 3A2x− 8xA3 + 6xA4 + 3A1 − 4A2 + 2A3 = x3

Solving for the unknowns by comparing coefficients results in[
A1 =

80
27 , A2 =

26
9 , A3 =

4
3 , A4 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
3x

3 + 4
3x

2 + 26
9 x+ 80

27

Therefore the general solution is

y = yh + yp

=
(
e3xc1 + c2ex

)
+
(
1
3x

3 + 4
3x

2 + 26
9 x+ 80

27

)
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Summary
The solution(s) found are the following

(1)y = e3xc1 + c2ex +
x3

3 + 4x2

3 + 26x
9 + 80

27

Figure 55: Slope field plot

Verification of solutions

y = e3xc1 + c2ex +
x3

3 + 4x2

3 + 26x
9 + 80

27

Verified OK.

3.17.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 4y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = −4 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 51: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4
1 dx

= z1e
2x

= z1
(
e2x
)
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Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4

1 dx

(y1)2
dx

= y1

∫
e4x

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex +
c2e3x
2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x3
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2, x3}]

While the set of the basis functions for the homogeneous solution found earlier is{
e3x
2 , ex

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A4x
3 + A3x

2 + A2x+ A1

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

3A4x
3 + 3A3x

2 − 12x2A4 + 3A2x− 8xA3 + 6xA4 + 3A1 − 4A2 + 2A3 = x3

Solving for the unknowns by comparing coefficients results in[
A1 =

80
27 , A2 =

26
9 , A3 =

4
3 , A4 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
3x

3 + 4
3x

2 + 26
9 x+ 80

27

Therefore the general solution is

y = yh + yp

=
(
c1ex +

c2e3x
2

)
+
(
1
3x

3 + 4
3x

2 + 26
9 x+ 80

27

)

Summary
The solution(s) found are the following

(1)y = c1ex +
c2e3x
2 + x3

3 + 4x2

3 + 26x
9 + 80

27
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Figure 56: Slope field plot

Verification of solutions

y = c1ex +
c2e3x
2 + x3

3 + 4x2

3 + 26x
9 + 80

27

Verified OK.

3.17.3 Maple step by step solution

Let’s solve
y′′ − 4y′ + 3y = x3

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 4r + 3 = 0

• Factor the characteristic polynomial
(r − 1) (r − 3) = 0

• Roots of the characteristic polynomial
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r = (1, 3)
• 1st solution of the homogeneous ODE

y1(x) = ex

• 2nd solution of the homogeneous ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2e3x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x3

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex e3x

ex 3 e3x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2 e4x

◦ Substitute functions into equation for yp(x)

yp(x) = − ex
(∫

x3e−xdx
)

2 + e3x
(∫

e−3xx3dx
)

2

◦ Compute integrals
yp(x) = 1

3x
3 + 4

3x
2 + 26

9 x+ 80
27

• Substitute particular solution into general solution to ODE
y = c1ex + c2e3x + x3

3 + 4x2

3 + 26x
9 + 80

27
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+3*y(x)=x^3,y(x), singsol=all)� �

y(x) = exc2 + e3xc1 +
x3

3 + 4x2

3 + 26x
9 + 80

27

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 39� �
DSolve[y''[x]-4*y'[x]+3*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
27
(
9x3 + 36x2 + 78x+ 80

)
+ c1e

x + c2e
3x
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3.18 problem Example 3.47
3.18.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 411
3.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 417

Internal problem ID [5874]
Internal file name [OUTPUT/5122_Sunday_June_05_2022_03_25_21_PM_26947731/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.5 HIGHER ORDER ODE.
Page 181
Problem number: Example 3.47.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2y′ +
(
1 + 2

(3x+ 1)2
)
y = 0

3.18.1 Solving using Kovacic algorithm

Writing the ode as

9
(
x+ 1

3

)2

y′′ + 18
(
x+ 1

3

)2

y′ +
(
9x2 + 6x+ 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 9
(
x+ 1

3

)2

B = 18
(
x+ 1

3

)2

(3)

C = 9x2 + 6x+ 3
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
(3x+ 1)2

(6)

Comparing the above to (5) shows that

s = −2
t = (3x+ 1)2

Therefore eq. (4) becomes

z′′(x) =
(
− 2
(3x+ 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 53: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (3x+ 1)2. There is a pole at x = −1

3 of order 2. Since there is no odd
order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case
one are met. Since there is a pole of order 2 then necessary conditions for case two are
met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 2
9
(
x+ 1

3

)2
For the pole at x = −1

3 let b be the coefficient of 1(
x+ 1

3
)2 in the partial fractions decom-
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position of r given above. Therefore b = −2
9 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

3
α−
c = 1

2 −
√
1 + 4b = 1

3

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 2

(3x+ 1)2

Since the gcd(s, t) = 1. This gives b = −2
9 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

3
α−
∞ = 1

2 −
√
1 + 4b = 1

3

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 2
(3x+ 1)2

pole c location pole order [
√
r]c α+

c α−
c

−1
3 2 0 2

3
1
3

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2
3

1
3

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = 1

3 then

d = α−
∞ −

(
α−
c1

)
= 1

3 −
(
1
3

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
3x+ 1 + (−) (0)

= 1
3x+ 1

= 1
3x+ 1

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
3x+ 1

)
(0) +

((
− 1
3
(
x+ 1

3

)2
)

+
(

1
3x+ 1

)2

−
(
− 2
(3x+ 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

3x+1dx

= (3x+ 1)
1
3
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
18

(
x+1

3
)2

9
(
x+1

3
)2 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to

y1 = (3x+ 1)
1
3 e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e

∫
−

18
(
x+1

3
)2

9
(
x+1

3
)2 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1
(
(3x+ 1)

1
3

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
(3x+ 1)

1
3 e−x

)
+ c2

(
(3x+ 1)

1
3 e−x

(
(3x+ 1)

1
3

))
Summary
The solution(s) found are the following

(1)y = c1(3x+ 1)
1
3 e−x + c2(3x+ 1)

2
3 e−x

Verification of solutions

y = c1(3x+ 1)
1
3 e−x + c2(3x+ 1)

2
3 e−x

Verified OK.
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3.18.2 Maple step by step solution

Let’s solve

9
(
x+ 1

3

)2
y′′ + 18

(
x+ 1

3

)2
y′ + (9x2 + 6x+ 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −3
(
3x2+2x+1

)
y

(3x+1)2 − 2y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2y′ + 3
(
3x2+2x+1

)
y

(3x+1)2 = 0

� Check to see if x0 = −1
3 is a regular singular point

◦ Define functions[
P2(x) = 2, P3(x) = 3

(
3x2+2x+1

)
(3x+1)2

]
◦
(
x+ 1

3

)
· P2(x) is analytic at x = −1

3((
x+ 1

3

)
· P2(x)

) ∣∣∣∣
x=− 1

3

= 0

◦
(
x+ 1

3

)2 · P3(x) is analytic at x = −1
3((

x+ 1
3

)2 · P3(x)
) ∣∣∣∣

x=− 1
3

= 2
9

◦ x = −1
3 is a regular singular point

Check to see if x0 = −1
3 is a regular singular point

x0 = −1
3

• Multiply by denominators
y′′(3x+ 1)2 + 2y′(3x+ 1)2 + (9x2 + 6x+ 3) y = 0

• Change variables using x = u− 1
3 so that the regular singular point is at u = 0

9u2
(

d2

du2y(u)
)
+ 18u2( d

du
y(u)

)
+ (9u2 + 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert u2 ·
(

d2

du2y(u)
)

to series expansion

u2 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−2 + 3r)ur + (a1(2 + 3r) (1 + 3r) + 18a0r)u1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (3k + 3r − 2) + 18ak−1(k − 1 + r) + 9ak−2)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−2 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
3 ,

2
3

}
• Each term must be 0

a1(2 + 3r) (1 + 3r) + 18a0r = 0
• Solve for the dependent coefficient(s)

a1 = − 18a0r
9r2+9r+2

• Each term in the series must be 0, giving the recursion relation
9
(
k + r − 2

3

) (
k + r − 1

3

)
ak + 18ak−1k + 18ak−1r + 9ak−2 − 18ak−1 = 0

• Shift index using k− >k + 2
9
(
k + 4

3 + r
) (

k + 5
3 + r

)
ak+2 + 18ak+1(k + 2) + 18ak+1r + 9ak − 18ak+1 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −9(2kak+1+2ak+1r+ak+2ak+1)
(3k+4+3r)(3k+5+3r)

• Recursion relation for r = 1
3

ak+2 = −9
(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6)

• Solution for r = 1
3[

y(u) =
∞∑
k=0

aku
k+ 1

3 , ak+2 = −9
(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6) , a1 = −a0

]
• Revert the change of variables u = x+ 1

3[
y =

∞∑
k=0

ak
(
x+ 1

3

)k+ 1
3 , ak+2 = −9

(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6) , a1 = −a0

]
• Recursion relation for r = 2

3

ak+2 = −9
(
2kak+1+ak+ 10

3 ak+1
)

(3k+6)(3k+7)

• Solution for r = 2
3[

y(u) =
∞∑
k=0

aku
k+ 2

3 , ak+2 = −9
(
2kak+1+ak+ 10

3 ak+1
)

(3k+6)(3k+7) , a1 = −a0

]
• Revert the change of variables u = x+ 1

3[
y =

∞∑
k=0

ak
(
x+ 1

3

)k+ 2
3 , ak+2 = −9

(
2kak+1+ak+ 10

3 ak+1
)

(3k+6)(3k+7) , a1 = −a0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(
x+ 1

3

)k+ 1
3

)
+
(

∞∑
k=0

bk
(
x+ 1

3

)k+ 2
3

)
, ak+2 = −9

(
2kak+1+ak+ 8

3ak+1
)

(3k+5)(3k+6) , a1 = −a0, bk+2 = −9
(
2kbk+1+bk+ 10

3 bk+1
)

(3k+6)(3k+7) , b1 = −b0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+(1+2/(1+3*x)^2)*y(x)=0,y(x), singsol=all)� �

y(x) = e−x(3x+ 1)
1
3

(
(3x+ 1)

1
3 c2 + c1

)
3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 35� �
DSolve[y''[x]+2*y'[x]+(1+2/(1+3*x)^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x 3
√
3x+ 1

(
c2

3
√
3x+ 1 + c1

)
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4.1 problem Problem 3.1
4.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 422

Internal problem ID [5875]
Internal file name [OUTPUT/5123_Sunday_June_05_2022_03_25_23_PM_61504530/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y +
√

x2 + y2 − xy′ = 0

4.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y +
√
x2 + y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y +

√
x2 + y2

)
(b3 − a2)

x
−
(
y +

√
x2 + y2

)2
a3

x2

−
(

1√
x2 + y2

− y +
√
x2 + y2

x2

)
(xa2 + ya3 + a1)

−

(
1 + y√

x2+y2

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−(x2 + y2)
3
2 a3 + x3a2 − x3b3 + 2x2ya3 + x2yb2 + y3a3 +

√
x2 + y2 xb1 −

√
x2 + y2 ya1 + xyb1 − a1y

2
√
x2 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−
(
x2 + y2

) 3
2 a3 − x3a2 + x3b3 − 2x2ya3 − x2yb2 − y3a3

−
√

x2 + y2 xb1 +
√

x2 + y2 ya1 − xyb1 + a1y
2 = 0

Simplifying the above gives

(6E)−
(
x2 + y2

) 3
2 a3 +

(
x2 + y2

)
xb3 −

(
x2 + y2

)
ya3 − x3a2 − x2ya3 − x2yb2

− x y2b3 +
(
x2 + y2

)
a1 −

√
x2 + y2 xb1 +

√
x2 + y2 ya1 − x2a1 − xyb1 = 0

Since the PDE has radicals, simplifying gives

−x3a2 + x3b3 −
√

x2 + y2 a3x
2 − 2x2ya3 − x2yb2 −

√
x2 + y2 a3y

2

− y3a3 −
√
x2 + y2 xb1 − xyb1 +

√
x2 + y2 ya1 + a1y

2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 + y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−v31a2 − 2v21v2a3 − v3a3v
2
1 − v32a3 − v3a3v

2
2 − v21v2b2

+ v31b3 + a1v
2
2 + v3v2a1 − v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(b3 − a2) v31 + (−2a3 − b2) v21v2 − v3a3v
2
1 − v1v2b1

− v3v1b1 − v32a3 − v3a3v
2
2 + a1v

2
2 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−a3 = 0
−b1 = 0

−2a3 − b2 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y +

√
x2 + y2

x

)
(x)

= −
√

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
x2 + y2

dy

Which results in

S = − ln
(
y +

√
x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y +
√
x2 + y2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x√
x2 + y2

(
y +

√
x2 + y2

)
Sy = − 1√

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2
(√

x2 + y2 y + x2 + y2
)

x
√
x2 + y2

(
y +

√
x2 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
y +

√
x2 + y2

)
= −2 ln (x) + c1

Which simplifies to

− ln
(
y +

√
x2 + y2

)
= −2 ln (x) + c1

Which gives

y = −e−c1(e2c1 − x2)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+
√

x2+y2

x
dS
dR

= − 2
R

R = x

S = − ln
(
y +

√
x2 + y2

)

Summary
The solution(s) found are the following

(1)y = −e−c1(e2c1 − x2)
2
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Figure 57: Slope field plot

Verification of solutions

y = −e−c1(e2c1 − x2)
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(y(x)+sqrt(x^2+y(x)^2)-x*diff(y(x),x)=0,y(x), singsol=all)� �

−c1x
2 + y(x) +

√
x2 + y (x)2

x2 = 0

3 Solution by Mathematica
Time used: 0.347 (sec). Leaf size: 27� �
DSolve[y[x]+Sqrt[x^2+y[x]^2]-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
(
−1 + e2c1x2)
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4.2 problem Problem 3.2
4.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 431

Internal problem ID [5876]
Internal file name [OUTPUT/5124_Sunday_June_05_2022_03_25_26_PM_88849362/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.2.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + y2 = a2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

a2 − y2 (1)
y′ = −

√
a2 − y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
a2 − y2

dy =
∫

dx

arctan
(

y√
a2 − y2

)
= x+ c1
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Summary
The solution(s) found are the following

(1)arctan
(

y√
a2 − y2

)
= x+ c1

Verification of solutions

arctan
(

y√
a2 − y2

)
= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1√

a2 − y2
dy =

∫
dx

− arctan
(

y√
a2 − y2

)
= c2 + x

Summary
The solution(s) found are the following

(1)− arctan
(

y√
a2 − y2

)
= c2 + x

Verification of solutions

− arctan
(

y√
a2 − y2

)
= c2 + x

Verified OK.

4.2.1 Maple step by step solution

Let’s solve
y′2 + y2 = a2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

a2−y2
= 1
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• Integrate both sides with respect to x∫
y′√

a2−y2
dx =

∫
1dx+ c1

• Evaluate integral

arctan
(

y√
a2−y2

)
= x+ c1

• Solve for y

y = tan (x+ c1)
√

a2

tan(x+c1)2+1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 60� �
dsolve(diff(y(x),x)^2=a^2-y(x)^2,y(x), singsol=all)� �

y(x) = −a
y(x) = a

y(x) = − tan (−x+ c1)
√

cos (−x+ c1)2 a2

y(x) = tan (−x+ c1)
√
cos (−x+ c1)2 a2
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3 Solution by Mathematica
Time used: 3.336 (sec). Leaf size: 111� �
DSolve[(y'[x])^2==a^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − a tan(x− c1)√
sec2(x− c1)

y(x) → a tan(x− c1)√
sec2(x− c1)

y(x) → − a tan(x+ c1)√
sec2(x+ c1)

y(x) → a tan(x+ c1)√
sec2(x+ c1)

y(x) → −a
y(x) → a

433



4.3 problem Problem 3.3
4.3.1 Solving as second order change of variable on y method 1 ode . 434
4.3.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 437
4.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 438
4.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 441

Internal problem ID [5877]
Internal file name [OUTPUT/5125_Sunday_June_05_2022_03_25_29_PM_26028336/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 2xy′ + y
(
x2 + 2

)
= 0

4.3.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2
x

q(x) = x2 + 2
x2

434



Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 + 2
x2 −

(
− 2

x

)′
2 −

(
− 2

x

)2
4

= x2 + 2
x2 −

( 2
x2

)
2 −

( 4
x2

)
4

= x2 + 2
x2 −

(
1
x2

)
− 1

x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 2

x
2

= x (5)

Hence (3) becomes

y = v(x)x (4)

Applying this change of variable to the original ode results in

x3(v(x) + v′′(x)) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

435



Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(cos (x) c1 + c2 sin (x))

Or
v(x) = cos (x) c1 + c2 sin (x)

Now that v(x) is known, then

y = v(x) z(x)
= (cos (x) c1 + c2 sin (x)) (z(x)) (7)
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But from (5)

z(x) = x

Hence (7) becomes

y = (cos (x) c1 + c2 sin (x))x

Summary
The solution(s) found are the following

(1)y = (cos (x) c1 + c2 sin (x))x
Verification of solutions

y = (cos (x) c1 + c2 sin (x))x

Verified OK.

4.3.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − 2xy′ + y
(
x2 + 2

)
= 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
2

β = 1

n = −1
2

γ = 1
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Substituting all the above into (4) gives the solution as

y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

Summary
The solution(s) found are the following

(1)y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

Verification of solutions

y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

Verified OK.

4.3.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 2xy′ + y
(
x2 + 2

)
= 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 56: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = cos (x)x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)x) + c2(cos (x)x(tan (x)))
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Summary
The solution(s) found are the following

(1)y = cos (x) c1x+ sin (x) c2x
Verification of solutions

y = cos (x) c1x+ sin (x) c2x

Verified OK.

