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1.1 problem 0
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Internal problem ID [3264]
Internal file name [OUTPUT/2756_Sunday_June_05_2022_08_40_07_AM_86643197/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 0.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = af(x)

1.1.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

af(x) dx

=
∫

af(x) dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫

af(x) dx+ c1

Verification of solutions

y =
∫

af(x) dx+ c1

Verified OK.
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1.1.2 Maple step by step solution

Let’s solve
y′ = af(x)

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
af(x) dx+ c1

• Evaluate integral
y =

∫
af(x) dx+ c1

• Solve for y
y =

∫
af(x) dx+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x) = a*f(x),y(x), singsol=all)� �

y(x) = a

(∫
f(x) dx

)
+ c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 20� �
DSolve[y'[x]==a*f[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
∫ x

1
af(K[1])dK[1] + c1
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1.2 problem 1
1.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 8
1.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 16

Internal problem ID [3265]
Internal file name [OUTPUT/2757_Sunday_June_05_2022_08_40_07_AM_66305758/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − y = x+ sin (x)

1.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = x+ sin (x)

Hence the ode is

y′ − y = x+ sin (x)

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x
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The ode becomes

d
dx(µy) = (µ) (x+ sin (x))

d
dx
(
e−xy

)
=
(
e−x
)
(x+ sin (x))

d
(
e−xy

)
=
(
(x+ sin (x)) e−x

)
dx

Integrating gives

e−xy =
∫

(x+ sin (x)) e−x dx

e−xy = −x e−x − e−x − e−x cos (x)
2 − e−x sin (x)

2 + c1

Dividing both sides by the integrating factor µ = e−x results in

y = ex
(
−x e−x − e−x − e−x cos (x)

2 − e−x sin (x)
2

)
+ c1ex

which simplifies to

y = −1 + c1ex − x− sin (x)
2 − cos (x)

2

Summary
The solution(s) found are the following

(1)y = −1 + c1ex − x− sin (x)
2 − cos (x)

2
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Figure 1: Slope field plot

Verification of solutions

y = −1 + c1ex − x− sin (x)
2 − cos (x)

2

Verified OK.

1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x+ sin (x) + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 2: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exdy

Which results in

S = e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ sin (x) + y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy

Sy = e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (x+ sin (x)) e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (R + sin (R)) e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−RR− e−R + c1 −
e−R(cos (R) + sin (R))

2 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−xy = −x e−x − e−x + c1 −
e−x(cos (x) + sin (x))

2
Which simplifies to

(2x+ 2y + cos (x) + sin (x) + 2) e−x

2 − c1 = 0

Which gives

y = −(e−x sin (x) + e−x cos (x) + 2x e−x + 2 e−x − 2c1) ex
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+ sin (x) + y dS
dR

= (R + sin (R)) e−R

R = x

S = e−xy

Summary
The solution(s) found are the following

(1)y = −(e−x sin (x) + e−x cos (x) + 2x e−x + 2 e−x − 2c1) ex
2
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Figure 2: Slope field plot

Verification of solutions

y = −(e−x sin (x) + e−x cos (x) + 2x e−x + 2 e−x − 2c1) ex
2

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (x+ sin (x) + y) dx
(−x− sin (x)− y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x− sin (x)− y

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x− sin (x)− y)

= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0

13



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x(−x− sin (x)− y)
= −e−x(x+ sin (x) + y)

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x(x+ sin (x) + y)
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x(x+ sin (x) + y) dx

(3)φ = (2x+ 2y + cos (x) + sin (x) + 2) e−x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x. Therefore equation (4) becomes

(5)e−x = e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2x+ 2y + cos (x) + sin (x) + 2) e−x

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2x+ 2y + cos (x) + sin (x) + 2) e−x

2

The solution becomes

y = −(e−x sin (x) + e−x cos (x) + 2x e−x + 2 e−x − 2c1) ex
2
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Summary
The solution(s) found are the following

(1)y = −(e−x sin (x) + e−x cos (x) + 2x e−x + 2 e−x − 2c1) ex
2

Figure 3: Slope field plot

Verification of solutions

y = −(e−x sin (x) + e−x cos (x) + 2x e−x + 2 e−x − 2c1) ex
2

Verified OK.

1.2.4 Maple step by step solution

Let’s solve
y′ − y = x+ sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = x+ sin (x) + y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y = x+ sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y) = µ(x) (x+ sin (x))

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x+ sin (x)) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x+ sin (x)) dx+ c1

• Solve for y

y =
∫
µ(x)(x+sin(x))dx+c1

µ(x)

• Substitute µ(x) = e−x

y =
∫
(x+sin(x))e−xdx+c1

e−x

• Evaluate the integrals on the rhs

y = − x
ex− 1

ex− e−x cos(x)
2 − e−x sin(x)

2 +c1
e−x

• Simplify
y = −1 + c1ex − x− sin(x)

2 − cos(x)
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x) = x+sin(x)+y(x),y(x), singsol=all)� �

y(x) = −x− 1− cos (x)
2 − sin (x)

2 + exc1

3 Solution by Mathematica
Time used: 0.079 (sec). Leaf size: 28� �
DSolve[y'[x]==x+Sin[x]+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x− sin(x)
2 − cos(x)

2 + c1e
x − 1

18



1.3 problem 2
1.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 21
1.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 26
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Internal problem ID [3266]
Internal file name [OUTPUT/2758_Sunday_June_05_2022_08_40_08_AM_22569430/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − 2y = x2 + 3 cosh (x)

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
q(x) = x2 + 3 cosh (x)

Hence the ode is

y′ − 2y = x2 + 3 cosh (x)

The integrating factor µ is

µ = e
∫
(−2)dx

= e−2x

19



The ode becomes

d
dx(µy) = (µ)

(
x2 + 3 cosh (x)

)
d
dx
(
e−2xy

)
=
(
e−2x) (x2 + 3 cosh (x)

)
d
(
e−2xy

)
=
((
x2 + 3 cosh (x)

)
e−2x) dx

Integrating gives

e−2xy =
∫ (

x2 + 3 cosh (x)
)
e−2x dx

e−2xy = x2 sinh (2x)
2 − x cosh (2x)

2 + sinh (2x)
4 − x2 cosh (2x)

2 + x sinh (2x)
2 − cosh (2x)

4 + 3 sinh (x)
2 + sinh (3x)

2 − 3 cosh (x)
2 − cosh (3x)

2 + c1

Dividing both sides by the integrating factor µ = e−2x results in

y = e2x
(
x2 sinh (2x)

2 − x cosh (2x)
2 + sinh (2x)

4 − x2 cosh (2x)
2 + x sinh (2x)

2 − cosh (2x)
4 + 3 sinh (x)

2 + sinh (3x)
2 − 3 cosh (x)

2 − cosh (3x)
2

)
+ e2xc1

which simplifies to

y = −
((
x2 + x+ 1

2

)
cosh (2x) +

(
−x2 − x− 1

2

)
sinh (2x)− 2c1 + 3 cosh (x)− 3 sinh (x) + cosh (3x)− sinh (3x)

)
e2x

2

Summary
The solution(s) found are the following

(1)y =

−
((
x2 + x+ 1

2

)
cosh (2x) +

(
−x2 − x− 1

2

)
sinh (2x)− 2c1 + 3 cosh (x)− 3 sinh (x) + cosh (3x)− sinh (3x)

)
e2x

2
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Figure 4: Slope field plot

Verification of solutions
y =

−
((
x2 + x+ 1

2

)
cosh (2x) +

(
−x2 − x− 1

2

)
sinh (2x)− 2c1 + 3 cosh (x)− 3 sinh (x) + cosh (3x)− sinh (3x)

)
e2x

2

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + 3 cosh (x) + 2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e2x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2xdy

Which results in

S = e−2xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 3 cosh (x) + 2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2 e−2xy

Sy = e−2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(
x2 + 3 cosh (x)

)
e−2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=
(
R2 + 3 cosh (R)

)
e−2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 sinh (2R)
2 − R cosh (2R)

2 + sinh (2R)
4 − R2 cosh (2R)

2 + R sinh (2R)
2 − cosh (2R)

4 + 3 sinh (R)
2 + sinh (3R)

2 − 3 cosh (R)
2 − cosh (3R)

2 + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−2xy = x2 sinh (2x)
2 − x cosh (2x)

2 + sinh (2x)
4 − x2 cosh (2x)

2 + x sinh (2x)
2 − cosh (2x)

4 + 3 sinh (x)
2 + sinh (3x)

2 − 3 cosh (x)
2 − cosh (3x)

2 + c1

Which simplifies to

e−2xy + 2 cosh (x)3 + (4x2 + 4x− 8 sinh (x) + 2) cosh (x)2

4 −
(
x2 + x+ 1

2

)
sinh (x) cosh (x)− x2

2 − x

2 − c1 − sinh (x)− 1
4 = 0

Which gives

y = −
(
4x2 cosh (x)2 − 4 cosh (x) sinh (x)x2 + 8 cosh (x)3 − 8 cosh (x)2 sinh (x) + 4x cosh (x)2 − 4 cosh (x) sinh (x)x+ 2 cosh (x)2 − 2 cosh (x) sinh (x)− 2x2 − 4 sinh (x)− 4c1 − 2x− 1

)
e2x

4

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2 + 3 cosh (x) + 2y dS
dR

= (R2 + 3 cosh (R)) e−2R

R = x

S = e−2xy

24



Summary
The solution(s) found are the following

(1)y =

−
(
4x2 cosh (x)2 − 4 cosh (x) sinh (x)x2 + 8 cosh (x)3 − 8 cosh (x)2 sinh (x) + 4x cosh (x)2 − 4 cosh (x) sinh (x)x+ 2 cosh (x)2 − 2 cosh (x) sinh (x)− 2x2 − 4 sinh (x)− 4c1 − 2x− 1

)
e2x

4

Figure 5: Slope field plot

Verification of solutions
y =

−
(
4x2 cosh (x)2 − 4 cosh (x) sinh (x)x2 + 8 cosh (x)3 − 8 cosh (x)2 sinh (x) + 4x cosh (x)2 − 4 cosh (x) sinh (x)x+ 2 cosh (x)2 − 2 cosh (x) sinh (x)− 2x2 − 4 sinh (x)− 4c1 − 2x− 1

)
e2x

4

Verified OK.
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1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
x2 + 3 cosh (x) + 2y

)
dx(

−x2 − 3 cosh (x)− 2y
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − 3 cosh (x)− 2y
N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − 3 cosh (x)− 2y

)
= −2

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−2)− (0))
= −2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2 dx

The result of integrating gives

µ = e−2x

= e−2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−2x(−x2 − 3 cosh (x)− 2y
)

= −e−2x(x2 + 3 cosh (x) + 2y
)
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And

N = µN

= e−2x(1)
= e−2x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−2x(x2 + 3 cosh (x) + 2y
))

+
(
e−2x) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−2x(x2 + 3 cosh (x) + 2y

)
dx

(3)φ = (2x2 + 2x+ 4y + 1) cosh (2x)
4 + (−2x2 − 2x− 4y − 1) sinh (2x)

4
+ 3 cosh (x)

2 − 3 sinh (x)
2 + cosh (3x)

2 − sinh (3x)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cosh (2x)− sinh (2x) + f ′(y)

But equation (2) says that ∂φ
∂y

= e−2x. Therefore equation (4) becomes

(5)e−2x = cosh (2x)− sinh (2x) + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2x2 + 2x+ 4y + 1) cosh (2x)
4 + (−2x2 − 2x− 4y − 1) sinh (2x)

4
+ 3 cosh (x)

2 − 3 sinh (x)
2 + cosh (3x)

2 − sinh (3x)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2x2 + 2x+ 4y + 1) cosh (2x)

4 + (−2x2 − 2x− 4y − 1) sinh (2x)
4

+ 3 cosh (x)
2 − 3 sinh (x)

2 + cosh (3x)
2 − sinh (3x)

2

The solution becomes

y

= −2x2 sinh (2x) + 2x2 cosh (2x)− 2x sinh (2x) + 2x cosh (2x) + 6 cosh (x)− 6 sinh (x)− sinh (2x) + cosh (2x)− 2 sinh (3x) + 2 cosh (3x)− 4c1
4 sinh (2x)− 4 cosh (2x)

Summary
The solution(s) found are the following

(1)y

= −2x2 sinh (2x) + 2x2 cosh (2x)− 2x sinh (2x) + 2x cosh (2x) + 6 cosh (x)− 6 sinh (x)− sinh (2x) + cosh (2x)− 2 sinh (3x) + 2 cosh (3x)− 4c1
4 sinh (2x)− 4 cosh (2x)
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Figure 6: Slope field plot

Verification of solutions
y

= −2x2 sinh (2x) + 2x2 cosh (2x)− 2x sinh (2x) + 2x cosh (2x) + 6 cosh (x)− 6 sinh (x)− sinh (2x) + cosh (2x)− 2 sinh (3x) + 2 cosh (3x)− 4c1
4 sinh (2x)− 4 cosh (2x)

Verified OK.

1.3.4 Maple step by step solution

Let’s solve
y′ − 2y = x2 + 3 cosh (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = x2 + 3 cosh (x) + 2y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y = x2 + 3 cosh (x)
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − 2y) = µ(x) (x2 + 3 cosh (x))

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − 2y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

• Solve to find the integrating factor
µ(x) = e−2x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x2 + 3 cosh (x)) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x2 + 3 cosh (x)) dx+ c1

• Solve for y

y =
∫
µ(x)

(
x2+3 cosh(x)

)
dx+c1

µ(x)

• Substitute µ(x) = e−2x

y =
∫ (

x2+3 cosh(x)
)
e−2xdx+c1

e−2x

• Evaluate the integrals on the rhs

y =
x2 sinh(2x)

2 −x cosh(2x)
2 + sinh(2x)

4 −x2 cosh(2x)
2 +x sinh(2x)

2 − cosh(2x)
4 + 3 sinh(x)

2 + sinh(3x)
2 − 3 cosh(x)

2 − cosh(3x)
2 +c1

e−2x

• Simplify

y = −
(
2 cosh (x)3 +

(
x2 + x− 2 sinh (x) + 1

2

)
cosh (x)2 −

(
x2 + x+ 1

2

)
sinh (x) cosh (x)− x2

2 − x
2 − c1 − sinh (x)− 1

4

)
e2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 58� �
dsolve(diff(y(x),x) = x^2+3*cosh(x)+2*y(x),y(x), singsol=all)� �
y(x) =

−
e2x
((
x2 + x+ 1

2

)
cosh (2x) +

(
−x2 − x− 1

2

)
sinh (2x)− 2c1 + 3 cosh (x)− 3 sinh (x) + cosh (3x)− sinh (3x)

)
2

3 Solution by Mathematica
Time used: 0.092 (sec). Leaf size: 46� �
DSolve[y'[x]==x^2+3*Cosh[x]+2*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
4e

−x
(
ex
(
2x2 + 2x+ 1

)
+ 6e2x + 2

)
+ c1e

2x
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1.4 problem 3
1.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 34
1.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 41

Internal problem ID [3267]
Internal file name [OUTPUT/2759_Sunday_June_05_2022_08_40_09_AM_78215813/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − cy = bx+ a

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −c

q(x) = bx+ a

Hence the ode is

y′ − cy = bx+ a

The integrating factor µ is

µ = e
∫
−cdx

= e−cx
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The ode becomes
d
dx(µy) = (µ) (bx+ a)

d
dx
(
e−cxy

)
=
(
e−cx

)
(bx+ a)

d
(
e−cxy

)
=
(
(bx+ a) e−cx

)
dx

Integrating gives

e−cxy =
∫

(bx+ a) e−cx dx

e−cxy = −(bcx+ ca+ b) e−cx

c2
+ c1

Dividing both sides by the integrating factor µ = e−cx results in

y = −ecx(bcx+ ca+ b) e−cx

c2
+ c1ecx

which simplifies to

y = c1ecxc2 + (−bx− a) c− b

c2

Summary
The solution(s) found are the following

(1)y = c1ecxc2 + (−bx− a) c− b

c2

Verification of solutions

y = c1ecxc2 + (−bx− a) c− b

c2

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = bx+ cy + a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 8: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ecx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ecxdy

Which results in

S = e−cxy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = bx+ cy + a

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −c e−cxy

Sy = e−cx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (bx+ a) e−cx (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (Rb+ a) e−cR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(Rbc+ ca+ b) e−cR

c2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−cxy = −(bcx+ ca+ b) e−cx

c2
+ c1

Which simplifies to

e−cxy = −(bcx+ ca+ b) e−cx

c2
+ c1

Which gives

y = −(e−cxbcx+ e−cxac− c2c1 + b e−cx) ecx
c2

Summary
The solution(s) found are the following

(1)y = −(e−cxbcx+ e−cxac− c2c1 + b e−cx) ecx
c2

Verification of solutions

y = −(e−cxbcx+ e−cxac− c2c1 + b e−cx) ecx
c2

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (bx+ cy + a) dx
(−bx− cy − a) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bx− cy − a

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−bx− cy − a)

= −c
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−c)− (0))
= −c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−cdx

The result of integrating gives

µ = e−cx

= e−cx

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−cx(−bx− cy − a)
= −e−cx(bx+ cy + a)

And

N = µN

= e−cx(1)
= e−cx

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−cx(bx+ cy + a)
)
+
(
e−cx

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−cx(bx+ cy + a) dx

(3)φ = (c2y + (bx+ a) c+ b) e−cx

c2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−cx + f ′(y)

But equation (2) says that ∂φ
∂y

= e−cx. Therefore equation (4) becomes

(5)e−cx = e−cx + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (c2y + (bx+ a) c+ b) e−cx

c2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(c2y + (bx+ a) c+ b) e−cx

c2
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The solution becomes

y = −(e−cxbcx+ e−cxac− c2c1 + b e−cx) ecx
c2

Summary
The solution(s) found are the following

(1)y = −(e−cxbcx+ e−cxac− c2c1 + b e−cx) ecx
c2

Verification of solutions

y = −(e−cxbcx+ e−cxac− c2c1 + b e−cx) ecx
c2

Verified OK.

1.4.4 Maple step by step solution

Let’s solve
y′ − cy = bx+ a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = a+ bx+ cy

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − cy = bx+ a

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − cy) = µ(x) (bx+ a)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − cy) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) c

• Solve to find the integrating factor
µ(x) = e−cx

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (bx+ a) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (bx+ a) dx+ c1

• Solve for y

y =
∫
µ(x)(bx+a)dx+c1

µ(x)

• Substitute µ(x) = e−cx

y =
∫
(bx+a)e−cxdx+c1

e−cx

• Evaluate the integrals on the rhs

y = − (bcx+ca+b)e−cx

c2 +c1

e−cx

• Simplify

y = c1ecxc2+(−bx−a)c−b
c2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve(diff(y(x),x) = a+b*x+c*y(x),y(x), singsol=all)� �

y(x) = ecxc1c2 + (−bx− a) c− b

c2

42



3 Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 28� �
DSolve[y'[x]==a+b*x+c*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ac+ bcx+ b

c2
+ c1e

cx
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1.5 problem 4
1.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 45
1.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 52

Internal problem ID [3268]
Internal file name [OUTPUT/2760_Sunday_June_05_2022_08_40_09_AM_66380770/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − ky = a cos (bx+ c)

1.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −k

q(x) = a cos (bx+ c)

Hence the ode is

y′ − ky = a cos (bx+ c)

The integrating factor µ is

µ = e
∫
−kdx

= e−kx
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The ode becomes
d
dx(µy) = (µ) (a cos (bx+ c))

d
dx
(
e−kxy

)
=
(
e−kx

)
(a cos (bx+ c))

d
(
e−kxy

)
=
(
a cos (bx+ c) e−kx

)
dx

Integrating gives

e−kxy =
∫

a cos (bx+ c) e−kx dx

e−kxy = a

(
−k e−kx cos (bx+ c)

b2 + k2 + b e−kx sin (bx+ c)
b2 + k2

)
+ c1

Dividing both sides by the integrating factor µ = e−kx results in

y = ekxa
(
−k e−kx cos (bx+ c)

b2 + k2 + b e−kx sin (bx+ c)
b2 + k2

)
+ c1ekx

which simplifies to

y = − cos (bx+ c) ak + ab sin (bx+ c) + c1ekx(b2 + k2)
b2 + k2

Summary
The solution(s) found are the following

(1)y = − cos (bx+ c) ak + ab sin (bx+ c) + c1ekx(b2 + k2)
b2 + k2

Verification of solutions

y = − cos (bx+ c) ak + ab sin (bx+ c) + c1ekx(b2 + k2)
b2 + k2

Verified OK.

1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a cos (bx+ c) + ky

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 11: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ekx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ekxdy

Which results in

S = e−kxy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a cos (bx+ c) + ky

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −k e−kxy

Sy = e−kx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a cos (bx+ c) e−kx (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a cos (Rb+ c) e−kR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1(b2 + k2) + e−kRa(− cos (Rb+ c) k + b sin (Rb+ c))
b2 + k2 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−kxy = c1(b2 + k2) + e−kxa(− cos (bx+ c) k + b sin (bx+ c))
b2 + k2

Which simplifies to

e−kxy = c1(b2 + k2) + e−kxa(− cos (bx+ c) k + b sin (bx+ c))
b2 + k2

Which gives

y = −
ekx
(
a cos (bx+ c) k e−kx − ab sin (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Summary
The solution(s) found are the following

(1)y = −
ekx
(
a cos (bx+ c) k e−kx − ab sin (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verification of solutions

y = −
ekx
(
a cos (bx+ c) k e−kx − ab sin (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (a cos (bx+ c) + ky) dx
(−a cos (bx+ c)− ky) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a cos (bx+ c)− ky

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−a cos (bx+ c)− ky)

= −k
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−k)− (0))
= −k

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−k dx

The result of integrating gives

µ = e−kx

= e−kx

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−kx(−a cos (bx+ c)− ky)
= −e−kx(a cos (bx+ c) + ky)

And

N = µN

= e−kx(1)
= e−kx

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−kx(a cos (bx+ c) + ky)
)
+
(
e−kx

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−kx(a cos (bx+ c) + ky) dx

(3)φ = −e−kx(− cos (bx+ c) ak + ab sin (bx+ c)− y(b2 + k2))
b2 + k2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −e−kx(−b2 − k2)

b2 + k2 + f ′(y)

= e−kx + f ′(y)

But equation (2) says that ∂φ
∂y

= e−kx. Therefore equation (4) becomes

(5)e−kx = e−kx + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −e−kx(− cos (bx+ c) ak + ab sin (bx+ c)− y(b2 + k2))
b2 + k2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e−kx(− cos (bx+ c) ak + ab sin (bx+ c)− y(b2 + k2))
b2 + k2

The solution becomes

y = −
ekx
(
a cos (bx+ c) k e−kx − ab sin (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Summary
The solution(s) found are the following

(1)y = −
ekx
(
a cos (bx+ c) k e−kx − ab sin (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verification of solutions

y = −
ekx
(
a cos (bx+ c) k e−kx − ab sin (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verified OK.

1.5.4 Maple step by step solution

Let’s solve
y′ − ky = a cos (bx+ c)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = a cos (bx+ c) + ky

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − ky = a cos (bx+ c)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − ky) = µ(x) a cos (bx+ c)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − ky) = µ′(x) y + µ(x) y′
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• Isolate µ′(x)
µ′(x) = −µ(x) k

• Solve to find the integrating factor
µ(x) = e−kx

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) a cos (bx+ c) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) a cos (bx+ c) dx+ c1

• Solve for y

y =
∫
µ(x)a cos(bx+c)dx+c1

µ(x)

• Substitute µ(x) = e−kx

y =
∫
a cos(bx+c)e−kxdx+c1

e−kx

• Evaluate the integrals on the rhs

y =
a

(
− k e−kx cos(bx+c)

b2+k2 + b e−kx sin(bx+c)
b2+k2

)
+c1

e−kx

• Simplify

y = − cos(bx+c)ak+ab sin(bx+c)+c1ekx
(
b2+k2

)
b2+k2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve(diff(y(x),x) = a*cos(b*x+c)+k*y(x),y(x), singsol=all)� �

y(x) = − cos (bx+ c) ak + sin (bx+ c) ab+ ekxc1(b2 + k2)
b2 + k2
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3 Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 43� �
DSolve[y'[x]==a*Cos[b*x+c]+k*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a(b sin(bx+ c)− k cos(bx+ c))
b2 + k2 + c1e

kx
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Internal problem ID [3269]
Internal file name [OUTPUT/2761_Sunday_June_05_2022_08_40_10_AM_44399911/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − ky = a sin (bx+ c)

1.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −k

q(x) = a sin (bx+ c)

Hence the ode is

y′ − ky = a sin (bx+ c)

The integrating factor µ is

µ = e
∫
−kdx

= e−kx
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The ode becomes
d
dx(µy) = (µ) (a sin (bx+ c))

d
dx
(
e−kxy

)
=
(
e−kx

)
(a sin (bx+ c))

d
(
e−kxy

)
=
(
a sin (bx+ c) e−kx

)
dx

Integrating gives

e−kxy =
∫

a sin (bx+ c) e−kx dx

e−kxy = a

(
−b e−kx cos (bx+ c)

b2 + k2 − k e−kx sin (bx+ c)
b2 + k2

)
+ c1

Dividing both sides by the integrating factor µ = e−kx results in

y = ekxa
(
−b e−kx cos (bx+ c)

b2 + k2 − k e−kx sin (bx+ c)
b2 + k2

)
+ c1ekx

which simplifies to

y = −ab cos (bx+ c)− sin (bx+ c) ak + c1ekx(b2 + k2)
b2 + k2

Summary
The solution(s) found are the following

(1)y = −ab cos (bx+ c)− sin (bx+ c) ak + c1ekx(b2 + k2)
b2 + k2

Verification of solutions

y = −ab cos (bx+ c)− sin (bx+ c) ak + c1ekx(b2 + k2)
b2 + k2

Verified OK.

1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a sin (bx+ c) + ky

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 14: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ekx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ekxdy

Which results in

S = e−kxy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a sin (bx+ c) + ky

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −k e−kxy

Sy = e−kx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a sin (bx+ c) e−kx (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a sin (Rb+ c) e−kR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1(b2 + k2)− e−kRa(sin (Rb+ c) k + b cos (Rb+ c))
b2 + k2 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−kxy = c1(b2 + k2)− e−kxa(b cos (bx+ c) + sin (bx+ c) k)
b2 + k2

Which simplifies to

e−kxy = c1(b2 + k2)− e−kxa(b cos (bx+ c) + sin (bx+ c) k)
b2 + k2

Which gives

y = −
ekx
(
a sin (bx+ c) k e−kx + ab cos (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Summary
The solution(s) found are the following

(1)y = −
ekx
(
a sin (bx+ c) k e−kx + ab cos (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verification of solutions

y = −
ekx
(
a sin (bx+ c) k e−kx + ab cos (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (a sin (bx+ c) + ky) dx
(−a sin (bx+ c)− ky) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a sin (bx+ c)− ky

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−a sin (bx+ c)− ky)

= −k
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−k)− (0))
= −k

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−k dx

The result of integrating gives

µ = e−kx

= e−kx

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−kx(−a sin (bx+ c)− ky)
= −e−kx(a sin (bx+ c) + ky)

And

N = µN

= e−kx(1)
= e−kx

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−kx(a sin (bx+ c) + ky)
)
+
(
e−kx

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−kx(a sin (bx+ c) + ky) dx

(3)φ = (ab cos (bx+ c) + sin (bx+ c) ak + y(b2 + k2)) e−kx

b2 + k2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−kx + f ′(y)

But equation (2) says that ∂φ
∂y

= e−kx. Therefore equation (4) becomes

(5)e−kx = e−kx + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (ab cos (bx+ c) + sin (bx+ c) ak + y(b2 + k2)) e−kx

b2 + k2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(ab cos (bx+ c) + sin (bx+ c) ak + y(b2 + k2)) e−kx

b2 + k2
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The solution becomes

y = −
ekx
(
a sin (bx+ c) k e−kx + ab cos (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Summary
The solution(s) found are the following

(1)y = −
ekx
(
a sin (bx+ c) k e−kx + ab cos (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verification of solutions

y = −
ekx
(
a sin (bx+ c) k e−kx + ab cos (bx+ c) e−kx − c1b

2 − c1k
2)

b2 + k2

Verified OK.

1.6.4 Maple step by step solution

Let’s solve
y′ − ky = a sin (bx+ c)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = a sin (bx+ c) + ky

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − ky = a sin (bx+ c)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − ky) = µ(x) a sin (bx+ c)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − ky) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) k

• Solve to find the integrating factor
µ(x) = e−kx

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) a sin (bx+ c) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) a sin (bx+ c) dx+ c1

• Solve for y

y =
∫
µ(x)a sin(bx+c)dx+c1

µ(x)

• Substitute µ(x) = e−kx

y =
∫
a sin(bx+c)e−kxdx+c1

e−kx

• Evaluate the integrals on the rhs

y =
a

(
− b e−kx cos(bx+c)

b2+k2 − k e−kx sin(bx+c)
b2+k2

)
+c1

e−kx

• Simplify

y = −ab cos(bx+c)−sin(bx+c)ak+c1ekx
(
b2+k2

)
b2+k2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 48� �
dsolve(diff(y(x),x) = a*sin(b*x+c)+k*y(x),y(x), singsol=all)� �

y(x) = − cos (bx+ c) ab− sin (bx+ c) ak + ekxc1(b2 + k2)
b2 + k2
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3 Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 43� �
DSolve[y'[x]==a*Sin[b*x+c]+k*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a(k sin(bx+ c) + b cos(bx+ c))
b2 + k2 + c1e

kx
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Internal problem ID [3270]
Internal file name [OUTPUT/2762_Sunday_June_05_2022_08_40_10_AM_1756821/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − cy = a+ b ekx

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −c

q(x) = a+ b ekx

Hence the ode is

y′ − cy = a+ b ekx

The integrating factor µ is

µ = e
∫
−cdx

= e−cx
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The ode becomes
d
dx(µy) = (µ)

(
a+ b ekx

)
d
dx
(
e−cxy

)
=
(
e−cx

) (
a+ b ekx

)
d
(
e−cxy

)
=
((
a+ b ekx

)
e−cx

)
dx

Integrating gives

e−cxy =
∫ (

a+ b ekx
)
e−cx dx

e−cxy = −a e−cx

c
+ b e−cx+kx

−c+ k
+ c1

Dividing both sides by the integrating factor µ = e−cx results in

y = ecx
(
−a e−cx

c
+ b e−cx+kx

−c+ k

)
+ c1ecx

which simplifies to

y = cc1(c− k) ecx − ekxbc− a(c− k)
c (c− k)

Summary
The solution(s) found are the following

(1)y = cc1(c− k) ecx − ekxbc− a(c− k)
c (c− k)

Verification of solutions

y = cc1(c− k) ecx − ekxbc− a(c− k)
c (c− k)

Verified OK.

1.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a+ b ekx + cy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 17: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ecx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ecxdy

Which results in

S = e−cxy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a+ b ekx + cy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −c e−cxy

Sy = e−cx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b e−x(c−k) + e−cxa (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b e−R(c−k) + e−cRa
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = b e−R(c−k)

−c+ k
− a e−cR

c
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−cxy = b e−x(c−k)

−c+ k
− a e−cx

c
+ c1

Which simplifies to

e−cxy = b e−x(c−k)

−c+ k
− a e−cx

c
+ c1

Which gives

y = −
ecx
(
e−cxac− a e−cxk + b e−x(c−k)c− c2c1 + c1ck

)
c (c− k)

Summary
The solution(s) found are the following

(1)y = −
ecx
(
e−cxac− a e−cxk + b e−x(c−k)c− c2c1 + c1ck

)
c (c− k)

Verification of solutions

y = −
ecx
(
e−cxac− a e−cxk + b e−x(c−k)c− c2c1 + c1ck

)
c (c− k)

Verified OK.

1.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
a+ b ekx + cy

)
dx(

−a− b ekx − cy
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a− b ekx − cy

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−a− b ekx − cy

)
= −c
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−c)− (0))
= −c

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−cdx

The result of integrating gives

µ = e−cx

= e−cx

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−cx
(
−a− b ekx − cy

)
= −e−cx

(
a+ b ekx + cy

)
And

N = µN

= e−cx(1)
= e−cx

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−cx
(
a+ b ekx + cy

))
+
(
e−cx

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−cx

(
a+ b ekx + cy

)
dx

(3)φ = b e−x(c−k)c+ e−cx(c− k) (cy + a)
c (c− k) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−cx + f ′(y)

But equation (2) says that ∂φ
∂y

= e−cx. Therefore equation (4) becomes

(5)e−cx = e−cx + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = b e−x(c−k)c+ e−cx(c− k) (cy + a)
c (c− k) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
b e−x(c−k)c+ e−cx(c− k) (cy + a)

c (c− k)
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The solution becomes

y = −
ecx
(
e−cxac− a e−cxk + b e−x(c−k)c− c2c1 + c1ck

)
c (c− k)

Summary
The solution(s) found are the following

(1)y = −
ecx
(
e−cxac− a e−cxk + b e−x(c−k)c− c2c1 + c1ck

)
c (c− k)

Verification of solutions

y = −
ecx
(
e−cxac− a e−cxk + b e−x(c−k)c− c2c1 + c1ck

)
c (c− k)

Verified OK.

1.7.4 Maple step by step solution

Let’s solve
y′ − cy = a+ b ekx

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = a+ b ekx + cy

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − cy = a+ b ekx

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − cy) = µ(x)

(
a+ b ekx

)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − cy) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) c

• Solve to find the integrating factor
µ(x) = e−cx
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• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)

(
a+ b ekx

)
dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)

(
a+ b ekx

)
dx+ c1

• Solve for y

y =
∫
µ(x)

(
a+b ekx

)
dx+c1

µ(x)

• Substitute µ(x) = e−cx

y =
∫ (

a+b ekx
)
e−cxdx+c1

e−cx

• Evaluate the integrals on the rhs

y = − a
c ecx+ b e−cx+kx

−c+k
+c1

e−cx

• Simplify

y = cc1(c−k)ecx−ekxbc−a(c−k)
c(c−k)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 44� �
dsolve(diff(y(x),x) = a+b*exp(k*x)+c*y(x),y(x), singsol=all)� �

y(x) = c1c(c− k) ecx − b ekxc− a(c− k)
c (c− k)
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3 Solution by Mathematica
Time used: 0.166 (sec). Leaf size: 47� �
DSolve[y'[x]==a+b*Exp[k*x]+c*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a(k − c)− bcekx + cc1(c− k)ecx
c(c− k)
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1.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 83
1.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 88

Internal problem ID [3271]
Internal file name [OUTPUT/2763_Sunday_June_05_2022_08_40_11_AM_95001151/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − x
(
x2 − y

)
= 0

1.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

q(x) = x3

Hence the ode is

y′ + yx = x3

The integrating factor µ is

µ = e
∫
xdx

= ex2
2
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The ode becomes

d
dx(µy) = (µ)

(
x3)

d
dx

(
ex2

2 y
)
=
(
ex2

2

) (
x3)

d
(
ex2

2 y
)
=
(
x3ex2

2

)
dx

Integrating gives

ex2
2 y =

∫
x3ex2

2 dx

ex2
2 y =

(
x2 − 2

)
ex2

2 + c1

Dividing both sides by the integrating factor µ = ex2
2 results in

y = e−x2
2
(
x2 − 2

)
ex2

2 + c1e−
x2
2

which simplifies to

y = x2 − 2 + c1e−
x2
2

Summary
The solution(s) found are the following

(1)y = x2 − 2 + c1e−
x2
2
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Figure 7: Slope field plot

Verification of solutions

y = x2 − 2 + c1e−
x2
2

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x
(
−x2 + y

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−x2
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2
2

dy

Which results in

S = ex2
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x
(
−x2 + y

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x ex2
2 y

Sy = ex2
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x3ex2

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3eR2

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
(
R2 − 2

)
eR2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
2 y =

(
x2 − 2

)
ex2

2 + c1

Which simplifies to (
−x2 + y + 2

)
ex2

2 − c1 = 0

Which gives

y =
(
x2ex2

2 − 2 ex2
2 + c1

)
e−x2

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x(−x2 + y) dS
dR

= R3eR2
2

R = x

S = ex2
2 y

Summary
The solution(s) found are the following

(1)y =
(
x2ex2

2 − 2 ex2
2 + c1

)
e−x2

2
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Figure 8: Slope field plot

Verification of solutions

y =
(
x2ex2

2 − 2 ex2
2 + c1

)
e−x2

2

Verified OK.

1.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
x
(
x2 − y

))
dx(

−x
(
x2 − y

))
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
x2 − y

)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x
(
x2 − y

))
= x

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((x)− (0))
= x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
xdx

The result of integrating gives

µ = e
x2
2

= ex2
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2
2
(
−x
(
x2 − y

))
= −x

(
x2 − y

)
ex2

2

And

N = µN

= ex2
2 (1)

= ex2
2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x
(
x2 − y

)
ex2

2

)
+
(
ex2

2

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x
(
x2 − y

)
ex2

2 dx

(3)φ = −
(
x2 − y − 2

)
ex2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex2

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= ex2
2 . Therefore equation (4) becomes

(5)ex2
2 = ex2

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
(
x2 − y − 2

)
ex2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
x2 − y − 2

)
ex2

2
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The solution becomes

y =
(
x2ex2

2 − 2 ex2
2 + c1

)
e−x2

2

Summary
The solution(s) found are the following

(1)y =
(
x2ex2

2 − 2 ex2
2 + c1

)
e−x2

2

Figure 9: Slope field plot

Verification of solutions

y =
(
x2ex2

2 − 2 ex2
2 + c1

)
e−x2

2

Verified OK.
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1.8.4 Maple step by step solution

Let’s solve
y′ − x(x2 − y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = x3 − yx

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + yx = x3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + yx) = µ(x)x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + yx) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

• Solve to find the integrating factor

µ(x) = ex2
2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x3dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x3dx+ c1

• Solve for y

y =
∫
µ(x)x3dx+c1

µ(x)

• Substitute µ(x) = ex2
2

y =
∫
x3e

x2
2 dx+c1

e
x2
2

• Evaluate the integrals on the rhs

y =
(
x2−2

)
e
x2
2 +c1

e
x2
2
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• Simplify

y = x2 − 2 + c1e−
x2
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x) = x*(x^2-y(x)),y(x), singsol=all)� �

y(x) = x2 − 2 + e−x2
2 c1

3 Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 22� �
DSolve[y'[x]==x*(x^2-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + c1e
−x2

2 − 2
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1.9 problem 8
1.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 90
1.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 92
1.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 95
1.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 99

Internal problem ID [3272]
Internal file name [OUTPUT/2764_Sunday_June_05_2022_08_40_12_AM_90242678/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − x
(
e−x2 + ya

)
= 0

1.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −ax

q(x) = x e−x2

Hence the ode is

y′ − axy = x e−x2
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The integrating factor µ is

µ = e
∫
−axdx

= e−x2a
2

The ode becomes

d
dx(µy) = (µ)

(
x e−x2

)
d
dx

(
e−x2a

2 y
)
=
(
e−x2a

2

)(
x e−x2

)
d
(
e−x2a

2 y
)
=
(
x e−

x2(2+a)
2

)
dx

Integrating gives

e−x2a
2 y =

∫
x e−

x2(2+a)
2 dx

e−x2a
2 y = −e−

x2(2+a)
2

2 + a
+ c1

Dividing both sides by the integrating factor µ = e−x2a
2 results in

y = −ex2a
2 e−

x2(2+a)
2

2 + a
+ c1e

x2a
2

which simplifies to

y = c1(2 + a) ex2a
2 − e−x2

2 + a

Summary
The solution(s) found are the following

(1)y = c1(2 + a) ex2a
2 − e−x2

2 + a

Verification of solutions

y = c1(2 + a) ex2a
2 − e−x2

2 + a

Verified OK.
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1.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x
(
e−x2 + ya

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = ex2a
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex2a
2

dy

Which results in

S = e−x2a
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x
(
e−x2 + ya

)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −ax e−x2a
2 y

Sy = e−x2a
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= x e−

x2(2+a)
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R e−

R2(2+a)
2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−
R2(2+a)

2

2 + a
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−x2a
2 y = −e−

x2(2+a)
2

2 + a
+ c1

Which simplifies to

e−x2a
2 y = −e−

x2(2+a)
2

2 + a
+ c1

Which gives

y = −

(
−c1a+ e−

x2(2+a)
2 − 2c1

)
ex2a

2

2 + a

Summary
The solution(s) found are the following

(1)y = −

(
−c1a+ e−

x2(2+a)
2 − 2c1

)
ex2a

2

2 + a
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Verification of solutions

y = −

(
−c1a+ e−

x2(2+a)
2 − 2c1

)
ex2a

2

2 + a

Verified OK.

1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

95



Therefore

dy =
(
x
(
e−x2 + ya

))
dx(

−x
(
e−x2 + ya

))
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
e−x2 + ya

)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x
(
e−x2 + ya

))
= −ax

And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−ax)− (0))
= −ax

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−axdx
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The result of integrating gives

µ = e−
x2a
2

= e−x2a
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x2a
2

(
−x
(
e−x2 + ya

))
= −e−x2a

2 x
(
e−x2 + ya

)
And

N = µN

= e−x2a
2 (1)

= e−x2a
2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x2a
2 x
(
e−x2 + ya

))
+
(
e−x2a

2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x2a

2 x
(
e−x2 + ya

)
dx

(3)φ = e−
x2(2+a)

2 + y(2 + a) e−x2a
2

2 + a
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x2a

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x2a
2 . Therefore equation (4) becomes

(5)e−x2a
2 = e−x2a

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = e−
x2(2+a)

2 + y(2 + a) e−x2a
2

2 + a
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
e−

x2(2+a)
2 + y(2 + a) e−x2a

2

2 + a

The solution becomes

y = −

(
−c1a+ e−

x2(2+a)
2 − 2c1

)
ex2a

2

2 + a

Summary
The solution(s) found are the following

(1)y = −

(
−c1a+ e−

x2(2+a)
2 − 2c1

)
ex2a

2

2 + a

Verification of solutions

y = −

(
−c1a+ e−

x2(2+a)
2 − 2c1

)
ex2a

2

2 + a

Verified OK.
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1.9.4 Maple step by step solution

Let’s solve

y′ − x
(
e−x2 + ya

)
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = axy + x e−x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − axy = x e−x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − axy) = µ(x)x e−x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − axy) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) ax

• Solve to find the integrating factor

µ(x) = e−x2a
2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x e−x2

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x e−x2

dx+ c1

• Solve for y

y =
∫
µ(x)x e−x2dx+c1

µ(x)

• Substitute µ(x) = e−x2a
2

y =
∫
x e−x2e−

x2a
2 dx+c1

e−
x2a
2

• Evaluate the integrals on the rhs

y = − e−x2− 1
2x2a

2+a
+c1

e−
x2a
2
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• Simplify

y =
e
x2a
2

(
−e−

x2(2+a)
2 +(2+a)c1

)
2+a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(diff(y(x),x) = x*(exp(-x^2)+a*y(x)),y(x), singsol=all)� �

y(x) =
ea x2

2

(
−e−

x2(2+a)
2 + c1(2 + a)

)
2 + a

3 Solution by Mathematica
Time used: 0.122 (sec). Leaf size: 42� �
DSolve[y'[x]==x*(Exp[-x^2]+a*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
e

ax2
2

(
−e−

1
2 (a+2)x2 + (a+ 2)c1

)
a+ 2
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1.10 problem 9
1.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 101
1.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 102
1.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 106
1.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 110

Internal problem ID [3273]
Internal file name [OUTPUT/2765_Sunday_June_05_2022_08_40_12_AM_54103876/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − x2(a x3 + yb
)
= 0

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −b x2

q(x) = a x5

Hence the ode is

y′ − yb x2 = a x5

The integrating factor µ is

µ = e
∫
−b x2dx

= e− b x3
3
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The ode becomes

d
dx(µy) = (µ)

(
a x5)

d
dx

(
e− b x3

3 y
)
=
(
e− b x3

3

) (
a x5)

d
(
e− b x3

3 y
)
=
(
a x5e− b x3

3

)
dx

Integrating gives

e− b x3
3 y =

∫
a x5e− b x3

3 dx

e− b x3
3 y = −(b x3 + 3) a e− b x3

3

b2
+ c1

Dividing both sides by the integrating factor µ = e− b x3
3 results in

y = −e b x3
3 (b x3 + 3) a e− b x3

3

b2
+ c1e

b x3
3

which simplifies to

y = −ab x3 + c1e
b x3
3 b2 − 3a

b2

Summary
The solution(s) found are the following

(1)y = −ab x3 + c1e
b x3
3 b2 − 3a

b2

Verification of solutions

y = −ab x3 + c1e
b x3
3 b2 − 3a

b2

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2(a x3 + yb
)

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e b x3
3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e b x3
3

dy

Which results in

S = e− b x3
3 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2(a x3 + yb
)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −b x2e− b x3
3 y

Sy = e− b x3
3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a x5e− b x3

3 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR5e− bR3

3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(bR3 + 3) a e− bR3
3

b2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− b x3
3 y = −(b x3 + 3) a e− b x3

3

b2
+ c1

Which simplifies to

e− b x3
3 y = −(b x3 + 3) a e− b x3

3

b2
+ c1

Which gives

y = −

(
e− b x3

3 ab x3 − c1b
2 + 3a e− b x3

3

)
e b x3

3

b2

Summary
The solution(s) found are the following

(1)y = −

(
e− b x3

3 ab x3 − c1b
2 + 3a e− b x3

3

)
e b x3

3

b2

Verification of solutions

y = −

(
e− b x3

3 ab x3 − c1b
2 + 3a e− b x3

3

)
e b x3

3

b2

Verified OK.
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1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
x2(a x3 + yb

))
dx(

−x2(a x3 + yb
))

dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2(a x3 + yb
)

N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2(a x3 + yb

))
= −b x2

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((
−b x2)− (0)

)
= −b x2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−b x2 dx

The result of integrating gives

µ = e−
b x3
3

= e− b x3
3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− b x3
3
(
−x2(a x3 + yb

))
= −e− b x3

3 x2(a x3 + yb
)
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And

N = µN

= e− b x3
3 (1)

= e− b x3
3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e− b x3
3 x2(a x3 + yb

))
+
(
e− b x3

3

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e− b x3

3 x2(a x3 + yb
)
dx

(3)φ = (ab x3 + y b2 + 3a) e− b x3
3

b2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e− b x3

3 + f ′(y)

But equation (2) says that ∂φ
∂y

= e− b x3
3 . Therefore equation (4) becomes

(5)e− b x3
3 = e− b x3

3 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (ab x3 + y b2 + 3a) e− b x3
3

b2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(ab x3 + y b2 + 3a) e− b x3

3

b2

The solution becomes

y = −

(
e− b x3

3 ab x3 − c1b
2 + 3a e− b x3

3

)
e b x3

3

b2

Summary
The solution(s) found are the following

(1)y = −

(
e− b x3

3 ab x3 − c1b
2 + 3a e− b x3

3

)
e b x3

3

b2

Verification of solutions

y = −

(
e− b x3

3 ab x3 − c1b
2 + 3a e− b x3

3

)
e b x3

3

b2

Verified OK.
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1.10.4 Maple step by step solution

Let’s solve
y′ − x2(a x3 + yb) = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = yb x2 + a x5

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − yb x2 = a x5

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − yb x2) = µ(x) a x5

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − yb x2) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) b x2

• Solve to find the integrating factor

µ(x) = e− b x3
3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) a x5dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) a x5dx+ c1

• Solve for y

y =
∫
µ(x)a x5dx+c1

µ(x)

• Substitute µ(x) = e− b x3
3

y =
∫
a x5e−

b x3
3 dx+c1

e−
b x3
3

• Evaluate the integrals on the rhs

y = −
(
b x3+3

)
a e−

b x3
3

b2 +c1

e−
b x3
3
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• Simplify

y = −ab x3+c1e
b x3
3 b2−3a

b2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve(diff(y(x),x) = x^2*(a*x^3+b*y(x)),y(x), singsol=all)� �

y(x) = −a x3b+ e b x3
3 c1b

2 − 3a
b2

3 Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 32� �
DSolve[y'[x]==x^2*(a*x^3+b*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a(bx3 + 3)
b2

+ c1e
bx3
3
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Internal problem ID [3274]
Internal file name [OUTPUT/2766_Sunday_June_05_2022_08_40_13_AM_66178515/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − a xny = 0

1.11.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= a xny
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Where f(x) = a xn and g(y) = y. Integrating both sides gives

1
y
dy = a xn dx∫ 1

y
dy =

∫
a xn dx

ln (y) = a xn+1

n+ 1 + c1

y = e
a xn+1
n+1 +c1

= c1e
a xn+1
n+1

Summary
The solution(s) found are the following

(1)y = c1e
a xn+1
n+1

Verification of solutions

y = c1e
a xn+1
n+1

Verified OK.

1.11.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −a xn

q(x) = 0

Hence the ode is

y′ − a xny = 0

The integrating factor µ is

µ = e
∫
−a xndx

= e−
a xn+1
n+1

113



The ode becomes

d
dxµy = 0

d
dx

(
e−

a xn+1
n+1 y

)
= 0

Integrating gives

e−
a xn+1
n+1 y = c1

Dividing both sides by the integrating factor µ = e−
a xn+1
n+1 results in

y = c1e
a xn+1
n+1

Summary
The solution(s) found are the following

(1)y = c1e
a xn+1
n+1

Verification of solutions

y = c1e
a xn+1
n+1

Verified OK.

1.11.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− a xnu(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(xnax− 1)
x
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Where f(x) = xnax−1
x

and g(u) = u. Integrating both sides gives

1
u
du = xnax− 1

x
dx∫ 1

u
du =

∫
xnax− 1

x
dx

ln (u) = − ln (x) + ax en ln(x)

n+ 1 + c2

u = e− ln(x)+ax en ln(x)
n+1 +c2

= c2e− ln(x)+ax en ln(x)
n+1

Which simplifies to

u(x) = c2e
xa xn

n+1

x

Therefore the solution y is

y = xu

= c2e
xa xn

n+1

Summary
The solution(s) found are the following

(1)y = c2e
xa xn

n+1

Verification of solutions

y = c2e
xa xn

n+1

Verified OK.

1.11.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a xny

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 29: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
a xn+1
n+1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
a xn+1
n+1

dy

Which results in

S = e−
a xn+1
n+1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a xny

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −ay xne−
a xn+1
n+1

Sy = e−
a xn+1
n+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−
a xn+1
n+1 y = c1

Which simplifies to

e−
a xn+1
n+1 y = c1

Which gives

y = c1e
a xn+1
n+1

Summary
The solution(s) found are the following

(1)y = c1e
a xn+1
n+1

Verification of solutions

y = c1e
a xn+1
n+1

Verified OK.

1.11.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
ya

)
dy = (xn) dx

(−xn) dx+
(

1
ya

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xn

N(x, y) = 1
ya

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−xn)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
ya

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xn dx

(3)φ = − xn+1

n+ 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
ya
. Therefore equation (4) becomes

(5)1
ya

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
ya
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
ya

)
dy

f(y) = ln (y)
a

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − xn+1

n+ 1 + ln (y)
a

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − xn+1

n+ 1 + ln (y)
a

The solution becomes

y = e
a
(
nc1+c1+xn+1)

n+1

Summary
The solution(s) found are the following

(1)y = e
a
(
nc1+c1+xn+1)

n+1

Verification of solutions

y = e
a
(
nc1+c1+xn+1)

n+1

Verified OK.
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1.11.6 Maple step by step solution

Let’s solve
y′ − a xny = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= a xn

• Integrate both sides with respect to x∫
y′

y
dx =

∫
a xndx+ c1

• Evaluate integral
ln (y) = a xn+1

n+1 + c1

• Solve for y

y = e
nc1+xn+1a+c1

n+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(diff(y(x),x) = a*x^n*y(x),y(x), singsol=all)� �

y(x) = c1e
a xn+1
n+1
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3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 27� �
DSolve[y'[x]==a*x^n*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
axn+1
n+1

y(x) → 0
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1.12 problem 11
1.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 124
1.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 126
1.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 130
1.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 134

Internal problem ID [3275]
Internal file name [OUTPUT/2767_Sunday_June_05_2022_08_40_14_AM_51937920/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − cos (x) y = sin (x) cos (x)

1.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cos (x)

q(x) = sin (2x)
2

Hence the ode is

y′ − cos (x) y = sin (2x)
2
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The integrating factor µ is

µ = e
∫
− cos(x)dx

= e− sin(x)

The ode becomes

d
dx(µy) = (µ)

(
sin (2x)

2

)
d
dx
(
e− sin(x)y

)
=
(
e− sin(x))(sin (2x)

2

)
d
(
e− sin(x)y

)
=
(
sin (2x) e− sin(x)

2

)
dx

Integrating gives

e− sin(x)y =
∫ sin (2x) e− sin(x)

2 dx

e− sin(x)y = − sin (x) e− sin(x) − e− sin(x) + c1

Dividing both sides by the integrating factor µ = e− sin(x) results in

y = esin(x)
(
− sin (x) e− sin(x) − e− sin(x))+ c1esin(x)

which simplifies to

y = c1esin(x) − sin (x)− 1

Summary
The solution(s) found are the following

(1)y = c1esin(x) − sin (x)− 1
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Figure 10: Slope field plot

Verification of solutions

y = c1esin(x) − sin (x)− 1

Verified OK.

1.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x) cos (x) + cos (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 32: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = esin(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

esin(x)dy

Which results in

S = e− sin(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x) cos (x) + cos (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − cos (x) e− sin(x)y

Sy = e− sin(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x) e− sin(x) sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R) e− sin(R) sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 − e− sin(R)(1 + sin (R)) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− sin(x)y = c1 − e− sin(x)(1 + sin (x))

Which simplifies to

(y + sin (x) + 1) e− sin(x) − c1 = 0

Which gives

y = −esin(x)
(
sin (x) e− sin(x) + e− sin(x) − c1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (x) cos (x) + cos (x) y dS
dR

= cos (R) e− sin(R) sin (R)

R = x

S = e− sin(x)y

Summary
The solution(s) found are the following

(1)y = −esin(x)
(
sin (x) e− sin(x) + e− sin(x) − c1

)
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Figure 11: Slope field plot

Verification of solutions

y = −esin(x)
(
sin (x) e− sin(x) + e− sin(x) − c1

)
Verified OK.

1.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sin (x) cos (x) + cos (x) y) dx
(− sin (x) cos (x)− cos (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x) cos (x)− cos (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x) cos (x)− cos (x) y)

= − cos (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− cos (x))− (0))
= − cos (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− cos(x) dx

The result of integrating gives

µ = e− sin(x)

= e− sin(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− sin(x)(− sin (x) cos (x)− cos (x) y)
= −e− sin(x) cos (x) (sin (x) + y)

And

N = µN

= e− sin(x)(1)
= e− sin(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e− sin(x) cos (x) (sin (x) + y)
)
+
(
e− sin(x)) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e− sin(x) cos (x) (sin (x) + y) dx

(3)φ = (y + sin (x) + 1) e− sin(x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e− sin(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= e− sin(x). Therefore equation (4) becomes

(5)e− sin(x) = e− sin(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y + sin (x) + 1) e− sin(x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y + sin (x) + 1) e− sin(x)

The solution becomes

y = −esin(x)
(
sin (x) e− sin(x) + e− sin(x) − c1

)
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Summary
The solution(s) found are the following

(1)y = −esin(x)
(
sin (x) e− sin(x) + e− sin(x) − c1

)

Figure 12: Slope field plot

Verification of solutions

y = −esin(x)
(
sin (x) e− sin(x) + e− sin(x) − c1

)
Verified OK.

1.12.4 Maple step by step solution

Let’s solve
y′ − cos (x) y = sin (x) cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = sin (x) cos (x) + cos (x) y
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − cos (x) y = sin (x) cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − cos (x) y) = µ(x) sin (x) cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − cos (x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) cos (x)

• Solve to find the integrating factor
µ(x) = e− sin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = e− sin(x)

y =
∫
cos(x)e− sin(x) sin(x)dx+c1

e− sin(x)

• Evaluate the integrals on the rhs

y = − sin(x)e− sin(x)−e− sin(x)+c1
e− sin(x)

• Simplify
y = c1esin(x) − sin (x)− 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x) = cos(x)*sin(x)+y(x)*cos(x),y(x), singsol=all)� �

y(x) = − sin (x)− 1 + esin(x)c1

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 18� �
DSolve[y'[x]==Cos[x]*Sin[x]+y[x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − sin(x) + c1e
sin(x) − 1

136



1.13 problem 12
1.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 137
1.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 139
1.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 143
1.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 147

Internal problem ID [3276]
Internal file name [OUTPUT/2768_Sunday_June_05_2022_08_40_15_AM_5087466/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − cos (x) y = esin(x)

1.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cos (x)
q(x) = esin(x)

Hence the ode is

y′ − cos (x) y = esin(x)

The integrating factor µ is

µ = e
∫
− cos(x)dx

= e− sin(x)
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The ode becomes
d
dx(µy) = (µ)

(
esin(x)

)
d
dx
(
e− sin(x)y

)
=
(
e− sin(x)) (esin(x))

d
(
e− sin(x)y

)
= dx

Integrating gives

e− sin(x)y =
∫

dx

e− sin(x)y = x+ c1

Dividing both sides by the integrating factor µ = e− sin(x) results in

y = esin(x)x+ c1esin(x)

which simplifies to

y = esin(x)(x+ c1)

Summary
The solution(s) found are the following

(1)y = esin(x)(x+ c1)

Figure 13: Slope field plot
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Verification of solutions

y = esin(x)(x+ c1)

Verified OK.

1.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = esin(x) + cos (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 35: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = esin(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

esin(x)dy

Which results in

S = e− sin(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = esin(x) + cos (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − cos (x) e− sin(x)y

Sy = e− sin(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− sin(x)y = x+ c1

Which simplifies to

e− sin(x)y = x+ c1

Which gives

y = esin(x)(x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= esin(x) + cos (x) y dS
dR

= 1

R = x

S = e− sin(x)y

Summary
The solution(s) found are the following

(1)y = esin(x)(x+ c1)
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Figure 14: Slope field plot

Verification of solutions

y = esin(x)(x+ c1)

Verified OK.

1.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
esin(x) + cos (x) y

)
dx(

−esin(x) − cos (x) y
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −esin(x) − cos (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−esin(x) − cos (x) y

)
= − cos (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− cos (x))− (0))
= − cos (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− cos(x) dx

The result of integrating gives

µ = e− sin(x)

= e− sin(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− sin(x)(−esin(x) − cos (x) y
)

= − cos (x) e− sin(x)y − 1

And

N = µN

= e− sin(x)(1)
= e− sin(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− cos (x) e− sin(x)y − 1
)
+
(
e− sin(x)) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x) e− sin(x)y − 1 dx

(3)φ = −x+ e− sin(x)y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e− sin(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= e− sin(x). Therefore equation (4) becomes

(5)e− sin(x) = e− sin(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ e− sin(x)y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ e− sin(x)y

The solution becomes
y = esin(x)(x+ c1)
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Summary
The solution(s) found are the following

(1)y = esin(x)(x+ c1)

Figure 15: Slope field plot

Verification of solutions

y = esin(x)(x+ c1)

Verified OK.

1.13.4 Maple step by step solution

Let’s solve
y′ − cos (x) y = esin(x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = esin(x) + cos (x) y
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − cos (x) y = esin(x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − cos (x) y) = µ(x) esin(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − cos (x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) cos (x)

• Solve to find the integrating factor
µ(x) = e− sin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) esin(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) esin(x)dx+ c1

• Solve for y

y =
∫
µ(x)esin(x)dx+c1

µ(x)

• Substitute µ(x) = e− sin(x)

y =
∫
e− sin(x)esin(x)dx+c1

e− sin(x)

• Evaluate the integrals on the rhs
y = x+c1

e− sin(x)

• Simplify
y = esin(x)(x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = exp(sin(x))+y(x)*cos(x),y(x), singsol=all)� �

y(x) = (c1 + x) esin(x)

3 Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 14� �
DSolve[y'[x]==Exp[Sin[x]]+y[x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c1)esin(x)
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Internal problem ID [3277]
Internal file name [OUTPUT/2769_Sunday_June_05_2022_08_40_15_AM_61209273/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y cot (x) = 0

1.14.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y cot (x)
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Where f(x) = cot (x) and g(y) = y. Integrating both sides gives

1
y
dy = cot (x) dx∫ 1

y
dy =

∫
cot (x) dx

ln (y) = ln (sin (x)) + c1

y = eln(sin(x))+c1

= c1 sin (x)

Summary
The solution(s) found are the following

(1)y = c1 sin (x)

Figure 16: Slope field plot

Verification of solutions

y = c1 sin (x)

Verified OK.
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1.14.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cot (x)
q(x) = 0

Hence the ode is

y′ − y cot (x) = 0

The integrating factor µ is

µ = e
∫
− cot(x)dx

= 1
sin (x)

Which simplifies to
µ = csc (x)

The ode becomes

d
dxµy = 0

d
dx(csc (x) y) = 0

Integrating gives

csc (x) y = c1

Dividing both sides by the integrating factor µ = csc (x) results in

y = c1 sin (x)

Summary
The solution(s) found are the following

(1)y = c1 sin (x)
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Figure 17: Slope field plot

Verification of solutions

y = c1 sin (x)

Verified OK.

1.14.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x cot (x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(cot (x)x− 1)
x
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Where f(x) = cot(x)x−1
x

and g(u) = u. Integrating both sides gives
1
u
du = cot (x)x− 1

x
dx∫ 1

u
du =

∫ cot (x)x− 1
x

dx

ln (u) = − ln (x) + ln (sin (x)) + c2

u = e− ln(x)+ln(sin(x))+c2

= c2e− ln(x)+ln(sin(x))

Which simplifies to

u(x) = c2 sin (x)
x

Therefore the solution y is

y = xu

= c2 sin (x)
Summary
The solution(s) found are the following

(1)y = c2 sin (x)

Figure 18: Slope field plot
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Verification of solutions

y = c2 sin (x)

Verified OK.

1.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 38: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

sin (x)dy

Which results in

S = y

sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − csc (x) cot (x) y
Sy = csc (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

csc (x) y = c1

Which simplifies to

csc (x) y = c1

Which gives

y = c1
csc (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y cot (x) dS
dR

= 0

R = x

S = csc (x) y

Summary
The solution(s) found are the following

(1)y = c1
csc (x)
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Figure 19: Slope field plot

Verification of solutions

y = c1
csc (x)

Verified OK.

1.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy = (cot (x)) dx

(− cot (x)) dx+
(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cot (x)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− cot (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cot (x) dx

(3)φ = − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x)) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x)) + ln (y)

The solution becomes
y = sin (x) ec1

Summary
The solution(s) found are the following

(1)y = sin (x) ec1

Figure 20: Slope field plot

Verification of solutions

y = sin (x) ec1

Verified OK.
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1.14.6 Maple step by step solution

Let’s solve
y′ − y cot (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= cot (x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
cot (x) dx+ c1

• Evaluate integral
ln (y) = ln (sin (x)) + c1

• Solve for y
y = sin (x) ec1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve(diff(y(x),x) = y(x)*cot(x),y(x), singsol=all)� �

y(x) = c1 sin (x)
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3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 15� �
DSolve[y'[x]==y[x]*Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 sin(x)
y(x) → 0
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Internal problem ID [3278]
Internal file name [OUTPUT/2770_Sunday_June_05_2022_08_40_16_AM_90909833/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = 1

1.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = 1

Hence the ode is

y′ + y cot (x) = 1

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes
d
dx(µy) = µ

d
dx(sin (x) y) = sin (x)

d(sin (x) y) = sin (x) dx

Integrating gives

sin (x) y =
∫

sin (x) dx

sin (x) y = − cos (x) + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = − csc (x) cos (x) + c1 csc (x)

which simplifies to

y = − cot (x) + c1 csc (x)

Summary
The solution(s) found are the following

(1)y = − cot (x) + c1 csc (x)

Figure 21: Slope field plot
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Verification of solutions

y = − cot (x) + c1 csc (x)

Verified OK.

1.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 1− y cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1− y cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = − cos (x) + c1

Which simplifies to

y sin (x) = − cos (x) + c1

Which gives

y = −cos (x)− c1
sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 1− y cot (x) dS
dR

= sin (R)

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = −cos (x)− c1
sin (x)
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Figure 22: Slope field plot

Verification of solutions

y = −cos (x)− c1
sin (x)

Verified OK.

1.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (1− y cot (x)) dx
(y cot (x)− 1) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− 1
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cot (x)− 1)

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− 1)
= cos (x) y − sin (x)

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) y − sin (x)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) y − sin (x) dx

(3)φ = sin (x) y + cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x) y + cos (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) y + cos (x)

The solution becomes

y = −cos (x)− c1
sin (x)
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Summary
The solution(s) found are the following

(1)y = −cos (x)− c1
sin (x)

Figure 23: Slope field plot

Verification of solutions

y = −cos (x)− c1
sin (x)

Verified OK.

1.15.4 Maple step by step solution

Let’s solve
y′ + y cot (x) = 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = 1− y cot (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y cot (x) = 1
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y cot (x)) = µ(x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs
y = − cos(x)+c1

sin(x)

• Simplify
y = − cot (x) + c1 csc (x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x) = 1-y(x)*cot(x),y(x), singsol=all)� �

y(x) = − cot (x) + csc (x) c1

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 15� �
DSolve[y'[x]==1-y[x]*Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − cot(x) + c1 csc(x)
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Internal problem ID [3279]
Internal file name [OUTPUT/2771_Sunday_June_05_2022_08_40_16_AM_46274723/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = csc (x)x

1.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = csc (x)x

Hence the ode is

y′ + y cot (x) = csc (x)x

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes

d
dx(µy) = (µ) (csc (x)x)

d
dx(sin (x) y) = (sin (x)) (csc (x)x)

d(sin (x) y) = x dx

Integrating gives

sin (x) y =
∫

x dx

sin (x) y = x2

2 + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = csc (x)x2

2 + c1 csc (x)

which simplifies to

y = csc (x)
(
x2

2 + c1

)
Summary
The solution(s) found are the following

(1)y = csc (x)
(
x2

2 + c1

)
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Figure 24: Slope field plot

Verification of solutions

y = csc (x)
(
x2

2 + c1

)
Verified OK.

1.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = csc (x)x− y cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = csc (x)x− y cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = x2

2 + c1

Which simplifies to

y sin (x) = x2

2 + c1

Which gives

y = x2 + 2c1
2 sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= csc (x)x− y cot (x) dS
dR

= R

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2 sin (x)
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Figure 25: Slope field plot

Verification of solutions

y = x2 + 2c1
2 sin (x)

Verified OK.

1.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (csc (x)x− y cot (x)) dx
(− csc (x)x+ y cot (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − csc (x)x+ y cot (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− csc (x)x+ y cot (x))

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (− csc (x)x+ y cot (x))
= cos (x) y − x

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) y − x) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) y − x dx

(3)φ = sin (x) y − x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x) y − x2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) y − x2

2

The solution becomes

y = x2 + 2c1
2 sin (x)
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Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2 sin (x)

Figure 26: Slope field plot

Verification of solutions

y = x2 + 2c1
2 sin (x)

Verified OK.

1.16.4 Maple step by step solution

Let’s solve
y′ + y cot (x) = csc (x)x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = csc (x)x− y cot (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y cot (x) = csc (x)x
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y cot (x)) = µ(x) csc (x)x
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) csc (x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) csc (x)xdx+ c1

• Solve for y

y =
∫
µ(x) csc(x)xdx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
csc(x)x sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs

y =
x2
2 +c1
sin(x)

• Simplify

y = csc (x)
(

x2

2 + c1
)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve(diff(y(x),x) = x*csc(x)-y(x)*cot(x),y(x), singsol=all)� �

y(x) = csc (x)
(
x2

2 + c1

)
3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 19� �
DSolve[y'[x]==x*Csc[x]-y[x]*Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
x2 + 2c1

)
csc(x)
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1.17 problem 16
1.17.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 191
1.17.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 193
1.17.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 194
1.17.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 196
1.17.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 200
1.17.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 204

Internal problem ID [3280]
Internal file name [OUTPUT/2772_Sunday_June_05_2022_08_40_17_AM_72638558/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − (2 csc (2x) + cot (x)) y = 0

1.17.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= (2 csc (2x) + cot (x)) y
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Where f(x) = 2 csc (2x) + cot (x) and g(y) = y. Integrating both sides gives
1
y
dy = 2 csc (2x) + cot (x) dx∫ 1

y
dy =

∫
2 csc (2x) + cot (x) dx

ln (y) = ln (tan (x)) + ln (sin (x)) + c1

y = eln(tan(x))+ln(sin(x))+c1

= c1eln(tan(x))+ln(sin(x))

Which simplifies to
y = c1 tan (x) sin (x)

Summary
The solution(s) found are the following

(1)y = c1 tan (x) sin (x)

Figure 27: Slope field plot

Verification of solutions

y = c1 tan (x) sin (x)

Verified OK.
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1.17.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cot (x)− sec (x) csc (x)
q(x) = 0

Hence the ode is

y′ + (− cot (x)− sec (x) csc (x)) y = 0

The integrating factor µ is

µ = e
∫
(− cot(x)−sec(x) csc(x))dx

= e− ln(tan(x))−ln(sin(x))

Which simplifies to

µ = 1
tan (x) sin (x)

The ode becomes
d
dxµy = 0

d
dx

(
y

tan (x) sin (x)

)
= 0

Integrating gives
y

tan (x) sin (x) = c1

Dividing both sides by the integrating factor µ = 1
tan(x) sin(x) results in

y = c1 tan (x) sin (x)

Summary
The solution(s) found are the following

(1)y = c1 tan (x) sin (x)
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Figure 28: Slope field plot

Verification of solutions

y = c1 tan (x) sin (x)

Verified OK.

