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Internal problem ID [7029]
Internal file name [OUTPUT/6015_Sunday_June_05_2022_04_13_50_PM_75535427/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 6(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y

x ln (x) = 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x ln (x)
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Where f(x) = 1
x ln(x) and g(y) = y. Integrating both sides gives

1
y
dy = 1

x ln (x) dx∫ 1
y
dy =

∫ 1
x ln (x) dx

ln (y) = ln (ln (x)) + c1

y = eln(ln(x))+c1

= c1 ln (x)

Summary
The solution(s) found are the following

(1)y = c1 ln (x)

Figure 1: Slope field plot

Verification of solutions

y = c1 ln (x)

Verified OK.
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1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x ln (x)

q(x) = 0

Hence the ode is

y′ − y

x ln (x) = 0

The integrating factor µ is

µ = e
∫
− 1

x ln(x)dx

= 1
ln (x)

The ode becomes

d
dxµy = 0

d
dx

(
y

ln (x)

)
= 0

Integrating gives
y

ln (x) = c1

Dividing both sides by the integrating factor µ = 1
ln(x) results in

y = c1 ln (x)

Summary
The solution(s) found are the following

(1)y = c1 ln (x)

5



Figure 2: Slope field plot

Verification of solutions

y = c1 ln (x)

Verified OK.

1.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)
ln (x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(ln (x)− 1)
x ln (x)
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Where f(x) = − ln(x)−1
x ln(x) and g(u) = u. Integrating both sides gives

1
u
du = − ln (x)− 1

x ln (x) dx∫ 1
u
du =

∫
− ln (x)− 1

x ln (x) dx

ln (u) = − ln (x) + ln (ln (x)) + c2

u = e− ln(x)+ln(ln(x))+c2

= c2e− ln(x)+ln(ln(x))

Which simplifies to

u(x) = c2 ln (x)
x

Therefore the solution y is

y = xu

= c2 ln (x)
Summary
The solution(s) found are the following

(1)y = c2 ln (x)

Figure 3: Slope field plot
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Verification of solutions

y = c2 ln (x)

Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

x ln (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

8



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ln (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ln (x)dy

Which results in

S = y

ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x ln (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

ln (x)2 x

Sy =
1

ln (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

ln (x) = c1

Which simplifies to
y

ln (x) = c1

Which gives

y = c1 ln (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x ln(x)

dS
dR

= 0

R = x

S = y

ln (x)

Summary
The solution(s) found are the following

(1)y = c1 ln (x)
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Figure 4: Slope field plot

Verification of solutions

y = c1 ln (x)

Verified OK.

1.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

12



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1

x ln (x)

)
dx(

− 1
x ln (x)

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x ln (x)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x ln (x)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x ln (x) dx

(3)φ = − ln (ln (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (ln (x)) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (ln (x)) + ln (y)

The solution becomes
y = ec1 ln (x)

Summary
The solution(s) found are the following

(1)y = ec1 ln (x)

Figure 5: Slope field plot

Verification of solutions

y = ec1 ln (x)

Verified OK.
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1.1.6 Maple step by step solution

Let’s solve
y′ − y

x ln(x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x ln(x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x ln(x)dx+ c1

• Evaluate integral
ln (y) = ln (ln (x)) + c1

• Solve for y
y = ec1 ln (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve(diff(y(x),x)=y(x)/(x*ln(x)),y(x), singsol=all)� �

y(x) = c1 ln (x)

16



3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 15� �
DSolve[y'[x]==y[x]/(x*Log[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 log(x)
y(x) → 0
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Internal problem ID [7030]
Internal file name [OUTPUT/6016_Sunday_June_05_2022_04_13_53_PM_47177539/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 6(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ + y2 = −1

With initial conditions

[y(0) = 1]

1.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −y2 + 1
x2 + 1

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−y2 + 1
x2 + 1

)
= − 2y

x2 + 1

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.2.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y2 − 1
x2 + 1

Where f(x) = 1
x2+1 and g(y) = −y2 − 1. Integrating both sides gives

1
−y2 − 1 dy = 1

x2 + 1 dx∫ 1
−y2 − 1 dy =

∫ 1
x2 + 1 dx

− arctan (y) = arctan (x) + c1

Which results in
y = − tan (arctan (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = − tan (c1)

c1 = −π

4

Substituting c1 found above in the general solution gives

y = 1− x

1 + x

Summary
The solution(s) found are the following

(1)y = 1− x

1 + x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1− x

1 + x

Verified OK.
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1.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2 + 1
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2 + 1dx

Which results in

S = arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2 + 1
x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (x) = − arctan (y) + c1

Which simplifies to

arctan (x) = − arctan (y) + c1

Which gives

y = tan (− arctan (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2+1
x2+1

dS
dR

= − 1
R2+1

R = y

S = arctan (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = tan (c1)

c1 =
π

4

Substituting c1 found above in the general solution gives

y = 1− x

1 + x

Summary
The solution(s) found are the following

(1)y = 1− x

1 + x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1− x

1 + x

Verified OK.

1.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y2 − 1

)
dy =

(
1

x2 + 1

)
dx(

− 1
x2 + 1

)
dx+

(
1

−y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 + 1

N(x, y) = 1
−y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 + 1

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

−y2 − 1

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 + 1 dx

(3)φ = − arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−y2−1 . Therefore equation (4) becomes

(5)1
−y2 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y2 + 1

)
dy

f(y) = − arctan (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan (x)− arctan (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan (x)− arctan (y)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

−π

4 = c1

c1 = −π

4
Substituting c1 found above in the general solution gives

− arctan (x)− arctan (y) = −π

4
Solving for y from the above gives

y = cot
(
arctan (x) + π

4

)
Summary
The solution(s) found are the following

(1)y = cot
(
arctan (x) + π

4

)

(a) Solution plot (b) Slope field plot

28



Verification of solutions

y = cot
(
arctan (x) + π

4

)
Verified OK.

1.2.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2 + 1
x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = − y2

x2 + 1 − 1
x2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 1
x2+1 , f1(x) = 0 and f2(x) = − 1

x2+1 . Let

y = −u′

f2u

= −u′

− u
x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2x
(x2 + 1)2

f1f2 = 0

f 2
2 f0 = − 1

(x2 + 1)3

Substituting the above terms back in equation (2) gives

− u′′(x)
x2 + 1 − 2xu′(x)

(x2 + 1)2
− u(x)

(x2 + 1)3
= 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2√
x2 + 1

The above shows that

u′(x) = −c2x+ c1

(x2 + 1)
3
2

Using the above in (1) gives the solution

y = −c2x+ c1
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3 − x

c3x+ 1

Initial conditions are used to solve for c3. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c3

c3 = 1

Substituting c3 found above in the general solution gives

y = −x− 1
1 + x

Summary
The solution(s) found are the following

(1)y = −x− 1
1 + x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x− 1
1 + x

Verified OK.

1.2.6 Maple step by step solution

Let’s solve
[(x2 + 1) y′ + y2 = −1, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2−1 = 1
x2+1

• Integrate both sides with respect to x∫
y′

−y2−1dx =
∫ 1

x2+1dx+ c1

• Evaluate integral
− arctan (y) = arctan (x) + c1

• Solve for y
y = − tan (arctan (x) + c1)
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• Use initial condition y(0) = 1
1 = − tan (c1)

• Solve for c1
c1 = −π

4

• Substitute c1 = −π
4 into general solution and simplify

y = cot
(
arctan (x) + π

4

)
• Solution to the IVP

y = cot
(
arctan (x) + π

4

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 11� �
dsolve([(x^2+1)*diff(y(x),x)+y(x)^2=-1,y(0) = 1],y(x), singsol=all)� �

y(x) = cot
(
arctan (x) + π

4

)
3 Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 14� �
DSolve[{(x^2+1)*y'[x]+y[x]^2==-1,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cot
(
arctan(x) + π

4

)
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1.3 problem HW 1 problem 7(a)
1.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 35
1.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 44

Internal problem ID [7031]
Internal file name [OUTPUT/6017_Sunday_June_05_2022_04_13_55_PM_42998421/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 7(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2y
x

= 5x2

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = 5x2

Hence the ode is

y′ + 2y
x

= 5x2
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The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
5x2)

d
dx

(
y x2) = (

x2) (5x2)
d
(
y x2) = (

5x4) dx

Integrating gives

y x2 =
∫

5x4 dx

y x2 = x5 + c1

Dividing both sides by the integrating factor µ = x2 results in

y = x3 + c1
x2

Summary
The solution(s) found are the following

(1)y = x3 + c1
x2
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Figure 10: Slope field plot

Verification of solutions

y = x3 + c1
x2

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−5x3 + 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−5x3 + 2y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 5x4 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 5R4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y = x5 + c1

