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Internal problem ID [7029]
Internal file name [OUTPUT/6015_Sunday_June_05_2022_04_13_50_PM_75535427/index . tex]

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota,

Problem number: HW 1 problem 6(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

' Y
_ =0
Y Zhn (x)
1.1.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
_ Yy
zIn (z)



Where f(r) = —— and g(y) = y. Integrating both sides gives

zIn(x)

1

;dy_:cln(x) dz

1 1
/;dy_/xln(x)dx

In(y) =ln(ln(z)) + ¢

Y

— eln(ln(x))—i—cl

= ¢ In(x)

Summary
The solution(s) found are the following

y=-cln(z)
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Figure 1: Slope field plot

Verification of solutions

y=c In(z)

Verified OK.



1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
@) =-—0
P zIn (z)
q(z) =0
Hence the ode is
Y
/ — =
Y (x) 0
The integrating factor u is
l’L — ef_zln(:z:)d'z
1
~ In(z)
The ode becomes
=0
d( v \_,
dz \ In (z)
Integrating gives
vy _ _ c
In(z)

Dividing both sides by the integrating factor u = ﬁ

y=cln(x)

Summary
The solution(s) found are the following

y=c ln(x)



NN NN NN

J 77
S

——a—a s

NN~

-~- ._._._._ish\\\ //(((,_—‘_—‘_—‘_—-‘—-

s
N -

T—————————— \\—— . ...

I
W

I
0o

(.
—_
=
—_

Figure 2: Slope field plot

Verification of solutions

y=c n(z)
Verified OK.

1.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

v (z) z + u(z) — 11;((9;)) =0
In canonical form the ODE is
u' = F(z,u)
= f(z)g(u)
_ _u(ln(z) — 1)
zln (x)



Where f(z) = —h@-1 4nd g(u) = u. Integrating both sides gives

zIn(z)
ldu _ _In(z) -1
u zln (x)

/%duz/—%dm

In(u)=—In(z)+1In(In(z)) + ¢
z)+In(In(z))+c2

dx

u=e
= cye~ @) +in(in())
Which simplifies to
_ cIn(2)

u(z)

x
Therefore the solution vy is
Y =zU
= ¢y ln ()

Summary
The solution(s) found are the following

y=cyln(x)
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Figure 3: Slope field plot



Verification of solutions

y = cyln(z)
Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —wg€ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e/ (=D f@)dzyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz

The above table shows that

£(z,y) =0

n(z,y) =In(z)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the




canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
Sz/—dy
n
_ 1

/ I () Y

Y

In (z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ Y
LU(.'I?, y) - zln (.’I))
Evaluating all the partial derivatives gives
R, =1
Ry=0
Y
Sy =—
In(z)z
1
5= (@)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0

10



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

y _
In(z) “
Which simplifies to
vy _ _
n(z)
Which gives
y=cIn(x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

- . . : ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R,5)

transformation

_Yy a8 _
Tz zIn(z) dR

'S

Pt ad
Pt tad 24
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Summary
The solution(s) found are the following

y=cln(x) (1)

11
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Figure 4: Slope field plot

Verification of solutions

Verified OK.

y=c n(z)

1.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) — =0

dz

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d

%Qb(xay) =0
op  O¢dy _,
or  Oydx

12



Comparing (A,B) shows that

o¢
M
ox
o¢
T _N
Ay
But since % = % then for the above to be valid, we require that
0y yOx
oM _ oN
oy  Ox

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
2 2
8‘5; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

1 1
(<2 ) do+ () aw=o0 (2A)
Comparing (1A) and (2A) shows that

M(.’E,y)=—

1
N(z,y) = -
(z.9) =7

zln (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

oM _o( 1)
oy Oy\ zln(z)

Using result found above gives

13



And

oN _ 0 (1
or Ox\y

=0
Since %—A; = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
e (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

%dx:/de
ox

op . 1
%dx B /_atln(:c) de
¢ =—In(ln(z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢

A 4

=0+ @
But equation (2) says that g—z = % Therefore equation (4) becomes

1 /

, = 0w (5)

Solving equation (5) for f'(y) gives
1
flly) =~
W)=

Integrating the above w.r.t y gives

[row=[(5)e

fly)=In(y) +a

14



Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢=—In(In(z))+In(y) +c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢ = —In(In(z)) + In ()

The solution becomes
y =€ In(z)

Summary
The solution(s) found are the following

y = e In(z) (1)
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Figure 5: Slope field plot

Verification of solutions

y =€ 1n(z)

Verified OK.

15



1.1.6 Maple step by step solution

Let’s solve
R
Y zln(z) — 0

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
Y 1

y ~ zln(x)

. Integrate both sides with respect to x
f%dmzfﬁ(x)dx+cl

° Evaluate integral
In(y) =In(ln(z)) + ¢

° Solve for y

y =¢e%In(z)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

Ldsolve (diff (y(x) ,x)=y(x)/(x*1n(x)),y(x), singsol=all)

y(z) = c11n (z)

16



v/ Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 15

-

kDSolve [y' [x]==y[x]/(x*Log[x]),y[x],x,IncludeSingularSolutions -> True]

—

y(x) — c1log(x)
y(x) =0

17



1.2 problem HW 1 problem 6(b)

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

Internal problem

Existence and uniqueness analysis . . . . . . ... ... ... .. 18]
Solving as separableode . . . . . . ... ... oL, 19|
Solving as first order ode lie symmetry lookup ode . . . . . .. 21
Solving asexactode . . . .. ... .. .. ... ......... 251
Solving asriccatiode . . . . . . .. ... ... L oL 29
Maple step by step solution . . . . ... .. ... ... ... .. 31
ID [7030]

Internal file name [QUTPUT/6016_Sunday_June_05_2022_04_13_53_PM_47177539/index. tex]

Book: Selected problems from homeworks from different courses
Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota,

Problem number: HW 1 problem 6(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the
[_separablel

following as the ode type

With initial conditions

1.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)
y?+1
z2+1

The = domain of f(z,y) when y =1 is

{—c0 <z < o0}

18



And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—o00 <y < oo}

And the point yy = 1 is inside this domain. Now we will look at the continuity of

of 0 ( y*+1

55‘&X}ﬂ+1)
%
__x2—|-1

The z domain of % when y =1 is
{—00 <z < o0}

And the point zo = 0 is inside this domain. The y domain of %5 when z = 0 is
{—o0 <y < o0}

And the point yy = 1 is inside this domain. Therefore solution exists and is unique.

1.2.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
_y-l
o241

Where f(z) = z2—1+1 and g(y) = —y? — 1. Integrating both sides gives

1]
—y? -1 y_x2+1

1 1
/_y2_1dy=/w2+1dx

— arctan (y) = arctan (z) + ¢

dz

Which results in
y = — tan (arctan (z) + ¢;)

19



Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = —tan(c)

™
Ci = ——

4

Substituting ¢; found above in the general solution gives

_ 1—z
vy= 1+2x
Summary
The solution(s) found are the following
1—2z
= 1
Y71 + 2z (1)
3 NNV VLY
4 NANNN VYL
AANNNNN N
3 SONNNNN Y
~SNNONNNN
2 29 ~~~>~NN\\ L\
1 B an NN N N N RN N NN e e
\\\\\\ SN
0 0 ———
ﬂﬂﬂﬂﬂﬂ SOOI NS
y(x) —1 y(x) R N N N N N N N N
— 2 — 29~~~ N\ \{
SN
-3 SN
—4NNNN
-4 NANNV YL
—5 NNV LY
=67\ NV VAV VL
— 67 NAYVL VLY
] VWAL
-2 -1 0 1 2 3 -3 -2 -1
(a) Solution plot (b) Slope field plot
Verification of solutions
_ 1—=x
y_1+x

Verified OK.

20



1.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

) y?+1
Y =—=
2 +1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - é.m) - w2€y - sz —Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(x)

Q

o— [ bf(@)de—h(z)
9(z)

f(w)e_ Jof (z)dz—h(z)
g(x)

polynomial type ode

/ _ a1zt+bhiyta
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—ascr

a1b2—azby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e~ f(n—l)f(w)d:cyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz

21




The above table shows that

E(r,y) =22 +1
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S:/—da:
§
1
_/xz—i-ldx

S = arctan ()

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Y’ +1
x2+1

w(m’ y) =

22



Evaluating all the partial derivatives gives

R,=0
R,=1

1
Sx_xz—l—l
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
T (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

a _ 1
dR  R2+1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —arctan (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

arctan () = —arctan (y) + ¢;
Which simplifies to

arctan (z) = — arctan (y) + ¢
Which gives

y = tan (— arctan (z) + ¢)

23



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ _y’+l s _ _ _1_
de = z241 dR — = RZH1

AV T O A N A W U VR NN SIS ¥ D
A A \J ; L j‘, j‘, L L \13‘\‘\\\\ ——p——s—b—a—awa [\ M w—a—s——b—>—>—b
~N NN\ \ ; L j‘, 4)7 j‘, L ; \ ARV VO VN ——s—s—s—b—a—aw N %\ e —a——b——>—b
\\\\\\\q \4 i i t i i \\\\\\\ ——s—s—p—s—a—aa N [\ M
O YN N N e ——b—s—b—p NN s
\“\\\\\y\xxé VAL LY N e ﬂﬂﬂ»ﬂﬁ&,\\\\\s\sﬂﬂwﬂﬂa
i e O R %‘ x A e bbb —b b ~aNa ‘2{\ Na A bbb
N e Y T T e ——p—s—a—b—a—waa [\ M
——e—p—r——aa N 4\ N e S = arctan (IL‘) b ~a “a N/ Na b bbb
e T A T ——s—s—p—s—a—aaa [\ M
——a~a~a~aa X\ \_% VLN N e A
=~ N Ny Y [ o s~ a N N[\ N m—s s>
S S O A N A e B B e e R N s a |\ N a bbb
VO N R VN S A A A W N W NN VN e N\ e e
~N NN NN Y \, L_4L j‘, \, VNN N e —— s~ Nt e e —>—>
A T ; ; L j, j, L L \,\‘\q\\\\. ——s—s—p—s—a—aaa [\ M
VU VUV N VS S S A N A A W VR N NN T N

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 =tan(c)

Ci = —

m
4

Substituting c¢; found above in the general solution gives

Y

Summary
The solution(s) found are the following

Y

1—=zx
1+z

1—=2z
14+x

24




s I R
RRARAAA AR EERERERRARR RN
-3 SOONNAN LY L VAN
SANANNNV AL L LRV VNN
4 A AR EEEEREEERRRN
_s AR RERE AR ERERR RN
SENNVVV LR LRV VYV NN
—61 NAYVYVLELERLEE RV LYV VN
_ VAYVY LV LRV
-2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(a) Solution plot (b) Slope field plot
Verification of solutions
11—z
y_1+w
Verified OK.
1.2.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy
M(z,y) + N(z,y) %2 = 0 (4)

dx
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Yy _
ox  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

o =V

25



But since 22 _ ¢

Bay = Byds then for the above to be valid, we require that

oM _on
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

1 1
(z7=1) = ()

(—z2i_1>dx+(_y21_1)dy=0 (24)

Comparing (1A) and (2A) shows that

Therefore

M(xay) :_1112+1
1

Nz,y) = ———
(x’y) _y2_1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

oM_o( 1
oy Oy\ 2241

Using result found above gives

ON _ 0 ( 1
oxr Oz \—y2—1

=0

And
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Since %M = 5. N then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢

=M (1)
¢
oy =V 2)

Integrating (1) w.r.t. z gives

/%dx=/de

a¢ /_ 1 d
893 2 +1 o

¢ = —arctan (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

09
= 4

5y~ 0 tW) (4)
But equation (2) says that a¢ = ) becomes

=0+ () )

—y2—1 - y
Solving equation (5) for f'(y) gives
1
! — —

Integrating the above w.r.t y gives

/f dy_/( 2+1>dy

f(y) = —arctan (y) + c

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢ = —arctan (z) — arctan (y) + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

c1 = — arctan (z) — arctan (y)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

T
4
m
Ci = ——
4

Substituting c¢; found above in the general solution gives

—arctan () — arctan (y) = _T

Solving for y from the above gives

m
y = cot <arctan (z) + Z>

Summary
The solution(s) found are the following

y = cot <arctan (x) + —)

1)

5
4-
3-
2_
1-
0-
y(x) —1
. RN
MYV VLV VNN
—3 A EEEEREERRRR
—ANNNNN VL LYV VNN
—4 NSNANNYAV Y VPRV VNN
_s NAYNMVYVV RPN
NNV VLR VYN N
—61 NYVYVL LR LRV VN
s MAYVVVL LR R RV VvV
-2 1 0 1 2 3 23 Sy o ' 2 3

(a) Solution plot
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Verification of solutions

y = cot (arctan (z) + —)
Verified OK.

1.2.5 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)
__y+l
o ox241
This is a Riccati ODE. Comparing the ODE to solve
) = y’ 1

241 2241
With Riccati ODE standard form

y' = folz) + fi(z)y + fo(z)y?