1.17.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− (2 csc (2x) + cot (x))u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(2 csc (2x)x+ cot (x)x− 1)
x
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Where f(x) = 2 csc(2x)x+cot(x)x−1
x

and g(u) = u. Integrating both sides gives
1
u
du = 2 csc (2x)x+ cot (x)x− 1

x
dx∫ 1

u
du =

∫ 2 csc (2x)x+ cot (x)x− 1
x

dx

ln (u) = ln (sin (x))− ln (x) + ln (tan (x)) + c2

u = eln(sin(x))−ln(x)+ln(tan(x))+c2

= c2eln(sin(x))−ln(x)+ln(tan(x))

Which simplifies to

u(x) = c2 sin (x) tan (x)
x

Therefore the solution y is

y = ux

= c2 sin (x) tan (x)
Summary
The solution(s) found are the following

(1)y = c2 sin (x) tan (x)

Figure 29: Slope field plot
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Verification of solutions

y = c2 sin (x) tan (x)

Verified OK.

1.17.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (2 csc (2x) + cot (x)) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 47: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eln(tan(x))+ln(sin(x)) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(tan(x))+ln(sin(x))dy

Which results in

S = y

tan (x) sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (2 csc (2x) + cot (x)) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx =

(
− cos (x)2 − 1

)
csc (x)3 y

Sy = csc (x) cot (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

tan (x) sin (x) = c1

Which simplifies to
y

tan (x) sin (x) = c1

Which gives

y = c1 tan (x) sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (2 csc (2x) + cot (x)) y dS
dR

= 0

R = x

S = y

tan (x) sin (x)

Summary
The solution(s) found are the following

(1)y = c1 tan (x) sin (x)
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Figure 30: Slope field plot

Verification of solutions

y = c1 tan (x) sin (x)

Verified OK.

1.17.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy = (2 csc (2x) + cot (x)) dx

(−2 csc (2x)− cot (x)) dx+
(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2 csc (2x)− cot (x)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−2 csc (2x)− cot (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2 csc (2x)− cot (x) dx

(3)φ = − ln (sin (x)) + ln (csc (2x) + cot (2x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x)) + ln (csc (2x) + cot (2x)) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x)) + ln (csc (2x) + cot (2x)) + ln (y)

The solution becomes

y = sin (x)2 ec1
cos (x)

Summary
The solution(s) found are the following

(1)y = sin (x)2 ec1
cos (x)

Figure 31: Slope field plot
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Verification of solutions

y = sin (x)2 ec1
cos (x)

Verified OK.

1.17.6 Maple step by step solution

Let’s solve
y′ − (2 csc (2x) + cot (x)) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2 csc (2x) + cot (x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
(2 csc (2x) + cot (x)) dx+ c1

• Evaluate integral
ln (y) = − ln (csc (2x) + cot (2x)) + ln (sin (x)) + c1

• Solve for y

y = sin(x)2ec1
cos(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x) = (2*csc(2*x)+cot(x))*y(x),y(x), singsol=all)� �

y(x) = sin (x) tan (x) c1
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3 Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 32� �
DSolve[y'[x]==(2*Csc[2*x]+Cot[x])*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
√

sin(2x)e− 3
2arctanh(cos(2x))

y(x) → 0
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1.18 problem 17
1.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 206
1.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 208
1.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 212
1.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 216

Internal problem ID [3281]
Internal file name [OUTPUT/2773_Sunday_June_05_2022_08_40_18_AM_61097124/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = sec (x)

1.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = sec (x)

Hence the ode is

y′ + y cot (x) = sec (x)

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes
d
dx(µy) = (µ) (sec (x))

d
dx(sin (x) y) = (sin (x)) (sec (x))

d(sin (x) y) = tan (x) dx

Integrating gives

sin (x) y =
∫

tan (x) dx

sin (x) y = − ln (cos (x)) + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = − csc (x) ln (cos (x)) + c1 csc (x)

which simplifies to

y = csc (x) (− ln (cos (x)) + c1)

Summary
The solution(s) found are the following

(1)y = csc (x) (− ln (cos (x)) + c1)

Figure 32: Slope field plot
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Verification of solutions

y = csc (x) (− ln (cos (x)) + c1)

Verified OK.

1.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sec (x)− y cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sec (x)− y cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = − ln (cos (x)) + c1

Which simplifies to

y sin (x) = − ln (cos (x)) + c1

Which gives

y = − ln (cos (x))− c1
sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sec (x)− y cot (x) dS
dR

= tan (R)

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = − ln (cos (x))− c1
sin (x)
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Figure 33: Slope field plot

Verification of solutions

y = − ln (cos (x))− c1
sin (x)

Verified OK.

1.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sec (x)− y cot (x)) dx
(y cot (x)− sec (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− sec (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cot (x)− sec (x))

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− sec (x))
= cos (x) y − tan (x)

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) y − tan (x)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) y − tan (x) dx

(3)φ = sin (x) y + ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x) y + ln (cos (x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) y + ln (cos (x))

The solution becomes

y = − ln (cos (x))− c1
sin (x)

215



Summary
The solution(s) found are the following

(1)y = − ln (cos (x))− c1
sin (x)

Figure 34: Slope field plot

Verification of solutions

y = − ln (cos (x))− c1
sin (x)

Verified OK.

1.18.4 Maple step by step solution

Let’s solve
y′ + y cot (x) = sec (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = sec (x)− y cot (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y cot (x) = sec (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y cot (x)) = µ(x) sec (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sec (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sec (x) dx+ c1

• Solve for y

y =
∫
µ(x) sec(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
sec(x) sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs
y = ln(sec(x))+c1

sin(x)

• Simplify
y = csc (x) (ln (sec (x)) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(diff(y(x),x) = sec(x)-y(x)*cot(x),y(x), singsol=all)� �

y(x) = csc (x) (− ln (cos (x)) + c1)

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 16� �
DSolve[y'[x]==Sec[x]-y[x]*Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → csc(x)(− log(cos(x)) + c1)
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1.19 problem 18
1.19.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 219
1.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 221
1.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 225
1.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 229

Internal problem ID [3282]
Internal file name [OUTPUT/2774_Sunday_June_05_2022_08_40_19_AM_27054465/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y cot (x) = ex sin (x)

1.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cot (x)
q(x) = ex sin (x)

Hence the ode is

y′ − y cot (x) = ex sin (x)

The integrating factor µ is

µ = e
∫
− cot(x)dx

= 1
sin (x)
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Which simplifies to
µ = csc (x)

The ode becomes

d
dx(µy) = (µ) (ex sin (x))

d
dx(csc (x) y) = (csc (x)) (ex sin (x))

d(csc (x) y) = ex dx

Integrating gives

csc (x) y =
∫

ex dx

csc (x) y = ex + c1

Dividing both sides by the integrating factor µ = csc (x) results in

y = ex sin (x) + c1 sin (x)

which simplifies to

y = sin (x) (ex + c1)

Summary
The solution(s) found are the following

(1)y = sin (x) (ex + c1)
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Figure 35: Slope field plot

Verification of solutions

y = sin (x) (ex + c1)

Verified OK.

1.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ex sin (x) + y cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

sin (x)dy

Which results in

S = y

sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ex sin (x) + y cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − csc (x) cot (x) y
Sy = csc (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

csc (x) y = ex + c1

Which simplifies to

csc (x) y = ex + c1

Which gives

y = ex + c1
csc (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ex sin (x) + y cot (x) dS
dR

= eR

R = x

S = csc (x) y

Summary
The solution(s) found are the following

(1)y = ex + c1
csc (x)
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Figure 36: Slope field plot

Verification of solutions

y = ex + c1
csc (x)

Verified OK.

1.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (ex sin (x) + y cot (x)) dx
(−ex sin (x)− y cot (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex sin (x)− y cot (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ex sin (x)− y cot (x))

= − cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− cot (x))− (0))
= − cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− cot(x) dx

The result of integrating gives

µ = e− ln(sin(x))

= csc (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= csc (x) (−ex sin (x)− y cot (x))
= −ex − csc (x) cot (x) y

And

N = µN

= csc (x) (1)
= csc (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−ex − csc (x) cot (x) y) + (csc (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex − csc (x) cot (x) y dx

(3)φ = csc (x) y − ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= csc (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= csc (x). Therefore equation (4) becomes

(5)csc (x) = csc (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = csc (x) y − ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = csc (x) y − ex

The solution becomes

y = ex + c1
csc (x)
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Summary
The solution(s) found are the following

(1)y = ex + c1
csc (x)

Figure 37: Slope field plot

Verification of solutions

y = ex + c1
csc (x)

Verified OK.

1.19.4 Maple step by step solution

Let’s solve
y′ − y cot (x) = ex sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

229



y′ = ex sin (x) + y cot (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − y cot (x) = ex sin (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ − y cot (x)) = µ(x) ex sin (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = 1

sin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) ex sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) ex sin (x) dx+ c1

• Solve for y

y =
∫
µ(x)ex sin(x)dx+c1

µ(x)

• Substitute µ(x) = 1
sin(x)

y = sin (x)
(∫

exdx+ c1
)

• Evaluate the integrals on the rhs
y = sin (x) (ex + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = exp(x)*sin(x)+y(x)*cot(x),y(x), singsol=all)� �

y(x) = (ex + c1) sin (x)

3 Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 14� �
DSolve[y'[x]==Exp[x]*Sin[x]+y[x]*Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (ex + c1) sin(x)
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1.20 problem 19
1.20.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 232
1.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 234
1.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 238
1.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 242

Internal problem ID [3283]
Internal file name [OUTPUT/2775_Sunday_June_05_2022_08_40_20_AM_23572222/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2y cot (x) = − csc (x)

1.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2 cot (x)
q(x) = − csc (x)

Hence the ode is

y′ + 2y cot (x) = − csc (x)

The integrating factor µ is

µ = e
∫
2 cot(x)dx

= sin (x)2
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The ode becomes
d
dx(µy) = (µ) (− csc (x))

d
dx
(
sin (x)2 y

)
=
(
sin (x)2

)
(− csc (x))

d
(
sin (x)2 y

)
= (− sin (x)) dx

Integrating gives

sin (x)2 y =
∫

− sin (x) dx

sin (x)2 y = cos (x) + c1

Dividing both sides by the integrating factor µ = sin (x)2 results in

y = csc (x)2 cos (x) + c1 csc (x)2

which simplifies to

y = csc (x)2 (c1 + cos (x))

Summary
The solution(s) found are the following

(1)y = csc (x)2 (c1 + cos (x))

Figure 38: Slope field plot
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Verification of solutions

y = csc (x)2 (c1 + cos (x))

Verified OK.

1.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − csc (x)− 2y cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)2

dy

Which results in

S = sin (x)2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − csc (x)− 2y cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y sin (2x)
Sy = sin (x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sin (x)2 y = c1 + cos (x)

Which simplifies to

sin (x)2 y = c1 + cos (x)

Which gives

y = c1 + cos (x)
sin (x)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − csc (x)− 2y cot (x) dS
dR

= − sin (R)

R = x

S = sin (x)2 y

Summary
The solution(s) found are the following

(1)y = c1 + cos (x)
sin (x)2
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Figure 39: Slope field plot

Verification of solutions

y = c1 + cos (x)
sin (x)2

Verified OK.

1.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (− csc (x)− 2y cot (x)) dx
(2y cot (x) + csc (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y cot (x) + csc (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2y cot (x) + csc (x))

= 2 cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2 cot (x))− (0))
= 2 cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
2 cot(x) dx

The result of integrating gives

µ = e2 ln(sin(x))

= sin (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x)2 (2y cot (x) + csc (x))
= 2y sin (x) cos (x) + sin (x)

And

N = µN

= sin (x)2 (1)
= sin (x)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(2y sin (x) cos (x) + sin (x)) +
(
sin (x)2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2y sin (x) cos (x) + sin (x) dx

(3)φ = sin (x)2 y − cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x)2 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x)2. Therefore equation (4) becomes

(5)sin (x)2 = sin (x)2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x)2 y − cos (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x)2 y − cos (x)

The solution becomes

y = c1 + cos (x)
sin (x)2
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Summary
The solution(s) found are the following

(1)y = c1 + cos (x)
sin (x)2

Figure 40: Slope field plot

Verification of solutions

y = c1 + cos (x)
sin (x)2

Verified OK.

1.20.4 Maple step by step solution

Let’s solve
y′ + 2y cot (x) = − csc (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = − csc (x)− 2y cot (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + 2y cot (x) = − csc (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + 2y cot (x)) = −µ(x) csc (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + 2y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) csc (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) csc (x) dx+ c1

• Solve for y

y =
∫
−µ(x) csc(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)2

y =
∫
− csc(x) sin(x)2dx+c1

sin(x)2

• Evaluate the integrals on the rhs
y = c1+cos(x)

sin(x)2

• Simplify
y = csc (x)2 (c1 + cos (x))
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)+csc(x)+2*y(x)*cot(x) = 0,y(x), singsol=all)� �

y(x) = csc (x)2 (cos (x) + c1)

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 15� �
DSolve[y'[x]+Csc[x]+2*y[x]*Cot[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → csc2(x)(cos(x) + c1)
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1.21 problem 20
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Internal problem ID [3284]
Internal file name [OUTPUT/2776_Sunday_June_05_2022_08_40_20_AM_76153745/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2y cot (2x) = 4 csc (x)x sec (x)2

1.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2 cot (2x)
q(x) = 4 csc (x)x sec (x)2

Hence the ode is

y′ + 2y cot (2x) = 4 csc (x)x sec (x)2

The integrating factor µ is

µ = e
∫
2 cot(2x)dx

= sin (2x)
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The ode becomes

d
dx(µy) = (µ)

(
4 csc (x)x sec (x)2

)
d
dx(y sin (2x)) = (sin (2x))

(
4 csc (x)x sec (x)2

)
d(y sin (2x)) = (8 sec (x)x) dx

Integrating gives

y sin (2x) =
∫

8 sec (x)x dx

y sin (2x) = −8x ln
(
ieix + 1

)
+ 8x ln

(
1− ieix

)
+ 8i dilog

(
ieix + 1

)
− 8i dilog

(
1− ieix

)
+ c1

Dividing both sides by the integrating factor µ = sin (2x) results in

y = csc (2x)
(
−8x ln

(
ieix + 1

)
+ 8x ln

(
1− ieix

)
+ 8i dilog

(
ieix + 1

)
− 8i dilog

(
1− ieix

))
+ c1 csc (2x)

which simplifies to

y = −8 csc (2x)
(
i dilog

(
1− ieix

)
− i dilog

(
ieix + 1

)
− x ln

(
1− ieix

)
+ x ln

(
ieix + 1

)
− c1

8

)
Summary
The solution(s) found are the following

(1)
y = −8 csc (2x)

(
i dilog

(
1− ieix

)
− i dilog

(
ieix + 1

)
− x ln

(
1− ieix

)
+ x ln

(
ieix + 1

)
− c1

8

)
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Figure 41: Slope field plot

Verification of solutions

y =−8 csc (2x)
(
i dilog

(
1−ieix

)
−i dilog

(
ieix+1

)
−x ln

(
1−ieix

)
+x ln

(
ieix+1

)
− c1

8

)
Verified OK.

1.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 4 csc (x)x sec (x)2 − 2y cot (2x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) =
√

cot (2x)2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

248



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

cot (2x)2 + 1
dy

Which results in

S = y√
cot (2x)2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4 csc (x)x sec (x)2 − 2y cot (2x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2y cos (2x)
Sy = sin (2x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 8 sec (x)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 8 sec (R)R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −8R ln
(
1 + ieiR

)
+ 8R ln

(
1− ieiR

)
+ 8i dilog

(
1 + ieiR

)
− 8i dilog

(
1− ieiR

)
+ c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (2x) = −8x ln
(
ieix + 1

)
+ 8x ln

(
1− ieix

)
+ 8i dilog

(
ieix + 1

)
− 8i dilog

(
1− ieix

)
+ c1

Which simplifies to

y sin (2x) = −8x ln
(
ieix + 1

)
+ 8x ln

(
1− ieix

)
+ 8i dilog

(
ieix + 1

)
− 8i dilog

(
1− ieix

)
+ c1

Which gives

y = −i(8ix ln (−i(eix + i))− 8ix ln (i(eix − i)) + ic1 + 8dilog (−i(eix + i))− 8 dilog (i(eix − i)))
sin (2x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4 csc (x)x sec (x)2−2y cot (2x) dS
dR

= 8 sec (R)R

R = x

S = y sin (2x)
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Summary
The solution(s) found are the following

(1)y =

−i(8ix ln (−i(eix + i))− 8ix ln (i(eix − i)) + ic1 + 8dilog (−i(eix + i))− 8 dilog (i(eix − i)))
sin (2x)

Figure 42: Slope field plot

Verification of solutions
y =

−i(8ix ln (−i(eix + i))− 8ix ln (i(eix − i)) + ic1 + 8dilog (−i(eix + i))− 8 dilog (i(eix − i)))
sin (2x)

Verified OK.
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1.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
4 csc (x)x sec (x)2 − 2y cot (2x)

)
dx(

−4 csc (x)x sec (x)2 + 2y cot (2x)
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4 csc (x)x sec (x)2 + 2y cot (2x)
N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−4 csc (x)x sec (x)2 + 2y cot (2x)

)
= 2 cot (2x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2 cot (2x))− (0))
= 2 cot (2x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
2 cot(2x) dx

The result of integrating gives

µ = e−
ln
(
cot(2x)2+1

)
2

= sin (2x) csgn (csc (2x))

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (2x) csgn (csc (2x))
(
−4 csc (x)x sec (x)2 + 2y cot (2x)

)
=
(
4y cos (x)2 − 2y − 8 sec (x)x

)
csgn (csc (2x))
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And

N = µN

= sin (2x) csgn (csc (2x)) (1)
= sin (2x) csgn (csc (2x))

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

4y cos (x)2 − 2y − 8 sec (x)x
)
csgn (csc (2x))

)
+ (sin (2x) csgn (csc (2x))) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
4y cos (x)2 − 2y − 8 sec (x)x

)
csgn (csc (2x)) dx

(3)φ =
∫ x (

4y cos (_a)2 − 2y − 8 sec (_a)_a
)
csgn (csc (2_a)) d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 cos (x) sin (x) csgn (csc (2x)) + f ′(y)

= sin (2x) csgn (csc (2x)) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (2x) csgn (csc (2x)). Therefore equation (4) becomes

(5)sin (2x) csgn (csc (2x)) = sin (2x) csgn (csc (2x)) + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
∫ x (

4y cos (_a)2 − 2y − 8 sec (_a)_a
)
csgn (csc (2_a)) d_a+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x (

4y cos (_a)2 − 2y − 8 sec (_a)_a
)
csgn (csc (2_a)) d_a

Simplifying the solution
∫ x (4y cos (_a)2 − 2y − 8 sec (_a)_a

)
csgn (csc (2_a)) d_a =

c1 to
∫ x (4y cos (_a)2 − 2y − 8 sec (_a)_a

)
d_a = c1

Summary
The solution(s) found are the following

(1)
∫ x (

4y cos (_a)2 − 2y − 8 sec (_a)_a
)
d_a = c1
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Figure 43: Slope field plot

Verification of solutions∫ x (
4y cos (_a)2 − 2y − 8 sec (_a)_a

)
d_a = c1

Verified OK.

1.21.4 Maple step by step solution

Let’s solve
y′ + 2y cot (2x) = 4 csc (x)x sec (x)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 4 csc (x)x sec (x)2 − 2y cot (2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y cot (2x) = 4 csc (x)x sec (x)2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x) (y′ + 2y cot (2x)) = 4µ(x) csc (x)x sec (x)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + 2y cot (2x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x) cot (2x)

• Solve to find the integrating factor
µ(x) = cot(x)

1+cot(x)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
4µ(x) csc (x)x sec (x)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
4µ(x) csc (x)x sec (x)2 dx+ c1

• Solve for y

y =
∫
4µ(x) csc(x)x sec(x)2dx+c1

µ(x)

• Substitute µ(x) = cot(x)
1+cot(x)2

y =
(
1+cot(x)2

)(∫ 4 cot(x) csc(x)x sec(x)2

1+cot(x)2
dx+c1

)
cot(x)

• Evaluate the integrals on the rhs

y =
(
1+cot(x)2

)(
−4x ln

(
I eIx+1

)
+4x ln

(
1−I eIx

)
+4 Idilog

(
I eIx+1

)
−4 Idilog

(
1−I eIx

)
+c1

)
cot(x)

• Simplify
y = −4

(
Idilog

(
1− I eIx

)
− Idilog

(
I eIx + 1

)
− x ln

(
1− I eIx

)
+ x ln

(
I eIx + 1

)
− c1

4

)
csc (x) sec (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 94� �
dsolve(diff(y(x),x) = 4*csc(x)*x*sec(x)^2-2*y(x)*cot(2*x),y(x), singsol=all)� �

y(x) = 16 csgn (csc (2x))
(√

− e4ix

(e4ix − 1)2
(
i dilog

(
1 + ieix

)
− i dilog

(
1− ieix

)
− x ln

(
1 + ieix

)
+ x ln

(
1− ieix

))
+ csc (2x) c1

16

)

3 Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 60� �
DSolve[y'[x]==2*Csc[x]*2*x*Sec[x]^2-2*y[x]*Cot[2*x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → csc(x) sec(x)

(
−8ix arctan

(
eix
)
+ 4iPolyLog

(
2,−ieix

)
− 4iPolyLog

(
2, ieix

)
+ c1

)
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1.22 problem 21
1.22.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 259
1.22.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 261
1.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 265
1.22.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 270

Internal problem ID [3285]
Internal file name [OUTPUT/2777_Sunday_June_05_2022_08_40_22_AM_12500368/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2y csc (2x) = 2 cot (x)2 cos (2x)

1.22.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2 csc (2x)
q(x) = 4 cot (x)2 cos (x)2 − 2 cot (x)2

Hence the ode is

y′ + 2y csc (2x) = 4 cot (x)2 cos (x)2 − 2 cot (x)2

The integrating factor µ is

µ = e
∫
2 csc(2x)dx

= csc (2x)− cot (2x)
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The ode becomes
d
dx(µy) = (µ)

(
4 cot (x)2 cos (x)2 − 2 cot (x)2

)
d
dx((csc (2x)− cot (2x)) y) = (csc (2x)− cot (2x))

(
4 cot (x)2 cos (x)2 − 2 cot (x)2

)
d((csc (2x)− cot (2x)) y) =

(
4 cos (x)2 cot (x)− 2 cot (x)

)
dx

Integrating gives

(csc (2x)− cot (2x)) y =
∫

4 cos (x)2 cot (x)− 2 cot (x) dx

(csc (2x)− cot (2x)) y = 2 cos (x)2 + 2 ln (sin (x)) + c1

Dividing both sides by the integrating factor µ = csc (2x)− cot (2x) results in

y = 2 cos (x)2 + 2 ln (sin (x))
csc (2x)− cot (2x) + c1

csc (2x)− cot (2x)
which simplifies to

y = cot (x)
(
2 cos (x)2 + 2 ln (sin (x)) + c1

)
Summary
The solution(s) found are the following

(1)y = cot (x)
(
2 cos (x)2 + 2 ln (sin (x)) + c1

)

Figure 44: Slope field plot
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Verification of solutions

y = cot (x)
(
2 cos (x)2 + 2 ln (sin (x)) + c1

)
Verified OK.

1.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2 cot (x)2 cos (2x)− 2y csc (2x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = csc (2x) + cot (2x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

csc (2x) + cot (2x)dy

Which results in

S = y

csc (2x) + cot (2x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2 cot (x)2 cos (2x)− 2y csc (2x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y
1 + cos (2x)

Sy =
1

csc (2x) + cot (2x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4 cos (x)2 cot (x)− 2 cot (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4 cos (R)2 cot (R)− 2 cot (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 cos (R)2 + 2 ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

csc (2x) + cot (2x) = 2 cos (x)2 + 2 ln (sin (x)) + c1

Which simplifies to

−2 cos (x)2 − 2 ln (sin (x))− c1 + y tan (x) = 0

Which gives

y = 2 cos (x)2 + 2 ln (sin (x)) + c1
tan (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2 cot (x)2 cos (2x)− 2y csc (2x) dS
dR

= 4 cos (R)2 cot (R)− 2 cot (R)

R = x

S = y

csc (2x) + cot (2x)
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Summary
The solution(s) found are the following

(1)y = 2 cos (x)2 + 2 ln (sin (x)) + c1
tan (x)

Figure 45: Slope field plot

Verification of solutions

y = 2 cos (x)2 + 2 ln (sin (x)) + c1
tan (x)

Verified OK.

1.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
2 cot (x)2 cos (2x)− 2y csc (2x)

)
dx(

−2 cot (x)2 cos (2x) + 2y csc (2x)
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2 cot (x)2 cos (2x) + 2y csc (2x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y

(
−2 cot (x)2 cos (2x) + 2y csc (2x)

)
= 2 csc (2x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2 csc (2x))− (0))
= 2 csc (2x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 csc(2x) dx

The result of integrating gives

µ = e− ln(csc(2x)+cot(2x))

= 1
csc (2x) + cot (2x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
csc (2x) + cot (2x)

(
−2 cot (x)2 cos (2x) + 2y csc (2x)

)
= −4 cos (x)2 cot (x) + 2 cot (x) + sec (x)2 y

And

N = µN

= 1
csc (2x) + cot (2x)(1)

= 1
csc (2x) + cot (2x)
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−4 cos (x)2 cot (x) + 2 cot (x) + sec (x)2 y
)
+
(

1
csc (2x) + cot (2x)

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4 cos (x)2 cot (x) + 2 cot (x) + sec (x)2 y dx

(3)φ = tan (x) y − 2 cos (x)2 − 2 ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= tan (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
csc(2x)+cot(2x) . Therefore equation (4) becomes

(5)1
csc (2x) + cot (2x) = tan (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = tan (x) y − 2 cos (x)2 − 2 ln (sin (x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = tan (x) y − 2 cos (x)2 − 2 ln (sin (x))

The solution becomes

y = 2 cos (x)2 + 2 ln (sin (x)) + c1
tan (x)

Summary
The solution(s) found are the following

(1)y = 2 cos (x)2 + 2 ln (sin (x)) + c1
tan (x)

Figure 46: Slope field plot
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Verification of solutions

y = 2 cos (x)2 + 2 ln (sin (x)) + c1
tan (x)

Verified OK.

1.22.4 Maple step by step solution

Let’s solve
y′ + 2y csc (2x) = 2 cot (x)2 cos (2x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2 cot (x)2 cos (2x)− 2y csc (2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y csc (2x) = 2 cot (x)2 cos (2x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + 2y csc (2x)) = 2µ(x) cot (x)2 cos (2x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + 2y csc (2x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x) csc (2x)

• Solve to find the integrating factor
µ(x) = tan (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) cot (x)2 cos (2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) cot (x)2 cos (2x) dx+ c1

• Solve for y

y =
∫
2µ(x) cot(x)2 cos(2x)dx+c1

µ(x)

• Substitute µ(x) = tan (x)
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y =
∫
2 tan(x) cot(x)2 cos(2x)dx+c1

tan(x)

• Evaluate the integrals on the rhs

y = 2 cos(x)2+2 ln(sin(x))+c1
tan(x)

• Simplify
y = cot (x)

(
2 cos (x)2 + 2 ln (sin (x)) + c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x) = 2*cot(x)^2*cos(2*x)-2*y(x)*csc(2*x),y(x), singsol=all)� �

y(x) = cot (x)
(
2 ln (sin (x)) + 2 cos (x)2 + c1

)
3 Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 21� �
DSolve[y'[x]==2*(Cot[x]^2*Cos[2*x]-y[x]*Csc[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cot(x)(cos(2x) + 2 log(sin(x))− 1 + c1)
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1.23 problem 22
1.23.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 272
1.23.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 274
1.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 279
1.23.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 285

Internal problem ID [3286]
Internal file name [OUTPUT/2778_Sunday_June_05_2022_08_40_23_AM_45252677/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − 4 csc (x)x
(
sin (x)3 + y

)
= 0

1.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −4 csc (x)x
q(x) = 4x sin (x)2

Hence the ode is

y′ − 4 csc (x) yx = 4x sin (x)2

The integrating factor µ is
µ = e

∫
−4 csc(x)xdx
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The ode becomes

d
dx(µy) = (µ)

(
4x sin (x)2

)
d
dx

(
e
∫
−4 csc(x)xdxy

)
=
(
e
∫
−4 csc(x)xdx

) (
4x sin (x)2

)
d
(
e
∫
−4 csc(x)xdxy

)
=
(
4x sin (x)2 e−4

(∫
csc(x)xdx

))
dx

Integrating gives

e
∫
−4 csc(x)xdxy =

∫
4x sin (x)2 e−4

(∫
csc(x)xdx

)
dx

e
∫
−4 csc(x)xdxy =

∫
4x sin (x)2 e−4

(∫
csc(x)xdx

)
dx+ c1

Dividing both sides by the integrating factor µ = e
∫
−4 csc(x)xdx results in

y = e4
(∫

csc(x)xdx
)(∫

4x sin (x)2 e−4
(∫

csc(x)xdx
)
dx

)
+ c1e4

(∫
csc(x)xdx

)

which simplifies to

y = e4
(∫

csc(x)xdx
)(

4
(∫

x sin (x)2 e−4
(∫

csc(x)xdx
)
dx

)
+ c1

)
Summary
The solution(s) found are the following

(1)y = e4
(∫

csc(x)xdx
)(

4
(∫

x sin (x)2 e−4
(∫

csc(x)xdx
)
dx

)
+ c1

)
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Figure 47: Slope field plot

Verification of solutions

y = e4
(∫

csc(x)xdx
)(

4
(∫

x sin (x)2 e−4
(∫

csc(x)xdx
)
dx

)
+ c1

)
Verified OK.

1.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 4 csc (x)x
(
sin (x)3 + y

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e4x ln

(
1−eix

)
−4x ln

(
eix+1

)
+4idilog

(
eix+1

)
−4i dilog

(
1−eix

)
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e4x ln(1−eix)−4x ln(eix+1)+4idilog(eix+1)−4i dilog(1−eix)dy

Which results in

S = e−4x
(
ln
(
1−eix

)
−ln

(
eix+1

))
−4i dilog

(
eix+1

)
+4i dilog

(
1−eix

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4 csc (x)x
(
sin (x)3 + y

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 8ixy ei
(
x−4 dilog

(
eix+1

)
+4dilog

(
1−eix

))(
eix + 1

)−1+4x (1− eix
)−1−4x

Sy =
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −4

(
y csc (x) e2i

(
x−2 dilog

(
eix+1

)
+2dilog

(
1−eix

))
+ sin (x)2 e2i

(
x−2 dilog

(
eix+1

)
+2dilog

(
1−eix

))
− csc (x) e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
y − sin (x)2 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
− 2iy ei

(
x−4 dilog

(
eix+1

)
+4dilog

(
1−eix

)))
x
(
eix + 1

)−1+4x (1− eix
)−1−4x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

8R
(
−
(
1−eiR

)−4R(eiR+1
)4R sin(R)2

(
e2iR−1

)
2 + S(R)

((
e4i
(
dilog

(
eiR+1

)
−dilog

(
1−eiR

))
−e2i

(
2 dilog

(
eiR+1

)
−2 dilog

(
1−eiR

)
+R

))
csc(R)

2 + iei
(
4 dilog

(
eiR+1

)
−4 dilog

(
1−eiR

)
+R
)))

e4i(dilog(eiR+1)−dilog(1−eiR)) − e2i(2 dilog(eiR+1)−2 dilog(1−eiR)+R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 +
∫ 2

(
eiR + 1

)4R (1− eiR
)−4R

R
(
e2iR − 1

)
(−1 + cos (2R))

−e2i(2 dilog(eiR+1)−2 dilog(1−eiR)+R) + e−4i(− dilog(eiR+1)+dilog(1−eiR))dR (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
y = c1 +

∫ 2(eix + 1)4x (1− eix)−4x
x(e2ix − 1) (−1 + cos (2x))

−e2i(2 dilog(eix+1)−2 dilog(1−eix)+x) + e−4i(− dilog(eix+1)+dilog(1−eix))dx

Which simplifies to

(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
y = c1 +

∫ 2(eix + 1)4x (1− eix)−4x
x(e2ix − 1) (−1 + cos (2x))

−e2i(2 dilog(eix+1)−2 dilog(1−eix)+x) + e−4i(− dilog(eix+1)+dilog(1−eix))dx

Which gives

y =
(
c1 +

∫
− 2(eix + 1)4x (1− eix)−4x

x(e2ix − 1) (−1 + cos (2x))
e2i(2 dilog(eix+1)−2 dilog(1−eix)+x) − e4i(dilog(eix+1)−dilog(1−eix))dx

)(
eix + 1

)−4x (1− eix
)4x e4i(dilog(eix+1

)
−dilog

(
1−eix

))
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4 csc (x)x
(
sin (x)3 + y

) dS
dR

=

8R

−
(
1−eiR

)−4R(
eiR+1

)4R
sin(R)2

(
e2iR−1

)
2 +S(R)


(
e
4i
(
dilog

(
eiR+1

)
−dilog

(
1−eiR

))
−e

2i
(
2 dilog

(
eiR+1

)
−2 dilog

(
1−eiR

)
+R

))
csc(R)

2 +iei
(
4 dilog

(
eiR+1

)
−4 dilog

(
1−eiR

)
+R

)


e4i
(
dilog

(
eiR+1

)
−dilog

(
1−eiR

))
−e2i

(
2 dilog

(
eiR+1

)
−2 dilog

(
1−eiR

)
+R

)

R = x

S =
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
y

Summary
The solution(s) found are the following

(1)y =
(
c1 +

∫
− 2(eix + 1)4x (1− eix)−4x

x(e2ix − 1) (−1 + cos (2x))
e2i(2 dilog(eix+1)−2 dilog(1−eix)+x) − e4i(dilog(eix+1)−dilog(1−eix))dx

)(
eix

+ 1
)−4x (1− eix

)4x e4i(dilog(eix+1
)
−dilog

(
1−eix

))
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Figure 48: Slope field plot

Verification of solutions

y =
(
c1 +

∫
− 2(eix + 1)4x (1− eix)−4x

x(e2ix − 1) (−1 + cos (2x))
e2i(2 dilog(eix+1)−2 dilog(1−eix)+x) − e4i(dilog(eix+1)−dilog(1−eix))dx

)(
eix

+ 1
)−4x (1− eix

)4x e4i(dilog(eix+1
)
−dilog

(
1−eix

))

Verified OK.

1.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
4 csc (x)x

(
sin (x)3 + y

))
dx(

−4 csc (x)x
(
sin (x)3 + y

))
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4 csc (x)x
(
sin (x)3 + y

)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−4 csc (x)x

(
sin (x)3 + y

))
= −4 csc (x)x

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−4 csc (x)x)− (0))
= −4 csc (x)x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−4 csc(x)xdx

The result of integrating gives

µ = e−4x ln
(
1−eix

)
+4x ln

(
eix+1

)
−4i dilog

(
eix+1

)
+4i dilog

(
1−eix

)
=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
−4 csc (x)x

(
sin (x)3 + y

))
= −4

(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
x
(
sin (x)2 + csc (x) y

)
And

N = µN

=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
(1)

=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−4
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
x
(
sin (x)2 + csc (x) y

))
+
((

eix + 1
)4x (1− eix

)−4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4
(
eix+1

)4x (1−eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
x
(
sin (x)2+csc (x) y

)
dx

(3)φ =
∫ x

−4
(
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a(sin (_a)2

+ csc (_a) y
)
d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)
∂φ

∂y
= −4

(∫ x (
ei_a + 1

)4_a (1
− ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a csc (_a) d_a

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= (eix + 1)4x (1− eix)−4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))
. There-

fore equation (4) becomes

(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
= −4

(∫ x (
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a csc (_a) d_a

)
+ f ′(y)

(5)

Solving equation (5) for f ′(y) gives

f ′(y) =
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
+ 4
(∫ x (

ei_a + 1
)4_a (1

− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a csc (_a) d_a

)
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ((
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a csc (_a) d_a

))
dy

f(y)

=
((

eix + 1
)4x (1− eix

)−4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a csc (_a) d_a

))
y

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ

=
∫ x

−4
(
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a(sin (_a)2

+ csc (_a) y
)
d_a+

((
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a csc (_a) d_a

))
y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1

=
∫ x

−4
(
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a(sin (_a)2

+ csc (_a) y
)
d_a+

((
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_a csc (_a) d_a

))
y

The solution becomes

y =
(
4
(∫ x (

1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_ad_a

)
sin (_a)2

(
ei_a + 1

)4_a

+ c1

)
e4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
eix + 1

)−4x (1− eix
)4x
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Summary
The solution(s) found are the following

(1)
y =

(
4
(∫ x (

1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_ad_a

)
sin (_a)2

(
ei_a

+ 1
)4_a + c1

)
e4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
eix + 1

)−4x (1− eix
)4x

Figure 49: Slope field plot

Verification of solutions

y =
(
4
(∫ x (

1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))_ad_a

)
sin (_a)2

(
ei_a + 1

)4_a

+ c1

)
e4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
eix + 1

)−4x (1− eix
)4x

Verified OK.
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1.23.4 Maple step by step solution

Let’s solve
y′ − 4 csc (x)x

(
sin (x)3 + y

)
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 4 csc (x) yx+ 4 csc (x) sin (x)3 x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 4 csc (x) yx = 4 csc (x) sin (x)3 x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − 4 csc (x) yx) = 4µ(x) csc (x) sin (x)3 x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − 4 csc (x) yx) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −4µ(x) csc (x)x

• Solve to find the integrating factor

µ(x) =
((
eIx+1

)x)4e−4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
(
(1−eIx)x

)4
• Integrate both sides with respect to x∫ (

d
dx
(µ(x) y)

)
dx =

∫
4µ(x) csc (x) sin (x)3 xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
4µ(x) csc (x) sin (x)3 xdx+ c1

• Solve for y

y =
∫
4µ(x) csc(x) sin(x)3xdx+c1

µ(x)

• Substitute µ(x) =
((
eIx+1

)x)4e−4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
(
(1−eIx)x

)4

y =

((
1−eIx

)x)4∫ 4
((

eIx+1
)x)4

e
−4 I

(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
csc(x) sin(x)3x((

1−eIx
)x)4 dx+c1


(
(eIx+1)x

)4e−4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))

• Simplify
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y =
(
1− eIx

)4x (4(∫ sin (x)2
(
eIx + 1

)4x (1− eIx
)−4x e−4 I

(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
xdx

)
+ c1

) (
eIx + 1

)−4x e4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 118� �
dsolve(diff(y(x),x) = 4*csc(x)*x*(sin(x)^3+y(x)),y(x), singsol=all)� �
y(x) = −2

(
1− eix

)4x (eix + 1
)−4x e4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
−c1

2

+
∫

x
(
1− eix

)−4x (eix + 1
)4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
(−1 + cos (2x)) dx

)
3 Solution by Mathematica
Time used: 8.396 (sec). Leaf size: 148� �
DSolve[y'[x]==2*Csc[x]*2*x(Sin[x]^3+y[x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → exp

(
4iPolyLog

(
2,−eix

)
− 4iPolyLog

(
2, eix

)
+ 4x

(
log
(
1− eix

)
− log

(
1 + eix

)))(∫ x

1
4 exp

(
4K[1]

(
log
(
1 + eiK[1])− log

(
1− eiK[1]))

− 4iPolyLog
(
2,−eiK[1])+ 4iPolyLog

(
2, eiK[1]))K[1] sin2(K[1])dK[1] + c1

)
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1.24 problem 23
1.24.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 287
1.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 289
1.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 294
1.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 299

Internal problem ID [3287]
Internal file name [OUTPUT/2779_Sunday_June_05_2022_08_40_24_AM_39906412/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − 4 csc (x)x
(
1− tan (x)2 + y

)
= 0

1.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −4 csc (x)x
q(x) = −4 csc (x)

(
−2 + sec (x)2

)
x

Hence the ode is

y′ − 4 csc (x) yx = −4 csc (x)
(
−2 + sec (x)2

)
x

The integrating factor µ is
µ = e

∫
−4 csc(x)xdx
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The ode becomes

d
dx(µy) = (µ)

(
−4 csc (x)

(
−2 + sec (x)2

)
x
)

d
dx

(
e
∫
−4 csc(x)xdxy

)
=
(
e
∫
−4 csc(x)xdx

) (
−4 csc (x)

(
−2 + sec (x)2

)
x
)

d
(
e
∫
−4 csc(x)xdxy

)
=
(
−4 csc (x)

(
−2 + sec (x)2

)
x e−4

(∫
csc(x)xdx

))
dx

Integrating gives

e
∫
−4 csc(x)xdxy =

∫
−4 csc (x)

(
−2 + sec (x)2

)
x e−4

(∫
csc(x)xdx

)
dx

e
∫
−4 csc(x)xdxy =

∫
−4 csc (x)

(
−2 + sec (x)2

)
x e−4

(∫
csc(x)xdx

)
dx+ c1

Dividing both sides by the integrating factor µ = e
∫
−4 csc(x)xdx results in

y = e4
(∫

csc(x)xdx
)(∫

−4 csc (x)
(
−2 + sec (x)2

)
x e−4

(∫
csc(x)xdx

)
dx

)
+ c1e4

(∫
csc(x)xdx

)

which simplifies to

y = e4
(∫

csc(x)xdx
)(

−4
(∫

csc (x)
(
−2 + sec (x)2

)
x e−4

(∫
csc(x)xdx

)
dx

)
+ c1

)
Summary
The solution(s) found are the following

(1)y = e4
(∫

csc(x)xdx
)(

−4
(∫

csc (x)
(
−2 + sec (x)2

)
x e−4

(∫
csc(x)xdx

)
dx

)
+ c1

)
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Figure 50: Slope field plot

Verification of solutions

y = e4
(∫

csc(x)xdx
)(

−4
(∫

csc (x)
(
−2 + sec (x)2

)
x e−4

(∫
csc(x)xdx

)
dx

)
+ c1

)
Verified OK.

1.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4 csc (x)x
(
tan (x)2 − y − 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 68: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e4x ln

(
1−eix

)
−4x ln

(
eix+1

)
+4idilog

(
eix+1

)
−4i dilog

(
1−eix

)
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e4x ln(1−eix)−4x ln(eix+1)+4idilog(eix+1)−4i dilog(1−eix)dy

Which results in

S = e−4x
(
ln
(
1−eix

)
−ln

(
eix+1

))
−4i dilog

(
eix+1

)
+4i dilog

(
1−eix

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4 csc (x)x
(
tan (x)2 − y − 1

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 8ixy ei
(
x−4 dilog

(
eix+1

)
+4dilog

(
1−eix

))(
eix + 1

)−1+4x (1− eix
)−1−4x

Sy =
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 8

−

(
− sec (x)2 + y + 2

) (
e2i
(
x−2 dilog

(
eix+1

)
+2dilog

(
1−eix

))
− e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

)))
csc (x)

2 + iy ei
(
x−4 dilog

(
eix+1

)
+4dilog

(
1−eix

))(1− eix
)−1−4x (eix + 1

)−1+4x
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R csc (R) sec (R)2

(
1− eiR

)−1−4R (eiR + 1
)−1+4R

(
−4 cos (R)2 e−4i

(
dilog

(
eiR+1

)
−dilog

(
1−eiR

))
+ e4i

(
− dilog

(
eiR+1

)
+dilog

(
1−eiR

)
+R
)
+ 3 e−4i

(
dilog

(
eiR+1

)
−dilog

(
1−eiR

)))
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

2R csc (R) sec (R)2
(
1− eiR

)−1−4R (eiR + 1
)−1+4R

(
4 cos (R)2 e−4i

(
dilog

(
eiR+1

)
−dilog

(
1−eiR

))
− 3 e−4i

(
dilog

(
eiR+1

)
−dilog

(
1−eiR

))
− e−4i

(
dilog

(
eiR+1

)
−dilog

(
1−eiR

)
−R
))

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
y =

∫
2x csc (x) sec (x)2

(
1− eix

)−1−4x (eix + 1
)−1+4x

(
4 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
cos (x)2 − 3 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
− e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

)
−x
))

dx+ c1

Which simplifies to(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
y =

∫
2x csc (x) sec (x)2

(
1− eix

)−1−4x (eix + 1
)−1+4x

(
4 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
cos (x)2 − 3 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
− e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

)
−x
))

dx+ c1

Which gives

y =
(∫

−2 csc (x) sec (x)2
(
−4 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
cos (x)2 + 3 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
+ e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

)
−x
))

x
(
eix + 1

)−1+4x (1− eix
)−1−4x

dx+ c1

)
e4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
1− eix

)4x (eix + 1
)−4x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4 csc (x)x
(
tan (x)2 − y − 1

) dS
dR

=
−2R csc (R) sec (R)2

(
1− eiR

)−1−4R (eiR + 1
)−1+4R

(
−4 cos (R)2 e−4i

(
dilog

(
eiR+1

)
−dilog

(
1−eiR

))
+ e4i

(
− dilog

(
eiR+1

)
+dilog

(
1−eiR

)
+R
)
+ 3 e−4i

(
dilog

(
eiR+1

)
−dilog

(
1−eiR

)))

R = x

S =
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
y
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Summary
The solution(s) found are the following

(1)

y =
(∫

−2 csc (x) sec (x)2
(
−4 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
cos (x)2

+3 e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))
+e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

)
−x
))

x
(
eix+1

)−1+4x (1
− eix

)−1−4x
dx+ c1

)
e4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
1− eix

)4x (eix + 1
)−4x

Figure 51: Slope field plot

Verification of solutions

y =
(∫

−2 csc (x) sec (x)2
(
−4 e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
cos (x)2

+ 3 e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))
+ e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

)
−x
))

x
(
eix + 1

)−1+4x (1
− eix

)−1−4x
dx+ c1

)
e4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
1− eix

)4x (eix + 1
)−4x

Verified OK.

293



1.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
4 csc (x)x

(
1− tan (x)2 + y

))
dx(

−4 csc (x)x
(
1− tan (x)2 + y

))
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4 csc (x)x
(
1− tan (x)2 + y

)
N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−4 csc (x)x

(
1− tan (x)2 + y

))
= −4 csc (x)x

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−4 csc (x)x)− (0))
= −4 csc (x)x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−4 csc(x)xdx

The result of integrating gives

µ = e−4x ln
(
1−eix

)
+4x ln

(
eix+1

)
−4i dilog

(
eix+1

)
+4i dilog

(
1−eix

)
=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
−4 csc (x)x

(
1− tan (x)2 + y

))
= 4
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
csc (x)x

(
tan (x)2 − y − 1

)
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And

N = µN

=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
(1)

=
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

4
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
csc (x)x

(
tan (x)2 − y − 1

))
+
((

eix + 1
)4x (1− eix

)−4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
4
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
csc (x)x

(
tan (x)2 − y

− 1
)
dx

φ =
∫ x

4
(
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_a(tan (_a)2

− y − 1
)
d_a+ f(y)

(3)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)
∂φ

∂y
= −4

(∫ x (
ei_a + 1

)4_a (1
− ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_ad_a

)
+ f ′(y)
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But equation (2) says that ∂φ
∂y

= (eix + 1)4x (1− eix)−4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))
. There-

fore equation (4) becomes

(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
= −4

(∫ x (
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_ad_a

)
+ f ′(y)

(5)

Solving equation (5) for f ′(y) gives

f ′(y) =
(
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))
+ 4
(∫ x (

ei_a + 1
)4_a (1

− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_ad_a

)
Integrating the above w.r.t y gives∫

f ′(y) dy =
∫ ((

eix + 1
)4x (1− eix

)−4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_ad_a

))
dy

f(y)

=
((

eix + 1
)4x (1− eix

)−4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_ad_a

))
y

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ

=
∫ x

4
(
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_a(tan (_a)2

− y − 1
)
d_a+

((
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_ad_a

))
y

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1

=
∫ x

4
(
ei_a + 1

)4_a (1− ei_a)−4_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_a(tan (_a)2

− y − 1
)
d_a+

((
eix + 1

)4x (1− eix
)−4x e−4i

(
dilog

(
eix+1

)
−dilog

(
1−eix

))

+4
(∫ x (

ei_a+1
)4_a (1−ei_a)−4_a e−4i

(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a)) csc (_a)_ad_a

))
y

The solution becomes

y

=

(
c1 sin (_a)3 (1− ei_a)4_a + 8

(∫ x _a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))

d_a
)
sin (_a)2 (ei_a + 1)4_a − c1 sin (_a) (1− ei_a)4_a − 4(ei_a + 1)4_a

(∫ x_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))

d_a
))

(1− eix)4x

4
(∫ x (1− ei_a)−4_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))_ad_a

)
sin (_a)2 (ei_a + 1)4_a (1− ei_a)4_a (1− eix)4x + e−4i(dilog(eix+1)−dilog(1−eix)) (1− ei_a)4_a sin (_a)3 (eix + 1)4x − 4

(∫ x_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))d_a
)
sin (_a)2 (ei_a + 1)4_a (1− eix)4x − 4

(∫ x (1− ei_a)−4_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))_ad_a
)
(ei_a + 1)4_a (1− ei_a)4_a (1− eix)4x − e−4i(dilog(eix+1)−dilog(1−eix)) (1− ei_a)4_a sin (_a) (eix + 1)4x + 4 (ei_a + 1)4_a (∫ x _a e−4i(dilog(ei_a+1)−dilog(1−ei_a))d_a

)
(1− eix)4x

Summary
The solution(s) found are the following

(1)y

=

(
c1 sin (_a)3 (1− ei_a)4_a + 8

(∫ x _a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))

d_a
)
sin (_a)2 (ei_a + 1)4_a − c1 sin (_a) (1− ei_a)4_a − 4(ei_a + 1)4_a

(∫ x_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))

d_a
))

(1− eix)4x

4
(∫ x (1− ei_a)−4_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))_ad_a

)
sin (_a)2 (ei_a + 1)4_a (1− ei_a)4_a (1− eix)4x + e−4i(dilog(eix+1)−dilog(1−eix)) (1− ei_a)4_a sin (_a)3 (eix + 1)4x − 4

(∫ x_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))d_a
)
sin (_a)2 (ei_a + 1)4_a (1− eix)4x − 4

(∫ x (1− ei_a)−4_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))_ad_a
)
(ei_a + 1)4_a (1− ei_a)4_a (1− eix)4x − e−4i(dilog(eix+1)−dilog(1−eix)) (1− ei_a)4_a sin (_a) (eix + 1)4x + 4 (ei_a + 1)4_a (∫ x _a e−4i(dilog(ei_a+1)−dilog(1−ei_a))d_a

)
(1− eix)4x
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Figure 52: Slope field plot

Verification of solutions
y

=

(
c1 sin (_a)3 (1− ei_a)4_a + 8

(∫ x _a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))

d_a
)
sin (_a)2 (ei_a + 1)4_a − c1 sin (_a) (1− ei_a)4_a − 4(ei_a + 1)4_a

(∫ x_a e−4i
(
dilog

(
ei_a+1

)
−dilog

(
1−ei_a))

d_a
))

(1− eix)4x

4
(∫ x (1− ei_a)−4_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))_ad_a

)
sin (_a)2 (ei_a + 1)4_a (1− ei_a)4_a (1− eix)4x + e−4i(dilog(eix+1)−dilog(1−eix)) (1− ei_a)4_a sin (_a)3 (eix + 1)4x − 4

(∫ x_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))d_a
)
sin (_a)2 (ei_a + 1)4_a (1− eix)4x − 4

(∫ x (1− ei_a)−4_a e−4i(dilog(ei_a+1)−dilog(1−ei_a))_ad_a
)
(ei_a + 1)4_a (1− ei_a)4_a (1− eix)4x − e−4i(dilog(eix+1)−dilog(1−eix)) (1− ei_a)4_a sin (_a) (eix + 1)4x + 4 (ei_a + 1)4_a (∫ x _a e−4i(dilog(ei_a+1)−dilog(1−ei_a))d_a

)
(1− eix)4x

Verified OK.

1.24.4 Maple step by step solution

Let’s solve
y′ − 4 csc (x)x

(
1− tan (x)2 + y

)
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 4 csc (x) yx− 4 csc (x)x

(
tan (x)2 − 1

)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − 4 csc (x) yx = −4 csc (x)x
(
tan (x)2 − 1

)
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − 4 csc (x) yx) = −4µ(x) csc (x)x

(
tan (x)2 − 1

)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − 4 csc (x) yx) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −4µ(x) csc (x)x

• Solve to find the integrating factor

µ(x) =
((
eIx+1

)x)4e−4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
(
(1−eIx)x

)4
• Integrate both sides with respect to x∫ (

d
dx
(µ(x) y)

)
dx =

∫
−4µ(x) csc (x)x

(
tan (x)2 − 1

)
dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−4µ(x) csc (x)x

(
tan (x)2 − 1

)
dx+ c1

• Solve for y

y =
∫
−4µ(x) csc(x)x

(
tan(x)2−1

)
dx+c1

µ(x)

• Substitute µ(x) =
((
eIx+1

)x)4e−4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
(
(1−eIx)x

)4

y =

((
1−eIx

)x)4∫ −
4
((

eIx+1
)x)4

e
−4 I

(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
csc(x)x

(
tan(x)2−1

)
((

1−eIx
)x)4 dx+c1


(
(eIx+1)x

)4e−4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))

• Simplify

y = −4 e4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))(
1− eIx

)4x (∫ csc (x)
(
−2 + sec (x)2

) (
eIx + 1

)4x e−4 I
(
dilog

(
eIx+1

)
−dilog

(
1−eIx

))
x
(
1− eIx

)−4x
dx− c1

4

) (
eIx + 1

)−4x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 120� �
dsolve(diff(y(x),x) = 4*csc(x)*x*(1-tan(x)^2+y(x)),y(x), singsol=all)� �

y(x) = −4 e4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))(
1− eix

)4x(∫ csc (x)
(
sec (x)2 − 2

)
x
(
1

− eix
)−4x (eix + 1

)4x e−4i
(
dilog

(
eix+1

)
−dilog

(
1−eix

))
dx− c1

4

)(
eix + 1

)−4x

3 Solution by Mathematica
Time used: 11.321 (sec). Leaf size: 156� �
DSolve[y'[x]==2*Csc[x]*2*x*(1-Tan[x]^2+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → exp
(
4iPolyLog

(
2,−eix

)
− 4iPolyLog

(
2, eix

)
+ 4x

(
log
(
1− eix

)
− log

(
1 + eix

)))(∫ x

1
4 exp

(
4K[1]

(
log
(
1 + eiK[1])− log

(
1− eiK[1]))

− 4iPolyLog
(
2,−eiK[1])

+ 4iPolyLog
(
2, eiK[1])) cos(2K[1]) csc(K[1])K[1] sec2(K[1])dK[1] + c1

)
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1.25 problem 24
1.25.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 302
1.25.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 304
1.25.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 305
1.25.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 307
1.25.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 311
1.25.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 315

Internal problem ID [3288]
Internal file name [OUTPUT/2780_Sunday_June_05_2022_08_40_26_AM_17783161/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y sec (x) = 0

1.25.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= sec (x) y
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Where f(x) = sec (x) and g(y) = y. Integrating both sides gives

1
y
dy = sec (x) dx∫ 1

y
dy =

∫
sec (x) dx

ln (y) = ln (sec (x) + tan (x)) + c1

y = eln(sec(x)+tan(x))+c1

= c1(sec (x) + tan (x))

Summary
The solution(s) found are the following

(1)y = c1(sec (x) + tan (x))

Figure 53: Slope field plot

Verification of solutions

y = c1(sec (x) + tan (x))

Verified OK.
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1.25.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − sec (x)
q(x) = 0

Hence the ode is

y′ − y sec (x) = 0

The integrating factor µ is

µ = e
∫
− sec(x)dx

= 1
sec (x) + tan (x)

The ode becomes

d
dxµy = 0

d
dx

(
y

sec (x) + tan (x)

)
= 0

Integrating gives
y

sec (x) + tan (x) = c1

Dividing both sides by the integrating factor µ = 1
sec(x)+tan(x) results in

y = c1(sec (x) + tan (x))

Summary
The solution(s) found are the following

(1)y = c1(sec (x) + tan (x))
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Figure 54: Slope field plot

Verification of solutions

y = c1(sec (x) + tan (x))

Verified OK.

1.25.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x sec (x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(sec (x)x− 1)
x

305



Where f(x) = sec(x)x−1
x

and g(u) = u. Integrating both sides gives

1
u
du = sec (x)x− 1

x
dx∫ 1

u
du =

∫ sec (x)x− 1
x

dx

ln (u) = ln (sec (x) + tan (x))− ln (x) + c2

u = eln(sec(x)+tan(x))−ln(x)+c2

= c2eln(sec(x)+tan(x))−ln(x)

Which simplifies to

u(x) = c2

(
sec (x)

x
+ tan (x)

x

)

Therefore the solution y is

y = xu

= xc2

(
sec (x)

x
+ tan (x)

x

)
Summary
The solution(s) found are the following

(1)y = xc2

(
sec (x)

x
+ tan (x)

x

)
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Figure 55: Slope field plot

Verification of solutions

y = xc2

(
sec (x)

x
+ tan (x)

x

)
Verified OK.

1.25.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sec (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 71: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = sec (x) + tan (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

sec (x) + tan (x)dy

Which results in

S = y

sec (x) + tan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sec (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

1 + sin (x)

Sy =
1

sec (x) + tan (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

sec (x) + tan (x) = c1

Which simplifies to
y

sec (x) + tan (x) = c1

Which gives

y = c1 sec (x) + tan (x) c1
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sec (x) y dS
dR

= 0

R = x

S = y

sec (x) + tan (x)

Summary
The solution(s) found are the following

(1)y = c1 sec (x) + tan (x) c1
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Figure 56: Slope field plot

Verification of solutions

y = c1 sec (x) + tan (x) c1

Verified OK.

1.25.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

311



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy = (sec (x)) dx

(− sec (x)) dx+
(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sec (x))

= 0

312



And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sec (x) dx

(3)φ = − ln (sec (x) + tan (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sec (x) + tan (x)) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sec (x) + tan (x)) + ln (y)

The solution becomes

y = − ec1 cos (x)
sin (x)− 1

Summary
The solution(s) found are the following

(1)y = − ec1 cos (x)
sin (x)− 1

Figure 57: Slope field plot
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Verification of solutions

y = − ec1 cos (x)
sin (x)− 1

Verified OK.

1.25.6 Maple step by step solution

Let’s solve
y′ − y sec (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= sec (x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
sec (x) dx+ c1

• Evaluate integral
ln (y) = ln (sec (x) + tan (x)) + c1

• Solve for y
y = − ec1 cos(x)

sin(x)−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = y(x)*sec(x),y(x), singsol=all)� �

y(x) = c1(sec (x) + tan (x))
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3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 24� �
DSolve[y'[x]==y[x]*Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
2arctanh

(
tan
(
x
2
))

y(x) → 0
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1.26 problem 25
1.26.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 317
1.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 319
1.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 323
1.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 328

Internal problem ID [3289]
Internal file name [OUTPUT/2781_Sunday_June_05_2022_08_40_27_AM_43079435/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 1
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − (1− y) sec (x) = − tan (x)

1.26.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = sec (x)
q(x) = − tan (x) + sec (x)

Hence the ode is

y′ + y sec (x) = − tan (x) + sec (x)

The integrating factor µ is

µ = e
∫
sec(x)dx

= sec (x) + tan (x)
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The ode becomes

d
dx(µy) = (µ) (− tan (x) + sec (x))

d
dx((sec (x) + tan (x)) y) = (sec (x) + tan (x)) (− tan (x) + sec (x))

d((sec (x) + tan (x)) y) = dx

Integrating gives

(sec (x) + tan (x)) y =
∫

dx

(sec (x) + tan (x)) y = x+ c1

Dividing both sides by the integrating factor µ = sec (x) + tan (x) results in

y = x

sec (x) + tan (x) +
c1

sec (x) + tan (x)

which simplifies to

y = x+ c1
sec (x) + tan (x)

Summary
The solution(s) found are the following

(1)y = x+ c1
sec (x) + tan (x)
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Figure 58: Slope field plot

Verification of solutions

y = x+ c1
sec (x) + tan (x)

Verified OK.

1.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − sec (x) y − tan (x) + sec (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 74: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sec (x) + tan (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sec(x)+tan(x)

dy

Which results in

S = (sec (x) + tan (x)) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − sec (x) y − tan (x) + sec (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

sin (x)− 1
Sy = sec (x) + tan (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(sec (x) + tan (x)) y = x+ c1

Which simplifies to

(sec (x) + tan (x)) y = x+ c1

Which gives

y = x+ c1
sec (x) + tan (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sec (x) y − tan (x) + sec (x) dS
dR

= 1

R = x

S = (sec (x) + tan (x)) y

Summary
The solution(s) found are the following

(1)y = x+ c1
sec (x) + tan (x)
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Figure 59: Slope field plot

Verification of solutions

y = x+ c1
sec (x) + tan (x)

Verified OK.

1.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (− tan (x) + (1− y) sec (x)) dx
(tan (x)− (1− y) sec (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = tan (x)− (1− y) sec (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(tan (x)− (1− y) sec (x))

= sec (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((sec (x))− (0))
= sec (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
sec(x) dx

The result of integrating gives

µ = eln(sec(x)+tan(x))

= sec (x) + tan (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) + tan (x) (tan (x)− (1− y) sec (x))

= − sin (x)− y + 1
sin (x)− 1

And

N = µN

= sec (x) + tan (x) (1)
= sec (x) + tan (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− sin (x)− y + 1
sin (x)− 1

)
+ (sec (x) + tan (x)) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x)− y + 1

sin (x)− 1 dx

(3)φ = − 2y
−1 + tan

(
x
2

) − x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 2

−1 + tan
(
x
2

) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x) + tan (x). Therefore equation (4) becomes

(5)sec (x) + tan (x) = − 2
−1 + tan

(
x
2

) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) =
tan (x) tan

(
x
2

)
+ sec (x) tan

(
x
2

)
− tan (x)− sec (x) + 2

−1 + tan
(
x
2

)
= −1

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − 2y
−1 + tan

(
x
2

) − x− y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 2y
−1 + tan

(
x
2

) − x− y

The solution becomes

y = −
tan

(
x
2

)
c1 + x tan

(
x
2

)
− c1 − x

1 + tan
(
x
2

)
Summary
The solution(s) found are the following

(1)y = −
tan

(
x
2

)
c1 + x tan

(
x
2

)
− c1 − x

1 + tan
(
x
2

)

Figure 60: Slope field plot
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Verification of solutions

y = −
tan

(
x
2

)
c1 + x tan

(
x
2

)
− c1 − x

1 + tan
(
x
2

)
Verified OK.

1.26.4 Maple step by step solution

Let’s solve
y′ − (1− y) sec (x) = − tan (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y sec (x)− tan (x) + sec (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y sec (x) = − tan (x) + sec (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y sec (x)) = µ(x) (− tan (x) + sec (x))

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y sec (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sec (x)

• Solve to find the integrating factor
µ(x) = sec (x) + tan (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (− tan (x) + sec (x)) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (− tan (x) + sec (x)) dx+ c1

• Solve for y

y =
∫
µ(x)(− tan(x)+sec(x))dx+c1

µ(x)

• Substitute µ(x) = sec (x) + tan (x)
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y =
∫
(− tan(x)+sec(x))(sec(x)+tan(x))dx+c1

sec(x)+tan(x)

• Evaluate the integrals on the rhs
y = x+c1

sec(x)+tan(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+tan(x) = (1-y(x))*sec(x),y(x), singsol=all)� �

y(x) = c1 + x

sec (x) + tan (x)

3 Solution by Mathematica
Time used: 0.792 (sec). Leaf size: 21� �
DSolve[y'[x]+Tan[x]==(1-y[x])*Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c1)e−2arctanh
(
tan
(
x
2
))

329



2 Various 2
2.1 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
2.2 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
2.3 problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.4 problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
2.5 problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
2.6 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
2.7 problem 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
2.8 problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
2.9 problem 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
2.10 problem 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
2.11 problem 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
2.12 problem 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
2.13 problem 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
2.14 problem 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
2.15 problem 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
2.16 problem 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
2.17 problem 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
2.18 problem 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
2.19 problem 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
2.20 problem 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
2.21 problem 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
2.22 problem 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
2.23 problem 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
2.24 problem 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
2.25 problem 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
2.26 problem 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
2.27 problem 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
2.28 problem 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
2.29 problem 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

330



2.1 problem 26
2.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 331
2.1.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 333
2.1.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 334
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Internal problem ID [3290]
Internal file name [OUTPUT/2782_Sunday_June_05_2022_08_40_28_AM_20091327/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y tan (x) = 0

2.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= tan (x) y
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Where f(x) = tan (x) and g(y) = y. Integrating both sides gives

1
y
dy = tan (x) dx∫ 1

y
dy =

∫
tan (x) dx

ln (y) = − ln (cos (x)) + c1

y = e− ln(cos(x))+c1

= c1
cos (x)

Summary
The solution(s) found are the following

(1)y = c1
cos (x)

Figure 61: Slope field plot

Verification of solutions

y = c1
cos (x)

Verified OK.
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2.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = 0

Hence the ode is

y′ − y tan (x) = 0

The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)

The ode becomes

d
dxµy = 0

d
dx(cos (x) y) = 0

Integrating gives

cos (x) y = c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = c1 sec (x)

Summary
The solution(s) found are the following

(1)y = c1 sec (x)
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Figure 62: Slope field plot

Verification of solutions

y = c1 sec (x)

Verified OK.

2.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x tan (x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(tan (x)x− 1)
x
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Where f(x) = tan(x)x−1
x

and g(u) = u. Integrating both sides gives

1
u
du = tan (x)x− 1

x
dx∫ 1

u
du =

∫ tan (x)x− 1
x

dx

ln (u) = − ln (cos (x))− ln (x) + c2

u = e− ln(cos(x))−ln(x)+c2

= c2e− ln(cos(x))−ln(x)

Which simplifies to

u(x) = c2
x cos (x)

Therefore the solution y is

y = xu

= c2
cos (x)

Summary
The solution(s) found are the following

(1)y = c2
cos (x)
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Figure 63: Slope field plot

Verification of solutions

y = c2
cos (x)

Verified OK.

2.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 77: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = c1

Which simplifies to

cos (x) y = c1

Which gives

y = c1
cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= tan (x) y dS
dR

= 0

R = x

S = cos (x) y

Summary
The solution(s) found are the following

(1)y = c1
cos (x)
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Figure 64: Slope field plot

Verification of solutions

y = c1
cos (x)

Verified OK.

2.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy = (tan (x)) dx

(− tan (x)) dx+
(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− tan (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x)) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x)) + ln (y)

The solution becomes

y = ec1
cos (x)

Summary
The solution(s) found are the following

(1)y = ec1
cos (x)

Figure 65: Slope field plot
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Verification of solutions

y = ec1
cos (x)

Verified OK.

2.1.6 Maple step by step solution

Let’s solve
y′ − y tan (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= tan (x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
tan (x) dx+ c1

• Evaluate integral
ln (y) = − ln (cos (x)) + c1

• Solve for y
y = ec1

cos(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 8� �
dsolve(diff(y(x),x) = y(x)*tan(x),y(x), singsol=all)� �

y(x) = sec (x) c1
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3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 15� �
DSolve[y'[x]==y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 sec(x)
y(x) → 0

345



2.2 problem 27
2.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 346
2.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 348
2.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 352
2.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 356

Internal problem ID [3291]
Internal file name [OUTPUT/2783_Sunday_June_05_2022_08_40_28_AM_88582808/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y tan (x) = cos (x)

2.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = cos (x)

Hence the ode is

y′ − y tan (x) = cos (x)

The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)
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The ode becomes

d
dx(µy) = (µ) (cos (x))

d
dx(cos (x) y) = (cos (x)) (cos (x))

d(cos (x) y) = cos (x)2 dx

Integrating gives

cos (x) y =
∫

cos (x)2 dx

cos (x) y = sin (x) cos (x)
2 + x

2 + c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = sec (x)
(
sin (x) cos (x)

2 + x

2

)
+ c1 sec (x)

which simplifies to

y = (2c1 + x) sec (x)
2 + sin (x)

2

Summary
The solution(s) found are the following

(1)y = (2c1 + x) sec (x)
2 + sin (x)

2
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Figure 66: Slope field plot

Verification of solutions

y = (2c1 + x) sec (x)
2 + sin (x)

2

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x) + tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 80: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

349



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x) + tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 +
sin (2R)

4 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = x

2 + c1 +
sin (2x)

4
Which simplifies to

cos (x) y = x

2 + c1 +
sin (2x)

4
Which gives

y = 4c1 + 2x+ sin (2x)
4 cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x) + tan (x) y dS
dR

= cos (R)2

R = x

S = cos (x) y

Summary
The solution(s) found are the following

(1)y = 4c1 + 2x+ sin (2x)
4 cos (x)
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Figure 67: Slope field plot

Verification of solutions

y = 4c1 + 2x+ sin (2x)
4 cos (x)

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (cos (x) + tan (x) y) dx
(− cos (x)− tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x)− tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− cos (x)− tan (x) y)

= − tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− tan (x))− (0))
= − tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x) (− cos (x)− tan (x) y)
= − cos (x)2 − sin (x) y

And

N = µN

= cos (x) (1)
= cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− cos (x)2 − sin (x) y
)
+ (cos (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x)2 − sin (x) y dx

(3)φ = (2y − sin (x)) cos (x)
2 − x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2y − sin (x)) cos (x)
2 − x

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2y − sin (x)) cos (x)

2 − x

2

The solution becomes

y = sin (x) cos (x) + 2c1 + x

2 cos (x)
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Summary
The solution(s) found are the following

(1)y = sin (x) cos (x) + 2c1 + x

2 cos (x)

Figure 68: Slope field plot

Verification of solutions

y = sin (x) cos (x) + 2c1 + x

2 cos (x)

Verified OK.