Which simplifies to

x2y = x5 + c1

Which gives

y = x5 + c1
x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−5x3+2y
x

dS
dR

= 5R4

R = x

S = y x2

Summary
The solution(s) found are the following

(1)y = x5 + c1
x2
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Figure 11: Slope field plot

Verification of solutions

y = x5 + c1
x2

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−2y

x
+ 5x2

)
dx(

−5x2 + 2y
x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −5x2 + 2y
x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−5x2 + 2y

x

)
= 2

x
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And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

((
2
x

)
− (0)

)
= 2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2

x
dx

The result of integrating gives

µ = e2 ln(x)

= x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2
(
−5x2 + 2y

x

)
= −5x4 + 2xy

And

N = µN

= x2(1)
= x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−5x4 + 2xy
)
+
(
x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−5x4 + 2xy dx

(3)φ = −x5 + y x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x5 + y x2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x5 + y x2

The solution becomes

y = x5 + c1
x2

Summary
The solution(s) found are the following

(1)y = x5 + c1
x2

Figure 12: Slope field plot

Verification of solutions

y = x5 + c1
x2

Verified OK.
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1.3.4 Maple step by step solution

Let’s solve
y′ + 2y

x
= 5x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ 5x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= 5x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= 5µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
5µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
5µ(x)x2dx+ c1

• Solve for y

y =
∫
5µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
5x4dx+c1

x2

• Evaluate the integrals on the rhs
y = x5+c1

x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)+2/x*y(x)=5*x^2,y(x), singsol=all)� �

y(x) = x5 + c1
x2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 15� �
DSolve[y'[x]+2/x*y[x]==5*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x5 + c1
x2
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1.4 problem HW 1 problem 7(b)
1.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 46
1.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 48
1.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 52
1.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 57

Internal problem ID [7032]
Internal file name [OUTPUT/6018_Sunday_June_05_2022_04_13_58_PM_29814816/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 7(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

tx′ + 2x = 4 et

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

x′ + p(t)x = q(t)

Where here

p(t) = 2
t

q(t) = 4 et
t

Hence the ode is

x′ + 2x
t

= 4 et
t
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The integrating factor µ is

µ = e
∫ 2

t
dt

= t2

The ode becomes

d
dt(µx) = (µ)

(
4 et
t

)
d
dt
(
t2x

)
=

(
t2
)(4 et

t

)
d
(
t2x

)
=

(
4 ett

)
dt

Integrating gives

t2x =
∫

4 ett dt

t2x = 4(t− 1) et + c1

Dividing both sides by the integrating factor µ = t2 results in

x = 4(t− 1) et
t2

+ c1
t2

which simplifies to

x = (4t− 4) et + c1
t2

Summary
The solution(s) found are the following

(1)x = (4t− 4) et + c1
t2
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Figure 13: Slope field plot

Verification of solutions

x = (4t− 4) et + c1
t2

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

x′ = −2x+ 4 et
t

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(t, x) = 0

η(t, x) = 1
t2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
t2

dy

Which results in

S = t2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = −2x+ 4 et
t

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 2tx
Sx = t2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4 ett (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4 eRR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 4(R− 1) eR + c1 (4)

To complete the solution, we just need to transform (4) back to t, x coordinates. This
results in

t2x = 4(t− 1) et + c1

Which simplifies to

t2x = 4(t− 1) et + c1

Which gives

x = 4 ett− 4 et + c1
t2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= −2x+4 et
t

dS
dR

= 4 eRR

R = t

S = t2x

Summary
The solution(s) found are the following

(1)x = 4 ett− 4 et + c1
t2
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Figure 14: Slope field plot

Verification of solutions

x = 4 ett− 4 et + c1
t2

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

(t) dx =
(
−2x+ 4 et

)
dt(

2x− 4 et
)
dt+(t) dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = 2x− 4 et

N(t, x) = t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x

(
2x− 4 et

)
= 2

And
∂N

∂t
= ∂

∂t
(t)

= 1
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Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

t
((2)− (1))

= 1
t

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dt

= e
∫ 1

t
dt

The result of integrating gives

µ = eln(t)

= t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= t
(
2x− 4 et

)
= 2t

(
x− 2 et

)
And

N = µN

= t(t)
= t2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

2t
(
x− 2 et

))
+
(
t2
) dx
dt = 0
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The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
2t
(
x− 2 et

)
dt

(3)φ = (−4t+ 4) et + t2x+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= t2 + f ′(x)

But equation (2) says that ∂φ
∂x

= t2. Therefore equation (4) becomes

(5)t2 = t2 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0

Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = (−4t+ 4) et + t2x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (−4t+ 4) et + t2x
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The solution becomes

x = 4 ett− 4 et + c1
t2

Summary
The solution(s) found are the following

(1)x = 4 ett− 4 et + c1
t2

Figure 15: Slope field plot

Verification of solutions

x = 4 ett− 4 et + c1
t2

Verified OK.
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1.4.4 Maple step by step solution

Let’s solve
tx′ + 2x = 4 et

• Highest derivative means the order of the ODE is 1
x′

• Isolate the derivative
x′ = −2x

t
+ 4 et

t

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ + 2x

t
= 4 et

t

• The ODE is linear; multiply by an integrating factor µ(t)

µ(t)
(
x′ + 2x

t

)
= 4µ(t)et

t

• Assume the lhs of the ODE is the total derivative d
dt
(µ(t)x)

µ(t)
(
x′ + 2x

t

)
= µ′(t)x+ µ(t)x′

• Isolate µ′(t)
µ′(t) = 2µ(t)

t

• Solve to find the integrating factor
µ(t) = t2

• Integrate both sides with respect to t∫ (
d
dt
(µ(t)x)

)
dt =

∫ 4µ(t)et
t

dt+ c1

• Evaluate the integral on the lhs

µ(t)x =
∫ 4µ(t)et

t
dt+ c1

• Solve for x

x =
∫ 4µ(t)et

t
dt+c1

µ(t)

• Substitute µ(t) = t2

x =
∫
4 ettdt+c1

t2

• Evaluate the integrals on the rhs

x = 4(t−1)et+c1
t2

• Simplify

57



x = (4t−4)et+c1
t2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(t*diff(x(t),t)+2*x(t)=4*exp(t),x(t), singsol=all)� �

x(t) = (4t− 4) et + c1
t2

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 20� �
DSolve[t*x'[t]+2*x[t]==4*Exp[t],x[t],t,IncludeSingularSolutions -> True]� �

x(t) → 4et(t− 1) + c1
t2
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1.5 problem HW 1 problem 10
1.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 59
1.5.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 60
1.5.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 62
1.5.4 Solving as first order ode lie symmetry calculated ode . . . . . . 64
1.5.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 69

Internal problem ID [7033]
Internal file name [OUTPUT/6019_Sunday_June_05_2022_04_14_00_PM_11805134/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 2x− y

x+ 4y = 0

With initial conditions

[y(1) = 1]

1.5.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −−2x+ y

x+ 4y
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The x domain of f(x, y) when y = 1 is

{x < −4∨−4 < x}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{
y < −1

4 ∨−1
4 < y

}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−−2x+ y

x+ 4y

)
= − 1

x+ 4y + −8x+ 4y
(x+ 4y)2

The x domain of ∂f
∂y

when y = 1 is

{x < −4∨−4 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{
y < −1

4 ∨−1
4 < y

}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.5.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2x− u(x)x
x+ 4u (x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(2u2 + u− 1)
x (4u+ 1)
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Where f(x) = − 2
x
and g(u) = 2u2+u−1

4u+1 . Integrating both sides gives

1
2u2+u−1
4u+1

du = −2
x
dx

∫ 1
2u2+u−1
4u+1

du =
∫

−2
x
dx

ln
(
2u2 + u− 1

)
= −2 ln (x) + c2

Raising both side to exponential gives

2u2 + u− 1 = e−2 ln(x)+c2

Which simplifies to

2u2 + u− 1 = c3
x2

Which simplifies to

2u(x)2 + u(x)− 1 = c3ec2
x2

The solution is

2u(x)2 + u(x)− 1 = c3ec2
x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

2y2
x2 + y

x
− 1 = c3ec2

x2

−(x+ y) (x− 2y)
x2 = c3ec2

x2

Which simplifies to

−(x+ y) (x− 2y) = c3ec2

Substituting initial conditions and solving for c2 gives c2 = ln
(

2
c3

)
. Hence the solution

becomes
Summary
The solution(s) found are the following

(1)−(x+ y) (x− 2y) = 2
Verification of solutions

−(x+ y) (x− 2y) = 2

Verified OK.
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1.5.3 Solving as differentialType ode

Writing the ode as

y′ = 2x− y

x+ 4y (1)

Which becomes

(4y) dy = (−x) dy + (2x− y) dx (2)