Shows that fo(x) = —m2—1+1, fi(z) =0 and fo(z) = —w21+1. Let
. fau
i 1)
241

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) = (fo + fufa) v/ (z) + f3 fou(z) = 0 (2)
But
;L 2x
1= (22 +1)°
fifa=0
20 _ 1
fafo= (2% + 1)3

Substituting the above terms back in equation (2) gives

u'(z)  2zu(z)  u(z)

T2+l (22417 @2+1)7°
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Solving the above ODE (this ode solved using Maple, not this program), gives

T+ ¢

W=

The above shows that

, —CT + ¢
u(r) = —"75
@2+ 1)}
Using the above in (1) gives the solution
_ —CT+C
o 1T + ¢

Dividing both numerator and denominator by c; gives, after renaming the constant
£ = c3 the following solution

c1

C3 — T
csx+1

Y

Initial conditions are used to solve for cs. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=C3

C3=].

Substituting cs found above in the general solution gives

oz —1
v= 1+z
Summary
The solution(s) found are the following
rz—1
= — 1
y 1+z (1)
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Verification of solutions

—21 \\\\\\\\ \ \ \‘ \ \q\\\\\\\
RRARAAARAREERERRRAR R R
ARARMAREREEEEERRRARRRE
SANANNNV AL L LRV VNN
AR EEEEEEEEERRRRN
NMARREREEE R R RN
NNV LRV RV VAN
NMYVVVLEEE RV VN
MAVVVVL R R R RV
2 -1 0 23 302 S0 1 2 3
(a) Solution plot (b) Slope field plot
z—1
Yy=-

Verified OK.

1.2.6

Let’s solve

[(e*+ 1)y +y*=-1,y(0) =1]

Maple step by step solution

° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
Yy 1
—y2—1 z2+1
° Integrate both sides with respect to x
Ik _yyz'_ldx =/ Zdr +c

° Evaluate integral

—arctan (y) = arctan (z) + ¢;
Solve for y
y = —tan (arctan (z) + ¢1)
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o Use initial condition y(0) =1

1=—tan(c)
° Solve for ¢;
e =—7
° Substitute ¢; = —7 into general solution and simplify

™

y = cot (arctan (z) + Z)
° Solution to the IVP
y = cot (arctan (z) + )

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 11

Ldsolve([(x“2+1)*diff(y(x),x)+y(x)“2=—1,y(0) = 1],y(x), singsol=all) J

y(z) = cot (arctan (z) + %)

v/ Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 14

LDSolve[{(x“2+1)*y'[x]+y[x]‘2==—1,{y[0]==1}},y[x],x,IncludeSingularSolutions -f True]

y(z) — cot (arctan(m) + %)
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1.3 problem HW 1 problem 7(a)

1.3.1 Solving aslinearode . . . . . .. ... ... ... ... ... [33]
1.3.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 351
1.3.3 Solvingasexactode . .. ... ... ... .. .......... 391
1.3.4 Maple step by step solution . . . . .. ... ... ... ..... 44

Internal problem ID [7031]
Internal file name [OUTPUT/6017_Sunday_June_05_2022_04_13_55_PM_42998421/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota,

Problem number: HW 1 problem 7(a).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2
p(z) = o
¢(z) = 52°
Hence the ode is
2
Y+ L
z
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The integrating factor u is

’u:ef%dm

I
8

The ode becomes
L (uy) = () (527
dzx

2 (ya?) = (%) (55%)
d (y wz) (5564) dx

Integrating gives
ya® = / 52* dz
yz' =2’ +
Dividing both sides by the integrating factor u = z? results in
y=a’+ %

Summary
The solution(s) found are the following

_ .3, 4
y=x +§ (1)
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Figure 10: Slope field plot

Verification of solutions

C
3 1
y—m _|__

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

—5x3 + 2y
X
Y =w(z,y)

Yy =-—

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - 590) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n

1

S is found from

(EQ
Which results in
S = yux?
Now that R, S are found, we need to setup the ode in these coordinates. This is done

by evaluating

dS Sy +w(z,y)S,

dR ~ R, +w(z,y)R, @

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(x, y) — _M
x
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = 2xy
S, = z?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

E—SR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

5x? (2A)

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R’+¢, (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

xzy =2’ + c1
Which simplifies to

a:2y =2°+¢
Which gives

. z° +c
y - .’172
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ) )
.. ) ) : ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _  —5z3+2y ds __ 4
de ~ x dR — SR
trrttbb ottt tf—=rt
trrttly2ttt t /=1
ttrab vt | |
L] L]
AR alivt g SYRY G L
trriNttt P72
i et
T T R
—a - 2 i 4 - o 2 i
R INES =y Pt~
Pttt S=yz R RRL
Tfk{f?f? t g/t
INERIIEES [ |
trvtttt t A==/t
tryitttt t /=71
P44ttt t A/
t IDEORARIIEEDESE tt/—==/11
t trtt bttt ttt ttf——=rtt
Summary
The solution(s) found are the following
5
z° +c
= 1
y 2 (1)
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Figure 11: Slope field plot

Verification of solutions

z® + ¢
y:
72

Verified OK.

1.3.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
—_— —_— —y =
Oxr Oydx 0 (B)

39



Comparing (A,B) shows that

09
M
Oz
9 _ n
Ay
But since %{% = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (_2;3; + 5w2> dz

(—5902 + %) de+dy=0 (2A)

Comparing (1A) and (2A) shows that

2y
X

M(z,y) = =5z +
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON

oy Oz

Using result found above gives
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And

Since 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (8_3/ - %)

((2)-0)

2
T

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef % dz
The result of integrating gives
w= 62 In(z)
= "L'z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

—  _dy
M — =0
+ dx
dy
. 4 2 2\ ©J —
( o™ + xy)—l—(:v)dx 0
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
o (1)
oy —
— =N 2
o e

Integrating (1) w.r.t. z gives

/g—:dx=/ﬁdx

% dx = / —5z* + 2zy dx
0x

¢ =—1"+yz’ + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

8(15_ 2 /
3—y—$ + f'(y) (4)

But equation (2) says that Z_Zj = z?. Therefore equation (4) becomes
o® = 2%+ f'(y) (5)

Solving equation (5) for f’'(y) gives
flly) =0

Therefore
fy)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=—-2"+yz*+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

c=—x°+ya2?
The solution becomes

z° 4 ¢
y:

x2

Summary
The solution(s) found are the following

z® + ¢

y= 2 (1)
3 ERRRERREA R
ERRRERERYARE
REERRRSYAR
oy EERRRRRYAE
RERRRRENAE
EERERRERENARE
y 11 N—=111
ERRERRYZRE
s
y(x) o (17N 71111
BASSNAREE
| EERNANERERREE
- BN EREERE
BESAERRREE
EERANRERREREE
—21 RERANRERREREE
ENASREREERE
EVARREREREE
3 REPARREERERER

-3 -2 —1 0 1 2 3

Figure 12: Slope field plot

Verification of solutions

z? 4 ¢
y:

x2

Verified OK.
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1.3.4 Maple step by step solution

Let’s solve
° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
y = —2 4 5g?

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y + 2 = 5z2

° The ODE is linear; multiply by an integrating factor u(x)
w(x) (v + %) = bp(z) 22

o Assume the lhs of the ODE is the total derivative - (u(z) y)
we) (Y +%) =@y +u@)y

o Isolate p/'(x)

W(z) = 22

° Solve to find the integrating factor
p(z) = =

° Integrate both sides with respect to x

J (& (u(2)y)) dz = [ 5p(e) 2%dz + ¢

° Evaluate the integral on the lhs

wa)y = [ su(e)a*de +

° Solve for y
[ 5u(z)z?dzter
Y= @
e  Substitute p(z) = 2
y= J 5x‘;céz+cl
° Evaluate the integrals on the rhs
Y= zi:;cl
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(diff(y(x),x)+2/x*y(x)=5*x“2,y(x), singsol=all)

z° 4+
1;2

y(z) =

v Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 15

LDSolve[y'[x]+2/x*y[x]==5*x‘2,y[x],x,IncludeSingularSolutions -> Truel

z° +c
y(z) = —
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1.4 problem HW 1 problem 7(b)

1.4.1 Solving aslinearode . . . . . .. ... ... ... ... 46l
1.4.2 Solving as first order ode lie symmetry lookup ode . .. .. .. [48]
1.43 Solvingasexactode . ... ... ... ... ... ..., 52
1.4.4 Maple step by step solution . . . . ... ... ... ... ... ¥

Internal problem ID [7032]
Internal file name [OUTPUT/6018_Sunday_June_05_2022_04_13_58_PM_29814816/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota,

Problem number: HW 1 problem 7(b).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

tr' +2x = 4¢€t

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

' +p(t)r = q(t)

Where here
2
t) ==
p(t) =
4¢t
t) = —
q(t) =~
Hence the ode is
o+ 2z 4¢'
t ot
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The integrating factor u is

The ode becomes

Integrating gives
t’r = / 4e'tdt
tr=4(t—-1)e' +c

Dividing both sides by the integrating factor p = 2 results in

4t —-1)e" ¢
e Te

which simplifies to
s (4t —4) et + ¢

t2

Summary
The solution(s) found are the following

(4t —4) et + ¢
t2

xTr =

47
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Figure 13: Slope field plot

Verification of solutions

(4t —4) et + ¢
12

x fry
Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,  —2x+4e
r=—
t
' = w(t,z)

The condition of Lie symmetry is the linearized PDE given by
M+ w(e — &) — W — wi€ —wen =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,7) = 0
n(6,7) = 5 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _do _
§ 1

The above comes from the requirements that (£2 +n2) S(¢,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

ds (1)
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t
S is found from
1
S = / —dy
n
1
t2
Which results in
S =tz

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dsS . St+W(t,$)Sx

Rl 2
dR Rt +W(t, "L‘)Rw ( )

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

wit,z) = —2x;|—4et
Evaluating all the partial derivatives gives
R, =1
R, =0
S; = 2tx
Sy =17

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
= —4eR
dR 'R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=4(R—1)e"+c (4)

To complete the solution, we just need to transform (4) back to ¢,z coordinates. This
results in

tr=4(t—-1)e' +c
Which simplifies to

tr=4(t—1)e' +c
Which gives

4ett —4et +c
r=
ﬁ

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R, S)
transformation ’

dx _ —2zx+4et ds __ R

dt ¢ iz —4e"R
VA A A O U I A R O t e S O N N R
VA A R A R B A | t ——=~NN NN NNt
A A R A S S Rt
AR TR

—— S N N\ Na)

Y YE R IR BERRN NN
AP RESRNNRNR A
mar AR A A AN BN )
S S SO L I R— ==~ NN Y]
e \NiiEEEE =1 NNV A XX
Segemaaa Ny BT T BT i 9 SR YN Y i 2 i
R SN R O A S = t°x A R N R
R SN A ——a—~m N NN NN
\\\\\\auL{HHT e D RN
NNNNNN YV Lttt ——= NN N N NN
SNNNN YLVt t ——=~NaNa NN NN A
NNNNYN VYVttt e S RN
NNNNY NV L Lttt e D N R
R R R R EEE RIS t e VO NV NN B |
A e e e IR IR AR AR R AN | t S N R I

Summary
The solution(s) found are the following

_deéft—4e'
= -

T
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Figure 14: Slope field plot

Verification of solutions

4ett —4et + ¢

t2

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)ﬁ=0

¢(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

09
T M
Oz
9 _ n
Oy
But since ;ﬂ:gy = 8‘9; g; then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(t)dz = (—2z+4¢€") dt
(2z —4€') dt+(t)dz =0 (2A)

Comparing (1A) and (2A) shows that
M(t,z) =2z — 4¢'
N(t,x) =t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0
= = (2z—4é
ox ax( o © )
=2
And
ON 0
ot o)
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

L L(oM _oN
N\ oz ot

((2) = (@)

S S

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdt
The result of integrating gives
b= eln(t)
=t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
=t(2z — 4¢€)
= 2t(z — 2¢€)

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—w=0

dt
(2t(z —26") + (22) L&

@
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The following equations are now set up to solve for the function ¢(¢, x)

-
g—t_M (1)
¢_~
=N @

Integrating (1) w.r.t. ¢t gives
09 .. [+
ot dt = /Mdt
99
3¢ 4t = /Qt(ac —2¢")dt
¢=(—4t+4)e' +t’z + f(2) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t x gives

a¢ 2 !
o =1+ f(2) @

But equation (2) says that % = t2. Therefore equation (4) becomes

t? =t* + f'(z) (5)
Solving equation (5) for f'(z) gives
fi(x)=0
Therefore
f(z)=a

Where ¢; is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢
¢=(—4t+4)e' +t’z+c;

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

a = (—4t+4)e' +t’z
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The solution(s) found are the following

The solution becomes
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Figure 15: Slope field plot

Verification of solutions

Verified OK.



1.4.4 Maple step by step solution

Let’s solve
tr' + 2z = 4¢
° Highest derivative means the order of the ODE is 1

/

T
° Isolate the derivative
dm st

° Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
xl + 2_:1" — 4_et
t t

° The ODE is linear; multiply by an integrating factor u(t)
u(t) (o + %) = 4=

o Assume the lhs of the ODE is the total derivative 2 (u(t) z)
u) (@ + %) = (O + ult) @

o Isolate p'(t)
w(t) =20

° Solve to find the integrating factor
p(t) =t

° Integrate both sides with respect to ¢
[ (4(u(t)z)) dt = [ 20 4 ¢,

° Evaluate the integral on the lhs
pt)z=[ %dt +a

° Solve for x

f 74u(:)et dt+c;
(t)
e  Substitute u(t) = t?