2.2.4 Maple step by step solution

Let’s solve
y′ − y tan (x) = cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = cos (x) + y tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − y tan (x) = cos (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ − y tan (x)) = µ(x) cos (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = cos (x)

y =
∫
cos(x)2dx+c1

cos(x)

• Evaluate the integrals on the rhs

y =
sin(x) cos(x)

2 +x
2+c1

cos(x)

• Simplify
y = (2c1+x) sec(x)

2 + sin(x)
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x) = cos(x)+y(x)*tan(x),y(x), singsol=all)� �

y(x) = (x+ 2c1) sec (x)
2 + sin (x)

2

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 21� �
DSolve[y'[x]==Cos[x]+y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(sin(x) + (x+ 2c1) sec(x))
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2.3 problem 28
2.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 359
2.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 361
2.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 365
2.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 369

Internal problem ID [3292]
Internal file name [OUTPUT/2784_Sunday_June_05_2022_08_40_29_AM_12730159/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y tan (x) = cos (x)

2.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = cos (x)

Hence the ode is

y′ + y tan (x) = cos (x)

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (cos (x))

d
dx(sec (x) y) = (sec (x)) (cos (x))

d(sec (x) y) = dx

Integrating gives

sec (x) y =
∫

dx

sec (x) y = x+ c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = cos (x)x+ c1 cos (x)

which simplifies to

y = cos (x) (x+ c1)

Summary
The solution(s) found are the following

(1)y = cos (x) (x+ c1)
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Figure 69: Slope field plot

Verification of solutions

y = cos (x) (x+ c1)

Verified OK.

2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x)− tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 83: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x)− tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = x+ c1

Which simplifies to

y sec (x) = x+ c1

Which gives

y = x+ c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x)− tan (x) y dS
dR

= 1

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = x+ c1
sec (x)
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Figure 70: Slope field plot

Verification of solutions

y = x+ c1
sec (x)

Verified OK.

2.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (cos (x)− tan (x) y) dx
(− cos (x) + tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x) + tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− cos (x) + tan (x) y)

= tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tan (x))− (0))
= tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
tan(x) dx

The result of integrating gives

µ = e− ln(cos(x))

= sec (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) (− cos (x) + tan (x) y)
= −1 + sec (x) tan (x) y

And

N = µN

= sec (x) (1)
= sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−1 + sec (x) tan (x) y) + (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 + sec (x) tan (x) y dx

(3)φ = −x+ sec (x) y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ sec (x) y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ sec (x) y

The solution becomes

y = x+ c1
sec (x)
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Summary
The solution(s) found are the following

(1)y = x+ c1
sec (x)

Figure 71: Slope field plot

Verification of solutions

y = x+ c1
sec (x)

Verified OK.

2.3.4 Maple step by step solution

Let’s solve
y′ + y tan (x) = cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = cos (x)− y tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y tan (x) = cos (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y tan (x)) = µ(x) cos (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫

1dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 10� �
dsolve(diff(y(x),x) = cos(x)-y(x)*tan(x),y(x), singsol=all)� �

y(x) = (c1 + x) cos (x)

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 12� �
DSolve[y'[x]==Cos[x]-y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c1) cos(x)
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2.4 problem 29
2.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 372
2.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 374
2.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 378
2.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 382

Internal problem ID [3293]
Internal file name [OUTPUT/2785_Sunday_June_05_2022_08_40_30_AM_90978908/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y tan (x) = sec (x)

2.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = sec (x)

Hence the ode is

y′ + y tan (x) = sec (x)

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (sec (x))

d
dx(sec (x) y) = (sec (x)) (sec (x))

d(sec (x) y) = sec (x)2 dx

Integrating gives

sec (x) y =
∫

sec (x)2 dx

sec (x) y = tan (x) + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = cos (x) tan (x) + c1 cos (x)

which simplifies to

y = c1 cos (x) + sin (x)

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + sin (x)
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Figure 72: Slope field plot

Verification of solutions

y = c1 cos (x) + sin (x)

Verified OK.

2.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sec (x)− tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 86: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sec (x)− tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (x)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = tan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = tan (x) + c1

Which simplifies to

y sec (x) = tan (x) + c1

Which gives

y = tan (x) + c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sec (x)− tan (x) y dS
dR

= sec (R)2

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = tan (x) + c1
sec (x)
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Figure 73: Slope field plot

Verification of solutions

y = tan (x) + c1
sec (x)

Verified OK.

2.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sec (x)− tan (x) y) dx
(− sec (x) + tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x) + tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sec (x) + tan (x) y)

= tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tan (x))− (0))
= tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
tan(x) dx

The result of integrating gives

µ = e− ln(cos(x))

= sec (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) (− sec (x) + tan (x) y)
= sec (x)2 (−1 + sin (x) y)

And

N = µN

= sec (x) (1)
= sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

sec (x)2 (−1 + sin (x) y)
)
+ (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sec (x)2 (−1 + sin (x) y) dx

(3)φ = sec (x) y − tan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sec (x) y − tan (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sec (x) y − tan (x)

The solution becomes

y = tan (x) + c1
sec (x)
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Summary
The solution(s) found are the following

(1)y = tan (x) + c1
sec (x)

Figure 74: Slope field plot

Verification of solutions

y = tan (x) + c1
sec (x)

Verified OK.

2.4.4 Maple step by step solution

Let’s solve
y′ + y tan (x) = sec (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = sec (x)− y tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y tan (x) = sec (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y tan (x)) = µ(x) sec (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sec (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sec (x) dx+ c1

• Solve for y

y =
∫
µ(x) sec(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫ sec(x)

cos(x)dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (tan (x) + c1)

• Simplify
y = c1 cos (x) + sin (x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = sec(x)-y(x)*tan(x),y(x), singsol=all)� �

y(x) = cos (x) c1 + sin (x)

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 13� �
DSolve[y'[x]==Sec[x]-y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1 cos(x)
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2.5 problem 30
2.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 385
2.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 387
2.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 391
2.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 395

Internal problem ID [3294]
Internal file name [OUTPUT/2786_Sunday_June_05_2022_08_40_30_AM_35799729/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y tan (x) = sin (2x)

2.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = sin (2x)

Hence the ode is

y′ − y tan (x) = sin (2x)

The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)
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The ode becomes

d
dx(µy) = (µ) (sin (2x))

d
dx(cos (x) y) = (cos (x)) (sin (2x))

d(cos (x) y) = (sin (2x) cos (x)) dx

Integrating gives

cos (x) y =
∫

sin (2x) cos (x) dx

cos (x) y = −cos (x)
2 − cos (3x)

6 + c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = sec (x)
(
−cos (x)

2 − cos (3x)
6

)
+ c1 sec (x)

which simplifies to

y = −2 cos (x)2

3 + c1 sec (x)

Summary
The solution(s) found are the following

(1)y = −2 cos (x)2

3 + c1 sec (x)
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Figure 75: Slope field plot

Verification of solutions

y = −2 cos (x)2

3 + c1 sec (x)

Verified OK.

2.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (2x) + tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 89: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (2x) + tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x) cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R) cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −cos (R)
2 − cos (3R)

6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = −cos (x)
2 − cos (3x)

6 + c1

Which simplifies to

cos (x) y + 2 cos (x)3

3 − c1 = 0

Which gives

y = −2 cos (x)3 − 3c1
3 cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (2x) + tan (x) y dS
dR

= sin (2R) cos (R)

R = x

S = cos (x) y

Summary
The solution(s) found are the following

(1)y = −2 cos (x)3 − 3c1
3 cos (x)
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Figure 76: Slope field plot

Verification of solutions

y = −2 cos (x)3 − 3c1
3 cos (x)

Verified OK.

2.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sin (2x) + tan (x) y) dx
(− sin (2x)− tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (2x)− tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (2x)− tan (x) y)

= − tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− tan (x))− (0))
= − tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x) (− sin (2x)− tan (x) y)
= −

(
2 cos (x)2 + y

)
sin (x)

And

N = µN

= cos (x) (1)
= cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
(
2 cos (x)2 + y

)
sin (x)

)
+ (cos (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
(
2 cos (x)2 + y

)
sin (x) dx

(3)φ = 2 cos (x)3

3 + cos (x) y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2 cos (x)3

3 + cos (x) y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
2 cos (x)3

3 + cos (x) y

The solution becomes

y = −2 cos (x)3 − 3c1
3 cos (x)
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Summary
The solution(s) found are the following

(1)y = −2 cos (x)3 − 3c1
3 cos (x)

Figure 77: Slope field plot

Verification of solutions

y = −2 cos (x)3 − 3c1
3 cos (x)

Verified OK.

2.5.4 Maple step by step solution

Let’s solve
y′ − y tan (x) = sin (2x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = sin (2x) + y tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − y tan (x) = sin (2x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ − y tan (x)) = µ(x) sin (2x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (2x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(2x)dx+c1

µ(x)

• Substitute µ(x) = cos (x)

y =
∫
sin(2x) cos(x)dx+c1

cos(x)

• Evaluate the integrals on the rhs

y = − cos(x)
2 − cos(3x)

6 +c1
cos(x)

• Simplify

y = −2 cos(x)2
3 + c1 sec (x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x) = sin(2*x)+y(x)*tan(x),y(x), singsol=all)� �

y(x) = −2 cos (x)2

3 + sec (x) c1

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 19� �
DSolve[y'[x]==Sin[2*x]+y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 cos2(x)
3 + c1 sec(x)
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2.6 problem 31
2.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 398
2.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 400
2.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 404
2.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 408

Internal problem ID [3295]
Internal file name [OUTPUT/2787_Sunday_June_05_2022_08_40_31_AM_89409635/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y tan (x) = sin (2x)

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = sin (2x)

Hence the ode is

y′ + y tan (x) = sin (2x)

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (sin (2x))

d
dx(sec (x) y) = (sec (x)) (sin (2x))

d(sec (x) y) = (2 sin (x)) dx

Integrating gives

sec (x) y =
∫

2 sin (x) dx

sec (x) y = −2 cos (x) + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = −2 cos (x)2 + c1 cos (x)

which simplifies to

y = cos (x) (c1 − 2 cos (x))

Summary
The solution(s) found are the following

(1)y = cos (x) (c1 − 2 cos (x))
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Figure 78: Slope field plot

Verification of solutions

y = cos (x) (c1 − 2 cos (x))

Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (2x)− tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 92: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (2x)− tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2 sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = c1 − 2 cos (x)

Which simplifies to

y sec (x) = c1 − 2 cos (x)

Which gives

y = −2 cos (x)− c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (2x)− tan (x) y dS
dR

= 2 sin (R)

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = −2 cos (x)− c1
sec (x)
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Figure 79: Slope field plot

Verification of solutions

y = −2 cos (x)− c1
sec (x)

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sin (2x)− tan (x) y) dx
(− sin (2x) + tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (2x) + tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (2x) + tan (x) y)

= tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tan (x))− (0))
= tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
tan(x) dx

The result of integrating gives

µ = e− ln(cos(x))

= sec (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) (− sin (2x) + tan (x) y)
= −2 sin (x) + sec (x) tan (x) y

And

N = µN

= sec (x) (1)
= sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−2 sin (x) + sec (x) tan (x) y) + (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2 sin (x) + sec (x) tan (x) y dx

(3)φ = 2 cos (x) + sec (x) y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2 cos (x) + sec (x) y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2 cos (x) + sec (x) y

The solution becomes

y = −2 cos (x)− c1
sec (x)
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Summary
The solution(s) found are the following

(1)y = −2 cos (x)− c1
sec (x)

Figure 80: Slope field plot

Verification of solutions

y = −2 cos (x)− c1
sec (x)

Verified OK.

2.6.4 Maple step by step solution

Let’s solve
y′ + y tan (x) = sin (2x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = sin (2x)− y tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y tan (x) = sin (2x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y tan (x)) = µ(x) sin (2x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (2x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(2x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫ sin(2x)

cos(x) dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (c1 − 2 cos (x))

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x) = sin(2*x)-y(x)*tan(x),y(x), singsol=all)� �

y(x) = (−2 cos (x) + c1) cos (x)

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 15� �
DSolve[y'[x]==Sin[2*x]-y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x)(−2 cos(x) + c1)
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2.7 problem 32
2.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 411
2.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 413
2.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 417
2.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 421

Internal problem ID [3296]
Internal file name [OUTPUT/2788_Sunday_June_05_2022_08_40_32_AM_85804385/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − 2y tan (x) = sin (x)

2.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2 tan (x)
q(x) = sin (x)

Hence the ode is

y′ − 2y tan (x) = sin (x)

The integrating factor µ is

µ = e
∫
−2 tan(x)dx

= cos (x)2
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The ode becomes

d
dx(µy) = (µ) (sin (x))

d
dx
(
y cos (x)2

)
=
(
cos (x)2

)
(sin (x))

d
(
y cos (x)2

)
=
(
cos (x)2 sin (x)

)
dx

Integrating gives

y cos (x)2 =
∫

cos (x)2 sin (x) dx

y cos (x)2 = −cos (x)3

3 + c1

Dividing both sides by the integrating factor µ = cos (x)2 results in

y = −sec (x)2 cos (x)3

3 + c1 sec (x)2

which simplifies to

y = −cos (x)
3 + c1 sec (x)2

Summary
The solution(s) found are the following

(1)y = −cos (x)
3 + c1 sec (x)2
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Figure 81: Slope field plot

Verification of solutions

y = −cos (x)
3 + c1 sec (x)2

Verified OK.

2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x) + 2 tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 95: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)2

dy

Which results in

S = y cos (x)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x) + 2 tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y sin (2x)
Sy = cos (x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x)2 sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)2 sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −cos (R)3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y cos (x)2 = −cos (x)3

3 + c1

Which simplifies to

y cos (x)2 = −cos (x)3

3 + c1

Which gives

y = −cos (x)3 − 3c1
3 cos (x)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (x) + 2 tan (x) y dS
dR

= cos (R)2 sin (R)

R = x

S = y cos (x)2

Summary
The solution(s) found are the following

(1)y = −cos (x)3 − 3c1
3 cos (x)2
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Figure 82: Slope field plot

Verification of solutions

y = −cos (x)3 − 3c1
3 cos (x)2

Verified OK.

2.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sin (x) + 2 tan (x) y) dx
(− sin (x)− 2 tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)− 2 tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x)− 2 tan (x) y)

= −2 tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−2 tan (x))− (0))
= −2 tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2 tan(x) dx

The result of integrating gives

µ = e2 ln(cos(x))

= cos (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x)2 (− sin (x)− 2 tan (x) y)
= − cos (x) sin (x) (cos (x) + 2y)

And

N = µN

= cos (x)2 (1)
= cos (x)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(− cos (x) sin (x) (cos (x) + 2y)) +
(
cos (x)2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x) sin (x) (cos (x) + 2y) dx

(3)φ = cos (x)2 (cos (x) + 3y)
3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x)2 + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x)2. Therefore equation (4) becomes

(5)cos (x)2 = cos (x)2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x)2 (cos (x) + 3y)
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
cos (x)2 (cos (x) + 3y)

3

The solution becomes

y = −cos (x)3 − 3c1
3 cos (x)2
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Summary
The solution(s) found are the following

(1)y = −cos (x)3 − 3c1
3 cos (x)2

Figure 83: Slope field plot

Verification of solutions

y = −cos (x)3 − 3c1
3 cos (x)2

Verified OK.

2.7.4 Maple step by step solution

Let’s solve
y′ − 2y tan (x) = sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

421



y′ = sin (x) + 2y tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − 2y tan (x) = sin (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ − 2y tan (x)) = µ(x) sin (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − 2y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(x)dx+c1

µ(x)

• Substitute µ(x) = cos (x)2

y =
∫
cos(x)2 sin(x)dx+c1

cos(x)2

• Evaluate the integrals on the rhs

y = − cos(x)3
3 +c1

cos(x)2

• Simplify
y = − cos(x)

3 + c1 sec (x)2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(diff(y(x),x) = sin(x)+2*y(x)*tan(x),y(x), singsol=all)� �

y(x) = −cos (x)
3 + sec (x)2 c1

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 19� �
DSolve[y'[x]==Sin[x]+2*y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −cos(x)
3 + c1 sec2(x)
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2.8 problem 33
2.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 424
2.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 426
2.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 430
2.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 434

Internal problem ID [3297]
Internal file name [OUTPUT/2789_Sunday_June_05_2022_08_40_33_AM_59343558/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − 2y tan (2x) = 2 sec (2x) + 2

2.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2 tan (2x)
q(x) = 2 sec (2x) + 2

Hence the ode is

y′ − 2y tan (2x) = 2 sec (2x) + 2

The integrating factor µ is

µ = e
∫
−2 tan(2x)dx

= cos (2x)
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The ode becomes
d
dx(µy) = (µ) (2 sec (2x) + 2)

d
dx(y cos (2x)) = (cos (2x)) (2 sec (2x) + 2)

d(y cos (2x)) = (2 cos (2x) + 2) dx

Integrating gives

y cos (2x) =
∫

2 cos (2x) + 2 dx

y cos (2x) = 2x+ sin (2x) + c1

Dividing both sides by the integrating factor µ = cos (2x) results in

y = sec (2x) (2x+ sin (2x)) + c1 sec (2x)

which simplifies to

y = sec (2x) (2x+ sin (2x) + c1)

Summary
The solution(s) found are the following

(1)y = sec (2x) (2x+ sin (2x) + c1)

Figure 84: Slope field plot
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Verification of solutions

y = sec (2x) (2x+ sin (2x) + c1)

Verified OK.

2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2 + 2 sec (2x) + 2y tan (2x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 98: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) =
√
1 + tan (2x)2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

1 + tan (2x)2
dy

Which results in

S = y√
1 + tan (2x)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2 + 2 sec (2x) + 2y tan (2x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2y sin (2x)
Sy = cos (2x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 cos (2x) + 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2 cos (2R) + 2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (2R) + 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (2x) y = 2x+ sin (2x) + c1

Which simplifies to

cos (2x) y = 2x+ sin (2x) + c1

Which gives

y = 2x+ sin (2x) + c1
cos (2x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2 + 2 sec (2x) + 2y tan (2x) dS
dR

= 2 cos (2R) + 2

R = x

S = y cos (2x)

Summary
The solution(s) found are the following

(1)y = 2x+ sin (2x) + c1
cos (2x)
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Figure 85: Slope field plot

Verification of solutions

y = 2x+ sin (2x) + c1
cos (2x)

Verified OK.

2.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (2 + 2 sec (2x) + 2y tan (2x)) dx
(−2− 2 sec (2x)− 2y tan (2x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2− 2 sec (2x)− 2y tan (2x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2− 2 sec (2x)− 2y tan (2x))

= −2 tan (2x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−2 tan (2x))− (0))
= −2 tan (2x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−2 tan(2x) dx

The result of integrating gives

µ = e−
ln
(
1+tan(2x)2

)
2

= cos (2x) csgn (sec (2x))

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (2x) csgn (sec (2x)) (−2− 2 sec (2x)− 2y tan (2x))
= (−2y sin (2x)− 2 cos (2x)− 2) csgn (sec (2x))

And

N = µN

= cos (2x) csgn (sec (2x)) (1)
= cos (2x) csgn (sec (2x))

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

((−2y sin (2x)− 2 cos (2x)− 2) csgn (sec (2x))) + (cos (2x) csgn (sec (2x))) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−2y sin (2x)− 2 cos (2x)− 2) csgn (sec (2x)) dx

(3)φ = (y cos (2x)− sin (2x)− 2x) csgn (sec (2x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (2x) csgn (sec (2x)) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (2x) csgn (sec (2x)). Therefore equation (4) becomes

(5)cos (2x) csgn (sec (2x)) = cos (2x) csgn (sec (2x)) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y cos (2x)− sin (2x)− 2x) csgn (sec (2x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y cos (2x)− sin (2x)− 2x) csgn (sec (2x))

The solution becomes

y = sin (2x) csgn (sec (2x)) + 2x csgn (sec (2x)) + c1
cos (2x) csgn (sec (2x))
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Simplifying the solution y = sin(2x) csgn(sec(2x))+2x csgn(sec(2x))+c1
cos(2x) csgn(sec(2x)) to y = 2x+sin(2x)+c1

cos(2x)

Summary
The solution(s) found are the following

(1)y = 2x+ sin (2x) + c1
cos (2x)

Figure 86: Slope field plot

Verification of solutions

y = 2x+ sin (2x) + c1
cos (2x)

Verified OK.

2.8.4 Maple step by step solution

Let’s solve
y′ − 2y tan (2x) = 2 sec (2x) + 2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = 2 + 2 sec (2x) + 2y tan (2x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − 2y tan (2x) = 2 sec (2x) + 2
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ − 2y tan (2x)) = µ(x) (2 sec (2x) + 2)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − 2y tan (2x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x) tan (2x)

• Solve to find the integrating factor
µ(x) = (1+tan(x))(tan(x)−1)

1+tan(x)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (2 sec (2x) + 2) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (2 sec (2x) + 2) dx+ c1

• Solve for y

y =
∫
µ(x)(2 sec(2x)+2)dx+c1

µ(x)

• Substitute µ(x) = (1+tan(x))(tan(x)−1)
1+tan(x)2

y =
(
1+tan(x)2

)(∫ (1+tan(x))(tan(x)−1)(2 sec(2x)+2)
1+tan(x)2

dx+c1
)

(1+tan(x))(tan(x)−1)

• Evaluate the integrals on the rhs

y =
(
1+tan(x)2

)
(−2 sin(x) cos(x)−2x+c1)

(1+tan(x))(tan(x)−1)

• Simplify
y = 2x−c1+sin(2x)

cos(2x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x) = 2+2*sec(2*x)+2*y(x)*tan(2*x),y(x), singsol=all)� �

y(x) = sec (2x) (csgn (sec (2x)) c1 + sin (2x) + 2x)

3 Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 20� �
DSolve[y'[x]==2*(1+Sec[2 x]+y[x] Tan[2 x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sec(2x)(2x+ sin(2x) + c1)
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2.9 problem 34
2.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 437
2.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 439
2.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 443
2.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 447

Internal problem ID [3298]
Internal file name [OUTPUT/2790_Sunday_June_05_2022_08_40_34_AM_36163173/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − 3y tan (x) = csc (x)

2.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −3 tan (x)
q(x) = csc (x)

Hence the ode is

y′ − 3y tan (x) = csc (x)

The integrating factor µ is

µ = e
∫
−3 tan(x)dx

= cos (x)3
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The ode becomes

d
dx(µy) = (µ) (csc (x))

d
dx
(
cos (x)3 y

)
=
(
cos (x)3

)
(csc (x))

d
(
cos (x)3 y

)
=
(
cos (x)2 cot (x)

)
dx

Integrating gives

cos (x)3 y =
∫

cos (x)2 cot (x) dx

cos (x)3 y = cos (x)2

2 + ln (sin (x)) + c1

Dividing both sides by the integrating factor µ = cos (x)3 results in

y = sec (x)3
(
cos (x)2

2 + ln (sin (x))
)

+ c1 sec (x)3

which simplifies to

y = sec (x)3
(
cos (x)2

2 + ln (sin (x)) + c1

)

Summary
The solution(s) found are the following

(1)y = sec (x)3
(
cos (x)2

2 + ln (sin (x)) + c1

)

438



Figure 87: Slope field plot

Verification of solutions

y = sec (x)3
(
cos (x)2

2 + ln (sin (x)) + c1

)

Verified OK.

2.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = csc (x) + 3 tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 101: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x)3

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)3

dy

Which results in

S = cos (x)3 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = csc (x) + 3 tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −3 cos (x)2 y sin (x)
Sy = cos (x)3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x)2 cot (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)2 cot (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (R)2

2 + ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y cos (x)3 = cos (x)2

2 + ln (sin (x)) + c1

Which simplifies to

y cos (x)3 = cos (x)2

2 + ln (sin (x)) + c1

Which gives

y = cos (x)2 + 2 ln (sin (x)) + 2c1
2 cos (x)3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= csc (x) + 3 tan (x) y dS
dR

= cos (R)2 cot (R)

R = x

S = cos (x)3 y

Summary
The solution(s) found are the following

(1)y = cos (x)2 + 2 ln (sin (x)) + 2c1
2 cos (x)3
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Figure 88: Slope field plot

Verification of solutions

y = cos (x)2 + 2 ln (sin (x)) + 2c1
2 cos (x)3

Verified OK.

2.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (csc (x) + 3 tan (x) y) dx
(− csc (x)− 3 tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − csc (x)− 3 tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− csc (x)− 3 tan (x) y)

= −3 tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−3 tan (x))− (0))
= −3 tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−3 tan(x) dx

The result of integrating gives

µ = e3 ln(cos(x))

= cos (x)3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x)3 (− csc (x)− 3 tan (x) y)
= (− csc (x)− 3 tan (x) y) cos (x)3

And

N = µN

= cos (x)3 (1)
= cos (x)3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(− csc (x)− 3 tan (x) y) cos (x)3
)
+
(
cos (x)3

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(− csc (x)− 3 tan (x) y) cos (x)3 dx

(3)φ = cos (x)3 y − cos (x)2

2 − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x)3 + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x)3. Therefore equation (4) becomes

(5)cos (x)3 = cos (x)3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x)3 y − cos (x)2

2 − ln (sin (x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x)3 y − cos (x)2

2 − ln (sin (x))

The solution becomes

y = cos (x)2 + 2 ln (sin (x)) + 2c1
2 cos (x)3
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Summary
The solution(s) found are the following

(1)y = cos (x)2 + 2 ln (sin (x)) + 2c1
2 cos (x)3

Figure 89: Slope field plot

Verification of solutions

y = cos (x)2 + 2 ln (sin (x)) + 2c1
2 cos (x)3

Verified OK.

2.9.4 Maple step by step solution

Let’s solve
y′ − 3y tan (x) = csc (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = csc (x) + 3y tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − 3y tan (x) = csc (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ − 3y tan (x)) = µ(x) csc (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − 3y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −3µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) csc (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) csc (x) dx+ c1

• Solve for y

y =
∫
µ(x) csc(x)dx+c1

µ(x)

• Substitute µ(x) = cos (x)3

y =
∫
csc(x) cos(x)3dx+c1

cos(x)3

• Evaluate the integrals on the rhs

y =
cos(x)2

2 +ln(sin(x))+c1

cos(x)3

• Simplify

y = sec (x)3
(

cos(x)2
2 + ln (sin (x)) + c1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x) = csc(x)+3*y(x)*tan(x),y(x), singsol=all)� �

y(x) = sec (x)3
(
cos (x)2

2 + ln (sin (x)) + c1

)

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 24� �
DSolve[y'[x]==Csc[x]+3 y[x] Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sec3(x)
(
−1
2 sin2(x) + log(sin(x)) + c1

)

449



2.10 problem 35
2.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 450
2.10.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 451
2.10.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 452
2.10.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 453
2.10.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 456
2.10.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 459

Internal problem ID [3299]
Internal file name [OUTPUT/2791_Sunday_June_05_2022_08_40_35_AM_40994000/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − (a+ cos (ln (x)) + sin (ln (x))) y = 0

2.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= (a+ cos (ln (x)) + sin (ln (x))) y
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Where f(x) = a+ cos (ln (x)) + sin (ln (x)) and g(y) = y. Integrating both sides gives

1
y
dy = a+ cos (ln (x)) + sin (ln (x)) dx∫ 1

y
dy =

∫
a+ cos (ln (x)) + sin (ln (x)) dx

ln (y) = ax+ x sin (ln (x)) + c1

y = eax+x sin(ln(x))+c1

= c1eax+x sin(ln(x))

Summary
The solution(s) found are the following

(1)y = c1eax+x sin(ln(x))

Verification of solutions

y = c1eax+x sin(ln(x))

Verified OK.

2.10.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −a− cos (ln (x))− sin (ln (x))
q(x) = 0

Hence the ode is

y′ + (−a− cos (ln (x))− sin (ln (x))) y = 0

The integrating factor µ is

µ = e
∫
(−a−cos(ln(x))−sin(ln(x)))dx

= e−ax−x sin(ln(x))

Which simplifies to
µ = e−x(a+sin(ln(x)))
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The ode becomes
d
dxµy = 0

d
dx
(
e−x(a+sin(ln(x)))y

)
= 0

Integrating gives

e−x(a+sin(ln(x)))y = c1

Dividing both sides by the integrating factor µ = e−x(a+sin(ln(x))) results in

y = c1ex(a+sin(ln(x)))

Summary
The solution(s) found are the following

(1)y = c1ex(a+sin(ln(x)))

Verification of solutions

y = c1ex(a+sin(ln(x)))

Verified OK.

2.10.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− (a+ cos (ln (x)) + sin (ln (x)))u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(−1 + x cos (ln (x)) + x sin (ln (x)) + ax)
x

Where f(x) = −1+x cos(ln(x))+x sin(ln(x))+ax
x

and g(u) = u. Integrating both sides gives

1
u
du = −1 + x cos (ln (x)) + x sin (ln (x)) + ax

x
dx∫ 1

u
du =

∫
−1 + x cos (ln (x)) + x sin (ln (x)) + ax

x
dx

ln (u) = − ln (x) + ax+ x sin (ln (x)) + c2

u = e− ln(x)+ax+x sin(ln(x))+c2

= c2e− ln(x)+ax+x sin(ln(x))
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Which simplifies to

u(x) = c2eaxex sin(ln(x))

x

Therefore the solution y is

y = ux

= c2eaxex sin(ln(x))

Summary
The solution(s) found are the following

(1)y = c2eaxex sin(ln(x))

Verification of solutions

y = c2eaxex sin(ln(x))

Verified OK.

2.10.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (a+ cos (ln (x)) + sin (ln (x))) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 104: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eax+x sin(ln(x)) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eax+x sin(ln(x))dy

Which results in

S = e−x(a+sin(ln(x)))y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (a+ cos (ln (x)) + sin (ln (x))) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −(a+ cos (ln (x)) + sin (ln (x))) e−x(a+sin(ln(x)))y

Sy = e−x(a+sin(ln(x)))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−x(a+sin(ln(x)))y = c1

Which simplifies to

e−x(a+sin(ln(x)))y = c1

Which gives

y = c1ex(a+sin(ln(x)))

Summary
The solution(s) found are the following

(1)y = c1ex(a+sin(ln(x)))

Verification of solutions

y = c1ex(a+sin(ln(x)))

Verified OK.

2.10.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy = (a+ cos (ln (x)) + sin (ln (x))) dx

(−a− cos (ln (x))− sin (ln (x))) dx+
(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a− cos (ln (x))− sin (ln (x))

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−a− cos (ln (x))− sin (ln (x)))

= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−a− cos (ln (x))− sin (ln (x)) dx

(3)φ = x(−a− sin (ln (x))) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(−a− sin (ln (x))) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x(−a− sin (ln (x))) + ln (y)

The solution becomes
y = eax+x sin(ln(x))+c1

Summary
The solution(s) found are the following

(1)y = eax+x sin(ln(x))+c1

Verification of solutions

y = eax+x sin(ln(x))+c1

Verified OK.

2.10.6 Maple step by step solution

Let’s solve
y′ − (a+ cos (ln (x)) + sin (ln (x))) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= a+ cos (ln (x)) + sin (ln (x))

• Integrate both sides with respect to x∫
y′

y
dx =

∫
(a+ cos (ln (x)) + sin (ln (x))) dx+ c1

• Evaluate integral
ln (y) = ax+ x sin (ln (x)) + c1

• Solve for y
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y = eax+x sin(ln(x))+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x) = (a+cos(ln(x))+sin(ln(x)))*y(x),y(x), singsol=all)� �

y(x) = c1ex(sin(ln(x))+a)

3 Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 22� �
DSolve[y'[x]==(a+Cos[Log[x]]+Sin[Log[x]]) y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x(a+sin(log(x)))

y(x) → 0
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2.11 problem 36
2.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 461
2.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 463
2.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 467
2.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 471

Internal problem ID [3300]
Internal file name [OUTPUT/2792_Sunday_June_05_2022_08_40_36_AM_70067684/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 36.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y tanh (x) = 6 e2x

2.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tanh (x)
q(x) = 6 e2x

Hence the ode is

y′ + y tanh (x) = 6 e2x

The integrating factor µ is

µ = e
∫
tanh(x)dx

= cosh (x)
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The ode becomes
d
dx(µy) = (µ)

(
6 e2x

)
d
dx(cosh (x) y) = (cosh (x))

(
6 e2x

)
d(cosh (x) y) =

(
6 e2x cosh (x)

)
dx

Integrating gives

cosh (x) y =
∫

6 e2x cosh (x) dx

cosh (x) y = 3 sinh (x) + sinh (3x) + 3 cosh (x) + cosh (3x) + c1

Dividing both sides by the integrating factor µ = cosh (x) results in

y = sech (x) (3 sinh (x) + sinh (3x) + 3 cosh (x) + cosh (3x)) + c1 sech (x)

which simplifies to

y = 2 tanh (x) + 4 cosh (x) sinh (x) + 4 cosh (x)2 + c1 sech (x)

Summary
The solution(s) found are the following

(1)y = 2 tanh (x) + 4 cosh (x) sinh (x) + 4 cosh (x)2 + c1 sech (x)

Figure 90: Slope field plot
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Verification of solutions

y = 2 tanh (x) + 4 cosh (x) sinh (x) + 4 cosh (x)2 + c1 sech (x)

Verified OK.

2.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 6 e2x − y tanh (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 107: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cosh (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cosh(x)

dy

Which results in

S = cosh (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 6 e2x − y tanh (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y sinh (x)
Sy = cosh (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 6 e2x cosh (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 6 e2R cosh (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3 sinh (R) + sinh (3R) + 3 cosh (R) + cosh (3R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y cosh (x) = 3 sinh (x) + sinh (3x) + 3 cosh (x) + cosh (3x) + c1

Which simplifies to

y cosh (x) = 3 sinh (x) + sinh (3x) + 3 cosh (x) + cosh (3x) + c1

Which gives

y = 3 sinh (x) + sinh (3x) + 3 cosh (x) + cosh (3x) + c1
cosh (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 6 e2x − y tanh (x) dS
dR

= 6 e2R cosh (R)

R = x

S = cosh (x) y

Summary
The solution(s) found are the following

(1)y = 3 sinh (x) + sinh (3x) + 3 cosh (x) + cosh (3x) + c1
cosh (x)
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Figure 91: Slope field plot

Verification of solutions

y = 3 sinh (x) + sinh (3x) + 3 cosh (x) + cosh (3x) + c1
cosh (x)

Verified OK.

2.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
6 e2x − y tanh (x)

)
dx(

y tanh (x)− 6 e2x
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y tanh (x)− 6 e2x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y tanh (x)− 6 e2x

)
= tanh (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tanh (x))− (0))
= tanh (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
tanh(x) dx

The result of integrating gives

µ = eln(cosh(x))

= cosh (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cosh (x)
(
y tanh (x)− 6 e2x

)
= −6 e2x cosh (x) + y sinh (x)

And

N = µN

= cosh (x) (1)
= cosh (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−6 e2x cosh (x) + y sinh (x)
)
+ (cosh (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−6 e2x cosh (x) + y sinh (x) dx

(3)φ = cosh (x) y − 2 sinh (x)− 4 cosh (x)2 sinh (x)− 4 cosh (x)3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cosh (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cosh (x). Therefore equation (4) becomes

(5)cosh (x) = cosh (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cosh (x) y − 2 sinh (x)− 4 cosh (x)2 sinh (x)− 4 cosh (x)3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cosh (x) y − 2 sinh (x)− 4 cosh (x)2 sinh (x)− 4 cosh (x)3

The solution becomes

y = 2 sinh (x) + 4 cosh (x)2 sinh (x) + 4 cosh (x)3 + c1
cosh (x)
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Summary
The solution(s) found are the following

(1)y = 2 sinh (x) + 4 cosh (x)2 sinh (x) + 4 cosh (x)3 + c1
cosh (x)

Figure 92: Slope field plot

Verification of solutions

y = 2 sinh (x) + 4 cosh (x)2 sinh (x) + 4 cosh (x)3 + c1
cosh (x)

Verified OK.

2.11.4 Maple step by step solution

Let’s solve
y′ + y tanh (x) = 6 e2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = 6 e2x − y tanh (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y tanh (x) = 6 e2x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y tanh (x)) = 6µ(x) e2x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y tanh (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tanh (x)

• Solve to find the integrating factor
µ(x) = cosh (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
6µ(x) e2xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
6µ(x) e2xdx+ c1

• Solve for y

y =
∫
6µ(x)e2xdx+c1

µ(x)

• Substitute µ(x) = cosh (x)

y =
∫
6 e2x cosh(x)dx+c1

cosh(x)

• Evaluate the integrals on the rhs
y = 3 sinh(x)+sinh(3x)+3 cosh(x)+cosh(3x)+c1

cosh(x)

• Simplify
y = 2 tanh (x) + 4 cosh (x) sinh (x) + 4 cosh (x)2 + c1sech(x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x) = 6*exp(2*x)-y(x)*tanh(x),y(x), singsol=all)� �

y(x) = 2 tanh (x) + 4 sinh (x) cosh (x) + 4 cosh (x)2 + sech (x) c1

3 Solution by Mathematica
Time used: 0.148 (sec). Leaf size: 33� �
DSolve[y'[x]==6 Exp[2 x]- y[x] Tanh[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(6ex + 2e3x + c1)
e2x + 1
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2.12 problem 37
2.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 474
2.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 475
2.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 478
2.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 482

Internal problem ID [3301]
Internal file name [OUTPUT/2793_Sunday_June_05_2022_08_40_37_AM_10495288/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 37.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − f ′(x) y = f(x) f ′(x)

2.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −f ′(x)
q(x) = f(x) f ′(x)

Hence the ode is

y′ − f ′(x) y = f(x) f ′(x)

The integrating factor µ is

µ = e
∫
−f ′(x)dx

= e−f(x)
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The ode becomes

d
dx(µy) = (µ) (f(x) f ′(x))

d
dx
(
e−f(x)y

)
=
(
e−f(x)) (f(x) f ′(x))

d
(
e−f(x)y

)
=
(
f(x) f ′(x) e−f(x)) dx

Integrating gives

e−f(x)y =
∫

f(x) f ′(x) e−f(x) dx

e−f(x)y = −f(x) e−f(x) − e−f(x) + c1

Dividing both sides by the integrating factor µ = e−f(x) results in

y = ef(x)
(
−f(x) e−f(x) − e−f(x))+ c1ef(x)

which simplifies to

y = −f(x)− 1 + c1ef(x)

Summary
The solution(s) found are the following

(1)y = −f(x)− 1 + c1ef(x)

Verification of solutions

y = −f(x)− 1 + c1ef(x)

Verified OK.

2.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = f(x) f ′(x) + f ′(x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 110: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ef(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ef(x)dy

Which results in

S = e−f(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = f(x) f ′(x) + f ′(x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −f ′(x) e−f(x)y

Sy = e−f(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= f(x) f ′(x) e−f(x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= f(R)

(
d

dR
f(R)

)
e−f(R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −f(R) e−f(R) − e−f(R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−f(x)y = −f(x) e−f(x) − e−f(x) + c1

Which simplifies to

(y + f(x) + 1) e−f(x) − c1 = 0

Which gives

y = −
(
f(x) e−f(x) + e−f(x) − c1

)
ef(x)

Summary
The solution(s) found are the following

(1)y = −
(
f(x) e−f(x) + e−f(x) − c1

)
ef(x)

Verification of solutions

y = −
(
f(x) e−f(x) + e−f(x) − c1

)
ef(x)

Verified OK.

2.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (f(x) f ′(x) + f ′(x) y) dx
(−f(x) f ′(x)− f ′(x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −f(x) f ′(x)− f ′(x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−f(x) f ′(x)− f ′(x) y)

= −f ′(x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−f ′(x))− (0))
= −f ′(x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−f ′(x) dx

The result of integrating gives

µ = e−f(x)

= e−f(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−f(x)(−f(x) f ′(x)− f ′(x) y)
= −f ′(x) (f(x) + y) e−f(x)

And

N = µN

= e−f(x)(1)
= e−f(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−f ′(x) (f(x) + y) e−f(x))+ (e−f(x)) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−f ′(x) (f(x) + y) e−f(x) dx

(3)φ = (y + f(x) + 1) e−f(x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−f(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= e−f(x). Therefore equation (4) becomes

(5)e−f(x) = e−f(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y + f(x) + 1) e−f(x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y + f(x) + 1) e−f(x)

The solution becomes

y = −
(
f(x) e−f(x) + e−f(x) − c1

)
ef(x)
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Summary
The solution(s) found are the following

(1)y = −
(
f(x) e−f(x) + e−f(x) − c1

)
ef(x)

Verification of solutions

y = −
(
f(x) e−f(x) + e−f(x) − c1

)
ef(x)

Verified OK.

2.12.4 Maple step by step solution

Let’s solve
y′ − f ′(x) y = f(x) f ′(x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = f(x) f ′(x) + f ′(x) y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − f ′(x) y = f(x) f ′(x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − f ′(x) y) = µ(x) f(x) f ′(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − f ′(x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) f ′(x)

• Solve to find the integrating factor
µ(x) = e−f(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) f(x) f ′(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) f(x) f ′(x) dx+ c1

• Solve for y
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y =
∫
µ(x)f(x)f ′(x)dx+c1

µ(x)

• Substitute µ(x) = e−f(x)

y =
∫
f(x)f ′(x)e−f(x)dx+c1

e−f(x)

• Evaluate the integrals on the rhs

y = −f(x)e−f(x)−e−f(x)+c1
e−f(x)

• Simplify
y = −f(x)− 1 + c1ef(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x) = f(x)*diff(f(x),x)+diff(f(x),x)*y(x),y(x), singsol=all)� �

y(x) = −f(x)− 1 + ef(x)c1

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 18� �
DSolve[y'[x]==f[x] f'[x] + f'[x] y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −f(x) + c1e
f(x) − 1
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2.13 problem 38
2.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 484
2.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 485
2.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 487
2.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 491

Internal problem ID [3302]
Internal file name [OUTPUT/2794_Sunday_June_05_2022_08_40_38_AM_68123910/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − g(x) y = f(x)

2.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −g(x)
q(x) = f(x)

Hence the ode is

y′ − g(x) y = f(x)

The integrating factor µ is
µ = e

∫
−g(x)dx
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The ode becomes
d
dx(µy) = (µ) (f(x))

d
dx

(
e
∫
−g(x)dxy

)
=
(
e
∫
−g(x)dx

)
(f(x))

d
(
e
∫
−g(x)dxy

)
=
(
f(x) e−

(∫
g(x)dx

))
dx

Integrating gives

e
∫
−g(x)dxy =

∫
f(x) e−

(∫
g(x)dx

)
dx

e
∫
−g(x)dxy =

∫
f(x) e−

(∫
g(x)dx

)
dx+ c1

Dividing both sides by the integrating factor µ = e
∫
−g(x)dx results in

y = e
∫
g(x)dx

(∫
f(x) e−

(∫
g(x)dx

)
dx

)
+ c1e

∫
g(x)dx

which simplifies to

y = e
∫
g(x)dx

(∫
f(x) e−

(∫
g(x)dx

)
dx+ c1

)
Summary
The solution(s) found are the following

(1)y = e
∫
g(x)dx

(∫
f(x) e−

(∫
g(x)dx

)
dx+ c1

)
Verification of solutions

y = e
∫
g(x)dx

(∫
f(x) e−

(∫
g(x)dx

)
dx+ c1

)
Verified OK.

2.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = f(x) + g(x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 113: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e

∫
g(x)dx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
∫
g(x)dxdy

2.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (f(x) + g(x) y) dx
(−f(x)− g(x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −f(x)− g(x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−f(x)− g(x) y)

= −g(x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−g(x))− (0))
= −g(x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−g(x) dx
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The result of integrating gives

µ = e
∫
−g(x)dx

= e−
(∫

g(x)dx
)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−
(∫

g(x)dx
)
(−f(x)− g(x) y)

= −(f(x) + g(x) y) e−
(∫

g(x)dx
)

And

N = µN

= e−
(∫

g(x)dx
)
(1)

= e−
(∫

g(x)dx
)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(f(x) + g(x) y) e−
(∫

g(x)dx
))

+
(
e−
(∫

g(x)dx
)) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−(f(x) + g(x) y) e−

(∫
g(x)dx

)
dx

(3)φ =
∫ x

−(f(_a) + g(_a) y) e−
(∫

g(_a)d_a
)
d_a+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−

(∫ x g(_a)d_a
)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= e−
(∫

g(x)dx
)
. Therefore equation (4) becomes

(5)e−
(∫

g(x)dx
)
= e−

(∫ x g(_a)d_a
)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −e−
(∫ x g(_a)d_a

)
+ e−

(∫
g(x)dx

)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−e−

(∫ x g(_a)d_a
)
+ e−

(∫
g(x)dx

))
dy

f(y) =
∫ y

0

(
−e−

(∫ x g(_a)d_a
)
+ e−

(∫
g(x)dx

))
d_a+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

−(f(_a) + g(_a) y) e−
(∫

g(_a)d_a
)
d_a

+
∫ y

0

(
−e−

(∫ x g(_a)d_a
)
+ e−

(∫
g(x)dx

))
d_a+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

−(f(_a)+g(_a) y) e−
(∫

g(_a)d_a
)
d_a+

∫ y

0

(
−e−

(∫ x g(_a)d_a
)
+e−

(∫
g(x)dx

))
d_a

Summary
The solution(s) found are the following

(1)
∫ x

−(f(_a) + g(_a) y) e−
(∫

g(_a)d_a
)
d_a+

∫ y

0

(
−e−

(∫ x g(_a)d_a
)
+ e−

(∫
g(x)dx

))
d_a

= c1
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Verification of solutions∫ x

−(f(_a)+g(_a) y) e−
(∫

g(_a)d_a
)
d_a+

∫ y

0

(
−e−

(∫ x g(_a)d_a
)
+e−

(∫
g(x)dx

))
d_a= c1

Verified OK.

2.13.4 Maple step by step solution

Let’s solve
y′ − g(x) y = f(x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = f(x) + g(x) y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − g(x) y = f(x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − g(x) y) = µ(x) f(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − g(x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) g(x)

• Solve to find the integrating factor
µ(x) = e

∫
−g(x)dx

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) f(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) f(x) dx+ c1

• Solve for y

y =
∫
µ(x)f(x)dx+c1

µ(x)

• Substitute µ(x) = e
∫
−g(x)dx

y =
∫
f(x)e

∫
−g(x)dxdx+c1

e
∫
−g(x)dx
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• Simplify

y = e
∫
g(x)dx

(∫
f(x) e−

(∫
g(x)dx

)
dx+ c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x) = f(x)+g(x)*y(x),y(x), singsol=all)� �

y(x) =
(∫

f(x) e−
(∫

g(x)dx
)
dx+ c1

)
e
∫
g(x)dx

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 47� �
DSolve[y'[x]==f[x] + g[x] y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → exp

(∫ x

1
g(K[1])dK[1]

)(∫ x

1
exp

(
−
∫ K[2]

1
g(K[1])dK[1]

)
f(K[2])dK[2]

+ c1

)
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2.14 problem 39
2.14.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 493

Internal problem ID [3303]
Internal file name [OUTPUT/2795_Sunday_June_05_2022_08_40_39_AM_14845158/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 39.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ + y2 = x2

2.14.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x2 − y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 − y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2, f1(x) = 0 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = x2

Substituting the above terms back in equation (2) gives

−u′′(x) + x2u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
BesselI

(
1
4 ,

x2

2

)
c1 + BesselK

(
1
4 ,

x2

2

)
c2

)√
x

The above shows that

u′(x) = x
3
2

(
BesselI

(
−3
4 ,

x2

2

)
c1 − BesselK

(
3
4 ,

x2

2

)
c2

)
Using the above in (1) gives the solution

y =
x
(
BesselI

(
−3

4 ,
x2

2

)
c1 − BesselK

(
3
4 ,

x2

2

)
c2
)

BesselI
(1
4 ,

x2

2

)
c1 + BesselK

(1
4 ,

x2

2

)
c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
x
(
BesselI

(
−3

4 ,
x2

2

)
c3 − BesselK

(
3
4 ,

x2

2

))
BesselI

(1
4 ,

x2

2

)
c3 + BesselK

(1
4 ,

x2

2

)
Summary
The solution(s) found are the following

(1)y =
x
(
BesselI

(
−3

4 ,
x2

2

)
c3 − BesselK

(
3
4 ,

x2

2

))
BesselI

(1
4 ,

x2

2

)
c3 + BesselK

(1
4 ,

x2

2

)
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Figure 93: Slope field plot

Verification of solutions

y =
x
(
BesselI

(
−3

4 ,
x2

2

)
c3 − BesselK

(
3
4 ,

x2

2

))
BesselI

(1
4 ,

x2

2

)
c3 + BesselK

(1
4 ,

x2

2

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve(diff(y(x),x) = x^2-y(x)^2,y(x), singsol=all)� �

y(x) =
x
(
BesselI

(
−3

4 ,
x2

2

)
c1 − BesselK

(
3
4 ,

x2

2

))
c1 BesselI

(1
4 ,

x2

2

)
+ BesselK

(1
4 ,

x2

2

)
3 Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 197� �
DSolve[y'[x]==x^2 - y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−
−ix2

(
2BesselJ

(
−3

4 ,
ix2

2

)
+ c1

(
BesselJ

(
−5

4 ,
ix2

2

)
− BesselJ

(
3
4 ,

ix2

2

)))
− c1 BesselJ

(
−1

4 ,
ix2

2

)
2x
(
BesselJ

(1
4 ,

ix2

2

)
+ c1 BesselJ

(
−1

4 ,
ix2

2

))
y(x) →

ix2 BesselJ
(
−5

4 ,
ix2

2

)
− ix2 BesselJ

(
3
4 ,

ix2

2

)
+ BesselJ

(
−1

4 ,
ix2

2

)
2xBesselJ

(
−1

4 ,
ix2

2

)
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2.15 problem 40
2.15.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 497

Internal problem ID [3304]
Internal file name [OUTPUT/2796_Sunday_June_05_2022_08_40_39_AM_14702026/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − y2 = −f(x)2 + f ′(x)

2.15.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −f(x)2 + f ′(x) + y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −f(x)2 + f ′(x) + y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −f(x)2 + f ′(x), f1(x) = 0 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = −f(x)2 + f ′(x)

Substituting the above terms back in equation (2) gives

u′′(x) +
(
−f(x)2 + f ′(x)

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(∫

e2
(∫

f(x)dx
)
dx+ c1

)
e−
(∫

f(x)dx
)
c2

The above shows that

u′(x) = −c2

(
f(x)

(∫
e2
(∫

f(x)dx
)
dx

)
e−
(∫

f(x)dx
)
+ f(x) c1e−

(∫
f(x)dx

)
− e

∫
f(x)dx

)
Using the above in (1) gives the solution

y =

(
f(x)

(∫
e2
(∫

f(x)dx
)
dx
)
e−
(∫

f(x)dx
)
+ f(x) c1e−

(∫
f(x)dx

)
− e

∫
f(x)dx

)
e
∫
f(x)dx∫

e2
(∫

f(x)dx
)
dx+ c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(∫
e2
(∫

f(x)dx
)
dx
)
f(x) + c3f(x)− e2

(∫
f(x)dx

)
∫
e2
(∫

f(x)dx
)
dx+ c3

Summary
The solution(s) found are the following

(1)y =

(∫
e2
(∫

f(x)dx
)
dx
)
f(x) + c3f(x)− e2

(∫
f(x)dx

)
∫
e2
(∫

f(x)dx
)
dx+ c3
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Verification of solutions

y =

(∫
e2
(∫

f(x)dx
)
dx
)
f(x) + c3f(x)− e2

(∫
f(x)dx

)
∫
e2
(∫

f(x)dx
)
dx+ c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (f(x)^2-(diff(f(x), x)))*y(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+x^2*(-f(x)^2+diff(f(x), x)))/x, y(x), explicit` *** Sublevel 2

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

<- Riccati particular solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(diff(y(x),x)+f(x)^2 = diff(f(x),x)+y(x)^2,y(x), singsol=all)� �

y(x) =
−f(x)

(∫
e2
(∫

f(x)dx
)
dx
)
+ f(x) c1 + e2

(∫
f(x)dx

)
c1 −

(∫
e2
(∫

f(x)dx
)
dx
)

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]+f[x]^2==f'[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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2.16 problem 41
2.16.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 502

Internal problem ID [3305]
Internal file name [OUTPUT/2797_Sunday_June_05_2022_08_40_40_AM_59027680/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − y(y + x) = x− 1

2.16.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= xy + y2 + x− 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = xy + y2 + x− 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x− 1, f1(x) = x and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = x

f 2
2 f0 = x− 1

Substituting the above terms back in equation (2) gives

u′′(x)− xu′(x) + (x− 1)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex
(
c1 erf

(
i
√
2 (x− 2)

2

)
+ c2

)

The above shows that

u′(x) =
ex
(
ic1e

(x−2)2
2

√
2 +

(
c1 erf

(
i
√
2 (x−2)
2

)
+ c2

)√
π
)

√
π

Using the above in (1) gives the solution

y = −
ic1e

(x−2)2
2

√
2 +

(
c1 erf

(
i
√
2 (x−2)
2

)
+ c2

)√
π

√
π
(
c1 erf

(
i
√
2 (x−2)
2

)
+ c2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −
ic3e

(x−2)2
2

√
2 +

(
c3 erf

(
i
√
2 (x−2)
2

)
+ 1
)√

π

√
π
(
c3 erf

(
i
√
2 (x−2)
2

)
+ 1
)
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Summary
The solution(s) found are the following

(1)y = −
ic3e

(x−2)2
2

√
2 +

(
c3 erf

(
i
√
2 (x−2)
2

)
+ 1
)√

π

√
π
(
c3 erf

(
i
√
2 (x−2)
2

)
+ 1
)

Figure 94: Slope field plot

Verification of solutions

y = −
ic3e

(x−2)2
2

√
2 +

(
c3 erf

(
i
√
2 (x−2)
2

)
+ 1
)√

π

√
π
(
c3 erf

(
i
√
2 (x−2)
2

)
+ 1
)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular polynomial solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 66� �
dsolve(diff(y(x),x)+1-x = (x+y(x))*y(x),y(x), singsol=all)� �

y(x) =
−i

√
π e−2√2 erf

(
i
√
2 (−2+x)

2

)
+ 2 e

x(x−4)
2 − 2c1

i
√
π e−2

√
2 erf

(
i
√
2 (−2+x)

2

)
+ 2c1

3 Solution by Mathematica
Time used: 0.179 (sec). Leaf size: 54� �
DSolve[y'[x]+1-x==(x+y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + 2e 1
2 (x−2)2

−
√
2πerfi

(
x−2√

2

)
+ 2e2c1

y(x) → −1
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2.17 problem 42
2.17.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 506
2.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 508
2.17.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 512

Internal problem ID [3306]
Internal file name [OUTPUT/2798_Sunday_June_05_2022_08_40_42_AM_21043388/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 42.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − (y + x)2 = 0

2.17.1 Solving as homogeneousTypeC ode

Let

z = y + x (1)

Then

z′(x) = y′ + 1

Therefore

y′ = z′(x)− 1

Hence the given ode can now be written as

z′(x)− 1 = z2
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This is separable first order ode. Integrating∫
dx =

∫ 1
z2 + 1dz

x+ c1 = arctan (z)

Replacing z back by its value from (1) then the above gives the solution as

y = −x+ tan (x+ c1)

y = −x+ tan (x+ c1)

Summary
The solution(s) found are the following

(1)y = −x+ tan (x+ c1)

Figure 95: Slope field plot

Verification of solutions

y = −x+ tan (x+ c1)

Verified OK.
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2.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (y + x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 116: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
η(x, y) = −1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −1
1

= −1

This is easily solved to give

y = −x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = y + x

And S is found from

dS = dx

ξ

= dx

1

Integrating gives

S =
∫

dx

T

= x
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (y + x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

1 + (y + x)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = arctan (y + x) + c1

Which simplifies to

x = arctan (y + x) + c1
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Which gives

y = −x− tan (−x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (y + x)2 dS
dR

= 1
R2+1

R = y + x

S = x

Summary
The solution(s) found are the following

(1)y = −x− tan (−x+ c1)
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Figure 96: Slope field plot

Verification of solutions

y = −x− tan (−x+ c1)

Verified OK.

2.17.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (y + x)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 + 2xy + y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x2, f1(x) = 2x and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 2x
f 2
2 f0 = x2

Substituting the above terms back in equation (2) gives

u′′(x)− 2xu′(x) + x2u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex2
2 (c1 cos (x) + c2 sin (x))

The above shows that

u′(x) = ex2
2 ((c1x+ c2) cos (x) + sin (x) (c2x− c1))

Using the above in (1) gives the solution

y = −(c1x+ c2) cos (x) + sin (x) (c2x− c1)
c1 cos (x) + c2 sin (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (−c3x− 1) cos (x)− sin (x) (−c3 + x)
c3 cos (x) + sin (x)
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Summary
The solution(s) found are the following

(1)y = (−c3x− 1) cos (x)− sin (x) (−c3 + x)
c3 cos (x) + sin (x)

Figure 97: Slope field plot

Verification of solutions

y = (−c3x− 1) cos (x)− sin (x) (−c3 + x)
c3 cos (x) + sin (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(diff(y(x),x) = (x+y(x))^2,y(x), singsol=all)� �

y(x) = −x− tan (c1 − x)

3 Solution by Mathematica
Time used: 0.603 (sec). Leaf size: 14� �
DSolve[y'[x]==(x+y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ tan(x+ c1)
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2.18 problem 43
2.18.1 Solving as first order ode lie symmetry calculated ode . . . . . . 516
2.18.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 521

Internal problem ID [3307]
Internal file name [OUTPUT/2799_Sunday_June_05_2022_08_40_43_AM_49029265/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − (−y + x)2 = 0

2.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (y − x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (y − x)2 (b3 − a2)− (y − x)4 a3 − (−2y + 2x) (xa2 + ya3 + a1)
− (2y − 2x) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a3 + 4x3ya3 − 6x2y2a3 + 4x y3a3 − y4a3 − 3x2a2 + 2x2b2 + x2b3 + 4xya2
− 2xya3 − 2xyb2 − y2a2 + 2y2a3 − y2b3 − 2xa1 + 2xb1 + 2ya1 − 2yb1 + b2 = 0

Setting the numerator to zero gives

(6E)−x4a3 + 4x3ya3 − 6x2y2a3 + 4x y3a3 − y4a3 − 3x2a2 + 2x2b2 + x2b3 + 4xya2
− 2xya3 − 2xyb2 − y2a2 + 2y2a3 − y2b3 − 2xa1 + 2xb1 + 2ya1 − 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
4
1+4a3v31v2−6a3v21v22+4a3v1v32−a3v

4
2−3a2v21+4a2v1v2−a2v

2
2−2a3v1v2

+2a3v22+2b2v21−2b2v1v2+b3v
2
1−b3v

2
2−2a1v1+2a1v2+2b1v1−2b1v2+b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
4
1 + 4a3v31v2 − 6a3v21v22 + (−3a2 + 2b2 + b3) v21

+ 4a3v1v32 + (4a2 − 2a3 − 2b2) v1v2 + (−2a1 + 2b1) v1
− a3v

4
2 + (−a2 + 2a3 − b3) v22 + (2a1 − 2b1) v2 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−6a3 = 0
−a3 = 0
4a3 = 0

−2a1 + 2b1 = 0
2a1 − 2b1 = 0

−3a2 + 2b2 + b3 = 0
−a2 + 2a3 − b3 = 0
4a2 − 2a3 − 2b2 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
(y − x)2

)
(1)

= −x2 + 2xy − y2 + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2 + 2xy − y2 + 1dy

Which results in

S = ln (y − x+ 1)
2 − ln (−x+ y − 1)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (y − x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
(−y + x− 1) (x− y + 1)

Sy = − 1
(−y + x− 1) (x− y + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + 1− x)
2 − ln (y − x− 1)

2 = −x+ c1

Which simplifies to
ln (y + 1− x)

2 − ln (y − x− 1)
2 = −x+ c1

Which gives

y = x e−2x+2c1 + e−2x+2c1 − x+ 1
e−2x+2c1 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (y − x)2 dS
dR

= −1

R = x

S = ln (y − x+ 1)
2 − ln (−x+ y − 1)

2
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Summary
The solution(s) found are the following

(1)y = x e−2x+2c1 + e−2x+2c1 − x+ 1
e−2x+2c1 − 1

Figure 98: Slope field plot

Verification of solutions

y = x e−2x+2c1 + e−2x+2c1 − x+ 1
e−2x+2c1 − 1

Verified OK.

2.18.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (y − x)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 − 2xy + y2
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2, f1(x) = −2x and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −2x
f 2
2 f0 = x2

Substituting the above terms back in equation (2) gives

u′′(x) + 2xu′(x) + x2u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e−
x(x−2)

2 + c2e−
x(x+2)

2

The above shows that

u′(x) = −c1(x− 1) e−
x(x−2)

2 − c2e−
x(x+2)

2 (x+ 1)

Using the above in (1) gives the solution

y = −−c1(x− 1) e−
x(x−2)

2 − c2e−
x(x+2)

2 (x+ 1)
c1e−

x(x−2)
2 + c2e−

x(x+2)
2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = c3(x− 1) e−
x(x−2)

2 + e−
x(x+2)

2 (x+ 1)
c3e−

x(x−2)
2 + e−

x(x+2)
2

Summary
The solution(s) found are the following

(1)y = c3(x− 1) e−
x(x−2)

2 + e−
x(x+2)

2 (x+ 1)
c3e−

x(x−2)
2 + e−

x(x+2)
2

Figure 99: Slope field plot

Verification of solutions

y = c3(x− 1) e−
x(x−2)

2 + e−
x(x+2)

2 (x+ 1)
c3e−

x(x−2)
2 + e−

x(x+2)
2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 29� �
dsolve(diff(y(x),x) = (x-y(x))^2,y(x), singsol=all)� �

y(x) = c1(x− 1) e2x − x− 1
c1e2x − 1

3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 29� �
DSolve[y'[x]==(x-y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ 1
1
2 + c1e2x

− 1

y(x) → x− 1
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2.19 problem 44
2.19.1 Solving as first order ode lie symmetry calculated ode . . . . . . 525
2.19.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 531

Internal problem ID [3308]
Internal file name [OUTPUT/2800_Sunday_June_05_2022_08_40_43_AM_35070226/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − 3y − (−y + x)2 = −3x+ 3

2.19.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 − 2xy + y2 − 3x+ 3y + 3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
(
x2−2xy+y2−3x+3y+3

)
(b3−a2)−

(
x2−2xy+y2−3x+3y+3

)2
a3

− (2x− 2y − 3) (xa2 + ya3 + a1)− (3− 2x+ 2y) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a3 + 4x3ya3 − 6x2y2a3 + 4x y3a3 − y4a3 + 6x3a3 − 18x2ya3 + 18x y2a3
− 6y3a3 − 3x2a2 − 15x2a3 + 2x2b2 + x2b3 + 4xya2 + 28xya3 − 2xyb2
− y2a2 − 13y2a3 − y2b3 − 2xa1 + 6xa2 + 18xa3 + 2xb1 − 3xb2 − 3xb3
+ 2ya1 − 3ya2 − 15ya3 − 2yb1 + 3a1 − 3a2 − 9a3 − 3b1 + b2 + 3b3 = 0

Setting the numerator to zero gives

(6E)
−x4a3 +4x3ya3 − 6x2y2a3 +4x y3a3 − y4a3 +6x3a3 − 18x2ya3 +18x y2a3
− 6y3a3 − 3x2a2 − 15x2a3 + 2x2b2 + x2b3 + 4xya2 + 28xya3 − 2xyb2
− y2a2 − 13y2a3 − y2b3 − 2xa1 + 6xa2 + 18xa3 + 2xb1 − 3xb2 − 3xb3
+ 2ya1 − 3ya2 − 15ya3 − 2yb1 + 3a1 − 3a2 − 9a3 − 3b1 + b2 + 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a3v

4
1+4a3v31v2−6a3v21v22+4a3v1v32−a3v

4
2+6a3v31−18a3v21v2+18a3v1v22

− 6a3v32 − 3a2v21 + 4a2v1v2 − a2v
2
2 − 15a3v21 + 28a3v1v2 − 13a3v22 + 2b2v21

− 2b2v1v2+ b3v
2
1 − b3v

2
2 − 2a1v1+2a1v2+6a2v1− 3a2v2+18a3v1− 15a3v2

+ 2b1v1 − 2b1v2 − 3b2v1 − 3b3v1 + 3a1 − 3a2 − 9a3 − 3b1 + b2 + 3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)
−a3v

4
1 + 4a3v31v2 + 6a3v31 − 6a3v21v22 − 18a3v21v2

+ (−3a2 − 15a3 + 2b2 + b3) v21 + 4a3v1v32 + 18a3v1v22
+ (4a2 + 28a3 − 2b2) v1v2 + (−2a1 + 6a2 + 18a3 + 2b1 − 3b2 − 3b3) v1
− a3v

4
2 − 6a3v32 + (−a2 − 13a3 − b3) v22 + (2a1 − 3a2 − 15a3 − 2b1) v2

+ 3a1 − 3a2 − 9a3 − 3b1 + b2 + 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−18a3 = 0
−6a3 = 0
−a3 = 0
4a3 = 0
6a3 = 0
18a3 = 0

−a2 − 13a3 − b3 = 0
4a2 + 28a3 − 2b2 = 0

2a1 − 3a2 − 15a3 − 2b1 = 0
−3a2 − 15a3 + 2b2 + b3 = 0

−2a1 + 6a2 + 18a3 + 2b1 − 3b2 − 3b3 = 0
3a1 − 3a2 − 9a3 − 3b1 + b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
x2 − 2xy + y2 − 3x+ 3y + 3

)
(1)

= −x2 + 2xy − y2 + 3x− 3y − 2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2 + 2xy − y2 + 3x− 3y − 2dy

Which results in

S = − ln (y − x+ 1) + ln (y − x+ 2)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − 2xy + y2 − 3x+ 3y + 3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
(−y + x− 1) (x− y − 2)

Sy = − 1
(−y + x− 1) (x− y − 2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y + 1− x) + ln (y − x+ 2) = −x+ c1

Which simplifies to

− ln (y + 1− x) + ln (y − x+ 2) = −x+ c1

Which gives

y = x e−x+c1 − e−x+c1 − x+ 2
e−x+c1 − 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2 − 2xy + y2 − 3x+ 3y + 3 dS
dR

= −1

R = x

S = − ln (y − x+ 1) + ln (y − x+ 2)

Summary
The solution(s) found are the following

(1)y = x e−x+c1 − e−x+c1 − x+ 2
e−x+c1 − 1
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Figure 100: Slope field plot

Verification of solutions

y = x e−x+c1 − e−x+c1 − x+ 2
e−x+c1 − 1

Verified OK.