4.3.4 Maple step by step solution

Let’s solve
x2y′′ − 2xy′ + y(x2 + 2) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+2

)
y

x2 + 2y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2y′
x
+
(
x2+2

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 2
x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − 2xy′ + y(x2 + 2) = 0
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• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
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ak+2 = − ak
(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+1
)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(k+1) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=0,y(x), singsol=all)� �

y(x) = x(c1 sin (x) + cos (x) c2)
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3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 33� �
DSolve[x^2*y''[x]-2*x*y'[x]+(x^2+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−ixx− 1

2ic2e
ixx
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4.4 problem Problem 3.4
4.4.1 Solving as second order integrable as is ode . . . . . . . . . . . 445
4.4.2 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
4.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 448
4.4.4 Solving as exact linear second order ode ode . . . . . . . . . . . 454
4.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 456

Internal problem ID [5878]
Internal file name [OUTPUT/5126_Sunday_June_05_2022_03_25_30_PM_56756824/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second
order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2y′
x

− 2y
(1 + x)2

= 0

4.4.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
x(1 + x)2 y′′ + 2y′(1 + x)2 − 2xy

)
dx = 0(

−x2 + 1
)
y +

(
x3 + 2x2 + x

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = − x− 1
x (1 + x)

q(x) = c1

x (1 + x)2

Hence the ode is

y′ − (x− 1) y
x (1 + x) = c1

x (1 + x)2

The integrating factor µ is

µ = e
∫
− x−1

x(1+x)dx

= e−2 ln(1+x)+ln(x)

Which simplifies to

µ = x

(1 + x)2

The ode becomes
d
dx(µy) = (µ)

(
c1

x (1 + x)2
)

d
dx

(
xy

(1 + x)2
)

=
(

x

(1 + x)2
)(

c1

x (1 + x)2
)

d
(

xy

(1 + x)2
)

=
(

c1

(1 + x)4
)

dx

Integrating gives
xy

(1 + x)2
=
∫

c1

(1 + x)4
dx

xy

(1 + x)2
= − c1

3 (1 + x)3
+ c2

Dividing both sides by the integrating factor µ = x
(1+x)2 results in

y = − c1
3x (1 + x) +

c2(1 + x)2

x

Summary
The solution(s) found are the following

(1)y = − c1
3x (1 + x) +

c2(1 + x)2

x
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Verification of solutions

y = − c1
3x (1 + x) +

c2(1 + x)2

x

Verified OK.

4.4.2 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
x(1 + x)2 y′′ + 2y′(1 + x)2 − 2xy = 0

Integrating both sides of the ODE w.r.t x gives∫ (
x(1 + x)2 y′′ + 2y′(1 + x)2 − 2xy

)
dx = 0(

−x2 + 1
)
y +

(
x3 + 2x2 + x

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x− 1
x (1 + x)

q(x) = c1

x (1 + x)2

Hence the ode is

y′ − (x− 1) y
x (1 + x) = c1

x (1 + x)2

The integrating factor µ is

µ = e
∫
− x−1

x(1+x)dx

= e−2 ln(1+x)+ln(x)

Which simplifies to

µ = x

(1 + x)2
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The ode becomes
d
dx(µy) = (µ)

(
c1

x (1 + x)2
)

d
dx

(
xy

(1 + x)2
)

=
(

x

(1 + x)2
)(

c1

x (1 + x)2
)

d
(

xy

(1 + x)2
)

=
(

c1

(1 + x)4
)

dx

Integrating gives
xy

(1 + x)2
=
∫

c1

(1 + x)4
dx

xy

(1 + x)2
= − c1

3 (1 + x)3
+ c2

Dividing both sides by the integrating factor µ = x
(1+x)2 results in

y = − c1
3x (1 + x) +

c2(1 + x)2

x

Summary
The solution(s) found are the following

(1)y = − c1
3x (1 + x) +

c2(1 + x)2

x

Verification of solutions

y = − c1
3x (1 + x) +

c2(1 + x)2

x

Verified OK.

4.4.3 Solving using Kovacic algorithm

Writing the ode as

x(1 + x)2 y′′ + 2y′(1 + x)2 − 2xy = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x(1 + x)2

B = 2(1 + x)2 (3)
C = −2x
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
(1 + x)2

(6)

Comparing the above to (5) shows that

s = 2
t = (1 + x)2

Therefore eq. (4) becomes

z′′(x) =
(

2
(1 + x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 58: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (1 + x)2. There is a pole at x = −1 of order 2. Since there is no odd order
pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one
are met. Since there is a pole of order 2 then necessary conditions for case two are
met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(1 + x)2

For the pole at x = −1 let b be the coefficient of 1
(1+x)2 in the partial fractions decom-
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position of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 2

(1 + x)2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
(1 + x)2

pole c location pole order [
√
r]c α+

c α−
c

−1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
1 + x

+ (−) (0)

= − 1
1 + x

= − 1
1 + x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
1 + x

)
(0) +

((
1

(1 + x)2
)
+
(
− 1
1 + x

)2

−
(

2
(1 + x)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

1+x
dx

= 1
1 + x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2(1+x)2

x(1+x)2
dx

= z1e
− ln(x)

= z1

(
1
x

)

Which simplifies to

y1 =
1

x2 + x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2(1+x)2

x(1+x)2
dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
(1 + x)3

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x2 + x

)
+ c2

(
1

x2 + x

(
(1 + x)3

3

))

Summary
The solution(s) found are the following

(1)y = c1
x2 + x

+ c2(1 + x)2

3x
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Verification of solutions

y = c1
x2 + x

+ c2(1 + x)2

3x

Verified OK.

4.4.4 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x(1 + x)2

q(x) = 2(1 + x)2

r(x) = −2x
s(x) = 0

Hence

p′′(x) = 4 + 6x
q′(x) = 4x+ 4

Therefore (1) becomes

4 + 6x− (4x+ 4) + (−2x) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

x(1 + x)2 y′ +
(
(1 + x)2 − 2x(1 + x)

)
y = c1
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We now have a first order ode to solve which is

x(1 + x)2 y′ +
(
(1 + x)2 − 2x(1 + x)

)
y = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x− 1
x (1 + x)

q(x) = c1

x (1 + x)2

Hence the ode is

y′ − (x− 1) y
x (1 + x) = c1

x (1 + x)2

The integrating factor µ is

µ = e
∫
− x−1

x(1+x)dx

= e−2 ln(1+x)+ln(x)

Which simplifies to

µ = x

(1 + x)2

The ode becomes

d
dx(µy) = (µ)

(
c1

x (1 + x)2
)

d
dx

(
xy

(1 + x)2
)

=
(

x

(1 + x)2
)(

c1

x (1 + x)2
)

d
(

xy

(1 + x)2
)

=
(

c1

(1 + x)4
)

dx

Integrating gives

xy

(1 + x)2
=
∫

c1

(1 + x)4
dx

xy

(1 + x)2
= − c1

3 (1 + x)3
+ c2
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Dividing both sides by the integrating factor µ = x
(1+x)2 results in

y = − c1
3x (1 + x) +

c2(1 + x)2

x

Summary
The solution(s) found are the following

(1)y = − c1
3x (1 + x) +

c2(1 + x)2

x

Verification of solutions

y = − c1
3x (1 + x) +

c2(1 + x)2

x

Verified OK.

4.4.5 Maple step by step solution

Let’s solve
x(1 + x)2 y′′ + 2y′(1 + x)2 − 2xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −2y′

x
+ 2y

(1+x)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
− 2y

(1+x)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = − 2

(1+x)2

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (1 + x)2 · P3(x) is analytic at x = −1
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(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= −2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x(1 + x)2 y′′ + 2y′(1 + x)2 − 2xy = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − u2)
(

d2

du2y(u)
)
+ 2u2( d

du
y(u)

)
+ (−2u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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−a0(1 + r) (−2 + r)ur +
(

∞∑
k=1

(−ak(k + r + 1) (k + r − 2) + ak−1(k + r + 1) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 2}

• Each term in the series must be 0, giving the recursion relation
−(k + r + 1) (k + r − 2) (ak − ak−1) = 0

• Shift index using k− >k + 1
−(k + r + 2) (k − 1 + r) (ak+1 − ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

• Recursion relation for r = −1
ak+1 = ak

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = ak

]
• Revert the change of variables u = 1 + x[

y =
∞∑
k=0

ak(1 + x)k−1 , ak+1 = ak

]
• Recursion relation for r = 2

ak+1 = ak

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

]
• Revert the change of variables u = 1 + x[

y =
∞∑
k=0

ak(1 + x)k+2 , ak+1 = ak

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(1 + x)k−1
)
+
(

∞∑
k=0

bk(1 + x)k+2
)
, ak+1 = ak, bk+1 = bk

]

458



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)+2/x*diff(y(x),x)-2/(1+x)^2*y(x)=0,y(x), singsol=all)� �

y(x) = (x3 + 3x2 + 3x) c2 + c1
x (x+ 1)

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 34� �
DSolve[y''[x]+2/x*y'[x]-2/(1+x)^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x(x2 + 3x+ 3) + 3c1
3x(x+ 1)
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4.5 problem Problem 3.6
4.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . 460
4.5.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 466

Internal problem ID [5879]
Internal file name [OUTPUT/5127_Sunday_June_05_2022_03_25_32_PM_35783344/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
y2x2 + 1

)
y +

(
y2x2 − 1

)
xy′ = 0

4.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (y2x2 + 1) y
(y2x2 − 1)x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(y2x2 + 1) y(b3 − a2)

(y2x2 − 1)x − (y2x2 + 1)2 y2a3
(y2x2 − 1)2 x2

−
(
− 2y3
y2x2 − 1 + 2(y2x2 + 1) y3

(y2x2 − 1)2
+ (y2x2 + 1) y

(y2x2 − 1)x2

)
(xa2 + ya3 + a1)

−
(
− 2y2x
y2x2 − 1 − y2x2 + 1

(y2x2 − 1)x + 2(y2x2 + 1) y2x
(y2x2 − 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 6x4y2b2 − 4x3y3a2 − 4x3y3b3 − 6x2y4a3 − 4x3y2b1 − 4x2y3a1 − xb1 + ya1

(y2x2 − 1)2 x2

= 0

Setting the numerator to zero gives

(6E)2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 6x4y2b2 − 4x3y3a2
− 4x3y3b3 − 6x2y4a3 − 4x3y2b1 − 4x2y3a1 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v41v62 + 2b2v61v42 − a1v
4
1v

5
2 + b1v

5
1v

4
2 − 4a2v31v32 − 6a3v21v42

− 6b2v41v22 − 4b3v31v32 − 4a1v21v32 − 4b1v31v22 + a1v2 − b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v61v42 + b1v
5
1v

4
2 − 2a3v41v62 − a1v

4
1v

5
2 − 6b2v41v22 + (−4a2 − 4b3) v31v32

− 4b1v31v22 − 6a3v21v42 − 4a1v21v32 − b1v1 + a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−4a1 = 0
−a1 = 0
−6a3 = 0
−2a3 = 0
−4b1 = 0
−b1 = 0
−6b2 = 0
2b2 = 0

−4a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− (y2x2 + 1) y
(y2x2 − 1)x

)
(−x)

= − 2y
y2x2 − 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2y
y2x2−1

dy

Which results in

S = −y2x2

4 + ln (y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (y2x2 + 1) y
(y2x2 − 1)x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2x

2

Sy = −y x2

2 + 1
2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2x2

4 + ln (y)
2 = ln (x)

2 + c1

Which simplifies to

−y2x2

4 + ln (y)
2 = ln (x)

2 + c1

Which gives

y = e−
LambertW

(
−x4e4c1

)
2 +2c1x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
y2x2+1

)
y

(y2x2−1)x
dS
dR

= 1
2R

R = x

S = −y2x2

4 + ln (y)
2

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
−x4e4c1

)
2 +2c1x
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Figure 58: Slope field plot

Verification of solutions

y = e−
LambertW

(
−x4e4c1

)
2 +2c1x

Verified OK.

4.5.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore ((
y2x2 − 1

)
x
)
dy =

(
−y
(
y2x2 + 1

))
dx(

y
(
y2x2 + 1

))
dx+

((
y2x2 − 1

)
x
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
y2x2 + 1

)
N(x, y) =

(
y2x2 − 1

)
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
y2x2 + 1

))
= 3y2x2 + 1

And
∂N

∂x
= ∂

∂x

((
y2x2 − 1

)
x
)

= 3y2x2 − 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y2x3 − x

((
3y2x2 + 1

)
−
(
3y2x2 − 1

))
= 2

y2x3 − x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (y2x2 + 1)
((
3y2x2 − 1

)
−
(
3y2x2 + 1

))
= − 2

y (y2x2 + 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (3y2x2 − 1)− (3y2x2 + 1)
x (y (y2x2 + 1))− y ((y2x2 − 1)x)

= − 1
yx

Replacing all powers of terms xy by t gives

R = −1
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 1
t

)
dt
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The result of integrating gives

µ = e− ln(t)

= 1
t

Now t is replaced back with xy giving

µ = 1
yx

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
yx

(
y
(
y2x2 + 1

))
= y2x2 + 1

x

And

N = µN

= 1
yx

((
y2x2 − 1

)
x
)

= y2x2 − 1
y

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y2x2 + 1
x

)
+
(
y2x2 − 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2x2 + 1

x
dx

(3)φ = y2x2

2 + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2x2−1
y

. Therefore equation (4) becomes

(5)y2x2 − 1
y

= y x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y2x2

2 + ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y2x2

2 + ln (x)− ln (y)
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The solution becomes

y = e−
LambertW

(
−e−2c1x4

)
2 −c1x

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
−e−2c1x4

)
2 −c1x

Figure 59: Slope field plot

Verification of solutions

y = e−
LambertW

(
−e−2c1x4

)
2 −c1x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 33� �
dsolve((x^2*y(x)^2+1)*y(x)+(x^2*y(x)^2-1)*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−2c1x√
− x4e−4c1

LambertW
(
−x4e−4c1

)
3 Solution by Mathematica
Time used: 6.032 (sec). Leaf size: 60� �
DSolve[(x^2*y[x]^2+1)*y[x]+(x^2*y[x]^2-1)*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
√
W (−e−2c1x4)

x

y(x) → i
√

W (−e−2c1x4)
x

y(x) → 0
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4.6 problem Problem 3.7
4.6.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 473

Internal problem ID [5880]
Internal file name [OUTPUT/5128_Sunday_June_05_2022_03_25_35_PM_88074136/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

2x3y2 − y +
(
2y3x2 − x

)
y′ = 0

4.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2y3x2 − x
)
dy =

(
−2y2x3 + y

)
dx(

2y2x3 − y
)
dx+

(
2y3x2 − x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y2x3 − y

N(x, y) = 2y3x2 − x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y2x3 − y

)
= 4y x3 − 1

And
∂N

∂x
= ∂

∂x

(
2y3x2 − x

)
= 4x y3 − 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2y3x2 − x

((
4y x3 − 1

)
−
(
4x y3 − 1

))
= 4y x2 − 4y3

2x y3 − 1
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2y2x3 − y

((
4x y3 − 1

)
−
(
4y x3 − 1

))
= −4x3 + 4y2x

2y x3 − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (4x y3 − 1)− (4y x3 − 1)
x (2y2x3 − y)− y (2y3x2 − x)

= − 2
yx

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
2y2x3 − y

)
= 2y x3 − 1

y x2

And

N = µN

= 1
y2x2

(
2y3x2 − x

)
= 2x y3 − 1

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

2y x3 − 1
y x2

)
+
(
2x y3 − 1

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2y x3 − 1
y x2 dx

(3)φ = y x3 + 1
xy

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y
− y x3 + 1

x y2
+ f ′(y)

= − 1
y2x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x y3−1
x y2

. Therefore equation (4) becomes

(5)2x y3 − 1
x y2

= − 1
y2x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y x3 + 1
xy

+ y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y x3 + 1

xy
+ y2

Summary
The solution(s) found are the following

(1)yx3 + 1
xy

+ y2 = c1
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Figure 60: Slope field plot

Verification of solutions

yx3 + 1
xy

+ y2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, y^2*x/(2*x*y^3-1)], [0, (x^4*y^2+x^2*y^4+x*y)/x/(2*x*y^3-1)]� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 361� �
dsolve((2*x^3*y(x)^2-y(x))+(2*x^2*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

= −
12 1

3

(
−
((

−9 +
√
12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81

)
x2
) 2

3 + x212 1
3 (x2 − c1)

)
6
((

−9 +
√

12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81
)
x2
) 1

3
x

y(x) =

−
2 2

33 1
3

((
1 + i

√
3
) ((

−9 +
√

12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81
)
x2
) 2

3 + 2 2
3x2(x2 − c1)

(
i3 5

6 − 3 1
3

))
12
((

−9 +
√

12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81
)
x2
) 1

3
x

y(x)

=
2 2

33 1
3

((
i
√
3− 1

) ((
−9 +

√
12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81

)
x2
) 2

3 + 2 2
3x2(x2 − c1)

(
i3 5

6 + 3 1
3

))
12
((

−9 +
√
12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81

)
x2
) 1

3
x
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3 Solution by Mathematica
Time used: 44.412 (sec). Leaf size: 358� �
DSolve[(2*x^3*y[x]^2-y[x])+(2*x^2*y[x]^3-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
2(−x3 + c1x)

3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

+
3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

3 3
√
2x

y(x) →
(
1 + i

√
3
)
(x3 − c1x)

22/3 3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

−
(
1− i

√
3
) 3
√
−27x2 +

√
729x4 + 108x3 (x3 − c1x) 3

6 3
√
2x

y(x) →
(
1− i

√
3
)
(x3 − c1x)

22/3 3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

−
(
1 + i

√
3
) 3
√

−27x2 +
√
729x4 + 108x3 (x3 − c1x) 3

6 3
√
2x
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4.7 problem Problem 3.8
4.7.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 482

Internal problem ID [5881]
Internal file name [OUTPUT/5129_Sunday_June_05_2022_03_25_37_PM_22330115/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`]]

1
y
+ sec

(y
x

)
− xy′

y2
= 0

4.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)
1

u (x)x + sec (u(x))− u′(x)x+ u(x)
xu (x)2

= 0

Integrating both sides gives ∫ 1
u2 sec (u)du =

∫
dx∫ u(x) 1

_a2 sec (_a)d_a = c2 + x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form∫ y

x 1
_a2 sec (_a)d_a = c2 + x∫ y

x cos (_a)
_a2 d_a = c2 + x
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Summary
The solution(s) found are the following