_ [4ettdt+er

xr=

° Evaluate the integrals on the rhs
7= ‘l(t—lt#
° Simplify
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__ (4t—4)et+c1
r="—7p3

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(t*diff(x(t),t)+2*x(t)=4*exp(t),x(t), singsol=all)

4t — 4) et + ¢

v/ Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 20

LDSolve[t*x'[t]+2*x[t]==4*Exp[t],x[t],t,IncludeSingularSolutions -> True]

4et(t— 1)+ ¢

z(t) — v
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1.5 problem HW 1 problem 10

1.5.1 Existence and uniqueness analysis. . . . . ... ... .. .... HOl
1.5.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 60}
1.5.3 Solving as differentialTypeode . . . ... ... ... ... ... 62
1.5.4 Solving as first order ode lie symmetry calculated ode . . . . . . 64]
1.5.5 Solvingasexactode . ... ... ... ... ... ... .... 69

Internal problem ID [7033]
Internal file name [OUTPUT/6019_Sunday_June_05_2022_04_14_00_PM_11805134/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota,

Problem number: HW 1 problem 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_ order__ode_ lie_symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, [_Abel, ~2nd type’,
class A~1]]

y/ _ 2z — ) —
T+ 4y
With initial conditions
[y(1) =1]

1.5.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(z,y)
. 2z+y
44y
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The = domain of f(z,y) when y =1 is
{r< -4V -4<z}

And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is

< L \Y L <
And the point yy = 1 is inside this domain. Now we will look at the continuity of

of _ 0 ( —2z+y

oy Oy z + 4y
1 —8z + 4y
Ty (z+4y)’

The z domain of % when y =1 is
{xr< -4V -4<z}

And the point o = 1 is inside this domain. The y domain of g—?’; when z =1 is

< L \Y L <
And the point yy = 1 is inside this domain. Therefore solution exists and is unique.

1.5.2 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

2z —u(z)x

z+4u(z)x =0

u'(z) z 4+ u(z) —

In canonical form the ODE is

v = F(z,u)
= f(z)g(u)
2(2u* +u—1)
z (du+1)
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Where f(z) = —2 and g(u) = %;f—fl_l. Integrating both sides gives

1

2u24u—1
4u+1

1 2
/md“=/—;dx

4u+1

2
du = ——dx
z

In(2v*+u—1) =—-2In(z) + ¢

Raising both side to exponential gives
2u2 +u—1= e—2ln(a:)+02

Which simplifies to

Which simplifies to

C3e
2u(z)? +u(z) — 1= -
The solution is
c3e%?
2u(z)’ +u(z) — 1= 2

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

2_y2 _|_ g — 1 = 03662
2z 2

(x+y)(r—2y) c3e™
- 72 T2

Which simplifies to
—(z+y) (z —2y) = c3e®

Substituting initial conditions and solving for c; gives co = In ( 2 > Hence the solution

c3
Summary

becomes The solution(s) found are the following
—(x+y)(z—2y) =2

Verification of solutions

—(z+y)(z—2y) =2

Verified OK.
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1.5.3 Solving as differentialType ode

Writing the ode as

2z —y
r_
vy = x + 4y (1)
Which becomes
(4y)dy = (—z)dy + (22 — y) dz (2)

But the RHS is complete differential because
(—z) dy + 2z — y) dz = d(z* — zy)
Hence (2) becomes
(4y) dy = d(a” — zy)

Integrating both sides gives gives these solutions

Tz V912 + 8¢; 4

y=—3t——F  ta
z 1922+ 8¢
y=—3-— 5 to

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.
1 vV 9 + 801 +

1=—>—
4 4

C1

3 V5

=<+

2 2

Substituting ¢; found above in the general solution gives

r 922+ 12+ 45

Yy=—--

V5
4 4 T

2

L3
2

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 \/94‘801

1:_Z+T+Cl
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(1)
(2)

(b) Slope field plot
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Substituting ¢; found above in the general solution gives

The solution(s) found are the following

Summary

1.5
0.57
— 0.5
—1.51

(a) Solution plot

Verification of solutions

Verified OK.

Verified OK.



1.5.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

) _T2z+y
v T+ 4y
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ny — &) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

g = zas + yas +a (1E)
1 = xby + ybs + by (2E)

Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(-2 +y)(bs—ar) (—2z+ y)° as
T +4y ( + 4y)”

2 -2z +y

_ (x 1y + @t 4y)2> (zas + yas + aq)

1 —8z + 4y

( T+dy  (z+4y)’

bo

(5E)

) (1‘b2+yb3+b1) =0

Putting the above in normal form gives

2120y + 4x%a3 — 1022y — 22%b3 + 16zyay — 4zyas — 8xyby — 16xybs — 4y%ay + 10y%as — 16y2by + 4>
(z +4y)’

=0
Setting the numerator to zero gives

—22%ay — 42%a3 + 1022y + 222bs — 16zyas + 4ryas + 8xybs (6E)
+ 162ybs + 4y2ay — 10y%as + 16y°by — 4ybs + 9zb; — Yya; = 0
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Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{CI,‘ =0,y = UQ}

The above PDE (6E) now becomes

—2a2vf — 16asv1v5 + 4a2v§ — 4a3vf + 4azvive — 10a31)§ + 10621)% (TE)
+ 8b2’01'l)2 + 16b2’U§ + 2b3’U% + 16b3’U1’UQ - 4b3’U% - 9a1'02 + 9b1’01 =0

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

(—2a5 — 4as + 10by + 2b3) v? + (—16ag + 4az + 8by + 16b3) v1vs (8E)
+ 9b1’01 + (4(12 — 10(13 + 16b2 - 4b3) ’U% - 9&1’02 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—9a; =0

9; =0

—16as + 4ag + 8by 4 16b3 = 0
—2a9 — 4as + 10by + 2b3 = 0
4ay — 10a3 + 16by — 4b3 =0

Solving the above equations for the unknowns gives

ar =0
as = by + b3
az = 2by
by =0
by = by
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-wy)é

=227 4 2xy + 4y?
T+ 4y

§€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
:/ —2x2+42zy+4y? dy

+4y

S is found from

Which results in
In (—2? + zy + 2y?)
2
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—2x+vy

W(:E,y):— w+4y

Evaluating all the partial derivatives gives

R, =1
R, =0

T

2z —y
2(z+y)(z—2y)

g —r —4y
Y2z +y) (z—2y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
- _ 2A
75 = (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dsS
>~ -0
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

In(—z—1y) + In (z — 2y)
2 2

:Cl

Which simplifies to
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, 9)

D Y e S A e = 2
NN NN e e e > >
NN N e A —
NN N A > v _>_¥_T
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N\
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Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

In (2)
2

+’i7T201

Substituting c¢; found above in the general solution gives

In(—z —y) N In(z—2y) In(2)

2 2 —2+z7r

Summary
The solution(s) found are the following

In(—z—1y) N In(z—2y) In(2)

2 5  ~ g T

Verification of solutions

In(—zr—y)  In(r—2y) In(2)
2 T 2

+

Verified OK.
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1.5.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(x+4y)dy = 2z —y)dz
(-2 +y)dr+(z+4y)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(l’,y) :—2.T+y
N(z,y) =z +4y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0
(=9
By ay( z+y)
=1
And
ON 0
=1
Since %—A; = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
L =M 1
o (1)
o¢
— =N 2
o @)

Integrating (1) w.r.t. z gives

@dx=/Mdz
or

%dazz/—Q:c—i-ydx
ox

¢=—z(z—y)+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0¢ /
a—y=$+f(?/) (4)

But equation (2) says that g—z = x + 4y. Therefore equation (4) becomes

z+4y=z+ f'(y) (5)
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Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

[rway= [ @y

f) =20+

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=—x(x—y)+2y° +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c = —z(r —y) + 2y

Initial conditions are used to solve for c;. Substituting z = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

2=Cl

C = 2
Substituting c¢; found above in the general solution gives
—z(z —y)+2y* =2

Summary
The solution(s) found are the following

—(z+y) (z—2y) =2 (1)
Verification of solutions

—(z+y)(z—2y)=2

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.157 (sec). Leaf size: 19

Ldsolve([diff(y(x),x)=(2*x—y(x))/(x+4*y(x)),y(l) = 1],y(x), singsol=all) J

z  V9z2+16
@ =g+

v/ Solution by Mathematica
Time used: 0.482 (sec). Leaf size: 24

tDSolve[{y'[x]==(2*x-y[x])/(x+4*y[x]),{y[1]==1}},y[x],x,IncludeSingularSolutiq?s -> True]

y(x) — 4—11(\/936274-16— x)
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1.6 problem HW 1 problem 11

1.6.1 Solving as first order ode lie symmetry lookup ode . .. .. .. [73]
1.6.2 Solving as bernoulliode . . . .. ... ... ... ... ..... (77
1.6.3 Solvingasexactode . .. ... .. ................ 8T
1.6.4 Solving asriccatiode. . . . .. ... ... ... ......... 80!

Internal problem ID [7034]
Internal file name [OUTPUT/6020_Sunday_June_05_2022_04_14_06_PM_22645042/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota,

Problem number: HW 1 problem 11.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exact With-
IntegrationFactor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class G°], _rational, _Bernoulli]

2
v+ ety o
M

1.6.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

G z’ —1)
x
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2€y —wef —wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y)

:[I;y

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx
S is found from
1
S= [ -dy
n
1
= / 222 dy
Which results in
_ 1
= 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2y(3y z° — 1)

w(w,y) = T

Evaluating all the partial derivatives gives

R, =1
R,=0
. 2
1
Sy=x2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

E%_GR

622 (2A)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = 2R3 +C (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
1
— = 2$3 + C1
Y
Which simplifies to
1
5 = 21}3 + C1
Y
Which gives
1

vE TR (223 4+ ¢1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . : ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R,5)

transformation

_ 2y(3yz°-1) S _ gR2

T dR

gl&

=
[*%)
=

e\ e
bbb bbb |y et a— e
rrrr—es—aa \ |/ / \ ~a—e——s—p——s
N |

— bbb bbb —>—E T

\x%\xxk\xﬁ\x\vxx\%x\

e N f [N s
P S - S VUGG S G G
o

—s|
—s]
=
—
|
i
|
bbb e

I Y.
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Summary
The solution(s) found are the following

1
V=T (223 + ¢1) (1)
3 11 | 11
11 | 11
11 | 11
24 1 | 1
1 V7]
11 V7
- 11 \—1
R ERRNY
DEISAARNNAS SR
77 N N—_7
y(X) 0 1] /7=~~\/ 7777111
f7~\\VI17711
N ISV TT ]
1 =\ 11
17\ 1
17\ 1
=2 11 1
1) 1
11 11
-3 114 11
-3 -2 -1 0 1 2 3
Figure 17: Slope field plot
Verification of solutions
_ 1
y= x2 (223 + ¢1)
Verified OK.
1.6.2 Solving as bernoulli ode
In canonical form, the ODE is
y = F(z,y)
B 2y(3yz® — 1)
o T
This is a Bernoulli ODE. 9
Yy =——y + 62y (1)
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The standard Bernoulli ODE has the form
Y = fo(x)y + fi(z)y" (2)

The first step is to divide the above equation by y™ which gives

Y _ fh@y "+ i) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) = -2
fi(z) = 62*
n=2

Dividing both sides of ODE (1) by y™ = y? gives

1 2
l- 2 6 4 4
Yy y? oy + 6z (4)
Let
w = yl—n
1
== 5
” ()
Taking derivative of equation (5) w.r.t  gives
1
w' = —Ey' (6)
Substituting equations (5) and (6) into equation (4) gives
2
_ /(.’E)—— w(w)+6 4
x
2w
r_ 27 6 4 7
w - x (7)

The above now is a linear ODE in w(z) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q()

Where here
2
p(x) = —
q(z) = —6a"
Hence the ode is
2
w/ ( w) ’U.)(.’L' ) — 6 4
T
The integrating factor p is
p=e 1 —%dw
1
T 22

The ode becomes

Integrating gives

Dividing both sides by the integrating factor u = z% results in

w(z) = —22° + ¢

Replacing w in the above by i using equation (5) gives the final solution.