2.19.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x2 − 2xy + y2 − 3x+ 3y + 3

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 − 2xy + y2 − 3x+ 3y + 3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x2 − 3x+ 3, f1(x) = −2x+ 3 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −2x+ 3
f 2
2 f0 = x2 − 3x+ 3

Substituting the above terms back in equation (2) gives

u′′(x)− (−2x+ 3)u′(x) +
(
x2 − 3x+ 3

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e−
x(x−2)

2 + c2e−
x(x−4)

2

The above shows that

u′(x) = −c2(x− 2) e−
x(x−4)

2 − c1(x− 1) e−
x(x−2)

2

Using the above in (1) gives the solution

y = −−c2(x− 2) e−
x(x−4)

2 − c1(x− 1) e−
x(x−2)

2

c1e−
x(x−2)

2 + c2e−
x(x−4)

2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (x− 2) e−
x(x−4)

2 + c3(x− 1) e−
x(x−2)

2

c3e−
x(x−2)

2 + e−
x(x−4)

2
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Summary
The solution(s) found are the following

(1)y = (x− 2) e−
x(x−4)

2 + c3(x− 1) e−
x(x−2)

2

c3e−
x(x−2)

2 + e−
x(x−4)

2

Figure 101: Slope field plot

Verification of solutions

y = (x− 2) e−
x(x−4)

2 + c3(x− 1) e−
x(x−2)

2

c3e−
x(x−2)

2 + e−
x(x−4)

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve(diff(y(x),x) = 3-3*x+3*y(x)+(x-y(x))^2,y(x), singsol=all)� �

y(x) = c1(−2 + x) ex + 1− x

exc1 − 1

3 Solution by Mathematica
Time used: 0.174 (sec). Leaf size: 25� �
DSolve[y'[x]==3(1-x+y[x])+(x-y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ 1
1 + c1ex

− 2

y(x) → x− 2
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2.20 problem 45
2.20.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 535

Internal problem ID [3309]
Internal file name [OUTPUT/2801_Sunday_June_05_2022_08_40_44_AM_34703844/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 45.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ +
(
x2 + 1

)
y − y2 = 2x

2.20.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −x2y + y2 + 2x− y

This is a Riccati ODE. Comparing the ODE to solve

y′ = −x2y + y2 + 2x− y

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 2x, f1(x) = −x2 − 1 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −x2 − 1
f 2
2 f0 = 2x

Substituting the above terms back in equation (2) gives

u′′(x)−
(
−x2 − 1

)
u′(x) + 2xu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
c1

(∫
e

x
(
x2+3

)
3 dx

)
+ c2

)
e−

x
(
x2+3

)
3

The above shows that

u′(x) = −c1e−
x
(
x2+3

)
3
(
x2 + 1

)(∫
e

x
(
x2+3

)
3 dx

)
+
(
−x2 − 1

)
c2e−

x
(
x2+3

)
3 + c1

Using the above in (1) gives the solution

y = −

(
−c1e−

x
(
x2+3

)
3 (x2 + 1)

(∫
e

x
(
x2+3

)
3 dx

)
+ (−x2 − 1) c2e−

x
(
x2+3

)
3 + c1

)
e

x
(
x2+3

)
3

c1

(∫
e

x
(
x2+3

)
3 dx

)
+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(∫
e

x
(
x2+3

)
3 dx

)
(x2 + 1) c3 + x2 − c3e

x
(
x2+3

)
3 + 1

c3

(∫
e

x
(
x2+3

)
3 dx

)
+ 1
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Summary
The solution(s) found are the following

(1)y =

(∫
e

x
(
x2+3

)
3 dx

)
(x2 + 1) c3 + x2 − c3e

x
(
x2+3

)
3 + 1

c3

(∫
e

x
(
x2+3

)
3 dx

)
+ 1

Figure 102: Slope field plot

Verification of solutions

y =

(∫
e

x
(
x2+3

)
3 dx

)
(x2 + 1) c3 + x2 − c3e

x
(
x2+3

)
3 + 1

c3

(∫
e

x
(
x2+3

)
3 dx

)
+ 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular polynomial solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 67� �
dsolve(diff(y(x),x) = 2*x-(x^2+1)*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) =
−x2

(∫
e

x
(
x2+3

)
3 dx

)
+ c1x

2 + e
x
(
x2+3

)
3 −

(∫
e

x
(
x2+3

)
3 dx

)
+ c1

c1 −
(∫

e
x
(
x2+3

)
3 dx

)
3 Solution by Mathematica
Time used: 0.337 (sec). Leaf size: 58� �
DSolve[y'[x]==2 x-(1+x^2)y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
x3
3 +x

−
∫ x

1 e
K[1]3

3 +K[1]dK[1] + c1
+ x2 + 1

y(x) → x2 + 1
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2.21 problem 46
2.21.1 Solving as first order ode lie symmetry calculated ode . . . . . . 539
2.21.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 545

Internal problem ID [3310]
Internal file name [OUTPUT/2802_Sunday_June_05_2022_08_40_45_AM_85340204/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Riccati]

y′ +
(
2x2 − y

)
y = x

(
x3 + 2

)
2.21.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x4 − 2x2y + y2 + 2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x4 − 2x2y + y2 + 2x

)
(b3 − a2)−

(
x4 − 2x2y + y2 + 2x

)2
a3

−
(
4x3 − 4xy + 2

)
(xa2 + ya3 + a1)−

(
−2x2 + 2y

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x8a3 + 4x6ya3 − 6x4y2a3 − 4x5a3 + 4x2y3a3 − 5x4a2 + x4b3
+ 4x3ya3 − y4a3 − 4x3a1 + 2x3b2 + 6x2ya2 − 4x2a3 + 2x2b1 + 4xya1
− 2xyb2 − y2a2 − y2b3 − 4xa2 + 2xb3 − 2ya3 − 2yb1 − 2a1 + b2 = 0

Setting the numerator to zero gives

(6E)−x8a3 + 4x6ya3 − 6x4y2a3 − 4x5a3 + 4x2y3a3 − 5x4a2 + x4b3
+ 4x3ya3 − y4a3 − 4x3a1 + 2x3b2 + 6x2ya2 − 4x2a3 + 2x2b1 + 4xya1
− 2xyb2 − y2a2 − y2b3 − 4xa2 + 2xb3 − 2ya3 − 2yb1 − 2a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
8
1 + 4a3v61v2 − 6a3v41v22 − 4a3v51 + 4a3v21v32 − 5a2v41 + 4a3v31v2 − a3v

4
2

+ b3v
4
1 − 4a1v31 + 6a2v21v2 + 2b2v31 + 4a1v1v2 − a2v

2
2 − 4a3v21 + 2b1v21

− 2b2v1v2 − b3v
2
2 − 4a2v1 − 2a3v2 − 2b1v2 + 2b3v1 − 2a1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−a3v
8
1 + 4a3v61v2 − 4a3v51 − 6a3v41v22 + (−5a2 + b3) v41 + 4a3v31v2

+ (−4a1 + 2b2) v31 + 4a3v21v32 + 6a2v21v2 + (−4a3 + 2b1) v21 + (4a1 − 2b2) v1v2
+ (−4a2 + 2b3) v1 − a3v

4
2 + (−a2 − b3) v22 + (−2a3 − 2b1) v2 − 2a1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a2 = 0
−6a3 = 0
−4a3 = 0
−a3 = 0
4a3 = 0

−4a1 + 2b2 = 0
−2a1 + b2 = 0
4a1 − 2b2 = 0
−5a2 + b3 = 0
−4a2 + 2b3 = 0
−a2 − b3 = 0

−4a3 + 2b1 = 0
−2a3 − 2b1 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 2a1
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 2x
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 2x−

(
x4 − 2x2y + y2 + 2x

)
(1)

= −x4 + 2x2y − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4 + 2x2y − y2
dy

Which results in

S = 1
−x2 + y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x4 − 2x2y + y2 + 2x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
(x2 − y)2

Sy = − 1
(x2 − y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
−x2 + y

= −x+ c1

Which simplifies to

1
−x2 + y

= −x+ c1

Which gives

y = c1x
2 − x3 + 1
−x+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x4 − 2x2y + y2 + 2x dS
dR

= −1

R = x

S = 1
−x2 + y

Summary
The solution(s) found are the following

(1)y = c1x
2 − x3 + 1
−x+ c1
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Figure 103: Slope field plot

Verification of solutions

y = c1x
2 − x3 + 1
−x+ c1

Verified OK.

2.21.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x4 − 2x2y + y2 + 2x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x4 − 2x2y + y2 + 2x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x4 + 2x, f1(x) = −2x2 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −2x2

f 2
2 f0 = x4 + 2x

Substituting the above terms back in equation (2) gives

u′′(x) + 2x2u′(x) +
(
x4 + 2x

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e−x3
3 (c2x+ c1)

The above shows that

u′(x) = e−x3
3
(
−c2x

3 − c1x
2 + c2

)
Using the above in (1) gives the solution

y = −−c2x
3 − c1x

2 + c2
c2x+ c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3x
2 + x3 − 1
x+ c3
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Summary
The solution(s) found are the following

(1)y = c3x
2 + x3 − 1
x+ c3

Figure 104: Slope field plot

Verification of solutions

y = c3x
2 + x3 − 1
x+ c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 2*x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve(diff(y(x),x) = x*(x^3+2)-(2*x^2-y(x))*y(x),y(x), singsol=all)� �

y(x) = c1x
2 + x3 − 1
c1 + x

3 Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 24� �
DSolve[y'[x]==x*(2+x^3)-(2*x^2-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 1
−x+ c1

y(x) → x2
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2.22 problem 47
2.22.1 Solving as first order ode lie symmetry calculated ode . . . . . . 549
2.22.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 555

Internal problem ID [3311]
Internal file name [OUTPUT/2803_Sunday_June_05_2022_08_40_46_AM_23301379/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 47.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Riccati]

y′ −
(
2x2 − y

)
y = 1 + x

(
−x3 + 2

)
2.22.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x4 + 2x2y − y2 + 2x+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−x4 + 2x2y − y2 + 2x+ 1

)
(b3 − a2)−

(
−x4 + 2x2y − y2 + 2x+ 1

)2
a3

−
(
−4x3 + 4xy + 2

)
(xa2 + ya3 + a1)−

(
2x2 − 2y

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x8a3 + 4x6ya3 − 6x4y2a3 + 4x5a3 + 4x2y3a3 + 5x4a2 + 2x4a3 − x4b3 − 4x3ya3
− y4a3+4x3a1− 2x3b2− 6x2ya2− 4x2ya3− 4x2a3− 2x2b1− 4xya1+2xyb2+ y2a2
+ 2y2a3 + y2b3 − 4xa2 − 4xa3 + 2xb3 − 2ya3 + 2yb1 − 2a1 − a2 − a3 + b2 + b3 = 0

Setting the numerator to zero gives

(6E)
−x8a3 + 4x6ya3 − 6x4y2a3 + 4x5a3 + 4x2y3a3 + 5x4a2 + 2x4a3
− x4b3 − 4x3ya3 − y4a3 + 4x3a1 − 2x3b2 − 6x2ya2 − 4x2ya3
− 4x2a3 − 2x2b1 − 4xya1 + 2xyb2 + y2a2 + 2y2a3 + y2b3 − 4xa2
− 4xa3 + 2xb3 − 2ya3 + 2yb1 − 2a1 − a2 − a3 + b2 + b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a3v

8
1 + 4a3v61v2 − 6a3v41v22 + 4a3v51 + 4a3v21v32 + 5a2v41 + 2a3v41

− 4a3v31v2 − a3v
4
2 − b3v

4
1 + 4a1v31 − 6a2v21v2 − 4a3v21v2 − 2b2v31

− 4a1v1v2 + a2v
2
2 − 4a3v21 + 2a3v22 − 2b1v21 + 2b2v1v2 + b3v

2
2 − 4a2v1

− 4a3v1 − 2a3v2 + 2b1v2 + 2b3v1 − 2a1 − a2 − a3 + b2 + b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)
−a3v

8
1 + 4a3v61v2 + 4a3v51 − 6a3v41v22 + (5a2 + 2a3 − b3) v41

− 4a3v31v2 + (4a1 − 2b2) v31 + 4a3v21v32 + (−6a2 − 4a3) v21v2
+ (−4a3 − 2b1) v21 + (−4a1 + 2b2) v1v2 + (−4a2 − 4a3 + 2b3) v1 − a3v

4
2

+ (a2 + 2a3 + b3) v22 + (−2a3 + 2b1) v2 − 2a1 − a2 − a3 + b2 + b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a3 = 0
−4a3 = 0
−a3 = 0
4a3 = 0

−4a1 + 2b2 = 0
4a1 − 2b2 = 0

−6a2 − 4a3 = 0
−4a3 − 2b1 = 0
−2a3 + 2b1 = 0

−4a2 − 4a3 + 2b3 = 0
a2 + 2a3 + b3 = 0

5a2 + 2a3 − b3 = 0
−2a1 − a2 − a3 + b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 2a1
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 2x
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 2x−

(
−x4 + 2x2y − y2 + 2x+ 1

)
(1)

= x4 − 2x2y + y2 − 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4 − 2x2y + y2 − 1dy

Which results in

S = − ln (−x2 + y + 1)
2 + ln (−x2 + y − 1)

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x4 + 2x2y − y2 + 2x+ 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
(x2 − y − 1) (x2 − y + 1)

Sy =
1

(x2 − y − 1) (x2 − y + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−x2 + y + 1)
2 + ln (−x2 + y − 1)

2 = −x+ c1

Which simplifies to

− ln (−x2 + y + 1)
2 + ln (−x2 + y − 1)

2 = −x+ c1

Which gives

y = x2e−2x+2c1 − x2 − e−2x+2c1 − 1
e−2x+2c1 − 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x4 + 2x2y − y2 + 2x+ 1 dS
dR

= −1

R = x

S = − ln (−x2 + y + 1)
2 + ln (−x2 + y − 1)

2

Summary
The solution(s) found are the following

(1)y = x2e−2x+2c1 − x2 − e−2x+2c1 − 1
e−2x+2c1 − 1
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Figure 105: Slope field plot

Verification of solutions

y = x2e−2x+2c1 − x2 − e−2x+2c1 − 1
e−2x+2c1 − 1

Verified OK.

2.22.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −x4 + 2x2y − y2 + 2x+ 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = −x4 + 2x2y − y2 + 2x+ 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −x4 + 2x+ 1, f1(x) = 2x2 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −2x2

f 2
2 f0 = −x4 + 2x+ 1

Substituting the above terms back in equation (2) gives

−u′′(x) + 2x2u′(x) +
(
−x4 + 2x+ 1

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e
x
(
x2+3

)
3 + c2e

x
(
x2−3

)
3

The above shows that

u′(x) = c1
(
x2 + 1

)
e

x
(
x2+3

)
3 + c2

(
x2 − 1

)
e

x
(
x2−3

)
3

Using the above in (1) gives the solution

y = c1(x2 + 1) e
x
(
x2+3

)
3 + c2(x2 − 1) e

x
(
x2−3

)
3

c1e
x
(
x2+3

)
3 + c2e

x
(
x2−3

)
3

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3(x2 + 1) e
x
(
x2+3

)
3 + (x2 − 1) e

x
(
x2−3

)
3

c3e
x
(
x2+3

)
3 + e

x
(
x2−3

)
3
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Summary
The solution(s) found are the following

(1)y = c3(x2 + 1) e
x
(
x2+3

)
3 + (x2 − 1) e

x
(
x2−3

)
3

c3e
x
(
x2+3

)
3 + e

x
(
x2−3

)
3

Figure 106: Slope field plot

Verification of solutions

y = c3(x2 + 1) e
x
(
x2+3

)
3 + (x2 − 1) e

x
(
x2−3

)
3

c3e
x
(
x2+3

)
3 + e

x
(
x2−3

)
3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 33� �
dsolve(diff(y(x),x) = 1+x*(-x^3+2)+(2*x^2-y(x))*y(x),y(x), singsol=all)� �

y(x) = (x2 + 1) c1e2x − x2 + 1
c1e2x − 1

3 Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 34� �
DSolve[y'[x]==1+x*(2-x^3)+(2*x^2-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − 2
1 + 2c1e2x

+ 1

y(x) → x2 + 1
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2.23 problem 48
2.23.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 559

Internal problem ID [3312]
Internal file name [OUTPUT/2804_Sunday_June_05_2022_08_40_47_AM_2643711/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 48.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ + (sin (x)− y) y = cos (x)

2.23.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= − sin (x) y + y2 + cos (x)

This is a Riccati ODE. Comparing the ODE to solve

y′ = − sin (x) y + y2 + cos (x)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = cos (x), f1(x) = − sin (x) and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = − sin (x)
f 2
2 f0 = cos (x)

Substituting the above terms back in equation (2) gives

u′′(x) + sin (x)u′(x) + cos (x)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
c1

(∫
e− cos(x)dx

)
+ c2

)
ecos(x)

The above shows that

u′(x) = − sin (x) ecos(x)
(∫

e− cos(x)dx

)
c1 − sin (x) ecos(x)c2 + c1

Using the above in (1) gives the solution

y = −
(
− sin (x) ecos(x)

(∫
e− cos(x)dx

)
c1 − sin (x) ecos(x)c2 + c1

)
e− cos(x)

c1
(∫

e− cos(x)dx
)
+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
c3 sin (x)

(∫
e− cos(x)dx

)
+ sin (x)− c3e− cos(x)

c3
(∫

e− cos(x)dx
)
+ 1

Summary
The solution(s) found are the following

(1)y =
c3 sin (x)

(∫
e− cos(x)dx

)
+ sin (x)− c3e− cos(x)

c3
(∫

e− cos(x)dx
)
+ 1
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Figure 107: Slope field plot

Verification of solutions

y =
c3 sin (x)

(∫
e− cos(x)dx

)
+ sin (x)− c3e− cos(x)

c3
(∫

e− cos(x)dx
)
+ 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati with symmetry of the form [0, exp(-Int(f,x))/P*(y*P-f)^2] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x) = cos(x)-(sin(x)-y(x))*y(x),y(x), singsol=all)� �

y(x) =
sin (x)

(∫
e− cos(x)dx

)
+ c1 sin (x)− e− cos(x)

c1 +
∫
e− cos(x)dx

3 Solution by Mathematica
Time used: 42.807 (sec). Leaf size: 158� �
DSolve[y'[x]==Cos[x]-(Sin[x]-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
c1 sin(x)

∫ x

1 e− cos(K[1])dK[1] + sin(x) + c1
(
−e− cos(x))

1 + c1
∫ x

1 e− cos(K[1])dK[1]
y(x) → sin(x)

y(x) →
sin3(x)ecos(x)

∫ cos(x)
1

e−K[1]K[1]
(1−K[1]2)3/2

dK[1]

sin2(x)ecos(x)
∫ cos(x)
1

e−K[1]K[1]
(1−K[1]2)3/2

dK[1]−
√

sin2(x)
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2.24 problem 49
2.24.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 563

Internal problem ID [3313]
Internal file name [OUTPUT/2805_Sunday_June_05_2022_08_40_48_AM_60658320/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 49.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − (sin (2x) + y) y = cos (2x)

2.24.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y sin (2x) + y2 + cos (2x)

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2y sin (x) cos (x) + y2 + 2 cos (x)2 − 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = cos (2x), f1(x) = sin (2x) and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = sin (2x)
f 2
2 f0 = cos (2x)

Substituting the above terms back in equation (2) gives

u′′(x)− sin (2x)u′(x) + cos (2x)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1HeunC
(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos (2x)
2 + 1

2

)
+ c2 cos (x)HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos (2x)
2 + 1

2

)

The above shows that

u′(x) = −2

c2 cos (x)2HeunCPrime
(
1, 12 ,−

1
2 ,−1, 78 ,

cos (2x)
2 + 1

2

)
+ c1 cos (x)HeunCPrime

(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos (2x)
2 + 1

2

)

+
HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
c2

2

 sin (x)

Using the above in (1) gives the solution

y

=
2
(
c2 cos (x)2HeunCPrime

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+ c1 cos (x)HeunCPrime

(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+

HeunC
(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
c2

2

)
sin (x)

c1HeunC
(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+ c2 cos (x)HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=

(
2HeunCPrime

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
cos (x)2 + 2c3 cos (x)HeunCPrime

(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

))
sin (x)

c3HeunC
(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+ cos (x)HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
Summary
The solution(s) found are the following

(1)y

=

(
2HeunCPrime

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
cos (x)2 + 2c3 cos (x)HeunCPrime

(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

))
sin (x)

c3HeunC
(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+ cos (x)HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)

Figure 108: Slope field plot
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Verification of solutions
y

=

(
2HeunCPrime

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
cos (x)2 + 2c3 cos (x)HeunCPrime

(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

))
sin (x)

c3HeunC
(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+ cos (x)HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = 2*(diff(y(x), x))*cos(x)*sin(x)+(1-2*cos(x)^2)*y(x), y(x)` *** Su

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful
Change of variables used:

[x = 1/2*arccos(t)]
Linear ODE actually solved:

t*u(t)+(-2*t^2-4*t+2)*diff(u(t),t)+(-4*t^2+4)*diff(diff(u(t),t),t) = 0
<- change of variables successful

<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 96� �
dsolve(diff(y(x),x) = cos(2*x)+(sin(2*x)+y(x))*y(x),y(x), singsol=all)� �
y(x)

=
sin (x)

(
HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
c1 + 2 cos (x)

(
cos (x)HeunCPrime

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
c1 +HeunCPrime

(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)))
c1 cos (x)HeunC

(
1, 12 ,−

1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
+HeunC

(
1,−1

2 ,−
1
2 ,−1, 78 ,

cos(2x)
2 + 1

2

)
3 Solution by Mathematica
Time used: 2.305 (sec). Leaf size: 111� �
DSolve[y'[x]==Cos[2 x]+(Sin[2 x]+y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
sec(x)

(
sin(x)

∫ cos(x)
1

e−K[1]2

K[1]2
√

K[1]2−1dK[1] + c1 sin(x) + e− cos2(x) tan(x)√
− sin2(x)

)
∫ cos(x)
1

e−K[1]2

K[1]2
√

K[1]2−1dK[1] + c1

y(x) → tan(x)
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2.25 problem 50
2.25.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 569

Internal problem ID [3314]
Internal file name [OUTPUT/2806_Sunday_June_05_2022_08_40_49_AM_46676147/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 50.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − xf(x) y − y2 = f(x)

2.25.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= f(x) + xf(x) y + y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = f(x) + xf(x) y + y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = f(x), f1(x) = f(x)x and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = f(x)x
f 2
2 f0 = f(x)

Substituting the above terms back in equation (2) gives

u′′(x)− f(x)xu′(x) + f(x)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x

((∫
e
∫ f(x)x2−2

x
dxdx

)
c1 + c2

)

The above shows that

u′(x) =
(∫

e
∫ f(x)x2−2

x
dxdx

)
c1 + c2 + x e

∫ f(x)x2−2
x

dxc1

Using the above in (1) gives the solution

y = −

(∫
e
∫ f(x)x2−2

x
dxdx

)
c1 + c2 + x e

∫ f(x)x2−2
x

dxc1

x
((∫

e
∫ f(x)x2−2

x
dxdx

)
c1 + c2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−
(∫

e
∫ f(x)x2−2

x
dxdx

)
c3 − 1− x e

∫ f(x)x2−2
x

dxc3

x
((∫

e
∫ f(x)x2−2

x
dxdx

)
c3 + 1

)
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Summary
The solution(s) found are the following

(1)y =
−
(∫

e
∫ f(x)x2−2

x
dxdx

)
c3 − 1− x e

∫ f(x)x2−2
x

dxc3

x
((∫

e
∫ f(x)x2−2

x
dxdx

)
c3 + 1

)
Verification of solutions

y =
−
(∫

e
∫ f(x)x2−2

x
dxdx

)
c3 − 1− x e

∫ f(x)x2−2
x

dxc3

x
((∫

e
∫ f(x)x2−2

x
dxdx

)
c3 + 1

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 69� �
dsolve(diff(y(x),x) = f(x)+x*f(x)*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) = e
∫ f(x)x2−2

x
dxx+

∫
e
∫ f(x)x2−2

x
dxdx− c1(

c1 −
(∫

e
∫ f(x)x2−2

x
dxdx

))
x
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3 Solution by Mathematica
Time used: 0.756 (sec). Leaf size: 111� �
DSolve[y'[x]==f[x]+x f[x] y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
exp

(
−
∫ x

1 −f(K[1])K[1]dK[1]
)
+ x

∫ x

1
exp
(
−
∫K[2]
1 −f(K[1])K[1]dK[1]

)
K[2]2 dK[2] + c1x

x2
(∫ x

1
exp
(
−
∫K[2]
1 −f(K[1])K[1]dK[1]

)
K[2]2 dK[2] + c1

)
y(x) → −1

x
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2.26 problem 51
2.26.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 573
2.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 575
2.26.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 580

Internal problem ID [3315]
Internal file name [OUTPUT/2807_Sunday_June_05_2022_08_40_50_AM_6494441/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 51.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − (3 + x− 4y)2 = 0

2.26.1 Solving as homogeneousTypeC ode

Let

z = 3 + x− 4y (1)

Then

z′(x) = 1− 4y′

Therefore

y′ = −z′(x)
4 + 1

4

Hence the given ode can now be written as

−z′(x)
4 + 1

4 = z2
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This is separable first order ode. Integrating∫
dx =

∫ 1
−4z2 + 1dz

x+ c1 = − ln (2z − 1)
4 + ln (2z + 1)

4

Replacing z back by its value from (1) then the above gives the solution as

y = (2x+ 5) e4x+4c1 − 2x− 7
−8 + 8 e4x+4c1

y = (2x+ 5) e4x+4c1 − 2x− 7
−8 + 8 e4x+4c1

Summary
The solution(s) found are the following

(1)y = (2x+ 5) e4x+4c1 − 2x− 7
−8 + 8 e4x+4c1

Figure 109: Slope field plot
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Verification of solutions

y = (2x+ 5) e4x+4c1 − 2x− 7
−8 + 8 e4x+4c1

Verified OK.

2.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (−3− x+ 4y)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 118: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1

η(x, y) = 1
4 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

=
1
4
1

= 1
4

This is easily solved to give

y = x

4 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = −x

4 + y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (−3− x+ 4y)2

Evaluating all the partial derivatives gives

Rx = −1
4

Ry = 1
Sx = 1
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

−1
4 + (−3− x+ 4y)2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

−1
4 + (−3 + 4R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (8R− 5)
4 + ln (8R− 7)

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = − ln (−2x+ 8y − 5)
4 + ln (−2x+ 8y − 7)

4 + c1

Which simplifies to

x = − ln (−2x+ 8y − 5)
4 + ln (−2x+ 8y − 7)

4 + c1

Which gives

y = 2x e−4x+4c1 + 7 e−4x+4c1 − 2x− 5
8 e−4x+4c1 − 8
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (−3− x+ 4y)2 dS
dR

= 1
− 1

4+(−3+4R)2

R = −x

4 + y

S = x

Summary
The solution(s) found are the following

(1)y = 2x e−4x+4c1 + 7 e−4x+4c1 − 2x− 5
8 e−4x+4c1 − 8
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Figure 110: Slope field plot

Verification of solutions

y = 2x e−4x+4c1 + 7 e−4x+4c1 − 2x− 5
8 e−4x+4c1 − 8

Verified OK.

2.26.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (−3− x+ 4y)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 − 8xy + 16y2 + 6x− 24y + 9

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = (−x− 3)2, f1(x) = −8x− 24 and f2(x) = 16. Let

y = −u′

f2u

= −u′

16u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −128x− 384
f 2
2 f0 = 256(−x− 3)2

Substituting the above terms back in equation (2) gives

16u′′(x)− (−128x− 384)u′(x) + 256(−x− 3)2 u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e−2x(x+5) + c2e−2x(x+7)

The above shows that

u′(x) = c1(−10− 4x) e−2x(x+5) − 4c2e−2x(x+7)
(
x+ 7

2

)

Using the above in (1) gives the solution

y = −
c1(−10− 4x) e−2x(x+5) − 4c2e−2x(x+7)(x+ 7

2

)
16 (c1e−2x(x+5) + c2e−2x(x+7))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3(2x+ 5) e−2x(x+5) + e−2x(x+7)(2x+ 7)
8c3e−2x(x+5) + 8 e−2x(x+7)
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Summary
The solution(s) found are the following

(1)y = c3(2x+ 5) e−2x(x+5) + e−2x(x+7)(2x+ 7)
8c3e−2x(x+5) + 8 e−2x(x+7)

Figure 111: Slope field plot

Verification of solutions

y = c3(2x+ 5) e−2x(x+5) + e−2x(x+7)(2x+ 7)
8c3e−2x(x+5) + 8 e−2x(x+7)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 1/4, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 32� �
dsolve(diff(y(x),x) = (3+x-4*y(x))^2,y(x), singsol=all)� �

y(x) = c1(5 + 2x) e4x − 2x− 7
8 e4xc1 − 8

3 Solution by Mathematica
Time used: 0.148 (sec). Leaf size: 41� �
DSolve[y'[x]==(3+x-4 y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16

(
4x+ 1

1
4 + c1e4x

+ 10
)

y(x) → 1
8(2x+ 5)
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2.27 problem 52
2.27.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 584
2.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 586
2.27.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 591

Internal problem ID [3316]
Internal file name [OUTPUT/2808_Sunday_June_05_2022_08_40_52_AM_4364720/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 52.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − (1 + 4x+ 9y)2 = 0

2.27.1 Solving as homogeneousTypeC ode

Let

z = 1 + 4x+ 9y (1)

Then

z′(x) = 4 + 9y′

Therefore

y′ = z′(x)
9 − 4

9

Hence the given ode can now be written as

z′(x)
9 − 4

9 = z2
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This is separable first order ode. Integrating∫
dx =

∫ 1
9z2 + 4dz

x+ c1 =
arctan

(3z
2

)
6

Replacing z back by its value from (1) then the above gives the solution as

y = −1
9 − 4x

9 + 2 tan (6x+ 6c1)
27

y = −1
9 − 4x

9 + 2 tan (6x+ 6c1)
27

Summary
The solution(s) found are the following

(1)y = −1
9 − 4x

9 + 2 tan (6x+ 6c1)
27

Figure 112: Slope field plot
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Verification of solutions

y = −1
9 − 4x

9 + 2 tan (6x+ 6c1)
27

Verified OK.

2.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (1 + 4x+ 9y)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 120: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1

η(x, y) = −4
9 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

=
−4

9
1

= −4
9

This is easily solved to give

y = −4x
9 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = 4x
9 + y

And S is found from

dS = dx

ξ

= dx

1
Integrating gives

S =
∫

dx

T

= x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (1 + 4x+ 9y)2

Evaluating all the partial derivatives gives

Rx = 4
9

Ry = 1
Sx = 1
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4
9 + (1 + 4x+ 9y)2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4
9 + (1 + 9R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
arctan

(27R
2 + 3

2

)
6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x =
arctan

(3
2 + 6x+ 27y

2

)
6 + c1

Which simplifies to

x =
arctan

(3
2 + 6x+ 27y

2

)
6 + c1

Which gives

y = −1
9 − 4x

9 − 2 tan (−6x+ 6c1)
27
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (1 + 4x+ 9y)2 dS
dR

= 1
4
9+(1+9R)2

R = 4x
9 + y

S = x

Summary
The solution(s) found are the following

(1)y = −1
9 − 4x

9 − 2 tan (−6x+ 6c1)
27
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Figure 113: Slope field plot

Verification of solutions

y = −1
9 − 4x

9 − 2 tan (−6x+ 6c1)
27

Verified OK.

2.27.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (1 + 4x+ 9y)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 16x2 + 72xy + 81y2 + 8x+ 18y + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = (4x+ 1)2, f1(x) = 72x+ 18 and f2(x) = 81. Let

y = −u′

f2u

= −u′

81u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 5832x+ 1458
f 2
2 f0 = 6561(4x+ 1)2

Substituting the above terms back in equation (2) gives

81u′′(x)− (5832x+ 1458)u′(x) + 6561(4x+ 1)2 u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e18x2+9x(c1 cos (6x) + c2 sin (6x))

The above shows that

u′(x) = 36 e18x2+9x
(((

1
4 + x

)
c1 +

c2
6

)
cos (6x) + sin (6x)

(
−c1

6 +
(
1
4 + x

)
c2

))

Using the above in (1) gives the solution

y = −
4
(((1

4 + x
)
c1 + c2

6

)
cos (6x) + sin (6x)

(
− c1

6 +
(1
4 + x

)
c2
))

9 (c1 cos (6x) + c2 sin (6x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(−2 + (−12x− 3) c3) cos (6x)− 12 sin (6x)

(
− c3

6 + 1
4 + x

)
27c3 cos (6x) + 27 sin (6x)
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Summary
The solution(s) found are the following

(1)y =
(−2 + (−12x− 3) c3) cos (6x)− 12 sin (6x)

(
− c3

6 + 1
4 + x

)
27c3 cos (6x) + 27 sin (6x)

Figure 114: Slope field plot

Verification of solutions

y =
(−2 + (−12x− 3) c3) cos (6x)− 12 sin (6x)

(
− c3

6 + 1
4 + x

)
27c3 cos (6x) + 27 sin (6x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -4/9, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x) = (1+4*x+9*y(x))^2,y(x), singsol=all)� �

y(x) = −4x
9 − 1

9 − 2 tan (−6x+ 6c1)
27

3 Solution by Mathematica
Time used: 0.165 (sec). Leaf size: 49� �
DSolve[y'[x]==(1+4 x+9 y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
81

(
−36x+ 1

c1e12ix − i
12

− (9 + 6i)
)

y(x) → 1
27(−12x− (3 + 2i))
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2.28 problem 53
2.28.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 595

Internal problem ID [3317]
Internal file name [OUTPUT/2809_Sunday_June_05_2022_08_40_52_AM_67223898/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 53.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − 3by2 = 3bx+ 3a

2.28.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= 3b y2 + 3bx+ 3a

This is a Riccati ODE. Comparing the ODE to solve

y′ = 3b y2 + 3bx+ 3a

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 3bx+ 3a, f1(x) = 0 and f2(x) = 3b. Let

y = −u′

f2u

= −u′

3bu (1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = 9b2(3bx+ 3a)

Substituting the above terms back in equation (2) gives

3bu′′(x) + 9b2(3bx+ 3a)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi
(
−3 2

3 (b2)
1
3 (bx+ a)
b

)
+ c2AiryBi

(
−3 2

3 (b2)
1
3 (bx+ a)
b

)

The above shows that

u′(x) = 3 2
3
(
b2
) 1

3

(
−c1AiryAi

(
1,−3 2

3 (b2)
1
3 (bx+ a)
b

)

− c2AiryBi
(
1,−3 2

3 (b2)
1
3 (bx+ a)
b

))

Using the above in (1) gives the solution

y = −
3 2

3 (b2)
1
3

(
−c1AiryAi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

)
− c2AiryBi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

))
3b
(
c1AiryAi

(
−3

2
3 (b2)

1
3 (bx+a)
b

)
+ c2AiryBi

(
−3

2
3 (b2)

1
3 (bx+a)
b

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
3 2

3 (b2)
1
3

(
c3AiryAi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

)
+AiryBi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

))
3b
(
c3AiryAi

(
−3

2
3 (b2)

1
3 (bx+a)
b

)
+AiryBi

(
−3

2
3 (b2)

1
3 (bx+a)
b

))
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Summary
The solution(s) found are the following

(1)y =
3 2

3 (b2)
1
3

(
c3AiryAi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

)
+AiryBi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

))
3b
(
c3AiryAi

(
−3

2
3 (b2)

1
3 (bx+a)
b

)
+AiryBi

(
−3

2
3 (b2)

1
3 (bx+a)
b

))
Verification of solutions

y =
3 2

3 (b2)
1
3

(
c3AiryAi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

)
+AiryBi

(
1,−3

2
3
(
b2
) 1
3 (bx+a)
b

))
3b
(
c3AiryAi

(
−3

2
3 (b2)

1
3 (bx+a)
b

)
+AiryBi

(
−3

2
3 (b2)

1
3 (bx+a)
b

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

<- Abel AIR successful: ODE belongs to the 0F1 0-parameter (Airy type) class`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 80� �
dsolve(diff(y(x),x) = 3*a+3*b*x+3*b*y(x)^2,y(x), singsol=all)� �

y(x) =

(
AiryAi

(
1,−3

2
3 (bx+a)
b
1
3

)
c1 +AiryBi

(
1,−3

2
3 (bx+a)
b
1
3

))
3 2

3

b
1
3

(
3c1AiryAi

(
−3

2
3 (bx+a)
b
1
3

)
+ 3AiryBi

(
−3

2
3 (bx+a)
b
1
3

))
3 Solution by Mathematica
Time used: 0.219 (sec). Leaf size: 191� �
DSolve[y'[x]==3*(a+b*x+ b*y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
b
(
AiryBiPrime

(
−32/3b(a+bx)

(−b2)2/3

)
+ c1AiryAiPrime

(
−32/3b(a+bx)

(−b2)2/3

))
3
√
3 (−b2)2/3

(
AiryBi

(
−32/3b(a+bx)

(−b2)2/3

)
+ c1AiryAi

(
−32/3b(a+bx)

(−b2)2/3

))
y(x) →

bAiryAiPrime
(
−32/3b(a+bx)

(−b2)2/3

)
3
√
3 (−b2)2/3AiryAi

(
−32/3b(a+bx)

(−b2)2/3

)
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2.29 problem 54
2.29.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 599
2.29.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 600

Internal problem ID [3318]
Internal file name [OUTPUT/2810_Sunday_June_05_2022_08_40_54_AM_97440398/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 2
Problem number: 54.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − by2 = a

2.29.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
b y2 + a

dy = x+ c1

arctan
(

yb√
ab

)
√
ab

= x+ c1

Solving for y gives these solutions

y1 =
tan

(
c1
√
ab+ x

√
ab
)√

ab

b

Summary
The solution(s) found are the following

(1)y =
tan

(
c1
√
ab+ x

√
ab
)√

ab

b
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Verification of solutions

y =
tan

(
c1
√
ab+ x

√
ab
)√

ab

b

Verified OK.

2.29.2 Maple step by step solution

Let’s solve
y′ − by2 = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+by2
= 1

• Integrate both sides with respect to x∫
y′

a+by2
dx =

∫
1dx+ c1

• Evaluate integral
arctan

(
yb√
ab

)
√
ab

= x+ c1

• Solve for y

y =
tan
(
c1
√
ab+x

√
ab
)√

ab

b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(diff(y(x),x) = a+b*y(x)^2,y(x), singsol=all)� �

y(x) =

√
ab tan

(√
ab (c1 + x)

)
b

3 Solution by Mathematica
Time used: 9.091 (sec). Leaf size: 68� �
DSolve[y'[x]==a+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
a tan

(√
a
√
b(x+ c1)

)
√
b

y(x) → − i
√
a√
b

y(x) → i
√
a√
b
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3 Various 3
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3.1 problem 55
3.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 603

Internal problem ID [3319]
Internal file name [OUTPUT/2811_Sunday_June_05_2022_08_40_55_AM_58290143/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 55.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′ − by2 = ax

3.1.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= b y2 + ax

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2 + ax

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = ax, f1(x) = 0 and f2(x) = b. Let

y = −u′

f2u

= −u′

bu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = b2ax

Substituting the above terms back in equation (2) gives

bu′′(x) + b2axu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi
(
−(ab)

1
3 x
)
+ c2AiryBi

(
−(ab)

1
3 x
)

The above shows that

u′(x) =
(
−AiryAi

(
1,−(ab)

1
3 x
)
c1 − AiryBi

(
1,−(ab)

1
3 x
)
c2
)
(ab)

1
3

Using the above in (1) gives the solution

y = −

(
−AiryAi

(
1,−(ab)

1
3 x
)
c1 − AiryBi

(
1,−(ab)

1
3 x
)
c2
)
(ab)

1
3

b
(
c1AiryAi

(
− (ab)

1
3 x
)
+ c2AiryBi

(
− (ab)

1
3 x
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
AiryAi

(
1,−(ab)

1
3 x
)
c3 +AiryBi

(
1,−(ab)

1
3 x
))

(ab)
1
3

b
(
c3AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))

Summary
The solution(s) found are the following

(1)y =

(
AiryAi

(
1,−(ab)

1
3 x
)
c3 +AiryBi

(
1,−(ab)

1
3 x
))

(ab)
1
3

b
(
c3AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))
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Verification of solutions

y =

(
AiryAi

(
1,−(ab)

1
3 x
)
c3 +AiryBi

(
1,−(ab)

1
3 x
))

(ab)
1
3

b
(
c3AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve(diff(y(x),x) = a*x+b*y(x)^2,y(x), singsol=all)� �

y(x) =
(ab)

1
3

(
AiryAi

(
1,−(ab)

1
3 x
)
c1 +AiryBi

(
1,−(ab)

1
3 x
))

b
(
c1AiryAi

(
− (ab)

1
3 x
)
+AiryBi

(
− (ab)

1
3 x
))
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3 Solution by Mathematica
Time used: 0.155 (sec). Leaf size: 331� �
DSolve[y'[x]==a x+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

√
a
√
bx3/2

(
−2BesselJ

(
−2

3 ,
2
3
√
a
√
bx3/2

)
+ c1

(
BesselJ

(
2
3 ,

2
3
√
a
√
bx3/2

)
− BesselJ

(
−4

3 ,
2
3
√
a
√
bx3/2

)))
− c1 BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
2bx

(
BesselJ

(
1
3 ,

2
3
√
a
√
bx3/2

)
+ c1 BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

))
y(x) →

−

√
a
√
bx3/2 BesselJ

(
−4

3 ,
2
3
√
a
√
bx3/2

)
−

√
a
√
bx3/2 BesselJ

(
2
3 ,

2
3
√
a
√
bx3/2

)
+ BesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
2bxBesselJ

(
−1

3 ,
2
3
√
a
√
bx3/2

)
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3.2 problem 56
3.2.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 607

Internal problem ID [3320]
Internal file name [OUTPUT/2812_Sunday_June_05_2022_08_40_55_AM_68784062/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 56.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − cy2 = bx+ a

3.2.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= c y2 + bx+ a

This is a Riccati ODE. Comparing the ODE to solve

y′ = c y2 + bx+ a

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = bx+ a, f1(x) = 0 and f2(x) = c. Let

y = −u′

f2u

= −u′

cu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = c2(bx+ a)

Substituting the above terms back in equation (2) gives

cu′′(x) + c2(bx+ a)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1AiryAi
(
−(cb)

1
3 (bx+ a)
b

)
+ c2AiryBi

(
−(cb)

1
3 (bx+ a)
b

)

The above shows that

u′(x) =
(
−AiryBi

(
1,−(cb)

1
3 (bx+ a)
b

)
c2 − AiryAi

(
1,−(cb)

1
3 (bx+ a)
b

)
c1

)
(cb)

1
3

Using the above in (1) gives the solution

y = −

(
−AiryBi

(
1,− (cb)

1
3 (bx+a)
b

)
c2 − AiryAi

(
1,− (cb)

1
3 (bx+a)
b

)
c1

)
(cb)

1
3

c

(
c1AiryAi

(
− (cb)

1
3 (bx+a)
b

)
+ c2AiryBi

(
− (cb)

1
3 (bx+a)
b

))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
AiryAi

(
1,− (cb)

1
3 (bx+a)
b

)
c3 +AiryBi

(
1,− (cb)

1
3 (bx+a)
b

))
(cb)

1
3

c

(
c3AiryAi

(
− (cb)

1
3 (bx+a)
b

)
+AiryBi

(
− (cb)

1
3 (bx+a)
b

))
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Summary
The solution(s) found are the following

(1)y =

(
AiryAi

(
1,− (cb)

1
3 (bx+a)
b

)
c3 +AiryBi

(
1,− (cb)

1
3 (bx+a)
b

))
(cb)

1
3

c

(
c3AiryAi

(
− (cb)

1
3 (bx+a)
b

)
+AiryBi

(
− (cb)

1
3 (bx+a)
b

))
Verification of solutions

y =

(
AiryAi

(
1,− (cb)

1
3 (bx+a)
b

)
c3 +AiryBi

(
1,− (cb)

1
3 (bx+a)
b

))
(cb)

1
3

c

(
c3AiryAi

(
− (cb)

1
3 (bx+a)
b

)
+AiryBi

(
− (cb)

1
3 (bx+a)
b

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

<- Abel AIR successful: ODE belongs to the 0F1 0-parameter (Airy type) class`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 85� �
dsolve(diff(y(x),x) = a+b*x+c*y(x)^2,y(x), singsol=all)� �

y(x) =

(
b√
c

) 1
3

(
AiryAi

(
1,− bx+a(

b√
c

) 2
3

)
c1 +AiryBi

(
1,− bx+a(

b√
c

) 2
3

))
√
c

(
c1AiryAi

(
− bx+a(

b√
c

) 2
3

)
+AiryBi

(
− bx+a(

b√
c

) 2
3

))

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 143� �
DSolve[y'[x]==a+b x+c y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
b
(
AiryBiPrime

(
− c(a+bx)

(−bc)2/3

)
+ c1AiryAiPrime

(
− c(a+bx)

(−bc)2/3

))
(−bc)2/3

(
AiryBi

(
− c(a+bx)

(−bc)2/3

)
+ c1AiryAi

(
− c(a+bx)

(−bc)2/3

))
y(x) →

bAiryAiPrime
(
− c(a+bx)

(−bc)2/3

)
(−bc)2/3AiryAi

(
− c(a+bx)

(−bc)2/3

)
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3.3 problem 57
3.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 611

Internal problem ID [3321]
Internal file name [OUTPUT/2813_Sunday_June_05_2022_08_40_56_AM_59766821/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 57.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − cy2 = a xn−1 + b x2n

3.3.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= a xn−1 + b x2n + c y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = a xn

x
+ b x2n + c y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a xn−1 + b x2n, f1(x) = 0 and f2(x) = c. Let

y = −u′

f2u

= −u′

cu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = c2

(
a xn−1 + b x2n)

Substituting the above terms back in equation (2) gives

cu′′(x) + c2
(
a xn−1 + b x2n)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x−n
2

(
c1WhittakerM

(
− i

√
c a√

b (2n+ 2)
,

1
2n+ 2 ,

2i
√
c
√
b xnx

n+ 1

)

+ c2WhittakerW
(
− i

√
c a√

b (2n+ 2)
,

1
2n+ 2 ,

2i
√
c
√
b xnx

n+ 1

))

The above shows that

u′(x)

=

(
−
(
i
√
b
√
c a− b(2 + n)

)
c1WhittakerM

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
− 2bc2(n+ 1)WhittakerW

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
+
(
c1WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+ c2WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))(
2ib 3

2
√
c x xn + i

√
b
√
c a− bn

))
x−n

2

2bx

Using the above in (1) gives the solution

y =

−
−
(
i
√
b
√
c a− b(2 + n)

)
c1WhittakerM

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
− 2bc2(n+ 1)WhittakerW

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
+
(
c1WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+ c2WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))(
2ib 3

2
√
c x xn + i

√
b
√
c a− bn

)
2bxc

(
c1WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+ c2WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=

(
i
√
b
√
c a− b(2 + n)

)
c3WhittakerM

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
+ 2b(n+ 1)WhittakerW

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
−
(
c3WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))(
2ib 3

2
√
c x xn + i

√
b
√
c a− bn

)
2bxc

(
c3WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))
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Summary
The solution(s) found are the following

(1)y

=

(
i
√
b
√
c a− b(2 + n)

)
c3WhittakerM

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
+ 2b(n+ 1)WhittakerW

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
−
(
c3WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))(
2ib 3

2
√
c x xn + i

√
b
√
c a− bn

)
2bxc

(
c3WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))
Verification of solutions
y

=

(
i
√
b
√
c a− b(2 + n)

)
c3WhittakerM

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
+ 2b(n+ 1)WhittakerW

(
− (−2−2n)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
c
√
b xnx

n+1

)
−
(
c3WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))(
2ib 3

2
√
c x xn + i

√
b
√
c a− bn

)
2bxc

(
c3WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

)
+WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
c
√
b xnx

n+1

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -c*(a*x^(n-1)+b*x^(2*n))*y(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 354� �
dsolve(diff(y(x),x) = a*x^(n-1)+b*x^(2*n)+c*y(x)^2,y(x), singsol=all)� �
y(x) =

−

(
(2 + n)

√
b− i

√
c a
)
WhittakerM

(
− (−2n−2)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
b
√
c xnx

n+1

)
− 2c1

√
b (n+ 1)WhittakerW

(
− (−2n−2)

√
b+i

√
c a√

b (2n+2) , 1
2n+2 ,

2i
√
b
√
c xnx

n+1

)
+
(
−
√
b n+ i(2xnbx+ a)

√
c
)(

WhittakerW
(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
b
√
c xnx

n+1

)
c1 +WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
b
√
c xnx

n+1

))
2
√
b
(
WhittakerW

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
b
√
c xnx

n+1

)
c1 +WhittakerM

(
− i

√
c a√

b (2n+2) ,
1

2n+2 ,
2i
√
b
√
c xnx

n+1

))
cx

3 Solution by Mathematica
Time used: 1.115 (sec). Leaf size: 982� �
DSolve[y'[x]==a x^(n-1)+b x^(2 n)+c y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

xn

(
√
bc1(n+ 1)

√
−(n+ 1)2HypergeometricU

(
1
2

( √
ca√

b
√

−(n+1)2 +
n

n+1

)
, n
n+1 ,

2
√
b
√
cxn+1√

−(n+1)2

)
+ c1

(
a
√
c(n+ 1) +

√
b
√

−(n+ 1)2n
)
HypergeometricU

(
1
2

( √
ca√

b
√

−(n+1)2 +
3n+2
n+1

)
, n
n+1 + 1, 2

√
b
√
cxn+1√

−(n+1)2

)
+
√
b(n+ 1)

√
−(n+ 1)2

(
L
− 1

n+1

−
√

ca

2
√
b
√

−(n+1)2
− n

2(n+1)

(
2
√
b
√
cxn+1√

−(n+1)2

)
+ 2L

n
n+1

−
√

ca

2
√
b
√

−(n+1)2
− 3n+2

2n+2

(
2
√
b
√
cxn+1√

−(n+1)2

)))
√
c(n+ 1)2

(
L
− 1

n+1

−
√

ca

2
√

b
√

−(n+1)2
− n

2(n+1)

(
2
√
b
√
cxn+1√

−(n+1)2

)
+ c1HypergeometricU

(
1
2

( √
ca√

b
√

−(n+1)2 +
n

n+1

)
, n
n+1 ,

2
√
b
√
cxn+1√

−(n+1)2

))
y(x)

→

xn

−

(
a
√
c(n+1)+

√
b
√

−(n+1)2n
)
HypergeometricU

(
1
2

(
√
ca

√
b
√

−(n+1)2
+ n

n+1+2
)
, n
n+1+1, 2

√
b
√
cxn+1√

−(n+1)2

)

HypergeometricU
(

1
2

(
√
ca

√
b
√

−(n+1)2
+ n

n+1

)
, n
n+1 ,

2
√
b
√
cxn+1√

−(n+1)2

) −
√
b
√

−(n+ 1)2(n+ 1)


√
c(n+ 1)2

y(x)

→

xn

−

(
a
√
c(n+1)+

√
b
√

−(n+1)2n
)
HypergeometricU

(
1
2

(
√
ca

√
b
√

−(n+1)2
+ n

n+1+2
)
, n
n+1+1, 2

√
b
√
cxn+1√

−(n+1)2

)

HypergeometricU
(

1
2

(
√
ca

√
b
√

−(n+1)2
+ n

n+1

)
, n
n+1 ,

2
√
b
√
cxn+1√

−(n+1)2

) −
√
b
√

−(n+ 1)2(n+ 1)


√
c(n+ 1)2
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3.4 problem 58
3.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 616

Internal problem ID [3322]
Internal file name [OUTPUT/2814_Sunday_June_05_2022_08_41_01_AM_44552190/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 58.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_Riccati , _special ]]

y′ − by2 = x2a

3.4.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x2a+ b y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2a+ b y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2a, f1(x) = 0 and f2(x) = b. Let

y = −u′

f2u

= −u′

bu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = b2x2a

Substituting the above terms back in equation (2) gives

bu′′(x) + b2x2au(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
BesselJ

(
1
4 ,

√
ab x2

2

)
c1 + BesselY

(
1
4 ,

√
ab x2

2

)
c2

)
√
x

The above shows that

u′(x) =
√
ab x

3
2

(
BesselJ

(
−3
4 ,

√
ab x2

2

)
c1 + BesselY

(
−3
4 ,

√
ab x2

2

)
c2

)

Using the above in (1) gives the solution

y = −

√
ab x

(
BesselJ

(
−3

4 ,
√
ab x2

2

)
c1 + BesselY

(
−3

4 ,
√
ab x2

2

)
c2
)

b
(
BesselJ

(
1
4 ,

√
ab x2

2

)
c1 + BesselY

(
1
4 ,

√
ab x2

2

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −

√
ab x

(
BesselJ

(
−3

4 ,
√
ab x2

2

)
c3 + BesselY

(
−3

4 ,
√
ab x2

2

))
b
(
BesselJ

(
1
4 ,

√
ab x2

2

)
c3 + BesselY

(
1
4 ,

√
ab x2

2

))
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Summary
The solution(s) found are the following

(1)y = −

√
ab x

(
BesselJ

(
−3

4 ,
√
ab x2

2

)
c3 + BesselY

(
−3

4 ,
√
ab x2

2

))
b
(
BesselJ

(
1
4 ,

√
ab x2

2

)
c3 + BesselY

(
1
4 ,

√
ab x2

2

))
Verification of solutions

y = −

√
ab x

(
BesselJ

(
−3

4 ,
√
ab x2

2

)
c3 + BesselY

(
−3

4 ,
√
ab x2

2

))
b
(
BesselJ

(
1
4 ,

√
ab x2

2

)
c3 + BesselY

(
1
4 ,

√
ab x2

2

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 73� �
dsolve(diff(y(x),x) = a*x^2+b*y(x)^2,y(x), singsol=all)� �

y(x) =

(
−BesselJ

(
−3

4 ,
√
ab x2

2

)
c1 − BesselY

(
−3

4 ,
√
ab x2

2

))√
ab x

b
(
c1 BesselJ

(
1
4 ,

√
ab x2

2

)
+ BesselY

(
1
4 ,

√
ab x2

2

))
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3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 305� �
DSolve[y'[x]==a x^2+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

√
a
√
bx2
(
−2BesselJ

(
−3

4 ,
1
2
√
a
√
bx2
)
+ c1

(
BesselJ

(
3
4 ,

1
2
√
a
√
bx2
)
− BesselJ

(
−5

4 ,
1
2
√
a
√
bx2
)))

− c1 BesselJ
(
−1

4 ,
1
2
√
a
√
bx2
)

2bx
(
BesselJ

(
1
4 ,

1
2
√
a
√
bx2
)
+ c1 BesselJ

(
−1

4 ,
1
2
√
a
√
bx2
))

y(x) →

−

√
a
√
bx2 BesselJ

(
−5

4 ,
1
2
√
a
√
bx2
)
−
√
a
√
bx2 BesselJ

(
3
4 ,

1
2
√
a
√
bx2
)
+ BesselJ

(
−1

4 ,
1
2
√
a
√
bx2
)

2bxBesselJ
(
−1

4 ,
1
2
√
a
√
bx2
)
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3.5 problem 59
3.5.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 620
3.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 621

Internal problem ID [3323]
Internal file name [OUTPUT/2815_Sunday_June_05_2022_08_41_02_AM_5287664/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 59.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − a1 y − a2 y2 = a0

3.5.1 Solving as quadrature ode

Integrating both sides gives∫ 1
a2 y2 + a1 y + a0dy = x+ c1

2 arctan
(

2 a2 y+a1√
4 a0 a2− a12

)
√
4 a0 a2− a12

= x+ c1

Solving for y gives these solutions

y1 =
tan

(
c1
√

4 a0 a2− a12
2 + x

√
4 a0 a2− a12

2

)√
4 a0 a2− a12 − a1

2 a2

Summary
The solution(s) found are the following

(1)y =
tan

(
c1
√

4 a0 a2− a12
2 + x

√
4 a0 a2− a12

2

)√
4 a0 a2− a12 − a1

2 a2
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Verification of solutions

y =
tan

(
c1
√

4 a0 a2− a12
2 + x

√
4 a0 a2− a12

2

)√
4 a0 a2− a12 − a1

2 a2

Verified OK.

3.5.2 Maple step by step solution

Let’s solve
y′ − a1y − a2y2 = a0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a0+a1y+a2y2 = 1

• Integrate both sides with respect to x∫
y′

a0+a1y+a2y2dx =
∫
1dx+ c1

• Evaluate integral
2 arctan

(
2ya2+a1√
4a0a2−a12

)
√

4a0a2−a12 = x+ c1

• Solve for y

y =
tan
(

c1
√

4a0a2−a12
2 +x

√
4a0a2−a12

2

)√
4a0a2−a12−a1

2a2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve(diff(y(x),x) = a0+a1*y(x)+a2*y(x)^2,y(x), singsol=all)� �

y(x) =
− a1+ tan

(√
4 a0 a2− a12 (c1+x)

2

)√
4 a0 a2− a12

2 a2

3 Solution by Mathematica
Time used: 32.049 (sec). Leaf size: 106� �
DSolve[y'[x]==a0+a1 y[x]+ a2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−a1+

√
4a0a2− a12 tan

(
1
2(x+ c1)

√
4a0a2− a12

)
2a2

y(x) →
√
a12 − 4a0a2− a1

2a2

y(x) → −
√
a12 − 4a0a2+ a1

2a2
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3.6 problem 60
3.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 623

Internal problem ID [3324]
Internal file name [OUTPUT/2816_Sunday_June_05_2022_08_41_03_AM_67836189/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 60.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − ya− by2 = f(x)

3.6.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= f(x) + ya+ b y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = f(x) + ya+ b y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = f(x), f1(x) = a and f2(x) = b. Let

y = −u′

f2u

= −u′

bu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = ab

f 2
2 f0 = b2f(x)

Substituting the above terms back in equation (2) gives

bu′′(x)− abu′(x) + b2f(x)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = DESol ({f(x) b_Y(x)− a_Y′(x) + _Y′′(x)} , {_Y(x)})

The above shows that

u′(x) = ∂

∂x
DESol ({f(x) b_Y(x)− a_Y′(x) + _Y′′(x)} , {_Y(x)})

Using the above in (1) gives the solution

y = −
∂
∂x

DESol ({f(x) b_Y(x)− a_Y′(x) + _Y′′(x)} , {_Y(x)})
bDESol ({f (x) b_Y (x)− a_Y′ (x) + _Y′′ (x)} , {_Y (x)})

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −
∂
∂x

DESol ({f(x) b_Y(x)− a_Y′(x) + _Y′′(x)} , {_Y(x)})
bDESol ({f (x) b_Y (x)− a_Y′ (x) + _Y′′ (x)} , {_Y (x)})

Summary
The solution(s) found are the following

(1)y = −
∂
∂x

DESol ({f(x) b_Y(x)− a_Y′(x) + _Y′′(x)} , {_Y(x)})
bDESol ({f (x) b_Y (x)− a_Y′ (x) + _Y′′ (x)} , {_Y (x)})
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Verification of solutions

y = −
∂
∂x

DESol ({f(x) b_Y(x)− a_Y′(x) + _Y′′(x)} , {_Y(x)})
bDESol ({f (x) b_Y (x)− a_Y′ (x) + _Y′′ (x)} , {_Y (x)})

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*(diff(y(x), x))-b*f(x)*y(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(b*y(x)^2+y(x)+a*y(x)*x+x^2*f(x))/x, y(x), explicit` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x) = f(x)+a*y(x)+b*y(x)^2,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==f[x]+a y[x]+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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3.7 problem 61
3.7.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 628

Internal problem ID [3325]
Internal file name [OUTPUT/2817_Sunday_June_05_2022_08_41_04_AM_83860826/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 61.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − a(−y + x) y = 1

3.7.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= axy − a y2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = axy − a y2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1, f1(x) = ax and f2(x) = −a. Let

y = −u′

f2u

= −u′

−au
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −x a2

f 2
2 f0 = a2

Substituting the above terms back in equation (2) gives

−au′′(x) + x a2u′(x) + a2u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex2a
2

(
c1 erf

(√
2
√
a x

2

)
+ c2

)

The above shows that

u′(x) =
ax

√
π
(
c1 erf

(√
2
√
a x

2

)
+ c2

)
ex2a

2 +
√
a
√
2 c1

√
π

Using the above in (1) gives the solution

y =

(
ax

√
π
(
c1 erf

(√
2
√
a x

2

)
+ c2

)
ex2a

2 +
√
a
√
2 c1
)
e−x2a

2

√
π a
(
c1 erf

(√
2
√
a x

2

)
+ c2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

√
a
√
2 c3e−

x2a
2 +

√
π ax

(
c3 erf

(√
2
√
a x

2

)
+ 1
)

√
π a
(
c3 erf

(√
2
√
a x

2

)
+ 1
)
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Summary
The solution(s) found are the following

(1)y =

√
a
√
2 c3e−

x2a
2 +

√
π ax

(
c3 erf

(√
2
√
a x

2

)
+ 1
)

√
π a
(
c3 erf

(√
2
√
a x

2

)
+ 1
)

Verification of solutions

y =

√
a
√
2 c3e−

x2a
2 +

√
π ax

(
c3 erf

(√
2
√
a x

2

)
+ 1
)

√
π a
(
c3 erf

(√
2
√
a x

2

)
+ 1
)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 73� �
dsolve(diff(y(x),x) = 1+a*(x-y(x))*y(x),y(x), singsol=all)� �

y(x) =
2a 3

2 c1x+
√
2 erf

(√
2
√
a x

2

)√
π ax+ 2

√
a e−a x2

2

a
(√

π
√
2 erf

(√
2
√
a x

2

)
+ 2c1

√
a
)
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3 Solution by Mathematica
Time used: 2.067 (sec). Leaf size: 93� �
DSolve[y'[x]==1+a(x-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
2πc1xerf

(√
ax√
2

)
+

2
(
ax+c1e

−ax2
2

)
√
a

2
√
a+

√
2πc1erf

(√
ax√
2

)
y(x) → x
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3.8 problem 62
3.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 632

Internal problem ID [3326]
Internal file name [OUTPUT/2818_Sunday_June_05_2022_08_41_05_AM_443934/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 62.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − g(x) y − ay2 = f(x)

3.8.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= f(x) + g(x) y + a y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = f(x) + g(x) y + a y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = f(x), f1(x) = g(x) and f2(x) = a. Let

y = −u′

f2u

= −u′

au
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = g(x) a
f 2
2 f0 = a2f(x)

Substituting the above terms back in equation (2) gives

au′′(x)− g(x) au′(x) + a2f(x)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = DESol ({af(x)_Y(x)− g(x)_Y′(x) + _Y′′(x)} , {_Y(x)})

The above shows that

u′(x) = ∂

∂x
DESol ({af(x)_Y(x)− g(x)_Y′(x) + _Y′′(x)} , {_Y(x)})

Using the above in (1) gives the solution

y = −
∂
∂x

DESol ({af(x)_Y(x)− g(x)_Y′(x) + _Y′′(x)} , {_Y(x)})
aDESol ({af (x)_Y (x)− g (x)_Y′ (x) + _Y′′ (x)} , {_Y (x)})

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −
∂
∂x

DESol ({af(x)_Y(x)− g(x)_Y′(x) + _Y′′(x)} , {_Y(x)})
aDESol ({af (x)_Y (x)− g (x)_Y′ (x) + _Y′′ (x)} , {_Y (x)})

Summary
The solution(s) found are the following

(1)y = −
∂
∂x

DESol ({af(x)_Y(x)− g(x)_Y′(x) + _Y′′(x)} , {_Y(x)})
aDESol ({af (x)_Y (x)− g (x)_Y′ (x) + _Y′′ (x)} , {_Y (x)})
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Verification of solutions

y = −
∂
∂x

DESol ({af(x)_Y(x)− g(x)_Y′(x) + _Y′′(x)} , {_Y(x)})
aDESol ({af (x)_Y (x)− g (x)_Y′ (x) + _Y′′ (x)} , {_Y (x)})

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = g(x)*(diff(y(x), x))-a*f(x)*y(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(a*y(x)^2+y(x)+g(x)*y(x)*x+x^2*f(x))/x, y(x), explicit` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x) = f(x)+g(x)*y(x)+a*y(x)^2,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==f[x]+g[x] y[x]+a y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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3.9 problem 63
3.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 637
3.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 639
3.9.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 643
3.9.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 647
3.9.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 650
3.9.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 652

Internal problem ID [3327]
Internal file name [OUTPUT/2819_Sunday_June_05_2022_08_41_06_AM_46638547/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 63.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − xy(y + 3) = 0

3.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy(y + 3)

Where f(x) = x and g(y) = (y + 3) y. Integrating both sides gives

1
(y + 3) y dy = x dx∫ 1
(y + 3) y dy =

∫
x dx
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− ln (y + 3)
3 + ln (y)

3 = x2

2 + c1

The above can be written as(
−1
3

)
(ln (y + 3)− ln (y)) = x2

2 + 2c1

ln (y + 3)− ln (y) = (−3)
(
x2

2 + 2c1
)

= −3x2

2 − 6c1

Raising both side to exponential gives

eln(y+3)−ln(y) = e− 3x2
2 −3c1

Which simplifies to

y + 3
y

= −3c1e−
3x2
2

= c2e−
3x2
2

Summary
The solution(s) found are the following

(1)y = 3
−1 + c2e−

3x2
2
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Figure 115: Slope field plot

Verification of solutions

y = 3
−1 + c2e−

3x2
2

Verified OK.

3.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy(y + 3)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 124: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy(y + 3)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y + 3) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R + 3)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R + 3)
3 + ln (R)

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = − ln (y + 3)
3 + ln (y)

3 + c1

Which simplifies to

x2

2 = − ln (y + 3)
3 + ln (y)

3 + c1

Which gives

y = 3
e− 3x2

2 +3c1 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy(y + 3) dS
dR

= 1
R(R+3)

R = y

S = x2

2
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Summary
The solution(s) found are the following

(1)y = 3
e− 3x2

2 +3c1 − 1

Figure 116: Slope field plot

Verification of solutions

y = 3
e− 3x2

2 +3c1 − 1

Verified OK.

3.9.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= xy(y + 3)

This is a Bernoulli ODE.
y′ = 3xy + xy2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 3x
f1(x) = x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 3x
y

+ x (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = 3w(x)x+ x

w′ = −3xw − x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

644



Where here

p(x) = 3x
q(x) = −x

Hence the ode is

w′(x) + 3w(x)x = −x

The integrating factor µ is

µ = e
∫
3xdx

= e 3x2
2

The ode becomes

d
dx(µw) = (µ) (−x)

d
dx

(
e 3x2

2 w
)
=
(
e 3x2

2

)
(−x)

d
(
e 3x2

2 w
)
=
(
−x e 3x2

2

)
dx

Integrating gives

e 3x2
2 w =

∫
−x e 3x2

2 dx

e 3x2
2 w = −e 3x2

2

3 + c1

Dividing both sides by the integrating factor µ = e 3x2
2 results in

w(x) = −e− 3x2
2 e 3x2

2

3 + c1e−
3x2
2

which simplifies to

w(x) = −1
3 + c1e−

3x2
2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −1

3 + c1e−
3x2
2
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Or

y = 1
−1

3 + c1e−
3x2
2

Summary
The solution(s) found are the following

(1)y = 1
−1

3 + c1e−
3x2
2

Figure 117: Slope field plot

Verification of solutions

y = 1
−1

3 + c1e−
3x2
2

Verified OK.
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3.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y (y + 3)

)
dy = (x) dx

(−x) dx+
(

1
y (y + 3)

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y (y + 3)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
1

y (y + 3)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
y(y+3) . Therefore equation (4) becomes

(5)1
y (y + 3) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y (y + 3)

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y (y + 3)

)
dy

f(y) = − ln (y + 3)
3 + ln (y)

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (y + 3)
3 + ln (y)

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (y + 3)
3 + ln (y)

3

The solution becomes

y = − 3 e 3x2
2 +3c1

−1 + e 3x2
2 +3c1

Summary
The solution(s) found are the following

(1)y = − 3 e 3x2
2 +3c1

−1 + e 3x2
2 +3c1
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Figure 118: Slope field plot

Verification of solutions

y = − 3 e 3x2
2 +3c1

−1 + e 3x2
2 +3c1

Verified OK.

3.9.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= xy(y + 3)

This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2 + 3xy

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 3x and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = 3x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

xu′′(x)−
(
3x2 + 1

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + e 3x2
2 c2

The above shows that

u′(x) = 3x e 3x2
2 c2

Using the above in (1) gives the solution

y = − 3 e 3x2
2 c2

c1 + e 3x2
2 c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 3 e 3x2
2

c3 + e 3x2
2
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Summary
The solution(s) found are the following

(1)y = − 3 e 3x2
2

c3 + e 3x2
2

Figure 119: Slope field plot

Verification of solutions

y = − 3 e 3x2
2

c3 + e 3x2
2

Verified OK.