(1)
∫ y

x cos (_a)
_a2 d_a = c2 + x

Figure 61: Slope field plot

Verification of solutions ∫ y
x cos (_a)

_a2 d_a = c2 + x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 20� �
dsolve((1/y(x)+sec(y(x)/x))-x/y(x)^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = RootOf (_Z Si (_Z) + _Zc1 + _Zx+ cos (_Z))x

3 Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 32� �
DSolve[(1/y[x]+Sec[y[x]/x])-x/y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−Si
(
y(x)
x

)
−

x cos
(

y(x)
x

)
y(x) = x+ c1, y(x)
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4.8 problem Problem 3.11
4.8.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 485
4.8.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 489
4.8.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 493

Internal problem ID [5882]
Internal file name [OUTPUT/5130_Sunday_June_05_2022_03_25_39_PM_60515970/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

φ′ − φ2

2 − φ cot (θ) = 0

4.8.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

φ′ = φ2

2 + φ cot (θ)

φ′ = ω(θ, φ)

The condition of Lie symmetry is the linearized PDE given by

ηθ + ω(ηφ − ξθ)− ω2ξφ − ωθξ − ωφη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 60: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(θ, φ) = 0

η(θ, φ) = φ2

sin (θ) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (θ, φ) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dθ

ξ
= dφ

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂θ

+ η ∂
∂φ

)
S(θ, φ) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = θ

S is found from

S =
∫ 1

η
dy

=
∫ 1

φ2

sin(θ)

dy

Which results in

S = −sin (θ)
φ

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sθ + ω(θ, φ)Sφ

Rθ + ω(θ, φ)Rφ
(2)

Where in the above Rθ, Rφ, Sθ, Sφ are all partial derivatives and ω(θ, φ) is the right
hand side of the original ode given by

ω(θ, φ) = φ2

2 + φ cot (θ)

Evaluating all the partial derivatives gives

Rθ = 1
Rφ = 0

Sθ = −cos (θ)
φ

Sφ = sin (θ)
φ2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (θ)

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for θ, φ
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −cos (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to θ, φ coordinates. This
results in

−sin (θ)
φ

= −cos (θ)
2 + c1

Which simplifies to

−sin (θ)
φ

= −cos (θ)
2 + c1

Which gives

φ = 2 sin (θ)
cos (θ)− 2c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in θ, φ coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dφ
dθ

= φ2

2 + φ cot (θ) dS
dR

= sin(R)
2

R = θ

S = −sin (θ)
φ
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Summary
The solution(s) found are the following

(1)φ = 2 sin (θ)
cos (θ)− 2c1

Figure 62: Slope field plot

Verification of solutions

φ = 2 sin (θ)
cos (θ)− 2c1

Verified OK.

4.8.2 Solving as bernoulli ode

In canonical form, the ODE is

φ′ = F (θ, φ)

= φ2

2 + φ cot (θ)

This is a Bernoulli ODE.
φ′ = cot (θ)φ+ 1

2φ
2 (1)
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The standard Bernoulli ODE has the form

φ′ = f0(θ)φ+ f1(θ)φn (2)

The first step is to divide the above equation by φn which gives

φ′

φn
= f0(θ)φ1−n + f1(θ) (3)

The next step is use the substitution r = φ1−n in equation (3) which generates a new
ODE in r(θ) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution φ(θ) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(θ) = cot (θ)

f1(θ) =
1
2

n = 2

Dividing both sides of ODE (1) by φn = φ2 gives

φ′ 1
φ2 = cot (θ)

φ
+ 1

2 (4)

Let

r = φ1−n

= 1
φ

(5)

Taking derivative of equation (5) w.r.t θ gives

r′ = − 1
φ2φ

′ (6)

Substituting equations (5) and (6) into equation (4) gives

−r′(θ) = cot (θ) r(θ) + 1
2

r′ = − cot (θ) r − 1
2 (7)

The above now is a linear ODE in r(θ) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

r′(θ) + p(θ)r(θ) = q(θ)

Where here

p(θ) = cot (θ)

q(θ) = −1
2

Hence the ode is

r′(θ) + cot (θ) r(θ) = −1
2

The integrating factor µ is

µ = e
∫
cot(θ)dθ

= sin (θ)

The ode becomes

d
dθ (µr) = (µ)

(
−1
2

)
d
dθ (sin (θ) r) = (sin (θ))

(
−1
2

)
d(sin (θ) r) =

(
−sin (θ)

2

)
dθ

Integrating gives

sin (θ) r =
∫

−sin (θ)
2 dθ

sin (θ) r = cos (θ)
2 + c1

Dividing both sides by the integrating factor µ = sin (θ) results in

r(θ) = csc (θ) cos (θ)
2 + c1 csc (θ)

which simplifies to

r(θ) = cot (θ)
2 + c1 csc (θ)
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Replacing r in the above by 1
φ
using equation (5) gives the final solution.

1
φ
= cot (θ)

2 + c1 csc (θ)

Or

φ = 1
cot(θ)

2 + c1 csc (θ)

Which is simplified to
φ = 2 sin (θ)

cos (θ) + 2c1
Summary
The solution(s) found are the following

(1)φ = 2 sin (θ)
cos (θ) + 2c1

Figure 63: Slope field plot

Verification of solutions

φ = 2 sin (θ)
cos (θ) + 2c1

Verified OK.
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4.8.3 Solving as riccati ode

In canonical form the ODE is

φ′ = F (θ, φ)

= φ2

2 + φ cot (θ)

This is a Riccati ODE. Comparing the ODE to solve

φ′ = φ2

2 + φ cot (θ)

With Riccati ODE standard form

φ′ = f0(θ) + f1(θ)φ+ f2(θ)φ2

Shows that f0(θ) = 0, f1(θ) = cot (θ) and f2(θ) = 1
2 . Let

φ = −u′

f2u

= −u′

u
2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(θ)− (f ′

2 + f1f2)u′(θ) + f 2
2 f0u(θ) = 0 (2)

But

f ′
2 = 0

f1f2 =
cot (θ)

2
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(θ)
2 − cot (θ)u′(θ)

2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(θ) = c1 + cos (θ) c2
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The above shows that
u′(θ) = − sin (θ) c2

Using the above in (1) gives the solution

φ = 2 sin (θ) c2
c1 + cos (θ) c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

φ = 2 sin (θ)
c3 + cos (θ)

Summary
The solution(s) found are the following

(1)φ = 2 sin (θ)
c3 + cos (θ)

Figure 64: Slope field plot
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Verification of solutions

φ = 2 sin (θ)
c3 + cos (θ)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(phi(theta),theta)-1/2*phi(theta)^2-phi(theta)*cot(theta)=0,phi(theta), singsol=all)� �

φ(θ) = 2 sin (θ)
cos (θ) + 2c1

3 Solution by Mathematica
Time used: 0.3 (sec). Leaf size: 23� �
DSolve[\[Phi]'[\[Theta]]-1/2*\[Phi][\[Theta]]^2-\[Phi][\[Theta]]*Cot[\[Theta]]==0,\[Phi][\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

φ(θ) → 2 sin(θ)
cos(θ) + 2c1

φ(θ) → 0
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4.9 problem Problem 3.12
4.9.1 Solving as second order ode missing y ode . . . . . . . . . . . . 496
4.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 497

Internal problem ID [5883]
Internal file name [OUTPUT/5131_Sunday_June_05_2022_03_25_41_PM_45774792/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

u′′ − cot (θ)u′ = 0

4.9.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable u. Let

p(θ) = u′

Then

p′(θ) = u′′

Hence the ode becomes

p′(θ)− cot (θ) p(θ) = 0

Which is now solve for p(θ) as first order ode. In canonical form the ODE is

p′ = F (θ, p)
= f(θ)g(p)
= cot (θ) p
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Where f(θ) = cot (θ) and g(p) = p. Integrating both sides gives

1
p
dp = cot (θ) dθ∫ 1

p
dp =

∫
cot (θ) dθ

ln (p) = ln (sin (θ)) + c1

p = eln(sin(θ))+c1

= c1 sin (θ)

Since p = u′ then the new first order ode to solve is

u′ = c1 sin (θ)

Integrating both sides gives

u =
∫

c1 sin (θ) dθ

= −c1 cos (θ) + c2

Summary
The solution(s) found are the following

(1)u = −c1 cos (θ) + c2

Verification of solutions

u = −c1 cos (θ) + c2

Verified OK.

4.9.2 Maple step by step solution

Let’s solve
u′′ − cot (θ)u′ = 0

• Highest derivative means the order of the ODE is 2
u′′

• Make substitution v = u′ to reduce order of ODE
v′(θ)− cot (θ) v(θ) = 0

• Separate variables
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v′(θ)
v(θ) = cot (θ)

• Integrate both sides with respect to θ∫ v′(θ)
v(θ) dθ =

∫
cot (θ) dθ + c1

• Evaluate integral
ln (v(θ)) = ln (sin (θ)) + c1

• Solve for v(θ)
v(θ) = ec1 sin (θ)

• Solve 1st ODE for v(θ)
v(θ) = ec1 sin (θ)

• Make substitution v = u′

u′ = ec1 sin (θ)
• Integrate both sides to solve for u∫

u′dθ =
∫
ec1 sin (θ) dθ + c2

• Compute integrals
u = −ec1 cos (θ) + c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(u(theta),theta$2)-cot(theta)*diff(u(theta),theta)=0,u(theta), singsol=all)� �

u(θ) = c1 + cos (θ) c2

3 Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 13� �
DSolve[u''[\[Theta]]-Cot[\[Theta]]*u'[\[Theta]]==0,u[\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

u(θ) → c2 cos(θ) + c1
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4.10 problem Problem 3.14
4.10.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 500

Internal problem ID [5884]
Internal file name [OUTPUT/5132_Sunday_June_05_2022_03_25_43_PM_27953378/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)]`], _Riccati]

(
φ′ − φ2

2

)
sin (θ)2 − φ cos (θ) sin (θ) = cos (2θ)

2 + 1

4.10.1 Solving as riccati ode

In canonical form the ODE is

φ′ = F (θ, φ)

= φ2 sin (θ)2 + 2φ cos (θ) sin (θ) + cos (2θ) + 2
2 sin (θ)2

This is a Riccati ODE. Comparing the ODE to solve

φ′ = φ2

2 + φ cos (θ)
sin (θ) + cos (θ)2

sin (θ)2
+ 1

2 sin (θ)2

With Riccati ODE standard form

φ′ = f0(θ) + f1(θ)φ+ f2(θ)φ2

500



Shows that f0(θ) = 2+cos(2θ)
2 sin(θ)2 , f1(θ) = cos(θ)

sin(θ) and f2(θ) = 1
2 . Let

φ = −u′

f2u

= −u′

u
2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(θ)− (f ′

2 + f1f2)u′(θ) + f 2
2 f0u(θ) = 0 (2)

But

f ′
2 = 0

f1f2 =
cos (θ)
2 sin (θ)

f 2
2 f0 =

2 + cos (2θ)
8 sin (θ)2

Substituting the above terms back in equation (2) gives

u′′(θ)
2 − cos (θ)u′(θ)

2 sin (θ) + (2 + cos (2θ))u(θ)
8 sin (θ)2

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(θ) =
√

sin (θ)
(
c1(sin (θ) + i cos (θ))

i
2 + c2(sin (θ) + i cos (θ))−

i
2

)
The above shows that

u′(θ)

= (− sin (θ) + cos (θ)) c2(sin (θ) + i cos (θ))−
i
2 + (cos (θ) + sin (θ)) c1(sin (θ) + i cos (θ))

i
2

2
√
sin (θ)

Using the above in (1) gives the solution

φ =

−(− sin (θ) + cos (θ)) c2(sin (θ) + i cos (θ))−
i
2 + (cos (θ) + sin (θ)) c1(sin (θ) + i cos (θ))

i
2

sin (θ)
(
c1 (sin (θ) + i cos (θ))

i
2 + c2 (sin (θ) + i cos (θ))−

i
2

)
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

φ = (− cot (θ) + 1) (sin (θ) + i cos (θ))−
i
2 − c3(sin (θ) + i cos (θ))

i
2 (cot (θ) + 1)

c3 (sin (θ) + i cos (θ))
i
2 + (sin (θ) + i cos (θ))−

i
2

Summary
The solution(s) found are the following

(1)φ = (− cot (θ) + 1) (sin (θ) + i cos (θ))−
i
2 − c3(sin (θ) + i cos (θ))

i
2 (cot (θ) + 1)

c3 (sin (θ) + i cos (θ))
i
2 + (sin (θ) + i cos (θ))−

i
2

Figure 65: Slope field plot

Verification of solutions

φ = (− cot (θ) + 1) (sin (θ) + i cos (θ))−
i
2 − c3(sin (θ) + i cos (θ))

i
2 (cot (θ) + 1)

c3 (sin (θ) + i cos (θ))
i
2 + (sin (θ) + i cos (θ))−

i
2

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = cos(x)*(diff(y(x), x))/sin(x)-(1/4)*(2*cos(x)^2+1)*y(x)/sin(x)^2, y(x)

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- Riccati to 2nd Order successful`� �

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
dsolve((diff(phi(theta),theta)-1/2*phi(theta)^2)*sin(theta)^2-phi(theta)*sin(theta)*cos(theta)=1/2*cos(2*theta)+1,phi(theta), singsol=all)� �

φ(θ) =
− sinh

(
θ
2

)
c1 − cosh

(
θ
2

)
cosh

(
θ
2

)
c1 + sinh

(
θ
2

) − cot (θ)
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3 Solution by Mathematica
Time used: 0.64 (sec). Leaf size: 36� �
DSolve[(\[Phi]'[\[Theta]]-1/2\[Phi][\[Theta]]^2)*Sin[\[Theta]]^2-\[Phi][\[Theta]]*Sin[\[Theta]]*Cos[\[Theta]]==1/2*Cos[2*\[Theta]]+1,\[Phi][\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

φ(θ) → − cot(θ)− 2eθ
eθ − 2c1

+ 1

φ(θ) → 1− cot(θ)
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4.11 problem Problem 3.18
Internal problem ID [5885]
Internal file name [OUTPUT/5133_Sunday_June_05_2022_03_25_46_PM_97727503/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.18.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_3rd_order , _missing_x], [_3rd_order , _missing_y], [

_3rd_order , _with_linear_symmetries], [_3rd_order , _reducible
, _mu_y2 ]]

Unable to solve or complete the solution.

Unable to parse ODE.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying 3rd order ODE linearizable_by_differentiation
differential order: 3; trying a linearization to 4th order
trying differential order: 3; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (1+_b(_a)^2)^(1/2)/(_b(_a)*a), _b(_a), HINT = [[1, 0]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0]� �
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3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 175� �
dsolve(a*diff(y(x),x$2)*diff(y(x),x$3)=sqrt(1+ diff(y(x),x$2)^2),y(x), singsol=all)� �
y(x) = −1

2ix
2 + c1x+ c2

y(x) = 1
2ix

2 + c1x+ c2

y(x)

=

(
2a2 + (x+ c1)2

)√
−a2 + c21 + 2c1x+ x2 − 3

(
a(x+ c1) ln

(
c1 + x+

√
(c1 + a+ x) (c1 − a+ x)

)
− 2c2x− 2c3

)
a

6a
y(x)

=

(
−2a2 − (x+ c1)2

)√
−a2 + c21 + 2c1x+ x2 + 3a

(
a(x+ c1) ln

(
c1 + x+

√
(c1 + a+ x) (c1 − a+ x)

)
+ 2c2x+ 2c3

)
6a

3 Solution by Mathematica
Time used: 11.484 (sec). Leaf size: 209� �
DSolve[a*y''[x]*y'''[x]==Sqrt[1+ y''[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

a2 (−1 + c12) + 2ac1x+ x2(a2(2 + c1
2) + 2ac1x+ x2)

6a
− 1

2a(x+ ac1) log
(√

a2 (−1 + c12) + 2ac1x+ x2 + ac1 + x
)
+ c3x+ c2

y(x) → −
√

a2 (−1 + c12) + 2ac1x+ x2(a2(2 + c1
2) + 2ac1x+ x2)

6a
+ 1

2a(x+ ac1) log
(√

a2 (−1 + c12) + 2ac1x+ x2 + ac1 + x
)
+ c3x+ c2
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4.12 problem Problem 3.19
Internal problem ID [5886]
Internal file name [OUTPUT/5134_Sunday_June_05_2022_03_25_49_PM_79468662/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.19.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

a2y′′′′ − y′′ = 0

The characteristic equation is
a2λ4 − λ2 = 0

The roots of the above equation are

λ1 = 0
λ2 = 0

λ3 =
1
a

λ4 = −1
a

Therefore the homogeneous solution is

yh(x) = c2x+ c1 + ex
a c3 + e−x

a c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = 1
y2 = x

y3 = ex
a

y4 = e−x
a
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Summary
The solution(s) found are the following

(1)y = c2x+ c1 + ex
a c3 + e−x

a c4

Verification of solutions

y = c2x+ c1 + ex
a c3 + e−x

a c4

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(a^2*diff(y(x),x$4)=diff(y(x),x$2),y(x), singsol=all)� �

y(x) = c1 + c2x+ c3e
x
a + c4e−

x
a

3 Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 38� �
DSolve[a^2*y''''[x]==y''[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a2e−
x
a

(
c1e

2x
a + c2

)
+ c4x+ c3
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4.13 problem Problem 3.20
4.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 509
4.13.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 511
4.13.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 512
4.13.4 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 514
4.13.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 515
4.13.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 519
4.13.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 523

Internal problem ID [5887]
Internal file name [OUTPUT/5135_Sunday_June_05_2022_03_25_50_PM_78809699/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

y exy + x exyy′ = 0

4.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y

x
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Where f(x) = − 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = −1

x
dx∫ 1

y
dy =

∫
−1
x
dx

ln (y) = − ln (x) + c1

y = e− ln(x)+c1

= c1
x

Summary
The solution(s) found are the following

(1)y = c1
x

Figure 66: Slope field plot

Verification of solutions

y = c1
x

Verified OK.
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4.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = 0

Hence the ode is

y′ + y

x
= 0

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dxµy = 0
d
dx(xy) = 0

Integrating gives

xy = c1

Dividing both sides by the integrating factor µ = x results in

y = c1
x

Summary
The solution(s) found are the following

(1)y = c1
x
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Figure 67: Slope field plot

Verification of solutions

y = c1
x

Verified OK.