- = —22° + ¢, 22

Y
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Which is simplified to

Summary
The solution(s) found are the following

1

v 22 (=223 + ¢1) (1)

3 11 L1

11 L 11

11 L 11

2 {1 | 11

{1 V7

1 \ /1

1 7, \:’_‘1

IEEERARY

BEISSAARNNAR Y
777 N~N—_~
y(x) o 1] 7—=~~\/ 77777111
f7~\\V17711

- INNVVL T
- =\ 11
17\ 11
17\ 11
—27 11 11
11 11
11 1
—3- 11 1

-3 -2 —1 0 1 2 3
X

Figure 18: Slope field plot

Verification of solutions

1
22 (=223 4¢))

Y

Verified OK.
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1.6.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
2
dy = (_;y + 6x4y2) dx

(2;3/ - 6z4y2) dz +dy = 0 (24)
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Comparing (1A) and (2A) shows that

2
M@w=$—MW
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ ON

oy Oz

Using result found above gives

oM 0 <2y 6 4y2)

6y 3y
=—-—12yx
And
ON
B = U)
= 0

Slnce 7é aN , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

L omy
Jy Oox

(2 e o)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

ON OM
B= (%‘a—y)

==z (0 (5120

by’ +1
35y —y
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Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

ON _ oM
_ ox oy
M —yN
R is now checked to see if it is a function of only ¢ = xy. Therefore
ON _ oM
R = ox dy
xM —yN

_ (0) — (2 — 12y z*)
z (Z;y — 6x4y2) —y(1)
2

Yy

Replacing all powers of terms zy by t gives

R=-2
t

Since R depends on ¢ only, then it can be used to find an integrating factor. Let the
integrating factor be y then

= el Rt
— /(=D dt
The result of integrating gives
jy = e~2n(®
_1
=3
Now t is replaced back with zy giving
1
K= x2y?

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

1 2y 4,2
:x2y2<?—6xy)

_ —byz®+2
-—
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And

- 3:2y2
1

— x2y?
A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

ﬁ?+N€Q=0
dz

—6y x°
—bya*+2) (L \dy _,
y 3 z?%y? ) dx

The following equations are now set up to solve for the function ¢(z,y)

0p —

g—w_M (1)
¢__

5=V @)

Integrating (1) w.r.t. z gives
99 dx = /de
ox
Gy B
%dxz /—ny +2dx
ox y 3

—2yz®—1
b= TIO) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

op  2a® —2ya®-1
1 ;
—;@;+f@)

But equation (2) says that g—ﬁ x2—1yQ Therefore equation (4) becomes

L1 (5)

1‘2y2 -T2y2
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Solving equation (5) for f'(y) gives
f'ly)=0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

—2yzx®—1
¢:?;JT+61

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

—2yx® —1
= —"—n—
y x?

The solution becomes

Summary
The solution(s) found are the following

(1)
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3 11 | 1]
11 L 11
11 | 11
2 1 | 11
1 V7
{1 e
. RN
NEEERRY
PRl
77 N~N—_
YX) 117NN o7

f7~\\1/7711
N ISV TT
=\ 11
17\ [ 1
17\ 1
=2 11 1
1) 1
11 11
—3 114 11
-3 -2 -1 0 1

Figure 19: Slope field plot

Verification of solutions

T 22(22% 4 ¢)
Verified OK.

1.6.4 Solving as riccati ode

In canonical form the ODE is

y = F(z,y)
_ 2y(3y z° —1)
N x

This is a Riccati ODE. Comparing the ODE to solve
2
y = _ 4y 1 6ty
x
With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®
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Shows that fo(z) =0, fi(z) = —2 and fo(z) = 6z*. Let

_u/

B fzu
T 6ztu

Y

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fau"(2) = (fy + fufo) W (2) + f3 fou(z) = 0 (2)
But
f} = 2423
fifo = —122°
f3fo=0

Substituting the above terms back in equation (2) gives
6x*u” (z) — 122°u/ () =0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = 2’ + ¢

The above shows that
u'(z) = 3cp?
Using the above in (1) gives the solution

(&)
222 (coz3 + 1)

y:

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

1

Y= o (23 + c3)
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Summary
The solution(s) found are the following

1
Y 222 (23 + c3) (1)
3 11 |1
11 L 11
11 L 11
2 11 L 11
{1 V7
11 V1
- 11 \—1
NERERARY
IESRAA RGN
777 N~—_~
y(x) o 11 77=~~~\/ 7777111
fT7~\\V17711
| ISV
- =\ 11
17\ [ 1
17\ 11
=27 11 11
11 11
{1 1
-3 11 1
-3 -2 —1 0 1 2 3

Figure 20: Slope field plot

Verification of solutions

T 222 (28 4 ¢3)
Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve (diff (y(x) ,x)+2%y(x) /x=6*xy(x) "2*x"4,y(x), singsol=all) J

1
T (=223 +¢p) 2

y(z)

v/ Solution by Mathematica
Time used: 0.153 (sec). Leaf size: 24

LDSolve [y' [x]+2*y[x]/x==6%y[x] "2*x~4,y[x],x,IncludeSingularSolutions -> True] J

1
y@) > =
—215 + ¢y 22

y(z) =0
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1.7 problem HW 1 problem 13

1.71 Solvingasexactode . . ... ... ... ... .. ... .. ... 901
1.7.2 Maple step by step solution . . . . .. ... ... ... ... .. 93]

Internal problem ID [7035]
Internal file name [OUTPUT/6021_Sunday_June_05_2022_04_14_09_PM_89321347/index.tex]

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 1 problem 13.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

y* + (2yz +sin (y)) y' = — cos (z)

1.7.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,9) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0

9 M

0

3 =
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM _ ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(2zy + sin (y)) dy = (—y® — cos (z)) dz
(y? + cos (z)) dz +(2zy + sin (y))dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = y* + cos (z)
N(z,y) = 2zy + sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
M
%_y = %(y2 + cos (z))
And
ON 0 i
B %(295?/ + sin (y))
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o
— =N 2
o )
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Integrating (1) w.r.t. z gives

op .
%dx—/de

%dx = /y2+cos(a:)dx
¢ ==y’ +sin (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—j — 20y + f'(y) (4)

But equation (2) says that g—;’j = 2zy + sin (y). Therefore equation (4) becomes
2zy + sin (y) = 2zy + f'(y) (5)
Solving equation (5) for f’'(y) gives
f'(y) = sin (y)
Integrating the above w.r.t y gives
/f’(y) dy = / (sin (y)) dy
fly) = —cos(y) +
Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢ = zy*+sin (z) — cos (y) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1 = zy® +sin (z) — cos (y)
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Summary
The solution(s) found are the following

zy® +sin (z) — cos (y) = ¢,

N7 77 7 0TV NN
777 7 7T VNSNS
o777 70T N NN NN N~

H=rar 7771 1L NN NS SN~
=277 1L NN S N ———

Tl e A B I I
‘—\—\—))/// \ \ NN N

A WNNNSA VAV ANNS— 777

y(x) 7777 NN 17 7=~
)ééd\\\\ //////)AAAA

I R A B B
———~~\\\ 1/

=2 ~~~~~\\\\\N1 /s
~~~~~\\\\\N |1 ///7r7rrrmm—
~~~~\\\\\N |1t/ /77~

=3 ~>s\\\\\\ |\t //7/7r7rrrrs

-3 =2 -1 0 1 2 3

Figure 21: Slope field plot

Verification of solutions

ry® + sin (z) — cos (y) = ¢
Verified OK.

1.7.2 Maple step by step solution

Let’s solve
y* + (2yz +sin (y)) y' = — cos (z)

° Highest derivative means the order of the ODE is 1
yl

O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
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F'(z,y) =0

Compute derivative of lhs
F'(z,y) + (,%F(w,y)) Y =0
Evaluate derivatives

2y=2y

Condition met, ODE is exact

Exact ODE implies solution will be of this form
Fl@,y) = e, M(z,9) = F'(2,9), N(w,9) = §F(z,9)]
Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ (y* + cos (z)) dz + fi(y)

Evaluate integral

F(z,y) = zy* +sin (z) + fi(y)

Take derivative of F'(x,y) with respect toy

N(z,y) = 5. F(z,y)

Compute derivative

2zy + sin (y) = 2zy + d%fl (v)

Isolate for % fi(y)

wfi(y) =sin (y)

Solve for fi(y)

fi(y) = —cos(y)

Substitute f(y) into equation for F'(z,y)
F(z,y) = zy* +sin (z) — cos (y)

Substitute F'(z,y) into the solution of the ODE
zy? +sin(z) —cos(y) =

Solve for y

y = RootOf (—x_Z* + ¢1 + cos (_Z) — sin(z))
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

‘dsolve((y(x)‘2+cos(x))+(2*x*y(x)+sin(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

zy(z)® + sin (z) — cos (y(z)) + ¢ = 0

v/ Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 20

LDSolve[(y[x]“2+Cos[x])+(2*x*y[x]+Sin[y[x]])*y'[x]==0,y[x],x,IncludeSingularSo}utions -> True

Solve[zy(z)* — cos(y(z)) + sin(z) = c1, y(x)]
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1.8 problem HW 1 problem 14

1.8.1 Solvingasexactode . . ... ... ... ... .. ... .. ... 96!
1.8.2 Maple step by step solution . . . . . ... ... ... ... ... 100l

Internal problem ID [7036]
Internal file name [OUTPUT/6022_Sunday_June_05_2022_04_14_13_PM_14384862/index.tex]

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 1 problem 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[_linear]

yr + 22y’ =1

1.8.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) B =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
EQS("”, y) =0
Hence 06 06d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
0p
P M
0p
3y N
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But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(z*)dy = (—zy + 1) dz
(zy — 1)dz+(2*)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y)=zy—1
N(z,y) = z*

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
e T u—1
o ~ oy (zy — 1)
=z
And
ON 0, ,
Fraaricl
=2

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A= L(OM _ON
N\ oy ox

= (@) - (21)

1
T
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
—e J —% dz
The result of integrating gives
p=e" In(z)
1
oz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
1
=—(xy—1
Sy —1)
_xy—1
oz
And
N =uN
L.,
—;(x)
=z

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

The following equations are now set up to solve for the function ¢(z,y)

9¢
oz
9¢
Oy

I
<

1)

I
=1
~~
=
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Integrating (1) w.r.t. z gives
% dx = / M dx
or

a¢dm=/my_1dx

oz x

¢ =zy —In(z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

/

- 4
o=+ ) ()
But equation (2) says that g—i = z. Therefore equation (4) becomes

z=z+ f(y) (5)
Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fly)=a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=zy—In(z)+c;

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

¢ =zy — In(z)

The solution becomes
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Summary
The solution(s) found are the following

In(z)+¢
y="20 1)
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-3 -2 —1 0 1 2 3

Figure 22: Slope field plot

Verification of solutions

Verified OK.

1.8.2 Maple step by step solution

Let’s solve
yr + 2%y =1
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
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y=-4+3
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+i=1

° The ODE is linear; multiply by an integrating factor u(x)
u(@) (v +1) = 4

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
wa) (Y + %) =@y + p)y

o Isolate ()

p(z) = 42

° Solve to find the integrating factor
p(z) =z

° Integrate both sides with respect to x

J (& (@) ) do = [ 55de + e
° Evaluate the integral on the lhs

w)y = [ Hdz + o

2
° Solve for y
. J %dm-l—q
Y= "
) Substitute u(z) = z
_ f%dﬂ:+c1
- x
° Evaluate the integrals on the rhs
y = ln(xi—i—cl

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve((x*y(x)-1)+x‘2*diff(y(x),x)=0,y(x), singsol=all)

_In(z)+c
B x

y(z)

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 14

-

kDSolve [(x*xy[x]-1)+x~2*y' [x]==0,y[x],x,IncludeSingularSolutions -> Truel

log(z) + c1
T

y(z) =
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1.9 problem HW 5 problem 1(a)

1.9.1 Solving as second order linear constant coeffode . ... .. .. 103l
1.9.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 106
1.9.3 Maple step by step solution . . . . . ... ... ... .. ... . 112

Internal problem ID [7037]
Internal file name [OUTPUT/6023_Sunday_June_05_2022_04_14_15_PM_18084672/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 5 problem 1(a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y//_y/_zy:562ac

1.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B = —1,C = -2, f(z) = 5€**. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yr, is the solution to
y' -y —2y=0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay’ (z) + By (z) + Cy(z) =0
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Where in the above A =1, B = —1,C = —2. Let the solution be y = €**. Substituting
this into the ODE gives
N — \eM —2eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —-A-2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
12 54 Y54 B2 —4AC
Substituting A =1, B = —1,C = —2 into the above gives
M = o /T (4) (1) (-2)
12 = -1 - -
2) @) 2)Q)
1 3
g
2 2
Hence
1 3
M=ot
1 3
A=579
Which simplifies to
AL =2
A =-—1

Since roots are real and distinct, then the solution is

y = c1eM” 4 cpe?”

y = c1e@? 4 cpe V"

y = c16?® + cye™”

Therefore the homogeneous solution yy, is

Yn = c16% + e
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

5 e2:v

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{e*}]

While the set of the basis functions for the homogeneous solution found earlier is
{ e—x, e2x}

Since e?® is duplicated in the UC_set, then this basis is multiplied by extra z. The
UC_set becomes

{ze*}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Y, = A1z e*
The unknowns {A; } are found by substituting the above trial solution y, into the ODE

and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

3A,e% = 5e*
Solving for the unknowns by comparing coefficients results in

=

Substituting the above back in the above trial solution y,, gives the particular solution

_ bze*
Yp = 3
Therefore the general solution is
Y=Y+ Y
= (cle% + cge_x) + (53636230)

105



Summary

The solution(s) found are the following

5x e2*

c16% + coe™ +

(1)

y:
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Figure 23: Slope field plot
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Verification of solutions

5z e2®
3

c16%® + coe™% +

Y

Verified OK.