3.9.6 Maple step by step solution

Let’s solve
y′ − xy(y + 3) = 0

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

y(y+3) = x

• Integrate both sides with respect to x∫
y′

y(y+3)dx =
∫
xdx+ c1

• Evaluate integral
− ln(y+3)

3 + ln(y)
3 = x2

2 + c1

• Solve for y

y = − 3 e
3x2
2 +3c1

−1+e
3x2
2 +3c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x) = x*y(x)*(3+y(x)),y(x), singsol=all)� �

y(x) = 3
−1 + 3 e− 3x2

2 c1
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3 Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 49� �
DSolve[y'[x]==x*y[x](3+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 3e 3x2
2 +3c1

−1 + e
3x2
2 +3c1

y(x) → −3
y(x) → 0
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3.10 problem 64
3.10.1 Solving as first order ode lie symmetry calculated ode . . . . . . 655
3.10.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 663

Internal problem ID [3328]
Internal file name [OUTPUT/2820_Sunday_June_05_2022_08_41_07_AM_91304422/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 64.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_Riccati]

y′ −
(
2x2 + 1

)
y + y2x = −x3 − x+ 1

3.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x3 + 2x2y − x y2 − x+ y + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2
+
(
−x3 + 2x2y − x y2 − x+ y + 1

)
(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

−
(
−x3 + 2x2y − x y2 − x+ y + 1

)2 (xa5 + 2ya6 + a3)
−
(
−3x2 + 4xy − y2 − 1

) (
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
−
(
2x2 − 2xy + 1

) (
x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

−x7a5 + 4x6ya5 − 2x6ya6 − 6x5y2a5 + 8x5y2a6 + 4x4y3a5 − 12x4y3a6
− x3y4a5 + 8x3y4a6 − 2x2y5a6 − x6a3 + 4x5ya3 − 6x4y2a3 + 4x3y3a3
− x2y4a3 − 2x5a5 + 6x4ya5 − 4x4ya6 − 6x3y2a5 + 12x3y2a6 + 2x2y3a5
− 12x2y3a6 +4x y4a6 − 2x4a3 +5x4a4 +2x4a5 − 2x4b4 − x4b5 +6x3ya3
− 8x3ya4 + 4x3ya6 + 2x3yb4 − 2x3yb6 − 6x2y2a3 + 3x2y2a4 − 4x2y2a5
− 5x2y2a6 + x2y2b5 + 2x2y2b6 + 2x y3a3 + 2x y3a5 + y4a6 + 4x3a2
+ 2x3a3 − x3a5 − 2x3b2 − x3b3 − 6x2ya2 − x2ya3 + 2x2ya5 − 2x2ya6
+2x2yb2 +2x y2a2 − 2x y2a3 − x y2a5 +4x y2a6 + x y2b3 + y3a3 − 2y3a6
+3x2a1 − x2a3 +3x2a4 +2x2a5 − 2x2b1 − x2b4 − x2b5 − 4xya1 +2xya3
− 2xya4 + 4xya6 + 2xyb1 − 2xyb6 + y2a1 − y2a3 − y2a5 − 3y2a6
+ y2b6 + 2xa2 + 2xa3 − 2xa4 − xa5 − xb2 − xb3 + 2xb4 + xb5 − ya2
− ya3 − ya5 − 2ya6 + yb5 + 2yb6 + a1 − a2 − a3 − b1 + b2 + b3 = 0

Setting the numerator to zero gives

(6E)

−x7a5 + 4x6ya5 − 2x6ya6 − 6x5y2a5 + 8x5y2a6 + 4x4y3a5
− 12x4y3a6 − x3y4a5 + 8x3y4a6 − 2x2y5a6 − x6a3 + 4x5ya3
− 6x4y2a3 + 4x3y3a3 − x2y4a3 − 2x5a5 + 6x4ya5 − 4x4ya6
− 6x3y2a5 + 12x3y2a6 + 2x2y3a5 − 12x2y3a6 + 4x y4a6 − 2x4a3
+ 5x4a4 + 2x4a5 − 2x4b4 − x4b5 + 6x3ya3 − 8x3ya4 + 4x3ya6
+ 2x3yb4 − 2x3yb6 − 6x2y2a3 + 3x2y2a4 − 4x2y2a5 − 5x2y2a6
+ x2y2b5 + 2x2y2b6 + 2x y3a3 + 2x y3a5 + y4a6 + 4x3a2 + 2x3a3
−x3a5−2x3b2−x3b3−6x2ya2−x2ya3+2x2ya5−2x2ya6+2x2yb2
+ 2x y2a2 − 2x y2a3 − x y2a5 + 4x y2a6 + x y2b3 + y3a3 − 2y3a6
+ 3x2a1 − x2a3 + 3x2a4 + 2x2a5 − 2x2b1 − x2b4 − x2b5 − 4xya1
+ 2xya3 − 2xya4 + 4xya6 + 2xyb1 − 2xyb6 + y2a1 − y2a3 − y2a5
−3y2a6+y2b6+2xa2+2xa3−2xa4−xa5−xb2−xb3+2xb4+xb5
−ya2−ya3−ya5−2ya6+yb5+2yb6+a1−a2−a3−b1+b2+b3 =0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−a5v
7
1 + 4a5v61v2 − 6a5v51v22 + 4a5v41v32 − a5v

3
1v

4
2 − 2a6v61v2

+ 8a6v51v22 − 12a6v41v32 + 8a6v31v42 − 2a6v21v52 − a3v
6
1 + 4a3v51v2

− 6a3v41v22 + 4a3v31v32 − a3v
2
1v

4
2 − 2a5v51 + 6a5v41v2 − 6a5v31v22

+ 2a5v21v32 − 4a6v41v2 + 12a6v31v22 − 12a6v21v32 + 4a6v1v42 − 2a3v41
+ 6a3v31v2 − 6a3v21v22 + 2a3v1v32 + 5a4v41 − 8a4v31v2 + 3a4v21v22
+2a5v41 −4a5v21v22 +2a5v1v32 +4a6v31v2−5a6v21v22 +a6v

4
2 −2b4v41

+2b4v31v2− b5v
4
1 + b5v

2
1v

2
2 −2b6v31v2+2b6v21v22 +4a2v31 −6a2v21v2

+ 2a2v1v22 + 2a3v31 − a3v
2
1v2 − 2a3v1v22 + a3v

3
2 − a5v

3
1 + 2a5v21v2

− a5v1v
2
2 − 2a6v21v2 + 4a6v1v22 − 2a6v32 − 2b2v31 + 2b2v21v2

− b3v
3
1 + b3v1v

2
2 + 3a1v21 − 4a1v1v2 + a1v

2
2 − a3v

2
1 + 2a3v1v2

− a3v
2
2 + 3a4v21 − 2a4v1v2 + 2a5v21 − a5v

2
2 + 4a6v1v2 − 3a6v22

− 2b1v21 +2b1v1v2− b4v
2
1 − b5v

2
1 − 2b6v1v2+ b6v

2
2 +2a2v1− a2v2

+ 2a3v1 − a3v2 − 2a4v1 − a5v1 − a5v2 − 2a6v2 − b2v1 − b3v1
+ 2b4v1 + b5v1 + b5v2 + 2b6v2 + a1 − a2 − a3 − b1 + b2 + b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

(4a5 − 2a6) v61v2 + (−6a5 + 8a6) v51v22 + (4a5 − 12a6) v41v32
+ (6a5 − 4a6) v41v2 + (−a5 + 8a6) v31v42 + (−6a5 + 12a6) v31v22
+ (6a3 − 8a4 + 4a6 + 2b4 − 2b6) v31v2 + (2a5 − 12a6) v21v32
+ (−6a3 + 3a4 − 4a5 − 5a6 + b5 + 2b6) v21v22
+ (−6a2 − a3 + 2a5 − 2a6 + 2b2) v21v2
+ (2a3 + 2a5) v1v32 + (2a2 − 2a3 − a5 + 4a6 + b3) v1v22
+ (−4a1 + 2a3 − 2a4 + 4a6 + 2b1 − 2b6) v1v2 + a1 − a2
− a3 − b1 + b2 + b3 − 2a6v21v52 + 4a3v51v2 − 6a3v41v22
+ 4a3v31v32 − a3v

2
1v

4
2 + 4a6v1v42 − a5v

7
1 − a3v

6
1 − 2a5v51 + a6v

4
2

+ (−2a3 +5a4 +2a5 − 2b4 − b5) v41 + (4a2 +2a3 − a5 − 2b2 − b3) v31
+ (3a1 − a3 + 3a4 + 2a5 − 2b1 − b4 − b5) v21
+ (2a2 + 2a3 − 2a4 − a5 − b2 − b3 + 2b4 + b5) v1 + (a3 − 2a6) v32
+(a1−a3−a5−3a6+b6) v22+(−a2−a3−a5−2a6+b5+2b6) v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a6 = 0
−6a3 = 0
−a3 = 0
4a3 = 0

−2a5 = 0
−a5 = 0
−2a6 = 0
4a6 = 0

a3 − 2a6 = 0
2a3 + 2a5 = 0

−6a5 + 8a6 = 0
−6a5 + 12a6 = 0
−a5 + 8a6 = 0
2a5 − 12a6 = 0
4a5 − 12a6 = 0
4a5 − 2a6 = 0
6a5 − 4a6 = 0

a1 − a3 − a5 − 3a6 + b6 = 0
−6a2 − a3 + 2a5 − 2a6 + 2b2 = 0

2a2 − 2a3 − a5 + 4a6 + b3 = 0
4a2 + 2a3 − a5 − 2b2 − b3 = 0

−2a3 + 5a4 + 2a5 − 2b4 − b5 = 0
6a3 − 8a4 + 4a6 + 2b4 − 2b6 = 0

−4a1 + 2a3 − 2a4 + 4a6 + 2b1 − 2b6 = 0
a1 − a2 − a3 − b1 + b2 + b3 = 0

−a2 − a3 − a5 − 2a6 + b5 + 2b6 = 0
−6a3 + 3a4 − 4a5 − 5a6 + b5 + 2b6 = 0

3a1 − a3 + 3a4 + 2a5 − 2b1 − b4 − b5 = 0
2a2 + 2a3 − 2a4 − a5 − b2 − b3 + 2b4 + b5 = 0
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Solving the above equations for the unknowns gives

a1 = −b6

a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = −b6

b2 = 0
b3 = 0
b4 = b6

b5 = −2b6
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1

η = x2 − 2xy + y2 − 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= x2 − 2xy + y2 − 1−

(
−x3 + 2x2y − x y2 − x+ y + 1

)
(−1)

= −x3 + 2x2y − x y2 + x2 − 2xy + y2 − x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3 + 2x2y − x y2 + x2 − 2xy + y2 − x+ y
dy

Which results in

S = ln (y − x) + (1− x) ln (−x2 + xy + x− y − 1)
x− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3 + 2x2y − x y2 − x+ y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − (x− y + 1) (x− y − 1)
(x2 + (−y − 1)x+ y + 1) (−y + x)

Sy = − 1
(x2 + (−y − 1)x+ y + 1) (−y + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y − x)− ln
(
−x2 + yx+ x− y − 1

)
= x+ c1

Which simplifies to

ln (y − x)− ln
(
−x2 + yx+ x− y − 1

)
= x+ c1

Which gives

y = ex+c1x2 − x ex+c1 + ex+c1 − x

−1 + x ex+c1 − ex+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x3 + 2x2y − x y2 − x+ y + 1 dS
dR

= 1

R = x

S = ln (y − x)− ln
(
−x2 + xy + x− y − 1

)

Summary
The solution(s) found are the following

(1)y = ex+c1x2 − x ex+c1 + ex+c1 − x

−1 + x ex+c1 − ex+c1
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Figure 120: Slope field plot

Verification of solutions

y = ex+c1x2 − x ex+c1 + ex+c1 − x

−1 + x ex+c1 − ex+c1

Verified OK.

3.10.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −x3 + 2x2y − x y2 − x+ y + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = −x3 + 2x2y − x y2 − x+ y + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −x3 − x+ 1, f1(x) = 2x2 + 1 and f2(x) = −x. Let

y = −u′

f2u

= −u′

−xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −1

f1f2 = −
(
2x2 + 1

)
x

f 2
2 f0 = x2(−x3 − x+ 1

)
Substituting the above terms back in equation (2) gives

−xu′′(x)−
(
−1−

(
2x2 + 1

)
x
)
u′(x) + x2(−x3 − x+ 1

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e
x3
3 + c2e

x
(
x2+3

)
3 (x− 1)

The above shows that

u′(x) =
((

x2 − x+ 1
)
c2e

x
(
x2+3

)
3 + ex3

3 c1x

)
x

Using the above in (1) gives the solution

y = (x2 − x+ 1) c2e
x
(
x2+3

)
3 + ex3

3 c1x

c1e
x3
3 + c2e

x
(
x2+3

)
3 (x− 1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = (x2 − x+ 1) e
x
(
x2+3

)
3 + ex3

3 c3x

c3e
x3
3 + e

x
(
x2+3

)
3 (x− 1)

Summary
The solution(s) found are the following

(1)y = (x2 − x+ 1) e
x
(
x2+3

)
3 + ex3

3 c3x

c3e
x3
3 + e

x
(
x2+3

)
3 (x− 1)

Figure 121: Slope field plot

Verification of solutions

y = (x2 − x+ 1) e
x
(
x2+3

)
3 + ex3

3 c3x

c3e
x3
3 + e

x
(
x2+3

)
3 (x− 1)

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (2*x^3+x+1)*(diff(y(x), x))/x-x*(x^3+x-1)*y(x), y(x)` *** Subleve

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- Riccati to 2nd Order successful`� �

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 56� �
dsolve(diff(y(x),x) = 1-x-x^3+(2*x^2+1)*y(x)-x*y(x)^2,y(x), singsol=all)� �

y(x) = c1(x2 − x+ 1) e
x
(
x2+3

)
3 + ex3

3 x

c1e
x
(
x2+3

)
3 (x− 1) + ex3

3
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3 Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 40� �
DSolve[y'[x]==1-x-x^3+(1+2 x^2)y[x]-x y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x2 − x+ 1) + c1x

ex(x− 1) + c1
y(x) → x
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3.11 problem 65
3.11.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 668

Internal problem ID [3329]
Internal file name [OUTPUT/2821_Sunday_June_05_2022_08_41_08_AM_69568672/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 65.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − x
(
2 + x2y − y2

)
= 0

3.11.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −x

(
−x2y + y2 − 2

)
This is a Riccati ODE. Comparing the ODE to solve

y′ = x3y − x y2 + 2x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 2x, f1(x) = x3 and f2(x) = −x. Let

y = −u′

f2u

= −u′

−xu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −1

f1f2 = −x4

f 2
2 f0 = 2x3

Substituting the above terms back in equation (2) gives

−xu′′(x)−
(
−x4 − 1

)
u′(x) + 2x3u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex4
4

(
c1 + erf

(
x2

2

)
c2

)
The above shows that

u′(x) =

(
x2√π

(
c1 + erf

(
x2

2

)
c2
)
ex4

4 + 2c2
)
x

√
π

Using the above in (1) gives the solution

y =

(
x2√π

(
c1 + erf

(
x2

2

)
c2
)
ex4

4 + 2c2
)
e−x4

4

√
π
(
c1 + erf

(
x2

2

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
erf
(

x2

2

)√
π x2 + c3

√
π x2 + 2 e−x4

4

√
π
(
c3 + erf

(
x2

2

))
Summary
The solution(s) found are the following

(1)y =
erf
(

x2

2

)√
π x2 + c3

√
π x2 + 2 e−x4

4

√
π
(
c3 + erf

(
x2

2

))
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Figure 122: Slope field plot

Verification of solutions

y =
erf
(

x2

2

)√
π x2 + c3

√
π x2 + 2 e−x4

4

√
π
(
c3 + erf

(
x2

2

))
Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^4+1)*(diff(y(x), x))/x+2*y(x)*x^2, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful
<- Riccati to 2nd Order successful`� �

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 51� �
dsolve(diff(y(x),x) = x*(2+x^2*y(x)-y(x)^2),y(x), singsol=all)� �

y(x) =
erf
(

x2

2

)√
π c1x

2 + x2√π + 2 e−x4
4 c1

√
π
(
erf
(
x2

2

)
c1 + 1

)
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3 Solution by Mathematica
Time used: 0.298 (sec). Leaf size: 70� �
DSolve[y'[x]==x*(2+x^2*y[x]-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
πx2erf

(
x2

2

)
+ 2e−x4

4 + 2c1x2

√
πerf

(
x2

2

)
+ 2c1

y(x) → x2
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3.12 problem 66
3.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 673
3.12.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 680

Internal problem ID [3330]
Internal file name [OUTPUT/2822_Sunday_June_05_2022_08_41_09_AM_15520409/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 66.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_Riccati]

y′ − (1− 2x) y + (1− x) y2 = x

3.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x y2 − 2xy − y2 + x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)
2xb4+yb5+b2+

(
x y2−2xy−y2+x+y

)
(−2xa4+xb5−ya5+2yb6−a2+b3)

−
(
x y2 − 2xy − y2 + x+ y

)2 (xa5 + 2ya6 + a3)
−
(
y2 − 2y + 1

) (
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
− (2xy − 2x− 2y + 1)

(
x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

−x3y4a5 − 2x2y5a6 + 4x3y3a5 − x2y4a3 + 2x2y4a5 + 8x2y4a6 + 4x y5a6
− 6x3y2a5 + 4x2y3a3 − 6x2y3a5 − 12x2y3a6 + 2x y4a3 − x y4a5 − 12x y4a6
− 2y5a6 + 4x3ya5 − 2x3yb4 − 6x2y2a3 − 3x2y2a4 + 6x2y2a5 + 8x2y2a6
− x2y2b5 − 6x y3a3 + 12x y3a6 − y4a3 + 3y4a6 − x3a5 + 2x3b4 + 4x2ya3
+6x2ya4−2x2ya5−2x2ya6−2x2yb2+2x2yb4−2x y2a2+6x y2a3+2x y2a4
+3x y2a5−4x y2a6−x y2b3+x y2b5−2x y2b6+y3a3+y3a5−x2a3−3x2a4
+ 2x2b2 − x2b4 + x2b5 + 4xya2 − 2xya3 − 2xya4 − 2xya5 − 2xyb1 + 2xyb2
+ 2xyb6 − y2a1 + y2a2 + y2a3 − y2a5 − y2a6 + y2b3 + y2b6 − 2xa2 + 2xb1
− xb2 + xb3 + 2xb4 + 2ya1 − ya2 − ya3 + 2yb1 + yb5 − a1 − b1 + b2 = 0

Setting the numerator to zero gives

(6E)

−x3y4a5 − 2x2y5a6 + 4x3y3a5 − x2y4a3 + 2x2y4a5 + 8x2y4a6
+ 4x y5a6 − 6x3y2a5 + 4x2y3a3 − 6x2y3a5 − 12x2y3a6 + 2x y4a3
−x y4a5− 12x y4a6− 2y5a6+4x3ya5− 2x3yb4− 6x2y2a3− 3x2y2a4
+ 6x2y2a5 + 8x2y2a6 − x2y2b5 − 6x y3a3 + 12x y3a6 − y4a3 + 3y4a6
− x3a5 + 2x3b4 + 4x2ya3 + 6x2ya4 − 2x2ya5 − 2x2ya6 − 2x2yb2
+ 2x2yb4 − 2x y2a2 + 6x y2a3 + 2x y2a4 + 3x y2a5 − 4x y2a6 − x y2b3
+ x y2b5 − 2x y2b6 + y3a3 + y3a5 − x2a3 − 3x2a4 + 2x2b2 − x2b4
+ x2b5 + 4xya2 − 2xya3 − 2xya4 − 2xya5 − 2xyb1 + 2xyb2 + 2xyb6
−y2a1+y2a2+y2a3−y2a5−y2a6+y2b3+y2b6−2xa2+2xb1−xb2
+ xb3 + 2xb4 + 2ya1 − ya2 − ya3 + 2yb1 + yb5 − a1 − b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

−a5v
3
1v

4
2 − 2a6v21v52 − a3v

2
1v

4
2 + 4a5v31v32 + 2a5v21v42 + 8a6v21v42

+ 4a6v1v52 + 4a3v21v32 + 2a3v1v42 − 6a5v31v22 − 6a5v21v32 − a5v1v
4
2

− 12a6v21v32 − 12a6v1v42 − 2a6v52 − 6a3v21v22 − 6a3v1v32 − a3v
4
2

− 3a4v21v22 + 4a5v31v2 + 6a5v21v22 + 8a6v21v22 + 12a6v1v32 + 3a6v42
−2b4v31v2− b5v

2
1v

2
2 −2a2v1v22 +4a3v21v2+6a3v1v22 +a3v

3
2 +6a4v21v2

+ 2a4v1v22 − a5v
3
1 − 2a5v21v2 + 3a5v1v22 + a5v

3
2 − 2a6v21v2 − 4a6v1v22

− 2b2v21v2 − b3v1v
2
2 + 2b4v31 + 2b4v21v2 + b5v1v

2
2 − 2b6v1v22 − a1v

2
2

+ 4a2v1v2 + a2v
2
2 − a3v

2
1 − 2a3v1v2 + a3v

2
2 − 3a4v21 − 2a4v1v2

− 2a5v1v2 − a5v
2
2 − a6v

2
2 − 2b1v1v2 + 2b2v21 + 2b2v1v2 + b3v

2
2

− b4v
2
1 + b5v

2
1 + 2b6v1v2 + b6v

2
2 + 2a1v2 − 2a2v1 − a2v2 − a3v2

+ 2b1v1 + 2b1v2 − b2v1 + b3v1 + 2b4v1 + b5v2 − a1 − b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

−a1 − b1 + b2 + (4a2 − 2a3 − 2a4 − 2a5 − 2b1 + 2b2 + 2b6) v1v2
+ (4a5 − 2b4) v31v2 + (−a3 + 2a5 + 8a6) v21v42
+ (4a3 − 6a5 − 12a6) v21v32 + (−6a3 − 3a4 + 6a5 + 8a6 − b5) v21v22
+ (4a3 + 6a4 − 2a5 − 2a6 − 2b2 + 2b4) v21v2
+ (2a3 − a5 − 12a6) v1v42 + (−6a3 + 12a6) v1v32
+ (−2a2 + 6a3 + 2a4 + 3a5 − 4a6 − b3 + b5 − 2b6) v1v22
+ (−a5 + 2b4) v31 − a5v

3
1v

4
2 − 2a6v21v52 − 6a5v31v22 + 4a5v31v32

+ 4a6v1v52 − 2a6v52 + (−a3 − 3a4 + 2b2 − b4 + b5) v21
+ (−2a2 + 2b1 − b2 + b3 + 2b4) v1 + (−a3 + 3a6) v42 + (a3 + a5) v32
+(−a1+a2+a3−a5−a6+b3+b6) v22+(2a1−a2−a3+2b1+b5) v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a5 = 0
−a5 = 0
4a5 = 0

−2a6 = 0
4a6 = 0

−6a3 + 12a6 = 0
−a3 + 3a6 = 0

a3 + a5 = 0
−a5 + 2b4 = 0
4a5 − 2b4 = 0

−a1 − b1 + b2 = 0
−a3 + 2a5 + 8a6 = 0
2a3 − a5 − 12a6 = 0
4a3 − 6a5 − 12a6 = 0

2a1 − a2 − a3 + 2b1 + b5 = 0
−2a2 + 2b1 − b2 + b3 + 2b4 = 0

−6a3 − 3a4 + 6a5 + 8a6 − b5 = 0
−a3 − 3a4 + 2b2 − b4 + b5 = 0

4a3 + 6a4 − 2a5 − 2a6 − 2b2 + 2b4 = 0
−a1 + a2 + a3 − a5 − a6 + b3 + b6 = 0

4a2 − 2a3 − 2a4 − 2a5 − 2b1 + 2b2 + 2b6 = 0
−2a2 + 6a3 + 2a4 + 3a5 − 4a6 − b3 + b5 − 2b6 = 0
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Solving the above equations for the unknowns gives

a1 = −b6

a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = b6

b2 = 0
b3 = −2b6
b4 = 0
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1

η = y2 − 2y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= y2 − 2y + 1−

(
x y2 − 2xy − y2 + x+ y

)
(−1)

= x y2 − 2xy + x− y + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2 − 2xy + x− y + 1dy

Which results in

S = − ln (y − 1) + ln (xy − x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x y2 − 2xy − y2 + x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y − 1
−1 + (y − 1)x

Sy =
1

(−1 + (y − 1)x) (y − 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y − 1) + ln (−1 + x(y − 1)) = x+ c1

Which simplifies to

− ln (y − 1) + ln (−1 + x(y − 1)) = x+ c1

Which gives

y = −1 + ex+c1 − x

ex+c1 − x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x y2 − 2xy − y2 + x+ y dS
dR

= 1

R = x

S = − ln (y − 1) + ln (−1 + (y − 1)x)

Summary
The solution(s) found are the following

(1)y = −1 + ex+c1 − x

ex+c1 − x
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Figure 123: Slope field plot

Verification of solutions

y = −1 + ex+c1 − x

ex+c1 − x

Verified OK.

3.12.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x y2 − 2xy − y2 + x+ y

This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2 − 2xy − y2 + x+ y

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x, f1(x) = 1− 2x and f2(x) = x− 1. Let

y = −u′

f2u

= −u′

(x− 1)u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = (1− 2x) (x− 1)
f 2
2 f0 = (x− 1)2 x

Substituting the above terms back in equation (2) gives

(x− 1)u′′(x)− (1 + (1− 2x) (x− 1))u′(x) + (x− 1)2 xu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x e−
x2
2 + c2e−

x(x−2)
2

The above shows that

u′(x) = −(x− 1)
(
(x+ 1) c1e−

x2
2 + c2e−

x(x−2)
2

)
Using the above in (1) gives the solution

y = (x+ 1) c1e−
x2
2 + c2e−

x(x−2)
2

c1x e−
x2
2 + c2e−

x(x−2)
2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (x+ 1) c3e−
x2
2 + e−

x(x−2)
2

c3x e−
x2
2 + e−

x(x−2)
2
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Summary
The solution(s) found are the following

(1)y = (x+ 1) c3e−
x2
2 + e−

x(x−2)
2

c3x e−
x2
2 + e−

x(x−2)
2

Figure 124: Slope field plot

Verification of solutions

y = (x+ 1) c3e−
x2
2 + e−

x(x−2)
2

c3x e−
x2
2 + e−

x(x−2)
2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular case Kamke (a) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x) = x+(1-2*x)*y(x)-(1-x)*y(x)^2,y(x), singsol=all)� �

y(x) = 2x e−x + 2 e−x − c1
2x e−x − c1

3 Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 30� �
DSolve[y'[x]==x+(1-2 x)y[x]-(1-x)y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1e
x + 1

x+ c1ex

y(x) → 1
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3.13 problem 67
3.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 684
3.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 685
3.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 688
3.13.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 692
3.13.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 693

Internal problem ID [3331]
Internal file name [OUTPUT/2823_Sunday_June_05_2022_08_41_10_AM_84733682/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 67.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − axy2 = 0

3.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= ax y2

Where f(x) = ax and g(y) = y2. Integrating both sides gives

1
y2

dy = ax dx∫ 1
y2

dy =
∫

ax dx

−1
y
= x2a

2 + c1
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Which results in

y = − 2
x2a+ 2c1

Summary
The solution(s) found are the following

(1)y = − 2
x2a+ 2c1

Verification of solutions

y = − 2
x2a+ 2c1

Verified OK.

3.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ax y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 127: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
ax

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
ax

dx

Which results in

S = x2a

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax y2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ax

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2a

2 = −1
y
+ c1

Which simplifies to

x2a

2 = −1
y
+ c1

Which gives

y = 2
−x2a+ 2c1

Summary
The solution(s) found are the following

(1)y = 2
−x2a+ 2c1

Verification of solutions

y = 2
−x2a+ 2c1

Verified OK.

3.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

a y2

)
dy = (x) dx

(−x) dx+
(

1
a y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
a y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1

a y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
a y2

. Therefore equation (4) becomes

(5)1
a y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
a y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
a y2

)
dy

f(y) = − 1
ya

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − 1
ya

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − 1
ya

The solution becomes

y = − 2
a (x2 + 2c1)

Summary
The solution(s) found are the following

(1)y = − 2
a (x2 + 2c1)

Verification of solutions

y = − 2
a (x2 + 2c1)

Verified OK.
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3.13.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= ax y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = ax y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 0 and f2(x) = ax. Let

y = −u′

f2u

= −u′

axu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = a

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

axu′′(x)− au′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1

The above shows that
u′(x) = 2c2x
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Using the above in (1) gives the solution

y = − 2c2
a (c2x2 + c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 2
a (x2 + c3)

Summary
The solution(s) found are the following

(1)y = − 2
a (x2 + c3)

Verification of solutions

y = − 2
a (x2 + c3)

Verified OK.

3.13.5 Maple step by step solution

Let’s solve
y′ − axy2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2
= ax

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
axdx+ c1

• Evaluate integral
− 1

y
= x2a

2 + c1

• Solve for y
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y = − 2
x2a+2c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x) = a*x*y(x)^2,y(x), singsol=all)� �

y(x) = − 2
a x2 − 2c1

3 Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 24� �
DSolve[y'[x]==a x y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2
ax2 + 2c1

y(x) → 0
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3.14 problem 68
3.14.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 695
3.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 696
3.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 699
3.14.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 703
3.14.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 704

Internal problem ID [3332]
Internal file name [OUTPUT/2824_Sunday_June_05_2022_08_41_11_AM_16069456/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 68.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − xn
(
a+ by2

)
= 0

3.14.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xn

(
b y2 + a

)
Where f(x) = xn and g(y) = b y2 + a. Integrating both sides gives

1
b y2 + a

dy = xn dx∫ 1
b y2 + a

dy =
∫

xn dx

arctan
(

yb√
ab

)
√
ab

= xn+1

n+ 1 + c1

695



Which results in

y =
tan

(√
ab
(
nc1+c1+xn+1)

n+1

)√
ab

b

Summary
The solution(s) found are the following

(1)y =
tan

(√
ab
(
nc1+c1+xn+1)

n+1

)√
ab

b

Verification of solutions

y =
tan

(√
ab
(
nc1+c1+xn+1)

n+1

)√
ab

b

Verified OK.

3.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xn
(
b y2 + a

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 130: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x−n

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x−n
dx

Which results in

S = xn+1

n+ 1
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xn
(
b y2 + a

)
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = xn

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

b y2 + a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2b+ a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
arctan

(
Rb√
ab

)
√
ab

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xn+1

n+ 1 =
arctan

(
yb√
ab

)
√
ab

+ c1

Which simplifies to

xn+1

n+ 1 =
arctan

(
yb√
ab

)
√
ab

+ c1

Which gives

y =
tan

( (
−nc1+xn+1−c1

)√
ab

n+1

)√
ab

b

Summary
The solution(s) found are the following

(1)y =
tan

( (
−nc1+xn+1−c1

)√
ab

n+1

)√
ab

b

Verification of solutions

y =
tan

( (
−nc1+xn+1−c1

)√
ab

n+1

)√
ab

b

Verified OK.

3.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

b y2 + a

)
dy = (xn) dx

(−xn) dx+
(

1
b y2 + a

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xn

N(x, y) = 1
b y2 + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−xn)

= 0
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And

∂N

∂x
= ∂

∂x

(
1

b y2 + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xn dx

(3)φ = − xn+1

n+ 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
b y2+a

. Therefore equation (4) becomes

(5)1
b y2 + a

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
b y2 + a
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
b y2 + a

)
dy

f(y) =
arctan

(
yb√
ab

)
√
ab

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − xn+1

n+ 1 +
arctan

(
yb√
ab

)
√
ab

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − xn+1

n+ 1 +
arctan

(
yb√
ab

)
√
ab

The solution becomes

y =
tan

(√
ab
(
nc1+c1+xn+1)

n+1

)√
ab

b

Summary
The solution(s) found are the following

(1)y =
tan

(√
ab
(
nc1+c1+xn+1)

n+1

)√
ab

b

Verification of solutions

y =
tan

(√
ab
(
nc1+c1+xn+1)

n+1

)√
ab

b

Verified OK.
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3.14.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= xn

(
b y2 + a

)
This is a Riccati ODE. Comparing the ODE to solve

y′ = xnb y2 + a xn

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a xn, f1(x) = 0 and f2(x) = b xn. Let

y = −u′

f2u

= −u′

b xnu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

b xnn

x
f1f2 = 0
f 2
2 f0 = b2x3na

Substituting the above terms back in equation (2) gives

b xnu′′(x)− b xnnu′(x)
x

+ b2x3nau(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(√

ab xn+1

n+ 1

)
+ c2 cos

(√
ab xn+1

n+ 1

)
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The above shows that

u′(x) = xn
√
ab

(
c1 cos

(√
ab xn+1

n+ 1

)
− c2 sin

(√
ab xn+1

n+ 1

))

Using the above in (1) gives the solution

y = −

√
ab
(
c1 cos

(√
ab xn+1

n+1

)
− c2 sin

(√
ab xn+1

n+1

))
b
(
c1 sin

(√
ab xn+1

n+1

)
+ c2 cos

(√
ab xn+1

n+1

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
−c3 cos

(√
ab xn+1

n+1

)
+ sin

(√
ab xn+1

n+1

))√
ab(

c3 sin
(√

ab xn+1

n+1

)
+ cos

(√
ab xn+1

n+1

))
b

Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(√
ab xn+1

n+1

)
+ sin

(√
ab xn+1

n+1

))√
ab(

c3 sin
(√

ab xn+1

n+1

)
+ cos

(√
ab xn+1

n+1

))
b

Verification of solutions

y =

(
−c3 cos

(√
ab xn+1

n+1

)
+ sin

(√
ab xn+1

n+1

))√
ab(

c3 sin
(√

ab xn+1

n+1

)
+ cos

(√
ab xn+1

n+1

))
b

Verified OK.

3.14.5 Maple step by step solution

Let’s solve
y′ − xn(a+ by2) = 0

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

a+by2
= xn

• Integrate both sides with respect to x∫
y′

a+by2
dx =

∫
xndx+ c1

• Evaluate integral
arctan

(
yb√
ab

)
√
ab

= xn+1

n+1 + c1

• Solve for y

y =
tan
(√

ab
(
nc1+c1+xn+1)

n+1

)
√
ab

b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve(diff(y(x),x) = x^n*(a+b*y(x)^2),y(x), singsol=all)� �

y(x) =
tan

(√
ab
(
xn+1+(n+1)c1

)
n+1

)√
ab

b

705



3 Solution by Mathematica
Time used: 0.306 (sec). Leaf size: 78� �
DSolve[y'[x]==x^n(a + b y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
a tan

(√
a
√
b
(

xn+1

n+1 + c1
))

√
b

y(x) → − i
√
a√
b

y(x) → i
√
a√
b
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3.15 problem 69
3.15.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 707

Internal problem ID [3333]
Internal file name [OUTPUT/2825_Sunday_June_05_2022_08_41_12_AM_18465556/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 69.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − y2xnb = a xm

3.15.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= a xm + xnb y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = a xm + xnb y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a xm, f1(x) = 0 and f2(x) = b xn. Let

y = −u′

f2u

= −u′

b xnu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

b xnn

x
f1f2 = 0
f 2
2 f0 = a xmb2x2n

Substituting the above terms back in equation (2) gives

b xnu′′(x)− b xnnu′(x)
x

+ a xmb2x2nu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
BesselJ

(
−1− n

m+ n+ 2 ,
2
√
ab x

m
2 +n

2+1

m+ n+ 2

)
c1

+ BesselY
(

−1− n

m+ n+ 2 ,
2
√
ab x

m
2 +n

2+1

m+ n+ 2

)
c2

)
x

n
2+

1
2

The above shows that

u′(x) = x
1
2+n+m

2
√
ab

(
−BesselJ

(
m+ 1

m+ n+ 2 ,
2
√
ab x

m
2 +n

2+1

m+ n+ 2

)
c1

− BesselY
(

m+ 1
m+ n+ 2 ,

2
√
ab x

m
2 +n

2+1

m+ n+ 2

)
c2

)

Using the above in (1) gives the solution

y =

−
x

1
2+n+m

2
√
ab
(
−BesselJ

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

)
c1 − BesselY

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

)
c2
)
x−nx−n

2−
1
2

b
(
BesselJ

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

)
c1 + BesselY

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y =
x

m
2 −n

2
√
ab
(
BesselJ

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

)
c3 + BesselY

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

))
b
(
BesselJ

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

)
c3 + BesselY

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

))
Summary
The solution(s) found are the following

y =
x

m
2 −n

2
√
ab
(
BesselJ

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

)
c3 + BesselY

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

))
b
(
BesselJ

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

)
c3 + BesselY

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

))
(1)

Verification of solutions

y =
x

m
2 −n

2
√
ab
(
BesselJ

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

)
c3 + BesselY

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

))
b
(
BesselJ

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

)
c3 + BesselY

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = n*(diff(y(x), x))/x-b*x^n*a*x^m*y(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 170� �
dsolve(diff(y(x),x) = a*x^m+b*x^n*y(x)^2,y(x), singsol=all)� �
y(x)

=
x−n

2+
m
2
√
ab
(
BesselY

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

)
c1 + BesselJ

(
m+1

m+n+2 ,
2
√
ab x

m
2 +n

2 +1

m+n+2

))
b
(
BesselY

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

)
c1 + BesselJ

(
−1−n
m+n+2 ,

2
√
ab x

m
2 +n

2 +1

m+n+2

))
3 Solution by Mathematica
Time used: 1.822 (sec). Leaf size: 1805� �
DSolve[y'[x]==a x^m+ b x^n y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−
a−

n+1
2(m+n+2) b−

2m+3n+5
2(m+n+2) (m+ n+ 1)

n+1
m+n+2 ((m+ n+ 1)2)

n+1
m+n+2−

1
2 x−n−1(xm+n+1)−

n+1
2(m+n+1)

(
a

n+1
2(m+n+2) b

n+1
2(m+n+2) (m+ n+ 1)−

n+1
m+n+2 (m+ n+ 2)

(
−
√
a
√
b(m+ n+ 1)BesselJ

(
m+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
(xm+n+1)

1
2

(
1+ 1

m+n+1

)
+
√
a
√
b(m+ n+ 1)BesselJ

(
−m+2n+3

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
(xm+n+1)

1
2

(
1+ 1

m+n+1

)
+ (n+ 1)

√
(m+ n+ 1)2 BesselJ

(
− n+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

))
c1Gamma

(
m+1

m+n+2

)
(xm+n+1)

n+1
2(m+n+1) + a

n+1
2(m+n+2) b

n+1
2(m+n+2) (n+ 1)2(m+ n+ 1)

n+1
m+n+2 ((m+ n+ 1)2)

m−n
2(m+n+2) BesselJ

(
n+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
Gamma

(
n+1

m+n+2

)
(xm+n+1)

n+1
2(m+n+1) + a

m+2n+3
2(m+n+2) b

m+2n+3
2(m+n+2) (n+ 1)(m+ n+ 1)

m+2n+3
m+n+2 ((m+ n+ 1)2)−

n+1
m+n+2

(
BesselJ

(
− m+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
− BesselJ

(
n+1

m+n+2 + 1, 2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

))
Gamma

(
n+1

m+n+2

)
(xm+n+1)

m+2n+3
2(m+n+1)

)
2
(
(m+ n+ 2)BesselJ

(
− n+1

m+n+2 ,
2
√
a
√
b(m+n+1)(xm+n+1)

1
2
(
1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
c1Gamma

(
m+1

m+n+2

)
((m+ n+ 1)2)

n+1
m+n+2 + (n+ 1)(m+ n+ 1)

2(n+1)
m+n+2 BesselJ

(
n+1

m+n+2 ,
2
√
a
√
b(m+n+1)(xm+n+1)

1
2
(
1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
Gamma

(
n+1

m+n+2

))
y(x)

→
x−n−1

(
√
a
√
b(m+ n+ 1) (xm+n+1)

1
2

(
1

m+n+1+1
)
BesselJ

(
m+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
−

√
a
√
b(m+ n+ 1) (xm+n+1)

1
2

(
1

m+n+1+1
)
BesselJ

(
−m+2n+3

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
− (n+ 1)

√
(m+ n+ 1)2 BesselJ

(
− n+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

))
2b
√

(m+ n+ 1)2 BesselJ
(
− n+1

m+n+2 ,
2
√
a
√
b(m+n+1)(xm+n+1)

1
2
(
1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
y(x)

→
x−n−1

(
√
a
√
b(m+ n+ 1) (xm+n+1)

1
2

(
1

m+n+1+1
)
BesselJ

(
m+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
−

√
a
√
b(m+ n+ 1) (xm+n+1)

1
2

(
1

m+n+1+1
)
BesselJ

(
−m+2n+3

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
− (n+ 1)

√
(m+ n+ 1)2 BesselJ

(
− n+1

m+n+2 ,
2
√
a
√
b(m+n+1)

(
xm+n+1) 12(1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

))
2b
√

(m+ n+ 1)2 BesselJ
(
− n+1

m+n+2 ,
2
√
a
√
b(m+n+1)(xm+n+1)

1
2
(
1+ 1

m+n+1
)

√
(m+n+1)2(m+n+2)

)
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3.16 problem 70
3.16.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 712
3.16.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 715
3.16.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 718

Internal problem ID [3334]
Internal file name [OUTPUT/2826_Sunday_June_05_2022_08_41_13_AM_66076722/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 70.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ − (a+ by cos (kx)) y = 0

3.16.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (a+ by cos (kx)) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 133: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2e−ax (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2e−ax
dy

Which results in

S = −eax
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (a+ by cos (kx)) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −a eax
y

Sy =
eax
y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= eaxb cos (kx) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eaRb cos (kR)

714



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1(a2 + k2) + eaRb(k sin (kR) + cos (kR) a)
a2 + k2 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−eax
y

= c1(a2 + k2) + eaxb(k sin (kx) + cos (kx) a)
a2 + k2

Which simplifies to

−eax
y

= c1(a2 + k2) + eaxb(k sin (kx) + cos (kx) a)
a2 + k2

Which gives

y = − eax(a2 + k2)
cos (kx) ba eax + sin (kx) bk eax + c1a2 + c1k2

Summary
The solution(s) found are the following

(1)y = − eax(a2 + k2)
cos (kx) ba eax + sin (kx) bk eax + c1a2 + c1k2

Verification of solutions

y = − eax(a2 + k2)
cos (kx) ba eax + sin (kx) bk eax + c1a2 + c1k2

Verified OK.

3.16.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= (a+ by cos (kx)) y

This is a Bernoulli ODE.
y′ = ay + b cos (kx) y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = a

f1(x) = b cos (kx)
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= a

y
+ b cos (kx) (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = aw(x) + b cos (kx)
w′ = −aw − b cos (kx) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = a

q(x) = −b cos (kx)

Hence the ode is

w′(x) + aw(x) = −b cos (kx)

The integrating factor µ is

µ = e
∫
adx

= eax

The ode becomes
d
dx(µw) = (µ) (−b cos (kx))
d
dx(e

axw) = (eax) (−b cos (kx))

d(eaxw) = (−eaxb cos (kx)) dx

Integrating gives

eaxw =
∫

−eaxb cos (kx) dx

eaxw = −b

(
a eax cos (kx)

a2 + k2 + k eax sin (kx)
a2 + k2

)
+ c1

Dividing both sides by the integrating factor µ = eax results in

w(x) = −e−axb

(
a eax cos (kx)

a2 + k2 + k eax sin (kx)
a2 + k2

)
+ c1e−ax

which simplifies to

w(x) = c1(a2 + k2) e−ax − b(k sin (kx) + cos (kx) a)
a2 + k2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= c1(a2 + k2) e−ax − b(k sin (kx) + cos (kx) a)

a2 + k2

Or

y = a2 + k2

c1 (a2 + k2) e−ax − b (k sin (kx) + cos (kx) a)
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Summary
The solution(s) found are the following

(1)y = a2 + k2

c1 (a2 + k2) e−ax − b (k sin (kx) + cos (kx) a)
Verification of solutions

y = a2 + k2

c1 (a2 + k2) e−ax − b (k sin (kx) + cos (kx) a)

Verified OK.

3.16.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (a+ by cos (kx)) y

This is a Riccati ODE. Comparing the ODE to solve

y′ = cos (kx) b y2 + ya

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = a and f2(x) = b cos (kx). Let

y = −u′

f2u

= −u′

b cos (kx)u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −kb sin (kx)

f1f2 = ab cos (kx)
f 2
2 f0 = 0
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Substituting the above terms back in equation (2) gives

b cos (kx)u′′(x)− (−kb sin (kx) + ab cos (kx))u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + eax(k sin (kx) + cos (kx) a) c2

The above shows that
u′(x) = c2eax cos (kx)

(
a2 + k2)

Using the above in (1) gives the solution

y = − c2eax(a2 + k2)
b (c1 + eax (k sin (kx) + cos (kx) a) c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − eax(a2 + k2)
(cos (kx) a eax + sin (kx) k eax + c3) b

Summary
The solution(s) found are the following

(1)y = − eax(a2 + k2)
(cos (kx) a eax + sin (kx) k eax + c3) b

Verification of solutions

y = − eax(a2 + k2)
(cos (kx) a eax + sin (kx) k eax + c3) b

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 45� �
dsolve(diff(y(x),x) = (a+b*y(x)*cos(k*x))*y(x),y(x), singsol=all)� �

y(x) = a2 + k2

c1 (a2 + k2) e−ax − b (cos (kx) a+ k sin (kx))

3 Solution by Mathematica
Time used: 0.237 (sec). Leaf size: 62� �
DSolve[y'[x]==(a+b y[x] Cos[k x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − (a2 + k2) eax
− (c1 (a2 + k2)) + bkeax sin(kx) + abeax cos(kx)

y(x) → 0
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3.17 problem 71
3.17.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 721
3.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 723
3.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 727
3.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 731

Internal problem ID [3335]
Internal file name [OUTPUT/2827_Sunday_June_05_2022_08_41_14_AM_958418/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 71.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − sin (x)
(
2 sec (x)2 − y

)
= 0

3.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = sin (x)
q(x) = 2 sec (x) tan (x)

Hence the ode is

y′ + y sin (x) = 2 sec (x) tan (x)

The integrating factor µ is

µ = e
∫
sin(x)dx

= e− cos(x)
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The ode becomes

d
dx(µy) = (µ) (2 sec (x) tan (x))

d
dx
(
e− cos(x)y

)
=
(
e− cos(x)) (2 sec (x) tan (x))

d
(
e− cos(x)y

)
=
(
2 sec (x) tan (x) e− cos(x)) dx

Integrating gives

e− cos(x)y =
∫

2 sec (x) tan (x) e− cos(x) dx

e− cos(x)y = 2 sec (x) e−
1

sec(x) − 2 expIntegral1
(

1
sec (x)

)
+ c1

Dividing both sides by the integrating factor µ = e− cos(x) results in

y = ecos(x)
(
2 sec (x) e−

1
sec(x) − 2 expIntegral1

(
1

sec (x)

))
+ c1ecos(x)

which simplifies to

y = −2 expIntegral1 (cos (x)) ecos(x) + c1ecos(x) + 2 sec (x)

Summary
The solution(s) found are the following

(1)y = −2 expIntegral1 (cos (x)) ecos(x) + c1ecos(x) + 2 sec (x)
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Figure 125: Slope field plot

Verification of solutions

y = −2 expIntegral1 (cos (x)) ecos(x) + c1ecos(x) + 2 sec (x)

Verified OK.

3.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x)
(
2 sec (x)2 − y

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 135: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ecos(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ecos(x)dy

Which results in

S = e− cos(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x)
(
2 sec (x)2 − y

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sin (x) e− cos(x)y

Sy = e− cos(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 sec (x) tan (x) e− cos(x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2 sec (R) tan (R) e− cos(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 sec (R) e−
1

sec(R) − 2 expIntegral1
(

1
sec (R)

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− cos(x)y = 2 sec (x) e−
1

sec(x) − 2 expIntegral1
(

1
sec (x)

)
+ c1

Which simplifies to

(y − 2 sec (x)) e− cos(x) − c1 + 2 expIntegral1 (cos (x)) = 0

Which gives

y = ecos(x)
(
2 sec (x) e− cos(x) − 2 expIntegral1 (cos (x)) + c1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (x)
(
2 sec (x)2 − y

)
dS
dR

= 2 sec (R) tan (R) e− cos(R)

R = x

S = e− cos(x)y

Summary
The solution(s) found are the following

(1)y = ecos(x)
(
2 sec (x) e− cos(x) − 2 expIntegral1 (cos (x)) + c1

)
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Figure 126: Slope field plot

Verification of solutions

y = ecos(x)
(
2 sec (x) e− cos(x) − 2 expIntegral1 (cos (x)) + c1

)
Verified OK.

3.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
sin (x)

(
2 sec (x)2 − y

))
dx(

− sin (x)
(
2 sec (x)2 − y

))
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)
(
2 sec (x)2 − y

)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− sin (x)

(
2 sec (x)2 − y

))
= sin (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((sin (x))− (0))
= sin (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
sin(x) dx

The result of integrating gives

µ = e− cos(x)

= e− cos(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− cos(x)(− sin (x)
(
2 sec (x)2 − y

))
= e− cos(x) sin (x)

(
−2 sec (x)2 + y

)
And

N = µN

= e− cos(x)(1)
= e− cos(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

e− cos(x) sin (x)
(
−2 sec (x)2 + y

))
+
(
e− cos(x)) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
e− cos(x) sin (x)

(
−2 sec (x)2 + y

)
dx

(3)φ = (y − 2 sec (x)) e− cos(x) + 2 expIntegral1 (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e− cos(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= e− cos(x). Therefore equation (4) becomes

(5)e− cos(x) = e− cos(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − 2 sec (x)) e− cos(x) + 2 expIntegral1 (cos (x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − 2 sec (x)) e− cos(x) + 2 expIntegral1 (cos (x))

The solution becomes

y = ecos(x)
(
2 sec (x) e− cos(x) − 2 expIntegral1 (cos (x)) + c1

)
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Summary
The solution(s) found are the following

(1)y = ecos(x)
(
2 sec (x) e− cos(x) − 2 expIntegral1 (cos (x)) + c1

)

Figure 127: Slope field plot

Verification of solutions

y = ecos(x)
(
2 sec (x) e− cos(x) − 2 expIntegral1 (cos (x)) + c1

)
Verified OK.

3.17.4 Maple step by step solution

Let’s solve
y′ − sin (x)

(
2 sec (x)2 − y

)
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y sin (x) + 2 sin (x) sec (x)2
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y sin (x) = 2 sin (x) sec (x)2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y sin (x)) = 2µ(x) sin (x) sec (x)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y sin (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin (x)

• Solve to find the integrating factor
µ(x) = e− cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) sin (x) sec (x)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) sin (x) sec (x)2 dx+ c1

• Solve for y

y =
∫
2µ(x) sin(x) sec(x)2dx+c1

µ(x)

• Substitute µ(x) = e− cos(x)

y =
∫
2 sin(x)e− cos(x) sec(x)2dx+c1

e− cos(x)

• Evaluate the integrals on the rhs

y =
2 sec(x)e

− 1
sec(x)−2Ei1

(
1

sec(x)

)
+c1

e− cos(x)

• Simplify
y = −2Ei1(cos (x)) ecos(x) + c1ecos(x) + 2 sec (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x) = sin(x)*(2*sec(x)^2-y(x)),y(x), singsol=all)� �

y(x) = −2 expIntegral1 (cos (x)) ecos(x) + ecos(x)c1 + 2 sec (x)

3 Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 28� �
DSolve[y'[x]==Sin[x](2 Sec[x]^2-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2ecos(x) ExpIntegralEi(− cos(x)) + 2 sec(x) + c1e
cos(x)
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3.18 problem 72
3.18.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 734

Internal problem ID [3336]
Internal file name [OUTPUT/2828_Sunday_June_05_2022_08_41_15_AM_57142199/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 72.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − (3− cot (x)) y − y2 sin (x) = −4 csc (x)

3.18.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y2 sin (x)− y cot (x)− 4 csc (x) + 3y

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2 sin (x)− y cot (x)− 4 csc (x) + 3y

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −4 csc (x), f1(x) = 3− cot (x) and f2(x) = sin (x). Let

y = −u′

f2u

= −u′

sin (x)u (1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = cos (x)

f1f2 = (3− cot (x)) sin (x)
f 2
2 f0 = −4 csc (x) sin (x)2

Substituting the above terms back in equation (2) gives

sin (x)u′′(x)− ((3− cot (x)) sin (x) + cos (x))u′(x)− 4 csc (x) sin (x)2 u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e−
3 arcsin(cos(x))

2

(
c1(cos (x) + i sin (x))

5i
2 + c2(cos (x) + i sin (x))−

5i
2

)
The above shows that

u′(x)

=
3
(
c2
(
csgn (sin (x)) + 5

3

)
(cos (x) + i sin (x))−

5i
2 + c1(cos (x) + i sin (x))

5i
2
(
csgn (sin (x))− 5

3

))
e−

3 arcsin(cos(x))
2

2

Using the above in (1) gives the solution

y =

−
3
(
c2
(
csgn (sin (x)) + 5

3

)
(cos (x) + i sin (x))−

5i
2 + c1(cos (x) + i sin (x))

5i
2
(
csgn (sin (x))− 5

3

))
2 sin (x)

(
c1 (cos (x) + i sin (x))

5i
2 + c2 (cos (x) + i sin (x))−

5i
2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

−
3 csc (x)

((
csgn (sin (x)) + 5

3

)
(cos (x) + i sin (x))−

5i
2 + c3(cos (x) + i sin (x))

5i
2
(
csgn (sin (x))− 5

3

))
2c3 (cos (x) + i sin (x))

5i
2 + 2 (cos (x) + i sin (x))−

5i
2
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Simplifying the solution y = −
3 csc(x)

((
csgn(sin(x))+ 5

3
)
(cos(x)+i sin(x))−

5i
2 +c3(cos(x)+i sin(x))

5i
2
(
csgn(sin(x))− 5

3
))

2c3(cos(x)+i sin(x))
5i
2 +2(cos(x)+i sin(x))−

5i
2

to y = −
3 csc(x)

(
8(cos(x)+i sin(x))−

5i
2

3 − 2c3(cos(x)+i sin(x))
5i
2

3

)
2c3(cos(x)+i sin(x))

5i
2 +2(cos(x)+i sin(x))−

5i
2

Summary
The solution(s) found are the following

(1)y = −
3 csc (x)

(
8(cos(x)+i sin(x))−

5i
2

3 − 2c3(cos(x)+i sin(x))
5i
2

3

)
2c3 (cos (x) + i sin (x))

5i
2 + 2 (cos (x) + i sin (x))−

5i
2

Figure 128: Slope field plot

Verification of solutions

y = −
3 csc (x)

(
8(cos(x)+i sin(x))−

5i
2

3 − 2c3(cos(x)+i sin(x))
5i
2

3

)
2c3 (cos (x) + i sin (x))

5i
2 + 2 (cos (x) + i sin (x))−

5i
2

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(sin(x)*cot(x)-cos(x)-3*sin(x))*(diff(y(x), x))/sin(x)+4*csc(x)*sin(x

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

(4*t^2-4)*u(t)+(-3*(-t^2+1)^(1/2)*t^2+t^3+3*(-t^2+1)^(1/2)-t)*diff(u(t),t)+(t^4-2*t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful

<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 74� �
dsolve(diff(y(x),x)+4*csc(x) = (3-cot(x))*y(x)+y(x)^2*sin(x),y(x), singsol=all)� �
y(x) =

−
3 csc (x)

(
c1
(
csgn (sin (x)) + 5

3

)
(cos (x) + i sin (x))−

5i
2 + (cos (x) + i sin (x))

5i
2
(
csgn (sin (x))− 5

3

))
2c1 (cos (x) + i sin (x))−

5i
2 + 2 (cos (x) + i sin (x))

5i
2

3 Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 32� �
DSolve[y'[x]+4 Csc[x]==(3-Cot[x])y[x]+y[x]^2 Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
−4 + 1

1
5 + c1e5x

)
csc(x)

y(x) → −4 csc(x)
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3.19 problem 73
3.19.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 739
3.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 741
3.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 746
3.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 751

Internal problem ID [3337]
Internal file name [OUTPUT/2829_Sunday_June_05_2022_08_41_17_AM_2290350/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 73.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y sec (x) = (sin (x)− 1)2

3.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − sec (x)
q(x) = (sin (x)− 1)2

Hence the ode is

y′ − y sec (x) = (sin (x)− 1)2

The integrating factor µ is

µ = e
∫
− sec(x)dx

= 1
sec (x) + tan (x)
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The ode becomes

d
dx(µy) = (µ)

(
(sin (x)− 1)2

)
d
dx

(
y

sec (x) + tan (x)

)
=
(

1
sec (x) + tan (x)

)(
(sin (x)− 1)2

)
d
(

y

sec (x) + tan (x)

)
=
(

(sin (x)− 1)2

sec (x) + tan (x)

)
dx

Integrating gives

y

sec (x) + tan (x) =
∫ (sin (x)− 1)2

sec (x) + tan (x) dx

y

sec (x) + tan (x) = sin (x)2

2 − 3 sin (x) + 4 ln (1 + sin (x)) + c1

Dividing both sides by the integrating factor µ = 1
sec(x)+tan(x) results in

y = (sec (x) + tan (x))
(
sin (x)2

2 − 3 sin (x) + 4 ln (1 + sin (x))
)

+ c1(sec (x) + tan (x))

which simplifies to

y =
sec (x) (1 + sin (x))

(
sin (x)2 − 6 sin (x) + 8 ln (1 + sin (x)) + 2c1

)
2

Summary
The solution(s) found are the following

(1)y =
sec (x) (1 + sin (x))

(
sin (x)2 − 6 sin (x) + 8 ln (1 + sin (x)) + 2c1

)
2
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Figure 129: Slope field plot

Verification of solutions

y =
sec (x) (1 + sin (x))

(
sin (x)2 − 6 sin (x) + 8 ln (1 + sin (x)) + 2c1

)
2

Verified OK.

3.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x)2 + sec (x) y − 2 sin (x) + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 138: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = sec (x) + tan (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

sec (x) + tan (x)dy

Which results in

S = y

sec (x) + tan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x)2 + sec (x) y − 2 sin (x) + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

1 + sin (x)

Sy =
1

sec (x) + tan (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (sin (x)− 3) cos (x) + 4 sec (x)− 4 tan (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (sin (R)− 3) cos (R) + 4 sec (R)− 4 tan (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 sin (R) + 4 ln (sec (R) + tan (R)) + 4 ln (cos (R))− cos (2R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

sec (x) + tan (x) = −3 sin (x) + 4 ln (sec (x) + tan (x)) + 4 ln (cos (x))− cos (2x)
4 + c1

Which simplifies to

y

sec (x) + tan (x) = −3 sin (x) + 4 ln (sec (x) + tan (x)) + 4 ln (cos (x))− cos (2x)
4 + c1

Which gives

y = −sec (x) cos (2x)
4 − tan (x) cos (2x)

4 − 3 sec (x) sin (x)− 3 tan (x) sin (x) + 4 ln (sec (x) + tan (x)) sec (x) + 4 ln (cos (x)) sec (x) + sec (x) c1 + 4 ln (sec (x) + tan (x)) tan (x) + 4 ln (cos (x)) tan (x) + tan (x) c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (x)2+sec (x) y−2 sin (x)+1
dS
dR

= (sin (R)− 3) cos (R) +
4 sec (R)− 4 tan (R)

R = x

S = y

sec (x) + tan (x)
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Summary
The solution(s) found are the following

(1)
y = −sec (x) cos (2x)

4 − tan (x) cos (2x)
4 − 3 sec (x) sin (x)− 3 tan (x) sin (x)

+ 4 ln (sec (x) + tan (x)) sec (x) + 4 ln (cos (x)) sec (x) + sec (x) c1
+ 4 ln (sec (x) + tan (x)) tan (x) + 4 ln (cos (x)) tan (x) + tan (x) c1

Figure 130: Slope field plot

Verification of solutions

y = −sec (x) cos (2x)
4 − tan (x) cos (2x)

4 − 3 sec (x) sin (x)− 3 tan (x) sin (x)
+ 4 ln (sec (x) + tan (x)) sec (x) + 4 ln (cos (x)) sec (x) + sec (x) c1
+ 4 ln (sec (x) + tan (x)) tan (x) + 4 ln (cos (x)) tan (x) + tan (x) c1

Verified OK.
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3.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
sec (x) y + (sin (x)− 1)2

)
dx(

− sec (x) y − (sin (x)− 1)2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x) y − (sin (x)− 1)2

N(x, y) = 1

746



The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− sec (x) y − (sin (x)− 1)2

)
= − sec (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− sec (x))− (0))
= − sec (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− sec(x) dx

The result of integrating gives

µ = e− ln(sec(x)+tan(x))

= 1
sec (x) + tan (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
sec (x) + tan (x)

(
− sec (x) y − (sin (x)− 1)2

)
= cos (x)3 + (2 sin (x)− 2) cos (x)− y

1 + sin (x)
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And

N = µN

= 1
sec (x) + tan (x)(1)

= 1
sec (x) + tan (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

cos (x)3 + (2 sin (x)− 2) cos (x)− y

1 + sin (x)

)
+
(

1
sec (x) + tan (x)

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ cos (x)3 + (2 sin (x)− 2) cos (x)− y

1 + sin (x) dx

(3)
φ =

6 tan
(
x
2

)3 − 2 tan
(
x
2

)2 + 6 tan
(
x
2

)(
1 + tan

(
x
2

)2)2 + 4 ln
(
sec
(x
2

)2)

− 8 ln
(
tan

(x
2

)
+ 1
)
+ 2y

tan
(
x
2

)
+ 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

tan
(
x
2

)
+ 1

+ f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
sec(x)+tan(x) . Therefore equation (4) becomes

(5)1
sec (x) + tan (x) = 2

tan
(
x
2

)
+ 1

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −
2 sec (x) + 2 tan (x)− tan

(
x
2

)
− 1(

tan
(
x
2

)
+ 1
)
(sec (x) + tan (x))

= −1

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
6 tan

(
x
2

)3 − 2 tan
(
x
2

)2 + 6 tan
(
x
2

)(
1 + tan

(
x
2

)2)2 + 4 ln
(
sec
(x
2

)2)

− 8 ln
(
tan

(x
2

)
+ 1
)
+ 2y

tan
(
x
2

)
+ 1

− y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
6 tan

(
x
2

)3 − 2 tan
(
x
2

)2 + 6 tan
(
x
2

)(
1 + tan

(
x
2

)2)2 + 4 ln
(
sec
(x
2

)2)

− 8 ln
(
tan

(x
2

)
+ 1
)
+ 2y

tan
(
x
2

)
+ 1

− y

The solution becomes

y

=
6 tan

(
x
2

)
− c1 + 4 tan

(
x
2

)2 − tan
(
x
2

)
c1 − 8 ln

(
tan

(
x
2

)
+ 1
)
+ 4 tan

(
x
2

)3 + 6 tan
(
x
2

)4 + 4 ln
(
sec
(
x
2

)2)− tan
(
x
2

)5
c1 − tan

(
x
2

)4
c1 − 2 tan

(
x
2

)3
c1 − 2 tan

(
x
2

)2
c1 + 4 tan

(
x
2

)5 ln(sec (x2)2)− 8 tan
(
x
2

)5 ln (tan (x2)+ 1
)
+ 4 tan

(
x
2

)4 ln(sec (x2)2)− 8 tan
(
x
2

)4 ln (tan (x2)+ 1
)
+ 8 tan

(
x
2

)3 ln(sec (x2)2)− 16 tan
(
x
2

)3 ln (tan (x2)+ 1
)
+ 8 tan

(
x
2

)2 ln(sec (x2)2)− 16 tan
(
x
2

)2 ln (tan (x2)+ 1
)
+ 4 tan

(
x
2

)
ln
(
sec
(
x
2

)2)− 8 tan
(
x
2

)
ln
(
tan

(
x
2

)
+ 1
)

−1 + tan
(
x
2

)5 + 2 tan
(
x
2

)3 + tan
(
x
2

)
− tan

(
x
2

)4 − 2 tan
(
x
2

)2
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Summary
The solution(s) found are the following

(1)y

=
6 tan

(
x
2

)
− c1 + 4 tan

(
x
2

)2 − tan
(
x
2

)
c1 − 8 ln

(
tan

(
x
2

)
+ 1
)
+ 4 tan

(
x
2

)3 + 6 tan
(
x
2

)4 + 4 ln
(
sec
(
x
2

)2)− tan
(
x
2

)5
c1 − tan

(
x
2

)4
c1 − 2 tan

(
x
2

)3
c1 − 2 tan

(
x
2

)2
c1 + 4 tan

(
x
2

)5 ln(sec (x2)2)− 8 tan
(
x
2

)5 ln (tan (x2)+ 1
)
+ 4 tan

(
x
2

)4 ln(sec (x2)2)− 8 tan
(
x
2

)4 ln (tan (x2)+ 1
)
+ 8 tan

(
x
2

)3 ln(sec (x2)2)− 16 tan
(
x
2

)3 ln (tan (x2)+ 1
)
+ 8 tan

(
x
2

)2 ln(sec (x2)2)− 16 tan
(
x
2

)2 ln (tan (x2)+ 1
)
+ 4 tan

(
x
2

)
ln
(
sec
(
x
2

)2)− 8 tan
(
x
2

)
ln
(
tan

(
x
2

)
+ 1
)

−1 + tan
(
x
2

)5 + 2 tan
(
x
2

)3 + tan
(
x
2

)
− tan

(
x
2

)4 − 2 tan
(
x
2

)2

Figure 131: Slope field plot

Verification of solutions
y

=
6 tan

(
x
2

)
− c1 + 4 tan

(
x
2

)2 − tan
(
x
2

)
c1 − 8 ln

(
tan

(
x
2

)
+ 1
)
+ 4 tan

(
x
2

)3 + 6 tan
(
x
2

)4 + 4 ln
(
sec
(
x
2

)2)− tan
(
x
2

)5
c1 − tan

(
x
2

)4
c1 − 2 tan
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x
2

)3
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x
2
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c1 + 4 tan

(
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2

)5 ln(sec (x2)2)− 8 tan
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x
2

)5 ln (tan (x2)+ 1
)
+ 4 tan

(
x
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)4 ln(sec (x2)2)− 8 tan
(
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2

)4 ln (tan (x2)+ 1
)
+ 8 tan

(
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)3 ln(sec (x2)2)− 16 tan
(
x
2

)3 ln (tan (x2)+ 1
)
+ 8 tan

(
x
2

)2 ln(sec (x2)2)− 16 tan
(
x
2

)2 ln (tan (x2)+ 1
)
+ 4 tan

(
x
2

)
ln
(
sec
(
x
2

)2)− 8 tan
(
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2

)
ln
(
tan

(
x
2

)
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)

−1 + tan
(
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2

)5 + 2 tan
(
x
2

)3 + tan
(
x
2

)
− tan

(
x
2

)4 − 2 tan
(
x
2

)2
Verified OK.
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3.19.4 Maple step by step solution

Let’s solve
y′ − y sec (x) = (sin (x)− 1)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y sec (x) + (sin (x)− 1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y sec (x) = (sin (x)− 1)2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y sec (x)) = µ(x) (sin (x)− 1)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y sec (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) sec (x)

• Solve to find the integrating factor
µ(x) = 1

sec(x)+tan(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (sin (x)− 1)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (sin (x)− 1)2 dx+ c1

• Solve for y

y =
∫
µ(x)(sin(x)−1)2dx+c1

µ(x)

• Substitute µ(x) = 1
sec(x)+tan(x)

y = (sec (x) + tan (x))
(∫ (sin(x)−1)2

sec(x)+tan(x)dx+ c1
)

• Evaluate the integrals on the rhs

y = (sec (x) + tan (x))
(

sin(x)2
2 − 3 sin (x) + 4 ln (1 + sin (x)) + c1

)
• Simplify
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y =
sec(x)(1+sin(x))

(
sin(x)2−6 sin(x)+8 ln(1+sin(x))+2c1

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x) = y(x)*sec(x)+(sin(x)-1)^2,y(x), singsol=all)� �
y(x) =

(
−3 sin (x) + 4 ln (sec (x) + tan (x)) + 4 ln (cos (x))− cos (2x)

4 + c1

)
(sec (x)

+ tan (x))

3 Solution by Mathematica
Time used: 12.2 (sec). Leaf size: 50� �
DSolve[y'[x]==y[x] Sec[x]+(Sin[x]-1)^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −1

4e
2arctanh

(
tan
(
x
2
))(

cos(2x)− 4
(
−3 sin(x) + 8 log

(
sin
(x
2

)
+ cos

(x
2

))
+ c1

))
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3.20 problem 74
3.20.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 753
3.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 755
3.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 759
3.20.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 763
3.20.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 765

Internal problem ID [3338]
Internal file name [OUTPUT/2830_Sunday_June_05_2022_08_41_18_AM_81622989/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 74.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + tan (x)
(
1− y2

)
= 0

3.20.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= tan (x)

(
y2 − 1

)
Where f(x) = tan (x) and g(y) = y2 − 1. Integrating both sides gives

1
y2 − 1 dy = tan (x) dx∫ 1
y2 − 1 dy =

∫
tan (x) dx

− arctanh (y) = − ln (cos (x)) + c1
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Which results in
y = − tanh (− ln (cos (x)) + c1)

Summary
The solution(s) found are the following

(1)y = − tanh (− ln (cos (x)) + c1)

Figure 132: Slope field plot

Verification of solutions

y = − tanh (− ln (cos (x)) + c1)

Verified OK.
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3.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = tan (x)
(
y2 − 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 141: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
tan (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
tan(x)

dx

Which results in

S = − ln (cos (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = tan (x)
(
y2 − 1

)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 − 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − arctanh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (cos (x)) = − arctanh (y) + c1

Which simplifies to

− ln (cos (x)) = − arctanh (y) + c1

Which gives

y = tanh (ln (cos (x)) + c1)

757



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= tan (x) (y2 − 1) dS
dR

= 1
R2−1

R = y

S = − ln (cos (x))

Summary
The solution(s) found are the following

(1)y = tanh (ln (cos (x)) + c1)
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Figure 133: Slope field plot

Verification of solutions

y = tanh (ln (cos (x)) + c1)

Verified OK.

3.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 − 1

)
dy = (tan (x)) dx

(− tan (x)) dx+
(

1
y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x)

N(x, y) = 1
y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− tan (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2−1 . Therefore equation (4) becomes

(5)1
y2 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 − 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 − 1

)
dy

f(y) = − arctanh (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x))− arctanh (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x))− arctanh (y)

The solution becomes
y = − tanh (− ln (cos (x)) + c1)

Summary
The solution(s) found are the following

(1)y = − tanh (− ln (cos (x)) + c1)

Figure 134: Slope field plot

Verification of solutions

y = − tanh (− ln (cos (x)) + c1)

Verified OK.
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3.20.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= tan (x)

(
y2 − 1

)
This is a Riccati ODE. Comparing the ODE to solve

y′ = y2 tan (x)− tan (x)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − tan (x), f1(x) = 0 and f2(x) = tan (x). Let

y = −u′

f2u

= −u′

tan (x)u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1 + tan (x)2

f1f2 = 0
f 2
2 f0 = − tan (x)3

Substituting the above terms back in equation (2) gives

tan (x)u′′(x)−
(
1 + tan (x)2

)
u′(x)− tan (x)3 u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 cos (x) + sec (x) c2

The above shows that

u′(x) = −c1 sin (x) + sec (x) tan (x) c2
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Using the above in (1) gives the solution

y = −−c1 sin (x) + sec (x) tan (x) c2
tan (x) (c1 cos (x) + sec (x) c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = cos (x)2 c3 − 1
cos (x)2 c3 + 1

Summary
The solution(s) found are the following

(1)y = cos (x)2 c3 − 1
cos (x)2 c3 + 1

Figure 135: Slope field plot
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Verification of solutions

y = cos (x)2 c3 − 1
cos (x)2 c3 + 1

Verified OK.