4.13.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x ex2u(x) + x ex2u(x)(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u
x
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Where f(x) = − 2
x
and g(u) = u. Integrating both sides gives

1
u
du = −2

x
dx∫ 1

u
du =

∫
−2
x
dx

ln (u) = −2 ln (x) + c2

u = e−2 ln(x)+c2

= c2
x2

Therefore the solution y is

y = xu

= c2
x

Summary
The solution(s) found are the following

(1)y = c2
x

Figure 68: Slope field plot
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Verification of solutions

y = c2
x

Verified OK.

4.13.4 Solving as differentialType ode

Writing the ode as

y′ = −y

x
(1)

Which becomes

0 = (−x) dy + (−y) dx (2)

But the RHS is complete differential because

(−x) dy + (−y) dx = d(−xy)

Hence (2) becomes

0 = d(−xy)

Integrating both sides gives gives these solutions

y = c1
x

+ c1

Summary
The solution(s) found are the following

(1)y = c1
x
+ c1
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Figure 69: Slope field plot

Verification of solutions

y = c1
x
+ c1

Verified OK.

4.13.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 63: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy = c1

Which simplifies to

xy = c1

Which gives

y = c1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x

dS
dR

= 0

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = c1
x
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Figure 70: Slope field plot

Verification of solutions

y = c1
x

Verified OK.

4.13.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

521



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y)

The solution becomes

y = e−c1

x

Summary
The solution(s) found are the following

(1)y = e−c1

x

Figure 71: Slope field plot
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Verification of solutions

y = e−c1

x

Verified OK.

4.13.7 Maple step by step solution

Let’s solve
y exy + x exyy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(y exy + x exyy′) dx =

∫
0dx+ c1

• Evaluate integral
exy = c1

• Solve for y
y = ln(c1)

x

Maple trace

� �
`Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 9� �
dsolve(y(x)*exp(x*y(x))+x*exp(x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1
x
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3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 16� �
DSolve[y[x]*Exp[x*y[x]]+x*Exp[x*y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x

y(x) → 0
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4.14 problem Problem 3.21
4.14.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 525
4.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 529

Internal problem ID [5888]
Internal file name [OUTPUT/5136_Sunday_June_05_2022_03_25_52_PM_1355447/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

−2xy + ey +
(
y − x2 + x ey

)
y′ = −x

4.14.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y − x2 + x ey

)
dy = (−x+ 2xy − ey) dx

(−2xy + ey + x) dx+
(
y − x2 + x ey

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy + ey + x

N(x, y) = y − x2 + x ey

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy + ey + x)

= −2x+ ey

And
∂N

∂x
= ∂

∂x

(
y − x2 + x ey

)
= −2x+ ey
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2xy + ey + x dx

(3)φ = x ey −
(
y − 1

2

)
x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x ey − x2 + f ′(y)

= x(ey − x) + f ′(y)

But equation (2) says that ∂φ
∂y

= y − x2 + x ey. Therefore equation (4) becomes

(5)y − x2 + x ey = x(ey − x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x ey −
(
y − 1

2

)
x2 + y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x ey −
(
y − 1

2

)
x2 + y2

2

Summary
The solution(s) found are the following

(1)x ey −
(
y − 1

2

)
x2 + y2

2 = c1

Figure 72: Slope field plot

Verification of solutions

x ey −
(
y − 1

2

)
x2 + y2

2 = c1

Verified OK.
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4.14.2 Maple step by step solution

Let’s solve
−2xy + ey + (y − x2 + x ey) y′ = −x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−2x+ ey = −2x+ ey

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−2xy + ey + x) dx+ f1(y)

• Evaluate integral
F (x, y) = −y x2 + x ey + x2

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y − x2 + x ey = −x2 + x ey + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y

• Solve for f1(y)

f1(y) = y2

2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −y x2 + x ey + x2

2 + y2

2

• Substitute F (x, y) into the solution of the ODE

−y x2 + x ey + x2

2 + y2

2 = c1

• Solve for y
y = RootOf

(
2x2_Z− 2 e_Zx− _Z2 − x2 + 2c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve((x-2*x*y(x)+exp(y(x)))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

−x2y(x) + x ey(x) + x2

2 + y(x)2

2 + c1 = 0

3 Solution by Mathematica
Time used: 0.341 (sec). Leaf size: 35� �
DSolve[(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2(−y(x)) + x2

2 + xey(x) + y(x)2
2 = c1, y(x)

]
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4.15 problem Problem 3.22
4.15.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 531

Internal problem ID [5889]
Internal file name [OUTPUT/5137_Sunday_June_05_2022_03_25_54_PM_22967781/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′√
x
+
(
x+

√
x− 8

)
y

4x2 = 0

4.15.1 Solving using Kovacic algorithm

Writing the ode as

4y′′x 5
2 − 4x2y′ +

(
x

3
2 + x− 8

√
x
)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x 5
2

B = −4x2 (3)
C = x

3
2 + x− 8

√
x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 67: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 2

x2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x2

4x
5
2

dx

= z1e
√
x

= z1
(
e
√
x
)

Which simplifies to

y1 =
e
√
x

x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e

∫
−−4x2

4x
5
2

dx

(y1)2
dx

= y1

∫
e2

√
x

(y1)2
dx

= y1

(
x3

3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
e
√
x

x

)
+ c2

(
e
√
x

x

(
x3

3

))

Summary
The solution(s) found are the following

(1)y = c1e
√
x

x
+ c2x

2e
√
x

3
Verification of solutions

y = c1e
√
x

x
+ c2x

2e
√
x

3

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)-1/x^(1/2)*diff(y(x),x)+1/(4*x^2)*(x+x^(1/2)-8)*y(x)=0,y(x), singsol=all)� �

y(x) = e
√
x(c2x3 + c1)

x
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3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 30� �
DSolve[y''[x]-1/x^(1/2)*y'[x]+1/(4*x^2)*(x+x^(1/2)-8)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
√
x(c2x3 + 3c1)

3x
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4.16 problem Problem 3.23
4.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 538

Internal problem ID [5890]
Internal file name [OUTPUT/5138_Sunday_June_05_2022_03_25_56_PM_22904374/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

(
−x2 + 1

)
z′′ + (1− 3x) z′ + kz = 0

4.16.1 Maple step by step solution

Let’s solve
(−x2 + 1) z′′ + (1− 3x) z′ + kz = 0

• Highest derivative means the order of the ODE is 2
z′′

• Isolate 2nd derivative

z′′ = − (3x−1)z′
x2−1 + kz

x2−1

• Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

z′′ + (3x−1)z′
x2−1 − kz

x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 3x−1

x2−1 , P3(x) = − k
x2−1

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
z′′(x2 − 1) + (3x− 1) z′ − kz = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2 z(u)
)
+ (3u− 4)

(
d
du
z(u)

)
− kz(u) = 0

• Assume series solution for z(u)

z(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
z(u)

)
to series expansion form = 0..1

um ·
(

d
du
z(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
z(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2 z(u)
)

to series expansion form = 1..2

um ·
(

d2

du2 z(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2 z(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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−2a0r(1 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + r + 1) (k + 2 + r)− ak(−k2 − 2kr − r2 + k − 2k − 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + r + 1) (k + 2 + r)− (−k2 + (−2r − 2) k − r2 + k − 2r) ak = 0

• Recursion relation that defines series solution to ODE

ak+1 = −
(
−k2−2kr−r2+k−2k−2r

)
ak

2(k+r+1)(k+2+r)

• Recursion relation for r = −1

ak+1 = −
(
−k2+k+1

)
ak

2k(k+1)

• Solution for r = −1[
z(u) =

∞∑
k=0

aku
k−1, ak+1 = −

(
−k2+k+1

)
ak

2k(k+1)

]
• Revert the change of variables u = 1 + x[

z =
∞∑
k=0

ak(1 + x)k−1 , ak+1 = −
(
−k2+k+1

)
ak

2k(k+1)

]
• Recursion relation for r = 0

ak+1 = −
(
−k2+k−2k

)
ak

2(k+1)(k+2)

• Solution for r = 0[
z(u) =

∞∑
k=0

aku
k, ak+1 = −

(
−k2+k−2k

)
ak

2(k+1)(k+2)

]
• Revert the change of variables u = 1 + x[

z =
∞∑
k=0

ak(1 + x)k , ak+1 = −
(
−k2+k−2k

)
ak

2(k+1)(k+2)

]
• Combine solutions and rename parameters[

z =
(

∞∑
m=0

am(1 + x)m−1
)
+
(

∞∑
m=0

bm(1 + x)m
)
, am+1 = −

(
−m2+k+1

)
am

2m(m+1) , bm+1 = −
(
−m2+k−2m

)
bm

2(m+1)(m+2)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 99� �
dsolve((1-x^2)*diff(z(x),x$2)+(1-3*x)*diff(z(x),x)+k*z(x)=0,z(x), singsol=all)� �
z(x) = c1(x+ 1)−1−

√
k+1 hypergeom

([√
k + 1, 1 +

√
k + 1

]
,
[
1 + 2

√
k + 1

]
,

2
x+ 1

)
+c2(x+1)−1+

√
k+1 hypergeom

([
−
√
k + 1, 1−

√
k + 1

]
,
[
1−2

√
k + 1

]
,

2
x+ 1

)
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3 Solution by Mathematica
Time used: 0.407 (sec). Leaf size: 77� �
DSolve[(1-x^2)*z''[x]+(1-3*x)*z'[x]+k*z[x]==0,z[x],x,IncludeSingularSolutions -> True]� �

z(x) → c2G
2,0
2,2

1− x

2 |
−
√
k + 1,

√
k + 1

0, 0


+ c1Hypergeometric2F1

(
1−

√
k + 1,

√
k + 1 + 1, 1, 1− x

2

)
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4.17 problem Problem 3.24
4.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 543

Internal problem ID [5891]
Internal file name [OUTPUT/5139_Sunday_June_05_2022_03_25_59_PM_29405420/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

(
−x2 + 1

)
η′′ − (1 + x) η′ + (k + 1) η = 0

4.17.1 Maple step by step solution

Let’s solve
(−x2 + 1) η′′ + (−1− x) η′ + (k + 1) η = 0

• Highest derivative means the order of the ODE is 2
η′′

• Isolate 2nd derivative
η′′ = (k+1)η

x2−1 − η′

x−1

• Group terms with η on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
η′′ + η′

x−1 −
(k+1)η
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 1

x−1 , P3(x) = − k+1
x2−1

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
η′′(x− 1) (x2 − 1) + η′(x2 − 1)− (x− 1) (k + 1) η = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 4u2 + 4u)
(

d2

du2η(u)
)
+ (u2 − 2u)

(
d
du
η(u)

)
+ (−uk + 2k − u+ 2) η(u) = 0

• Assume series solution for η(u)

η(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · η(u) to series expansion form = 0..1

um · η(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · η(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
η(u)

)
to series expansion form = 1..2

um ·
(

d
du
η(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
η(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2η(u)
)

to series expansion form = 1..3
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um ·
(

d2

du2η(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2η(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(−1 + r)u−1+r + (4a1(1 + r) r + 2a0(−2r2 + k + r + 1))ur +
(

∞∑
k=1

(
4ak+1(k + 1 + r) (k + r) + 2ak(−2k2 − 4kr − 2r2 + k + k + r + 1)− ak−1

(
−(k − 1)2 − 2(k − 1) r − r2 + k + 1

))
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
4a1(1 + r) r + 2a0(−2r2 + k + r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
(−4ak + ak−1 + 4ak+1) k2 + ((−8ak + 2ak−1 + 8ak+1) r + 2ak − 2ak−1 + 4ak+1) k + (−4ak + ak−1 + 4ak+1) r2 + (2ak − 2ak−1 + 4ak+1) r + (2k + 2) ak − kak−1 = 0

• Shift index using k− >k + 1
(−4ak+1 + ak + 4ak+2) (k + 1)2 + ((−8ak+1 + 2ak + 8ak+2) r + 2ak+1 − 2ak + 4ak+2) (k + 1) + (−4ak+1 + ak + 4ak+2) r2 + (2ak+1 − 2ak + 4ak+2) r + (2k + 2) ak+1 − akk = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak+4k2ak+1−2krak+8krak+1−r2ak+4r2ak+1+akk−2kak+1+6kak+1+6rak+1+ak
4(k2+2kr+r2+3k+3r+2)

• Recursion relation for r = 0

ak+2 = −k2ak+4k2ak+1+akk−2kak+1+6kak+1+ak
4(k2+3k+2)

• Solution for r = 0[
η(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak+4k2ak+1+akk−2kak+1+6kak+1+ak

4(k2+3k+2) , 2a0(k + 1) = 0
]

• Revert the change of variables u = 1 + x[
η =

∞∑
k=0

ak(1 + x)k , ak+2 = −k2ak+4k2ak+1+akk−2kak+1+6kak+1+ak
4(k2+3k+2) , 2a0(k + 1) = 0

]
• Recursion relation for r = 1

ak+2 = −k2ak+4k2ak+1+akk−2kak+1−2kak+14kak+1+10ak+1
4(k2+5k+6)

• Solution for r = 1
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[
η(u) =

∞∑
k=0

aku
k+1, ak+2 = −k2ak+4k2ak+1+akk−2kak+1−2kak+14kak+1+10ak+1

4(k2+5k+6) , 2a0k + 8a1 = 0
]

• Revert the change of variables u = 1 + x[
η =

∞∑
k=0

ak(1 + x)k+1 , ak+2 = −k2ak+4k2ak+1+akk−2kak+1−2kak+14kak+1+10ak+1
4(k2+5k+6) , 2a0k + 8a1 = 0

]
• Combine solutions and rename parameters[

η =
(

∞∑
m=0

am(1 + x)m
)
+
(

∞∑
m=0

bm(1 + x)m+1
)
, am+2 = −m2am+4m2am+1+kam−2kam+1+6mam+1+am

4(m2+3m+2) , 2a0(k + 1) = 0, bm+2 = −m2bm+4m2bm+1+kbm−2kbm+1−2mbm+14mbm+1+10bm+1
4(m2+5m+6) , 2kb0 + 8b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 95� �
dsolve((1-x^2)*diff(eta(x),x$2)-(1+x)*diff(eta(x),x)+(k+1)*eta(x)=0,eta(x), singsol=all)� �
η(x) = c1(x+ 1)

√
k+1 hypergeom

([
−
√
k + 1, 1−

√
k + 1

]
,
[
1− 2

√
k + 1

]
,

2
x+ 1

)
+ c2(x+ 1)−

√
k+1 hypergeom

([√
k + 1, 1 +

√
k + 1

]
,
[
1 + 2

√
k + 1

]
,

2
x+ 1

)
3 Solution by Mathematica
Time used: 0.283 (sec). Leaf size: 77� �
DSolve[(1-x^2)*z''[x]-(1+x)*z'[x]+(k+1)*z[x]==0,z[x],x,IncludeSingularSolutions -> True]� �

z(x) → c2G
2,0
2,2

1− x

2 |
1−

√
k + 1,

√
k + 1 + 1

0, 0


+ c1Hypergeometric2F1

(
−
√
k + 1,

√
k + 1, 1, 1− x

2

)
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4.18 problem Problem 3.31
4.18.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 548
4.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 550
4.18.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 554
4.18.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 558

Internal problem ID [5892]
Internal file name [OUTPUT/5140_Sunday_June_05_2022_03_26_03_PM_90099132/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y2 − 2xyy′ = −x2

4.18.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)2 x2 − 2x2u(x) (u′(x)x+ u(x)) = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 − 1
2ux
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Where f(x) = − 1
2x and g(u) = u2−1

u
. Integrating both sides gives

1
u2−1
u

du = − 1
2x dx

∫ 1
u2−1
u

du =
∫

− 1
2x dx

ln (u− 1)
2 + ln (u+ 1)

2 = − ln (x)
2 + c2

The above can be written as(
1
2

)
(ln (u− 1) + ln (u+ 1)) = − ln (x)

2 + 2c2

ln (u− 1) + ln (u+ 1) = (2)
(
− ln (x)

2 + 2c2
)

= − ln (x) + 4c2

Raising both side to exponential gives

eln(u−1)+ln(u+1) = e− ln(x)+2c2

Which simplifies to

u2 − 1 = 2c2
x

= c3
x

The solution is
u(x)2 − 1 = c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − 1 = c3
x

y2

x2 − 1 = c3
x

Summary
The solution(s) found are the following

(1)y2

x2 − 1 = c3
x
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Figure 73: Slope field plot

Verification of solutions

y2

x2 − 1 = c3
x

Verified OK.

4.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + y2

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 70: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + y2

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = x

2 + c1

Which simplifies to

y2

2x = x

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+y2

2xy
dS
dR

= 1
2

R = x

S = y2

2x

Summary
The solution(s) found are the following

(1)y2

2x = x

2 + c1
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Figure 74: Slope field plot

Verification of solutions

y2

2x = x

2 + c1

Verified OK.