1.9.2 Solving using Kovacic algorithm

Writing the ode as

0

v —y —2y
Ay"+ By +Cy =0
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Comparing (1) and (2) shows that

A=1
B=-1
C=-2

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2" (z) = rz(x)
Where 7 is given by
s
r=-
t
2AB' — 2BA’ + B2 — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

9
4
Comparing the above to (5) shows that
S =
t =
Therefore eq. (4) becomes
92(z)
" _

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 17: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
—0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=y

Since r = % is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_iﬁdx
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Which simplifies to

—Z

Yy =¢€

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
Y1

/ ef__Tldz d
Y= [ —F = ax
(y1)2
ex
:yl/—dx
(y1)2

e3z
(3

Substituting gives

Therefore the solution is

Y =1y + C2yo
e3z
=c (e_“") + ¢ (e_‘” <?>)

This is second order nonhomogeneous ODE. Let the solution be
Y=Ynt+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yn, is the solution to

y// _ y/ -9 y= 0
The homogeneous solution is found using the Kovacic algorithm which results in

Co e2:c

3

Yo =cre”" +

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = ury1 + uayo (1)
Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-

early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

In the Variation of parameters u;, us are found using

[ yfl=)

v = / aW (z) )
[ nf(z)

Y2 = / aW (z) (3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence

v Y

Which gives

W = °C T
—e7 % 2% z
Therefore
Y 2 eQm e?z Y
W= (%) - (5 ) o)
Which simplifies to
W — e—meQz
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Which simplifies to

Therefore Eq. (2) becomes

Which simplifies to

Hence

And Eq. (3) becomes

Which simplifies to

Uy = /5dz

Uy = DT

Hence

Therefore the particular solution, from equation (1) is

5e%e**  Bre

Which simplifies to

Therefore the general solution is

Y=Y+ Yp

2x 2353 -1
:(cle_””+c2e >+(56 Bz —1)
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(1)

5e?*(3z — 1)
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The solution(s) found are the following

Summary
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Figure 24: Slope field plot

cle_”” +

Yy
Highest derivative means the order of the ODE is 2

Characteristic polynomial of homogeneous ODE

y//_y/_2y:5e2w

Let’s solve

1.9.3 Maple step by step solution
yll

Verification of solutions

Verified OK.



r?—r—2=0
Factor the characteristic polynomial
(r+1)(r—2)=0
Roots of the characteristic polynomial
r=(-1,2)
1st solution of the homogeneous ODE
yi(z) =e™*
2nd solution of the homogeneous ODE
yo(z) = €%
General solution of the ODE
y = a1 (z) + caga() + yp(2)
Substitute in solutions of the homogeneous ODE
y = c167% + c26* + y,(x)
Find a particular solution y,(z) of the ODE
Use variation of parameters to find y, here f(z) is the forcing function
[10) = —01(0) ([ 250 + 1) (| ko) S (@) = 56
Wronskian of solutions of the homogeneous equation
e’ e

—e T 2%

W(yi(z) ,y2(z)) =

Compute Wronskian
W(y1(2),92(x)) = 3 €

Substitute functions into equation for y,(z)

yp(x) _ _5e_””(f363””dz) + 5629”(3f 1ldz)

Compute integrals

p(e) = PG

Substitute particular solution into general solution to ODE

— 22 (3z—1
Yy = ce T4 CQGQx + Se(3r—]) (gac )
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

-

Ldsolve(diff(y(x),x$2)—diff(y(x),x)—2*y(x)=5*exp(2*x),y(x), singsol=all)

~—

2z
y(z) = (62 +3c;) €% 262) ° 4 cre””

v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 31

LDSolve[y"[x]—y'[x]-2*y[x]==5*Exp[2*x],y[x],x,IncludeSingularSolutions -> Truel

y(z) = cre™® + e** 5 _5 +co
3 9
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1.10 problem HW 5 problem 1(b)

1.10.1 Solving as second order linear constant coeff ode . . .. .. .. 115l
1.10.2 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 118
1.10.3 Maple step by step solution . . . . . ... .. ... ... ... 123]

Internal problem ID [7038]
Internal file name [OUTPUT/6024_Sunday_June_05_2022_04_14_18_PM_11508899/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 5 problem 1(b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" + 16y = 4 cos (x)

1.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A =1,B=0,C =16, f(x) = 4cos (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
Yr, is the solution to
y' +16y =0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0
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Where in the above A = 1, B = 0,C = 16. Let the solution be y = **. Substituting
this into the ODE gives
Ne M +16eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M +16=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
=—+ —VvVB2-4A
M2 =50+ 54 ¢
Substituting A = 1, B = 0,C = 16 into the above gives
Ma= L F (@) 1) (16)
P00
= +4i
Hence
A = +4i
Ao = —4i
Which simplifies to
A =44
Ay = —4i

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 4. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))

Which becomes
y = €°(c; cos (4x) + ¢y sin (4x))

y = ¢1 cos (4x) + ¢y sin (4z)
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Therefore the homogeneous solution yy, is

yn = ¢ cos (4z) + ¢z sin (4x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 cos (z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is
{cos (4z) ,sin (4z)}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = Aj cos (x) + A sin ()

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

15A; cos (z) + 15A;sin (z) = 4 cos (z)

Solving for the unknowns by comparing coefficients results in
4
Ai1=—,4,=0
|: 1 1 5, 2 :|
Substituting the above back in the above trial solution y,, gives the particular solution

4 cos ()
yp - 15
Therefore the general solution is

Y=Y+ Yp

— (1 cos (4z) + ¢y sin (4z)) + (4%55@))
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Summary
The solution(s) found are the following

y = ¢ cos (4z) + ¢y sin (4:17)—!—40(185(@
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Figure 25: Slope field plot
Verification of solutions
4 cos (z)

y = ¢ cos (4z) + ¢y sin (4z) + 15

Verified OK.

1.10.2 Solving using Kovacic algorithm

Writing the ode as

y'+16y =0
Ay + By +Cy=0
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Comparing (1) and (2) shows that

A=1
B=0
C=16

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2" (z) = rz(x)
Where 7 is given by
s
r=-
t
2AB' — 2BA’ + B2 — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

16
1
Comparing the above to (5) shows that
s=-—16

t =
Therefore eq. (4) becomes

2" (z) = —162(x)

(3)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {0a17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 19: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —16 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (4z)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B
Y1 = zlef_ijdm

Since B = 0 then the above reduces to

Nn=x

= cos (4x)
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Which simplifies to
y1 = cos (4z)

The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ D) dx
Y

1

Since B = 0 then the above becomes

1
Y2 = / — dx
Y1
1
= cos (4z) / —dx
cos (4z)

— oon (42) <tan im)

Therefore the solution is

Y =11 + C2yo

= o) o) (2202

This is second order nonhomogeneous ODE. Let the solution be
Y=Y+ Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

vy +16y =0

The homogeneous solution is found using the Kovacic algorithm which results in

¢o sin (4z)

yn = 1 cos (4z) + 1
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

{ sin fl4x) o8 4@}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (x) + A sin (x)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

15A; cos (z) + 15A; sin () = 4 cos (z)

Solving for the unknowns by comparing coefficients results in
4
Ai1=—,A,=0
|: 1 1 5; 2 :|

Substituting the above back in the above trial solution y,, gives the particular solution

4 cos (z)
15

Yp =

Therefore the general solution is

Y=Yn+Y

= (01 cos (4z) + 22220 SH;(%)) + <4cols5(x))
Summary

The solution(s) found are the following

cosin (4zx) 4 cos(z)
4 15 (1)

y = ¢ cos (4z) +
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Figure 26: Slope field plot

Verification of solutions

¢o sin (4z) n 4 cos (z)

= 4
y = ¢; cos (4z) + 1 15

Verified OK.

1.10.3 Maple step by step solution

Let’s solve

y" + 16y = 4 cos (z)

° Highest derivative means the order of the ODE is 2
yll

° Characteristic polynomial of homogeneous ODE
r2+16=0

° Use quadratic formula to solve for r

_ 0+(v/—64)

r=—"G

° Roots of the characteristic polynomial
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r=(—41,41)
1st solution of the homogeneous ODE
y1(z) = cos (4z)
2nd solution of the homogeneous ODE
yo(z) = sin (4x)
General solution of the ODE
y = ay(z) + c2pa(z) + yp()
Substitute in solutions of the homogeneous ODE
y = c1 cos (4z) + ¢y sin (4z) + yp(x)
Find a particular solution y,(z) of the ODE
Use variation of parameters to find y, here f(z) is the forcing function
(@) = —3.2) ([ wtpiimende) +920) (] wtniimmde)  f(z) = dcos 7))
Wronskian of solutions of the homogeneous equation
W) ) = | S0 s
—4sin (4z) 4cos (4z)

Compute Wronskian

W(yi(z) ,32(x)) = 4

Substitute functions into equation for y,(z)

Yp(z) = — cos (4z) ([ sin (4z) cos (z) dz) + sin (4z) ([ cos (4z) cos (z) dx)
Compute integrals

Yp(z) = %

Substitute particular solution into general solution to ODE

y = ¢ cos (4z) + ¢y sin (4z) + 4%2@)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

-

Ldsolve(diff(y(x),x$2)+16*y(x)=4*cos(x),y(x), singsol=all)

~—

4 cos (z)

y(z) = sin (4z) ¢ + cos (4z) c1 + B

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 26

-

LDSolve[y"[x]+16*y[x]==4*Cos[x],y[x],x,IncludeSingularSolutions -> Truel

| —

4 cos(x)

G + ¢; cos(4x) + co sin(4z)

y(z) —
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1.11 problem HW 5 problem 1(c)

1.11.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 126
1.11.2 Solving as second order linear constant coeffode . . .. .. .. 127
1.11.3 Solving using Kovacic algorithm . . . . . . . .. ... ... ... 131l
1.11.4 Maple step by step solution . . . . . ... .. .. ... ... .. 136

Internal problem ID [7039]
Internal file name [OUTPUT/6025_Sunday_June_05_2022_04_14_21_PM_78430375/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota,

Problem number: HW 5 problem 1(c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y' — 4y +3y =92" +4

With initial conditions

[y(0) = 6,%'(0) = §]

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y' +p()y +q(@)y=F

Where here
p(z) = —4
q(z) =3
F=9z2+4

126



Hence the ode is
y' — 4y +3y=922+4

The domain of p(z) = —4 is
{—00 <z < o0}

And the point zy = 0 is inside this domain. The domain of ¢(z) = 3 is

{—00 <z < o0}

And the point zy = 0 is also inside this domain. The domain of F' = 922 + 4 is

{—o0 <z < o0}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By'(z) + Cy(z) = f(z)
Where A =1,B = —4,C = 3, f(z) = 922 + 4. Let the solution be

Y=Yn+Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y//_4y/+3y:0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0

Where in the above A = 1, B = —4,C = 3. Let the solution be y = **. Substituting
this into the ODE gives

Ne M —4)eM + 3 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

N —42+3=0 (2)

127



Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ 2 _
A2 o4 T o4 B2 —4AC
Substituting A = 1, B = —4,C = 3 into the above gives
M = s o/ — (@) (D) (3
N OTORRON
=2+1
Hence
AM=2+1
A=2-1
Which simplifies to
A =3
)\2 = 1

Since roots are real and distinct, then the solution is

y — Cle)\lw _|_ c2e>\2m

y = c1e®? 4 cpe®”

y= c1€> + cpe”

Therefore the homogeneous solution yy, is
yn = 1> + cpe”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

22 +1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{L,2,2%}]

128



While the set of the basis functions for the homogeneous solution found earlier is
{ e:c, e3a:}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = Asx® + Asz + A

The unknowns {A;, A2, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A32% + 3Asx — 8z A5 + 3A; —4Ay + 245 =922 + 4

Solving for the unknowns by comparing coefficients results in
[A1 = 10,A2 = 8, A3 = 3]

Substituting the above back in the above trial solution y,, gives the particular solution

Yp = 32> + 8z + 10

Therefore the general solution is

Y=Yn+Yp
= (c16* + c2e”) + (32® + 8z + 10)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
y = c16’® + coe” + 3z° + 8z + 10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 6 and x =0
in the above gives

6=01+02—|-10 (1A)
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Y =3¢, + coe® + 62+ 8

substituting ' = 8 and x = 0 in the above gives

Taking derivative of the solution gives

(24)

3Cl+62+8

8

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

Cl=2

@::—6

Substituting these values back in above solution results in

y=10+32>+ 2> — 6e° + 82

The solution(s) found are the following

Summary

(1)

y =10+ 322 +26% — 6¢® + 8z
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(b) Slope field plot

(a) Solution plot

Verification of solutions

y =10+ 32> +2e* —6e” + 8z

Verified OK.
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1.11.3 Solving using Kovacic algorithm

Writing the ode as

Yy — 4y +3y=0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=1
B=-4 (3)
C=3

Applying the Liouville transformation on the dependent variable gives
2(x) = yel 2%
Then (2) becomes
Z'(z) = rz(z) (4)