But the RHS is complete differential because

(−x) dy + (2x− y) dx = d
(
x2 − xy

)
Hence (2) becomes

(4y) dy = d
(
x2 − xy

)
Integrating both sides gives gives these solutions

y = −x

4 +
√
9x2 + 8c1

4 + c1

y = −x

4 −
√
9x2 + 8c1

4 + c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −1
4 −

√
9 + 8c1
4 + c1

c1 =
3
2 +

√
5
2

Substituting c1 found above in the general solution gives

y = −x

4 −
√

9x2 + 12 + 4
√
5

4 + 3
2 +

√
5
2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −1
4 +

√
9 + 8c1
4 + c1
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c1 =
3
2 −

√
5
2

Substituting c1 found above in the general solution gives

y = −x

4 +
√

9x2 + 12− 4
√
5

4 + 3
2 −

√
5
2

Summary
The solution(s) found are the following

(1)y = −x

4 +
√
9x2 + 12− 4

√
5

4 + 3
2 −

√
5
2

(2)y = −x

4 −
√

9x2 + 12 + 4
√
5

4 + 3
2 +

√
5
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x

4 +
√
9x2 + 12− 4

√
5

4 + 3
2 −

√
5
2

Verified OK.

y = −x

4 −
√
9x2 + 12 + 4

√
5

4 + 3
2 +

√
5
2

Verified OK.
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1.5.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−2x+ y

x+ 4y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−2x+ y) (b3 − a2)

x+ 4y − (−2x+ y)2 a3
(x+ 4y)2

−
(

2
x+ 4y + −2x+ y

(x+ 4y)2
)
(xa2 + ya3 + a1)

−
(
− 1
x+ 4y + −8x+ 4y

(x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + 4x2a3 − 10x2b2 − 2x2b3 + 16xya2 − 4xya3 − 8xyb2 − 16xyb3 − 4y2a2 + 10y2a3 − 16y2b2 + 4y2b3 − 9xb1 + 9ya1
(x+ 4y)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − 4x2a3 + 10x2b2 + 2x2b3 − 16xya2 + 4xya3 + 8xyb2
+ 16xyb3 + 4y2a2 − 10y2a3 + 16y2b2 − 4y2b3 + 9xb1 − 9ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 − 16a2v1v2 + 4a2v22 − 4a3v21 + 4a3v1v2 − 10a3v22 + 10b2v21
+ 8b2v1v2 + 16b2v22 + 2b3v21 + 16b3v1v2 − 4b3v22 − 9a1v2 + 9b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − 4a3 + 10b2 + 2b3) v21 + (−16a2 + 4a3 + 8b2 + 16b3) v1v2
+ 9b1v1 + (4a2 − 10a3 + 16b2 − 4b3) v22 − 9a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−9a1 = 0
9b1 = 0

−16a2 + 4a3 + 8b2 + 16b3 = 0
−2a2 − 4a3 + 10b2 + 2b3 = 0
4a2 − 10a3 + 16b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b2 + b3

a3 = 2b2
b1 = 0
b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−−2x+ y

x+ 4y

)
(x)

= −2x2 + 2xy + 4y2
x+ 4y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2+2xy+4y2
x+4y

dy

Which results in

S = ln (−x2 + xy + 2y2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x+ y

x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x− y

2 (x+ y) (x− 2y)

Sy =
−x− 4y

2 (x+ y) (x− 2y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−x− y)
2 + ln (x− 2y)

2 = c1

Which simplifies to

ln (−x− y)
2 + ln (x− 2y)

2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x+y
x+4y

dS
dR

= 0

R = x

S = ln (−x− y)
2 + ln (x− 2y)

2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

ln (2)
2 + iπ = c1

c1 =
ln (2)
2 + iπ

Substituting c1 found above in the general solution gives

ln (−x− y)
2 + ln (x− 2y)

2 = ln (2)
2 + iπ

Summary
The solution(s) found are the following

(1)ln (−x− y)
2 + ln (x− 2y)

2 = ln (2)
2 + iπ

Verification of solutions

ln (−x− y)
2 + ln (x− 2y)

2 = ln (2)
2 + iπ

Verified OK.
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1.5.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 4y) dy = (2x− y) dx
(−2x+ y) dx+(x+ 4y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x+ y

N(x, y) = x+ 4y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−2x+ y)

= 1

And
∂N

∂x
= ∂

∂x
(x+ 4y)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x+ y dx

(3)φ = −x(x− y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x+ 4y. Therefore equation (4) becomes

(5)x+ 4y = x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 4y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(4y) dy

f(y) = 2y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x− y) + 2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x− y) + 2y2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

−x(x− y) + 2y2 = 2

Summary
The solution(s) found are the following

(1)−(x+ y) (x− 2y) = 2
Verification of solutions

−(x+ y) (x− 2y) = 2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 19� �
dsolve([diff(y(x),x)=(2*x-y(x))/(x+4*y(x)),y(1) = 1],y(x), singsol=all)� �

y(x) = −x

4 +
√
9x2 + 16

4

3 Solution by Mathematica
Time used: 0.482 (sec). Leaf size: 24� �
DSolve[{y'[x]==(2*x-y[x])/(x+4*y[x]),{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4

(√
9x2 + 16− x

)
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1.6 problem HW 1 problem 11
1.6.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 73
1.6.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 77
1.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 81
1.6.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 86

Internal problem ID [7034]
Internal file name [OUTPUT/6020_Sunday_June_05_2022_04_14_06_PM_22645042/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′ + 2y
x

− 6x4y2 = 0

1.6.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y(3y x5 − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x2y2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y2
dy

Which results in

S = − 1
x2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y(3y x5 − 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
x3y

Sy =
1

x2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 6x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 6R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
x2y

= 2x3 + c1

Which simplifies to

− 1
x2y

= 2x3 + c1

Which gives

y = − 1
x2 (2x3 + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y
(
3y x5−1

)
x

dS
dR

= 6R2

R = x

S = − 1
x2y
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Summary
The solution(s) found are the following

(1)y = − 1
x2 (2x3 + c1)

Figure 17: Slope field plot

Verification of solutions

y = − 1
x2 (2x3 + c1)

Verified OK.

1.6.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 2y(3y x5 − 1)
x

This is a Bernoulli ODE.
y′ = −2

x
y + 6x4y2 (1)

77



The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −2
x

f1(x) = 6x4

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 2
xy

+ 6x4 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −2w(x)
x

+ 6x4

w′ = 2w
x

− 6x4 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −6x4

Hence the ode is

w′(x)− 2w(x)
x

= −6x4

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ)

(
−6x4)

d
dx

( w

x2

)
=

(
1
x2

)(
−6x4)

d
( w

x2

)
=

(
−6x2) dx

Integrating gives

w

x2 =
∫

−6x2 dx
w

x2 = −2x3 + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = −2x5 + c1x
2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −2x5 + c1x

2
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Or

y = 1
−2x5 + c1x2

Which is simplified to
y = 1

x2 (−2x3 + c1)
Summary
The solution(s) found are the following

(1)y = 1
x2 (−2x3 + c1)

Figure 18: Slope field plot

Verification of solutions

y = 1
x2 (−2x3 + c1)

Verified OK.
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1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−2y

x
+ 6x4y2

)
dx(

2y
x

− 6x4y2
)
dx+dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = 2y
x

− 6x4y2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2y
x

− 6x4y2
)

= 2
x
− 12y x4

And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

((
2
x
− 12y x4

)
− (0)

)
= 2

x
− 12y x4

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − x

6x5y2 − 2y

(
(0)−

(
2
x
− 12y x4

))
= −6y x5 + 1

3x5y2 − y
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Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

=
(0)−

( 2
x
− 12y x4)

x
(2y

x
− 6x4y2

)
− y (1)

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
x2y2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x2y2

(
2y
x

− 6x4y2
)

= −6y x5 + 2
y x3
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And

N = µN

= 1
x2y2

(1)

= 1
x2y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−6y x5 + 2
y x3

)
+
(

1
x2y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−6y x5 + 2

y x3 dx

(3)φ = −2y x5 − 1
y x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2x3

y
− −2y x5 − 1

y2x2 + f ′(y)

= 1
x2y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x2y2

. Therefore equation (4) becomes

(5)1
x2y2

= 1
x2y2

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −2y x5 − 1
y x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−2y x5 − 1

y x2

The solution becomes

y = − 1
x2 (2x3 + c1)

Summary
The solution(s) found are the following

(1)y = − 1
x2 (2x3 + c1)
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Figure 19: Slope field plot

Verification of solutions

y = − 1
x2 (2x3 + c1)

Verified OK.