4.18.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x2 + y2

2xy
This is a Bernoulli ODE.

y′ = 1
2xy +

x

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

554



The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) =
x

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x + x

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x + x

2
w′ = w

x
+ x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = x
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Hence the ode is

w′(x)− w(x)
x

= x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ) (x)

d
dx

(w
x

)
=
(
1
x

)
(x)

d
(w
x

)
= dx

Integrating gives

w

x
=
∫

dx
w

x
= x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x+ x2

which simplifies to

w(x) = x(x+ c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x(x+ c1)

Solving for y gives

y(x) =
√
x (x+ c1)

y(x) = −
√

x (x+ c1)
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Summary
The solution(s) found are the following

(1)y =
√

x (x+ c1)
(2)y = −

√
x (x+ c1)

Figure 75: Slope field plot

Verification of solutions

y =
√

x (x+ c1)

Verified OK.

y = −
√
x (x+ c1)

Verified OK.
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4.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2xy) dy =
(
−x2 − y2

)
dx(

x2 + y2
)
dx+(−2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2

N(x, y) = −2xy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 + y2

)
= 2y

And
∂N

∂x
= ∂

∂x
(−2xy)

= −2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

2yx((2y)− (−2y))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x2 + y2

)
= x2 + y2

x2
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And

N = µN

= 1
x2 (−2xy)

= −2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 + y2

x2

)
+
(
−2y

x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + y2

x2 dx

(3)φ = x− y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2y
x
. Therefore equation (4) becomes

(5)−2y
x

= −2y
x

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x− y2

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− y2

x

Summary
The solution(s) found are the following

(1)x− y2

x
= c1

Figure 76: Slope field plot

561



Verification of solutions

x− y2

x
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((x^2+y(x)^2)-2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
(x+ c1)x

y(x) = −
√
(x+ c1)x

3 Solution by Mathematica
Time used: 0.2 (sec). Leaf size: 38� �
DSolve[(x^2+y[x]^2)-2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x+ c1

y(x) →
√
x
√
x+ c1
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4.19 problem Problem 3.32
4.19.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 563
4.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 565
4.19.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 569
4.19.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 573

Internal problem ID [5893]
Internal file name [OUTPUT/5141_Sunday_June_05_2022_03_26_05_PM_40007959/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

−y2 + 2xyy′ = −x2

4.19.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)2 x2 + 2x2u(x) (u′(x)x+ u(x)) = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 1
2ux
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Where f(x) = − 1
2x and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = − 1
2x dx

∫ 1
u2+1
u

du =
∫

− 1
2x dx

ln (u2 + 1)
2 = − ln (x)

2 + c2

Raising both side to exponential gives
√
u2 + 1 = e−

ln(x)
2 +c2

Which simplifies to
√
u2 + 1 = c3√

x

Which simplifies to √
u (x)2 + 1 = c3ec2√

x

The solution is √
u (x)2 + 1 = c3ec2√

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3ec2√
x√

x2 + y2

x2 = c3ec2√
x

Summary
The solution(s) found are the following

(1)
√

x2 + y2

x2 = c3ec2√
x
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Figure 77: Slope field plot

Verification of solutions √
x2 + y2

x2 = c3ec2√
x

Verified OK.

4.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 72: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = −x

2 + c1

Which simplifies to

y2

2x = −x

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y2

2xy
dS
dR

= −1
2

R = x

S = y2

2x

Summary
The solution(s) found are the following

(1)y2

2x = −x

2 + c1

568



Figure 78: Slope field plot

Verification of solutions

y2

2x = −x

2 + c1

Verified OK.

4.19.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2

2xy
This is a Bernoulli ODE.

y′ = 1
2xy −

x

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) = −x

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x − x

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x − x

2
w′ = w

x
− x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = −x

570



Hence the ode is

w′(x)− w(x)
x

= −x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ) (−x)

d
dx

(w
x

)
=
(
1
x

)
(−x)

d
(w
x

)
= −1 dx

Integrating gives

w

x
=
∫

−1 dx
w

x
= −x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x− x2

which simplifies to

w(x) = x(−x+ c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x(−x+ c1)

Solving for y gives

y(x) =
√

x (−x+ c1)
y(x) = −

√
x (−x+ c1)
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Summary
The solution(s) found are the following

(1)y =
√

x (−x+ c1)
(2)y = −

√
x (−x+ c1)

Figure 79: Slope field plot

Verification of solutions

y =
√

x (−x+ c1)

Verified OK.

y = −
√

x (−x+ c1)

Verified OK.
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4.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
−x2 + y2

)
dx(

x2 − y2
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 − y2

N(x, y) = 2xy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 − y2

)
= −2y

And
∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2yx((−2y)− (2y))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x2 − y2

)
= x2 − y2

x2
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And

N = µN

= 1
x2 (2xy)

= 2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 − y2

x2

)
+
(
2y
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 − y2

x2 dx

(3)φ = x+ y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
x
. Therefore equation (4) becomes

(5)2y
x

= 2y
x

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x+ y2

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x+ y2

x

Summary
The solution(s) found are the following

(1)x+ y2

x
= c1

Figure 80: Slope field plot
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Verification of solutions

x+ y2

x
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve((x^2-y(x)^2)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
(−x+ c1)x

y(x) = −
√

(−x+ c1)x

3 Solution by Mathematica
Time used: 0.355 (sec). Leaf size: 37� �
DSolve[(x^2-y[x]^2)+2*x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x(x− c1)

y(x) →
√

−x(x− c1)
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4.20 problem Problem 3.33
4.20.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 578
4.20.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 580
4.20.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 585

Internal problem ID [5894]
Internal file name [OUTPUT/5142_Sunday_June_05_2022_03_26_08_PM_99395595/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactByInspection",
"homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

−y + xy′ − y2 = x2

4.20.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)x+ x(u′(x)x+ u(x))− u(x)2 x2 = x2

Integrating both sides gives ∫ 1
u2 + 1du = c2 + x

arctan (u) = c2 + x

Solving for u gives these solutions

u1 = tan (c2 + x)
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Therefore the solution y is

y = xu

= x tan (c2 + x)

Summary
The solution(s) found are the following

(1)y = x tan (c2 + x)

Figure 81: Slope field plot

Verification of solutions

y = x tan (c2 + x)

Verified OK.
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4.20.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x2 + y2 + y

)
dx(

−x2 − y2 − y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − y2 − y

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 − y2 − y

)
= −2y − 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2+y2

is an integrating factor.
Therefore by multiplying M = −y2 − x2 − y and N = x by this integrating factor the
ode becomes exact. The new M,N are

M = −y2 − x2 − y

x2 + y2

N = x

x2 + y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x

x2 + y2

)
dy =

(
−−x2 − y2 − y

x2 + y2

)
dx(

−x2 − y2 − y

x2 + y2

)
dx+

(
x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − y2 − y

x2 + y2

N(x, y) = x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − y2 − y

x2 + y2

)
= −x2 + y2

(x2 + y2)2

And
∂N

∂x
= ∂

∂x

(
x

x2 + y2

)
= −x2 + y2

(x2 + y2)2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − y2 − y

x2 + y2
dx

(3)φ = −x− arctan
(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
(

x2

y2
+ 1
) + f ′(y)

= x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
x2+y2

. Therefore equation (4) becomes

(5)x

x2 + y2
= x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x− arctan
(
x

y

)
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− arctan
(
x

y

)

The solution becomes
y = − x

tan (x+ c1)

Summary
The solution(s) found are the following

(1)y = − x

tan (x+ c1)

Figure 82: Slope field plot

Verification of solutions

y = − x

tan (x+ c1)

Verified OK.
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4.20.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + y2 + y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x+ y2

x
+ y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 1
x
and f2(x) = 1

x
. Let

y = −u′

f2u

= −u′

u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2

f1f2 =
1
x2

f 2
2 f0 =

1
x

Substituting the above terms back in equation (2) gives

u′′(x)
x

+ u(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = sin (x) c1 + c2 cos (x)
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The above shows that
u′(x) = cos (x) c1 − c2 sin (x)

Using the above in (1) gives the solution

y = −(cos (x) c1 − c2 sin (x))x
sin (x) c1 + c2 cos (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x(−c3 cos (x) + sin (x))
c3 sin (x) + cos (x)

Summary
The solution(s) found are the following

(1)y = x(−c3 cos (x) + sin (x))
c3 sin (x) + cos (x)

Figure 83: Slope field plot
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Verification of solutions

y = x(−c3 cos (x) + sin (x))
c3 sin (x) + cos (x)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(x*diff(y(x),x)-y(x)=(x^2+y(x)^2),y(x), singsol=all)� �

y(x) = tan (x+ c1)x

3 Solution by Mathematica
Time used: 0.18 (sec). Leaf size: 12� �
DSolve[x*y'[x]-y[x]==(x^2+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan(x+ c1)
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4.21 problem Problem 3.34
Internal problem ID [5895]
Internal file name [OUTPUT/5143_Sunday_June_05_2022_03_26_10_PM_22258225/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

−y + xy′ − x
√

x2 − y2 y′ = 0

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`[0, (x^2-y^2)^(1/2)/((x^2-y^2)^(1/2)-1)]� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x)-y(x)=x*sqrt(x^2-y(x)^2)*diff(y(x),x),y(x), singsol=all)� �

y(x)− arctan

 y(x)√
x2 − y (x)2

− c1 = 0

3 Solution by Mathematica
Time used: 0.51 (sec). Leaf size: 29� �
DSolve[x*y'[x]-y[x]==x*Sqrt[x^2-y[x]^2]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(√
x2 − y(x)2
y(x)

)
+ y(x) = c1, y(x)

]
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4.22 problem Problem 3.35
4.22.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 590
4.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 592
4.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 597

Internal problem ID [5896]
Internal file name [OUTPUT/5144_Sunday_June_05_2022_03_26_12_PM_72686177/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′y + y − xy′ = −x

4.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))u(x)x+ u(x)x− x(u′(x)x+ u(x)) = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
x (u− 1)
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Where f(x) = − 1
x
and g(u) = u2+1

u−1 . Integrating both sides gives

1
u2+1
u−1

du = −1
x
dx

∫ 1
u2+1
u−1

du =
∫

−1
x
dx

ln (u2 + 1)
2 − arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0
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Figure 84: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

4.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x+ y

−x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ y) (b3 − a2)

−x+ y
− (x+ y)2 a3

(−x+ y)2

−
(
− 1
−x+ y

− x+ y

(−x+ y)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ y

+ x+ y

(−x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 + x2b2 − x2b3 − 2xya2 + 2xya3 + 2xyb2 + 2xyb3 − y2a2 − y2a3 − y2b2 + y2b3 + 2xb1 − 2ya1
(x− y)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 − x2b2 + x2b3 + 2xya2 − 2xya3 − 2xyb2
− 2xyb3 + y2a2 + y2a3 + y2b2 − y2b3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 + 2a2v1v2 + a2v

2
2 − a3v

2
1 − 2a3v1v2 + a3v

2
2 − b2v

2
1

− 2b2v1v2 + b2v
2
2 + b3v

2
1 − 2b3v1v2 − b3v

2
2 + 2a1v2 − 2b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v21 + (2a2 − 2a3 − 2b2 − 2b3) v1v2
− 2b1v1 + (a2 + a3 + b2 − b3) v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0

−a2 − a3 − b2 + b3 = 0
a2 + a3 + b2 − b3 = 0

2a2 − 2a3 − 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x+ y

−x+ y

)
(x)

= −x2 − y2

x− y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2

x−y

dy

Which results in

S = ln (x2 + y2)
2 − arctan

(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x+ y

−x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ y

x2 + y2

Sy =
−x+ y

x2 + y2

595



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Which simplifies to
ln (x2 + y2)

2 − arctan
(y
x

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x+y
−x+y

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 − arctan

(y
x

)
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Summary
The solution(s) found are the following

(1)ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Figure 85: Slope field plot

Verification of solutions

ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Verified OK.

4.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x+ y) dy = (−y − x) dx
(x+ y) dx+(−x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

N(x, y) = −x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(x+ y)

= 1
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And
∂N

∂x
= ∂

∂x
(−x+ y)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2+y2

is an integrating factor.
Therefore by multiplying M = x + y and N = −x + y by this integrating factor the
ode becomes exact. The new M,N are

M = x+ y

x2 + y2

N = −x+ y

x2 + y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x+ y

x2 + y2

)
dy =

(
− x+ y

x2 + y2

)
dx(

x+ y

x2 + y2

)
dx+

(
−x+ y

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

x2 + y2

N(x, y) = −x+ y

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x+ y

x2 + y2

)
= x2 − 2xy − y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
−x+ y

x2 + y2

)
= x2 − 2xy − y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x+ y

x2 + y2
dx

(3)φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
− x

y2
(

x2

y2
+ 1
) + f ′(y)

= −x+ y

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+y
x2+y2

. Therefore equation (4) becomes

(5)−x+ y

x2 + y2
= −x+ y

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + y2)

2 + arctan
(
x

y

)
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Summary
The solution(s) found are the following

(1)ln (x2 + y2)
2 + arctan

(
x

y

)
= c1

Figure 86: Slope field plot

Verification of solutions

ln (x2 + y2)
2 + arctan

(
x

y

)
= c1

Verified OK.

602



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 24� �
dsolve(x+y(x)*diff(y(x),x)+y(x)-x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
−2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 36� �
DSolve[x+y[x]*y'[x]+y[x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 1

)
− arctan

(
y(x)
x

)
= − log(x) + c1, y(x)

]
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4.23 problem Problem 3.38
4.23.1 Solving as second order ode missing x ode . . . . . . . . . . . . 604
4.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 607

Internal problem ID [5897]
Internal file name [OUTPUT/5145_Sunday_June_05_2022_03_26_14_PM_80465364/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 3. Ordinary Differential Equations. Section 3.6 Summary and Problems.
Page 218
Problem number: Problem 3.38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order ,

_with_potential_symmetries], [_2nd_order , _reducible , _mu_xy
]]

yy′′ − y′
2 − y′y2 = 0

4.23.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy
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Hence the ode becomes

yp(y)
(

d

dy
p(y)

)
+
(
−p(y)− y2

)
p(y) = 0

Which is now solved as first order ode for p(y).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dy
p(y) + p(y)p(y) = q(y)

Where here

p(y) = −1
y

q(y) = y

Hence the ode is
d

dy
p(y)− p(y)

y
= y

The integrating factor µ is

µ = e
∫
− 1

y
dy

= 1
y

The ode becomes
d
dy (µp) = (µ) (y)

d
dy

(
p

y

)
=
(
1
y

)
(y)

d
(
p

y

)
= dy

Integrating gives

p

y
=
∫

dy
p

y
= y + c1

Dividing both sides by the integrating factor µ = 1
y
results in

p(y) = c1y + y2
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which simplifies to

p(y) = y(y + c1)

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = y(y + c1)

Integrating both sides gives ∫ 1
y (y + c1)

dy =
∫

dx

ln (y)
c1

− ln (y + c1)
c1

= c2 + x

The above can be written as(
1
c1

)
(ln (y)− ln (y + c1)) = c2 + x

ln (y)− ln (y + c1) = (c1) (c2 + x)
= c1(c2 + x)

Raising both side to exponential gives

eln(y)−ln(y+c1) = c1c2ec1x

Which simplifies to
y

y + c1
= c3ec1x

Summary
The solution(s) found are the following

(1)y = − c3ec1xc1
−1 + c3ec1x

Verification of solutions

y = − c3ec1xc1
−1 + c3ec1x

Verified OK.
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4.23.2 Maple step by step solution

Let’s solve
yy′′ + (−y′ − y2) y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

yu(y)
(

d
dy
u(y)

)
+ (−u(y)− y2)u(y) = 0

• Isolate the derivative
d
dy
u(y) = u(y)

y
+ y

• Group terms with u(y) on the lhs of the ODE and the rest on the rhs of the ODE
d
dy
u(y)− u(y)

y
= y

• The ODE is linear; multiply by an integrating factor µ(y)

µ(y)
(

d
dy
u(y)− u(y)

y

)
= µ(y) y

• Assume the lhs of the ODE is the total derivative d
dy
(µ(y)u(y))

µ(y)
(

d
dy
u(y)− u(y)

y

)
=
(

d
dy
µ(y)

)
u(y) + µ(y)

(
d
dy
u(y)

)
• Isolate d

dy
µ(y)

d
dy
µ(y) = −µ(y)

y

• Solve to find the integrating factor
µ(y) = 1

y
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• Integrate both sides with respect to y∫ (
d
dy
(µ(y)u(y))

)
dy =

∫
µ(y) ydy + c1

• Evaluate the integral on the lhs
µ(y)u(y) =

∫
µ(y) ydy + c1

• Solve for u(y)

u(y) =
∫
µ(y)ydy+c1

µ(y)

• Substitute µ(y) = 1
y

u(y) = y
(∫

1dy + c1
)

• Evaluate the integrals on the rhs
u(y) = y(y + c1)

• Solve 1st ODE for u(y)
u(y) = y(y + c1)

• Revert to original variables with substitution u(y) = y′, y = y

y′ = y(y + c1)
• Separate variables

y′

y(y+c1) = 1

• Integrate both sides with respect to x∫
y′

y(y+c1)dx =
∫
1dx+ c2

• Evaluate integral
ln(y)
c1

− ln(y+c1)
c1

= c2 + x

• Solve for y
y = − c1ec2c1+c1x

−1+ec2c1+c1x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-_b(_a)*(_a^2+_b(_a))/_a = 0, _b(_a), HINT = [[_a, 2*_b]]` *** Sublevel

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 2*_b]� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 27� �
dsolve(y(x)*diff(y(x),x$2)-(diff(y(x),x))^2-y(x)^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = − c1e(x+c2)c1

−1 + e(x+c2)c1

3 Solution by Mathematica
Time used: 1.53 (sec). Leaf size: 43� �
DSolve[y[x]*y''[x]-(y'[x])^2-y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − c1e
c1(x+c2)

−1 + ec1(x+c2)

y(x) → − 1
x+ c2
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5 Chapter 5. Systems of First Order Differential
Equations. Section 5.11 Problems. Page 360

5.1 problem Problem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
5.2 problem Problem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
5.3 problem Problem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
5.4 problem Problem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
5.5 problem Problem 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
5.6 problem Problem 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
5.7 problem Problem 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
5.8 problem Problem 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
5.9 problem Problem 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
5.10 problem Problem 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
5.11 problem Problem 5.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
5.12 problem Problem 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
5.13 problem Problem 5.15 part 1 . . . . . . . . . . . . . . . . . . . . . . . . . 714
5.14 problem Problem 5.15 part 3 . . . . . . . . . . . . . . . . . . . . . . . . . 726
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5.1 problem Problem 5.1
5.1.1 Solution using Matrix exponential method . . . . . . . . . . . . 611
5.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 612

Internal problem ID [5898]
Internal file name [OUTPUT/5146_Sunday_June_05_2022_03_26_15_PM_67627155/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)− 18x2(t)

x′
2(t) = 2x1(t)− 9x2(t)

With initial conditions
[x1(0) = 2, x2(0) = 1]

5.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −18
2 −9

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−3t(1 + 6t) −18t e−3t

2t e−3t e−3t(1− 6t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−3t(1 + 6t) −18t e−3t

2t e−3t e−3t(1− 6t)

 2
1


=

 2 e−3t(1 + 6t)− 18t e−3t

4t e−3t + e−3t(1− 6t)


=

 (2− 6t) e−3t

e−3t(1− 2t)


Since no forcing function is given, then the final solution is ~xh(t) above.