Where r is given by

r=2 (5)
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
1
r=1 (6)
Comparing the above to (5) shows that
s=1
t=1

Therefore eq. (4) becomes

2"(z) = 2z(x) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(oc0)
1 {0a17274a6a87”'} {'"7_67_47_27072a3747576a”'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 21: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since = 1 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z)=¢e"

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B

Y1 = zlef_iﬁdx
1-—-4

=z JaT W
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= 7z,

=z (eQz)

Which simplifies to

yr=¢€"

The second solution ys to the original ode is found using reduction of order

ef——%'dw
y2=y1/ 5— dx
Yy

1

Substituting gives

Therefore the solution is

Y =1y + CoYo
eQz
=c1(e%) + ¢ (ex <7))

This is second order nonhomogeneous ODE. Let the solution be
Y=Y+ Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' —4y +3y=0

The homogeneous solution is found using the Kovacic algorithm which results in

C2e3x

2

yp = c1€” +
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

22 +1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

{L,2,2%}]

While the set of the basis functions for the homogeneous solution found earlier is

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

Yp = A31,'2 + Azl’ + A1

The unknowns {A;, A2, A3} are found by substituting the above trial solution y, into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A37% + 3421 — 8z A3 + 3A; — 44, + 2A; = 92° + 4
Solving for the unknowns by comparing coefficients results in

[Al = 10,A2 = 8, A3 = 3]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp = 32° + 8z + 10

Therefore the general solution is

Y=Y+ Yp

T 02639: 2
= [ ce* + 5 + (32° + 8z + 10)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

Co e3x

+ 3z% + 8z + 10 (1)

y=ce’+

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =6 and x =0
in the above gives

6=ci+ 2 +10 (14)

Taking derivative of the solution gives

3cqe3®

+6x+8

y/ = ce” +

substituting ' = 8 and = 0 in the above gives

3
8=c1+§+8 (2A)

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

012—6

Co = 4
Substituting these values back in above solution results in
y=10+32>+2€* —6e” + 8z

Summary
The solution(s) found are the following

y =10+ 32" +2¢e* —6e” + 8z (1)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

y=10+322+2e% — 6" + 8z

Verified OK.

1.11.4 Maple step by step solution

Let’s solve

|

Highest derivative means the order of the ODE is 2

=0}

{z

[y” — 4y + 3y =922+ 4,y(0) = 6,y

yl

Characteristic polynomial of homogeneous ODE

0
Factor the characteristic polynomial

r2—4r+3
(r—1)(r—3)

0

Roots of the characteristic polynomial

r=(1,3)

1st solution of the homogeneous ODE
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yi(z) =€
2nd solution of the homogeneous ODE

U2 (l’) — e3:c

General solution of the ODE

y = catn(z) + cay2(z) + yp()

Substitute in solutions of the homogeneous ODE
Y = c16% + 2% + y,()

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
() =~ ([ Wit de) + 30 (] Wi de) S (@) = 90% +4
Wronskian of solutions of the homogeneous equation

o 32
o 33

W(yi(z),y2(x)) =

Compute Wronskian

W(yi(z) ,32(2)) = 2€*

Substitute functions into equation for y,(z)

e ([ (92z2+4)e %dx) e3% ([ e=3%(9z2+4)dz)
2 + 2

Yp(z) = —
Compute integrals

yp(z) = 322 + 8z + 10

Substitute particular solution into general solution to ODE
Y = c1e® + c2e®® + 32 + 8z + 10

Check validity of solution y = c;e® + cpe3® + 322 + 8z + 10
Use initial condition y(0) = 6

6=c +cy+10

Compute derivative of the solution

y' = cie® + 3cpe3* 4+ 62 + 8

Use the initial condition 3’ . =8
=0

8=Cl+362+8
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o Solve for ¢; and ¢y
{c1 = —6,c0 =2}
o Substitute constant values into general solution and simplify
y =10+ 322 +2e3 — 6e” + 8z
° Solution to the IVP
y=10+322+2e3 — 6e” + 8z

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

r

Ldsolve([diff(y(x),x$2)-4*diff(y(x),x)+3*y(x)=9*x‘2+4,y(0) = 6, D(y)(0) = 8],j}x), singsol=al

y(z) = 2> — 6e” + 37> + 8z + 10

v/ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 27

-

.
DSolve[{y"[x]—4*y'[x]+3*y[x]==9*x‘2+4,{y[0]==6,y'[O]==8}},y[x],x,IncludeSing#larSolutions -

N\

y(z) — 32° + 8z — 6€” + 2% + 10
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1.12 problem HW 5 problem 2

1.12.1 Solving as second order linear constant coeffode . ... .. .. 139
1.12.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 144!
1.12.3 Maple step by step solution . . . . . ... .. ... .. ... .. 1501

Internal problem ID [7040]
Internal file name [OUTPUT/6026_Sunday_June_05_2022_04_14_24_PM_74506284/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 5 problem 2.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" +y =tan (9:)2

1.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By (z) + Cy(z) = f(=)
Where A=1,B=0,C =1, f(z) = tan (z)*. Let the solution be

Y=Y+ Y

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(z).
yp, is the solution to
y// + y — O
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By (z) + Cy(z) = 0
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Where in the above A =1, B = 0,C = 1. Let the solution be y = €**. Substituting this
into the ODE gives
MeM 4+ e =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*® gives
M+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
=—+ —vVB?2—-4A
M2=on Fog ¢
Substituting A =1, B = 0,C =1 into the above gives
M = s 07— () (D) (1)
YT O T @0
===

Hence

A1 = +1

Ao = —1
Which simplifies to

)\1 =1

)\2 = —1

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = :i:’l,B

Where a = 0 and 8 = 1. Therefore the final solution, when using Euler relation, can
be written as
y = e*®(c1 cos(Bzx) + ¢y sin(Bz))
Which becomes
y = €%(cy cos (z) + ¢y sin (z))

y = ¢; cos (x) + ¢ sin (z)
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Therefore the homogeneous solution yy, is
yn = ¢1 o8 (z) + cosin (z)

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Up(Z) = w1y + uayo (1)

Where u;,us to be determined, and y;,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos ()

Yo = sin ()
In the Variation of parameters u;, us are found using
y2f(z)
= — 2
“ / aW (z) @)

. yl.f(x)
uz_/aW(x) 3)

Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = v . Hence
N Y
cos () sin ()

d%(cos (x)) %(sin (z))

Which gives

_ | cos (x) sin(z)

—sin(z) cos(z)

Therefore

W = (cos (z)) (cos (z)) — (sin (z)) (— sin (z))
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Which simplifies to

W = cos (z)* + sin (z)?

Which simplifies to

Therefore Eq. (2) becomes

= _/sin (x) ;an (z)? i

Which simplifies to

U = — /sin (z) tan (z)* dz

Hence
_ _sin (z)*
cos ()

— (2 +sin (z)?) cos (z)

And Eq. (3) becomes

" =/cos (x) :an (z)? i

Which simplifies to

Ug = / sin (z) tan (z) dx

Hence
up = —sin (z) + In (sec (z) + tan (x))

Which simplifies to
uy = — cos () — sec (z)

ug = —sin (z) + In (sec (z) + tan (z))
Therefore the particular solution, from equation (1) is

Yp(z) = (—cos (z) — sec (x)) cos (z) + (—sin (z) + In (sec (z) + tan (z))) sin (z)

142



Which simplifies to
Yp(z) = —2 + sin (z) In (sec (z) + tan (z))
Therefore the general solution is

Y=Yn+Yp
= (c1 cos (z) + cosin (x)) + (—2 + sin (z) In (sec (z) + tan (x)))
Summary

The solution(s) found are the following

y = ¢ ¢08 () + cosin () — 2 + sin (z) In (sec (z) + tan (z)) (1)
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Figure 29: Slope field plot

Verification of solutions

y = c1 cos (z) + cysin (z) — 2 + sin (z) In (sec (z) + tan (z))

Verified OK.
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1.12.2 Solving using Kovacic algorithm

Writing the ode as

y' +y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

QT =
Il
[ T Y

Applying the Liouville transformation on the dependent variable gives
2(x) = yel 2%

Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B®> —4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
-
1
Comparing the above to (5) shows that
s=-1
t=1
Therefore eq. (4) becomes
2"(z) = —2z(x)

1)
2)

3)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {Oa19274a6a8)"'} {"'7_67_47_27(),2,37475)6,"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 23: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

. 1 . . vaci .
Since r 1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 dz
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Since B = 0 then the above reduces to

=2

= cos ()

Which simplifies to

y1 = cos ()

The second solution s to the original ode is found using reduction of order

ef—%dx
y2:yl/ 2 dx
Y1

Since B = 0 then the above becomes

1
y2=y1/—2dx
Yi

= cos () / @dﬂ;

= cos (z) (tan (x))
Therefore the solution is

Y =ciy1 + C2Y2
= cy(cos (z)) + c2(cos (x) (tan (z)))
This is second order nonhomogeneous ODE. Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' +y=0
The homogeneous solution is found using the Kovacic algorithm which results in

yn = c1 cos () + co sin (x)
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The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = wy1 + uzys (1)

Where u;,us to be determined, and yi,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos ()

Yo = sin (z)

In the Variation of parameters u;, us are found using

w = _/ y2f (2) )

aW (z)
_ Y1 f (27)
v = / aW (z) )
Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.
The Wronskian is given by W = v . Hence
Y Y
cos () sin (z)

d%(cos (x)) %(sin (z))

Which gives

_ | cos(z) sin(z)

—sin(z) cos(z)

Therefore
W = (cos (z)) (cos (z)) — (sin (z)) (—sin (z))

Which simplifies to

W = cos (z)* + sin (z)?
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Which simplifies to

Therefore Eq. (2) becomes

v = _/sin (x) ’;an (z)® i

Which simplifies to

Uy = — /sin () tan (z)? dz

Hence

_sin(z)" (2 + sin (z)?) cos (z)

E—— (x)

And Eq. (3) becomes

= / cos () ian (z)* i

Which simplifies to

Uy = / sin (z) tan (z) dz

Hence
us = —sin (z) + In (sec (x) + tan (z))

Which simplifies to
uy = — cos (z) — sec (z)

ug = —sin (z) + In (sec (z) + tan (z))
Therefore the particular solution, from equation (1) is
Yp(z) = (—cos (z) — sec (x)) cos (z) + (—sin (z) + In (sec (z) + tan (z))) sin (z)
Which simplifies to

Yp(z) = —2 +sin (z) In (sec (z) + tan (z))
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Therefore the general solution is

Y=Yn+Yp
= (¢ cos (z) + ¢z sin (z)) + (—2 + sin (z) In (sec (x) + tan (z)))

Summary
The solution(s) found are the following

y = c1 cos (z) + cosin (z) — 2 + sin (z) In (sec (z) + tan (z))
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Figure 30: Slope field plot

Verification of solutions

y = c1 cos (z) + cysin (z) — 2 + sin (z) In (sec (z) + tan (z))

Verified OK.
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1.12.3 Maple step by step solution

Let’s solve
y" +y = tan (z)’

° Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r?+1=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
r=(-LI)

. 1st solution of the homogeneous ODE

y1(z) = cos (x)
° 2nd solution of the homogeneous ODE
y2(a) = sin (1)
° General solution of the ODE
y = c1y1(@) + c2y2() + yp()
. Substitute in solutions of the homogeneous ODE
y = c1 cos (z) + ¢z sin () + y,(z)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(z) is the forcing function
(@) = —u(@) ([ wiatitmde) + @ (f wtdftyde) /@) = ton @)
o Wronskian of solutions of the homogeneous equation

W(yi(z),y2(x)) = cos(x) sin(z)

—sin (z) cos(z)

o Compute Wronskian

W(y(2),3a(2)) =1

o Substitute functions into equation for y,(x)
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Yp(z) = — cos (z) ([ sin (z) tan (z)? dz) + sin (z) ([ sin (z) tan (z) dz)
o Compute integrals
Yp(x) = —2 + sin (z) In (sec (z) + tan (z))
° Substitute particular solution into general solution to ODE

y = ¢1 cos (x) + cosin (z) — 2 + sin (z) In (sec (z) + tan (z))

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

Ldsolve(diff (y(x),x$2)+y (x)=tan(x)"2,y(x), singsol=all)

y(z) = sin (z) c2 + cos (z) ¢; — 2 + sin (z) In (sec (z) + tan (z))

v/ Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 23

DSolvely'' [x]+y[x]==Tan[x]"2,y[x],x,IncludeSingularSolutions -> Truel

N

y(z) — sin(z)arctanh(sin(z)) + ¢; cos(z) + ¢z sin(z) — 2
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1.13 problem HW 5 problem 5

1.13.1 Solution using Matrix exponential method . . . . . . .. .. .. 152
1.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . [153]

Internal problem ID [7041]
Internal file name [OUTPUT/6027_Sunday_June_05_2022_04_14_26_PM_26900985/index.tex]

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 5 problem 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

With initial conditions
[z(0) = —2,y(0) = 1]

1.13.1 Solution using Matrix exponential method
In this method, we will assume we have found the matrix exponential e#* allready.
There are different methods to determine this but will not be shown here. This is a

system of linear ODE’s given as

x'(t) -2 3 z(t)
y'(t) -2 5 y(t)
For the above matrix A, the matrix exponential can be found to be

6et 4t 3
At __ 5 5 5 5
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Therefore the homogeneous solution is

.’fh (t) = eAtil_fO

et e et 3et _9
. 5 5 5 5
- 2%t 2e”t et 6ett
—2et et oty 1
5 5 5 5
o —t | At
3e " +e
o 2e4t _ e—t

Since no forcing function is given, then the final solution is Z(t) above.