1.6.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 2y(3y x5 − 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −2y
x

+ 6x4y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = − 2
x
and f2(x) = 6x4. Let

y = −u′

f2u

= −u′

6x4u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 24x3

f1f2 = −12x3

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

6x4u′′(x)− 12x3u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
3 + c1

The above shows that
u′(x) = 3c2x2

Using the above in (1) gives the solution

y = − c2
2x2 (c2x3 + c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 1
2x2 (x3 + c3)
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Summary
The solution(s) found are the following

(1)y = − 1
2x2 (x3 + c3)

Figure 20: Slope field plot

Verification of solutions

y = − 1
2x2 (x3 + c3)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+2*y(x)/x=6*y(x)^2*x^4,y(x), singsol=all)� �

y(x) = 1
(−2x3 + c1)x2

3 Solution by Mathematica
Time used: 0.153 (sec). Leaf size: 24� �
DSolve[y'[x]+2*y[x]/x==6*y[x]^2*x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
−2x5 + c1x2

y(x) → 0
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1.7 problem HW 1 problem 13
1.7.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 90
1.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 93

Internal problem ID [7035]
Internal file name [OUTPUT/6021_Sunday_June_05_2022_04_14_09_PM_89321347/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

y2 + (2yx+ sin (y)) y′ = − cos (x)

1.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(2xy + sin (y)) dy =
(
−y2 − cos (x)

)
dx(

y2 + cos (x)
)
dx+(2xy + sin (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2 + cos (x)
N(x, y) = 2xy + sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2 + cos (x)

)
= 2y

And
∂N

∂x
= ∂

∂x
(2xy + sin (y))

= 2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2 + cos (x) dx

(3)φ = x y2 + sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2xy + sin (y). Therefore equation (4) becomes

(5)2xy + sin (y) = 2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sin (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(sin (y)) dy

f(y) = − cos (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x y2 + sin (x)− cos (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x y2 + sin (x)− cos (y)

92



Summary
The solution(s) found are the following

(1)xy2 + sin (x)− cos (y) = c1

Figure 21: Slope field plot

Verification of solutions

xy2 + sin (x)− cos (y) = c1

Verified OK.

1.7.2 Maple step by step solution

Let’s solve
y2 + (2yx+ sin (y)) y′ = − cos (x)

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2y = 2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y2 + cos (x)) dx+ f1(y)

• Evaluate integral
F (x, y) = x y2 + sin (x) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2xy + sin (y) = 2xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = sin (y)

• Solve for f1(y)
f1(y) = − cos (y)

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x y2 + sin (x)− cos (y)

• Substitute F (x, y) into the solution of the ODE
x y2 + sin (x)− cos (y) = c1

• Solve for y
y = RootOf

(
−x_Z2 + c1 + cos (_Z)− sin (x)

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve((y(x)^2+cos(x))+(2*x*y(x)+sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

xy(x)2 + sin (x)− cos (y(x)) + c1 = 0

3 Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 20� �
DSolve[(y[x]^2+Cos[x])+(2*x*y[x]+Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
xy(x)2 − cos(y(x)) + sin(x) = c1, y(x)

]
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1.8 problem HW 1 problem 14
1.8.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 96
1.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 100

Internal problem ID [7036]
Internal file name [OUTPUT/6022_Sunday_June_05_2022_04_14_13_PM_14384862/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 1 problem 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_linear]

yx+ x2y′ = 1

1.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2) dy = (−xy + 1) dx
(xy − 1) dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy − 1
N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(xy − 1)

= x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((x)− (2x))

= −1
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x
(xy − 1)

= xy − 1
x

And

N = µN

= 1
x

(
x2)

= x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

xy − 1
x

)
+ (x) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
xy − 1

x
dx

(3)φ = xy − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy − ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy − ln (x)

The solution becomes

y = ln (x) + c1
x
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Summary
The solution(s) found are the following

(1)y = ln (x) + c1
x

Figure 22: Slope field plot

Verification of solutions

y = ln (x) + c1
x

Verified OK.

1.8.2 Maple step by step solution

Let’s solve
yx+ x2y′ = 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = − y
x
+ 1

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= 1

x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x)

x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x2 dx+ c1

• Solve for y

y =
∫ µ(x)

x2 dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫ 1

x
dx+c1
x

• Evaluate the integrals on the rhs
y = ln(x)+c1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve((x*y(x)-1)+x^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = ln (x) + c1
x

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 14� �
DSolve[(x*y[x]-1)+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(x) + c1
x
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1.9 problem HW 5 problem 1(a)
1.9.1 Solving as second order linear constant coeff ode . . . . . . . . 103
1.9.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 106
1.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 112

Internal problem ID [7037]
Internal file name [OUTPUT/6023_Sunday_June_05_2022_04_14_15_PM_18084672/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 5 problem 1(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′ − 2y = 5 e2x

1.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −1, C = −2, f(x) = 5 e2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − y′ − 2y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −1, C = −2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − λ eλx − 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − λ− 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −1, C = −2 into the above gives

λ1,2 =
1

(2) (1) ±
1

(2) (1)
√

−12 − (4) (1) (−2)

= 1
2 ± 3

2
Hence

λ1 =
1
2 + 3

2

λ2 =
1
2 − 3

2

Which simplifies to
λ1 = 2
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(2)x + c2e

(−1)x

Or
y = c1e2x + c2e−x

Therefore the homogeneous solution yh is

yh = c1e2x + c2e−x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

5 e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−x, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

3A1e2x = 5 e2x

Solving for the unknowns by comparing coefficients results in[
A1 =

5
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
5x e2x
3

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2e−x

)
+
(
5x e2x
3

)
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Summary
The solution(s) found are the following

(1)y = c1e2x + c2e−x + 5x e2x
3

Figure 23: Slope field plot

Verification of solutions

y = c1e2x + c2e−x + 5x e2x
3

Verified OK.

1.9.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = −1 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9
4 (6)

Comparing the above to (5) shows that

s = 9
t = 4

Therefore eq. (4) becomes

z′′(x) = 9z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 17: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 9
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e− 3x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−

∫ 1
2

−1
1 dx

= z1e
x
2

= z1
(
ex

2
)
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Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

1 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

(
e3x
3

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x

)
+ c2

(
e−x

(
e3x
3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y′ − 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2e2x
3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 =
e2x
3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x e2x

3

d
dx
(e−x) d

dx

(
e2x
3

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
−x e2x

3

−e−x 2 e2x
3

∣∣∣∣∣∣
Therefore

W =
(
e−x

)(2 e2x
3

)
−

(
e2x
3

)(
−e−x

)
Which simplifies to

W = e−xe2x
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Which simplifies to
W = ex

Therefore Eq. (2) becomes

u1 = −
∫ 5 e4x

3
ex dx

Which simplifies to

u1 = −
∫ 5 e3x

3 dx

Hence

u1 = −5 e3x
9

And Eq. (3) becomes

u2 =
∫ 5 e−xe2x

ex dx

Which simplifies to

u2 =
∫

5dx

Hence
u2 = 5x

Therefore the particular solution, from equation (1) is

yp(x) = −5 e−xe3x
9 + 5x e2x

3

Which simplifies to

yp(x) =
5 e2x(3x− 1)

9

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e2x

3

)
+
(
5 e2x(3x− 1)

9

)
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2e2x
3 + 5 e2x(3x− 1)

9

Figure 24: Slope field plot

Verification of solutions

y = c1e−x + c2e2x
3 + 5 e2x(3x− 1)

9

Verified OK.

1.9.3 Maple step by step solution

Let’s solve
y′′ − y′ − 2y = 5 e2x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 − r − 2 = 0
• Factor the characteristic polynomial

(r + 1) (r − 2) = 0
• Roots of the characteristic polynomial

r = (−1, 2)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = e2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2e2x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 5 e2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x e2x

−e−x 2 e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 3 ex

◦ Substitute functions into equation for yp(x)

yp(x) = −5 e−x
(∫

e3xdx
)

3 + 5 e2x
(∫

1dx
)

3

◦ Compute integrals

yp(x) = 5 e2x(3x−1)
9

• Substitute particular solution into general solution to ODE

y = c1e−x + c2e2x + 5 e2x(3x−1)
9
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=5*exp(2*x),y(x), singsol=all)� �

y(x) = (5x+ 3c2) e2x
3 + c1e−x

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 31� �
DSolve[y''[x]-y'[x]-2*y[x]==5*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x + e2x

(
5x
3 − 5

9 + c2

)
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1.10 problem HW 5 problem 1(b)
1.10.1 Solving as second order linear constant coeff ode . . . . . . . . 115
1.10.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 118
1.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 123

Internal problem ID [7038]
Internal file name [OUTPUT/6024_Sunday_June_05_2022_04_14_18_PM_11508899/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 5 problem 1(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 16y = 4 cos (x)

1.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 16, f(x) = 4 cos (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 16y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

115



Where in the above A = 1, B = 0, C = 16. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + 16 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 16 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 16 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (16)

= ±4i

Hence

λ1 = +4i
λ2 = −4i

Which simplifies to
λ1 = 4i
λ2 = −4i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 4. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (4x) + c2 sin (4x))

Or
y = c1 cos (4x) + c2 sin (4x)
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Therefore the homogeneous solution yh is

yh = c1 cos (4x) + c2 sin (4x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (4x) , sin (4x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

15A1 cos (x) + 15A2 sin (x) = 4 cos (x)

Solving for the unknowns by comparing coefficients results in[
A1 =

4
15 , A2 = 0

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
4 cos (x)

15

Therefore the general solution is

y = yh + yp

= (c1 cos (4x) + c2 sin (4x)) +
(
4 cos (x)

15

)
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Summary
The solution(s) found are the following

(1)y = c1 cos (4x) + c2 sin (4x) +
4 cos (x)

15

Figure 25: Slope field plot

Verification of solutions

y = c1 cos (4x) + c2 sin (4x) +
4 cos (x)

15

Verified OK.