5.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −18
2 −9

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −18
2 −9

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −18
2 −9− λ

 = 0
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Which gives the characteristic equation

λ2 + 6λ+ 9 = 0

The roots of the above are the eigenvalues.

λ1 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −18
2 −9

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −18

2 −6

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 6 −18 0

2 −6 0



R2 = R2 −
R1

3 =⇒

6 −18 0
0 0 0


Therefore the system in Echelon form is 6 −18

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 3t}
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Hence the solution is  3t
t

 =

 3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

t

 = t

 3
1


Let t = 1 the eigenvector becomes  3t

t

 =

 3
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 2 1 Yes

 3
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −3 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 87: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 −18
2 −9

− (−3)

 1 0
0 1

 v1

v2

 =

 3
1


 6 −18

2 −6

 v1

v2

 =

 3
1


Solving for ~v2 gives

~v2 =

 7
2

1
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We have found two generalized eigenvectors for eigenvalue −3. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 3
1

 e−3t

=

 3 e−3t

e−3t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 3
1

 t+

 7
2

1

 e−3t

=

 e−3t(6t+7)
2

e−3t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 3 e−3t

e−3t

+ c2

 e−3t(3t+ 7
2

)
e−3t(t+ 1)


Which becomes  x1(t)

x2(t)

 =

 e−3t(3c1 + 3c2t+ 7
2c2
)

e−3t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 2

x2(0) = 1

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 2
1

 =

 3c1 + 7c2
2

c1 + c2


Solving for the constants of integrations gives c1 = 3

c2 = −2


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 (2− 6t) e−3t

e−3t(1− 2t)


The following is the phase plot of the system.

Figure 88: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve([diff(x__1(t),t) = 3*x__1(t)-18*x__2(t), diff(x__2(t),t) = 2*x__1(t)-9*x__2(t), x__1(0) = 2, x__2(0) = 1], singsol=all)� �

x1(t) = e−3t(−6t+ 2)

x2(t) =
e−3t(−36t+ 18)

18

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 30� �
DSolve[{x1'[t]==3*x1[t]-18*x2[t],x2'[t]==2*x1[t]-9*x2[t]},{x1[0]==2,x2[0]==1},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−3t(2− 6t)
x2(t) → e−3t(1− 2t)
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5.2 problem Problem 5.2
5.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 619
5.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 620
5.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 625

Internal problem ID [5899]
Internal file name [OUTPUT/5147_Sunday_June_05_2022_03_26_16_PM_41729933/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + 3x2(t)

x′
2(t) = 5x1(t) + 3x2(t)

5.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 3
5 3

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 5 e−2t

8 + 3 e6t
8

3 e6t
8 − 3 e−2t

8
5 e6t
8 − 5 e−2t

8
3 e−2t

8 + 5 e6t
8
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 5 e−2t

8 + 3 e6t
8

3 e6t
8 − 3 e−2t

8
5 e6t
8 − 5 e−2t

8
3 e−2t

8 + 5 e6t
8

 c1

c2


=


(

5 e−2t

8 + 3 e6t
8

)
c1 +

(
3 e6t
8 − 3 e−2t

8

)
c2(

5 e6t
8 − 5 e−2t

8

)
c1 +

(
3 e−2t

8 + 5 e6t
8

)
c2


=

 (5c1−3c2)e−2t

8 + 3 e6t(c1+c2)
8

(−5c1+3c2)e−2t

8 + 5 e6t(c1+c2)
8


Since no forcing function is given, then the final solution is ~xh(t) above.

5.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 3
5 3

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 3
5 3

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 3
5 3− λ

 = 0
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Which gives the characteristic equation

λ2 − 4λ− 12 = 0

The roots of the above are the eigenvalues.

λ1 = 6
λ2 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

6 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 3
5 3

− (−2)

 1 0
0 1

 v1

v2

 =

 0
0


 3 3

5 5

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3 3 0

5 5 0



R2 = R2 −
5R1

3 =⇒

3 3 0
0 0 0


Therefore the system in Echelon form is 3 3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = 6

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 3
5 3

− (6)

 1 0
0 1

 v1

v2

 =

 0
0


 −5 3

5 −3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −5 3 0

5 −3 0



R2 = R2 +R1 =⇒

−5 3 0
0 0 0


Therefore the system in Echelon form is −5 3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

5

}
Hence the solution is  3t

5

t

 =

 3t
5

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

5

t

 = t

 3
5

1


Let t = 1 the eigenvector becomes  3t

5

t

 =

 3
5

1


Which is normalized to  3t

5

t

 =

 3
5


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

6 1 1 No

 3
5

1



−2 1 1 No

 −1
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 6 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
6t

=

 3
5

1

 e6t

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−2t

=

 −1
1

 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 3 e6t
5

e6t

+ c2

 −e−2t

e−2t


Which becomes  x1(t)

x2(t)

 =

 3c1e6t
5 − c2e−2t

c1e6t + c2e−2t


The following is the phase plot of the system.
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Figure 89: Phase plot

5.2.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t) + 3x2(t) , x′
2(t) = 5x1(t) + 3x2(t)]

• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 1 3
5 3

 · →x__(t) +

 0
0


• System to solve

→x__
′
(t) =

 1 3
5 3

 · →x__(t)

• Define the coefficient matrix

625



A =

 1 3
5 3


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2,

 −1
1

 ,

6,
 3

5

1


• Consider eigenpair−2,

 −1
1


• Solution to homogeneous system from eigenpair

→x__1 = e−2t ·

 −1
1


• Consider eigenpair6,

 3
5

1


• Solution to homogeneous system from eigenpair

→x__2 = e6t ·

 3
5

1


• General solution to the system of ODEs

→x__ = c1
→x__1 + c2

→x__2

• Substitute solutions into the general solution

→x__ = c1e−2t ·

 −1
1

+ c2e6t ·

 3
5

1


• Substitute in vector of dependent variables
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 x1(t)
x2(t)

 =

 −c1e−2t + 3c2e6t
5

c1e−2t + c2e6t


• Solution to the system of ODEs{

x1(t) = −c1e−2t + 3c2e6t
5 , x2(t) = c1e−2t + c2e6t

}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve([diff(x__1(t),t)=x__1(t)+3*x__2(t),diff(x__2(t),t)=5*x__1(t)+3*x__2(t)],singsol=all)� �

x1(t) = e6tc1 + c2e−2t

x2(t) =
5 e6tc1

3 − c2e−2t

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 74� �
DSolve[{x1'[t]==x1[t]+3*x2[t],x2'[t]==5*x1[t]+3*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
8e

−2t(c1(3e8t + 5
)
+ 3c2

(
e8t − 1

))
x2(t) → 1

8e
−2t(5c1(e8t − 1

)
+ c2

(
5e8t + 3

))

627



5.3 problem Problem 5.3
5.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 628
5.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 629

Internal problem ID [5900]
Internal file name [OUTPUT/5148_Sunday_June_05_2022_03_26_18_PM_70103364/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −x1(t) + 3x2(t)

x′
2(t) = −3x1(t) + 5x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 2]

5.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −1 3
−3 5

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e2t(1− 3t) 3t e2t

−3t e2t e2t(1 + 3t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e2t(1− 3t) 3t e2t

−3t e2t e2t(1 + 3t)

 1
2


=

 e2t(1− 3t) + 6t e2t

−3t e2t + 2 e2t(1 + 3t)


=

 e2t(1 + 3t)
e2t(2 + 3t)


Since no forcing function is given, then the final solution is ~xh(t) above.

5.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −1 3
−3 5

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −1 3
−3 5

− λ

 1 0
0 1

 = 0

Therefore

det

 −1− λ 3
−3 5− λ

 = 0
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Which gives the characteristic equation

λ2 − 4λ+ 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 3
−3 5

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 −3 3

−3 3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3 3 0

−3 3 0



R2 = R2 −R1 =⇒

−3 3 0
0 0 0


Therefore the system in Echelon form is −3 3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 90: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −1 3
−3 5

− (2)

 1 0
0 1

 v1

v2

 =

 1
1


 −3 3

−3 3

 v1

v2

 =

 1
1


Solving for ~v2 gives

~v2 =

 2
3

1
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We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 1
1

 e2t

=

 e2t

e2t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 1
1

 t+

 2
3

1

 e2t

=

 e2t(2+3t)
3

e2t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e2t

e2t

+ c2

 e2t
(
t+ 2

3

)
e2t(t+ 1)


Which becomes  x1(t)

x2(t)

 =

 e2t
(
c1 + c2t+ 2

3c2
)

e2t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 2

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 1
2

 =

 c1 + 2c2
3

c1 + c2


Solving for the constants of integrations gives c1 = −1

c2 = 3


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 e2t(1 + 3t)
e2t(2 + 3t)


The following is the phase plot of the system.

Figure 91: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve([diff(x__1(t),t) = -x__1(t)+3*x__2(t), diff(x__2(t),t) = -3*x__1(t)+5*x__2(t), x__1(0) = 1, x__2(0) = 2], singsol=all)� �

x1(t) = e2t(3t+ 1)

x2(t) =
e2t(9t+ 6)

3

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{x1'[t]==-x1[t]+3*x2[t],x2'[t]==-3*x1[t]+5*x2[t]},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t(3t+ 1)
x2(t) → e2t(3t+ 2)
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5.4 problem Problem 5.4
5.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 636
5.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 637
5.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 642

Internal problem ID [5901]
Internal file name [OUTPUT/5149_Sunday_June_05_2022_03_26_19_PM_55103563/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 4x1(t)− x2(t)

x′
2(t) = 5x1(t) + 2x2(t)

5.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 4 −1
5 2

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e3t cos (2t) + e3t sin(2t)
2 − e3t sin(2t)

2
5 e3t sin(2t)

2 e3t cos (2t)− e3t sin(2t)
2


=

 e3t(2 cos(2t)+sin(2t))
2 − e3t sin(2t)

2
5 e3t sin(2t)

2
e3t(2 cos(2t)−sin(2t))

2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e3t(2 cos(2t)+sin(2t))
2 − e3t sin(2t)

2
5 e3t sin(2t)

2
e3t(2 cos(2t)−sin(2t))

2

 c1

c2


=

 e3t(2 cos(2t)+sin(2t))c1
2 − e3t sin(2t)c2

2
5 e3t sin(2t)c1

2 + e3t(2 cos(2t)−sin(2t))c2
2


=

 e3t(−c2+c1) sin(2t)
2 + e3t cos (2t) c1

e3t(5c1−c2) sin(2t)
2 + e3t cos (2t) c2


Since no forcing function is given, then the final solution is ~xh(t) above.

5.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 4 −1
5 2

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 4 −1
5 2

− λ

 1 0
0 1

 = 0

Therefore

det

 4− λ −1
5 2− λ

 = 0
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Which gives the characteristic equation

λ2 − 6λ+ 13 = 0

The roots of the above are the eigenvalues.

λ1 = 3 + 2i
λ2 = 3− 2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3− 2i 1 complex eigenvalue

3 + 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 −1
5 2

− (3− 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 1 + 2i −1

5 −1 + 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 + 2i −1 0

5 −1 + 2i 0



R2 = R2 + (−1 + 2i)R1 =⇒

1 + 2i −1 0
0 0 0


Therefore the system in Echelon form is 1 + 2i −1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(1
5 −

2i
5

)
t
}

Hence the solution is  (15 − 2 I
5

)
t

t

 =

 (15 − 2i
5

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (15 − 2 I

5

)
t

t

 = t

 1
5 −

2i
5

1


Let t = 1 the eigenvector becomes (15 − 2 I

5

)
t

t

 =

 1
5 −

2i
5

1


Which is normalized to  (15 − 2 I

5

)
t

t

 =

 1− 2i
5


Considering the eigenvalue λ2 = 3 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 −1
5 2

− (3 + 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 1− 2i −1

5 −1− 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1− 2i −1 0

5 −1− 2i 0



R2 = R2 + (−1− 2i)R1 =⇒

1− 2i −1 0
0 0 0
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Therefore the system in Echelon form is 1− 2i −1
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(1
5 +

2i
5

)
t
}

Hence the solution is  (15 + 2 I
5

)
t

t

 =

 (15 + 2i
5

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (15 + 2 I

5

)
t

t

 = t

 1
5 +

2i
5

1


Let t = 1 the eigenvector becomes (15 + 2 I

5

)
t

t

 =

 1
5 +

2i
5

1


Which is normalized to  (15 + 2 I

5

)
t

t

 =

 1 + 2i
5


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 + 2i 1 1 No

 1
5 +

2i
5

1



3− 2i 1 1 No

 1
5 −

2i
5

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 (15 + 2i
5

)
e(3+2i)t

e(3+2i)t

+ c2

 (15 − 2i
5

)
e(3−2i)t

e(3−2i)t


Which becomes x1(t)

x2(t)

 =

 (15 + 2i
5

)
c1e(3+2i)t +

(1
5 −

2i
5

)
c2e(3−2i)t

c1e(3+2i)t + c2e(3−2i)t


The following is the phase plot of the system.
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Figure 92: Phase plot

5.4.3 Maple step by step solution

Let’s solve
[x′

1(t) = 4x1(t)− x2(t) , x′
2(t) = 5x1(t) + 2x2(t)]

• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 4 −1
5 2

 · →x__(t) +

 0
0


• System to solve

→x__
′
(t) =

 4 −1
5 2

 · →x__(t)

• Define the coefficient matrix
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A =

 4 −1
5 2


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A3− 2 I,

 1
5 −

2 I
5

1

 ,

3 + 2 I,

 1
5 +

2 I
5

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored3− 2 I,

 1
5 −

2 I
5

1


• Solution from eigenpair

e(3−2 I)t ·

 1
5 −

2 I
5

1


• Use Euler identity to write solution in terms of sin and cos

e3t · (cos (2t)− I sin (2t)) ·

 1
5 −

2 I
5

1


• Simplify expression

e3t ·

 (15 − 2 I
5

)
(cos (2t)− I sin (2t))

cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system →x__1(t) = e3t ·

 cos(2t)
5 − 2 sin(2t)

5

cos (2t)

 ,
→x__2(t) = e3t ·

 − sin(2t)
5 − 2 cos(2t)

5

− sin (2t)


• General solution to the system of ODEs

→x__ = c1
→x__1(t) + c2

→x__2(t)
• Substitute solutions into the general solution
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→x__ = c1e3t ·

 cos(2t)
5 − 2 sin(2t)

5

cos (2t)

+ e3tc2 ·

 − sin(2t)
5 − 2 cos(2t)

5

− sin (2t)


• Substitute in vector of dependent variables x1(t)

x2(t)

 =

 e3t
(
(c1−2c2) cos(2t)−2 sin(2t)

(
c1+ c2

2
))

5

e3t(c1 cos (2t)− c2 sin (2t))


• Solution to the system of ODEs{

x1(t) =
e3t
(
(c1−2c2) cos(2t)−2 sin(2t)

(
c1+ c2

2
))

5 , x2(t) = e3t(c1 cos (2t)− c2 sin (2t))
}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 61� �
dsolve([diff(x__1(t),t)=4*x__1(t)-x__2(t),diff(x__2(t),t)=5*x__1(t)+2*x__2(t)],singsol=all)� �

x1(t) = e3t(c1 sin (2t) + c2 cos (2t))
x2(t) = −e3t(2c1 cos (2t)− c2 cos (2t)− c1 sin (2t)− 2c2 sin (2t))

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 70� �
DSolve[{x1'[t]==4*x1[t]-x2[t],x2'[t]==5*x1[t]+2*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
2e

3t(2c1 cos(2t) + (c1 − c2) sin(2t))

x2(t) → 1
2e

3t(2c2 cos(2t) + (5c1 − c2) sin(2t))
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5.5 problem Problem 5.6
5.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 645
5.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 646
5.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 651

Internal problem ID [5902]
Internal file name [OUTPUT/5150_Sunday_June_05_2022_03_26_20_PM_27465064/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −2x1(t) + x2(t)

x′
2(t) = x1(t)− 2x2(t)

5.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −2 1
1 −2

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−3t

2 + e−t

2
e−t

2 − e−3t

2
e−t

2 − e−3t

2
e−3t

2 + e−t

2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−3t

2 + e−t

2
e−t

2 − e−3t

2
e−t

2 − e−3t

2
e−3t

2 + e−t

2

 c1

c2


=


(

e−3t

2 + e−t

2

)
c1 +

(
e−t

2 − e−3t

2

)
c2(

e−t

2 − e−3t

2

)
c1 +

(
e−3t

2 + e−t

2

)
c2


=

 (−c2+c1)e−3t

2 + e−t(c1+c2)
2

(c2−c1)e−3t

2 + e−t(c1+c2)
2


Since no forcing function is given, then the final solution is ~xh(t) above.

5.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −2 1
1 −2

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −2 1
1 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 −2− λ 1
1 −2− λ

 = 0
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Which gives the characteristic equation

λ2 + 4λ+ 3 = 0

The roots of the above are the eigenvalues.