3.20.5 Maple step by step solution

Let’s solve
y′ + tan (x) (1− y2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1−y2
= − tan (x)

• Integrate both sides with respect to x∫
y′

1−y2
dx =

∫
− tan (x) dx+ c1

• Evaluate integral
arctanh(y) = ln (cos (x)) + c1

• Solve for y
y = tanh (ln (cos (x)) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+tan(x)*(1-y(x)^2) = 0,y(x), singsol=all)� �

y(x) = − tanh (− ln (cos (x)) + c1)

3 Solution by Mathematica
Time used: 0.656 (sec). Leaf size: 45� �
DSolve[y'[x]+Tan[x] (1-y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1− e2c1 sec2(x)
1 + e2c1 sec2(x)

y(x) → −1
y(x) → 1
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3.21 problem 75
3.21.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 767

Internal problem ID [3339]
Internal file name [OUTPUT/2831_Sunday_June_05_2022_08_41_19_AM_55602258/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 75.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − g(x) y − h(x) y2 = f(x)

3.21.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= f(x) + g(x) y + h(x) y2

This is a Riccati ODE. Comparing the ODE to solve

y′ = f(x) + g(x) y + h(x) y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = f(x), f1(x) = g(x) and f2(x) = h(x). Let

y = −u′

f2u

= −u′

h (x)u (1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = h′(x)

f1f2 = g(x)h(x)
f 2
2 f0 = f(x)h(x)2

Substituting the above terms back in equation (2) gives

h(x)u′′(x)− (g(x)h(x) + h′(x))u′(x) + f(x)h(x)2 u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = DESol
({

f(x)h(x)_Y(x)− (g(x)h(x) + h′(x))_Y′(x)
h (x) +_Y′′(x)

}
, {_Y(x)}

)

The above shows that

u′(x) = d

dx
DESol

({
f(x)h(x)_Y(x)− (g(x)h(x) + h′(x))_Y′(x)

h (x)

+ _Y′′(x)
}
, {_Y(x)}

)

Using the above in (1) gives the solution

y = −
d
dx

DESol
({

f(x)h(x)_Y(x)− (g(x)h(x)+h′(x))_Y′
(x)

h(x) + _Y′′(x)
}
, {_Y(x)}

)
h (x)DESol

({
f (x)h (x)_Y (x)− (g(x)h(x)+h′(x))_Y′

(x)
h(x) + _Y′′ (x)

}
, {_Y (x)}

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −
d
dx

DESol
({

f(x)h(x)_Y(x)− (g(x)h(x)+h′(x))_Y′
(x)

h(x) + _Y′′(x)
}
, {_Y(x)}

)
h (x)DESol

({
f (x)h (x)_Y (x)− (g(x)h(x)+h′(x))_Y′

(x)
h(x) + _Y′′ (x)

}
, {_Y (x)}

)
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Summary
The solution(s) found are the following

y = −
d
dx

DESol
({

f(x)h(x)_Y(x)− (g(x)h(x)+h′(x))_Y′
(x)

h(x) + _Y′′(x)
}
, {_Y(x)}

)
h (x)DESol

({
f (x)h (x)_Y (x)− (g(x)h(x)+h′(x))_Y′

(x)
h(x) + _Y′′ (x)

}
, {_Y (x)}

)
(1)

Verification of solutions

y = −
d
dx

DESol
({

f(x)h(x)_Y(x)− (g(x)h(x)+h′(x))_Y′
(x)

h(x) + _Y′′(x)
}
, {_Y(x)}

)
h (x)DESol

({
f (x)h (x)_Y (x)− (g(x)h(x)+h′(x))_Y′

(x)
h(x) + _Y′′ (x)

}
, {_Y (x)}

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (g(x)*h(x)+diff(h(x), x))*(diff(y(x), x))/h(x)-h(x)*f(x)*y(x), y(x)`

Methods for second order ODEs:
-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(h(x)*y(x)^2+y(x)+g(x)*y(x)*x+x^2*f(x))/x, y(x), explicit` *** Sublevel 2 **

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x) = f(x)+g(x)*y(x)+h(x)*y(x)^2,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==f[x]+g[x] y[x]+h[x] y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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3.22 problem 76
3.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 772
3.22.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 773
3.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 775
3.22.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 778
3.22.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 780

Internal problem ID [3340]
Internal file name [OUTPUT/2832_Sunday_June_05_2022_08_41_20_AM_44411204/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 76.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ −
(
a+ yb+ cy2

)
f(x) = 0

3.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
=
(
c y2 + by + a

)
f(x)

Where f(x) = f(x) and g(y) = c y2 + by + a. Integrating both sides gives

1
c y2 + by + a

dy = f(x) dx∫ 1
c y2 + by + a

dy =
∫

f(x) dx

2 arctan
(

2cy+b√
4ca−b2

)
√
4ca− b2

=
∫

f(x) dx+ c1
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Which results in

y =
tan

( (∫
f(x)dx

)√
4ca−b2

2 + c1
√
4ca−b2

2

)√
4ca− b2 − b

2c

Summary
The solution(s) found are the following

(1)y =
tan

( (∫
f(x)dx

)√
4ca−b2

2 + c1
√
4ca−b2

2

)√
4ca− b2 − b

2c
Verification of solutions

y =
tan

( (∫
f(x)dx

)√
4ca−b2

2 + c1
√
4ca−b2

2

)√
4ca− b2 − b

2c

Verified OK.

3.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
(
c y2 + by + a

)
f(x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 144: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
f (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
f(x)

dx

Which results in

S =
∫

f(x) dx

3.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

c y2 + by + a

)
dy = (f(x)) dx

(−f(x)) dx+
(

1
c y2 + by + a

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −f(x)

N(x, y) = 1
c y2 + by + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−f(x))

= 0

And

∂N

∂x
= ∂

∂x

(
1

c y2 + by + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−f(x) dx

(3)φ =
∫ x

−f(_a) d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
c y2+by+a

. Therefore equation (4) becomes

(5)1
c y2 + by + a

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
c y2 + by + a

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
c y2 + by + a

)
dy

f(y) =
2 arctan

(
2cy+b√
4ca−b2

)
√
4ca− b2

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

−f(_a) d_a+
2arctan

(
2cy+b√
4ca−b2

)
√
4ca− b2

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

−f(_a) d_a+
2arctan

(
2cy+b√
4ca−b2

)
√
4ca− b2

The solution becomes

y =
tan

(
−
(∫ x −f(_a)d_a)√4ca−b2

2 + c1
√
4ca−b2

2

)√
4ca− b2 − b

2c

Summary
The solution(s) found are the following

(1)y =
tan

(
−
(∫ x −f(_a)d_a)√4ca−b2

2 + c1
√
4ca−b2

2

)√
4ca− b2 − b

2c
Verification of solutions

y =
tan

(
−
(∫ x −f(_a)d_a)√4ca−b2

2 + c1
√
4ca−b2

2

)√
4ca− b2 − b

2c

Verified OK.

3.22.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
=
(
c y2 + by + a

)
f(x)

This is a Riccati ODE. Comparing the ODE to solve

y′ = f(x) c y2 + f(x) by + af(x)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = af(x), f1(x) = bf(x) and f2(x) = cf(x). Let

y = −u′

f2u

= −u′

cf (x)u (1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = cf ′(x)

f1f2 = bf(x)2 c
f 2
2 f0 = c2f(x)3 a

Substituting the above terms back in equation (2) gives

cf(x)u′′(x)−
(
cf ′(x) + bf(x)2 c

)
u′(x) + c2f(x)3 au(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e
b(
∫
f(x)dx)
2

√
2 c2

2
√

1

cos
( ∫

b
√

4a b2c−b4 f(x)dx+c1
√

4a b2c−b4
b2

)
+1

The above shows that

u′(x)

=

((
sin
(√

4a b2c−b4
(∫

f(x)dx
)

b

)
cos
(√

4a b2c−b4 c1
b2

)
+ cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c1
b2

))√
4a b2c− b4 + b2

(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c1
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c1
b2

)
− 1
))

f(x) c2e
b(
∫
f(x)dx)
2

√
2

4
√

1

cos
( ∫

b
√

4a b2c−b4 f(x)dx+c1
√

4a b2c−b4
b2

)
+1

(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c1
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c1
b2

)
− 1
)
b

Using the above in (1) gives the solution

y =

−

(
sin
(√

4a b2c−b4
(∫

f(x)dx
)

b

)
cos
(√

4a b2c−b4 c1
b2

)
+ cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c1
b2

))√
4a b2c− b4 + b2

(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c1
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c1
b2

)
− 1
)

2
(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c1
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c1
b2

)
− 1
)
bc

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=

(
− sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

))√
4a b2c− b4 − b2

(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

)
− 1
)

2
(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

)
− 1
)
cb
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Summary
The solution(s) found are the following

(1)y

=

(
− sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

))√
4a b2c− b4 − b2

(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

)
− 1
)

2
(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

)
− 1
)
cb

Verification of solutions
y

=

(
− sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

))√
4a b2c− b4 − b2

(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

)
− 1
)

2
(
− cos

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
cos
(√

4a b2c−b4 c3
b2

)
+ sin

(√
4a b2c−b4

(∫
f(x)dx

)
b

)
sin
(√

4a b2c−b4 c3
b2

)
− 1
)
cb

Verified OK.

3.22.5 Maple step by step solution

Let’s solve
y′ − (a+ yb+ cy2) f(x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+yb+cy2
= f(x)

• Integrate both sides with respect to x∫
y′

a+yb+cy2
dx =

∫
f(x) dx+ c1

• Evaluate integral
2 arctan

(
2cy+b√
4ca−b2

)
√
4ca−b2

=
∫
f(x) dx+ c1

• Solve for y

y =
tan
(

(
∫
f(x)dx)

√
4ca−b2

2 + c1
√

4ca−b2
2

)√
4ca−b2−b

2c
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 47� �
dsolve(diff(y(x),x) = (a+b*y(x)+c*y(x)^2)*f(x),y(x), singsol=all)� �

y(x) =
−b+ tan

(√
4ac−b2

(∫
f(x)dx+c1

)
2

)√
4ac− b2

2c

3 Solution by Mathematica
Time used: 0.261 (sec). Leaf size: 115� �
DSolve[y'[x]==(a+b y[x]+c y[x]^2)f[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−b+

√
4ac− b2 tan

(1
2

√
4ac− b2

(∫ x

1 f(K[1])dK[1] + c1
))

2c

y(x) → −
√
b2 − 4ac+ b

2c

y(x) →
√
b2 − 4ac− b

2c
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3.23 problem 77
3.23.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 782

Internal problem ID [3341]
Internal file name [OUTPUT/2833_Sunday_June_05_2022_08_41_21_AM_36827218/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 77.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abel]

Unable to solve or complete the solution.

y′ + (ax+ y) y2 = 0

3.23.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −y3 − axy2 (1)

Therefore

f0(x) = 0
f1(x) = 0
f2(x) = −ax

f3(x) = −1
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Since f2(x) = −ax is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(
−ax

−3

)
= u(x)− ax

3

The above transformation applied to (1) gives a new ODE as

u′(x) = a

3 + a2x2u(x)
3 − 2a3x3

27 − u(x)3 (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = a

3 + a2x2u(x)
3 − 2a3x3

27 − u(x)3 (1)

Therefore

f0(x) =
1
3a−

2
27a

3x3

f1(x) =
a2x2

3
f2(x) = 0
f3(x) = −1

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
−2a3x2

9 −
(1
3a−

2
27a

3x3) a2x2
)3

27
(1
3a−

2
27a

3x3
)5

Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 71� �
dsolve(diff(y(x),x)+(a*x+y(x))*y(x)^2=0,y(x), singsol=all)� �
y(x)

= 2a
x2a2 + 2RootOf

(
2 1

3 (−a2)
1
3 AiryBi (_Z) c1x+ 2 1

3 (−a2)
1
3 xAiryAi (_Z) + 2AiryBi (1,_Z) c1 + 2AiryAi (1,_Z)

)
2 1

3 (−a2)
1
3
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3 Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 195� �
DSolve[y'[x]+(a x+y[x])y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve



AiryAiPrime


3

√
−1
2

3
√
a

y(x) − 1
2

3

√
−1
2a

4/3x2

−
(
−1

2

)2/3
a2/3xAiryAi


3

√
−1
2

3
√
a

y(x) − 1
2

3

√
−1
2a

4/3x2



AiryBiPrime


3

√
−1
2

3
√
a

y(x) − 1
2

3

√
−1
2a

4/3x2

−
(
−1

2

)2/3
a2/3xAiryBi


3

√
−1
2

3
√
a

y(x) − 1
2

3

√
−1
2a

4/3x2



+ c1 = 0, y(x)
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3.24 problem 78
3.24.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 786

Internal problem ID [3342]
Internal file name [OUTPUT/2834_Sunday_June_05_2022_08_41_22_AM_22239509/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 78.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abel]

Unable to solve or complete the solution.

y′ − (a ex + y) y2 = 0

3.24.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = y3 + y2exa (1)

Therefore

f0(x) = 0
f1(x) = 0
f2(x) = a ex

f3(x) = 1
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Since f2(x) = a ex is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(
a ex
3

)
= u(x)− a ex

3

The above transformation applied to (1) gives a new ODE as

u′(x) = a ex
3 − a2e2xu(x)

3 + 2a3e3x
27 + u(x)3 (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = a ex
3 − a2e2xu(x)

3 + 2a3e3x
27 + u(x)3 (1)

Therefore

f0(x) =
a ex
3 + 2a3e3x

27

f1(x) = −e2xa2
3

f2(x) = 0
f3(x) = 1

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
−a ex

3 − 2a3e3x
9 −

(
a ex
3 + 2a3e3x

27

)
e2xa2

)3
27
(
a ex
3 + 2a3e3x

27

)5
Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 62� �
dsolve(diff(y(x),x) = (a*exp(x)+y(x))*y(x)^2,y(x), singsol=all)� �

a erf
(

(a exy(x)+1)
√
2

2y(x)

)√
2
√
π + 2c1a+ 2 e−x−

(
a exy(x)+1

)2
2y(x)2

2a = 0

3 Solution by Mathematica
Time used: 0.702 (sec). Leaf size: 78� �
DSolve[y'[x]==(a Exp[x]+y[x])y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−iaex = 2e
1
2

(
−iaex− i

y(x)

)2
√
2πerfi

(
−iaex− i

y(x)√
2

)
+ 2c1

, y(x)
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3.25 problem 79
3.25.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 789

Internal problem ID [3343]
Internal file name [OUTPUT/2835_Sunday_June_05_2022_08_41_23_AM_17871836/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 79.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abel]

Unable to solve or complete the solution.

y′ + 3a(y + 2x) y2 = 0

3.25.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −3ay3 − 6axy2 (1)

Therefore

f0(x) = 0
f1(x) = 0
f2(x) = −6ax
f3(x) = −3a
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Since f2(x) = −6ax is not zero, then the first step is to apply the following transfor-
mation to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(
−6ax
−9a

)
= u(x)− 2x

3

The above transformation applied to (1) gives a new ODE as

u′(x) = 2
3 − 3au(x)3 + 4au(x)x2 − 16a x3

9 (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = 2
3 − 3au(x)3 + 4au(x)x2 − 16a x3

9 (1)

Therefore

f0(x) =
2
3 − 16a x3

9
f1(x) = 4x2a

f2(x) = 0
f3(x) = −3a

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
−16a2x2 − 36

(
2
3 −

16a x3

9

)
a2x2

)3
2187a4

(2
3 −

16a x3

9

)5
Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 57� �
dsolve(diff(y(x),x)+3*a*(2*x+y(x))*y(x)^2 = 0,y(x), singsol=all)� �
y(x)

= 1
3a x2 +RootOf

(
3 1

3 (−a)
1
3 AiryBi (_Z) c1x+ 3 1

3 (−a)
1
3 xAiryAi (_Z) + AiryBi (1,_Z) c1 +AiryAi (1,_Z)

)
3 1

3 (−a)
1
3

3 Solution by Mathematica
Time used: 0.313 (sec). Leaf size: 185� �
DSolve[y'[x]+3 a(2 x + y[x])y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


3
√
−3 3

√
axAiryAi

(
(−3)2/3a2/3x2 − (−1)2/3

3
√
3 3
√
ay(x)

)
+AiryAiPrime

(
(−3)2/3a2/3x2 − (−1)2/3

3
√
3 3
√
ay(x)

)
3
√
−3 3

√
axAiryBi

(
(−3)2/3a2/3x2 − (−1)2/3

3
√
3 3
√
ay(x)

)
+AiryBiPrime

(
(−3)2/3a2/3x2 − (−1)2/3

3
√
3 3
√
ay(x)

)

+ c1 = 0, y(x)
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3.26 problem 80
3.26.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 792
3.26.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 793

Internal problem ID [3344]
Internal file name [OUTPUT/2836_Sunday_June_05_2022_08_41_24_AM_4320842/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 80.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − y
(
a+ by2

)
= 0

3.26.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
y (b y2 + a)dy =

∫
dx

− ln (b y2 + a)
2a + ln (y)

a
= x+ c1

Raising both side to exponential gives

e−
ln
(
b y2+a

)
2a + ln(y)

a = ex+c1

Which simplifies to (
b y2 + a

)− 1
2a y

1
a = c2ex

Summary
The solution(s) found are the following

(1)y = RootOf
(
−
(
_Z2b+ a

)− 1
2a _Z 1

a + c2ex
)
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Verification of solutions

y = RootOf
(
−
(
_Z2b+ a

)− 1
2a _Z 1

a + c2ex
)

Verified OK.

3.26.2 Maple step by step solution

Let’s solve
y′ − y(a+ by2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(a+by2) = 1

• Integrate both sides with respect to x∫
y′

y(a+by2)dx =
∫
1dx+ c1

• Evaluate integral

− ln
(
a+by2

)
2a + ln(y)

a
= x+ c1

• Solve for y{
y =

√
−
(
b e2c1a+2ax−1

)
a e2c1a+2ax

b e2c1a+2ax−1 , y = −
√

−
(
b e2c1a+2ax−1

)
a e2c1a+2ax

b e2c1a+2ax−1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 70� �
dsolve(diff(y(x),x) = y(x)*(a+b*y(x)^2),y(x), singsol=all)� �

y(x) =
√
(c1a e−2ax − b) a
c1a e−2ax − b

y(x) = −
√

(c1a e−2ax − b) a
c1a e−2ax − b

3 Solution by Mathematica
Time used: 1.914 (sec). Leaf size: 118� �
DSolve[y'[x]==y[x](a+b y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − i
√
aea(x+c1)

√
−1 + be2a(x+c1)

y(x) → i
√
aea(x+c1)

√
−1 + be2a(x+c1)

y(x) → 0

y(x) → − i
√
a√
b

y(x) → i
√
a√
b
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3.27 problem 81
3.27.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 795

Internal problem ID [3345]
Internal file name [OUTPUT/2837_Sunday_June_05_2022_08_41_27_AM_65249478/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 81.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − a1 y − a2 y2 − a3 y3 = a0

3.27.1 Solving as quadrature ode

Integrating both sides gives∫ 1
a3 y3 + a2 y2 + a1 y + a0dy =

∫
dx∫ y 1

_a3 a3+_a2 a2+_a a1+a0d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

_a3 a3+_a2 a2+_a a1+a0d_a = x+ c1

Verification of solutions∫ y 1
_a3 a3+_a2 a2+_a a1+a0d_a = x+ c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(diff(y(x),x) = a0+a1*y(x)+a2*y(x)^2+a3*y(x)^3,y(x), singsol=all)� �

x−

(∫ y(x) 1
_a3 a3+_a2 a2+_a a1+a0d_a

)
+ c1 = 0

3 Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 54� �
DSolve[y'[x]==a0+a1 y[x]+a2 y[x]^2+ a3 y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
RootSum

[
#13a3+#12a2+#1a1+a0&,

log(y(x)−#1)
3#12a3+ 2#1a2+ a1

&
]
= x+c1, y(x)

]
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3.28 problem 82
3.28.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 797
3.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 799
3.28.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 803
3.28.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 807

Internal problem ID [3346]
Internal file name [OUTPUT/2838_Sunday_June_05_2022_08_41_27_AM_47620001/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 82.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − xy3 = 0

3.28.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x y3

Where f(x) = x and g(y) = y3. Integrating both sides gives

1
y3

dy = x dx∫ 1
y3

dy =
∫

x dx

− 1
2y2 = x2

2 + c1
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Which results in

y = − 1√
−x2 − 2c1

y = 1√
−x2 − 2c1

Summary
The solution(s) found are the following

(1)y = − 1√
−x2 − 2c1

(2)y = 1√
−x2 − 2c1

Figure 136: Slope field plot

798



Verification of solutions

y = − 1√
−x2 − 2c1

Verified OK.

y = 1√
−x2 − 2c1

Verified OK.

3.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 148: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x y3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = − 1
2y2 + c1

Which simplifies to

x2

2 = − 1
2y2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x y3 dS
dR

= 1
R3

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)x2

2 = − 1
2y2 + c1
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Figure 137: Slope field plot

Verification of solutions

x2

2 = − 1
2y2 + c1

Verified OK.

3.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y3

)
dy = (x) dx

(−x) dx+
(

1
y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
y3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y3
. Therefore equation (4) becomes

(5)1
y3

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y3
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y3

)
dy

f(y) = − 1
2y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − 1
2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − 1
2y2

Summary
The solution(s) found are the following

(1)−x2

2 − 1
2y2 = c1
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Figure 138: Slope field plot

Verification of solutions

−x2

2 − 1
2y2 = c1

Verified OK.

3.28.4 Maple step by step solution

Let’s solve
y′ − xy3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y3
= x

• Integrate both sides with respect to x∫
y′

y3
dx =

∫
xdx+ c1

• Evaluate integral
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− 1
2y2 = x2

2 + c1

• Solve for y{
y = 1√

−x2−2c1
, y = − 1√

−x2−2c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x) = x*y(x)^3,y(x), singsol=all)� �

y(x) = 1√
−x2 + c1

y(x) = − 1√
−x2 + c1

3 Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 44� �
DSolve[y'[x]==x y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
−x2 − 2c1

y(x) → 1√
−x2 − 2c1

y(x) → 0
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3.29 problem 83
3.29.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 809
3.29.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 813

Internal problem ID [3347]
Internal file name [OUTPUT/2839_Sunday_June_05_2022_08_41_28_AM_61401968/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 83.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ + y
(
1− y2x

)
= 0

3.29.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y
(
x y2 − 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 151: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3e2x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3e2xdy

Which results in

S = −e−2x

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y
(
x y2 − 1

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e−2x

y2

Sy =
e−2x

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x e−2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R e−2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(2R + 1) e−2R

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−e−2x

2y2 = −(1 + 2x) e−2x

4 + c1

Which simplifies to

−e−2x

2y2 = −(1 + 2x) e−2x

4 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(x y2 − 1) dS
dR

= R e−2R

R = x

S = −e−2x

2y2

Summary
The solution(s) found are the following

(1)−e−2x

2y2 = −(1 + 2x) e−2x

4 + c1
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Figure 139: Slope field plot

Verification of solutions

−e−2x

2y2 = −(1 + 2x) e−2x

4 + c1

Verified OK.

3.29.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= y
(
x y2 − 1

)
This is a Bernoulli ODE.

y′ = −y + xy3 (1)
The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
f1(x) = x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
y2

+ x (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x) + x

w′ = 2w − 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
q(x) = −2x

Hence the ode is

w′(x)− 2w(x) = −2x
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The integrating factor µ is

µ = e
∫
(−2)dx

= e−2x

The ode becomes
d
dx(µw) = (µ) (−2x)

d
dx
(
e−2xw

)
=
(
e−2x) (−2x)

d
(
e−2xw

)
=
(
−2x e−2x) dx

Integrating gives

e−2xw =
∫

−2x e−2x dx

e−2xw = (1 + 2x) e−2x

2 + c1

Dividing both sides by the integrating factor µ = e−2x results in

w(x) = e2x(1 + 2x) e−2x

2 + e2xc1

which simplifies to

w(x) = x+ 1
2 + e2xc1

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= x+ 1
2 + e2xc1

Solving for y gives

y(x) = 2√
2 + 4 e2xc1 + 4x

y(x) = − 2√
2 + 4 e2xc1 + 4x

Summary
The solution(s) found are the following

(1)y = 2√
2 + 4 e2xc1 + 4x

(2)y = − 2√
2 + 4 e2xc1 + 4x
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Figure 140: Slope field plot

Verification of solutions

y = 2√
2 + 4 e2xc1 + 4x

Verified OK.

y = − 2√
2 + 4 e2xc1 + 4x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)+y(x)*(1-x*y(x)^2) = 0,y(x), singsol=all)� �

y(x) = − 2√
2 + 4c1e2x + 4x

y(x) = 2√
2 + 4c1e2x + 4x

3 Solution by Mathematica
Time used: 2.822 (sec). Leaf size: 50� �
DSolve[y'[x]+y[x](1-x y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x+ c1e2x + 1

2

y(x) → 1√
x+ c1e2x + 1

2

y(x) → 0
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4 Various 4
4.1 problem 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
4.2 problem 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
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4.1 problem 84
4.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 819
4.1.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 824
4.1.3 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 829

Internal problem ID [3348]
Internal file name [OUTPUT/2840_Sunday_June_05_2022_08_41_30_AM_88103539/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 84.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind", "exactWithInte-
grationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _Abel]

y′ − (a+ bxy) y2 = 0

4.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (byx+ a) y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (byx+ a) y2(b3 − a2)− (byx+ a)2 y4a3 − b y3(xa2 + ya3 + a1)
−
(
bx y2 + 2(byx+ a) y

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−b2x2y6a3 − 2abx y5a3 − a2y4a3 − 3b x2y2b2 − 2bx y3a2 − 2bx y3b3
− b y4a3 − 3bx y2b1 − b y3a1 − 2axyb2 − a y2a2 − a y2b3 − 2ayb1 + b2 = 0

Setting the numerator to zero gives

(6E)−b2x2y6a3 − 2abx y5a3 − a2y4a3 − 3b x2y2b2 − 2bx y3a2 − 2bx y3b3
− b y4a3 − 3bx y2b1 − b y3a1 − 2axyb2 − a y2a2 − a y2b3 − 2ayb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−b2a3v
2
1v

6
2 − 2aba3v1v52 − a2a3v

4
2 − 2ba2v1v32 − ba3v

4
2 − 3bb2v21v22 − 2bb3v1v32

− ba1v
3
2 − 3bb1v1v22 − aa2v

2
2 − 2ab2v1v2 − ab3v

2
2 − 2ab1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−b2a3v
2
1v

6
2 − 3bb2v21v22 − 2aba3v1v52 + (−2ba2 − 2bb3) v1v32 − 3bb1v1v22

− 2ab2v1v2 +
(
−a2a3 − ba3

)
v42 − ba1v

3
2 + (−aa2 − ab3) v22 − 2ab1v2 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−2ab1 = 0
−2ab2 = 0
−ba1 = 0
−3bb1 = 0
−3bb2 = 0
−b2a3 = 0

−2aba3 = 0
−a2a3 − ba3 = 0
−aa2 − ab3 = 0

−2ba2 − 2bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−x

= −y

x

This is easily solved to give

y = c1
x

Where now the coordinate R is taken as the constant of integration. Hence

R = xy

And S is found from

dS = dx

ξ

= dx

−x

Integrating gives

S =
∫

dx

T

= − ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (byx+ a) y2
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Evaluating all the partial derivatives gives

Rx = y

Ry = x

Sx = −1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

xy (b x2y2 + axy + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R (bR2 + aR + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (bR2 + aR + 1)
2 −

a arctanh
(

2Rb+a√
a2−4b

)
√
a2 − 4b

− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) = ln (b x2y2 + axy + 1)
2 −

a arctanh
(

2bxy+a√
a2−4b

)
√
a2 − 4b

− ln (yx) + c1

Which simplifies to

− ln (x) = ln (b x2y2 + axy + 1)
2 −

a arctanh
(

2bxy+a√
a2−4b

)
√
a2 − 4b

− ln (yx) + c1

Summary
The solution(s) found are the following

(1)− ln (x) = ln (b x2y2 + axy + 1)
2 −

a arctanh
(

2bxy+a√
a2−4b

)
√
a2 − 4b

− ln (yx) + c1
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Verification of solutions

− ln (x) = ln (b x2y2 + axy + 1)
2 −

a arctanh
(

2bxy+a√
a2−4b

)
√
a2 − 4b

− ln (yx) + c1

Verified OK.

4.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore

dy =
(
(byx+ a) y2

)
dx(

−(byx+ a) y2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −(byx+ a) y2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−(byx+ a) y2

)
= −2y

(
3byx
2 + a

)
And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((
−bx y2 − 2(byx+ a) y

)
− (0)

)
= −2y

(
3byx
2 + a

)
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

(byx+ a) y2
(
(0)−

(
−bx y2 − 2(byx+ a) y

))
= −3byx− 2a

(byx+ a) y
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Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (0)− (−bx y2 − 2(byx+ a) y)
x (− (byx+ a) y2)− y (1)

= −3byx− 2a
b x2y2 + axy + 1

Replacing all powers of terms xy by t gives

R = −3bt− 2a
b t2 + at+ 1

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( −3bt−2a

b t2+at+1

)
dt

The result of integrating gives

µ = e
−

3 ln
(
b t2+at+1

)
2 +

a arctanh
(

2bt+a√
a2−4b

)
√

a2−4b

= e
a arctanh

(
2bt+a√
a2−4b

)
√

a2−4b

(b t2 + at+ 1)
3
2

Now t is replaced back with xy giving

µ = e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2

(
−(byx+ a) y2

)

= −(byx+ a) y2e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2

And

N = µN

= e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2
(1)

= e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0−(byx+ a) y2e

a arctanh
(

2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2

+

 e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2

 dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx
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∫
∂φ

∂x
dx =

∫
−(byx+ a) y2e

a arctanh
(

2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2

dx

(3)φ = y e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b
√
b x2y2 + axy + 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)
∂φ

∂y
= −y e

a arctanh
(

2byx+a√
a2−4b

)
√

a2−4b (2b x2y + ax)
2 (b x2y2 + axy + 1)

3
2

+ e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b
√
b x2y2 + axy + 1

+ 2yabx e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

√
b x2y2 + axy + 1 (a2 − 4b)

(
− (2byx+a)2

a2−4b + 1
) + f ′(y)

= e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= e

a arctanh
(

2byx+a√
a2−4b

)
√

a2−4b

(b x2y2+axy+1)
3
2

. Therefore equation (4) becomes

(5)e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2
= e

a arctanh
(

2byx+a√
a2−4b

)
√

a2−4b

(b x2y2 + axy + 1)
3
2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y e
a arctanh

(
2byx+a√
a2−4b

)
√

a2−4b
√
b x2y2 + axy + 1

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y e

a arctanh
(

2byx+a√
a2−4b

)
√

a2−4b
√
b x2y2 + axy + 1

Summary
The solution(s) found are the following

(1)y e
a arctanh

(
2bxy+a√
a2−4b

)
√

a2−4b
√
b x2y2 + axy + 1

= c1

Verification of solutions

y e
a arctanh

(
2bxy+a√
a2−4b

)
√

a2−4b
√
b x2y2 + axy + 1

= c1

Verified OK.

4.1.3 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = y3bx+ ay2 (1)

Therefore

f0(x) = 0
f1(x) = 0
f2(x) = a

f3(x) = bx

Since f2(x) = a is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
( a

3bx

)
= u(x)− a

3bx
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The above transformation applied to (1) gives a new ODE as

u′(x) = bxu(x)3 − u(x) a2
3bx + 2a3

27b2x2 − a

3b x2 (2)

The above ODE (2) can now be solved as separable.

Writing the ode as

u′(x) = 27b3x3u3 − 9u a2bx+ 2a3 − 9ab
27b2x2

u′(x) = ω(x, u)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηu − ξx)− ω2ξu − ωxξ − ωuη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = ua3 + xa2 + a1

(2E)η = ub3 + xb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(27b3x3u3 − 9u a2bx+ 2a3 − 9ab) (b3 − a2)

27b2x2

− (27b3x3u3 − 9u a2bx+ 2a3 − 9ab)2 a3
729b4x4 −

(
81x2b3u3 − 9a2bu

27b2x2

− 2(27b3x3u3 − 9u a2bx+ 2a3 − 9ab)
27b2x3

)
(ua3 + xa2 + a1)

− (81b3u2x3 − 9a2bx) (ub3 + xb2 + b1)
27b2x2 = 0

Putting the above in normal form gives

−729b6u6x6a3 − 486a2b4u4x4a3 + 729b5u4x4a3 + 1458b5u3x5a2 + 1458b5u3x5b3 + 2187b5u2x6b2 + 108a3b3u3x3a3 + 729b5u3x4a1 + 2187b5u2x5b1 − 486a b4u3x3a3 + 81a4b2u2x2a3 + 243a2b3u2x2a3 − 243a2b3x4b2 − 36a5buxa3 + 243a2b3ux2a1 − 243a2b3x3b1 − 729b2b4x4 + 54a3b2uxa3 − 54a3b2x2a2 − 54a3b2x2b3 + 4a6a3 − 108a3b2xa1 + 486a b3uxa3 + 243a b3x2a2 + 243a b3x2b3 − 36a4ba3 + 486a b3xa1 + 81a2b2a3
729b4x4

= 0
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Setting the numerator to zero gives

(6E)

−729b6u6x6a3 + 486a2b4u4x4a3 − 729b5u4x4a3 − 1458b5u3x5a2
− 1458b5u3x5b3 − 2187b5u2x6b2 − 108a3b3u3x3a3 − 729b5u3x4a1
− 2187b5u2x5b1 + 486a b4u3x3a3 − 81a4b2u2x2a3 − 243a2b3u2x2a3
+ 243a2b3x4b2 + 36a5buxa3 − 243a2b3ux2a1 + 243a2b3x3b1
+ 729b2b4x4 − 54a3b2uxa3 + 54a3b2x2a2 + 54a3b2x2b3
− 4a6a3 + 108a3b2xa1 − 486a b3uxa3 − 243a b3x2a2
− 243a b3x2b3 + 36a4ba3 − 486a b3xa1 − 81a2b2a3 = 0

Looking at the above PDE shows the following are all the terms with {u, x} in them.

{u, x}

The following substitution is now made to be able to collect on all terms with {u, x}
in them

{u = v1, x = v2}

The above PDE (6E) now becomes

(7E)

−729b6a3v61v62 + 486a2b4a3v41v42 − 1458b5a2v31v52 − 729b5a3v41v42
− 2187b5b2v21v62 − 1458b5b3v31v52 − 108a3b3a3v31v32 − 729b5a1v31v42
− 2187b5b1v21v52 + 486a b4a3v31v32 − 81a4b2a3v21v22 − 243a2b3a3v21v22
+ 243a2b3b2v42 + 36a5ba3v1v2 − 243a2b3a1v1v22 + 243a2b3b1v32
+ 729b4b2v42 + 54a3b2a2v22 − 54a3b2a3v1v2 + 54a3b2b3v22
− 4a6a3 + 108a3b2a1v2 − 243a b3a2v22 − 486a b3a3v1v2
− 243a b3b3v22 + 36a4ba3 − 486a b3a1v2 − 81a2b2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

−729b6a3v61v62 +
(
486a2b4a3 − 729b5a3

)
v41v

4
2

+
(
−1458b5a2 − 1458b5b3

)
v31v

5
2 − 729b5a1v31v42

+
(
−108a3b3a3 + 486a b4a3

)
v31v

3
2 − 2187b5b2v21v62 − 2187b5b1v21v52

+
(
−81a4b2a3 − 243a2b3a3

)
v21v

2
2 − 243a2b3a1v1v22

+
(
36a5ba3 − 54a3b2a3 − 486a b3a3

)
v1v2 +

(
243a2b3b2 + 729b4b2

)
v42

+ 243a2b3b1v32 +
(
54a3b2a2 + 54a3b2b3 − 243a b3a2 − 243a b3b3

)
v22

+
(
108a3b2a1 − 486a b3a1

)
v2 − 4a6a3 + 36a4ba3 − 81a2b2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−729b5a1 = 0
−2187b5b1 = 0
−2187b5b2 = 0
−729b6a3 = 0

−243a2b3a1 = 0
243a2b3b1 = 0

108a3b2a1 − 486a b3a1 = 0
486a2b4a3 − 729b5a3 = 0

−108a3b3a3 + 486a b4a3 = 0
−81a4b2a3 − 243a2b3a3 = 0

243a2b3b2 + 729b4b2 = 0
−1458b5a2 − 1458b5b3 = 0

36a5ba3 − 54a3b2a3 − 486a b3a3 = 0
−4a6a3 + 36a4ba3 − 81a2b2a3 = 0

54a3b2a2 + 54a3b2b3 − 243a b3a2 − 243a b3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = u
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, u) ξ

= u−
(
27b3x3u3 − 9u a2bx+ 2a3 − 9ab

27b2x2

)
(−x)

= 27b3x3u3 − 9u a2bx+ 27u b2x+ 2a3 − 9ab
27b2x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, u) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= du

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂u

)
S(x, u) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

27b3x3u3−9u a2bx+27u b2x+2a3−9ab
27b2x

dy

Which results in

S = − ln (9b2x2u2 + 3abux− 2a2 + 9b)
2 +

bxa arctanh
(

18u b2x2+3abx
9
√
a2b2x2−4b3x2

)
√
a2b2x2 − 4b3x2

+ ln (3bux− a)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, u)Su

Rx + ω(x, u)Ru
(2)

Where in the above Rx, Ru, Sx, Su are all partial derivatives and ω(x, u) is the right
hand side of the original ode given by

ω(x, u) = 27b3x3u3 − 9u a2bx+ 2a3 − 9ab
27b2x2
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Evaluating all the partial derivatives gives

Rx = 1
Ru = 0

Sx = 27b2u
(−3bux+ a) (−9b2x2u2 − 3abux+ 2a2 − 9b)

Su = 27b2x
(−3bux+ a) (−9b2x2u2 − 3abux+ 2a2 − 9b)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, u
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, u coordinates. This
results in

2a arctanh
(

6u(x)bx+a

3
√
a2−4b

)
+ 2 ln (3u(x) bx− a)

√
a2 − 4b− ln

(
9b2x2u(x)2 + (3au(x)x+ 9) b− 2a2

)√
a2 − 4b

2
√
a2 − 4b

= ln (x) + c1

Which simplifies to

2a arctanh
(

6u(x)bx+a

3
√
a2−4b

)
+ 2 ln (3u(x) bx− a)

√
a2 − 4b− ln

(
9b2x2u(x)2 + (3au(x)x+ 9) b− 2a2

)√
a2 − 4b

2
√
a2 − 4b

= ln (x) + c1

Substituting u = y − a
3bx in the above solution gives

2a arctanh
(

6
(
y− a

3bx
)
bx+a

3
√
a2−4b

)
+ 2 ln

(
3
(
y − a

3bx

)
bx− a

)√
a2 − 4b− ln

(
9b2x2(y − a

3bx

)2 + (3a(y − a
3bx

)
x+ 9

)
b− 2a2

)√
a2 − 4b

2
√
a2 − 4b

= ln (x) + c1
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Summary
The solution(s) found are the following

(1)
2a arctanh

(
6
(
y− a

3bx
)
bx+a

3
√
a2−4b

)
+ 2 ln

(
3
(
y − a

3bx

)
bx− a

)√
a2 − 4b− ln

(
9b2x2(y − a

3bx

)2 + (3a(y − a
3bx

)
x+ 9

)
b− 2a2

)√
a2 − 4b

2
√
a2 − 4b

= ln (x) + c1

Verification of solutions

2a arctanh
(

6
(
y− a

3bx
)
bx+a

3
√
a2−4b

)
+ 2 ln

(
3
(
y − a

3bx

)
bx− a

)√
a2 − 4b− ln

(
9b2x2(y − a

3bx

)2 + (3a(y − a
3bx

)
x+ 9

)
b− 2a2

)√
a2 − 4b

2
√
a2 − 4b

= ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 103� �
dsolve(diff(y(x),x) = (a+b*x*y(x))*y(x)^2,y(x), singsol=all)� �
y(x)

= e
RootOf

(
2
√
a2−4b a arctanh

(
2b e_Z+a√

a2−4b

)
−ln

(
x2(b e2_Z+a e_Z+1

))
a2+2c1a2+2_Z a2+4 ln

(
x2(b e2_Z+a e_Z+1

))
b−8c1b−8_Zb

)
x
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3 Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 94� �
DSolve[y'[x]==(a+b x y[x])y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve



a2

−
2 arctan

a+2bxy(x)

a

√
4b
a2

−1


√

4b
a2−1

− log
(

bxy(x)(a+bxy(x))+b
b2x2y(x)2

)
2b = a2 log(x)

b
+ c1, y(x)
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4.2 problem 87
4.2.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 837
4.2.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 840

Internal problem ID [3349]
Internal file name [OUTPUT/2841_Sunday_June_05_2022_08_41_31_AM_88517983/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 87.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ + 2xy
(
1 + axy2

)
= 0

4.2.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy
(
ax y2 + 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 153: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3e2x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

838



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3e2x2 dy

Which results in

S = −e−2x2

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy
(
ax y2 + 1

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x e−2x2

y2

Sy =
e−2x2

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2x2e−2x2

a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R2e−2R2

a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R e−2R2
a

2 −
a
√
2
√
π erf

(√
2R
)

8 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−e−2x2

2y2 = x e−2x2
a

2 −
a
√
2
√
π erf

(√
2x
)

8 + c1

Which simplifies to

−e−2x2

2y2 = x e−2x2
a

2 −
a
√
2
√
π erf

(√
2x
)

8 + c1

Summary
The solution(s) found are the following

(1)−e−2x2

2y2 = x e−2x2
a

2 −
a
√
2
√
π erf

(√
2x
)

8 + c1

Verification of solutions

−e−2x2

2y2 = x e−2x2
a

2 −
a
√
2
√
π erf

(√
2x
)

8 + c1

Verified OK.

4.2.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= −2xy

(
ax y2 + 1

)
This is a Bernoulli ODE.

y′ = −2xy − 2x2ay3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −2x
f1(x) = −2x2a

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= −2x
y2

− 2x2a (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −2w(x)x− 2x2a

w′ = 4x2a+ 4xw (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −4x
q(x) = 4x2a
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Hence the ode is

w′(x)− 4w(x)x = 4x2a

The integrating factor µ is

µ = e
∫
−4xdx

= e−2x2

The ode becomes
d
dx(µw) = (µ)

(
4x2a

)
d
dx

(
e−2x2

w
)
=
(
e−2x2

) (
4x2a

)
d
(
e−2x2

w
)
=
(
4x2e−2x2

a
)
dx

Integrating gives

e−2x2
w =

∫
4x2e−2x2

a dx

e−2x2
w = 4a

(
−x e−2x2

4 +
√
2
√
π erf

(√
2x
)

16

)
+ c1

Dividing both sides by the integrating factor µ = e−2x2 results in

w(x) = 4 e2x2
a

(
−x e−2x2

4 +
√
2
√
π erf

(√
2x
)

16

)
+ c1e2x

2

which simplifies to

w(x) =
(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2

4 − ax

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

=
(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2

4 − ax

Solving for y gives

y(x) = 2√(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2 − 4ax

y(x) = − 2√(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2 − 4ax
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Summary
The solution(s) found are the following

(1)y = 2√(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2 − 4ax

(2)y = − 2√(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2 − 4ax

Verification of solutions

y = 2√(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2 − 4ax

Verified OK.

y = − 2√(
a
√
2
√
π erf

(√
2x
)
+ 4c1

)
e2x2 − 4ax

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 75� �
dsolve(diff(y(x),x)+2*x*y(x)*(1+a*x*y(x)^2) = 0,y(x), singsol=all)� �

y(x) = − 2√(
a erf

(√
2x
)√

π
√
2 + 4c1

)
e2x2 − 4ax

y(x) = 2√(
a erf

(√
2x
)√

π
√
2 + 4c1

)
e2x2 − 4ax
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3 Solution by Mathematica
Time used: 7.561 (sec). Leaf size: 106� �
DSolve[y'[x]+2 x y[x](1+ a x y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2√√
2πae2x2erf

(√
2x
)
− 4ax+ 4c1e2x2

y(x) → 2√√
2πae2x2erf

(√
2x
)
− 4ax+ 4c1e2x2

y(x) → 0
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4.3 problem 90
4.3.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 845
4.3.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 849

Internal problem ID [3350]
Internal file name [OUTPUT/2842_Sunday_June_05_2022_08_41_33_AM_72090819/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 90.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ +
(
tan (x) + y2 sec (x)

)
y = 0

4.3.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
(
tan (x) + y2 sec (x)

)
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 155: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y3

cos (x)2
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3

cos(x)2
dy

Which results in

S = −cos (x)2

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
tan (x) + y2 sec (x)

)
y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = sin (2x)
2y2

Sy =
cos (x)2

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − cos (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − sin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−cos (x)2

2y2 = c1 − sin (x)

Which simplifies to

−cos (x)2

2y2 = c1 − sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −(tan (x) + y2 sec (x)) y dS
dR

= − cos (R)

R = x

S = −cos (x)2

2y2

Summary
The solution(s) found are the following

(1)−cos (x)2

2y2 = c1 − sin (x)
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Figure 141: Slope field plot

Verification of solutions

−cos (x)2

2y2 = c1 − sin (x)

Verified OK.

4.3.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= −

(
tan (x) + y2 sec (x)

)
y

This is a Bernoulli ODE.

y′ = − tan (x) y − sec (x) y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − tan (x)
f1(x) = − sec (x)

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= −tan (x)
y2

− sec (x) (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = − tan (x)w(x)− sec (x)

w′ = 2 tan (x)w + 2 sec (x) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2 tan (x)
q(x) = 2 sec (x)
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Hence the ode is

w′(x)− 2 tan (x)w(x) = 2 sec (x)

The integrating factor µ is

µ = e
∫
−2 tan(x)dx

= cos (x)2

The ode becomes

d
dx(µw) = (µ) (2 sec (x))

d
dx
(
cos (x)2w

)
=
(
cos (x)2

)
(2 sec (x))

d
(
cos (x)2w

)
= (2 cos (x)) dx

Integrating gives

cos (x)2w =
∫

2 cos (x) dx

cos (x)2w = 2 sin (x) + c1

Dividing both sides by the integrating factor µ = cos (x)2 results in

w(x) = 2 sin (x) sec (x)2 + sec (x)2 c1

which simplifies to

w(x) = sec (x)2 (2 sin (x) + c1)

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= sec (x)2 (2 sin (x) + c1)

Solving for y gives

y(x) = cos (x)√
2 sin (x) + c1

y(x) = − cos (x)√
2 sin (x) + c1
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Summary
The solution(s) found are the following

(1)y = cos (x)√
2 sin (x) + c1

(2)y = − cos (x)√
2 sin (x) + c1

Figure 142: Slope field plot

Verification of solutions

y = cos (x)√
2 sin (x) + c1

Verified OK.

y = − cos (x)√
2 sin (x) + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 30� �
dsolve(diff(y(x),x)+(tan(x)+y(x)^2*sec(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = cos (x)√
2 sin (x) + c1

y(x) = − cos (x)√
2 sin (x) + c1

3 Solution by Mathematica
Time used: 3.746 (sec). Leaf size: 48� �
DSolve[y'[x]+(Tan[x]+y[x]^2 Sec[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
sec2(x)(2 sin(x) + c1)

y(x) → 1√
sec2(x)(2 sin(x) + c1)

y(x) → 0

853



4.4 problem 91
4.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 854
4.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 856
4.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 860
4.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 864

Internal problem ID [3351]
Internal file name [OUTPUT/2843_Sunday_June_05_2022_08_41_35_AM_87158194/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 91.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + tan (x) sec (x) y3 = 0

4.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − tan (x) sec (x) y3

Where f(x) = − sec (x) tan (x) and g(y) = y3. Integrating both sides gives

1
y3

dy = − sec (x) tan (x) dx∫ 1
y3

dy =
∫

− sec (x) tan (x) dx

− 1
2y2 = − 1

cos (x) + c1
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Which results in

y =
√

−2 (c1 cos (x)− 1) cos (x)
2c1 cos (x)− 2

y = −
√

−2 (c1 cos (x)− 1) cos (x)
2 (c1 cos (x)− 1)

Summary
The solution(s) found are the following

(1)y =
√

−2 (c1 cos (x)− 1) cos (x)
2c1 cos (x)− 2

(2)y = −
√

−2 (c1 cos (x)− 1) cos (x)
2 (c1 cos (x)− 1)

Figure 143: Slope field plot
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Verification of solutions

y =
√

−2 (c1 cos (x)− 1) cos (x)
2c1 cos (x)− 2

Verified OK.

y = −
√

−2 (c1 cos (x)− 1) cos (x)
2 (c1 cos (x)− 1)

Verified OK.

4.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − tan (x) sec (x) y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

856



Table 157: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = − 1
sec (x) tan (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
sec(x) tan(x)

dx

Which results in

S = − sec (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − tan (x) sec (x) y3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − sec (x) tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− sec (x) = − 1
2y2 + c1

Which simplifies to

− sec (x) = − 1
2y2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − tan (x) sec (x) y3 dS
dR

= 1
R3

R = y

S = − sec (x)

Summary
The solution(s) found are the following

(1)− sec (x) = − 1
2y2 + c1
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Figure 144: Slope field plot

Verification of solutions

− sec (x) = − 1
2y2 + c1

Verified OK.

4.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y3

)
dy = (sec (x) tan (x)) dx

(− sec (x) tan (x)) dx+
(
− 1
y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x) tan (x)

N(x, y) = − 1
y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sec (x) tan (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
− 1
y3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sec (x) tan (x) dx

(3)φ = − sec (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y3
. Therefore equation (4) becomes

(5)− 1
y3

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y3

)
dy

f(y) = 1
2y2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − sec (x) + 1
2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sec (x) + 1
2y2

Summary
The solution(s) found are the following

(1)− sec (x) + 1
2y2 = c1

Figure 145: Slope field plot

Verification of solutions

− sec (x) + 1
2y2 = c1

Verified OK.
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4.4.4 Maple step by step solution

Let’s solve
y′ + tan (x) sec (x) y3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y3
= − sec (x) tan (x)

• Integrate both sides with respect to x∫
y′

y3
dx =

∫
− sec (x) tan (x) dx+ c1

• Evaluate integral
− 1

2y2 = − sec (x) + c1

• Solve for y{
y = −

√
−2(c1 cos(x)−1) cos(x)

2(c1 cos(x)−1) , y =
√

−2(c1 cos(x)−1) cos(x)
2(c1 cos(x)−1)

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 48� �
dsolve(diff(y(x),x)+y(x)^3*sec(x)*tan(x) = 0,y(x), singsol=all)� �

y(x) =
√
(cos (x) c1 + 2) cos (x)

cos (x) c1 + 2

y(x) = −
√

(cos (x) c1 + 2) cos (x)
cos (x) c1 + 2
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3 Solution by Mathematica
Time used: 0.386 (sec). Leaf size: 49� �
DSolve[y'[x]+y[x]^3 Sec[x] Tan[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
2
√
sec(x)− c1

y(x) → 1√
2
√

sec(x)− c1
y(x) → 0
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4.5 problem 92
4.5.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 866

Internal problem ID [3352]
Internal file name [OUTPUT/2844_Sunday_June_05_2022_08_41_37_AM_31688915/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 92.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abel]

Unable to solve or complete the solution.

y′ − f1 (x) y − f2 (x) y2 − f3 (x) y3 = f0 (x)

4.5.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = f0 (x) + f1 (x) y + f2 (x) y2 + f3 (x) y3 (1)

Therefore

f0(x) = f0 (x)
f1(x) = f1 (x)
f2(x) = f2 (x)
f3(x) = f3 (x)
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Since f2(x) = f2 (x) is not zero, then the first step is to apply the following transforma-
tion to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(

f2 (x)
3 f3 (x)

)
= u(x)− f2 (x)

3 f3 (x)

The above transformation applied to (1) gives a new ODE as

u′(x) = f3 (x)u(x)3 + f1 (x)u(x)− f2 (x)2 u(x)
3 f3 (x) + f0 (x)− f1 (x) f2 (x)

3 f3 (x) + 2 f2 (x)3

27 f3 (x)2
− f2 (x) f3′ (x)

3 f3 (x)2
+ f2′ (x)

3 f3 (x)
(2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = f3 (x)u(x)3 +
(
27 f1 (x) f3 (x)2 − 9 f2 (x)2 f3 (x)

)
u(x)

27 f3 (x)2
+ 27 f0 (x) f3 (x)2 − 9 f1 (x) f2 (x) f3 (x) + 2 f2 (x)3 − 9 f2 (x) f3′ (x) + 9 f2′ (x) f3 (x)

27 f3 (x)2

(1)

Therefore

f0(x) = f0 (x)− f1 (x) f2 (x)
3 f3 (x) + 2 f2 (x)3

27 f3 (x)2
− f2 (x) f3′ (x)

3 f3 (x)2
+ f2′ (x)

3 f3 (x)

f1(x) = f1 (x)− f2 (x)2

3 f3 (x)
f2(x) = 0
f3(x) = f3 (x)

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
−
(
f0′ (x) + f1(x) f2(x) f3′(x)

3 f3(x)2 − f1′(x) f2(x)
3 f3(x) − f1(x) f2′(x)

3 f3(x) − 4 f2(x)3 f3′(x)
27 f3(x)3 + 2 f2(x)2 f2′(x)

9 f3(x)2 + 2 f2(x) f3′(x)2

3 f3(x)3 − 2 f2′(x) f3′(x)
3 f3(x)2 − f2(x) f3′′(x)

3 f3(x)2 + f2′′(x)
3 f3(x)

)
f3 (x) +

(
f0 (x)− f1(x) f2(x)

3 f3(x) + 2 f2(x)3

27 f3(x)2 −
f2(x) f3′(x)
3 f3(x)2 + f2′(x)

3 f3(x)

)
f3′ (x) + 3

(
f0 (x)− f1(x) f2(x)

3 f3(x) + 2 f2(x)3

27 f3(x)2 −
f2(x) f3′(x)
3 f3(x)2 + f2′(x)

3 f3(x)

)
f3 (x)

(
f1 (x)− f2(x)2

3 f3(x)

))3
27 f3 (x)4

(
f0 (x)− f1(x) f2(x)

3 f3(x) + 2 f2(x)3

27 f3(x)2 −
f2(x) f3′(x)
3 f3(x)2 + f2′(x)

3 f3(x)

)5

867



Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x) = f0(x)+f1(x)*y(x)+f2(x)*y(x)^2+f3(x)*y(x)^3,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==f0[x]+f1[x]y[x]+f2[x] y[x]^2+f3[x]y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.6 problem 94
4.6.1 Solving as first order ode lie symmetry calculated ode . . . . . . 870

Internal problem ID [3353]
Internal file name [OUTPUT/2845_Sunday_June_05_2022_08_41_39_AM_47668933/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 94.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _Chini]

y′ − byn = a x
n

−n+1

4.6.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = a x
n

−n+1 + b yn

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
a x

n
−n+1 + b yn

)
(b3 − a2)−

(
a x

n
−n+1 + b yn

)2
a3

− a x
n

−n+1n(xa2 + ya3 + a1)
(−n+ 1)x − b ynn(xb2 + yb3 + b1)

y
= 0

Putting the above in normal form gives

−x− 2n
n−1a2nxya3 + 2x− n

n−1ynabnxya3 + y2nb2nxya3 − x− 2n
n−1a2xya3 − 2x− n

n−1ynabxya3 − y2nb2xya3 + ynb n2x2b2 + ynb n2xyb3 − x− n
n−1anxyb3 − x− n

n−1an y2a3 + ynb n2xb1 − ynbn x2b2 + ynbnxya2 − 2ynbnxyb3 − x− n
n−1anya1 − x− n

n−1axya2 + x− n
n−1axyb3 − ynbnxb1 − ynbxya2 + ynbxyb3 − b2xyn+ b2xy

(n− 1)xy
= 0

Setting the numerator to zero gives

(6E)
−x− 2n

n−1a2nxya3 − 2x− n
n−1ynabnxya3 − y2nb2nxya3 + x− 2n

n−1a2xya3
+ 2x− n

n−1ynabxya3 + y2nb2xya3 − ynb n2x2b2 − ynb n2xyb3
+ x− n

n−1anxyb3 + x− n
n−1an y2a3 − ynb n2xb1 + ynbn x2b2

− ynbnxya2 + 2ynbnxyb3 + x− n
n−1anya1 + x− n

n−1axya2
− x− n

n−1axyb3 + ynbnxb1 + ynbxya2 − ynbxyb3 + b2xyn− b2xy = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, x− n

n−1 , yn
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, x
− n

n−1 = v3, y
n = v4

}
The above PDE (6E) now becomes

(7E)
−v23a

2nv1v2a3 − 2v3v4abnv1v2a3 − v24b
2nv1v2a3 + v23a

2v1v2a3
+ 2v3v4abv1v2a3 + v24b

2v1v2a3 − v4b n
2v21b2 − v4b n

2v1v2b3
+ v3anv

2
2a3 + v3anv1v2b3 − v4b n

2v1b1 − v4bnv1v2a2
+ v4bnv

2
1b2 + 2v4bnv1v2b3 + v3anv2a1 + v3av1v2a2 − v3av1v2b3

+ v4bnv1b1 + v4bv1v2a2 − v4bv1v2b3 + b2v1v2n− b2v1v2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

(
−b n2b2 + bnb2

)
v21v4 +

(
−a2na3 + a2a3

)
v1v2v

2
3

+ (−2abna3 + 2aba3) v1v2v3v4 + (anb3 + aa2 − ab3) v1v2v3
+
(
−b2na3 + b2a3

)
v1v2v

2
4 +

(
−b n2b3 − bna2 + 2bnb3 + ba2 − bb3

)
v1v2v4

+ (nb2 − b2) v1v2 +
(
−b n2b1 + bnb1

)
v1v4 + v3anv

2
2a3 + v3anv2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

ana1 = 0
ana3 = 0

nb2 − b2 = 0
−a2na3 + a2a3 = 0
−b2na3 + b2a3 = 0
−b n2b1 + bnb1 = 0
−b n2b2 + bnb2 = 0

−2abna3 + 2aba3 = 0
anb3 + aa2 − ab3 = 0

−b n2b3 − bna2 + 2bnb3 + ba2 − bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −(n− 1) b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −(n− 1)x
η = y
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

− (n− 1)x
= − y

(n− 1)x
This is easily solved to give

y = c1x
− 1

n−1

Where now the coordinate R is taken as the constant of integration. Hence

R = y x
1

n−1

And S is found from

dS = dx

ξ

= dx

− (n− 1)x
Integrating gives

S =
∫

dx

T

= − ln (x)
n− 1

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a x
n

−n+1 + b yn

Evaluating all the partial derivatives gives

Rx = y x
−n+2
n−1

n− 1
Ry = x

1
n−1

Sx = − 1
(n− 1)x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

y x
1

n−1 + (n− 1)
(
b ynx

n
n−1 + a

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

b (n− 1)Rn + a (n− 1) +R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− 1
bnRn +R− bRn + an− a

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x)
n− 1 =

∫ yx
1

n−1

− 1
bn_an + _a− b_an + an− a

d_a+ c1

Which simplifies to

− ln (x)
n− 1 +

∫ yx
1

n−1 1
_an (n− 1) b+ an− a+ _ad_a− c1 = 0
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Summary
The solution(s) found are the following

(1)− ln (x)
n− 1 +

∫ yx
1

n−1 1
_an (n− 1) b+ an− a+ _ad_a− c1 = 0

Verification of solutions

− ln (x)
n− 1 +

∫ yx
1

n−1 1
_an (n− 1) b+ an− a+ _ad_a− c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)/((n-1)*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.203 (sec). Leaf size: 65� �
dsolve(diff(y(x),x) = a*x^(n/(1-n))+b*y(x)^n,y(x), singsol=all)� �

x
n

n−1

(∫ y(x)

_b

1
_anb (n− 1)x

2n−1
n−1 + x

n
n−1_a+ ax (n− 1)

d_a
)

− c1 = 0
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3 Solution by Mathematica
Time used: 0.307 (sec). Leaf size: 117� �
DSolve[y'[x]==a*x^(n/(1-n))+b*y[x]^n,y[x],x,IncludeSingularSolutions -> True]� �

Solve

∫
(

bx
− n

1−n

a

) 1
n
y(x)

1

1

K[1]n −
(

(−1)na1−n(n−1)−n

b

) 1
n
K[1] + 1

dK[1] =
∫ x

1
aK[2]

n
1−n

(
bK[2]−

n
1−n

a

) 1
n

dK[2]

+ c1, y(x)



876



4.7 problem 95
4.7.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 877
4.7.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 879

Internal problem ID [3354]
Internal file name [OUTPUT/2846_Sunday_June_05_2022_08_41_40_AM_78292664/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 95.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ − f(x) y − g(x) yk = 0

4.7.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = f(x) y + g(x) yk

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 160: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = yke(k−1)

(∫
−f(x)dx

)
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

yke(k−1)
(∫

−f(x)dx
)dy

4.7.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= f(x) y + g(x) yk

This is a Bernoulli ODE.
y′ = f(x) y + g(x) yk (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = f(x)
f1(x) = g(x)

n = k

Dividing both sides of ODE (1) by yn = yk gives

y′y−k = f(x) y−k+1 + g(x) (4)

879



Let

w = y1−n

= y−k+1 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = (−k + 1) y−ky′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
−k + 1 = f(x)w(x) + g(x)

w′ = (−k + 1) f(x)w + (−k + 1) g(x) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = (k − 1) f(x)
q(x) = −(k − 1) g(x)

Hence the ode is

w′(x) + (k − 1) f(x)w(x) = −(k − 1) g(x)

The integrating factor µ is
µ = e

∫
(k−1)f(x)dx

The ode becomes
d
dx(µw) = (µ) (−(k − 1) g(x))

d
dx

(
e
∫
(k−1)f(x)dxw

)
=
(
e
∫
(k−1)f(x)dx

)
(−(k − 1) g(x))

d
(
e
∫
(k−1)f(x)dxw

)
=
(
−(k − 1) g(x) e(k−1)

(∫
f(x)dx

))
dx

Integrating gives

e
∫
(k−1)f(x)dxw =

∫
−(k − 1) g(x) e(k−1)

(∫
f(x)dx

)
dx

e
∫
(k−1)f(x)dxw =

∫
−(k − 1) g(x) e(k−1)

(∫
f(x)dx

)
dx+ c1
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Dividing both sides by the integrating factor µ = e
∫
(k−1)f(x)dx results in

w(x) = e−(k−1)
(∫

f(x)dx
)(∫

−(k − 1) g(x) e(k−1)
(∫

f(x)dx
)
dx

)
+ c1e−(k−1)

(∫
f(x)dx

)

which simplifies to

w(x) = −
(
(k − 1)

(∫
g(x) e(k−1)

(∫
f(x)dx

)
dx

)
− c1

)
e−(k−1)

(∫
f(x)dx

)

Replacing w in the above by y−k+1 using equation (5) gives the final solution.

y−k+1 = −
(
(k − 1)

(∫
g(x) e(k−1)

(∫
f(x)dx

)
dx

)
− c1

)
e−(k−1)

(∫
f(x)dx

)

Summary
The solution(s) found are the following

(1)y−k+1 = −
(
(k − 1)

(∫
g(x) e(k−1)

(∫
f(x)dx

)
dx

)
− c1

)
e−(k−1)

(∫
f(x)dx

)

Verification of solutions

y−k+1 = −
(
(k − 1)

(∫
g(x) e(k−1)

(∫
f(x)dx

)
dx

)
− c1

)
e−(k−1)

(∫
f(x)dx

)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 51� �
dsolve(diff(y(x),x) = f(x)*y(x)+g(x)*y(x)^k,y(x), singsol=all)� �
y(x) = e

∫
f(x)dx

(
−k

(∫
g(x) e(k−1)

(∫
f(x)dx

)
dx

)
+ c1 +

∫
g(x) e(k−1)

(∫
f(x)dx

)
dx

)− 1
k−1
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3 Solution by Mathematica
Time used: 11.421 (sec). Leaf size: 129� �
DSolve[y'[x]==f[x] y[x]+g[x]y[x]^k,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

(
exp

(
−
(
(k−1)

∫ x

1
f(K[1])dK[1]

))(
−(k−1)

∫ x

1
exp

(
(k−1)

∫ K[2]

1
f(K[1])dK[1]

)
g(K[2])dK[2]

+ c1

))
1

1−k

y(x) →
(
(k

−1)
(
− exp

(
−
(
(k−1)

∫ x

1
f(K[1])dK[1]

)))∫ x

1
exp

(
(k−1)

∫ K[2]

1
f(K[1])dK[1]

)
g(K[2])dK[2]

)
1

1−k
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4.8 problem 96
Internal problem ID [3355]
Internal file name [OUTPUT/2847_Sunday_June_05_2022_08_41_42_AM_72594392/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 96.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Chini]

Unable to solve or complete the solution.

y′ − g(x) y − h(x) yn = f(x)

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve(diff(y(x),x) = f(x)+g(x)*y(x)+h(x)*y(x)^n,y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==f[x]+g[x]y[x]+h[x]y[x]^n,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.9 problem 98
4.9.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 886
4.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 887

Internal problem ID [3356]
Internal file name [OUTPUT/2848_Sunday_June_05_2022_08_41_43_AM_6406403/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 98.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ −
√
|y| = 0

4.9.1 Solving as quadrature ode

Integrating both sides gives ∫ 1√
|y|

dy =
∫

dx

 −2
√
−y y ≤ 0

2√y 0 < y
= x+ c1

Summary
The solution(s) found are the following

(1)

 −2
√
−y y ≤ 0

2√y 0 < y
= x+ c1
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Figure 146: Slope field plot

Verification of solutions  −2
√
−y y ≤ 0

2√y 0 < y
= x+ c1

Verified OK.