1.10.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 16y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16
1 (6)

Comparing the above to (5) shows that

s = −16
t = 1

Therefore eq. (4) becomes

z′′(x) = −16z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

119



Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 19: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −16 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (4x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (4x)
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Which simplifies to
y1 = cos (4x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (4x)
∫ 1

cos (4x)2
dx

= cos (4x)
(
tan (4x)

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (4x)) + c2

(
cos (4x)

(
tan (4x)

4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 16y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (4x) +
c2 sin (4x)

4
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]
While the set of the basis functions for the homogeneous solution found earlier is{

sin (4x)
4 , cos (4x)

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

15A1 cos (x) + 15A2 sin (x) = 4 cos (x)

Solving for the unknowns by comparing coefficients results in[
A1 =

4
15 , A2 = 0

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
4 cos (x)

15

Therefore the general solution is

y = yh + yp

=
(
c1 cos (4x) +

c2 sin (4x)
4

)
+
(
4 cos (x)

15

)
Summary
The solution(s) found are the following

(1)y = c1 cos (4x) +
c2 sin (4x)

4 + 4 cos (x)
15
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Figure 26: Slope field plot

Verification of solutions

y = c1 cos (4x) +
c2 sin (4x)

4 + 4 cos (x)
15

Verified OK.

1.10.3 Maple step by step solution

Let’s solve
y′′ + 16y = 4 cos (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 16 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−64
)

2

• Roots of the characteristic polynomial
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r = (−4 I, 4 I)
• 1st solution of the homogeneous ODE

y1(x) = cos (4x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (4x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (4x) + c2 sin (4x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 4 cos (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (4x) sin (4x)
−4 sin (4x) 4 cos (4x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 4
◦ Substitute functions into equation for yp(x)

yp(x) = − cos (4x)
(∫

sin (4x) cos (x) dx
)
+ sin (4x)

(∫
cos (4x) cos (x) dx

)
◦ Compute integrals

yp(x) = 4 cos(x)
15

• Substitute particular solution into general solution to ODE
y = c1 cos (4x) + c2 sin (4x) + 4 cos(x)

15
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$2)+16*y(x)=4*cos(x),y(x), singsol=all)� �

y(x) = sin (4x) c2 + cos (4x) c1 +
4 cos (x)

15

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 26� �
DSolve[y''[x]+16*y[x]==4*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4 cos(x)
15 + c1 cos(4x) + c2 sin(4x)
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1.11 problem HW 5 problem 1(c)
1.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 126
1.11.2 Solving as second order linear constant coeff ode . . . . . . . . 127
1.11.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 131
1.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 136

Internal problem ID [7039]
Internal file name [OUTPUT/6025_Sunday_June_05_2022_04_14_21_PM_78430375/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 5 problem 1(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 4y′ + 3y = 9x2 + 4

With initial conditions

[y(0) = 6, y′(0) = 8]

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −4
q(x) = 3

F = 9x2 + 4
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Hence the ode is

y′′ − 4y′ + 3y = 9x2 + 4

The domain of p(x) = −4 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 3 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = 9x2 + 4 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −4, C = 3, f(x) = 9x2 + 4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 3y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −4, C = 3. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 4λ eλx + 3 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 4λ+ 3 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −4, C = 3 into the above gives

λ1,2 =
4

(2) (1) ±
1

(2) (1)
√
−42 − (4) (1) (3)

= 2± 1

Hence
λ1 = 2 + 1
λ2 = 2− 1

Which simplifies to
λ1 = 3
λ2 = 1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(1)x

Or
y = c1e3x + c2ex

Therefore the homogeneous solution yh is

yh = c1e3x + c2ex

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]
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While the set of the basis functions for the homogeneous solution found earlier is

{ex, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A3x
2 + 3A2x− 8xA3 + 3A1 − 4A2 + 2A3 = 9x2 + 4

Solving for the unknowns by comparing coefficients results in

[A1 = 10, A2 = 8, A3 = 3]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 3x2 + 8x+ 10

Therefore the general solution is

y = yh + yp

=
(
c1e3x + c2ex

)
+
(
3x2 + 8x+ 10

)
Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e3x + c2ex + 3x2 + 8x+ 10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 6 and x = 0
in the above gives

6 = c1 + c2 + 10 (1A)
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Taking derivative of the solution gives

y′ = 3c1e3x + c2ex + 6x+ 8

substituting y′ = 8 and x = 0 in the above gives

8 = 3c1 + c2 + 8 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 2
c2 = −6

Substituting these values back in above solution results in

y = 10 + 3x2 + 2 e3x − 6 ex + 8x

Summary
The solution(s) found are the following

(1)y = 10 + 3x2 + 2 e3x − 6 ex + 8x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 10 + 3x2 + 2 e3x − 6 ex + 8x

Verified OK.
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1.11.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 4y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 21: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−

∫ 1
2

−4
1 dx
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= z1e
2x

= z1
(
e2x

)
Which simplifies to

y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4

1 dx

(y1)2
dx

= y1

∫
e4x

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex +
c2e3x
2
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is{
e3x
2 , ex

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A3x
2 + 3A2x− 8xA3 + 3A1 − 4A2 + 2A3 = 9x2 + 4

Solving for the unknowns by comparing coefficients results in

[A1 = 10, A2 = 8, A3 = 3]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 3x2 + 8x+ 10

Therefore the general solution is

y = yh + yp

=
(
c1ex +

c2e3x
2

)
+
(
3x2 + 8x+ 10

)
Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1ex +
c2e3x
2 + 3x2 + 8x+ 10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 6 and x = 0
in the above gives

6 = c1 +
c2
2 + 10 (1A)

Taking derivative of the solution gives

y′ = c1ex +
3c2e3x

2 + 6x+ 8

substituting y′ = 8 and x = 0 in the above gives

8 = c1 +
3c2
2 + 8 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −6
c2 = 4

Substituting these values back in above solution results in

y = 10 + 3x2 + 2 e3x − 6 ex + 8x

Summary
The solution(s) found are the following

(1)y = 10 + 3x2 + 2 e3x − 6 ex + 8x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 10 + 3x2 + 2 e3x − 6 ex + 8x

Verified OK.

1.11.4 Maple step by step solution

Let’s solve[
y′′ − 4y′ + 3y = 9x2 + 4, y(0) = 6, y′

∣∣∣{x=0}
= 8

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 − 4r + 3 = 0

• Factor the characteristic polynomial
(r − 1) (r − 3) = 0

• Roots of the characteristic polynomial
r = (1, 3)

• 1st solution of the homogeneous ODE
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y1(x) = ex

• 2nd solution of the homogeneous ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2e3x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 9x2 + 4

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex e3x

ex 3 e3x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2 e4x

◦ Substitute functions into equation for yp(x)

yp(x) = − ex
(∫ (

9x2+4
)
e−xdx

)
2 + e3x

(∫
e−3x(9x2+4

)
dx

)
2

◦ Compute integrals
yp(x) = 3x2 + 8x+ 10

• Substitute particular solution into general solution to ODE
y = c1ex + c2e3x + 3x2 + 8x+ 10

� Check validity of solution y = c1ex + c2e3x + 3x2 + 8x+ 10
◦ Use initial condition y(0) = 6

6 = c1 + c2 + 10
◦ Compute derivative of the solution

y′ = c1ex + 3c2e3x + 6x+ 8

◦ Use the initial condition y′
∣∣∣{x=0}

= 8

8 = c1 + 3c2 + 8
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◦ Solve for c1 and c2