λ1 = −3
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 1
1 −2

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 1 1

1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 1 0

1 1 0



R2 = R2 −R1 =⇒

1 1 0
0 0 0


Therefore the system in Echelon form is 1 1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 1
1 −2

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 1

1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 1 0

1 −1 0



R2 = R2 +R1 =⇒

−1 1 0
0 0 0


Therefore the system in Echelon form is −1 1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 1 1 No

 −1
1



−1 1 1 No

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −3 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
−3t

=

 −1
1

 e−3t

Since eigenvalue −1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−t

=

 1
1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 −e−3t

e−3t

+ c2

 e−t

e−t


Which becomes  x1(t)

x2(t)

 =

 −c1e−3t + c2e−t

c1e−3t + c2e−t


The following is the phase plot of the system.
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Figure 93: Phase plot

5.5.3 Maple step by step solution

Let’s solve
[x′

1(t) = −2x1(t) + x2(t) , x′
2(t) = x1(t)− 2x2(t)]

• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 −2 1
1 −2

 · →x__(t) +

 0
0


• System to solve

→x__
′
(t) =

 −2 1
1 −2

 · →x__(t)

• Define the coefficient matrix
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A =

 −2 1
1 −2


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−3,

 −1
1

 ,

−1,

 1
1


• Consider eigenpair−3,

 −1
1


• Solution to homogeneous system from eigenpair

→x__1 = e−3t ·

 −1
1


• Consider eigenpair−1,

 1
1


• Solution to homogeneous system from eigenpair

→x__2 = e−t ·

 1
1


• General solution to the system of ODEs

→x__ = c1
→x__1 + c2

→x__2

• Substitute solutions into the general solution

→x__ = c1e−3t ·

 −1
1

+ c2e−t ·

 1
1


• Substitute in vector of dependent variables
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 x1(t)
x2(t)

 =

 −c1e−3t + c2e−t

c1e−3t + c2e−t


• Solution to the system of ODEs

{x1(t) = −c1e−3t + c2e−t, x2(t) = c1e−3t + c2e−t}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve([diff(x__1(t),t)=-2*x__1(t)+x__2(t),diff(x__2(t),t)=x__1(t)-2*x__2(t)],singsol=all)� �

x1(t) = c2e−t + c1e−3t

x2(t) = c2e−t − c1e−3t

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 68� �
DSolve[{x1'[t]==-2*x1[t]+x2[t],x2'[t]==x1[t]-2*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
2e

−3t(c1(e2t + 1
)
+ c2

(
e2t − 1

))
x2(t) → 1

2e
−3t(c1(e2t − 1

)
+ c2

(
e2t + 1

))
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5.6 problem Problem 5.7
5.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 654
5.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 656
5.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 661

Internal problem ID [5903]
Internal file name [OUTPUT/5151_Sunday_June_05_2022_03_26_21_PM_81970847/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −2x1(t) + x2(t) + 2 e−t

x′
2(t) = x1(t)− 2x2(t) + 3t

5.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 −2 1
1 −2

  x1(t)
x2(t)

+

 2 e−t

3t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation

654



of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 e−3t

2 + e−t

2
e−t

2 − e−3t

2
e−t

2 − e−3t

2
e−3t

2 + e−t

2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−3t

2 + e−t

2
e−t

2 − e−3t

2
e−t

2 − e−3t

2
e−3t

2 + e−t

2

 c1

c2


=


(

e−3t

2 + e−t

2

)
c1 +

(
e−t

2 − e−3t

2

)
c2(

e−t

2 − e−3t

2

)
c1 +

(
e−3t

2 + e−t

2

)
c2


=

 (−c2+c1)e−3t

2 + e−t(c1+c2)
2

(c2−c1)e−3t

2 + e−t(c1+c2)
2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 (
e2t+1

)
et

2 −
(
e2t−1

)
et

2

−
(
e2t−1

)
et

2

(
e2t+1

)
et

2


Hence

~xp(t) =

 e−3t

2 + e−t

2
e−t

2 − e−3t

2
e−t

2 − e−3t

2
e−3t

2 + e−t

2

∫  (
e2t+1

)
et

2 −
(
e2t−1

)
et

2

−
(
e2t−1

)
et

2

(
e2t+1

)
et

2

 2 e−t

3t

 dt

=

 e−3t

2 + e−t

2
e−t

2 − e−3t

2
e−t

2 − e−3t

2
e−3t

2 + e−t

2

 (1−3t)e3t
6 + e2t

2 + (9t−9)et
6 + t

(−1+3t)e3t
6 − e2t

2 + (9t−9)et
6 + t


=

 t− 4
3 +

e−t

2 + t e−t

t e−t + 2t− 5
3 −

e−t

2
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 (6t+3c1+3c2+3)e−t

6 + (3c1−3c2)e−3t

6 + t− 4
3

(6t+3c1+3c2−3)e−t

6 + (−3c1+3c2)e−3t

6 + 2t− 5
3


5.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 −2 1
1 −2

  x1(t)
x2(t)

+

 2 e−t

3t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −2 1
1 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 −2− λ 1
1 −2− λ

 = 0

Which gives the characteristic equation

λ2 + 4λ+ 3 = 0
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The roots of the above are the eigenvalues.

λ1 = −1
λ2 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 1
1 −2

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 1 1

1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 1 0

1 1 0



R2 = R2 −R1 =⇒

1 1 0
0 0 0


Therefore the system in Echelon form is 1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}
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Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 1
1 −2

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 1

1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 1 0

1 −1 0



R2 = R2 +R1 =⇒

−1 1 0
0 0 0


Therefore the system in Echelon form is −1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No

 1
1



−3 1 1 No

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=

 1
1

 e−t

659



Since eigenvalue −3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−3t

=

 −1
1

 e−3t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e−t

e−t

+ c2

 −e−3t

e−3t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 e−t −e−3t

e−t e−3t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 et
2

et
2

− e3t
2

e3t
2
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Hence

~xp(t) =

 e−t −e−3t

e−t e−3t

∫  et
2

et
2

− e3t
2

e3t
2

 2 e−t

3t

 dt

=

 e−t −e−3t

e−t e−3t

∫  1 + 3t et
2

−e2t + 3t e3t
2

 dt

=

 e−t −e−3t

e−t e−3t

 (3t−3)et
2 + t

(−1+3t)e3t
6 − e2t

2


=

 t− 4
3 +

e−t

2 + t e−t

t e−t + 2t− 5
3 −

e−t

2


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 c1e−t

c1e−t

+

 −c2e−3t

c2e−3t

+

 t− 4
3 +

e−t

2 + t e−t

t e−t + 2t− 5
3 −

e−t

2


Which becomes  x1(t)

x2(t)

 =

 (6t+6c1+3)e−t

6 − c2e−3t + t− 4
3

(6t+6c1−3)e−t

6 + c2e−3t + 2t− 5
3


5.6.3 Maple step by step solution

Let’s solve[
x′
1(t) = −2x1(t) + x2(t) + 2

et , x
′
2(t) = x1(t)− 2x2(t) + 3t

]
• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 −2 1
1 −2

 · →x__(t) +

 x2(t)et−2x1(t)et+2
et + 2x1(t)− x2(t)

3t
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• System to solve

→x__
′
(t) =

 −2 1
1 −2

 · →x__(t) +

 0
3t


• Define the forcing function

→
f (t) =

 0
3t


• Define the coefficient matrix

A =

 −2 1
1 −2


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−3,

 −1
1

 ,

−1,

 1
1


• Consider eigenpair−3,

 −1
1


• Solution to homogeneous system from eigenpair

→x__1 = e−3t ·

 −1
1


• Consider eigenpair−1,

 1
1


• Solution to homogeneous system from eigenpair

→x__2 = e−t ·

 1
1
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• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)
→x__(t) = c1

→x__1 + c2
→x__2 +

→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =

 −e−3t e−t

e−3t e−t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =

 −e−3t e−t

e−3t e−t

 · 1 −1 1
1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =

 e−3t

2 + e−t

2
e−t

2 − e−3t

2
e−t

2 − e−3t

2
e−3t

2 + e−t

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
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→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→x__p(t) =

 − e−3t

6 + t− 4
3 +

3 e−t

2
3 e−t

2 + 2t− 5
3 +

e−3t

6


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2 +

 − e−3t

6 + t− 4
3 +

3 e−t

2
3 e−t

2 + 2t− 5
3 +

e−3t

6


• Substitute in vector of dependent variables x1(t)

x2(t)

 =

 (−6c1−1)e−3t

6 + (6c2+9)e−t

6 + t− 4
3

(6c1+1)e−3t

6 + (6c2+9)e−t

6 + 2t− 5
3


• Solution to the system of ODEs{

x1(t) = (−6c1−1)e−3t

6 + (6c2+9)e−t

6 + t− 4
3 , x2(t) = (6c1+1)e−3t

6 + (6c2+9)e−t

6 + 2t− 5
3

}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 65� �
dsolve([diff(x__1(t),t)=-2*x__1(t)+x__2(t)+2*exp(-t),diff(x__2(t),t)=x__1(t)-2*x__2(t)+3*t],singsol=all)� �

x1(t) = −c2e−3t + e−tc1 +
e−t

2 − 4
3 + t e−t + t

x2(t) = c2e−3t + e−tc1 −
e−t

2 − 5
3 + 2t+ t e−t
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3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 93� �
DSolve[{x1'[t]==-2*x1[t]+x2[t]+2*Exp[-t],x2'[t]==x1[t]-2*x2[t]+3*t},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
6
(
6t+ 3(c1 − c2)e−3t + 3e−t(2t+ 1 + c1 + c2)− 8

)
x2(t) → 1

6e
−3t(2e3t(6t− 5) + 3e2t(2t− 1 + c1 + c2)− 3c1 + 3c2

)
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Internal problem ID [5904]
Internal file name [OUTPUT/5152_Sunday_June_05_2022_03_26_23_PM_18444826/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)− x2(t)

x′
2(t) = 16x1(t)− 5x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 1]

5.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −1
16 −5

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−t(1 + 4t) −t e−t

16t e−t e−t(1− 4t)



666



Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−t(1 + 4t) −t e−t

16t e−t e−t(1− 4t)

 1
1


=

 e−t(1 + 4t)− t e−t

16t e−t + e−t(1− 4t)


=

 e−t(1 + 3t)
e−t(1 + 12t)


Since no forcing function is given, then the final solution is ~xh(t) above.

5.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −1
16 −5

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −1
16 −5

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −1
16 −5− λ

 = 0

667



Which gives the characteristic equation

λ2 + 2λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −1
16 −5

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 4 −1

16 −4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  4 −1 0

16 −4 0



R2 = R2 − 4R1 =⇒

4 −1 0
0 0 0


Therefore the system in Echelon form is 4 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t

4

}
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Hence the solution is  t
4

t

 =

 t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

4

t

 = t

 1
4

1


Let t = 1 the eigenvector becomes  t

4

t

 =

 1
4

1


Which is normalized to  t

4

t

 =

 1
4


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 2 1 Yes

 1
4

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 94: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 −1
16 −5

− (−1)

 1 0
0 1

 v1

v2

 =

 1
4

1


 4 −1

16 −4

 v1

v2

 =

 1
4

1


Solving for ~v2 gives

~v2 =

 1
15
4
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We have found two generalized eigenvectors for eigenvalue −1. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 1
4

1

 e−t

=

 e−t

4

e−t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 1
4

1

 t+

 1
15
4

 e−t

=

 e−t(t+4)
4

e−t(4t+15)
4


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e−t

4

e−t

+ c2

 e−t
(
t
4 + 1

)
e−t
(
t+ 15

4

)


Which becomes  x1(t)
x2(t)

 =

 e−t((t+4)c2+c1)
4

e−t
(
c1 + c2t+ 15

4 c2
)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 1

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 1
1

 =

 c2 + c1
4

c1 + 15c2
4


Solving for the constants of integrations gives c1 = −44

c2 = 12


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 e−t(12t+4)
4

e−t(1 + 12t)


The following is the phase plot of the system.

Figure 95: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve([diff(x__1(t),t) = 3*x__1(t)-x__2(t), diff(x__2(t),t) = 16*x__1(t)-5*x__2(t), x__1(0) = 1, x__2(0) = 1], singsol=all)� �

x1(t) = e−t(3t+ 1)
x2(t) = e−t(12t+ 1)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{x1'[t]==3*x1[t]-x2[t],x2'[t]==16*x1[t]-5*x2[t]},{x1[0]==1,x2[0]==1},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−t(3t+ 1)
x2(t) → e−t(12t+ 1)

673



5.8 problem Problem 5.9
5.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 674
5.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 675

Internal problem ID [5905]
Internal file name [OUTPUT/5153_Sunday_June_05_2022_03_26_24_PM_8640362/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− 2x2(t)

x′
2(t) = 3x1(t)− 4x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 0]

5.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −2
3 −4

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 −2 e−2t + 3 e−t −2 e−t + 2 e−2t

3 e−t − 3 e−2t 3 e−2t − 2 e−t
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 −2 e−2t + 3 e−t −2 e−t + 2 e−2t

3 e−t − 3 e−2t 3 e−2t − 2 e−t

 1
0


=

 −2 e−2t + 3 e−t

3 e−t − 3 e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

5.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −2
3 −4

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 −2
3 −4

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ −2
3 −4− λ

 = 0

Which gives the characteristic equation

λ2 + 3λ+ 2 = 0
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The roots of the above are the eigenvalues.

λ1 = −1
λ2 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −2
3 −4

− (−2)

 1 0
0 1

 v1

v2

 =

 0
0


 3 −2

3 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3 −2 0

3 −2 0



R2 = R2 −R1 =⇒

3 −2 0
0 0 0


Therefore the system in Echelon form is 3 −2

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 2t

3

}
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Hence the solution is  2t
3

t

 =

 2t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

3

t

 = t

 2
3

1


Let t = 1 the eigenvector becomes  2t

3

t

 =

 2
3

1


Which is normalized to  2t

3

t

 =

 2
3


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −2
3 −4

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −2

3 −3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 −2 0

3 −3 0



R2 = R2 −
3R1

2 =⇒

2 −2 0
0 0 0


Therefore the system in Echelon form is 2 −2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No

 1
1



−2 1 1 No

 2
3

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=

 1
1

 e−t

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−2t

=

 2
3

1

 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e−t

e−t

+ c2

 2 e−2t

3

e−2t


Which becomes  x1(t)

x2(t)

 =

 c1e−t + 2c2e−2t

3

c1e−t + c2e−2t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 0

 (1)

Substituting initial conditions into the above solution at t = 0 gives 1
0

 =

 c1 + 2c2
3

c1 + c2


Solving for the constants of integrations gives c1 = 3

c2 = −3
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Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 −2 e−2t + 3 e−t

3 e−t − 3 e−2t


The following is the phase plot of the system.

Figure 96: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
dsolve([diff(x__1(t),t) = x__1(t)-2*x__2(t), diff(x__2(t),t) = 3*x__1(t)-4*x__2(t), x__1(0) = 1, x__2(0) = 0], singsol=all)� �

x1(t) = −2 e−2t + 3 e−t

x2(t) = −3 e−2t + 3 e−t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 33� �
DSolve[{x1'[t]==x1[t]-2*x2[t],x2'[t]==3*x1[t]-4*x2[t]},{x1[0]==1,x2[0]==0},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−2t(3et − 2
)

x2(t) → 3e−2t(et − 1
)
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5.9 problem Problem 5.10
5.9.1 Solution using Matrix exponential method . . . . . . . . . . . . 682
5.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 683

Internal problem ID [5906]
Internal file name [OUTPUT/5154_Sunday_June_05_2022_03_26_25_PM_31343781/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)− 18x2(t)

x′
2(t) = 2x1(t)− 9x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 2]

5.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −18
2 −9

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−3t(1 + 6t) −18t e−3t

2t e−3t e−3t(1− 6t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−3t(1 + 6t) −18t e−3t

2t e−3t e−3t(1− 6t)

 1
2


=

 e−3t(1 + 6t)− 36t e−3t

2t e−3t + 2 e−3t(1− 6t)


=

 e−3t(1− 30t)
(2− 10t) e−3t


Since no forcing function is given, then the final solution is ~xh(t) above.

5.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −18
2 −9

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −18
2 −9

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −18
2 −9− λ

 = 0
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Which gives the characteristic equation

λ2 + 6λ+ 9 = 0

The roots of the above are the eigenvalues.

λ1 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −18
2 −9

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −18

2 −6

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 6 −18 0

2 −6 0



R2 = R2 −
R1

3 =⇒

6 −18 0
0 0 0


Therefore the system in Echelon form is 6 −18

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 3t}
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Hence the solution is  3t
t

 =

 3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

t

 = t

 3
1


Let t = 1 the eigenvector becomes  3t

t

 =

 3
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 2 1 Yes

 3
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −3 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 97: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 −18
2 −9

− (−3)

 1 0
0 1

 v1

v2

 =

 3
1


 6 −18

2 −6

 v1

v2

 =

 3
1


Solving for ~v2 gives

~v2 =

 7
2

1
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We have found two generalized eigenvectors for eigenvalue −3. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 3
1

 e−3t

=

 3 e−3t

e−3t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 3
1

 t+

 7
2

1

 e−3t

=

 e−3t(6t+7)
2

e−3t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 3 e−3t

e−3t

+ c2

 e−3t(3t+ 7
2

)
e−3t(t+ 1)


Which becomes  x1(t)

x2(t)

 =

 e−3t(3c1 + 3c2t+ 7
2c2
)

e−3t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 2

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 1
2

 =

 3c1 + 7c2
2

c1 + c2


Solving for the constants of integrations gives c1 = 12

c2 = −10


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 e−3t(1− 30t)
(2− 10t) e−3t


The following is the phase plot of the system.