4.9.2 Maple step by step solution

Let’s solve
y′ −

√
|y| = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
|y| = 1

• Integrate both sides with respect to x∫
y′√
|y|dx =

∫
1dx+ c1
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• Evaluate integral −2
√
−y y ≤ 0

2√y 0 < y
= x+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x) = sqrt(abs(y(x))),y(x), singsol=all)� �

x+ 2


√

−y (x) y(x) ≤ 0

−
√
y (x) 0 < y(x)

+ c1 = 0

3 Solution by Mathematica
Time used: 0.164 (sec). Leaf size: 31� �
DSolve[y'[x]==Sqrt[Abs[y[x]]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[∫ #1

1

1√
|K[1]|

dK[1]&
]
[x+ c1]

y(x) → 0
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4.10 problem 99
4.10.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 889
4.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 890

Internal problem ID [3357]
Internal file name [OUTPUT/2849_Sunday_June_05_2022_08_41_45_AM_99150472/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 99.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − yb−
√
A0+B0 y = a

4.10.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
a+ by +

√
B0 y +A0

dy =
∫

dx∫ y 1
a+ b_a+

√
B0_a+A0

d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

a+ b_a+
√
B0_a+A0

d_a = x+ c1

Verification of solutions∫ y 1
a+ b_a+

√
B0_a+A0

d_a = x+ c1

Verified OK.
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4.10.2 Maple step by step solution

Let’s solve
y′ − yb−

√
A0 + B0y = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+yb+
√
A0+B0y = 1

• Integrate both sides with respect to x∫
y′

a+yb+
√
A0+B0ydx =

∫
1dx+ c1

• Evaluate integral

ln
(
−b(A0+B0y)+A0b−B0

√
A0+B0y−B0a

)
2b +

B0 arctan
(

−2b
√

A0+B0y−B0√
−4A0 b2+4abB0−B02

)
b
√

−4A0 b2+4abB0−B02 − ln
(
−b(A0+B0y)+A0b+B0

√
A0+B0y−B0a

)
2b +

B0 arctan
(

−2b
√

A0+B0y+B0√
−4A0 b2+4abB0−B02

)
b
√

−4A0 b2+4abB0−B02 + ln
(
−y2b2−2aby+B0y−a2+A0

)
2b −

arctan
(

−2yb2−2ab+B0√
−4A0 b2+4abB0−B02

)
B0

b
√

−4A0 b2+4abB0−B02 = x+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x) = a+b*y(x)+sqrt(A0+B0*y(x)),y(x), singsol=all)� �

x−

(∫ y(x) 1
a+ b_a+

√
B0_a+A0

d_a
)

+ c1 = 0

3 Solution by Mathematica
Time used: 0.693 (sec). Leaf size: 172� �
DSolve[y'[x]==a+b y[x]+Sqrt[A0+B0 y[x]],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction


log
(
−B0

(√
#1B0+ A0+#1b+ a

))
−

2B0 arctan

 2b
√
#1B0+A0+B0√

B0(4ab−B0)−4A0b2


√
B0(4ab−B0)−4A0b2

b
&


[x

+ c1]

y(x) → −
√
−4abB0+ 4A0b2 + B02 + 2ab− B0

2b2

y(x) →
√

−4abB0+ 4A0b2 + B02 − 2ab+ B0
2b2
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4.11 problem 100
4.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 892

Internal problem ID [3358]
Internal file name [OUTPUT/2850_Sunday_June_05_2022_08_41_46_AM_19550120/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 100.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _Chini]

y′ − b
√
y = ax

4.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = ax+ b
√
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

b2 + (ax+ b
√
y) (b3 − a2)− (ax+ b

√
y)2 a3 − a(xa2 + ya3 + a1)−

b(xb2 + yb3 + b1)
2√y

= 0

(5E)

Putting the above in normal form gives

−
2y 3

2 b2a3 + 4yabxa3 + 2√y a2x2a3 + 2yba2 − byb3 + 4√y axa2 − 2√y axb3 + 2y 3
2aa3 + 2√y aa1 + bxb2 − 2b2

√
y + bb1

2√y
= 0

Setting the numerator to zero gives

(6E)−2y 3
2 b2a3 − 2√y a2x2a3 − 2y 3

2aa3 − 4yabxa3 − 4√y axa2
+ 2√y axb3 − 2√y aa1 − bxb2 − 2yba2 + byb3 + 2b2

√
y − bb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
y, y

3
2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y = v3, y

3
2 = v4

}
The above PDE (6E) now becomes

(7E)−2v3a2v21a3 − 4v2abv1a3 − 4v3av1a2 + 2v3av1b3 − 2v4b2a3
− 2v3aa1 − 2v4aa3 − 2v2ba2 − bv1b2 + bv2b3 − bb1 + 2b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−2v3a2v21a3 − 4v2abv1a3 + (−4aa2 + 2ab3) v1v3 − bv1b2
+ (−2ba2 + bb3) v2 + (−2aa1 + 2b2) v3 +

(
−2b2a3 − 2aa3

)
v4 − bb1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2a3 = 0
−bb1 = 0
−bb2 = 0

−4aba3 = 0
−2b2a3 − 2aa3 = 0
−2aa1 + 2b2 = 0

−4aa2 + 2ab3 = 0
−2ba2 + bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= 2y
x

= 2y
x

This is easily solved to give

y = c1x
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x2

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax+ b
√
y

Evaluating all the partial derivatives gives

Rx = −2y
x3

Ry =
1
x2

Sx = 1
x

Sy = 0

895



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2

√
y bx+ x2a− 2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

Rb− 2R + a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
ln
(
−
√
Rb+ 2R− a

)
4 +

b arctanh
(

−b+4
√
R√

b2+8a

)
2
√
b2 + 8a

+
ln
(√

Rb+ 2R− a
)

4 +
b arctanh

(
4
√
R+b√

b2+8a

)
2
√
b2 + 8a

− ln (−Rb2 + 4R2 − 4Ra+ a2)
4 +

arctanh
(

−b2+8R−4a√
b4+8a b2

)
b2

2
√
b4 + 8a b2

+ c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = −
ln
(
−
√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
−b+4

√
y

x2√
b2+8a

)
2
√
b2 + 8a

+
ln
(√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
4
√

y

x2+b
√
b2+8a

)
2
√
b2 + 8a

−
ln
(
−yb2

x2 + 4y2
x4 − 4ya

x2 + a2
)

4 +
arctanh

(
−b2+ 8y

x2−4a
√
b4+8a b2

)
b2

2
√
b4 + 8a b2

+ c1

Which simplifies to

ln (x) = −
ln
(
−
√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
−b+4

√
y

x2√
b2+8a

)
2
√
b2 + 8a

+
ln
(√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
4
√

y

x2+b
√
b2+8a

)
2
√
b2 + 8a

−
ln
(
−yb2

x2 + 4y2
x4 − 4ya

x2 + a2
)

4 +
arctanh

(
−b2+ 8y

x2−4a
√
b4+8a b2

)
b2

2
√
b4 + 8a b2

+ c1

Summary
The solution(s) found are the following

(1)

ln (x) = −
ln
(
−
√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
−b+4

√
y

x2√
b2+8a

)
2
√
b2 + 8a

+
ln
(√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
4
√

y

x2+b
√
b2+8a

)
2
√
b2 + 8a

−
ln
(
−yb2

x2 + 4y2
x4 − 4ya

x2 + a2
)

4 +
arctanh

(
−b2+ 8y

x2−4a
√
b4+8a b2

)
b2

2
√
b4 + 8a b2

+ c1
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Verification of solutions

ln (x) = −
ln
(
−
√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
−b+4

√
y

x2√
b2+8a

)
2
√
b2 + 8a

+
ln
(√

y
x2 b+ 2y

x2 − a
)

4 +
b arctanh

(
4
√

y

x2+b
√
b2+8a

)
2
√
b2 + 8a

−
ln
(
−yb2

x2 + 4y2
x4 − 4ya

x2 + a2
)

4 +
arctanh

(
−b2+ 8y

x2−4a
√
b4+8a b2

)
b2

2
√
b4 + 8a b2

+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 68� �
dsolve(diff(y(x),x) = a*x+b*sqrt(y(x)),y(x), singsol=all)� �

−
ln
(√

y (x) bx+ a x2 − 2y(x)
)

2 +
b
√

y (x) arctanh
(

b
√

y(x)+2ax√
y(x)(b2+8a)

)
√
y (x) (b2 + 8a)

+ c1 = 0
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3 Solution by Mathematica
Time used: 0.267 (sec). Leaf size: 119� �
DSolve[y'[x]==a x+b Sqrt[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve



b2

−
2barctanh

 b2−4a
√

b2y(x)
a2x2

b
√

8a+b2


√
8a+b2

− log
(
b2
(√

b2y(x)
a2x2 + 1

)
− 2b2y(x)

ax2

)
2a = b2 log(x)

a

+ c1, y(x)
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4.12 problem 101
4.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 899

Internal problem ID [3359]
Internal file name [OUTPUT/2851_Sunday_June_05_2022_08_41_48_AM_94733868/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 101.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′ − x
√

x4 + 4y = −x3

4.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x3 + x
√
x4 + 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−x3 + x

√
x4 + 4y

)
(b3 − a2)−

(
−x3 + x

√
x4 + 4y

)2
a3

−
(
−3x2+

√
x4 + 4y+ 2x4

√
x4 + 4y

)
(xa2+ya3+a1)−

2x(xb2 + yb3 + b1)√
x4 + 4y

= 0

Putting the above in normal form gives

−−2x8a3 +
√
x4 + 4y x6a3 + (x4 + 4y)

3
2 x2a3 + 4x5a2 − x5b3 − 5x4ya3 − 4

√
x4 + 4y x3a2 +

√
x4 + 4y x3b3 − 3

√
x4 + 4y x2ya3 + 3x4a1 − 3

√
x4 + 4y x2a1 + 2x2b2 + 8xya2 − 2xyb3 + 4y2a3 − b2

√
x4 + 4y + 2xb1 + 4ya1√

x4 + 4y
= 0

Setting the numerator to zero gives

(6E)
2x8a3 −

√
x4 + 4y x6a3 −

(
x4 + 4y

) 3
2 x2a3 − 4x5a2

+ x5b3 + 5x4ya3 + 4
√

x4 + 4y x3a2 −
√
x4 + 4y x3b3

+ 3
√

x4 + 4y x2ya3 − 3x4a1 + 3
√

x4 + 4y x2a1 − 2x2b2

− 8xya2 + 2xyb3 − 4y2a3 + b2
√
x4 + 4y − 2xb1 − 4ya1 = 0

Simplifying the above gives

(6E)
−
√

x4 + 4y x6a3 + 2
(
x4 + 4y

)
x4a3 −

(
x4 + 4y

) 3
2 x2a3 − 2x5a2 − 2x4ya3

+ 4
√

x4 + 4y x3a2 −
√

x4 + 4y x3b3 + 3
√

x4 + 4y x2ya3 − 2x4a1

− 2
(
x4 + 4y

)
xa2 +

(
x4 + 4y

)
xb3 −

(
x4 + 4y

)
ya3 + 3

√
x4 + 4y x2a1

−
(
x4 + 4y

)
a1 − 2x2b2 − 2xyb3 + b2

√
x4 + 4y − 2xb1 = 0

Since the PDE has radicals, simplifying gives

2x8a3 − 2
√

x4 + 4y x6a3 − 4x5a2 + x5b3 + 5x4ya3 − 3x4a1 + 4
√

x4 + 4y x3a2

−
√

x4 + 4y x3b3 −
√

x4 + 4y x2ya3 + 3
√

x4 + 4y x2a1 − 2x2b2

− 8xya2 + 2xyb3 − 4y2a3 − 2xb1 + b2
√
x4 + 4y − 4ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x4 + 4y

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x4 + 4y = v3
}

The above PDE (6E) now becomes

(7E)2v81a3−2v3v61a3−4v51a2+5v41v2a3+v51b3−3v41a1+4v3v31a2−v3v
2
1v2a3−v3v

3
1b3

+ 3v3v21a1 − 8v1v2a2 − 4v22a3 − 2v21b2 + 2v1v2b3 − 4v2a1 − 2v1b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v81a3−2v3v61a3+(−4a2+b3) v51+5v41v2a3−3v41a1+(4a2−b3) v31v3−v3v
2
1v2a3

+ 3v3v21a1 − 2v21b2 + (−8a2 + 2b3) v1v2 − 2v1b1 − 4v22a3 − 4v2a1 + b2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−4a1 = 0
−3a1 = 0
3a1 = 0

−4a3 = 0
−2a3 = 0
−a3 = 0
2a3 = 0
5a3 = 0

−2b1 = 0
−2b2 = 0

−8a2 + 2b3 = 0
−4a2 + b3 = 0
4a2 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y −
(
−x3 + x

√
x4 + 4y

)
(x)

= x4 −
√
x4 + 4y x2 + 4y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4 −
√
x4 + 4y x2 + 4y

dy
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Which results in

S = ln (y)
4 −

ln
(
x2 +

√
x4 + 4y

)
4 +

ln
(
−x2 +

√
x4 + 4y

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3 + x
√

x4 + 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x√
x4 + 4y

Sy =
1√

x4 + 4y
(
−x2 +

√
x4 + 4y

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
4 −

ln
(
x2 +

√
x4 + 4y

)
4 +

ln
(
−x2 +

√
x4 + 4y

)
4 = c1
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Which simplifies to

ln (y)
4 −

ln
(
x2 +

√
x4 + 4y

)
4 +

ln
(
−x2 +

√
x4 + 4y

)
4 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x3 + x
√
x4 + 4y dS

dR
= 0

R = x

S = ln (y)
4 −

ln
(
x2 +

√
x4 + 4y

)
4 +

ln
(
−x2 +

√
x4 + 4y

)
4

Summary
The solution(s) found are the following

(1)ln (y)
4 −

ln
(
x2 +

√
x4 + 4y

)
4 +

ln
(
−x2 +

√
x4 + 4y

)
4 = c1
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Figure 147: Slope field plot

Verification of solutions

ln (y)
4 −

ln
(
x2 +

√
x4 + 4y

)
4 +

ln
(
−x2 +

√
x4 + 4y

)
4 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve(diff(y(x),x)+x^3 = x*sqrt(x^4+4*y(x)),y(x), singsol=all)� �

(y(x)− c1)
√

x4 + 4y (x)− x2(c1 + y(x))
x2 +

√
x4 + 4y (x)

= 0

3 Solution by Mathematica
Time used: 0.583 (sec). Leaf size: 30� �
DSolve[y'[x]+x^3==x Sqrt[x^4+4 y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2e2c1
(
x2 + 2e2c1

)
y(x) → 0
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4.13 problem 102
4.13.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 907
4.13.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 911

Internal problem ID [3360]
Internal file name [OUTPUT/2852_Sunday_June_05_2022_08_41_49_AM_83862317/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 102.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ + 2y(1−√
y x) = 0

4.13.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y(√y x− 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 164: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y

3
2 ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
3
2 ex

dy

Which results in

S = −2 e−x

√
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y(√y x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2 e−x

√
y

Sy =
e−x

y
3
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R e−R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2(R + 1) e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 e−x

√
y

= −2(x+ 1) e−x + c1

Which simplifies to

−2 e−x

√
y

= −2(x+ 1) e−x + c1

Which gives

y = 4
(−2 + c1ex − 2x)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y
(√

y x− 1
)

dS
dR

= 2R e−R

R = x

S = −2 e−x

√
y
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Summary
The solution(s) found are the following

(1)y = 4
(−2 + c1ex − 2x)2

Figure 148: Slope field plot

Verification of solutions

y = 4
(−2 + c1ex − 2x)2

Verified OK.

4.13.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= 2y(√y x− 1)

This is a Bernoulli ODE.
y′ = −2y + 2xy 3

2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −2
f1(x) = 2x

n = 3
2

Dividing both sides of ODE (1) by yn = y
3
2 gives

y′
1
y

3
2
= − 2

√
y
+ 2x (4)

Let

w = y1−n

= 1
√
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
2y 3

2
y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−2w′(x) = −2w(x) + 2x
w′ = w − x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −1
q(x) = −x

Hence the ode is

w′(x)− w(x) = −x

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x

The ode becomes
d
dx(µw) = (µ) (−x)

d
dx
(
e−xw

)
=
(
e−x
)
(−x)

d
(
e−xw

)
=
(
−x e−x

)
dx

Integrating gives

e−xw =
∫

−x e−x dx

e−xw = (x+ 1) e−x + c1

Dividing both sides by the integrating factor µ = e−x results in

w(x) = ex(x+ 1) e−x + c1ex

which simplifies to

w(x) = c1ex + x+ 1

Replacing w in the above by 1√
y
using equation (5) gives the final solution.

1
√
y
= c1ex + x+ 1

Summary
The solution(s) found are the following

(1)1
√
y
= c1ex + x+ 1

913



Figure 149: Slope field plot

Verification of solutions

1
√
y
= c1ex + x+ 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)+2*y(x)*(1-x*sqrt(y(x))) = 0,y(x), singsol=all)� �

−
−1 + (exc1 + x+ 1)

√
y (x)√

y (x)
= 0

3 Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 21� �
DSolve[y'[x]+2 y[x] (1-x Sqrt[y[x]])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
(x+ c1ex + 1) 2

y(x) → 0
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4.14 problem 103
4.14.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 916
4.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 917

Internal problem ID [3361]
Internal file name [OUTPUT/2853_Sunday_June_05_2022_08_41_50_AM_19164153/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 103.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ −
√
a+ by2 = 0

4.14.1 Solving as quadrature ode

Integrating both sides gives ∫ 1√
b y2 + a

dy =
∫

dx

ln
(
y
√
b+

√
b y2 + a

)
√
b

= x+ c1

Raising both side to exponential gives

e
ln
(
y
√
b+
√

b y2+a

)
√
b = ex+c1

Which simplifies to (
y
√
b+

√
b y2 + a

) 1√
b = c2ex
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Summary
The solution(s) found are the following

(1)y =

(
(c2ex)2

√
b − a

)
(c2ex)−

√
b

2
√
b

Verification of solutions

y =

(
(c2ex)2

√
b − a

)
(c2ex)−

√
b

2
√
b

Verified OK.

4.14.2 Maple step by step solution

Let’s solve
y′ −

√
a+ by2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
a+by2

= 1

• Integrate both sides with respect to x∫
y′√
a+by2

dx =
∫
1dx+ c1

• Evaluate integral
ln
(
y
√
b+
√

a+by2
)

√
b

= x+ c1

• Solve for y

y =
(
ec1

√
b+x

√
b
)2

−a

2
√
b ec1

√
b+x

√
b
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x) = sqrt(a+b*y(x)^2),y(x), singsol=all)� �

(c1 + x)
√
b− ln

(
y(x)

√
b+

√
a+ by (x)2

)
√
b

= 0

3 Solution by Mathematica
Time used: 60.157 (sec). Leaf size: 82� �
DSolve[y'[x]==Sqrt[a+b y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
a tanh

(√
b(x+ c1)

)
√

bsech2
(√

b(x+ c1)
)

y(x) →

√
a tanh

(√
b(x+ c1)

)
√
bsech2

(√
b(x+ c1)

)
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4.15 problem 104
4.15.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 919
4.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 920

Internal problem ID [3362]
Internal file name [OUTPUT/2854_Sunday_June_05_2022_08_41_51_AM_84143893/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 104.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − y
√
yb+ a = 0

4.15.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
y
√
by + a

dy =
∫

dx

−
2 arctanh

(√
yb+a√
a

)
√
a

= x+ c1

Summary
The solution(s) found are the following

(1)−
2 arctanh

(√
yb+a√
a

)
√
a

= x+ c1

Verification of solutions

−
2 arctanh

(√
yb+a√
a

)
√
a

= x+ c1

Verified OK.
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4.15.2 Maple step by step solution

Let’s solve
y′ − y

√
yb+ a = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
√
yb+a

= 1

• Integrate both sides with respect to x∫
y′

y
√
yb+a

dx =
∫
1dx+ c1

• Evaluate integral

−
2 arctanh

(√
yb+a√

a

)
√
a

= x+ c1

• Solve for y

y =
a

(
tanh

(
c1

√
a

2 +x
√
a

2

)2
−1
)

b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x) = y(x)*sqrt(a+b*y(x)),y(x), singsol=all)� �

x+
2 arctanh

(√
a+by(x)√

a

)
√
a

+ c1 = 0

920



3 Solution by Mathematica
Time used: 19.061 (sec). Leaf size: 42� �
DSolve[y'[x]==y[x] Sqrt[a+b y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
asech2(1

2
√
a(x+ c1)

)
b

y(x) → 0
y(x) → −a

b
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4.16 problem 105
Internal problem ID [3363]
Internal file name [OUTPUT/2855_Sunday_June_05_2022_08_41_52_AM_76367504/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 105.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ + (f(x)− y) g(x)
√
(y − a) (y − b) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)+(diff(g(x), x))*y(x)/g(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*((diff(g(x), x))*f(x)+g(x)*(diff(f(x), x)))/(g(x)*f(x)), y(x)` *** Subl
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+(1/2)*y(x)*(b-2*x+a)/((a-x)*(b-x)), y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)*y(x)*(2*a*b-3*a*x-3*b*x+4*x^2)/(x*(a-x)*(b-x)), y(x)` *** Sublevel 2 *
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x)+(f(x)-y(x))*g(x)*sqrt((y(x)-a)*(y(x)-b)) = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]+(f[x]-y[x])g[x] Sqrt[(y[x]-a)(y[x]-b)]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.17 problem 106
4.17.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 925
4.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 926

Internal problem ID [3364]
Internal file name [OUTPUT/2856_Sunday_June_05_2022_08_41_56_AM_38490149/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 106.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ −
√
XY = 0

4.17.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ √

XY dx

= x
√
XY + c1

Summary
The solution(s) found are the following

(1)y = x
√
XY + c1

Verification of solutions

y = x
√
XY + c1

Verified OK.
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4.17.2 Maple step by step solution

Let’s solve
y′ −

√
XY = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′ −

√
XY

)
dx =

∫
0dx+ c1

• Evaluate integral
−x

√
XY + y = c1

• Solve for y
y = x

√
XY + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x) = sqrt(X*Y),y(x), singsol=all)� �

y(x) =
√
XY x+ c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 17� �
DSolve[y'[x]==Sqrt[ X Y],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
√
XY + c1
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4.18 problem 107
4.18.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 927
4.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 929
4.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 933
4.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 937

Internal problem ID [3365]
Internal file name [OUTPUT/2857_Sunday_June_05_2022_08_41_57_AM_94055421/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 107.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − cos (x)2 cos (y) = 0

4.18.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= cos (x)2 cos (y)

Where f(x) = cos (x)2 and g(y) = cos (y). Integrating both sides gives

1
cos (y) dy = cos (x)2 dx∫ 1
cos (y) dy =

∫
cos (x)2 dx

ln (sec (y) + tan (y)) = sin (x) cos (x)
2 + x

2 + c1
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Raising both side to exponential gives

sec (y) + tan (y) = e
sin(x) cos(x)

2 +x
2+c1

Which simplifies to

sec (y) + tan (y) = c2e
sin(x) cos(x)

2 +x
2

Summary
The solution(s) found are the following

(1)y = arctan
(
ex+2c1+ sin(2x)

2 c22 − 1
ex+2c1+ sin(2x)

2 c22 + 1
,
2c2e

sin(x) cos(x)
2 +x

2+c1

ex+2c1+ sin(2x)
2 c22 + 1

)

Figure 150: Slope field plot

Verification of solutions

y = arctan
(
ex+2c1+ sin(2x)

2 c22 − 1
ex+2c1+ sin(2x)

2 c22 + 1
,
2c2e

sin(x) cos(x)
2 +x

2+c1

ex+2c1+ sin(2x)
2 c22 + 1

)

Verified OK.
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4.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x)2 cos (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 169: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
cos (x)2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
cos(x)2

dx

Which results in

S = sin (x) cos (x)
2 + x

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x)2 cos (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = cos (2x)
2 + 1

2
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (sec (R) + tan (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x

2 + sin (2x)
4 = ln (sec (y) + tan (y)) + c1

Which simplifies to

x

2 + sin (2x)
4 = ln (sec (y) + tan (y)) + c1

Which gives

y = arctan
(
ex+

sin(2x)
2 −2c1 − 1

ex+
sin(2x)

2 −2c1 + 1
,

2 ex
2+

sin(2x)
4 −c1

ex+
sin(2x)

2 −2c1 + 1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x)2 cos (y) dS
dR

= sec (R)

R = y

S = x

2 + sin (2x)
4

Summary
The solution(s) found are the following

(1)y = arctan
(
ex+

sin(2x)
2 −2c1 − 1

ex+
sin(2x)

2 −2c1 + 1
,

2 ex
2+

sin(2x)
4 −c1

ex+
sin(2x)

2 −2c1 + 1

)
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Figure 151: Slope field plot

Verification of solutions

y = arctan
(
ex+

sin(2x)
2 −2c1 − 1

ex+
sin(2x)

2 −2c1 + 1
,

2 ex
2+

sin(2x)
4 −c1

ex+
sin(2x)

2 −2c1 + 1

)

Verified OK.

4.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

cos (y)

)
dy =

(
cos (x)2

)
dx

(
− cos (x)2

)
dx+

(
1

cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x)2

N(x, y) = 1
cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− cos (x)2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x)2 dx

(3)φ = −x

2 − sin (2x)
4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
cos(y) . Therefore equation (4) becomes

(5)1
cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
cos (y)

= sec (y)

935



Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(sec (y)) dy

f(y) = ln (sec (y) + tan (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

2 − sin (2x)
4 + ln (sec (y) + tan (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

2 − sin (2x)
4 + ln (sec (y) + tan (y))

Summary
The solution(s) found are the following

(1)−x

2 − sin (2x)
4 + ln (sec (y) + tan (y)) = c1

Figure 152: Slope field plot
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Verification of solutions

−x

2 − sin (2x)
4 + ln (sec (y) + tan (y)) = c1

Verified OK.

4.18.4 Maple step by step solution

Let’s solve
y′ − cos (x)2 cos (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cos(y) = cos (x)2

• Integrate both sides with respect to x∫
y′

cos(y)dx =
∫
cos (x)2 dx+ c1

• Evaluate integral
ln (sec (y) + tan (y)) = sin(x) cos(x)

2 + x
2 + c1

• Solve for y

y = arctan

(
e
sin(x) cos(x)

2 +x
2 +c1

)2
−1(

e
sin(x) cos(x)

2 +x
2 +c1

)2
+1

, 2 e
sin(x) cos(x)

2 +x
2 +c1(

e
sin(x) cos(x)

2 +x
2 +c1

)2
+1



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 69� �
dsolve(diff(y(x),x) = cos(x)^2*cos(y(x)),y(x), singsol=all)� �

y(x) = arctan
(
c21ex+

sin(2x)
2 − 1

c21ex+
sin(2x)

2 + 1
,

2c1e
x
2+

sin(2x)
4

c21ex+
sin(2x)

2 + 1

)

3 Solution by Mathematica
Time used: 1.035 (sec). Leaf size: 41� �
DSolve[y'[x]==Cos[x]^2 Cos[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 arctan
(
tanh

(
1
8(2x+ sin(2x) + c1)

))
y(x) → −π

2
y(x) → π

2
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4.19 problem 108
4.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 939
4.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 941
4.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 945
4.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 949

Internal problem ID [3366]
Internal file name [OUTPUT/2858_Sunday_June_05_2022_08_41_58_AM_43129031/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 108.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − sec (x)2 cot (y) cos (y) = 0

4.19.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= sec (x)2 cot (y) cos (y)

Where f(x) = sec (x)2 and g(y) = cot (y) cos (y). Integrating both sides gives

1
cot (y) cos (y) dy = sec (x)2 dx∫ 1
cot (y) cos (y) dy =

∫
sec (x)2 dx

1
cos (y) = tan (x) + c1
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Which results in

y = arccos
(

1
tan (x) + c1

)
Summary
The solution(s) found are the following

(1)y = arccos
(

1
tan (x) + c1

)

Figure 153: Slope field plot

Verification of solutions

y = arccos
(

1
tan (x) + c1

)
Verified OK.
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4.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sec (x)2 cot (y) cos (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 172: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
sec (x)2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
sec(x)2

dx

Which results in

S = tan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sec (x)2 cot (y) cos (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = sec (x)2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) sec (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R) sec (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sec (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

tan (x) = sec (y) + c1

Which simplifies to

tan (x) = sec (y) + c1

Which gives

y = π − arcsec (− tan (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sec (x)2 cot (y) cos (y) dS
dR

= tan (R) sec (R)

R = y

S = tan (x)

Summary
The solution(s) found are the following

(1)y = π − arcsec (− tan (x) + c1)
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Figure 154: Slope field plot

Verification of solutions

y = π − arcsec (− tan (x) + c1)

Verified OK.

4.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

cot (y) cos (y)

)
dy =

(
sec (x)2

)
dx

(
− sec (x)2

)
dx+

(
1

cot (y) cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x)2

N(x, y) = 1
cot (y) cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− sec (x)2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

cot (y) cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sec (x)2 dx

(3)φ = − tan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
cot(y) cos(y) . Therefore equation (4) becomes

(5)1
cot (y) cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
cot (y) cos (y)

= tan (y) sec (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(tan (y) sec (y)) dy

f(y) = sec (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − tan (x) + sec (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − tan (x) + sec (y)

The solution becomes
y = arcsec (tan (x) + c1)

Summary
The solution(s) found are the following

(1)y = arcsec (tan (x) + c1)

Figure 155: Slope field plot
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Verification of solutions

y = arcsec (tan (x) + c1)

Verified OK.

4.19.4 Maple step by step solution

Let’s solve
y′ − sec (x)2 cot (y) cos (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cot(y) cos(y) = sec (x)2

• Integrate both sides with respect to x∫
y′

cot(y) cos(y)dx =
∫
sec (x)2 dx+ c1

• Evaluate integral
1

cos(y) = tan (x) + c1

• Solve for y

y = arccos
(

1
tan(x)+c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = sec(x)^2*cot(y(x))*cos(y(x)),y(x), singsol=all)� �

y(x) = arccos
(

1
tan (x) + c1

)
3 Solution by Mathematica
Time used: 0.823 (sec). Leaf size: 45� �
DSolve[y'[x]==Sec[x]^2 Cot[y[x]] Cos[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − sec−1(tan(x) + 2c1)
y(x) → sec−1(tan(x) + 2c1)
y(x) → −π

2
y(x) → π

2

950



4.20 problem 109
4.20.1 Solving as first order ode lie symmetry calculated ode . . . . . . 951

Internal problem ID [3367]
Internal file name [OUTPUT/2859_Sunday_June_05_2022_08_41_59_AM_17450558/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 109.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − b cos (Ax+By) = a

4.20.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = a+ b cos (Ax+By)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + (a+ b cos (Ax+By)) (b3 − a2)− (a+ b cos (Ax+By))2 a3
+ bA sin (Ax+By) (xa2 + ya3 + a1) + bB sin (Ax+By) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

A sin (Ax+By) bxa2 + A sin (Ax+By) bya3 +B sin (Ax+By) bxb2
+B sin (Ax+By) byb3 − cos (Ax+By)2 b2a3 + A sin (Ax+By) ba1
+B sin (Ax+By) bb1 − 2 cos (Ax+By) aba3 − cos (Ax+By) ba2
+ cos (Ax+By) bb3 − a2a3 − aa2 + ab3 + b2 = 0

Setting the numerator to zero gives

(6E)
A sin (Ax+By) bxa2 + A sin (Ax+By) bya3 +B sin (Ax+By) bxb2
+B sin (Ax+By) byb3 − cos (Ax+By)2 b2a3 + A sin (Ax+By) ba1
+B sin (Ax+By) bb1 − 2 cos (Ax+By) aba3 − cos (Ax+By) ba2
+ cos (Ax+By) bb3 − a2a3 − aa2 + ab3 + b2 = 0

Simplifying the above gives

(6E)
−a2a3 − aa2 + ab3 + b2 −

b2a3
2 + A sin (Ax+By) bxa2

+ A sin (Ax+By) bya3 +B sin (Ax+By) bxb2 +B sin (Ax+By) byb3

− b2a3 cos (2Ax+ 2By)
2 + A sin (Ax+By) ba1 +B sin (Ax+By) bb1

− 2 cos (Ax+By) aba3 − cos (Ax+By) ba2 + cos (Ax+By) bb3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (Ax+By) , cos (2Ax+ 2By) , sin (Ax+By)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (Ax+By) = v3, cos (2Ax+ 2By) = v4, sin (Ax+By) = v5}
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The above PDE (6E) now becomes

(7E)−a2a3 − aa2 + ab3 + b2 −
1
2b

2a3 + Av5bv1a2 + Av5bv2a3 +Bv5bv1b2

+Bv5bv2b3 −
1
2b

2a3v4 + Av5ba1 +Bv5bb1 − 2v3aba3 − v3ba2 + v3bb3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)−a2a3 − aa2 + ab3 + b2 −
b2a3
2 + (−2aba3 − ba2 + bb3) v3 −

b2a3v4
2

+ (Aba1 +Bbb1) v5 + (ba2A+Bbb2) v1v5 + (Aba3 +Bbb3) v2v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−b2a3
2 = 0

−a2a3 − aa2 + ab3 + b2 −
1
2b

2a3 = 0

Aba1 +Bbb1 = 0
ba2A+Bbb2 = 0
Aba3 +Bbb3 = 0

−2aba3 − ba2 + bb3 = 0

Solving the above equations for the unknowns gives

a1 = −Bb1
A

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −B

A

η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1− (a+ b cos (Ax+By))
(
−B

A

)
= bB cos (Ax) cos (By)− bB sin (Ax) sin (By) +Ba+ A

A
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

bB cos(Ax) cos(By)−bB sin(Ax) sin(By)+Ba+A
A

dy

Which results in

S =
2A arctan

(
2(−B cos(Ax)b+Ba+A) tan

(
By
2

)
−2Bb sin(Ax)

2
√

−B2 cos(Ax)2b2−B2 sin(Ax)2b2+B2a2+2ABa+A2

)
B
√

−B2 cos (Ax)2 b2 −B2 sin (Ax)2 b2 +B2a2 + 2ABa+ A2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a+ b cos (Ax+By)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
2A2b

(
− sin (Ax) tan

(
By
2

)
+ cos (Ax)

)
(−B cos (Ax) b+Ba+ A)2 tan

(
By
2

)2 − 2 sin (Ax) bB (−B cos (Ax) b+Ba+ A) tan
(
By
2

)
+B2 sin (Ax)2 b2 + (a2 − b2)B2 + 2ABa+ A2

Sy =
A

bB cos (Ax) cos (By)− bB sin (Ax) sin (By) +Ba+ A

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= A(−b cos (Ax) + a)

−B cos (Ax) b+Ba+ A
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= A(− cos (AR) b+ a)

−B cos (AR) b+Ba+ A

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
2 arctan

(
tan

(
AR
2

))
B

−
2A arctan

(
(Ba+bB+A) tan

(
AR
2

)
√

(Ba+bB+A)(Ba−bB+A)

)
B
√

(Ba+ bB + A) (Ba− bB + A)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2A arctan
(

(−B cos(Ax)b+Ba+A) tan
(

By
2

)
−Bb sin(Ax)√

A2+2ABa+(a2−b2)B2

)
√

A2 + 2ABa+ (a2 − b2)B2B
=

2arctan
(
tan

(
Ax
2

))
B

−
2A arctan

(
(Ba+bB+A) tan

(
Ax
2

)
√

(Ba+bB+A)(Ba−bB+A)

)
B
√
(Ba+ bB + A) (Ba− bB + A)

+ c1
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Which simplifies to

(−Ax−Bc1)
√

A2 + 2ABa+ (a2 − b2)B2 + 2A
(
arctan

(
(−B cos(Ax)b+Ba+A) tan

(
By
2

)
−Bb sin(Ax)√

A2+2ABa+(a2−b2)B2

)
+ arctan

(√
A+(a+b)B tan

(
Ax
2

)
√

A+(−b+a)B

))
√
A2 + 2ABa+ (a2 − b2)B2B

= 0

Which gives

y =

2arctan


Bb sin(Ax) cos


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

+sin


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

√
B2a2−B2b2+2ABa+A2

cos


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

(−B cos(Ax)b+Ba+A)


B

Summary
The solution(s) found are the following

(1)y

=

2arctan


Bb sin(Ax) cos


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

+sin


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

√
B2a2−B2b2+2ABa+A2

cos


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

(−B cos(Ax)b+Ba+A)


B

Verification of solutions
y

=

2arctan


Bb sin(Ax) cos


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

+sin


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

√
B2a2−B2b2+2ABa+A2

cos


Ax
√

B2a2−B2b2+2ABa+A2+c1
√

B2a2−B2b2+2ABa+A2 B−2A arctan

√
Ba+bB+A sin

(
Ax
2
)

cos
(
Ax
2
)√

Ba−bB+A


2A

(−B cos(Ax)b+Ba+A)


B

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -A/B, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 74� �
dsolve(diff(y(x),x) = a+b*cos(A*x+B*y(x)),y(x), singsol=all)� �

y(x) =
−Ax− 2 arctan

(
tan
(√

(A+(a+b)B)(A+(a−b)B) (c1−x)
2

)√
(A+(a+b)B)(A+(a−b)B)

A+(a−b)B

)
B

3 Solution by Mathematica
Time used: 60.721 (sec). Leaf size: 102� �
DSolve[y'[x]==a+b Cos[A x+ B y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

Ax+ 2arctan

 (B(a+b)+A) tanh
(

(x−c1)
(
B2(a2−b2

)
+2aAB+A2)

2
√

−((B(a−b)+A)(B(a+b)+A))

)
√

−((B(a−b)+A)(B(a+b)+A))


B
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4.21 problem 110
Internal problem ID [3368]
Internal file name [OUTPUT/2860_Sunday_June_05_2022_08_43_10_AM_93941562/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 110.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ + g(x) sin (ya) + h(x) cos (ya) = −f(x)

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x) = 0, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x) = y(x)*cos(a*x)*a/sin(a*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(diff(f(x), x))*y(x)/f(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(-h(x)*a*K[1]+(diff(g(x), x))*y(x))/g(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(g(x)*a*K[1]+(diff(h(x), x))*y(x))/h(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(diff(h(x), x))*y(x)/h(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x) = -(diff(f(x), x))*y(x)/f(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x) = -(diff(g(x), x))*y(x)/g(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*sin(a*x)*a/cos(a*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*cos(a*x)*a/sin(a*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x)+f(x)+g(x)*sin(a*y(x))+h(x)*cos(a*y(x)) = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]+f[x]+g[x]Sin[a y[x]]+h[x] Cos[a y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.22 problem 111
4.22.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 961
4.22.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 962

Internal problem ID [3369]
Internal file name [OUTPUT/2861_Sunday_June_05_2022_08_43_12_AM_24871002/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 111.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − b cos (y) = a

4.22.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
a+ b cos (y)dy = x+ c1

2 arctan
(

(−b+a) tan
( y
2
)√

(a+b)(−b+a)

)
√

(a+ b) (−b+ a)
= x+ c1

Solving for y gives these solutions

y1 = 2arctan

tan
(

c1
√

(a+b)(−b+a)
2 + x

√
(a+b)(−b+a)

2

)√
(a+ b) (−b+ a)

−b+ a


Summary
The solution(s) found are the following

(1)y = 2arctan

tan
(

c1
√

(a+b)(−b+a)
2 + x

√
(a+b)(−b+a)

2

)√
(a+ b) (−b+ a)

−b+ a
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Verification of solutions

y = 2arctan

tan
(

c1
√

(a+b)(−b+a)
2 + x

√
(a+b)(−b+a)

2

)√
(a+ b) (−b+ a)

−b+ a


Verified OK.

4.22.2 Maple step by step solution

Let’s solve
y′ − b cos (y) = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+b cos(y) = 1

• Integrate both sides with respect to x∫
y′

a+b cos(y)dx =
∫
1dx+ c1

• Evaluate integral

2 arctan
(

(−b+a) tan
(
y
2
)

√
(a+b)(−b+a)

)
√

(a+b)(−b+a) = x+ c1

• Solve for y

y = 2arctan
(

tan
(

c1
√

(a+b)(−b+a)
2 +x

√
(a+b)(−b+a)

2

)√
(a+b)(−b+a)

−b+a

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 43� �
dsolve(diff(y(x),x) = a+b*cos(y(x)),y(x), singsol=all)� �

y(x) = 2 arctan

tan
(√

a2−b2 (c1+x)
2

)√
a2 − b2

a− b


3 Solution by Mathematica
Time used: 60.13 (sec). Leaf size: 47� �
DSolve[y'[x]==a+b Cos[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 arctan
(
(a+ b) tanh

(1
2

√
b2 − a2(x+ c1)

)
√
b2 − a2

)
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4.23 problem 112
Internal problem ID [3370]
Internal file name [OUTPUT/2862_Sunday_June_05_2022_08_43_14_AM_43937212/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 112.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ + x
(
sin (2y)− x2 cos (y)2

)
= 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, 1/2-1/2*x^2*cos(2*y)-1/2*x^2+sin(2*y)+1/2*cos(2*y)]� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)+x*(sin(2*y(x))-x^2*cos(y(x))^2) = 0,y(x), singsol=all)� �

y(x) = arctan
(
c1e−x2

2 + x2

2 − 1
2

)
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3 Solution by Mathematica
Time used: 19.133 (sec). Leaf size: 105� �
DSolve[y'[x]+x*(Sin[2*y[x]]-x^2*Cos[y[x]]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan−1
(
1
2

(
x2 − 8c1e−x2 − 1

))
y(x) → − tan−1

(
−x2

2 + 4c1e−x2 + 1
2

)
y(x) → −1

2πe
x2√

e−2x2

y(x) → 1
2πe

x2√
e−2x2
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4.24 problem 113
4.24.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 967
4.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 969
4.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 973
4.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 977

Internal problem ID [3371]
Internal file name [OUTPUT/2863_Sunday_June_05_2022_08_43_16_AM_27615625/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 113.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + tan (x) sec (x) cos (y)2 = 0

4.24.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − tan (x) sec (x) cos (y)2

Where f(x) = − sec (x) tan (x) and g(y) = cos (y)2. Integrating both sides gives

1
cos (y)2

dy = − sec (x) tan (x) dx

∫ 1
cos (y)2

dy =
∫

− sec (x) tan (x) dx

tan (y) = − 1
cos (x) + c1
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Which results in

y = arctan
(
c1 cos (x)− 1

cos (x)

)
Summary
The solution(s) found are the following

(1)y = arctan
(
c1 cos (x)− 1

cos (x)

)

Figure 156: Slope field plot

Verification of solutions

y = arctan
(
c1 cos (x)− 1

cos (x)

)
Verified OK.
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4.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − tan (x) sec (x) cos (y)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 176: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
sec (x) tan (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
sec(x) tan(x)

dx

Which results in

S = − sec (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − tan (x) sec (x) cos (y)2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − sec (x) tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (y)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = tan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− sec (x) = tan (y) + c1

Which simplifies to

− sec (x) = tan (y) + c1

Which gives

y = − arctan (sec (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − tan (x) sec (x) cos (y)2 dS
dR

= sec (R)2

R = y

S = − sec (x)

Summary
The solution(s) found are the following

(1)y = − arctan (sec (x) + c1)
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Figure 157: Slope field plot

Verification of solutions

y = − arctan (sec (x) + c1)

Verified OK.

4.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
cos (y)2

)
dy = (sec (x) tan (x)) dx

(− sec (x) tan (x)) dx+
(
− 1
cos (y)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x) tan (x)

N(x, y) = − 1
cos (y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sec (x) tan (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
− 1
cos (y)2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sec (x) tan (x) dx

(3)φ = − sec (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
cos(y)2 . Therefore equation (4) becomes

(5)− 1
cos (y)2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
cos (y)2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− sec (y)2

)
dy

f(y) = − tan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − sec (x)− tan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sec (x)− tan (y)

Summary
The solution(s) found are the following

(1)− sec (x)− tan (y) = c1

Figure 158: Slope field plot

Verification of solutions

− sec (x)− tan (y) = c1

Verified OK.
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4.24.4 Maple step by step solution

Let’s solve
y′ + tan (x) sec (x) cos (y)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cos(y)2 = − sec (x) tan (x)

• Integrate both sides with respect to x∫
y′

cos(y)2dx =
∫
− sec (x) tan (x) dx+ c1

• Evaluate integral
tan (y) = c1 − sec (x)

• Solve for y
y = arctan (c1 − sec (x))

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)+tan(x)*sec(x)*cos(y(x))^2 = 0,y(x), singsol=all)� �

y(x) = − arctan (sec (x) + c1)
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3 Solution by Mathematica
Time used: 1.593 (sec). Leaf size: 31� �
DSolve[y'[x]+Tan[x] Sec[x] Cos[y[x]]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctan(− sec(x) + c1)
y(x) → −π

2
y(x) → π

2
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4.25 problem 114
4.25.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 979
4.25.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 981
4.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 985
4.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 989

Internal problem ID [3372]
Internal file name [OUTPUT/2864_Sunday_June_05_2022_08_43_17_AM_85978060/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 114.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − cot (x) cot (y) = 0

4.25.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= cot (x) cot (y)

Where f(x) = cot (x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = cot (x) dx∫ 1
cot (y) dy =

∫
cot (x) dx

− ln (cos (y)) = ln (sin (x)) + c1
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Raising both side to exponential gives

1
cos (y) = eln(sin(x))+c1

Which simplifies to

sec (y) = c2 sin (x)

Summary
The solution(s) found are the following

(1)y = arcsec (c2ec1 sin (x))

Figure 159: Slope field plot

Verification of solutions

y = arcsec (c2ec1 sin (x))

Verified OK.
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4.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cot (x) cot (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 179: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
cot (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
cot(x)

dx

Which results in

S = ln (sin (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cot (x) cot (y)

982



Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = cot (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (sin (x)) = − ln (cos (y)) + c1

Which simplifies to

ln (sin (x)) = − ln (cos (y)) + c1

Which gives

y = arccos
(

ec1
sin (x)

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cot (x) cot (y) dS
dR

= tan (R)

R = y

S = ln (sin (x))

Summary
The solution(s) found are the following

(1)y = arccos
(

ec1
sin (x)

)
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Figure 160: Slope field plot

Verification of solutions

y = arccos
(

ec1
sin (x)

)
Verified OK.

4.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

cot (y)

)
dy = (cot (x)) dx

(− cot (x)) dx+
(

1
cot (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cot (x)

N(x, y) = 1
cot (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− cot (x))

= 0
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And

∂N

∂x
= ∂

∂x

(
1

cot (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cot (x) dx

(3)φ = − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
cot(y) . Therefore equation (4) becomes

(5)1
cot (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
cot (y)

= tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(tan (y)) dy

f(y) = − ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x))− ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x))− ln (cos (y))

Summary
The solution(s) found are the following

(1)− ln (sin (x))− ln (cos (y)) = c1

Figure 161: Slope field plot
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Verification of solutions

− ln (sin (x))− ln (cos (y)) = c1

Verified OK.

4.25.4 Maple step by step solution

Let’s solve
y′ − cot (x) cot (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cot(y) = cot (x)

• Integrate both sides with respect to x∫
y′

cot(y)dx =
∫
cot (x) dx+ c1

• Evaluate integral
− ln (cos (y)) = ln (sin (x)) + c1

• Solve for y

y = arccos
(

1
sin(x)ec1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = cot(x)*cot(y(x)),y(x), singsol=all)� �

y(x) = arccos
(
csc (x)
c1

)
3 Solution by Mathematica
Time used: 5.785 (sec). Leaf size: 47� �
DSolve[y'[x]==Cot[x] Cot[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
−1
2c1 csc(x)

)
y(x) → arccos

(
−1
2c1 csc(x)

)
y(x) → −π

2
y(x) → π

2
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4.26 problem 115
4.26.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 991
4.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 993
4.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 997
4.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1001

Internal problem ID [3373]
Internal file name [OUTPUT/2865_Sunday_June_05_2022_08_43_19_AM_62938110/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 4
Problem number: 115.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + cot (x) cot (y) = 0

4.26.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − cot (x) cot (y)

Where f(x) = − cot (x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = − cot (x) dx∫ 1
cot (y) dy =

∫
− cot (x) dx

− ln (cos (y)) = − ln (sin (x)) + c1
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Raising both side to exponential gives

1
cos (y) = e− ln(sin(x))+c1

Which simplifies to

sec (y) = c2
sin (x)

Summary
The solution(s) found are the following

(1)y = arcsec
(

c2ec1
sin (x)

)

Figure 162: Slope field plot

Verification of solutions

y = arcsec
(

c2ec1
sin (x)

)
Verified OK.
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4.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − cot (x) cot (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 182: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
cot (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
cot(x)

dx

Which results in

S = − ln (sin (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − cot (x) cot (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − cot (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (sin (x)) = − ln (cos (y)) + c1

Which simplifies to

− ln (sin (x)) = − ln (cos (y)) + c1

Which gives

y = arccos (sin (x) ec1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − cot (x) cot (y) dS
dR

= tan (R)

R = y

S = − ln (sin (x))

Summary
The solution(s) found are the following

(1)y = arccos (sin (x) ec1)
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Figure 163: Slope field plot

Verification of solutions

y = arccos (sin (x) ec1)

Verified OK.

4.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
cot (y)

)
dy = (cot (x)) dx

(− cot (x)) dx+
(
− 1
cot (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cot (x)

N(x, y) = − 1
cot (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− cot (x))

= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
cot (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cot (x) dx

(3)φ = − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
cot(y) . Therefore equation (4) becomes

(5)− 1
cot (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
cot (y)

= − tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− tan (y)) dy

f(y) = ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x)) + ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x)) + ln (cos (y))

Summary
The solution(s) found are the following

(1)− ln (sin (x)) + ln (cos (y)) = c1

Figure 164: Slope field plot
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Verification of solutions

− ln (sin (x)) + ln (cos (y)) = c1

Verified OK.

4.26.4 Maple step by step solution

Let’s solve
y′ + cot (x) cot (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cot(y) = − cot (x)

• Integrate both sides with respect to x∫
y′

cot(y)dx =
∫
− cot (x) dx+ c1

• Evaluate integral
− ln (cos (y)) = − ln (sin (x)) + c1

• Solve for y

y = arccos
(

sin(x)
ec1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)+cot(x)*cot(y(x)) = 0,y(x), singsol=all)� �

y(x) = arccos (c1 sin (x))

3 Solution by Mathematica
Time used: 5.682 (sec). Leaf size: 47� �
DSolve[y'[x]+Cot[x] Cot[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
−1
2c1 sin(x)

)
y(x) → arccos

(
−1
2c1 sin(x)

)
y(x) → −π

2
y(x) → π

2
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5.1 problem 116
5.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1004
5.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1006
5.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1010
5.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1014

Internal problem ID [3374]
Internal file name [OUTPUT/2866_Sunday_June_05_2022_08_43_20_AM_45419456/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 116.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − sin (x) (csc (y)− cot (y)) = 0

5.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= sin (x) (csc (y)− cot (y))

Where f(x) = sin (x) and g(y) = csc (y)− cot (y). Integrating both sides gives

1
csc (y)− cot (y) dy = sin (x) dx∫ 1
csc (y)− cot (y) dy =

∫
sin (x) dx

ln (−1 + cos (y)) = − cos (x) + c1
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Raising both side to exponential gives

−1 + cos (y) = e− cos(x)+c1

Which simplifies to

−1 + cos (y) = c2e− cos(x)

Summary
The solution(s) found are the following

(1)y = arccos
(
1 + c2e− cos(x)+c1

)

Figure 165: Slope field plot

Verification of solutions

y = arccos
(
1 + c2e− cos(x)+c1

)
Verified OK.
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5.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − sin (x) (− csc (y) + cot (y))
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 185: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
sin (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
sin(x)

dx

Which results in

S = − cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − sin (x) (− csc (y) + cot (y))
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = sin (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

csc (y)− cot (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

csc (R)− cot (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (−1 + cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− cos (x) = ln (−1 + cos (y)) + c1

Which simplifies to

− cos (x) = ln (−1 + cos (y)) + c1

Which gives

y = arccos
(
e− cos(x)−c1 + 1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sin (x) (− csc (y) + cot (y)) dS
dR

= 1
csc(R)−cot(R)

R = y

S = − cos (x)

Summary
The solution(s) found are the following

(1)y = arccos
(
e− cos(x)−c1 + 1

)
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Figure 166: Slope field plot

Verification of solutions

y = arccos
(
e− cos(x)−c1 + 1

)
Verified OK.

5.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

csc (y)− cot (y)

)
dy = (sin (x)) dx

(− sin (x)) dx+
(

1
csc (y)− cot (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)

N(x, y) = 1
csc (y)− cot (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sin (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
1

csc (y)− cot (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x) dx

(3)φ = cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
csc(y)−cot(y) . Therefore equation (4) becomes

(5)1
csc (y)− cot (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
csc (y)− cot (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
csc (y)− cot (y)

)
dy

f(y) = ln (−1 + cos (y)) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = cos (x) + ln (−1 + cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x) + ln (−1 + cos (y))

Summary
The solution(s) found are the following

(1)cos (x) + ln (−1 + cos (y)) = c1

Figure 167: Slope field plot

Verification of solutions

cos (x) + ln (−1 + cos (y)) = c1

Verified OK.
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5.1.4 Maple step by step solution

Let’s solve
y′ − sin (x) (csc (y)− cot (y)) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

csc(y)−cot(y) = sin (x)

• Integrate both sides with respect to x∫
y′

csc(y)−cot(y)dx =
∫
sin (x) dx+ c1

• Evaluate integral
ln (−1 + cos (y)) = − cos (x) + c1

• Solve for y
y = arccos

(
e− cos(x)+c1 + 1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 14� �
dsolve(diff(y(x),x) = sin(x)*(csc(y(x))-cot(y(x))),y(x), singsol=all)� �

y(x) = arccos
(
e− cos(x)c1 + 1

)
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3 Solution by Mathematica
Time used: 0.429 (sec). Leaf size: 70� �
DSolve[y'[x]==Sin[x](Csc[y[x]]-Cot[y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 cos(x) tan

(
y(x)
2

)
earctanh(cos(y(x)))

−
√

sin2(y(x)) csc
(
y(x)
2

)
sec
(
y(x)
2

)(
log
(
sec2

(
y(x)
2

))
− 2 log

(
tan

(
y(x)
2

)))
= c1, y(x)

]
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5.2 problem 117
5.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1016
5.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1018
5.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1022
5.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1026

Internal problem ID [3375]
Internal file name [OUTPUT/2867_Sunday_June_05_2022_08_43_21_AM_78766696/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 117.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − tan (x) cot (y) = 0

5.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= tan (x) cot (y)

Where f(x) = tan (x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = tan (x) dx∫ 1
cot (y) dy =

∫
tan (x) dx

− ln (cos (y)) = − ln (cos (x)) + c1
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Raising both side to exponential gives

1
cos (y) = e− ln(cos(x))+c1

Which simplifies to

sec (y) = c2
cos (x)

Summary
The solution(s) found are the following

(1)y = arcsec
(

c2ec1
cos (x)

)

Figure 168: Slope field plot

Verification of solutions

y = arcsec
(

c2ec1
cos (x)

)
Verified OK.
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5.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = tan (x) cot (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 188: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
tan (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
tan(x)

dx

Which results in

S = − ln (cos (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = tan (x) cot (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (cos (x)) = − ln (cos (y)) + c1

Which simplifies to

− ln (cos (x)) = − ln (cos (y)) + c1

Which gives

y = arccos (cos (x) ec1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= tan (x) cot (y) dS
dR

= tan (R)

R = y

S = − ln (cos (x))

Summary
The solution(s) found are the following

(1)y = arccos (cos (x) ec1)
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Figure 169: Slope field plot

Verification of solutions

y = arccos (cos (x) ec1)

Verified OK.

5.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

cot (y)

)
dy = (tan (x)) dx

(− tan (x)) dx+
(

1
cot (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x)

N(x, y) = 1
cot (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− tan (x))

= 0
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And

∂N

∂x
= ∂

∂x

(
1

cot (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
cot(y) . Therefore equation (4) becomes

(5)1
cot (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
cot (y)

= tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(tan (y)) dy

f(y) = − ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x))− ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x))− ln (cos (y))

Summary
The solution(s) found are the following

(1)ln (cos (x))− ln (cos (y)) = c1

Figure 170: Slope field plot
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Verification of solutions

ln (cos (x))− ln (cos (y)) = c1

Verified OK.

5.2.4 Maple step by step solution

Let’s solve
y′ − tan (x) cot (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cot(y) = tan (x)

• Integrate both sides with respect to x∫
y′

cot(y)dx =
∫
tan (x) dx+ c1

• Evaluate integral
− ln (cos (y)) = − ln (cos (x)) + c1

• Solve for y

y = arccos
(

cos(x)
ec1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = tan(x)*cot(y(x)),y(x), singsol=all)� �

y(x) = arccos
(
cos (x)
c1

)
3 Solution by Mathematica
Time used: 5.198 (sec). Leaf size: 47� �
DSolve[y'[x]==Tan[x] Cot[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
1
2c1 cos(x)

)
y(x) → arccos

(
1
2c1 cos(x)

)
y(x) → −π

2
y(x) → π

2
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5.3 problem 118
5.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1028
5.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1030
5.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1034
5.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1038

Internal problem ID [3376]
Internal file name [OUTPUT/2868_Sunday_June_05_2022_08_43_23_AM_89538943/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 118.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + tan (x) cot (y) = 0

5.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − tan (x) cot (y)

Where f(x) = − tan (x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = − tan (x) dx∫ 1
cot (y) dy =

∫
− tan (x) dx

− ln (cos (y)) = ln (cos (x)) + c1
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Raising both side to exponential gives

1
cos (y) = eln(cos(x))+c1

Which simplifies to

sec (y) = c2 cos (x)

Summary
The solution(s) found are the following

(1)y = arcsec (c2 cos (x) ec1)

Figure 171: Slope field plot

Verification of solutions

y = arcsec (c2 cos (x) ec1)

Verified OK.
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5.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − tan (x) cot (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 191: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
tan (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
tan(x)

dx

Which results in

S = ln (cos (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − tan (x) cot (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (cos (x)) = − ln (cos (y)) + c1

Which simplifies to

ln (cos (x)) = − ln (cos (y)) + c1

Which gives

y = arccos
(

ec1
cos (x)

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − tan (x) cot (y) dS
dR

= tan (R)

R = y

S = ln (cos (x))

Summary
The solution(s) found are the following

(1)y = arccos
(

ec1
cos (x)

)
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Figure 172: Slope field plot

Verification of solutions

y = arccos
(

ec1
cos (x)

)
Verified OK.

5.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
cot (y)

)
dy = (tan (x)) dx

(− tan (x)) dx+
(
− 1
cot (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x)

N(x, y) = − 1
cot (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− tan (x))

= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
cot (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
cot(y) . Therefore equation (4) becomes

(5)− 1
cot (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
cot (y)

= − tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− tan (y)) dy

f(y) = ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x)) + ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x)) + ln (cos (y))

Summary
The solution(s) found are the following

(1)ln (cos (x)) + ln (cos (y)) = c1

Figure 173: Slope field plot
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Verification of solutions

ln (cos (x)) + ln (cos (y)) = c1

Verified OK.

5.3.4 Maple step by step solution

Let’s solve
y′ + tan (x) cot (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cot(y) = − tan (x)

• Integrate both sides with respect to x∫
y′

cot(y)dx =
∫
− tan (x) dx+ c1

• Evaluate integral
− ln (cos (y)) = ln (cos (x)) + c1

• Solve for y

y = arccos
(

1
cos(x)ec1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)+tan(x)*cot(y(x)) = 0,y(x), singsol=all)� �

y(x) = arccos (sec (x) c1)

3 Solution by Mathematica
Time used: 6.177 (sec). Leaf size: 47� �
DSolve[y'[x]+Tan[x] Cot[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
1
2c1 sec(x)

)
y(x) → arccos

(
1
2c1 sec(x)

)
y(x) → −π

2
y(x) → π

2
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5.4 problem 119
5.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1040
5.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1042
5.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1046
5.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1050

Internal problem ID [3377]
Internal file name [OUTPUT/2869_Sunday_June_05_2022_08_43_24_AM_44970688/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 119.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + sin (2x) csc (2y) = 0

5.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − sin (2x) csc (2y)

Where f(x) = − sin (2x) and g(y) = csc (2y). Integrating both sides gives

1
csc (2y) dy = − sin (2x) dx∫ 1
csc (2y) dy =

∫
− sin (2x) dx

−cos (2y)
2 = cos (2x)

2 + c1

1040



Which results in

y = π

2 − arccos (cos (2x) + 2c1)
2

Summary
The solution(s) found are the following

(1)y = π

2 − arccos (cos (2x) + 2c1)
2

Figure 174: Slope field plot

Verification of solutions

y = π

2 − arccos (cos (2x) + 2c1)
2

Verified OK.
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5.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − sin (2x) csc (2y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 194: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
sin (2x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
sin(2x)

dx

Which results in

S = cos (2x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − sin (2x) csc (2y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − sin (2x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −cos (2R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (2x)
2 = −cos (2y)

2 + c1

Which simplifies to

cos (2x)
2 = −cos (2y)

2 + c1

Which gives

y = arccos (− cos (2x) + 2c1)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sin (2x) csc (2y) dS
dR

= sin (2R)

R = y

S = cos (2x)
2

Summary
The solution(s) found are the following

(1)y = arccos (− cos (2x) + 2c1)
2
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Figure 175: Slope field plot

Verification of solutions

y = arccos (− cos (2x) + 2c1)
2

Verified OK.

5.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
csc (2y)

)
dy = (sin (2x)) dx

(− sin (2x)) dx+
(
− 1
csc (2y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (2x)

N(x, y) = − 1
csc (2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sin (2x))

= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
csc (2y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (2x) dx

(3)φ = cos (2x)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
csc(2y) . Therefore equation (4) becomes

(5)− 1
csc (2y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
csc (2y)

= − sin (2y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− sin (2y)) dy

f(y) = cos (2y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = cos (2x)
2 + cos (2y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
cos (2x)

2 + cos (2y)
2

Summary
The solution(s) found are the following

(1)cos (2x)
2 + cos (2y)

2 = c1
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Figure 176: Slope field plot

Verification of solutions

cos (2x)
2 + cos (2y)

2 = c1

Verified OK.

5.4.4 Maple step by step solution

Let’s solve
y′ + sin (2x) csc (2y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

csc(2y) = − sin (2x)

• Integrate both sides with respect to x∫
y′

csc(2y)dx =
∫
− sin (2x) dx+ c1

• Evaluate integral

1050



− cos(2y)
2 = cos(2x)

2 + c1

• Solve for y
y = π

2 − arccos(cos(2x)+2c1)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+sin(2*x)*csc(2*y(x)) = 0,y(x), singsol=all)� �

y(x) = arccos (− cos (2x) + 4c1)
2

3 Solution by Mathematica
Time used: 0.554 (sec). Leaf size: 41� �
DSolve[y'[x]+Sin[2 x]Csc[2 y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2 arccos(− cos(2x)− 2c1)

y(x) → 1
2 arccos(− cos(2x)− 2c1)
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5.5 problem 120
Internal problem ID [3378]
Internal file name [OUTPUT/2870_Sunday_June_05_2022_08_43_25_AM_62995019/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 120.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ − tan (x) (tan (y) + sec (x) sec (y)) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, sec(x)*sec(y)]� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(diff(y(x),x) = tan(x)*(tan(y(x))+sec(x)*sec(y(x))),y(x), singsol=all)� �

y(x) = arcsin (sec (x) (− ln (cos (x)) + c1))

3 Solution by Mathematica
Time used: 9.719 (sec). Leaf size: 20� �
DSolve[y'[x]==Tan[x] (Tan[y[x]]+ Sec[x] Sec[y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin
(
1
4 sec(x)(−4 log(cos(x)) + c1)

)
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5.6 problem 121
5.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1054
5.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1056
5.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1060
5.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1064

Internal problem ID [3379]
Internal file name [OUTPUT/2871_Sunday_June_05_2022_08_43_29_AM_87396101/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 121.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − cos (x) sec (y)2 = 0

5.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= cos (x) sec (y)2

Where f(x) = cos (x) and g(y) = sec (y)2. Integrating both sides gives

1
sec (y)2

dy = cos (x) dx

∫ 1
sec (y)2

dy =
∫

cos (x) dx

cos (y) sin (y)
2 + y

2 = sin (x) + c1
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Which results in

y = RootOf (− cos (_Z) sin (_Z) + 2 sin (x) + 2c1 − _Z)

Summary
The solution(s) found are the following

(1)y = RootOf (− cos (_Z) sin (_Z) + 2 sin (x) + 2c1 − _Z)

Figure 177: Slope field plot

Verification of solutions

y = RootOf (− cos (_Z) sin (_Z) + 2 sin (x) + 2c1 − _Z)

Verified OK.
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5.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x) sec (y)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 197: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
cos (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
cos(x)

dx

Which results in

S = sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x) sec (y)2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = cos (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (y)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 +
sin (2R)

4 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sin (x) = y

2 + c1 +
sin (2y)

4

Which simplifies to

sin (x) = y

2 + c1 +
sin (2y)

4

1058



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x) sec (y)2 dS
dR

= cos (R)2

R = y

S = sin (x)

Summary
The solution(s) found are the following

(1)sin (x) = y

2 + c1 +
sin (2y)

4
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Figure 178: Slope field plot

Verification of solutions

sin (x) = y

2 + c1 +
sin (2y)

4

Verified OK.

5.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

sec (y)2
)
dy = (cos (x)) dx

(− cos (x)) dx+
(

1
sec (y)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x)

N(x, y) = 1
sec (y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− cos (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
1

sec (y)2
)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x) dx

(3)φ = − sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
sec(y)2 . Therefore equation (4) becomes

(5)1
sec (y)2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
sec (y)2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
cos (y)2

)
dy

f(y) = cos (y) sin (y)
2 + y

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − sin (x) + cos (y) sin (y)
2 + y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x) + cos (y) sin (y)
2 + y

2

Summary
The solution(s) found are the following

(1)− sin (x) + cos (y) sin (y)
2 + y

2 = c1

Figure 179: Slope field plot

Verification of solutions

− sin (x) + cos (y) sin (y)
2 + y

2 = c1

Verified OK.
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5.6.4 Maple step by step solution

Let’s solve
y′ − cos (x) sec (y)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

sec(y)2 = cos (x)

• Integrate both sides with respect to x∫
y′

sec(y)2dx =
∫
cos (x) dx+ c1

• Evaluate integral
cos(y) sin(y)

2 + y
2 = sin (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 22� �
dsolve(diff(y(x),x) = cos(x)*sec(y(x))^2,y(x), singsol=all)� �

y(x) = RootOf (−_Z+ 4c1 + 4 sin (x)− sin (_Z))
2
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3 Solution by Mathematica
Time used: 0.326 (sec). Leaf size: 32� �
DSolve[y'[x]==Cos[x] Sec[y[x]]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
2
(
#1
2 + 1

4 sin(2#1)
)
&
]
[2 sin(x) + c1]
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5.7 problem 122
5.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1066
5.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1068
5.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1072
5.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1076

Internal problem ID [3380]
Internal file name [OUTPUT/2872_Sunday_June_05_2022_08_43_31_AM_26785248/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 122.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − sec (x)2 sec (y)3 = 0

5.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= sec (x)2 sec (y)3

Where f(x) = sec (x)2 and g(y) = sec (y)3. Integrating both sides gives

1
sec (y)3

dy = sec (x)2 dx

∫ 1
sec (y)3

dy =
∫

sec (x)2 dx

(
2 + cos (y)2

)
sin (y)

3 = tan (x) + c1
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Which results in

y

=arctan
(

3c1 + 3 tan (x)
RootOf

(
_Z6 + 3_Z4 + 9c21 + 18 tan (x) c1 + 9 tan (x)2 − 4

)2 + 2
,RootOf

(
_Z6

+ 3_Z4 + 9c21 + 18 tan (x) c1 + 9 tan (x)2 − 4
))

Summary
The solution(s) found are the following

(1)y

=arctan
(

3c1 + 3 tan (x)
RootOf

(
_Z6 + 3_Z4 + 9c21 + 18 tan (x) c1 + 9 tan (x)2 − 4

)2 + 2
,RootOf

(
_Z6

+ 3_Z4 + 9c21 + 18 tan (x) c1 + 9 tan (x)2 − 4
))

Figure 180: Slope field plot
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Verification of solutions
y

=arctan
(

3c1 + 3 tan (x)
RootOf

(
_Z6 + 3_Z4 + 9c21 + 18 tan (x) c1 + 9 tan (x)2 − 4

)2 + 2
,RootOf

(
_Z6

+ 3_Z4 + 9c21 + 18 tan (x) c1 + 9 tan (x)2 − 4
))

Verified OK.

5.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sec (x)2 sec (y)3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 200: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
sec (x)2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
sec(x)2

dx

Which results in

S = tan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sec (x)2 sec (y)3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = sec (x)2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (y)3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 +
sin (3R)

12 + 3 sin (R)
4 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

tan (x) = c1 +
sin (3y)

12 + 3 sin (y)
4

Which simplifies to

tan (x) = c1 +
sin (3y)

12 + 3 sin (y)
4

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sec (x)2 sec (y)3 dS
dR

= cos (R)3

R = y

S = tan (x)

Summary
The solution(s) found are the following

(1)tan (x) = c1 +
sin (3y)

12 + 3 sin (y)
4
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Figure 181: Slope field plot

Verification of solutions

tan (x) = c1 +
sin (3y)

12 + 3 sin (y)
4

Verified OK.

5.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

sec (y)3
)
dy =

(
sec (x)2

)
dx

(
− sec (x)2

)
dx+

(
1

sec (y)3
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x)2

N(x, y) = 1
sec (y)3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− sec (x)2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

sec (y)3
)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sec (x)2 dx

(3)φ = − tan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
sec(y)3 . Therefore equation (4) becomes

(5)1
sec (y)3

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
sec (y)3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
cos (y)3

)
dy

f(y) =
(
2 + cos (y)2

)
sin (y)

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − tan (x) +
(
2 + cos (y)2

)
sin (y)

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − tan (x) +
(
2 + cos (y)2

)
sin (y)

3

Summary
The solution(s) found are the following

(1)− tan (x) +
(
2 + cos (y)2

)
sin (y)

3 = c1

Figure 182: Slope field plot

Verification of solutions

− tan (x) +
(
2 + cos (y)2

)
sin (y)

3 = c1

Verified OK.
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5.7.4 Maple step by step solution

Let’s solve
y′ − sec (x)2 sec (y)3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

sec(y)3 = sec (x)2

• Integrate both sides with respect to x∫
y′

sec(y)3dx =
∫
sec (x)2 dx+ c1

• Evaluate integral(
2+cos(y)2

)
sin(y)

3 = tan (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 74� �
dsolve(diff(y(x),x) = sec(x)^2*sec(y(x))^3,y(x), singsol=all)� �
y(x)

= arctan
(

3c1 + 3 tan (x)
RootOf

(
_Z6 + 3_Z4 + 9c21 + 18c1 tan (x) + 9 tan (x)2 − 4

)2 + 2
,RootOf

(
_Z6

+ 3_Z4 + 9c21 + 18c1 tan (x) + 9 tan (x)2 − 4
))
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3 Solution by Mathematica
Time used: 24.108 (sec). Leaf size: 478� �
DSolve[y'[x]==Sec[x]^2 Sec[y[x]]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin


3

√
−3 tan(x) +

√
9 tan2(x) + 18c1 tan(x)− 4 + 9c12 − 3c1

3
√
2

+
3
√
2

3

√
−3 tan(x) +

√
9 tan2(x) + 18c1 tan(x)− 4 + 9c12 − 3c1



y(x) → − arcsin


(
1− i

√
3
) 3

√
−3 tan(x) +

√
9 tan2(x) + 18c1 tan(x)− 4 + 9c12 − 3c1

2 3
√
2

+ 1 + i
√
3

22/3 3

√
−3 tan(x) +

√
9 tan2(x) + 18c1 tan(x)− 4 + 9c12 − 3c1



y(x) → − arcsin


(
1 + i

√
3
) 3

√
−3 tan(x) +

√
9 tan2(x) + 18c1 tan(x)− 4 + 9c12 − 3c1

2 3
√
2

+ 1− i
√
3

22/3 3

√
−3 tan(x) +

√
9 tan2(x) + 18c1 tan(x)− 4 + 9c12 − 3c1



y(x) → arcsin


3

√√
9 tan2(x)− 4− 3 tan(x)

3
√
2

+
3
√
2

3

√√
9 tan2(x)− 4− 3 tan(x)



y(x) → − arcsin


(
1 + i

√
3
) 3

√√
9 tan2(x)− 4− 3 tan(x)

2 3
√
2

+ 1− i
√
3

22/3 3

√√
9 tan2(x)− 4− 3 tan(x)


1077



5.8 problem 123
5.8.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1078
5.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1079

Internal problem ID [3381]
Internal file name [OUTPUT/2873_Sunday_June_05_2022_08_43_32_AM_71396820/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 123.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − b sin (y) = a

5.8.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
a+ b sin (y)dy = x+ c1

2 arctan
(

2a tan
( y
2
)
+2b

2
√
a2−b2

)
√
a2 − b2

= x+ c1

Solving for y gives these solutions

y1 = 2arctan

tan
(

c1
√
a2−b2

2 + x
√
a2−b2

2

)√
a2 − b2 − b

a


Summary
The solution(s) found are the following

(1)y = 2arctan

tan
(

c1
√
a2−b2

2 + x
√
a2−b2

2

)√
a2 − b2 − b

a
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Verification of solutions

y = 2arctan

tan
(

c1
√
a2−b2

2 + x
√
a2−b2

2

)√
a2 − b2 − b

a


Verified OK.