{c1 = −6, c2 = 2}
◦ Substitute constant values into general solution and simplify

y = 10 + 3x2 + 2 e3x − 6 ex + 8x
• Solution to the IVP

y = 10 + 3x2 + 2 e3x − 6 ex + 8x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve([diff(y(x),x$2)-4*diff(y(x),x)+3*y(x)=9*x^2+4,y(0) = 6, D(y)(0) = 8],y(x), singsol=all)� �

y(x) = 2 e3x − 6 ex + 3x2 + 8x+ 10

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 27� �
DSolve[{y''[x]-4*y'[x]+3*y[x]==9*x^2+4,{y[0]==6,y'[0]==8}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x2 + 8x− 6ex + 2e3x + 10
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1.12 problem HW 5 problem 2
1.12.1 Solving as second order linear constant coeff ode . . . . . . . . 139
1.12.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 144
1.12.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 150

Internal problem ID [7040]
Internal file name [OUTPUT/6026_Sunday_June_05_2022_04_14_24_PM_74506284/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 5 problem 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y = tan (x)2

1.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 1, f(x) = tan (x)2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (x) + c2 sin (x))

Or
y = c1 cos (x) + c2 sin (x)
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Therefore the homogeneous solution yh is

yh = c1 cos (x) + c2 sin (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x)

y2 = sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x) sin (x)
d
dx
(cos (x)) d

dx
(sin (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x) sin (x)
− sin (x) cos (x)

∣∣∣∣∣∣
Therefore

W = (cos (x)) (cos (x))− (sin (x)) (− sin (x))
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Which simplifies to
W = cos (x)2 + sin (x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin (x) tan (x)2

1 dx

Which simplifies to

u1 = −
∫

sin (x) tan (x)2 dx

Hence

u1 = −sin (x)4

cos (x) −
(
2 + sin (x)2

)
cos (x)

And Eq. (3) becomes

u2 =
∫ cos (x) tan (x)2

1 dx

Which simplifies to

u2 =
∫

sin (x) tan (x) dx

Hence
u2 = − sin (x) + ln (sec (x) + tan (x))

Which simplifies to
u1 = − cos (x)− sec (x)

u2 = − sin (x) + ln (sec (x) + tan (x))

Therefore the particular solution, from equation (1) is

yp(x) = (− cos (x)− sec (x)) cos (x) + (− sin (x) + ln (sec (x) + tan (x))) sin (x)
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Which simplifies to

yp(x) = −2 + sin (x) ln (sec (x) + tan (x))

Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (−2 + sin (x) ln (sec (x) + tan (x)))

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x)− 2 + sin (x) ln (sec (x) + tan (x))

Figure 29: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x)− 2 + sin (x) ln (sec (x) + tan (x))

Verified OK.
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1.12.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 23: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= cos (x)

Which simplifies to
y1 = cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (x)
∫ 1

cos (x)2
dx

= cos (x) (tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x)) + c2(cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (x) + c2 sin (x)
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x)

y2 = sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x) sin (x)
d
dx
(cos (x)) d

dx
(sin (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x) sin (x)
− sin (x) cos (x)

∣∣∣∣∣∣
Therefore

W = (cos (x)) (cos (x))− (sin (x)) (− sin (x))

Which simplifies to
W = cos (x)2 + sin (x)2
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Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin (x) tan (x)2

1 dx

Which simplifies to

u1 = −
∫

sin (x) tan (x)2 dx

Hence

u1 = −sin (x)4

cos (x) −
(
2 + sin (x)2

)
cos (x)

And Eq. (3) becomes

u2 =
∫ cos (x) tan (x)2

1 dx

Which simplifies to

u2 =
∫

sin (x) tan (x) dx

Hence
u2 = − sin (x) + ln (sec (x) + tan (x))

Which simplifies to
u1 = − cos (x)− sec (x)

u2 = − sin (x) + ln (sec (x) + tan (x))

Therefore the particular solution, from equation (1) is

yp(x) = (− cos (x)− sec (x)) cos (x) + (− sin (x) + ln (sec (x) + tan (x))) sin (x)

Which simplifies to

yp(x) = −2 + sin (x) ln (sec (x) + tan (x))
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Therefore the general solution is

y = yh + yp

= (c1 cos (x) + c2 sin (x)) + (−2 + sin (x) ln (sec (x) + tan (x)))

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + c2 sin (x)− 2 + sin (x) ln (sec (x) + tan (x))

Figure 30: Slope field plot

Verification of solutions

y = c1 cos (x) + c2 sin (x)− 2 + sin (x) ln (sec (x) + tan (x))

Verified OK.
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1.12.3 Maple step by step solution

Let’s solve
y′′ + y = tan (x)2

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the homogeneous ODE
y1(x) = cos (x)

• 2nd solution of the homogeneous ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (x) + c2 sin (x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = tan (x)2

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) sin (x)
− sin (x) cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 1
◦ Substitute functions into equation for yp(x)
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yp(x) = − cos (x)
(∫

sin (x) tan (x)2 dx
)
+ sin (x)

(∫
sin (x) tan (x) dx

)
◦ Compute integrals

yp(x) = −2 + sin (x) ln (sec (x) + tan (x))
• Substitute particular solution into general solution to ODE

y = c1 cos (x) + c2 sin (x)− 2 + sin (x) ln (sec (x) + tan (x))

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)+y(x)=tan(x)^2,y(x), singsol=all)� �

y(x) = sin (x) c2 + cos (x) c1 − 2 + sin (x) ln (sec (x) + tan (x))

3 Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 23� �
DSolve[y''[x]+y[x]==Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)arctanh(sin(x)) + c1 cos(x) + c2 sin(x)− 2
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1.13 problem HW 5 problem 5
1.13.1 Solution using Matrix exponential method . . . . . . . . . . . . 152
1.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 153

Internal problem ID [7041]
Internal file name [OUTPUT/6027_Sunday_June_05_2022_04_14_26_PM_26900985/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 5 problem 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = −2x(t) + 3y(t)
y′(t) = −2x(t) + 5y(t)

With initial conditions
[x(0) = −2, y(0) = 1]

1.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 −2 3
−2 5

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 6 e−t

5 − e4t
5

3 e4t
5 − 3 e−t

5

−2 e4t
5 + 2 e−t

5 − e−t

5 + 6 e4t
5
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 6 e−t

5 − e4t
5

3 e4t
5 − 3 e−t

5

−2 e4t
5 + 2 e−t

5 − e−t

5 + 6 e4t
5

 −2
1


=

 −3 e−t + e4t

2 e4t − e−t


Since no forcing function is given, then the final solution is ~xh(t) above.

1.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 −2 3
−2 5

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −2 3
−2 5

− λ

 1 0
0 1

 = 0

Therefore

det

 −2− λ 3
−2 5− λ

 = 0

Which gives the characteristic equation

λ2 − 3λ− 4 = 0
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The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 3
−2 5

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 3

−2 6

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 3 0

−2 6 0



R2 = R2 − 2R1 =⇒

−1 3 0
0 0 0


Therefore the system in Echelon form is −1 3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 3t}
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Hence the solution is  3t
t

 =

 3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

t

 = t

 3
1


Let t = 1 the eigenvector becomes  3t

t

 =

 3
1


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 3
−2 5

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 −6 3

−2 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −6 3 0

−2 1 0



R2 = R2 −
R1

3 =⇒

−6 3 0
0 0 0


Therefore the system in Echelon form is −6 3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t

2

}
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Hence the solution is  t
2

t

 =

 t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

2

t

 = t

 1
2

1


Let t = 1 the eigenvector becomes  t

2

t

 =

 1
2

1


Which is normalized to  t

2

t

 =

 1
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No

 3
1



4 1 1 No

 1
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=

 3
1

 e−t

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
4t

=

 1
2

1

 e4t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 3 e−t

e−t

+ c2

 e4t
2

e4t


Which becomes  x(t)

y(t)

 =

 3c1e−t + c2e4t
2

c1e−t + c2e4t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x(0) = −2

y(0) = 1

 (1)

Substituting initial conditions into the above solution at t = 0 gives −2
1

 =

 3c1 + c2
2

c1 + c2


Solving for the constants of integrations gives c1 = −1

c2 = 2
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Substituting these constants back in original solution in Eq. (1) gives

 x(t)
y(t)

 =

 −3 e−t + e4t

2 e4t − e−t


The following is the phase plot of the system.