Figure 98: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve([diff(x__1(t),t) = 3*x__1(t)-18*x__2(t), diff(x__2(t),t) = 2*x__1(t)-9*x__2(t), x__1(0) = 1, x__2(0) = 2], singsol=all)� �

x1(t) = e−3t(−30t+ 1)

x2(t) =
e−3t(−180t+ 36)

18

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{x1'[t]==3*x1[t]-18*x2[t],x2'[t]==2*x1[t]-9*x2[t]},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−3t(1− 30t)
x2(t) → e−3t(2− 10t)
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5.10 problem Problem 5.11
5.10.1 Solution using Matrix exponential method . . . . . . . . . . . . 690
5.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 691

Internal problem ID [5907]
Internal file name [OUTPUT/5155_Sunday_June_05_2022_03_26_26_PM_766659/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −x1(t) + 3x2(t)

x′
2(t) = −3x1(t) + 5x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 2]

5.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −1 3
−3 5

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e2t(1− 3t) 3t e2t

−3t e2t e2t(1 + 3t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e2t(1− 3t) 3t e2t

−3t e2t e2t(1 + 3t)

 1
2


=

 e2t(1− 3t) + 6t e2t

−3t e2t + 2 e2t(1 + 3t)


=

 e2t(1 + 3t)
e2t(2 + 3t)


Since no forcing function is given, then the final solution is ~xh(t) above.

5.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −1 3
−3 5

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −1 3
−3 5

− λ

 1 0
0 1

 = 0

Therefore

det

 −1− λ 3
−3 5− λ

 = 0

691



Which gives the characteristic equation

λ2 − 4λ+ 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 3
−3 5

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 −3 3

−3 3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3 3 0

−3 3 0



R2 = R2 −R1 =⇒

−3 3 0
0 0 0


Therefore the system in Echelon form is −3 3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 99: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −1 3
−3 5

− (2)

 1 0
0 1

 v1

v2

 =

 1
1


 −3 3

−3 3

 v1

v2

 =

 1
1


Solving for ~v2 gives

~v2 =

 2
3

1
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We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 1
1

 e2t

=

 e2t

e2t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 1
1

 t+

 2
3

1

 e2t

=

 e2t(2+3t)
3

e2t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e2t

e2t

+ c2

 e2t
(
t+ 2

3

)
e2t(t+ 1)


Which becomes  x1(t)

x2(t)

 =

 e2t
(
c1 + c2t+ 2

3c2
)

e2t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 2

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 1
2

 =

 c1 + 2c2
3

c1 + c2


Solving for the constants of integrations gives c1 = −1

c2 = 3


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 e2t(1 + 3t)
e2t(2 + 3t)


The following is the phase plot of the system.

Figure 100: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve([diff(x__1(t),t) = -x__1(t)+3*x__2(t), diff(x__2(t),t) = -3*x__1(t)+5*x__2(t), x__1(0) = 1, x__2(0) = 2], singsol=all)� �

x1(t) = e2t(3t+ 1)

x2(t) =
e2t(9t+ 6)

3

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{x1'[t]==-x1[t]+3*x2[t],x2'[t]==-3*x1[t]+5*x2[t]},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t(3t+ 1)
x2(t) → e2t(3t+ 2)
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5.11 problem Problem 5.12
5.11.1 Solution using Matrix exponential method . . . . . . . . . . . . 698
5.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 699

Internal problem ID [5908]
Internal file name [OUTPUT/5156_Sunday_June_05_2022_03_26_27_PM_45427772/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)− 18x2(t)

x′
2(t) = 2x1(t)− 9x2(t)

With initial conditions
[x1(0) = 2, x2(0) = 1]

5.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −18
2 −9

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−3t(1 + 6t) −18t e−3t

2t e−3t e−3t(1− 6t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−3t(1 + 6t) −18t e−3t

2t e−3t e−3t(1− 6t)

 2
1


=

 2 e−3t(1 + 6t)− 18t e−3t

4t e−3t + e−3t(1− 6t)


=

 (2− 6t) e−3t

e−3t(1− 2t)


Since no forcing function is given, then the final solution is ~xh(t) above.

5.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −18
2 −9

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −18
2 −9

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −18
2 −9− λ

 = 0
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Which gives the characteristic equation

λ2 + 6λ+ 9 = 0

The roots of the above are the eigenvalues.

λ1 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −18
2 −9

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 6 −18

2 −6

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 6 −18 0

2 −6 0



R2 = R2 −
R1

3 =⇒

6 −18 0
0 0 0


Therefore the system in Echelon form is 6 −18

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 3t}
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Hence the solution is  3t
t

 =

 3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

t

 = t

 3
1


Let t = 1 the eigenvector becomes  3t

t

 =

 3
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 2 1 Yes

 3
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −3 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 101: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 −18
2 −9

− (−3)

 1 0
0 1

 v1

v2

 =

 3
1


 6 −18

2 −6

 v1

v2

 =

 3
1


Solving for ~v2 gives

~v2 =

 7
2

1
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We have found two generalized eigenvectors for eigenvalue −3. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 3
1

 e−3t

=

 3 e−3t

e−3t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 3
1

 t+

 7
2

1

 e−3t

=

 e−3t(6t+7)
2

e−3t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 3 e−3t

e−3t

+ c2

 e−3t(3t+ 7
2

)
e−3t(t+ 1)


Which becomes  x1(t)

x2(t)

 =

 e−3t(3c1 + 3c2t+ 7
2c2
)

e−3t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 2

x2(0) = 1

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 2
1

 =

 3c1 + 7c2
2

c1 + c2


Solving for the constants of integrations gives c1 = 3

c2 = −2


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 (2− 6t) e−3t

e−3t(1− 2t)


The following is the phase plot of the system.

Figure 102: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve([diff(x__1(t),t) = 3*x__1(t)-18*x__2(t), diff(x__2(t),t) = 2*x__1(t)-9*x__2(t), x__1(0) = 2, x__2(0) = 1], singsol=all)� �

x1(t) = e−3t(−6t+ 2)

x2(t) =
e−3t(−36t+ 18)

18

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{x1'[t]==3*x1[t]-18*x2[t],x2'[t]==2*x1[t]-9*x2[t]},{x1[0]==2,x2[0]==1},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−3t(2− 6t)
x2(t) → e−3t(1− 2t)
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5.12 problem Problem 5.13
5.12.1 Solution using Matrix exponential method . . . . . . . . . . . . 706
5.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 707

Internal problem ID [5909]
Internal file name [OUTPUT/5157_Sunday_June_05_2022_03_26_28_PM_4869892/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)− x2(t)

x′
2(t) = 4x1(t)− 2x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 1]

5.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −1
4 −2

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 − e−t

3 + 4 e2t
3 − e2t

3 + e−t

3
4 e2t
3 − 4 e−t

3
4 e−t

3 − e2t
3
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 − e−t

3 + 4 e2t
3 − e2t

3 + e−t

3
4 e2t
3 − 4 e−t

3
4 e−t

3 − e2t
3

 1
1


=

 e2t

e2t


Since no forcing function is given, then the final solution is ~xh(t) above.

5.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −1
4 −2

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −1
4 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −1
4 −2− λ

 = 0

Which gives the characteristic equation

λ2 − λ− 2 = 0
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The roots of the above are the eigenvalues.

λ1 = 2
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −1
4 −2

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 4 −1

4 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 4 −1 0

4 −1 0



R2 = R2 −R1 =⇒

4 −1 0
0 0 0


Therefore the system in Echelon form is 4 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t

4

}
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Hence the solution is  t
4

t

 =

 t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

4

t

 = t

 1
4

1


Let t = 1 the eigenvector becomes  t

4

t

 =

 1
4

1


Which is normalized to  t

4

t

 =

 1
4


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −1
4 −2

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 1 −1

4 −4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 −1 0

4 −4 0



R2 = R2 − 4R1 =⇒

1 −1 0
0 0 0


Therefore the system in Echelon form is 1 −1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 1 1 No

 1
1



−1 1 1 No

 1
4

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
2t

=

 1
1

 e2t

Since eigenvalue −1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−t

=

 1
4

1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e2t

e2t

+ c2

 e−t

4

e−t


Which becomes  x1(t)

x2(t)

 =

 c1e2t + c2e−t

4

c1e2t + c2e−t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 1

 (1)

Substituting initial conditions into the above solution at t = 0 gives 1
1

 =

 c1 + c2
4

c1 + c2


Solving for the constants of integrations gives c1 = 1

c2 = 0
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Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 e2t

e2t


The following is the phase plot of the system.

Figure 103: Phase plot

The following are plots of each solution.

712



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve([diff(x__1(t),t) = 3*x__1(t)-x__2(t), diff(x__2(t),t) = 4*x__1(t)-2*x__2(t), x__1(0) = 1, x__2(0) = 1], singsol=all)� �

x1(t) = e2t

x2(t) = e2t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18� �
DSolve[{x1'[t]==3*x1[t]-x2[t],x2'[t]==4*x1[t]-2*x2[t]},{x1[0]==1,x2[0]==1},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t

x2(t) → e2t
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5.13 problem Problem 5.15 part 1
5.13.1 Solution using Matrix exponential method . . . . . . . . . . . . 714
5.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 716
5.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 722

Internal problem ID [5910]
Internal file name [OUTPUT/5158_Sunday_June_05_2022_03_26_30_PM_83297899/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.15 part 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + x2(t)− 8

x′
2(t) = x1(t) + x2(t) + 3

5.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 1 1
1 1

  x1(t)
x2(t)

+

 −8
3


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2

 c1

c2


=


(

1
2 +

e2t
2

)
c1 +

(
e2t
2 − 1

2

)
c2(

e2t
2 − 1

2

)
c1 +

(
1
2 +

e2t
2

)
c2


=

 (c1+c2)e2t
2 − c2

2 + c1
2

(c1+c2)e2t
2 + c2

2 − c1
2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 1
2 +

e−2t

2 −1
2 +

e−2t

2

−1
2 +

e−2t

2
1
2 +

e−2t

2


Hence

~xp(t) =

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2

∫  1
2 +

e−2t

2 −1
2 +

e−2t

2

−1
2 +

e−2t

2
1
2 +

e−2t

2

 −8
3

 dt

=

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2

 −11t
2 + 5 e−2t

4
11t
2 + 5 e−2t

4


=

 −11t
2 + 5

4
5
4 +

11t
2
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 (2c1+2c2)e2t
4 − 11t

2 + c1
2 − c2

2 + 5
4

(2c1+2c2)e2t
4 + 11t

2 − c1
2 + c2

2 + 5
4


5.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 1 1
1 1

  x1(t)
x2(t)

+

 −8
3


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 1
1 1

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 1
1 1− λ

 = 0

Which gives the characteristic equation

λ2 − 2λ = 0
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The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 0

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
1 1

− (0)

 1 0
0 1

 v1

v2

 =

 0
0


 1 1

1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 1 0

1 1 0



R2 = R2 −R1 =⇒

1 1 0
0 0 0


Therefore the system in Echelon form is 1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}
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Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
1 1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 1

1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 1 0

1 −1 0



R2 = R2 +R1 =⇒

−1 1 0
0 0 0


Therefore the system in Echelon form is −1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 1 1 No

 1
1



0 1 1 No

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
2t

=

 1
1

 e2t
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Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
0

=

 −1
1

 e0

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e2t

e2t

+ c2

 −1
1


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 e2t −1
e2t 1


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 e−2t

2
e−2t

2

−1
2

1
2
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Hence

~xp(t) =

 e2t −1
e2t 1

∫  e−2t

2
e−2t

2

−1
2

1
2

 −8
3

 dt

=

 e2t −1
e2t 1

∫  −5 e−2t

2
11
2

 dt

=

 e2t −1
e2t 1

 5 e−2t

4
11t
2


=

 −11t
2 + 5

4
5
4 +

11t
2


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 c1e2t

c1e2t

+

 −c2

c2

+

 −11t
2 + 5

4
5
4 +

11t
2


Which becomes  x1(t)

x2(t)

 =

 c1e2t − c2 − 11t
2 + 5

4

c1e2t + c2 + 5
4 +

11t
2


The following is the phase plot of the system.
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Figure 104: Phase plot

5.13.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t) + x2(t)− 8, x′
2(t) = x1(t) + x2(t) + 3]

• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 1 1
1 1

 · →x__(t) +

 −8
3


• System to solve

→x__
′
(t) =

 1 1
1 1

 · →x__(t) +

 −8
3


• Define the forcing function
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→
f (t) =

 −8
3


• Define the coefficient matrix

A =

 1 1
1 1


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A0,

 −1
1

 ,

2,
 1

1


• Consider eigenpair0,

 −1
1


• Solution to homogeneous system from eigenpair

→x__1 =

 −1
1


• Consider eigenpair2,

 1
1


• Solution to homogeneous system from eigenpair

→x__2 = e2t ·

 1
1


• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)

→x__(t) = c1
→x__1 + c2

→x__2 +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(t) =

 −1 e2t

1 e2t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =

 −1 e2t

1 e2t

 · 1 −1 1
1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution
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→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→x__p(t) =

 −11 ln
(
e2t
)

4 − 5 e2t
4 + 5

4

−5 e2t
4 + 5

4 +
11 ln

(
e2t
)

4


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2 +

 −11 ln
(
e2t
)

4 − 5 e2t
4 + 5

4

−5 e2t
4 + 5

4 +
11 ln

(
e2t
)

4


• Substitute in vector of dependent variables x1(t)

x2(t)

 =

 c2e2t − 11 ln
(
e2t
)

4 − 5 e2t
4 + 5

4 − c1

c2e2t − 5 e2t
4 + 5

4 +
11 ln

(
e2t
)

4 + c1


• Solution to the system of ODEs{

x1(t) = c2e2t − 11 ln
(
e2t
)

4 − 5 e2t
4 + 5

4 − c1, x2(t) = c2e2t − 5 e2t
4 + 5

4 +
11 ln

(
e2t
)

4 + c1
}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve([diff(x__1(t),t)=x__1(t)+x__2(t)-8,diff(x__2(t),t)=x__1(t)+x__2(t)+3],singsol=all)� �

x1(t) =
c1e2t
2 − 11t

2 + c2

x2(t) =
c1e2t
2 + 5

2 + 11t
2 − c2

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 74� �
DSolve[{x1'[t]==x1[t]+x2[t]-8,x2'[t]==x1[t]+x2[t]+3},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
4
(
−22t+ 2c1

(
e2t + 1

)
+ 2c2e2t + 5− 2c2

)
x2(t) → 1

4
(
22t+ 2c1

(
e2t − 1

)
+ 2c2e2t + 5 + 2c2

)
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5.14 problem Problem 5.15 part 3
5.14.1 Solution using Matrix exponential method . . . . . . . . . . . . 726
5.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 728

Internal problem ID [5911]
Internal file name [OUTPUT/5159_Sunday_June_05_2022_03_26_31_PM_4963010/index.tex]

Book: THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHAN-
ICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section: Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems.
Page 360
Problem number: Problem 5.15 part 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + x2(t)− 8

x′
2(t) = x1(t) + x2(t) + 3

With initial conditions
[x1(0) = 1, x2(0) = 2]

5.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 1 1
1 1

  x1(t)
x2(t)

+

 −8
3


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2

 1
2


=

 −1
2 +

3 e2t
2

3 e2t
2 + 1

2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 1
2 +

e−2t

2 −1
2 +

e−2t

2

−1
2 +

e−2t

2
1
2 +

e−2t

2


Hence

~xp(t) =

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2

∫  1
2 +

e−2t

2 −1
2 +

e−2t

2

−1
2 +

e−2t

2
1
2 +

e−2t

2

 −8
3

 dt

=

 1
2 +

e2t
2

e2t
2 − 1

2
e2t
2 − 1

2
1
2 +

e2t
2

 −11t
2 + 5 e−2t

4
11t
2 + 5 e−2t

4


=

 −11t
2 + 5

4
5
4 +

11t
2
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 3
4 +

3 e2t
2 − 11t

2
3 e2t
2 + 7

4 +
11t
2


5.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 1 1
1 1

  x1(t)
x2(t)

+

 −8
3


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 1
1 1

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 1
1 1− λ

 = 0

Which gives the characteristic equation

λ2 − 2λ = 0
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The roots of the above are the eigenvalues.

λ1 = 0
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
1 1

− (0)

 1 0
0 1

 v1

v2

 =

 0
0


 1 1

1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 1 0

1 1 0



R2 = R2 −R1 =⇒

1 1 0
0 0 0


Therefore the system in Echelon form is 1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

729



Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
1 1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 1

1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 1 0

1 −1 0



R2 = R2 +R1 =⇒

−1 1 0
0 0 0


Therefore the system in Echelon form is −1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

0 1 1 No

 −1
1



2 1 1 No

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
0

=

 −1
1

 e0
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Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
2t

=

 1
1

 e2t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 −1
1

+ c2

 e2t

e2t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 −1 e2t

1 e2t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 −1
2

1
2

e−2t

2
e−2t

2
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Hence

~xp(t) =

 −1 e2t

1 e2t

∫  −1
2

1
2

e−2t

2
e−2t

2

 −8
3

 dt

=

 −1 e2t

1 e2t

∫  11
2

−5 e−2t

2

 dt

=

 −1 e2t

1 e2t

 11t
2

5 e−2t

4


=

 −11t
2 + 5

4
5
4 +

11t
2


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 −c1

c1

+

 c2e2t

c2e2t

+

 −11t
2 + 5

4
5
4 +

11t
2


Which becomes  x1(t)

x2(t)

 =

 −c1 + c2e2t − 11t
2 + 5

4

c1 + c2e2t + 5
4 +

11t
2


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 2

 (1)

Substituting initial conditions into the above solution at t = 0 gives 1
2

 =

 −c1 + c2 + 5
4

c1 + c2 + 5
4


Solving for the constants of integrations gives c1 = 1

2

c2 = 1
4
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Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 3
4 +

e2t
4 − 11t

2
7
4 +

e2t
4 + 11t

2


The following is the phase plot of the system.

Figure 105: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve([diff(x__1(t),t) = x__1(t)+x__2(t)-8, diff(x__2(t),t) = x__1(t)+x__2(t)+3, x__1(0) = 1, x__2(0) = 2], singsol=all)� �

x1(t) =
e2t
4 − 11t

2 + 3
4

x2(t) =
e2t
4 + 7

4 + 11t
2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 36� �
DSolve[{x1'[t]==x1[t]+x2[t]-8,x2'[t]==x1[t]+x2[t]+3},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
4
(
−22t+ e2t + 3

)
x2(t) → 1

4
(
22t+ e2t + 7

)
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