1.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z'(t) -2 3 z(t)
y'(®) -2 5| | y(@)

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—A)=0

Expanding gives

-2 3 10

det - A =0

-2 5 01

Therefore
—2—-A 3
det =0
-2 5—X

Which gives the characteristic equation

A —3\—4=0

153



The roots of the above are the eigenvalues.

A =—1
Ay =4

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

-1 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; = —1

We need to solve A7 = A or (A — AI)¥ = 0 which becomes

-2 3 10 V1 0
- (-1 -

-2 5 01 (o 0

-1 3 U1 . 0

-2 6 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

-1 3|0
-2 6|0
-1 3|0
Ry =Ry — 2R —
0 00
Therefore the system in Echelon form is
-1 3 U1 . 0
0 0 U2 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = 3t}
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Hence the solution is
3t 3t

t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

3t 3
=t
t 1
Let t = 1 the eigenvector becomes
3| |3
t 1

Considering the eigenvalue A\ = 4

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

-2 3 10 V1 0
- @) -

-2 5 01 Vg 0

6 3| |wu| |oO

-2 1 V2 0

Now forward elimination is applied to solve for the eigenvector . The augmented
matrix is

—6 3|0
-2 1|0
R -6 3|0
R2 == R2 — —1 -
3 0 0/0
Therefore the system in Echelon form is
-6 3 V1 _ 0
0 0 U2 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {vl = %}
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Hence the solution is

S~ N
(S N SIS

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

1 1

2 | 4| 2

t 1
Let t = 1 the eigenvector becomes

e ol

2 | _ | 2

t 1
Which is normalized to L -

¢

s | _ | !

t 2

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors

3

-1 1 1 No
1

F L

4 1 1 No 2

1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue —1 is real and distinct then the
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corresponding eigenvector solution is

8y
A
~—
~
N—
I
S
Q)
&

1
2 4t
1

Therefore the final solution is
fh(t) = 013_7’1 (t) + Cz.’fg(t)

Which is written as

z(t) e et e &
y(t) e—t e4t
Which becomes
z(t) | | e+ %
y(t) B c1e7t + coett

Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

z(0) = —2
y(0) =1

Substituting initial conditions into the above solution at ¢ = 0 gives

1)

-2 301 + %2

1 1+ e

Solving for the constants of integrations gives

61:—1

C2:2
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Substituting these constants back in original solution in Eq. (1) gives

The following is the phase plot of the system.
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Figure 31: Phase plot
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

Ldsolve([diff(x(t),t) = -2%x(t)+3*y(t), diff(y(t),t) = -2%x(t)+5*y(t), x(0) = fz, y(0) = 11,

z(t) = —3e ' + e*
y(t) = —e "t +2e*

v/ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 36

lDSolve [{x' [t]==-2xx[t]+3*y[t],y' [t]==-2*x[t]1+5*xy[t]},{x[0]==-2,y[0]==1},{x [t]J,y [t1},t,Includ

z(t) — e * (e = 3)
y(t) = e*(2e" — 1)
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1.14 problem HW 5 problem 6

1.14.1 Solution using Matrix exponential method . . . . . . .. .. .. 1601
1.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . [161

Internal problem ID [7042]
Internal file name [OUTPUT/6028_Sunday_June_05_2022_04_14_28_PM_70078692/index.tex]

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 5 problem 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

Z'(t) = —z(t) + 4y(t)

y'(t) = 23(t) — 3y(t)
With initial conditions

[(0) = 3,3(0) = (]

1.14.1 Solution using Matrix exponential method
In this method, we will assume we have found the matrix exponential e? allready.
There are different methods to determine this but will not be shown here. This is a

system of linear ODE’s given as

For the above matrix A, the matrix exponential can be found to be

(2e8t+1)e=5t  2(eSt—1)e~5?

GAt — 3 3
(e6t_1)e—5t (e6t+2)e—5t
3 3
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Therefore the homogeneous solution is

fh(t) = eAth

B (2e6t+1)e—5t 2(eet_1)e—5t

. 3 3 3
(th_l)e—5t (66t+2)e—5t 0
3 3

(2e% +1)e™

(eﬁt _ 1) e—5t

Since no forcing function is given, then the final solution is Z(t) above.

1.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—A)=0
Expanding gives
-1 4 10
det - =0
2 -3 01
Therefore
—-1-AX 4
det =0
2 -3—-A

Which gives the characteristic equation

AN 4+4r—-5=0
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The roots of the above are the eigenvalues.

This table summarises the above result

eigenvalue | algebraic multiplicity | type of eigenvalue

1 1 real eigenvalue

-5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \; = —5

We need to solve A7 = A or (A — AI)¥ = 0 which becomes

-1 4 10 U1 0
- (-5) -

2 =3 01 Vg 0

4 4 vy | |0

2 2 ()] 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

4 410
2 2|0
R 4 40
Rz = R2 -t —
2 000
Therefore the system in Echelon form is
4 4 1 . 0
00 Vg 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = —t}
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Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this

eigenvalue. The above can be written as

Let t = 1 the eigenvector becomes

Considering the eigenvalue A\ =1

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

-1 4 10 U1
- (1)
2 -3 01 Va2
-2 4 (%1 . 0
2 —4 Va2 0

Now forward elimination is applied to solve for the eigenvector . The augmented
matrix is

-2 410
2 —410
-2 40
Rz = R2 + Rl —
0 00
Therefore the system in Echelon form is
-2 4 V1 _ 0
0 0 U2 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = 2t}
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Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t 2
=t
t 1
Let t = 1 the eigenvector becomes
2t 2
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors

2

1 1 1 No
1
-1

) 1 1 No
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

fl (t) = ’1716t
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Since eigenvalue —5 is real and distinct then the corresponding eigenvector solution is
fz(t) = 1726_5t

-1
_ o5t

1
Therefore the final solution is
fh(t) = lel(t) + Cz.’fg(t)

Which is written as

z(t) 2et —e
=C +co
y(t) et e—5t
Which becomes
z(t) (2¢1€% — cp) et
y(t) (c1€% + ¢3) €7

Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

z(0) =3
| 9(0)=0

Substituting initial conditions into the above solution at ¢ = 0 gives

1)

3 201 — Co

0 Cc1+ ¢

Solving for the constants of integrations gives

(31:1

022—1

Substituting these constants back in original solution in Eq. (1) gives

z(t) (2€% +1)e 5
y() (€% —1)e™™
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The following is the phase plot of the system.
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Figure 32: Phase plot

The following are plots of each solution.
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

Ldsolve([diff(x(t),t) = -x(t)+4*y(t), diff(y(t),t) = 2*x(t)-3xy(t), x(0) = 3, y(O) = 0], sing

z(t) =2e' +e7
y(t) =’ —e™

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 30

LDSolve [{x' [t]==—x[t]+4*y[t],y' [t]==2%x[t]-3*y[t]},{x[0]==3,y[0]==0},{x[t],y [tj] },t,IncludeSin

z(t) — e % + 2¢
y(t) = et — e
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1.15 problem HW 5 problem 7

1.15.1 Solution using Matrix exponential method . . . . . . .. .. .. 168]
1.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . [I70
1.15.3 Maple step by step solution . . . . . ... ... ... ... ... 1775

Internal problem ID [7043]
Internal file name [OUTPUT/6029_Sunday_June_05_2022_04_14_30_PM_69169982/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: HW 5 problem 7.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

'(t) = 22(t) — y(t)
y(t) = —z(t) +2y(t) +4¢

1.15.1 Solution using Matrix exponential method

4t allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

In this method, we will assume we have found the matrix exponential e

Since the system is nonhomogeneous, then the solution is given by
Z(t) = Tn(t) + Zp(t)

Where Z,(t) is the homogeneous solution to #'(t) = AZ(t) and Z,(t) is a particular
solution to Z'(t) = AZ(t) + G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the

matrix exponential can be found to be

et e3t eSt et
e st T3ty
- &3t et ot &3t
—ztz T3
Therefore the homogeneous solution is
fh(t) = eAté'
[ ot &3t 3t ot
. 2 T3 7 T3 a1
- &3t ot ot &3t
2tz 77t 2
[ (et &3t &3t ot
<E+T>Cl+<_7+3>c2
- e3t et et e3t
<—7+§ at+|lst+5)c
[ (c1—ca)e et(c1+c2)
_ 2 + 7
(ca—cy)e3? et(c1+ca)
| 2 2

The particular solution given by

Tp

But

7 () = e / 4 G(t) dt

e—At — (eAt)—l
e—3t (62t+1) e—3t (e2t_1)
2 2
e—3t (e2t_1) e—3t (e2t+1)
2 2
Hence
_ i + e_3t _ﬁ + i T e—3t (e2t~|—1) e—3t (e2t—1)
Z,(t) = 2 2 2 2 / 2 2
p - 3t t t 3t —St( 2t —3t (.2t
_e? e’ e’ e’ e e 1) e (e +1)
s Tz 271T3 i 2
[ ot el e ] ot
BEES —+ < 2t +e
- &3t et et &3t —2t
i — + ) D) + 5 ] 2t —e
ef(2t+1)
e(—1+ 2¢)
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Hence the complete solution is
Z(t) = Tn(t) + Zp(t)
() | get(t4+ % 42 +

)
)

NI= N

()™ | o t(t 4 + % —

1.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

Z(t) = AZ(t) + G(t)

70 | | 2 -1 | =@ 0
y'(t) -1 2 y(t) 4et

Since the system is nonhomogeneous, then the solution is given by
Z(t) = Tn(t) + Tp(t)

Where Zj,(t) is the homogeneous solution to #'(t) = AZ(t) and Z,(t) is a particular
solution to Z'(t) = AZ(t) + G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—AI)=0
Expanding gives
2 -1 10
det - A =0
-1 2 01
Therefore
2—-)\ -1
det =0
-1 2=

Which gives the characteristic equation

A4 +3=0
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The roots of the above are the eigenvalues.

=1
A2 =3

This table summarises the above result

eigenvalue

algebraic multiplicity

type of eigenvalue

1

1

real eigenvalue

3

1

real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; =1

We need to solve A7 = A or (A — AI)¥ = 0 which becomes

2 -1 10 (1 0
- () -

-1 2 01 (3 0

1 -1 (%1 . 0

-1 1 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

1 -10
-1 110
1 =10
R2 = R2 + Rl -
0 010
Therefore the system in Echelon form is
1 -1 (%1 _ 0
0 0 U2 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = t}
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Hence the solution is
t t

t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t 1
=t
t 1
Let t = 1 the eigenvector becomes
t 1
t 1

Considering the eigenvalue A\ = 3

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

2 -1 10 U1 0
- 3) =

-1 2 01 (3 0

-1 -1 (%1 . 0

-1 -1 Va2 0

Now forward elimination is applied to solve for the eigenvector . The augmented
matrix is

-1 —-110
-1 —-1/0
-1 —-110
R2 = R2 - Rl -
0 010
Therefore the system in Echelon form is
-1 -1 U1 _ 0
0 0 Uy 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = —t}
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Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

Let t = 1 the eigenvector becomes

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors

1

1 1 1 No
1
-1

3 1 1 No
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

fl (t) = ’1716t
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Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

Therefore the homogeneous solution is
fh(t) = lel(t) + 02.’1_3‘2(1:')
Which is written as

z(t) e —e3t
=C + co
y(t) et e3t

Now that we found homogeneous solution above, we need to find a particular solution
Zp(t). We will use Variation of parameters. The fundamental matrix is

o= [5;*1 2, ]

Where Z; are the solution basis found above. Therefore the fundamental matrix is

But
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Hence

of  _edt et et 0
fp (t) = / 2—3t —23t dt
et eSt _e . e . 4 et
et —edt 2
. ]2 ]a
of Bt 9 o2t
et —edt ot
of Bt 2
e'(2t + 1)
ef(—1+2t)

Now that we found particular solution, the final solution is

Z(t) = Tn(t) + Zp(?)
x(t cret —cqe3t et(2t+1
@O_|a N 2 N ( )
y(t) ciet o€t e'(—1+ 2t)
Which becomes
z(t) 26t + cre’ — cpe® + €
y(t) e +2ef(t+ < — 1)

1.15.3 Maple step by step solution

Let’s solve
[2'(t) = 2z(t) — y(t),y'(t) = —z(t) + 2y(¢t) + 4¢']

° Define vector

Z(t) =
y(t)
° Convert system into a vector equation
2 -1 0
7 ()= ST () +
-1 2 4¢t
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System to solve

4et

Rewrite the system as

—/

N —
z(t)=A-z(t)+ f
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1 -1
1’ Y 3’
1 1

Consider eigenpair

1
1

L,

Solution to homogeneous system from eigenpair

1
1

%
xlzet-

Consider eigenpair

-1
1

3,

Solution to homogeneous system from eigenpair

-1
%
Ty =e.