Figure 31: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve([diff(x(t),t) = -2*x(t)+3*y(t), diff(y(t),t) = -2*x(t)+5*y(t), x(0) = -2, y(0) = 1], singsol=all)� �

x(t) = −3 e−t + e4t

y(t) = −e−t + 2 e4t

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 36� �
DSolve[{x'[t]==-2*x[t]+3*y[t],y'[t]==-2*x[t]+5*y[t]},{x[0]==-2,y[0]==1},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → e−t
(
e5t − 3

)
y(t) → e−t

(
2e5t − 1

)
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1.14 problem HW 5 problem 6
1.14.1 Solution using Matrix exponential method . . . . . . . . . . . . 160
1.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 161

Internal problem ID [7042]
Internal file name [OUTPUT/6028_Sunday_June_05_2022_04_14_28_PM_70078692/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 5 problem 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = −x(t) + 4y(t)
y′(t) = 2x(t)− 3y(t)

With initial conditions
[x(0) = 3, y(0) = 0]

1.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 −1 4
2 −3

  x(t)
y(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 (
2 e6t+1

)
e−5t

3
2
(
e6t−1

)
e−5t

3(
e6t−1

)
e−5t

3

(
e6t+2

)
e−5t

3
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 (
2 e6t+1

)
e−5t

3
2
(
e6t−1

)
e−5t

3(
e6t−1

)
e−5t

3

(
e6t+2

)
e−5t

3

 3
0


=

 (2 e6t + 1) e−5t

(e6t − 1) e−5t


Since no forcing function is given, then the final solution is ~xh(t) above.

1.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′(t)
y′(t)

 =

 −1 4
2 −3

  x(t)
y(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −1 4
2 −3

− λ

 1 0
0 1

 = 0

Therefore

det

 −1− λ 4
2 −3− λ

 = 0

Which gives the characteristic equation

λ2 + 4λ− 5 = 0
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The roots of the above are the eigenvalues.

λ1 = 1
λ2 = −5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

−5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 4
2 −3

− (−5)

 1 0
0 1

 v1

v2

 =

 0
0


 4 4

2 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 4 4 0

2 2 0



R2 = R2 −
R1

2 =⇒

4 4 0
0 0 0


Therefore the system in Echelon form is 4 4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}
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Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 4
2 −3

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 −2 4

2 −4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2 4 0

2 −4 0



R2 = R2 +R1 =⇒

−2 4 0
0 0 0


Therefore the system in Echelon form is −2 4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No

 2
1



−5 1 1 No

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=

 2
1

 et
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Since eigenvalue −5 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−5t

=

 −1
1

 e−5t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 2 et

et

+ c2

 −e−5t

e−5t


Which becomes  x(t)

y(t)

 =

 (2c1e6t − c2) e−5t

(c1e6t + c2) e−5t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x(0) = 3

y(0) = 0

 (1)

Substituting initial conditions into the above solution at t = 0 gives 3
0

 =

 2c1 − c2

c1 + c2


Solving for the constants of integrations gives c1 = 1

c2 = −1


Substituting these constants back in original solution in Eq. (1) gives

 x(t)
y(t)

 =

 (2 e6t + 1) e−5t

(e6t − 1) e−5t
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The following is the phase plot of the system.

Figure 32: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve([diff(x(t),t) = -x(t)+4*y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = 3, y(0) = 0], singsol=all)� �

x(t) = 2 et + e−5t

y(t) = et − e−5t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 30� �
DSolve[{x'[t]==-x[t]+4*y[t],y'[t]==2*x[t]-3*y[t]},{x[0]==3,y[0]==0},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → e−5t + 2et

y(t) → et − e−5t
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1.15 problem HW 5 problem 7
1.15.1 Solution using Matrix exponential method . . . . . . . . . . . . 168
1.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 170
1.15.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 175

Internal problem ID [7043]
Internal file name [OUTPUT/6029_Sunday_June_05_2022_04_14_30_PM_69169982/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: HW 5 problem 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = 2x(t)− y(t)
y′(t) = −x(t) + 2y(t) + 4 et

1.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′(t)
y′(t)

 =

 2 −1
−1 2

  x(t)
y(t)

+

 0
4 et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation

168



of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 et
2 + e3t

2 − e3t
2 + et

2

− e3t
2 + et

2
et
2 + e3t

2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 et
2 + e3t

2 − e3t
2 + et

2

− e3t
2 + et

2
et
2 + e3t

2

 c1

c2


=


(

et
2 + e3t

2

)
c1 +

(
− e3t

2 + et
2

)
c2(

− e3t
2 + et

2

)
c1 +

(
et
2 + e3t

2

)
c2


=

 (c1−c2)e3t
2 + et(c1+c2)

2
(c2−c1)e3t

2 + et(c1+c2)
2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 e−3t(e2t+1
)

2
e−3t(e2t−1

)
2

e−3t(e2t−1
)

2
e−3t(e2t+1

)
2


Hence

~xp(t) =

 et
2 + e3t

2 − e3t
2 + et

2

− e3t
2 + et

2
et
2 + e3t

2

∫  e−3t(e2t+1
)

2
e−3t(e2t−1

)
2

e−3t(e2t−1
)

2
e−3t(e2t+1

)
2

 0
4 et

 dt

=

 et
2 + e3t

2 − e3t
2 + et

2

− e3t
2 + et

2
et
2 + e3t

2

 2t+ e−2t

2t− e−2t


=

 et(2t+ 1)
et(−1 + 2t)
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 (c1−c2)e3t
2 + 2 et

(
t+ c1

4 + c2
4 + 1

2

)
(c2−c1)e3t

2 + 2 et
(
t+ c1

4 + c2
4 − 1

2

)


1.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′(t)
y′(t)

 =

 2 −1
−1 2

  x(t)
y(t)

+

 0
4 et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 2 −1
−1 2

− λ

 1 0
0 1

 = 0

Therefore

det

 2− λ −1
−1 2− λ

 = 0

Which gives the characteristic equation

λ2 − 4λ+ 3 = 0
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The roots of the above are the eigenvalues.

λ1 = 1
λ2 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 −1
−1 2

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 1 −1

−1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  1 −1 0

−1 1 0



R2 = R2 +R1 =⇒

1 −1 0
0 0 0


Therefore the system in Echelon form is 1 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


Considering the eigenvalue λ2 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 −1
−1 2

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 −1

−1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 −1 0

−1 −1 0



R2 = R2 −R1 =⇒

−1 −1 0
0 0 0


Therefore the system in Echelon form is −1 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}
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Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No

 1
1



3 1 1 No

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=

 1
1

 et
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Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
3t

=

 −1
1

 e3t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 et

et

+ c2

 −e3t

e3t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 et −e3t

et e3t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 e−t

2
e−t

2

− e−3t

2
e−3t

2
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Hence

~xp(t) =

 et −e3t

et e3t

∫  e−t

2
e−t

2

− e−3t

2
e−3t

2

 0
4 et

 dt

=

 et −e3t

et e3t

∫  2
2 e−2t

 dt

=

 et −e3t

et e3t

 2t
−e−2t


=

 et(2t+ 1)
et(−1 + 2t)


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x(t)
y(t)

 =

 c1et

c1et

+

 −c2e3t

c2e3t

+

 et(2t+ 1)
et(−1 + 2t)


Which becomes  x(t)

y(t)

 =

 2 ett+ c1et − c2e3t + et

c2e3t + 2 et
(
t+ c1

2 − 1
2

)


1.15.3 Maple step by step solution

Let’s solve
[x′(t) = 2x(t)− y(t) , y′(t) = −x(t) + 2y(t) + 4 et]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 2 −1
−1 2

 · →x(t) +

 0
4 et
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• System to solve

→
x
′
(t) =

 2 −1
−1 2

 · →x(t) +

 0
4 et


• Define the forcing function

→
f (t) =

 0
4 et


• Define the coefficient matrix

A =

 2 −1
−1 2


• Rewrite the system as

→
x
′
(t) = A · →x(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A1,

 1
1

 ,

3,
 −1

1


• Consider eigenpair1,

 1
1


• Solution to homogeneous system from eigenpair

→
x1 = et ·

 1
1


• Consider eigenpair3,

 −1
1


• Solution to homogeneous system from eigenpair

→
x2 = e3t ·

 −1
1
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• General solution of the system of ODEs can be written in terms of the particular solution →
xp(t)

→
x(t) = c1

→
x1 + c2

→
x2 +

→
xp(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =

 et −e3t

et e3t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =

 et −e3t

et e3t

 · 1 1 −1
1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =

 et
2 + e3t

2 − e3t
2 + et

2

− e3t
2 + et

2
et
2 + e3t

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→
xp(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→
x
′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
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→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→
xp(t) = Φ(t) ·

(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
xp(t) =

 2 ett− e3t + et

e3t + et(−1 + 2t)


• Plug particular solution back into general solution

→
x(t) = c1

→
x1 + c2

→
x2 +

 2 ett− e3t + et

e3t + et(−1 + 2t)


• Substitute in vector of dependent variables x(t)

y(t)

 =

 (−c2 − 1) e3t + 2 et
(
t+ c1

2 + 1
2

)
(c2 + 1) e3t + 2 et

(
t+ c1

2 − 1
2

)


• Solution to the system of ODEs{
x(t) = (−c2 − 1) e3t + 2 et

(
t+ c1

2 + 1
2

)
, y(t) = (c2 + 1) e3t + 2 et

(
t+ c1

2 − 1
2

)}
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
dsolve([diff(x(t),t)=2*x(t)-y(t),diff(y(t),t)=-x(t)+2*y(t)+4*exp(t)],singsol=all)� �

x(t) = c2et + c1e3t + 2 ett
y(t) = c2et − c1e3t + 2 ett− 2 et
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3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 74� �
DSolve[{x'[t]==2*x[t]-y[t],y'[t]==-x[t]+2*y[t]+4*Exp[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → 1
2e

t
(
4t+ c1

(
e2t + 1

)
− c2e

2t + 2 + c2
)

y(t) → 1
2e

t
(
4t− c1e

2t + c2e
2t − 2 + c1 + c2

)
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1.16 problem Example 8.3.4 from Handout chapter 8.2
1.16.1 Solution using Matrix exponential method . . . . . . . . . . . . 180
1.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 182
1.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 187

Internal problem ID [7044]
Internal file name [OUTPUT/6030_Sunday_June_05_2022_04_14_32_PM_41096389/index.tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota
Problem number: Example 8.3.4 from Handout chapter 8.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′(t) = 6x(t)− 7y(t) + 10
y′(t) = x(t)− 2y(t)− 2 et

1.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′(t)
y′(t)

 =

 6 −7
1 −2

  x(t)
y(t)

+

 10
−2 et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 − e−t

6 + 7 e5t
6 −7 e5t

6 + 7 e−t

6
e5t
6 − e−t

6
7 e−t

6 − e5t
6


Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 − e−t

6 + 7 e5t
6 −7 e5t

6 + 7 e−t

6
e5t
6 − e−t

6
7 e−t

6 − e5t
6

 c1

c2


=


(
− e−t

6 + 7 e5t
6

)
c1 +

(
−7 e5t

6 + 7 e−t

6

)
c2(

e5t
6 − e−t

6

)
c1 +

(
7 e−t

6 − e5t
6

)
c2


=

 (−c1+7c2)e−t

6 + 7(c1−c2)e5t
6

(−c1+7c2)e−t

6 + (c1−c2)e5t
6


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 −
(
e6t−7

)
e−5t

6
7
(
e6t−1

)
e−5t

6

−
(
e6t−1

)
e−5t

6

(
7 e6t−1

)
e−5t

6


Hence

~xp(t) =

 − e−t

6 + 7 e5t
6 −7 e5t

6 + 7 e−t

6
e5t
6 − e−t

6
7 e−t

6 − e5t
6

∫  −
(
e6t−7

)
e−5t

6
7
(
e6t−1

)
e−5t

6

−
(
e6t−1

)
e−5t

6

(
7 e6t−1

)
e−5t

6

 10
−2 et

 dt

=

 − e−t

6 + 7 e5t
6 −7 e5t

6 + 7 e−t

6
e5t
6 − e−t

6
7 e−t

6 − e5t
6


 −

7 e−5t
(
2 e7t+ 20 e6t

7 +et+4
)

12

−
(
14 e7t+20 e6t+et+4

)
e−5t

12


=

 −4− 7 et
4

−2− 5 et
4
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 (−c1+7c2)e−t

6 + 7(c1−c2)e5t
6 − 4− 7 et

4
(−c1+7c2)e−t

6 + (c1−c2)e5t
6 − 2− 5 et

4


1.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′(t)
y′(t)

 =

 6 −7
1 −2

  x(t)
y(t)

+

 10
−2 et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 6 −7
1 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 6− λ −7
1 −2− λ

 = 0

Which gives the characteristic equation

λ2 − 4λ− 5 = 0
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The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 6 −7
1 −2

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 7 −7

1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 7 −7 0

1 −1 0



R2 = R2 −
R1

7 =⇒

7 −7 0
0 0 0


Therefore the system in Echelon form is 7 −7

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

183



Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


Considering the eigenvalue λ2 = 5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 6 −7
1 −2

− (5)

 1 0
0 1

 v1

v2

 =

 0
0


 1 −7

1 −7

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 −7 0

1 −7 0



R2 = R2 −R1 =⇒

1 −7 0
0 0 0


Therefore the system in Echelon form is 1 −7

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 7t}
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Hence the solution is  7t
t

 =

 7t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 7t

t

 = t

 7
1


Let t = 1 the eigenvector becomes  7t

t

 =

 7
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No

 1
1



5 1 1 No

 7
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=

 1
1

 e−t
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Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
5t

=

 7
1

 e5t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x(t)
y(t)

 = c1

 e−t

e−t

+ c2

 7 e5t

e5t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 e−t 7 e5t

e−t e5t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 − et
6

7 et
6

e−5t

6 − e−5t

6
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Hence

~xp(t) =

 e−t 7 e5t

e−t e5t

∫  − et
6

7 et
6

e−5t

6 − e−5t

6

 10
−2 et

 dt

=

 e−t 7 e5t

e−t e5t

∫  −5 et
3 − 7 e2t

3
5 e−5t

3 + e−4t

3

 dt

=

 e−t 7 e5t

e−t e5t

 −7 e2t
6 − 5 et

3

− e−4t

12 − e−5t

3


=

 −4− 7 et
4

−2− 5 et
4


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x(t)
y(t)

 =

 c1e−t

c1e−t

+

 7c2e5t

c2e5t

+

 −4− 7 et
4

−2− 5 et
4


Which becomes  x(t)

y(t)

 =

 c1e−t + 7c2e5t − 4− 7 et
4

c1e−t + c2e5t − 2− 5 et
4


1.16.3 Maple step by step solution

Let’s solve
[x′(t) = 6x(t)− 7y(t) + 10, y′(t) = x(t)− 2y(t)− 2 et]

• Define vector

→
x(t) =

 x(t)
y(t)


• Convert system into a vector equation

→
x
′
(t) =

 6 −7
1 −2

 · →x(t) +

 10
−2 et
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• System to solve

→
x
′
(t) =

 6 −7
1 −2

 · →x(t) +

 10
−2 et


• Define the forcing function

→
f (t) =

 10
−2 et


• Define the coefficient matrix

A =

 6 −7
1 −2


• Rewrite the system as

→
x
′
(t) = A · →x(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1,

 1
1

 ,

5,
 7

1


• Consider eigenpair−1,

 1
1


• Solution to homogeneous system from eigenpair

→
x1 = e−t ·

 1
1


• Consider eigenpair5,

 7
1


• Solution to homogeneous system from eigenpair

→
x2 = e5t ·

 7
1
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• General solution of the system of ODEs can be written in terms of the particular solution →
xp(t)

→
x(t) = c1

→
x1 + c2

→
x2 +

→
xp(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =

 e−t 7 e5t

e−t e5t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =

 e−t 7 e5t

e−t e5t

 · 1 1 7
1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =

 − e−t

6 + 7 e5t
6 −7 e5t

6 + 7 e−t

6
e5t
6 − e−t

6
7 e−t

6 − e5t
6


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→
xp(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→
x
′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
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→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→
xp(t) = Φ(t) ·

(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
xp(t) =

 −7 et
4 − 4 + 17 e−t

6 + 35 e5t
12

5 e5t
12 − 5 et

4 − 2 + 17 e−t

6


• Plug particular solution back into general solution

→
x(t) = c1

→
x1 + c2

→
x2 +

 −7 et
4 − 4 + 17 e−t

6 + 35 e5t
12

5 e5t
12 − 5 et

4 − 2 + 17 e−t

6


• Substitute in vector of dependent variables x(t)

y(t)

 =

 (12c1+34)e−t

12 + (84c2+35)e5t
12 − 7 et

4 − 4
(12c1+34)e−t

12 + (5+12c2)e5t
12 − 5 et

4 − 2


• Solution to the system of ODEs{

x(t) = (12c1+34)e−t

12 + (84c2+35)e5t
12 − 7 et

4 − 4, y(t) = (12c1+34)e−t

12 + (5+12c2)e5t
12 − 5 et

4 − 2
}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
dsolve([diff(x(t),t)=6*x(t)-7*y(t)+10,diff(y(t),t)=x(t)-2*y(t)-2*exp(t)],singsol=all)� �

x(t) = c2e5t + e−tc1 −
7 et
4 − 4

y(t) = c2e5t
7 + e−tc1 −

5 et
4 − 2
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3 Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 90� �
DSolve[{x'[t]==6*x[t]-7*y[t]+10,y'[t]==x[t]-2*y[t]-2*Exp[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]� �

x(t) → −7et
4 − 1

6(c1 − 7c2)e−t + 7
6(c1 − c2)e5t − 4

y(t) → −5et
4 − 1

6(c1 − 7c2)e−t + 1
6(c1 − c2)e5t − 2
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