1
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General solution of the system of ODEs can be written in terms of the particular solution Zp(
— — — —

z(t) =c1x1+ caxs + Tp(t)

Fundamental matrix

Let ¢(t) be the matrix whose columns are the independent solutions of the homogeneous syst

t e3t

o0 =" ",

The fundamental matrix, ®(¢) is a normalized version of ¢(t) satisfying ®(0) = I where [ is tk
B(t) = 6(t) - 515
Substitute the value of ¢(t) and ¢(0)

Evaluate and simplify to get the fundamental matrix
e e e
@(t) = 2 3t ? t t2 3t2
—2 Ty 2t7%
Find a particular solution of the system of ODEs using variation of parameters
Let the particular solution be the fundamental matrix multiplied by v (t) and solve for v (t)
— —
Z,() = (1) - B0
Take the derivative of the particular solution
T(t) = () o)+ B(t) - U (£)
Substitute particular solution and its derivative into the system of ODEs
— —/ — -
) - v(t)+P(t)-v(t)=A-D1)-v(t)+ f(t)
The fundamental matrix has columns that are solutions to the homogeneous system so its der
%
A-B)- V@O + ()0 () =A-B(t)-B(t) + £(2)
Cancel like terms
/ —
®(t)- v (1) = f(?)

Multiply by the inverse of the fundamental matrix
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—/ 1

3(t) = 5l 1 (0)

Integrate to solve for v (t)

t)—fo 3(s) s)ds

Plug v( ) into the equation for the particular solution

5)p( <f0 3(s) ds)

Plug in the fundamental matrix and the forcing function and compute

5 2elt — e3t + ¢t

Z,(t) =
’ e3t +ef(—1 + 2t)
Plug particular solution back into general solution
— — — 2 ett - e3t + et
Z(t) =121+ oo+
e +ef(—1+2t)

Substitute in vector of dependent variables

2(t) (—c—1)e +2e'(t+ % +1)

y(t) (c2+1)e¥ +2€f(t+2 — 1)
Solution to the system of ODEs
2t) = (~ea =1 + 2 (t+ 5 +3),yt) = (2 + 1) & + 2 (t+ 5 —

N =
~—
——

v/ Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

—-x()+2+y (t) +4*exp(t)] , singsol=all)

z(t) = cpe’ + c1e¥ + 2¢'t
y(t) = coe’ — c1e® +2e't — 2¢’
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v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 74

-

kDSolve [{x' [t]==2*x[t]-y[t],y' [t]==—x[t]+2xy[t]1+4*Exp[t]},{x[t],y[t]l},t, Includ}eSingularSoluti

z(t) — %et (4t +c (€2t + 1) — e+ 2+ 02)

1
y(t) — Eet (4t — e’ + e =2+ + o)
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1.16 problem Example 8.3.4 from Handout chapter 8.2

1.16.1 Solution using Matrix exponential method . . . . . . .. .. .. 1801
1.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . [182]
1.16.3 Maple step by step solution . . . . . . ... ... ... ..... 187

Internal problem ID [7044]
Internal file name [OUTPUT/6030_Sunday_June_05_2022_04_14_32_PM_41096389/index.tex|

Book: Selected problems from homeworks from different courses

Section: Math 2520, summer 2021. Differential Equations and Linear Algebra. Normandale
college, Bloomington, Minnesota

Problem number: Example 8.3.4 from Handout chapter 8.2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

z'(t) = 6x(t) — Ty(t) + 10
y'(t) = =(t) — 2y(t) — 2¢’

1.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential e? allready.

There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

z'(t) 6 —7 z(t) N 10
y'(8) 1 =2 | y(@) —2¢*

Since the system is nonhomogeneous, then the solution is given by
Z(t) = Tn(t) + Zp(t)

Where Z,(t) is the homogeneous solution to #'(t) = AZ(t) and Z,(t) is a particular
solution to Z'(t) = AZ(t) + G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

—Q‘F 75 75 + Te t

At 6 6 6 6
€ = &5t et 7ot &5t
6~ 6 6 6

fh (t) = eAté’

i et 75t 75t
(—T+ - )cl+<— c
&5t et 7e—t &5t

<?_T>cl+<T_F>C2

(—c14+7c2)et + 7(c1—co)e5t

_ 6 6
(—c1+7co)et (c1—co)ed?
6 + 6

The particular solution given by

But
e—At (eAt)—l
(B =T)e=B  T(eSt—1)e5t
. 6 6
- (eSt—1)e=5t  (7eBt—1)e=5t
o 6 6
Hence
~ _i + 75t _78515 + 7e—t T _ (eﬁt—7)e_5t 7(e6t—1)e_5t 10
.’f (t) — 6 6 6 6 6 6 dt
p e et Te t % . (e5t—1)e=5t  (7ebt—1)e5¢ —9¢t
| 6 6 6 6 | 6 6
[t et ]| TR )
_ 12
e et Tet e (1474208 tet+4)e 5
G 6 6 6 | D
[ 7et
| =T
o 5et
| 27
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Hence the complete solution is

Z(t) = Zn(t) + Zp(t
(—c1 +762)e 7(01 —c2)edt 4 7et
6 T r

(- cl+7cz)e_t (c1—c2)e® o9 _ bet
+ 6 2 4

1.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

() = AZ(1) + G(t)

z'(t) 6 —7 z(t) N 10
y'(8) 1 =2 | y(®) —2¢f
Since the system is nonhomogeneous, then the solution is given by
Z(t) = Tn(t) + Zp(t)

Where Z,(t) is the homogeneous solution to #'(t) = AZ(t) and Z,(t) is a particular
solution to Z'(t) = AZ(t) + G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues A

det(A—A)=0
Expanding gives
6 —7 10
det — A =0
1 -2 01
Therefore
6-\ =7
det =0
1 —2-2A

Which gives the characteristic equation

A —4\—-5=0
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The roots of the above are the eigenvalues.

Ar=-1
=5
This table summarises the above result
eigenvalue | algebraic multiplicity | type of eigenvalue
-1 1 real eigenvalue
5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue A\; = —1

We need to solve A7 = A or (A — AI)¥ = 0 which becomes

6 —7 10 V1 0
- (-1 -

1 -2 01 (o 0

7T =7 U1 . 0

1 -1 V2 0

Now forward elimination is applied to solve for the eigenvector #. The augmented
matrix is

7 =710
1 =10
R 7 =710
Ry = Ry — e =4
7 0 010
Therefore the system in Echelon form is
7 =7 (%1 _ 0
0 0 U2 0

The free variables are {ve} and the leading variables are {v;}. Let v = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = t}
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Hence the solution is
t t

t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t 1
=t
t 1
Let t = 1 the eigenvector becomes
t 1
t 1

Considering the eigenvalue A\, = 5

We need to solve A7 = A7 or (A — AI)¥ = 0 which becomes

6 —7 10 VU1 0
- 5) -

1 -2 01 (o 0

1 -7 U1 . 0

1 -7 V2 0

Now forward elimination is applied to solve for the eigenvector . The augmented
matrix is

1 -71]0
1 -71]0
1 =7(0
R2 = R2 - Rl -
0 010
Therefore the system in Echelon form is
1 -7 V1 _ 0
0 0 U2 0

The free variables are {ve} and the leading variables are {v;}. Let vy = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v; = 7t}
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Hence the solution is
Tt Tt

t t

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

Tt 7
=t
t 1
Let t = 1 the eigenvector becomes
Wl
t 1

The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity m, and its geometric multiplicity k£ and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m — k generalized eigenvectors for this eigenvalue.

multiplicity
eigenvalue | algebraic m | geometric k | defective? | eigenvectors

1

-1 1 1 No
1
7

) 1 1 No
1

Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue —1 is real and distinct then the
corresponding eigenvector solution is

fl (t) = Ule_t
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Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is
.’fz (t) = ’17265t

5t

7
e
1

Therefore the homogeneous solution is
fh(t) = lel(t) + 02.’1_3‘2(1:')

Which is written as

z(t) e’ 7e%
= +c2
y(t) e—t e5t

Now that we found homogeneous solution above, we need to find a particular solution
Zp(t). We will use Variation of parameters. The fundamental matrix is

P = [51 Ty - ]
Where Z; are the solution basis found above. Therefore the fundamental matrix is

et 7e%
eM) =1 ,
e e

The particular solution is then given by

But
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Hence

t t
et T _e 7e* 10
Z,(t) = 6. ¢ dt
P —t 5t e 5t e”5t t
e e —%5 —2e
B T B t 2t T
et 7e% —576 — 7?3
- —t 5t 5e~5t e—4t dt
I e e | | T3 + = |
B _ T 7 2t 5 t
et 7e% - — 5
o —t 5t _eTH TSt
€ & 12 3
B ¢
—4-
N -
i 4

Now that we found particular solution, the final solution is

2(t) = Zn(t) + Zp(2)

. 4
y(t) cret coed?t —2— 5Tet
Which becomes
zt) | | ce t 4+ 7c e5t—4—7Tet
y(t) cret + cpe® — 2 — 2%

1.16.3 Maple step by step solution

Let’s solve
[2'(t) = 62(t) — Ty(t) + 10,y (t) = (t) — 2y(t) — 2¢€']

° Define vector

o(t) =
y(t)
° Convert system into a vector equation
6 —7 10
7 ()= ST () +
1 -2 —2¢
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System to solve

e (15 :; ‘ ?(t) - —120et
Define the forcing function
10
—2¢'
Define the coefficient matrix
6 —7
1 =2

A=

Rewrite the system as

—/

N —
z(t)=A-z(t)+ f
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

Consider eigenpair

1
1

_1,

Solution to homogeneous system from eigenpair

1
1

%
xlze_t~

Consider eigenpair

7
1

5,

Solution to homogeneous system from eigenpair

Ty =1¢e".
1
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General solution of the system of ODEs can be written in terms of the particular solution Zp(
— — — —

z(t) =c1x1+ caxs + Tp(t)

Fundamental matrix

Let ¢(t) be the matrix whose columns are the independent solutions of the homogeneous syst

et 7e%

e—t eSt

¢(t) =

The fundamental matrix, ®(¢) is a normalized version of ¢(t) satisfying ®(0) = I where [ is tk
B(t) = 6(t) - 515
Substitute the value of ¢(t) and ¢(0)

e—t 7 e5t
o(t) = 1
et e 17
11
Evaluate and simplify to get the fundamental matrix
et 7e5%t 7edt Te~t
—_ 1= —1ic + 1=
6 6 6 6
@(t) = e5t e—t 7e—t e5t
6 6 "6 6

Find a particular solution of the system of ODEs using variation of parameters
Let the particular solution be the fundamental matrix multiplied by v (t) and solve for v (t)
Tp(t) = (1) - v (2)
Take the derivative of the particular solution
T(t) = () o)+ B(t) - U (£)
Substitute particular solution and its derivative into the system of ODEs
— —/ — -
) - v(t)+P(t)-v(t)=A-D1)-v(t)+ f(t)
The fundamental matrix has columns that are solutions to the homogeneous system so its der
—
A-B)- V@O + ()0 () =A-B(t)-B(t) + £(2)
Cancel like terms
—/ -
®(t) - v (t) = f(2)

Multiply by the inverse of the fundamental matrix
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—/ =
3() = o - 10
o Integrate to solve for v (¢)
— t 1 L
50 = Jy gy - 1 () ds
o Plug ’l_)>(t) into the equation for the particular solution
—
Tp(t) <f0 B(s) ds)

o Plug in the fundamental matrix and the forcing function and compute

7et 17 e_t 35€5t
4 4 + + 12

Ty(t) =
55t 17
A

° Plug particular solution back into general solution

7et 17e_t 355
— 4t + 1

a_f(t) = 0131 + szz +

5e5t 17
R A
° Substitute in vector of dependent variables
2(t) ~ (120141-24)e_t + (84C241r235)e5t _ 7_et _4
T | (2c1434)e~t | (5+12c2)e®t 5
y(t) = 12 — + 1;2 : Te -
° Solution to the system of ODEs
12¢ +34 et 84co+35)e5t 12¢1+34)e~t 5+12cp)e ¢
{Mﬂ (2e1+30)c™! | (Beptane™ _ 4,y(t) = (atshe™! | (5+12) _g%_2}

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

|dsolve([diff (x(t),t)=6%x(t)-Txy(t)+10,diff (y(t),t)=x(t)-2xy(t)-2%exp(t)],singsol=all)

Te t
z(t) = cpe® + e ey — T —4
ce® 5et

y(t): 7 +e Cl—T—Q
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v/ Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 90

{DSolve [{x' [t]==6*x[t] ‘7*y [t]+10 »Y '[t]==x[t] —2*y [t] —2*Exp [t1},{x[t], y [t1},t,In ludeSingularSo

Tet 1 7

z(t) — 1 6(01 —Te)e ™t + 6(01 —cy)e” —4
t 1 1

y(t) — —5% — 6(01 - 702)€_t + 6(01 - 62)65t -2
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