5.8.2 Maple step by step solution

Let’s solve
y′ − b sin (y) = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+b sin(y) = 1

• Integrate both sides with respect to x∫
y′

a+b sin(y)dx =
∫
1dx+ c1

• Evaluate integral

2 arctan
(

2 tan
(
y
2
)
a+2b

2
√

a2−b2

)
√
a2−b2

= x+ c1

• Solve for y

y = 2arctan
(

tan
(

c1
√

a2−b2
2 +x

√
a2−b2
2

)√
a2−b2−b

a

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
dsolve(diff(y(x),x) = a+b*sin(y(x)),y(x), singsol=all)� �

y(x) = 2 arctan

−b+ tan
(√

a2−b2 (c1+x)
2

)√
a2 − b2

a


3 Solution by Mathematica
Time used: 60.173 (sec). Leaf size: 52� �
DSolve[y'[x]==a+b Sin[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 arctan
(
−b+

√
a2 − b2 tan

(1
2

√
a2 − b2(x+ c1)

)
a

)
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5.9 problem 125
Internal problem ID [3382]
Internal file name [OUTPUT/2875_Sunday_June_05_2022_08_44_44_AM_20339530/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 125.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ − (sin (y) cos (x) + 1) tan (y) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve(diff(y(x),x) = (1+cos(x)*sin(y(x)))*tan(y(x)),y(x), singsol=all)� �

No solution found
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3 Solution by Mathematica
Time used: 1.965 (sec). Leaf size: 58� �
DSolve[y'[x]==(1+Cos[x] Sin[y[x]])Tan[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → csc−1
(
1
2
(
− sin(x)− cos(x)− 2c1e−x

))
y(x) → − csc−1

(
1
2
(
sin(x) + cos(x) + 2c1e−x

))
y(x) → 0

1083



5.10 problem 126
5.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1084
5.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1086
5.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1090
5.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1094

Internal problem ID [3383]
Internal file name [OUTPUT/2876_Sunday_June_05_2022_08_44_59_AM_70679738/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 126.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + csc (2x) sin (2y) = 0

5.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − csc (2x) sin (2y)

Where f(x) = − csc (2x) and g(y) = sin (2y). Integrating both sides gives

1
sin (2y) dy = − csc (2x) dx∫ 1
sin (2y) dy =

∫
− csc (2x) dx

ln (− cot (2y) + csc (2y))
2 = − ln (− cot (2x) + csc (2x))

2 + c1
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Raising both side to exponential gives√
− cot (2y) + csc (2y) = e−

ln(− cot(2x)+csc(2x))
2 +c1

Which simplifies to√
− cot (2y) + csc (2y) = c2√

− cot (2x) + csc (2x)

Summary
The solution(s) found are the following

(1)y =
arctan

(
2 e2c1c22 sin(2x)(−1+cos(2x))

−e4c1c42 sin(2x)
2+sin(2x)2+2 cos(2x)−2 ,

e4c1c42 sin(2x)
2+sin(2x)2+2 cos(2x)−2

−e4c1c42 sin(2x)
2+sin(2x)2+2 cos(2x)−2

)
2

Figure 183: Slope field plot

Verification of solutions

y =
arctan

(
2 e2c1c22 sin(2x)(−1+cos(2x))

−e4c1c42 sin(2x)
2+sin(2x)2+2 cos(2x)−2 ,

e4c1c42 sin(2x)
2+sin(2x)2+2 cos(2x)−2

−e4c1c42 sin(2x)
2+sin(2x)2+2 cos(2x)−2

)
2

Verified OK.
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5.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − csc (2x) sin (2y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 204: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
csc (2x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
csc(2x)

dx

Which results in

S = ln (csc (2x) + cot (2x))
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − csc (2x) sin (2y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − csc (2x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= csc (2y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= csc (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (csc (2R) + cot (2R))
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (csc (2x) + cot (2x))
2 = − ln (csc (2y) + cot (2y))

2 + c1

Which simplifies to

ln (csc (2x) + cot (2x))
2 = − ln (csc (2y) + cot (2y))

2 + c1

Which gives

y =
arctan

(
2 sin(2x)e2c1 (−1+cos(2x))

sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1−sin(2x)2 ,
sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1+sin(2x)2

sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1−sin(2x)2

)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − csc (2x) sin (2y) dS
dR

= csc (2R)

R = y

S = ln (csc (2x) + cot (2x))
2

Summary
The solution(s) found are the following

(1)y =
arctan

(
2 sin(2x)e2c1 (−1+cos(2x))

sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1−sin(2x)2 ,
sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1+sin(2x)2

sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1−sin(2x)2

)
2
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Figure 184: Slope field plot

Verification of solutions

y =
arctan

(
2 sin(2x)e2c1 (−1+cos(2x))

sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1−sin(2x)2 ,
sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1+sin(2x)2

sin(2x)2e4c1+2 cos(2x)e4c1−2 e4c1−sin(2x)2

)
2

Verified OK.

5.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
sin (2y)

)
dy = (csc (2x)) dx

(− csc (2x)) dx+
(
− 1
sin (2y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − csc (2x)

N(x, y) = − 1
sin (2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− csc (2x))

= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
sin (2y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− csc (2x) dx

(3)φ = ln (csc (2x) + cot (2x))
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
sin(2y) . Therefore equation (4) becomes

(5)− 1
sin (2y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
sin (2y)

= − csc (2y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− csc (2y)) dy

f(y) = ln (csc (2y) + cot (2y))
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (csc (2x) + cot (2x))
2 + ln (csc (2y) + cot (2y))

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (csc (2x) + cot (2x))

2 + ln (csc (2y) + cot (2y))
2

Summary
The solution(s) found are the following

(1)ln (csc (2x) + cot (2x))
2 + ln (csc (2y) + cot (2y))

2 = c1
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Figure 185: Slope field plot

Verification of solutions

ln (csc (2x) + cot (2x))
2 + ln (csc (2y) + cot (2y))

2 = c1

Verified OK.

5.10.4 Maple step by step solution

Let’s solve
y′ + csc (2x) sin (2y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

sin(2y) = − csc (2x)

• Integrate both sides with respect to x∫
y′

sin(2y)dx =
∫
− csc (2x) dx+ c1

• Evaluate integral
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ln(− cot(2y)+csc(2y))
2 = ln(csc(2x)+cot(2x))

2 + c1

• Solve for y

y =
arctan

(
2 sin(2x)

(
ec1

)2(1+cos(2x))
− sin(2x)2

(
ec1

)4+2 cos(2x)
(
ec1

)4+2
(
ec1

)4+sin(2x)2
,−− sin(2x)2

(
ec1

)4+2 cos(2x)
(
ec1

)4+2
(
ec1

)4−sin(2x)2

− sin(2x)2
(
ec1

)4+2 cos(2x)
(
ec1

)4+2
(
ec1

)4+sin(2x)2

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.406 (sec). Leaf size: 80� �
dsolve(diff(y(x),x)+csc(2*x)*sin(2*y(x)) = 0,y(x), singsol=all)� �

y(x) =
arctan

(
− 2 sin(2x)c1

c21 cos(2x)−c21−cos(2x)−1 ,
c21 cos(2x)−c21+cos(2x)+1
c21 cos(2x)−c21−cos(2x)−1

)
2

3 Solution by Mathematica
Time used: 0.456 (sec). Leaf size: 68� �
DSolve[y'[x]+Csc[2 x] Sin[2 y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2 arccos(− tanh(arctanh(cos(2x)) + 2c1))

y(x) → 1
2 arccos(− tanh(arctanh(cos(2x)) + 2c1))

y(x) → 0
y(x) → −π

2
y(x) → π

2
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5.11 problem 127
Internal problem ID [3384]
Internal file name [OUTPUT/2877_Sunday_June_05_2022_08_45_01_AM_41151374/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 127.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ + g(x) tan (y) = −f(x)

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x) = y(x)*(1+tan(x)^2)/tan(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f(x), x))+K[1]*g(x))/f(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+((diff(g(x), x))*y(x)-K[1]*g(x))/g(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f(x), x))-f(x)*K[1])/f(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(1+tan(x)^2)/tan(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x)+f(x)+g(x)*tan(y(x)) = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]+f[x]+g[x] Tan[ y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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5.12 problem 128
5.12.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1099
5.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1100

Internal problem ID [3385]
Internal file name [OUTPUT/2878_Sunday_June_05_2022_08_45_02_AM_30900568/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 128.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ −
√

a+ b cos (y) = 0

5.12.1 Solving as quadrature ode

Integrating both sides gives ∫ 1√
a+ b cos (y)

dy =
∫

dx

2
√

a+b cos(y)
a+b

InverseJacobiAM
(

y
2 ,

√
2
√
b√

a+b

)
√
a+ b cos (y)

= x+ c1

Summary
The solution(s) found are the following

(1)
2
√

a+b cos(y)
a+b

InverseJacobiAM
(

y
2 ,

√
2
√
b√

a+b

)
√
a+ b cos (y)

= x+ c1
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Verification of solutions

2
√

a+b cos(y)
a+b

InverseJacobiAM
(

y
2 ,

√
2
√
b√

a+b

)
√
a+ b cos (y)

= x+ c1

Verified OK.

5.12.2 Maple step by step solution

Let’s solve
y′ −

√
a+ b cos (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

a+b cos(y) = 1

• Integrate both sides with respect to x∫
y′√

a+b cos(y)dx =
∫
1dx+ c1

• Evaluate integral
2
√

a+b cos(y)
a+b

InverseJacobiAM
(

y
2 ,

√
2
√
b√

a+b

)
√

a+b cos(y) = x+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x) = sqrt(a+b*cos(y(x))),y(x), singsol=all)� �

x−

(∫ y(x) 1√
a+ b cos (_a)

d_a
)

+ c1 = 0

3 Solution by Mathematica
Time used: 0.83 (sec). Leaf size: 55� �
DSolve[y'[x]==Sqrt[a+b Cos[ y[x]]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 JacobiAmplitude
(
1
2
√
a+ b(x+ c1),

2b
a+ b

)
y(x) → − arccos

(
−a

b

)
y(x) → arccos

(
−a

b

)
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5.13 problem 129
5.13.1 Solving as first order special form ID 1 ode . . . . . . . . . . . . 1102
5.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1105

Internal problem ID [3386]
Internal file name [OUTPUT/2879_Sunday_June_05_2022_08_45_04_AM_87892249/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 129.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order special form ID 1",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)]`]]

y′ − ey = x

5.13.1 Solving as first order special form ID 1 ode

Writing the ode as

y′ = x+ ey (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= 1
u
+ x
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The above simplifies to

−u′(x) = 1 + u(x)x
u′(x) + u(x)x = −1 (2)

Now ode (2) is solved for u(x)

Entering Linear first order ODE solver. In canonical form a linear first order is

u′(x) + p(x)u(x) = q(x)

Where here

p(x) = x

q(x) = −1

Hence the ode is

u′(x) + u(x)x = −1

The integrating factor µ is

µ = e
∫
xdx

= ex2
2

The ode becomes
d
dx(µu) = (µ) (−1)

d
dx

(
ex2

2 u
)
=
(
ex2

2

)
(−1)

d
(
ex2

2 u
)
=
(
−ex2

2

)
dx

Integrating gives

ex2
2 u =

∫
−ex2

2 dx

ex2
2 u =

i
√
π
√
2 erf

(
i
√
2x
2

)
2 + c1

Dividing both sides by the integrating factor µ = ex2
2 results in

u(x) =
ie−x2

2
√
π
√
2 erf

(
i
√
2x
2

)
2 + c1e−

x2
2
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which simplifies to

u(x) = e−x2
2

i
√
π
√
2 erf

(
i
√
2x
2

)
2 + c1


Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))

= − ln

e−x2
2

i
√
π
√
2 erf

(
i
√
2x
2

)
2 + c1


= ln (2)− ln

(
e−x2

2

(
i
√
π
√
2 erf

(
i
√
2x
2

)
+ 2c1

))

Summary
The solution(s) found are the following

(1)y = ln (2)− ln
(
e−x2

2

(
i
√
π
√
2 erf

(
i
√
2x
2

)
+ 2c1

))

Figure 186: Slope field plot
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Verification of solutions

y = ln (2)− ln
(
e−x2

2

(
i
√
π
√
2 erf

(
i
√
2x
2

)
+ 2c1

))

Verified OK.

5.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x+ ey

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type first order special form ID 1. There-
fore we do not need to solve the PDE (A), and can just use the lookup table shown
below to find ξ, η
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Table 208: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = e−x2
2

η(x, y) = x+ e−x2
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= x+ e−x2
2

e−x2
2

= 1 + x ex2
2

This is easily solved to give

y = x+ ex2
2 + c1

Where now the coordinate R is taken as the constant of integration. Hence

R = −x− ex2
2 + y

And S is found from

dS = dx

ξ

= dx

e−x2
2

Integrating gives

S =
∫

dx

T

= −
i
√
π
√
2 erf

(
i
√
2x
2

)
2

Where the constant of integration is set to zero as we just need one solution. Since S

has special function, not able to continue.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve(diff(y(x),x) = x+exp(y(x)),y(x), singsol=all)� �

y(x) = x2

2 + ln (2)− ln
(
i
√
π
√
2 erf

(
i
√
2x
2

)
− 2c1

)
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3 Solution by Mathematica
Time used: 0.491 (sec). Leaf size: 40� �
DSolve[y'[x]==x+Exp[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x2 − 2 log

(
−
√

π

2 erfi
(

x√
2

)
− c1

))
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5.14 problem 130
5.14.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1110
5.14.2 Solving as first order special form ID 1 ode . . . . . . . . . . . . 1112
5.14.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1113
5.14.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1117
5.14.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1121

Internal problem ID [3387]
Internal file name [OUTPUT/2880_Sunday_June_05_2022_08_45_05_AM_45133278/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 130.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − ey+x = 0

5.14.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= eyex

Where f(x) = ex and g(y) = ey. Integrating both sides gives

1
ey dy = ex dx∫ 1
ey dy =

∫
ex dx

−e−y = ex + c1
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Which results in

y = ln
(
− 1
ex + c1

)
Summary
The solution(s) found are the following

(1)y = ln
(
− 1
ex + c1

)

Figure 187: Slope field plot

Verification of solutions

y = ln
(
− 1
ex + c1

)
Verified OK.
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5.14.2 Solving as first order special form ID 1 ode

Writing the ode as

y′ = ey+x (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= ex
u

The above simplifies to

u′(x) = −ex (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

−ex dx

= −ex + c1

Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))
= − ln (−ex + c1)
= − ln (−ex + c1)

Summary
The solution(s) found are the following

(1)y = − ln (−ex + c1)
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Figure 188: Slope field plot

Verification of solutions

y = − ln (−ex + c1)

Verified OK.

5.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ey+x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 210: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = e−x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

e−x
dx

Which results in

S = ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ey+x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ex

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex = −e−y + c1

Which simplifies to

ex = −e−y + c1

Which gives

y = − ln (−ex + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ey+x dS
dR

= e−R

R = y

S = ex

Summary
The solution(s) found are the following

(1)y = − ln (−ex + c1)
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Figure 189: Slope field plot

Verification of solutions

y = − ln (−ex + c1)

Verified OK.

5.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
e−y
)
dy = (ex) dx

(−ex) dx+
(
e−y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex

N(x, y) = e−y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ex)

= 0

And
∂N

∂x
= ∂

∂x

(
e−y
)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex dx

(3)φ = −ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−y. Therefore equation (4) becomes

(5)e−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
e−y
)
dy

f(y) = −e−y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex − e−y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex − e−y

The solution becomes
y = − ln (−ex − c1)

Summary
The solution(s) found are the following

(1)y = − ln (−ex − c1)

Figure 190: Slope field plot

Verification of solutions

y = − ln (−ex − c1)

Verified OK.
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5.14.5 Maple step by step solution

Let’s solve
y′ − ey+x = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

ey = ex

• Integrate both sides with respect to x∫
y′

ey dx =
∫
exdx+ c1

• Evaluate integral
− 1

ey = ex + c1

• Solve for y

y = ln
(
− 1

ex+c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x) = exp(x+y(x)),y(x), singsol=all)� �

y(x) = ln
(
− 1
ex + c1

)
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3 Solution by Mathematica
Time used: 0.773 (sec). Leaf size: 18� �
DSolve[y'[x]==Exp[x+y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − log (−ex − c1)

1122



5.15 problem 131
5.15.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1123
5.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1124
5.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1127
5.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1130

Internal problem ID [3388]
Internal file name [OUTPUT/2881_Sunday_June_05_2022_08_45_06_AM_89809581/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 131.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − ex
(
a+ b e−y

)
= 0

5.15.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= ex

(
a+ b e−y

)
Where f(x) = ex and g(y) = a+ b e−y. Integrating both sides gives

1
a+ b e−y

dy = ex dx∫ 1
a+ b e−y

dy =
∫

ex dx

ln (a+ b e−y)
a

− ln (e−y)
a

= ex + c1
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The above can be written as(
1
a

)(
ln
(
a+ b e−y

)
− ln

(
e−y
))

= ex + 2c1

ln
(
a+ b e−y

)
− ln

(
e−y
)
= (a) (ex + 2c1)
= a(ex + 2c1)

Raising both side to exponential gives

eln
(
a+b e−y

)
−ln

(
e−y

)
= ea(ex+c1)

Which simplifies to

eya+ b = c1a ea e
x

= c2ea e
x

Summary
The solution(s) found are the following

(1)y = ln
(
c2ea e

x − b

a

)
Verification of solutions

y = ln
(
c2ea e

x − b

a

)
Verified OK.

5.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ex
(
a+ b e−y

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 213: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = e−x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

e−x
dx

Which results in

S = ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ex
(
a+ b e−y

)
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = ex

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

a+ b e−y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

a+ b e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
ln
(
a+ b e−R

)
a

−
ln
(
e−R
)

a
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex = ln (a+ b e−y)
a

− ln (e−y)
a

+ c1

Which simplifies to

ex = ln (a+ b e−y)
a

− ln (e−y)
a

+ c1

Which gives

y = a ex − c1a− ln
(
− a

−1 + b e−a ex+c1a

)
Summary
The solution(s) found are the following

(1)y = a ex − c1a− ln
(
− a

−1 + b e−a ex+c1a

)
Verification of solutions

y = a ex − c1a− ln
(
− a

−1 + b e−a ex+c1a

)
Verified OK.

5.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

a+ b e−y

)
dy = (ex) dx

(−ex) dx+
(

1
a+ b e−y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex

N(x, y) = 1
a+ b e−y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ex)

= 0
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And
∂N

∂x
= ∂

∂x

(
1

a+ b e−y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex dx

(3)φ = −ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
a+b e−y . Therefore equation (4) becomes

(5)1
a+ b e−y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
a+ b e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
a+ b e−y

)
dy

f(y) = ln (a+ b e−y)
a

− ln (e−y)
a

+ c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex + ln (a+ b e−y)
a

− ln (e−y)
a

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex + ln (a+ b e−y)
a

− ln (e−y)
a

The solution becomes

y = − ln
(

a

ea ex+c1a − b

)

Summary
The solution(s) found are the following

(1)y = − ln
(

a

ea ex+c1a − b

)
Verification of solutions

y = − ln
(

a

ea ex+c1a − b

)
Verified OK.

5.15.4 Maple step by step solution

Let’s solve
y′ − ex(a+ b e−y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+b e−y = ex

• Integrate both sides with respect to x∫
y′

a+b e−y dx =
∫
exdx+ c1
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• Evaluate integral
ln
(
a+b e−y

)
a

− ln
(
e−y

)
a

= ex + c1

• Solve for y

y = − ln
(

a
ea ex+c1a−b

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 22� �
dsolve(diff(y(x),x) = exp(x)*(a+b*exp(-y(x))),y(x), singsol=all)� �

y(x) = − ln
(

a

e(ex+c1)a − b

)
3 Solution by Mathematica
Time used: 1.186 (sec). Leaf size: 24� �
DSolve[y'[x]==Exp[x](a+b Exp[-y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
−b+ ea(e

x+c1)

a

)
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5.16 problem 132
5.16.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1132
5.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1134
5.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1138
5.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1142

Internal problem ID [3389]
Internal file name [OUTPUT/2882_Sunday_June_05_2022_08_45_07_AM_52199567/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 132.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + y ln (x) ln (y) = 0

5.16.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −y ln (x) ln (y)

Where f(x) = − ln (x) and g(y) = ln (y) y. Integrating both sides gives

1
ln (y) y dy = − ln (x) dx∫ 1
ln (y) y dy =

∫
− ln (x) dx

ln (ln (y)) = − ln (x)x+ x+ c1
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Raising both side to exponential gives

ln (y) = e− ln(x)x+x+c1

Which simplifies to

ln (y) = c2e− ln(x)x+x

Which simplifies to

y = ec2x−xexec1

Summary
The solution(s) found are the following

(1)y = ec2x−xexec1

Figure 191: Slope field plot

Verification of solutions

y = ec2x−xexec1

Verified OK.
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5.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y ln (x) ln (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 216: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
ln (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
ln(x)

dx

Which results in

S = − ln (x)x+ x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y ln (x) ln (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − ln (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y ln (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R ln (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (ln (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−(ln (x)− 1)x = ln (ln (y)) + c1

Which simplifies to

−(ln (x)− 1)x = ln (ln (y)) + c1

Which gives

y = ee− ln(x)x−c1+x

1136



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y ln (x) ln (y) dS
dR

= 1
R ln(R)

R = y

S = −(ln (x)− 1)x

Summary
The solution(s) found are the following

(1)y = ee− ln(x)x−c1+x
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Figure 192: Slope field plot

Verification of solutions

y = ee− ln(x)x−c1+x

Verified OK.

5.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y ln (y)

)
dy = (ln (x)) dx

(− ln (x)) dx+
(
− 1
y ln (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − ln (x)

N(x, y) = − 1
y ln (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− ln (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
− 1
y ln (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− ln (x) dx

(3)φ = − ln (x)x+ x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y ln(y) . Therefore equation (4) becomes

(5)− 1
y ln (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y ln (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y ln (y)

)
dy

f(y) = − ln (ln (y)) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)x+ x− ln (ln (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)x+ x− ln (ln (y))

The solution becomes
y = ee− ln(x)x−c1+x

Summary
The solution(s) found are the following

(1)y = ee− ln(x)x−c1+x

Figure 193: Slope field plot

Verification of solutions

y = ee− ln(x)x−c1+x

Verified OK.
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5.16.4 Maple step by step solution

Let’s solve
y′ + y ln (x) ln (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y ln(y) = − ln (x)

• Integrate both sides with respect to x∫
y′

y ln(y)dx =
∫
− ln (x) dx+ c1

• Evaluate integral
ln (ln (y)) = − ln (x)x+ x+ c1

• Solve for y
y = ee− ln(x)x+x+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)+y(x)*ln(x)*ln(y(x)) = 0,y(x), singsol=all)� �

y(x) = e
x−xex

c1
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3 Solution by Mathematica
Time used: 0.224 (sec). Leaf size: 24� �
DSolve[y'[x]+y[x] Log[x] Log[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
−xex+c1

y(x) → 1
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5.17 problem 133
Internal problem ID [3390]
Internal file name [OUTPUT/2883_Sunday_June_05_2022_08_45_08_AM_37908114/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 133.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

y′ − xm−1y−n+1f(a xm + byn) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*a*m*x^m/(b*y(x)^n*n*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- 1st order, canonical coordinates successful
<- symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] successful`� �
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3 Solution by Maple
Time used: 0.5 (sec). Leaf size: 174� �
dsolve(diff(y(x),x) = x^(m-1)*y(x)^(1-n)*f(a*x^m+b*y(x)^n),y(x), singsol=all)� �
y(x)

=


−

−RootOf


∫ _Z 1(

m
1
m

)m
f

(
a
(
m

1
m

)m
+b

((
b_a−am

b

) 1
n

)n)((
b_a−am

b

) 1
n

)−n

bn_a−
(
m

1
m

)m
f

(
a
(
m

1
m

)m
+b

((
b_a−am

b

) 1
n

)n)((
b_a−am

b

) 1
n

)−n

amn+am2

d_a

 bm2 + c1m− xm

 b+ a xm

b



1
n

3 Solution by Mathematica
Time used: 0.509 (sec). Leaf size: 242� �
DSolve[y'[x]==x^(m-1) y[x]^(1-n) f[a x^m + b y[x]^n],y[x],x,IncludeSingularSolutions -> True]� �
Solve

[∫ y(x)

1

(
− amK[2]n−1

am+ bnf (axm + bK[2]n)

−
∫ x

1

(
abmnK[1]m−1K[2]n−1f ′(aK[1]m + bK[2]n)

am+ bnf (aK[1]m + bK[2]n) − ab2mn2f(aK[1]m + bK[2]n)K[1]m−1K[2]n−1f ′(aK[1]m + bK[2]n)
(am+ bnf (aK[1]m + bK[2]n))2

)
dK[1]

)
dK[2]

+
∫ x

1

amf(aK[1]m + by(x)n)K[1]m−1

am+ bnf (aK[1]m + by(x)n) dK[1] = c1, y(x)
]
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5.18 problem 134
5.18.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1147
5.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1148

Internal problem ID [3391]
Internal file name [OUTPUT/2884_Sunday_June_05_2022_08_45_10_AM_56072158/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 134.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − af(y) = 0

5.18.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
af (y)dy =

∫
dx∫ y 1

af (_a)d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

af (_a)d_a = x+ c1

Verification of solutions ∫ y 1
af (_a)d_a = x+ c1

Verified OK.
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5.18.2 Maple step by step solution

Let’s solve
y′ − af(y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

f(y) = a

• Integrate both sides with respect to x∫
y′

f(y)dx =
∫
adx+ c1

• Cannot compute integral∫
y′

f(y)dx = ax+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x) = a*f(y(x)),y(x), singsol=all)� �

x−
∫ y(x) 1

f(_a)d_a
a

+ c1 = 0

3 Solution by Mathematica
Time used: 0.295 (sec). Leaf size: 35� �
DSolve[y'[x]==a f[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[∫ #1

1

1
f(K[1])dK[1]&

]
[ax+ c1]

y(x) → f (−1)(0)
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5.19 problem 135
5.19.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1150

Internal problem ID [3392]
Internal file name [OUTPUT/2885_Sunday_June_05_2022_08_45_11_AM_16297517/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 135.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − f(a+ bx+ cy) = 0

5.19.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = f(bx+ cy + a)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + f(bx+ cy + a) (b3 − a2)− f(bx+ cy + a)2 a3
−D(f) (bx+cy+a) b(xa2+ya3+a1)−D(f) (bx+cy+a) c(xb2+yb3+b1) = 0

Putting the above in normal form gives

−D(f) (bx+ cy + a) bxa2 −D(f) (bx+ cy + a) bya3 −D(f) (bx+ cy + a) cxb2
−D(f) (bx+ cy + a) cyb3 − f(bx+ cy + a)2 a3 −D(f) (bx+ cy + a) ba1
−D(f) (bx+ cy + a) cb1 − f(bx+ cy + a) a2 + f(bx+ cy + a) b3 + b2 = 0

Setting the numerator to zero gives

(6E)−D(f) (bx+cy+a) bxa2−D(f) (bx+cy+a) bya3−D(f) (bx+cy+a) cxb2
−D(f) (bx+ cy + a) cyb3 − f(bx+ cy + a)2 a3 −D(f) (bx+ cy + a) ba1
−D(f) (bx+ cy + a) cb1 − f(bx+ cy + a) a2 + f(bx+ cy + a) b3 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, f(bx+ cy + a) , D(f) (bx+ cy + a)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, f(bx+ cy + a) = v3, D(f) (bx+ cy + a) = v4}

The above PDE (6E) now becomes

(7E)−v4bv1a2−v4bv2a3−v4cv1b2−v4cv2b3−v4ba1−v4cb1−v23a3−v3a2+v3b3+b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)(−ba2−cb2) v1v4+(−ba3−cb3) v2v4−v23a3+(b3−a2) v3+(−ba1−cb1) v4+b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−a3 = 0

b3 − a2 = 0
−ba1 − cb1 = 0
−ba2 − cb2 = 0
−ba3 − cb3 = 0

Solving the above equations for the unknowns gives

a1 = −cb1
b

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −c

b

η = 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 1
− c

b

= −b

c

This is easily solved to give

y = −bx

c
+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = bx+ cy

c

And S is found from

dS = dx

ξ

= dx

− c
b

Integrating gives

S =
∫

dx

T

= −bx

c

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = f(bx+ cy + a)
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Evaluating all the partial derivatives gives

Rx = b

c
Ry = 1

Sx = −b

c
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − b

cf (bx+ cy + a) + b
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − b

cf (Rc+ a) + b

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− b

cf (Rc+ a) + b
dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−bx

c
=
∫ bx+cy

c

− b

cf (_ac+ a) + b
d_a+ c1

Which simplifies to

−bx

c
=
∫ bx+cy

c

− b

cf (_ac+ a) + b
d_a+ c1

Summary
The solution(s) found are the following

(1)−bx

c
=
∫ bx+cy

c

− b

cf (_ac+ a) + b
d_a+ c1
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Verification of solutions

−bx

c
=
∫ bx+cy

c

− b

cf (_ac+ a) + b
d_a+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -b/c, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 39� �
dsolve(diff(y(x),x) = f(a+b*x+c*y(x)),y(x), singsol=all)� �

y(x) =
RootOf

((∫ _Z 1
f(_ac+a)c+b

d_a
)
c− x+ c1

)
c− bx

c
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3 Solution by Mathematica
Time used: 0.225 (sec). Leaf size: 262� �
DSolve[y'[x]==f[a+b x +c y[x]],y[x],x,IncludeSingularSolutions -> True]� �
Solve

∫ y(x)

1

−
f(a+ bx+ cK[2])

∫ x

1

(
c2f ′(a+bK[1]+cK[2])
b+cf(a+bK[1]+cK[2]) −

c3f(a+bK[1]+cK[2])f ′(a+bK[1]+cK[2])
(b+cf(a+bK[1]+cK[2]))2

)
dK[1]c+ c+ b

∫ x

1

(
c2f ′(a+bK[1]+cK[2])
b+cf(a+bK[1]+cK[2]) −

c3f(a+bK[1]+cK[2])f ′(a+bK[1]+cK[2])
(b+cf(a+bK[1]+cK[2]))2

)
dK[1]

b+ cf(a+ bx+ cK[2]) dK[2]

+
∫ x

1

cf(a+ bK[1] + cy(x))
b+ cf(a+ bK[1] + cy(x))dK[1] = c1, y(x)
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5.20 problem 136
5.20.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1157
5.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1158
5.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1160
5.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1163

Internal problem ID [3393]
Internal file name [OUTPUT/2886_Sunday_June_05_2022_08_45_12_AM_828709/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 136.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − f(x) g(y) = 0

5.20.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= f(x) g(y)

Where f(x) = f(x) and g(y) = g(y). Integrating both sides gives

1
g (y) dy = f(x) dx∫ 1
g (y) dy =

∫
f(x) dx∫ y 1

g (_a)d_a =
∫

f(x) dx+ c1
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Which results in ∫ y 1
g (_a)d_a =

∫
f(x) dx+ c1

The solution is ∫ y 1
g (_a)d_a−

(∫
f(x) dx

)
− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1

g (_a)d_a−
(∫

f(x) dx
)
− c1 = 0

Verification of solutions∫ y 1
g (_a)d_a−

(∫
f(x) dx

)
− c1 = 0

Verified OK.

5.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = f(x) g(y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 220: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
f (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
f(x)

dx

Which results in

S =
∫

f(x) dx

5.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

g (y)

)
dy = (f(x)) dx

(−f(x)) dx+
(

1
g (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −f(x)

N(x, y) = 1
g (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−f(x))

= 0

And

∂N

∂x
= ∂

∂x

(
1

g (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

1161



Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−f(x) dx

(3)φ =
∫ x

−f(_a) d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
g(y) . Therefore equation (4) becomes

(5)1
g (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
g (y)

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
g (y)

)
dy

f(y) =
∫ y

0

1
g (_a)d_a+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

−f(_a) d_a+
∫ y

0

1
g (_a)d_a+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

−f(_a) d_a+
∫ y

0

1
g (_a)d_a

Summary
The solution(s) found are the following

(1)
∫ x

−f(_a) d_a+
∫ y

0

1
g (_a)d_a = c1

Verification of solutions∫ x

−f(_a) d_a+
∫ y

0

1
g (_a)d_a = c1

Verified OK.

5.20.4 Maple step by step solution

Let’s solve
y′ − f(x) g(y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

g(y) = f(x)

• Integrate both sides with respect to x∫
y′

g(y)dx =
∫
f(x) dx+ c1

• Cannot compute integral∫
y′

g(y)dx =
∫
f(x) dx+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x) = f(x)*g(y(x)),y(x), singsol=all)� �

∫
f(x) dx−

(∫ y(x) 1
g (_a)d_a

)
+ c1 = 0

3 Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 42� �
DSolve[y'[x]==f[x] g[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[∫ #1

1

1
g(K[1])dK[1]&

] [∫ x

1
f(K[2])dK[2] + c1

]
y(x) → g(−1)(0)
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5.21 problem 137
5.21.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1165
5.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1166
5.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1168
5.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1172

Internal problem ID [3394]
Internal file name [OUTPUT/2887_Sunday_June_05_2022_08_45_13_AM_54651865/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 137.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y sec (x) Csx (x) = sec (x)2

5.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − sec (x) Csx (x)
q(x) = sec (x)2

Hence the ode is

y′ − y sec (x) Csx (x) = sec (x)2

The integrating factor µ is
µ = e

∫
− sec(x)Csx(x)dx
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The ode becomes
d
dx(µy) = (µ)

(
sec (x)2

)
d
dx

(
e
∫
− sec(x)Csx(x)dxy

)
=
(
e
∫
− sec(x)Csx(x)dx

) (
sec (x)2

)
d
(
e
∫
− sec(x)Csx(x)dxy

)
=
(
sec (x)2 e−

(∫
sec(x)Csx(x)dx

))
dx

Integrating gives

e
∫
− sec(x)Csx(x)dxy =

∫
sec (x)2 e−

(∫
sec(x)Csx(x)dx

)
dx

e
∫
− sec(x)Csx(x)dxy =

∫
sec (x)2 e−

(∫
sec(x)Csx(x)dx

)
dx+ c1

Dividing both sides by the integrating factor µ = e
∫
− sec(x)Csx(x)dx results in

y = e
∫
sec(x)Csx(x)dx

(∫
sec (x)2 e−

(∫
sec(x)Csx(x)dx

)
dx

)
+ c1e

∫
sec(x)Csx(x)dx

which simplifies to

y = e
∫
sec(x)Csx(x)dx

(∫
sec (x)2 e−

(∫
sec(x)Csx(x)dx

)
dx+ c1

)
Summary
The solution(s) found are the following

(1)y = e
∫
sec(x)Csx(x)dx

(∫
sec (x)2 e−

(∫
sec(x)Csx(x)dx

)
dx+ c1

)
Verification of solutions

y = e
∫
sec(x)Csx(x)dx

(∫
sec (x)2 e−

(∫
sec(x)Csx(x)dx

)
dx+ c1

)
Verified OK.

5.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sec (x)2 + y sec (x) Csx (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 223: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e

∫
sec(x)Csx(x)dx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
∫
sec(x)Csx(x)dxdy

5.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
sec (x)2 + y sec (x) Csx (x)

)
dx(

− sec (x)2 − y sec (x) Csx (x)
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x)2 − y sec (x) Csx (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− sec (x)2 − y sec (x) Csx (x)

)
= − sec (x) Csx (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− sec (x) Csx (x))− (0))
= − sec (x) Csx (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− sec(x)Csx(x) dx
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The result of integrating gives

µ = e
∫
− sec(x)Csx(x)dx

= e−
(∫

sec(x)Csx(x)dx
)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−
(∫

sec(x)Csx(x)dx
)(
− sec (x)2 − y sec (x) Csx (x)

)
= − sec (x) (Csx (x) y + sec (x)) e−

(∫
sec(x)Csx(x)dx

)

And

N = µN

= e−
(∫

sec(x)Csx(x)dx
)
(1)

= e−
(∫

sec(x)Csx(x)dx
)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− sec (x) (Csx (x) y + sec (x)) e−
(∫

sec(x)Csx(x)dx
))

+
(
e−
(∫

sec(x)Csx(x)dx
)) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sec (x) (Csx (x) y + sec (x)) e−

(∫
sec(x)Csx(x)dx

)
dx

(3)φ =
∫ x

− sec (_a) (Csx (_a) y + sec (_a)) e−
(∫

sec(_a)Csx(_a)d_a
)
d_a+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−

(∫ x sec(_a)Csx(_a)d_a
)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= e−
(∫

sec(x)Csx(x)dx
)
. Therefore equation (4) becomes

(5)e−
(∫

sec(x)Csx(x)dx
)
= e−

(∫ x sec(_a)Csx(_a)d_a
)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −e−
(∫ x sec(_a)Csx(_a)d_a

)
+ e−

(∫
sec(x)Csx(x)dx

)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−e−

(∫ x sec(_a)Csx(_a)d_a
)
+ e−

(∫
sec(x)Csx(x)dx

))
dy

f(y) =
∫ y

0

(
−e−

(∫ x sec(_a)Csx(_a)d_a
)
+ e−

(∫
sec(x)Csx(x)dx

))
d_a+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

− sec (_a) (Csx (_a) y + sec (_a)) e−
(∫

sec(_a)Csx(_a)d_a
)
d_a

+
∫ y

0

(
−e−

(∫ x sec(_a)Csx(_a)d_a
)
+ e−

(∫
sec(x)Csx(x)dx

))
d_a+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

− sec (_a) (Csx (_a) y + sec (_a)) e−
(∫

sec(_a)Csx(_a)d_a
)
d_a

+
∫ y

0

(
−e−

(∫ x sec(_a)Csx(_a)d_a
)
+ e−

(∫
sec(x)Csx(x)dx

))
d_a
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Summary
The solution(s) found are the following

(1)

∫ x

− sec (_a) (Csx (_a) y + sec (_a)) e−
(∫

sec(_a)Csx(_a)d_a
)
d_a

+
∫ y

0

(
−e−

(∫ x sec(_a)Csx(_a)d_a
)
+ e−

(∫
sec(x)Csx(x)dx

))
d_a = c1

Verification of solutions∫ x

− sec (_a) (Csx (_a) y + sec (_a)) e−
(∫

sec(_a)Csx(_a)d_a
)
d_a

+
∫ y

0

(
−e−

(∫ x sec(_a)Csx(_a)d_a
)
+ e−

(∫
sec(x)Csx(x)dx

))
d_a = c1

Verified OK.

5.21.4 Maple step by step solution

Let’s solve
y′ − y sec (x)Csx(x) = sec (x)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = sec (x)2 + y sec (x)Csx(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y sec (x)Csx(x) = sec (x)2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y sec (x)Csx(x)) = µ(x) sec (x)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y sec (x)Csx(x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) sec (x)Csx(x)

• Solve to find the integrating factor
µ(x) = e

∫
− sec(x)Csx(x)dx

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sec (x)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sec (x)2 dx+ c1

• Solve for y

y =
∫
µ(x) sec(x)2dx+c1

µ(x)

• Substitute µ(x) = e
∫
− sec(x)Csx(x)dx

y =
∫
sec(x)2e

∫
− sec(x)Csx(x)dxdx+c1

e
∫
− sec(x)Csx(x)dx

• Simplify

y = e
∫
sec(x)Csx(x)dx

(∫
sec (x)2 e−

(∫
sec(x)Csx(x)dx

)
dx+ c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x) = sec(x)^2+y(x)*sec(x)*Csx(x),y(x), singsol=all)� �

y(x) =
(∫

sec (x)2 e−
(∫

sec(x)Csx(x)dx
)
dx+ c1

)
e
∫
sec(x)Csx(x)dx
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3 Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 57� �
DSolve[y'[x]==Sec[x]^2+y[x] Sec[x]Csx[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ exp
(∫ x

1
Csx(K[1]) sec(K[1])dK[1]

)(∫ x

1
exp

(
−
∫ K[2]

1
Csx(K[1]) sec(K[1])dK[1]

)
sec2(K[2])dK[2]

+ c1

)
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5.22 problem 139
Internal problem ID [3395]
Internal file name [OUTPUT/2888_Sunday_June_05_2022_08_45_15_AM_31872693/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 139.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

2y′ − 2 sin (y)2 tan (y) + x sin (2y) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x) = 2*y(x)*cos(2*x)/sin(2*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+2*K[1], y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)-K[1])/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-2*y(x)*cos(2*x)/sin(2*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(-cos(2*x)*tan(x)^2*y(x)+2*tan(x)*sin(2*x)*y(x)+tan(x)^2*y(x)-cos(2*x)*y(x)-K[1]*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(-tan(x)^2*cos(2*x)+2*tan(x)*sin(2*x)+tan(x)^2-cos(2*x)+1)/(tan(x)*(-1+cos(2
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(2*diff(y(x),x) = 2*sin(y(x))^2*tan(y(x))-x*sin(2*y(x)),y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 60.375 (sec). Leaf size: 61� �
DSolve[2 y'[x]==2 Sin[y[x]]^2 Tan[y[x]]- x Sin[2 y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − cot−1
(√

ex2 (−√
πerf(x) + 4c1

))
y(x) → cot−1

(√
ex2 (−√

πerf(x) + 4c1
))
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5.23 problem 140
5.23.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1178

Internal problem ID [3396]
Internal file name [OUTPUT/2889_Sunday_June_05_2022_08_46_25_AM_58045909/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 140.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

2y′ −
√
a2x2 − 4b x2 − 4cy = −ax

5.23.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −ax

2 +
√
a2x2 − 4b x2 − 4cy

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−ax

2 +
√
a2x2 − 4b x2 − 4cy

2

)
(b3 − a2)

−
(
−ax

2 +
√
a2x2 − 4b x2 − 4cy

2

)2

a3

−
(
−a

2 +
2x a2 − 8bx

4
√
a2x2 − 4b x2 − 4cy

)
(xa2+ya3+a1)+

c(xb2 + yb3 + b1)√
a2x2 − 4b x2 − 4cy

= 0

Putting the above in normal form gives

−−2a3x3a3 +
√
a2x2 − 4b x2 − 4cy a2x2a3 + 8ab x3a3 + 4a2x2a2 − 2a2x2b3 + 2a2xya3 + 8acxya3 + (a2x2 − 4b x2 − 4cy)

3
2 a3 − 4

√
a2x2 − 4b x2 − 4cy axa2 + 2

√
a2x2 − 4b x2 − 4cy axb3 − 2

√
a2x2 − 4b x2 − 4cy aya3 + 2a2xa1 − 16b x2a2 + 8b x2b3 − 8bxya3 − 2

√
a2x2 − 4b x2 − 4cy aa1 − 8bxa1 − 4cxb2 − 8cya2 + 4cyb3 − 4b2

√
a2x2 − 4b x2 − 4cy − 4cb1

4
√
a2x2 − 4b x2 − 4cy

= 0

Setting the numerator to zero gives

(6E)

2a3x3a3 −
√
a2x2 − 4b x2 − 4cy a2x2a3 − 8ab x3a3 − 4a2x2a2

+ 2a2x2b3 − 2a2xya3 − 8acxya3 −
(
a2x2 − 4b x2 − 4cy

) 3
2 a3

+ 4
√

a2x2 − 4b x2 − 4cy axa2 − 2
√
a2x2 − 4b x2 − 4cy axb3

+ 2
√

a2x2 − 4b x2 − 4cy aya3 − 2a2xa1 + 16b x2a2 − 8b x2b3

+ 8bxya3 + 2
√

a2x2 − 4b x2 − 4cy aa1 + 8bxa1 + 4cxb2
+ 8cya2 − 4cyb3 + 4b2

√
a2x2 − 4b x2 − 4cy + 4cb1 = 0

Simplifying the above gives

(6E)

−
√

a2x2 − 4b x2 − 4cy a2x2a3 + 2
(
a2x2 − 4b x2 − 4cy

)
axa3 − 2a2x2a2

− 2a2xya3 −
(
a2x2 − 4b x2 − 4cy

) 3
2 a3 + 4

√
a2x2 − 4b x2 − 4cy axa2

− 2
√

a2x2 − 4b x2 − 4cy axb3 + 2
√

a2x2 − 4b x2 − 4cy aya3
− 2a2xa1 + 8b x2a2 + 8bxya3 − 2

(
a2x2 − 4b x2 − 4cy

)
a2

+ 2
(
a2x2 − 4b x2 − 4cy

)
b3 + 2

√
a2x2 − 4b x2 − 4cy aa1

+ 8bxa1 + 4cxb2 + 4cyb3 + 4b2
√

a2x2 − 4b x2 − 4cy + 4cb1 = 0
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Since the PDE has radicals, simplifying gives

2a3x3a3 − 2
√

a2x2 − 4b x2 − 4cy a2x2a3 − 8ab x3a3 − 4a2x2a2

+ 2a2x2b3 − 2a2xya3 − 8acxya3 + 4b x2
√
a2x2 − 4b x2 − 4cy a3

− 2a2xa1 + 4
√

a2x2 − 4b x2 − 4cy axa2 − 2
√
a2x2 − 4b x2 − 4cy axb3

+ 2
√

a2x2 − 4b x2 − 4cy aya3 + 16b x2a2 − 8b x2b3 + 8bxya3
+ 4c

√
a2x2 − 4b x2 − 4cy ya3 + 2

√
a2x2 − 4b x2 − 4cy aa1 + 8bxa1

+ 4cxb2 + 8cya2 − 4cyb3 + 4cb1 + 4b2
√
a2x2 − 4b x2 − 4cy = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
a2x2 − 4b x2 − 4cy

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

a2x2 − 4b x2 − 4cy = v3
}

The above PDE (6E) now becomes

(7E)
2a3v31a3 − 2v3a2v21a3 − 8abv31a3 − 4a2v21a2 − 2a2v1v2a3 + 2a2v21b3
− 8acv1v2a3 + 4bv21v3a3 − 2a2v1a1 + 4v3av1a2 + 2v3av2a3
− 2v3av1b3 + 16bv21a2 + 8bv1v2a3 − 8bv21b3 + 4cv3v2a3 + 2v3aa1
+ 8bv1a1 + 8cv2a2 + 4cv1b2 − 4cv2b3 + 4cb1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(
2a3a3 − 8aba3

)
v31 +

(
−2a2a3 + 4ba3

)
v21v3

+
(
−4a2a2 + 2a2b3 + 16ba2 − 8bb3

)
v21 +

(
−2a2a3 − 8aca3 + 8ba3

)
v1v2

+ (4aa2 − 2ab3) v1v3 +
(
−2a2a1 + 8ba1 + 4cb2

)
v1

+ (2aa3 + 4ca3) v2v3 + (8ca2 − 4cb3) v2 + (2aa1 + 4b2) v3 + 4cb1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

4cb1 = 0
−2a2a3 + 4ba3 = 0
2a3a3 − 8aba3 = 0
2aa3 + 4ca3 = 0
2aa1 + 4b2 = 0

4aa2 − 2ab3 = 0
8ca2 − 4cb3 = 0

−2a2a3 − 8aca3 + 8ba3 = 0
−2a2a1 + 8ba1 + 4cb2 = 0

−4a2a2 + 2a2b3 + 16ba2 − 8bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= 2y
x

= 2y
x

This is easily solved to give

y = c1x
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x2

And S is found from

dS = dx

ξ

= dx

x
Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −ax

2 +
√
a2x2 − 4b x2 − 4cy

2
Evaluating all the partial derivatives gives

Rx = −2y
x3

Ry =
1
x2

Sx = 1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x2

−x2a+
√

(a2 − 4b)x2 − 4cy x− 4y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2√

−4Rc+ a2 − 4b− 4R− a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 2√

−4Rc+ a2 − 4b− 4R− a
dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1

Which simplifies to

ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1

Verification of solutions

ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 432� �
dsolve(2*diff(y(x),x)+a*x = sqrt(a^2*x^2-4*b*x^2-4*c*y(x)),y(x), singsol=all)� �
−

(∫ x

_b

−a_a+
√

(a2 − 4b)_a2 − 4cy (x)
−a_a2 + _a

√
(a2 − 4b)_a2 − 4cy (x)− 4y (x)

d_a
)

−2


∫ y(x)

2

∫ x

_b −
−
√

(a2−4b)_a2−4_fc_aa+(a2−4b
)_a2−2_fc√

(a2−4b)_a2−4_fc
(
a_a2−_a

√
(a2−4b)_a2−4_fc+4_f

)2d_a

 a x2 − 2

∫ x

_b −
−
√

(a2−4b)_a2−4_fc_aa+(a2−4b
)_a2−2_fc√

(a2−4b)_a2−4_fc
(
a_a2−_a

√
(a2−4b)_a2−4_fc+4_f

)2d_a

x
√

(a2 − 4b)x2 − 4_fc+ 8

∫ x

_b −
−
√

(a2−4b)_a2−4_fc_aa+(a2−4b
)_a2−2_fc√

(a2−4b)_a2−4_fc
(
a_a2−_a

√
(a2−4b)_a2−4_fc+4_f

)2d_a

_f+ 1

a x2 − x
√

(a2 − 4b)x2 − 4_fc+ 4_f
d_f


+ c1 = 0

3 Solution by Mathematica
Time used: 0.586 (sec). Leaf size: 542� �
DSolve[2 y'[x]+a x==Sqrt[a^2 x^2-4 b x^2 -4 c y[x]],y[x],x,IncludeSingularSolutions -> True]� �
Solve

RootSum
#14+2#13c−2#12a2−4#12ac+8#12b+2#1a2c−8#1bc+a4−8a2b

+16b2&,
#13 log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+#13(− log(x)) + #12c log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
−#12c log(x)−#1a2 log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+ 4#1b log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
− 2#1ac log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+ a2c log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
− 4bc log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+#1a2 log(x) + 2#1ac log(x)− 4#1b log(x)− a2c log(x) + 4bc log(x)

2#13 + 3#12c− 2#1a2 − 4#1ac+ 8#1b+ a2c− 4bc
&


− log

(√
−cy(x)

√
x2 (a2 − 4b)− 4cy(x) + 2cy(x)

)
+ 1

2 log(y(x)) + 2 log(x) = c1, y(x)
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5.24 problem 141
5.24.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1185

Internal problem ID [3397]
Internal file name [OUTPUT/2890_Sunday_June_05_2022_08_46_27_AM_94432791/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 141.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

3y′ −
√

x2 − 3y = x

5.24.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x

3 +
√
x2 − 3y
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x

3 +
√
x2 − 3y
3

)
(b3 − a2)−

(
x

3 +
√
x2 − 3y
3

)2

a3

−
(
1
3 + x

3
√
x2 − 3y

)
(xa2 + ya3 + a1) +

xb2 + yb3 + b1

2
√
x2 − 3y

= 0

Putting the above in normal form gives

−2(x2 − 3y)
3
2 a3 + 2

√
x2 − 3y x2a3 + 4x3a3 + 12

√
x2 − 3y xa2 − 6

√
x2 − 3y xb3 + 6

√
x2 − 3y ya3 + 12x2a2 − 6x2b3 − 6xya3 + 6

√
x2 − 3y a1 − 18b2

√
x2 − 3y + 6xa1 − 9xb2 − 18ya2 + 9yb3 − 9b1

18
√
x2 − 3y

= 0

Setting the numerator to zero gives

(6E)−2
(
x2 − 3y

) 3
2 a3 − 2

√
x2 − 3y x2a3 − 4x3a3 − 12

√
x2 − 3y xa2

+ 6
√

x2 − 3y xb3 − 6
√

x2 − 3y ya3 − 12x2a2 + 6x2b3 + 6xya3
− 6
√

x2 − 3y a1 + 18b2
√

x2 − 3y − 6xa1 + 9xb2 + 18ya2 − 9yb3 + 9b1 = 0

Simplifying the above gives

(6E)−2
(
x2 − 3y

) 3
2 a3 − 4

(
x2 − 3y

)
xa3 − 2

√
x2 − 3y x2a3 − 6

(
x2 − 3y

)
a2

+6
(
x2−3y

)
b3−12

√
x2 − 3y xa2+6

√
x2 − 3y xb3−6

√
x2 − 3y ya3−6x2a2

− 6xya3 − 6
√

x2 − 3y a1 + 18b2
√

x2 − 3y − 6xa1 + 9xb2 + 9yb3 + 9b1 = 0

Since the PDE has radicals, simplifying gives

−4x3a3 − 4
√

x2 − 3y x2a3 − 12x2a2 + 6x2b3 − 12
√

x2 − 3y xa2 + 6
√

x2 − 3y xb3
+ 6xya3 − 6xa1 + 9xb2 − 6

√
x2 − 3y a1 + 18b2

√
x2 − 3y + 18ya2 − 9yb3 + 9b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 − 3y

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 − 3y = v3
}

The above PDE (6E) now becomes

(7E)−4v31a3 − 4v3v21a3 − 12v21a2 − 12v3v1a2 + 6v1v2a3 + 6v21b3 + 6v3v1b3
− 6v1a1 − 6v3a1 + 18v2a2 + 9v1b2 + 18b2v3 − 9v2b3 + 9b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−4v31a3 − 4v3v21a3 + (−12a2 + 6b3) v21 + 6v1v2a3 + (−12a2 + 6b3) v1v3
+ (−6a1 + 9b2) v1 + (18a2 − 9b3) v2 + (−6a1 + 18b2) v3 + 9b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a3 = 0
6a3 = 0
9b1 = 0

−6a1 + 9b2 = 0
−6a1 + 18b2 = 0
−12a2 + 6b3 = 0
18a2 − 9b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
x

3 +
√
x2 − 3y
3

)
(x)

= −x
√
x2 − 3y
3 − x2

3 + 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x
√

x2−3y
3 − x2

3 + 2y
dy

Which results in

S = ln (−x2 + 4y)
6 + ln (y)

3 −
ln
(
x+ 2

√
x2 − 3y

)
6 +

ln
(
x+

√
x2 − 3y

)
3 −

ln
(√

x2 − 3y − x
)

3 +
ln
(
−x+ 2

√
x2 − 3y

)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x

3 +
√
x2 − 3y
3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
−x+ 2

√
x2 − 3y

Sy = −x
√
x2 − 3y − x2 + 6y
(3x2 − 12y) y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−x2 + 4y)
6 + ln (y)

3 −
ln
(
x+ 2

√
x2 − 3y

)
6 +

ln
(
x+

√
x2 − 3y

)
3 −

ln
(√

x2 − 3y − x
)

3 +
ln
(
−x+ 2

√
x2 − 3y

)
6 = c1

Which simplifies to

ln (−x2 + 4y)
6 + ln (y)

3 −
ln
(
x+ 2

√
x2 − 3y

)
6 +

ln
(
x+

√
x2 − 3y

)
3 −

ln
(√

x2 − 3y − x
)

3 +
ln
(
−x+ 2

√
x2 − 3y

)
6 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
3 +

√
x2−3y
3

dS
dR

= 0

R = x

S = ln (−x2 + 4y)
6 + ln (y)

3 −
ln
(
x+ 2

√
x2 − 3y

)
6 +

ln
(
x+

√
x2 − 3y

)
3 −

ln
(√

x2 − 3y − x
)

3 +
ln
(
−x+ 2

√
x2 − 3y

)
6

Summary
The solution(s) found are the following

(1)
ln (−x2 + 4y)

6 + ln (y)
3 −

ln
(
x+ 2

√
x2 − 3y

)
6 +

ln
(
x+

√
x2 − 3y

)
3

−
ln
(√

x2 − 3y − x
)

3 +
ln
(
−x+ 2

√
x2 − 3y

)
6 = c1
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Figure 194: Slope field plot

Verification of solutions

ln (−x2 + 4y)
6 + ln (y)

3 −
ln
(
x+ 2

√
x2 − 3y

)
6 +

ln
(
x+

√
x2 − 3y

)
3

−
ln
(√

x2 − 3y − x
)

3 +
ln
(
−x+ 2

√
x2 − 3y

)
6 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 2*y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 108� �
dsolve(3*diff(y(x),x) = x+sqrt(x^2-3*y(x)),y(x), singsol=all)� �
2(x2 − 3y(x))

3
2
(
c1y(x)2 x2 − 4c1y(x)3 + 1

)
+ 2
(
c1y(x)2 x2 − 4c1y(x)3 − 1

) (
x2 − 9y(x)

2

)
x

(x2 − 4y (x)) y (x)2
(
x+

√
x2 − 3y (x)

)2 (
−2
√

x2 − 3y (x) + x
)

= 0
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3 Solution by Mathematica
Time used: 60.169 (sec). Leaf size: 499� �
DSolve[3 y'[x]==x+Sqrt[x^2-3 y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12

x2 + x(x3 + 216e3c1)
3
√

x6 − 540e3c1x3 + 24
√
3
√
e3c1 (−x3 + 27e3c1) 3 − 5832e6c1

+ 3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1


y(x) → 1

24

2x2 −
i
(√

3− i
)
x(x3 + 216e3c1)

3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1

+ i
(√

3 + i
)

3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1


y(x) → 1

24

2x2 +
i
(√

3 + i
)
x(x3 + 216e3c1)

3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1

−
(
1 + i

√
3
)

3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1
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5.25 problem 142
5.25.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1194
5.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1195

Internal problem ID [3398]
Internal file name [OUTPUT/2891_Sunday_June_05_2022_08_46_33_AM_4989097/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 142.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′ =
√
a2 − x2

5.25.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ √

a2 − x2

x
dx

=
√
a2 − x2 −

a2 ln
(

2a2+2
√
a2

√
a2−x2

x

)
√
a2

+ c1

Summary
The solution(s) found are the following

(1)y =
√
a2 − x2 −

a2 ln
(

2a2+2
√
a2

√
a2−x2

x

)
√
a2

+ c1

Verification of solutions

y =
√
a2 − x2 −

a2 ln
(

2a2+2
√
a2

√
a2−x2

x

)
√
a2

+ c1

Verified OK.
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5.25.2 Maple step by step solution

Let’s solve
xy′ =

√
a2 − x2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables

y′ =
√
a2−x2

x

• Integrate both sides with respect to x∫
y′dx =

∫ √
a2−x2

x
dx+ c1

• Evaluate integral

y =
√
a2 − x2 −

a2 ln
(

2a2+2
√

a2
√

a2−x2
x

)
√
a2

+ c1

• Solve for y

y =
−a2 ln

(
2a2+2

√
a2
√

a2−x2
x

)
+
√
a2

√
a2−x2+c1

√
a2

√
a2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 51� �
dsolve(x*diff(y(x),x) = sqrt(a^2-x^2),y(x), singsol=all)� �
y(x) = −a csgn (a) ln

(
a
(
csgn (a)

√
a2 − x2 + a

)
x

)
− a csgn (a) ln (2) +

√
a2 − x2 + c1

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 42� �
DSolve[x y'[x]==Sqrt[a^2-x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −aarctanh
(√

a2 − x2

a

)
+
√
a2 − x2 + c1
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5.26 problem 143
5.26.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1197
5.26.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1199
5.26.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 1201
5.26.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 1202
5.26.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1206
5.26.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1210

Internal problem ID [3399]
Internal file name [OUTPUT/2892_Sunday_June_05_2022_08_46_34_AM_74486687/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 143.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + y = −x

5.26.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = −1

Hence the ode is

y′ + y

x
= −1
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The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µy) = (µ) (−1)
d
dx(xy) = (x) (−1)

d(xy) = (−x) dx

Integrating gives

xy =
∫

−x dx

xy = −x2

2 + c1

Dividing both sides by the integrating factor µ = x results in

y = −x

2 + c1
x

Summary
The solution(s) found are the following

(1)y = −x

2 + c1
x
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Figure 195: Slope field plot

Verification of solutions

y = −x

2 + c1
x

Verified OK.

5.26.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x)) + u(x)x = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u− 1
x

Where f(x) = 1
x
and g(u) = −2u− 1. Integrating both sides gives

1
−2u− 1 du = 1

x
dx
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∫ 1
−2u− 1 du =

∫ 1
x
dx

− ln (−2u− 1)
2 = ln (x) + c2

Raising both side to exponential gives
1√

−2u− 1
= eln(x)+c2

Which simplifies to
1√

−2u− 1
= c3x

Therefore the solution y is

y = ux

= −(c23e2c2x2 + 1) e−2c2

2x c23
Summary
The solution(s) found are the following

(1)y = −(c23e2c2x2 + 1) e−2c2

2x c23

Figure 196: Slope field plot
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Verification of solutions

y = −(c23e2c2x2 + 1) e−2c2

2x c23

Verified OK.

5.26.3 Solving as differentialType ode

Writing the ode as

y′ = −y − x

x
(1)

Which becomes

0 = (−x) dy + (−y − x) dx (2)

But the RHS is complete differential because

(−x) dy + (−y − x) dx = d

(
−1
2x

2 − xy

)
Hence (2) becomes

0 = d

(
−1
2x

2 − xy

)
Integrating both sides gives gives these solutions

y = −x2 + 2c1
2x + c1

Summary
The solution(s) found are the following

(1)y = −x2 + 2c1
2x + c1
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Figure 197: Slope field plot

Verification of solutions

y = −x2 + 2c1
2x + c1

Verified OK.

5.26.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 227: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + x

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = −x2

2 + c1

Which simplifies to

yx = −x2

2 + c1

Which gives

y = −x2 + 2c1
2x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y+x
x

dS
dR

= −R

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = −x2 + 2c1
2x
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Figure 198: Slope field plot

Verification of solutions

y = −x2 + 2c1
2x

Verified OK.

5.26.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−y − x) dx
(y + x) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y + x

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y + x)

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y + x dx

(3)φ = x(x+ 2y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x(x+ 2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(x+ 2y)

2
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The solution becomes

y = −x2 + 2c1
2x

Summary
The solution(s) found are the following

(1)y = −x2 + 2c1
2x

Figure 199: Slope field plot

Verification of solutions

y = −x2 + 2c1
2x

Verified OK.
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5.26.6 Maple step by step solution

Let’s solve
xy′ + y = −x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −1− y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= −1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= −µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) dx+ c1

• Solve for y

y =
∫
−µ(x)dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
−xdx+c1

x

• Evaluate the integrals on the rhs

y = −x2
2 +c1
x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x*diff(y(x),x)+x+y(x) = 0,y(x), singsol=all)� �

y(x) = −x

2 + c1
x

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 17� �
DSolve[x y'[x]+x + y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x

2 + c1
x
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5.27 problem 144
5.27.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1212
5.27.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1214
5.27.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1215
5.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1219
5.27.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1224

Internal problem ID [3400]
Internal file name [OUTPUT/2893_Sunday_June_05_2022_08_46_35_AM_65337197/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 144.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − y = −x2

5.27.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = −x

Hence the ode is

y′ − y

x
= −x
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ) (−x)

d
dx

(y
x

)
=
(
1
x

)
(−x)

d
(y
x

)
= −1 dx

Integrating gives

y

x
=
∫

−1 dx
y

x
= −x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x− x2

which simplifies to

y = x(−x+ c1)

Summary
The solution(s) found are the following

(1)y = x(−x+ c1)
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Figure 200: Slope field plot

Verification of solutions

y = x(−x+ c1)

Verified OK.

5.27.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x = −x2

Integrating both sides gives

u(x) =
∫

−1 dx

= −x+ c2

Therefore the solution y is

y = ux

= x(−x+ c2)
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Summary
The solution(s) found are the following

(1)y = x(−x+ c2)

Figure 201: Slope field plot

Verification of solutions

y = x(−x+ c2)

Verified OK.

5.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 230: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= −x+ c1

Which simplifies to
y

x
= −x+ c1

Which gives

y = x(−x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y
x

dS
dR

= −1

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = x(−x+ c1)
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Figure 202: Slope field plot

Verification of solutions

y = x(−x+ c1)

Verified OK.

5.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−x2 + y

)
dx(

x2 − y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 − y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 − y

)
= −1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−1)− (1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x2 − y

)
= x2 − y

x2

And

N = µN

= 1
x2 (x)

= 1
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 − y

x2

)
+
(
1
x

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 − y

x2 dx

(3)φ = x+ y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x+ y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x+ y

x
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The solution becomes
y = x(−x+ c1)

Summary
The solution(s) found are the following

(1)y = x(−x+ c1)

Figure 203: Slope field plot

Verification of solutions

y = x(−x+ c1)

Verified OK.
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5.27.5 Maple step by step solution

Let’s solve
xy′ − y = −x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
− x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= −x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= −µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)xdx+ c1

• Solve for y

y =
∫
−µ(x)xdx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

(−1) dx+ c1
)

• Evaluate the integrals on the rhs
y = x(−x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(x*diff(y(x),x)+x^2-y(x) = 0,y(x), singsol=all)� �

y(x) = (c1 − x)x

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 13� �
DSolve[x y'[x]+x^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(−x+ c1)
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5.28 problem 145
5.28.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1226
5.28.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 1228
5.28.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1230
5.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1234
5.28.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1238

Internal problem ID [3401]
Internal file name [OUTPUT/2894_Sunday_June_05_2022_08_46_36_AM_58751561/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 145.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + y = x3

5.28.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = x2

Hence the ode is

y′ + y

x
= x2
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The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µy) = (µ)

(
x2)

d
dx(xy) = (x)

(
x2)

d(xy) = x3 dx

Integrating gives

xy =
∫

x3 dx

xy = x4

4 + c1

Dividing both sides by the integrating factor µ = x results in

y = x3

4 + c1
x

Summary
The solution(s) found are the following

(1)y = x3

4 + c1
x
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Figure 204: Slope field plot

Verification of solutions

y = x3

4 + c1
x

Verified OK.

5.28.2 Solving as differentialType ode

Writing the ode as

y′ = −y + x3

x
(1)

Which becomes

0 = (−x) dy +
(
x3 − y

)
dx (2)

But the RHS is complete differential because

(−x) dy +
(
x3 − y

)
dx = d

(
1
4x

4 − xy

)
Hence (2) becomes

0 = d

(
1
4x

4 − xy

)
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Integrating both sides gives gives these solutions

y = x4 + 4c1
4x + c1

Summary
The solution(s) found are the following

(1)y = x4 + 4c1
4x + c1

Figure 205: Slope field plot

Verification of solutions

y = x4 + 4c1
4x + c1

Verified OK.
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5.28.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x3 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 233: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x3 + y

x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R4

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = x4

4 + c1

Which simplifies to

yx = x4

4 + c1

Which gives

y = x4 + 4c1
4x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x3+y
x

dS
dR

= R3

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = x4 + 4c1
4x
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Figure 206: Slope field plot

Verification of solutions

y = x4 + 4c1
4x

Verified OK.

5.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x3 − y

)
dx(

−x3 + y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 + y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 + y

)
= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 + y dx

(3)φ = −1
4x

4 + xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −1
4x

4 + xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
4x

4 + xy
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The solution becomes

y = x4 + 4c1
4x

Summary
The solution(s) found are the following

(1)y = x4 + 4c1
4x

Figure 207: Slope field plot

Verification of solutions

y = x4 + 4c1
4x

Verified OK.
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5.28.5 Maple step by step solution

Let’s solve
xy′ + y = x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
x3dx+c1

x

• Evaluate the integrals on the rhs

y =
x4
4 +c1
x

• Simplify
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y = x4+4c1
4x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x) = x^3-y(x),y(x), singsol=all)� �

y(x) = x4 + 4c1
4x

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 19� �
DSolve[x y'[x]==x^3-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

4 + c1
x
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5.29 problem 146
5.29.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1240
5.29.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1242
5.29.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1243
5.29.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1247
5.29.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1252

Internal problem ID [3402]
Internal file name [OUTPUT/2895_Sunday_June_05_2022_08_46_37_AM_62276305/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 5
Problem number: 146.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − y = x3 + 1

5.29.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x3 + 1
x

Hence the ode is

y′ − y

x
= x3 + 1

x
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
x3 + 1

x

)
d
dx

(y
x

)
=
(
1
x

)(
x3 + 1

x

)
d
(y
x

)
=
(
x3 + 1
x2

)
dx

Integrating gives

y

x
=
∫

x3 + 1
x2 dx

y

x
= x2

2 − 1
x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
x2

2 − 1
x

)
+ c1x

which simplifies to

y = 1
2x

3 − 1 + c1x

Summary
The solution(s) found are the following

(1)y = 1
2x

3 − 1 + c1x
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Figure 208: Slope field plot

Verification of solutions

y = 1
2x

3 − 1 + c1x

Verified OK.

5.29.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x = x3 + 1

Integrating both sides gives

u(x) =
∫

x3 + 1
x2 dx

= x2

2 − 1
x
+ c2

Therefore the solution y is

y = ux

= x

(
x2

2 − 1
x
+ c2

)
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Summary
The solution(s) found are the following

(1)y = x

(
x2

2 − 1
x
+ c2

)

Figure 209: Slope field plot

Verification of solutions

y = x

(
x2

2 − 1
x
+ c2

)
Verified OK.

5.29.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + y + 1
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 236: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y + 1
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x3 + 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3 + 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= x2

2 − 1
x
+ c1

Which simplifies to

y

x
= x2

2 − 1
x
+ c1

Which gives

y = 1
2x

3 − 1 + c1x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+y+1
x

dS
dR

= R3+1
R2

R = x

S = y

x
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Summary
The solution(s) found are the following

(1)y = 1
2x

3 − 1 + c1x

Figure 210: Slope field plot

Verification of solutions

y = 1
2x

3 − 1 + c1x

Verified OK.

5.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x3 + y + 1

)
dx(

−x3 − y − 1
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − y − 1
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x3 − y − 1

)
= −1
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And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−1)− (1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−x3 − y − 1

)
= −x3 − y − 1

x2

And

N = µN

= 1
x2 (x)

= 1
x

1249



Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 − y − 1
x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − y − 1

x2 dx

(3)φ = −x3 + 2y + 2
2x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x3 + 2y + 2
2x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x3 + 2y + 2

2x

The solution becomes

y = 1
2x

3 − 1 + c1x

Summary
The solution(s) found are the following

(1)y = 1
2x

3 − 1 + c1x

Figure 211: Slope field plot
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Verification of solutions

y = 1
2x

3 − 1 + c1x

Verified OK.

5.29.5 Maple step by step solution

Let’s solve
xy′ − y = x3 + 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ x3+1

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= x3+1

x

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − y

x

)
= µ(x)

(
x3+1

)
x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
x3+1

)
x

dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
x3+1

)
x

dx+ c1

• Solve for y

y =
∫ µ(x)

(
x3+1

)
x

dx+c1
µ(x)

• Substitute µ(x) = 1
x
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y = x
(∫

x3+1
x2 dx+ c1

)
• Evaluate the integrals on the rhs

y = x
(

x2

2 − 1
x
+ c1

)
• Simplify

y = 1
2x

3 − 1 + c1x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(x*diff(y(x),x) = 1+x^3+y(x),y(x), singsol=all)� �

y(x) = 1
2x

3 − 1 + c1x

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 18� �
DSolve[x y'[x]==1+x^3+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

2 + c1x− 1
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6.1 problem 147
6.1.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1255
6.1.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1257
6.1.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1257
6.1.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1260
6.1.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1264

Internal problem ID [3403]
Internal file name [OUTPUT/2896_Sunday_June_05_2022_08_46_38_AM_82331078/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 147.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − y = xm

6.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = xm−1

Hence the ode is

y′ − y

x
= xm−1
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
xm−1)

d
dx

(y
x

)
=
(
1
x

)(
xm−1)

d
(y
x

)
= x−2+m dx

Integrating gives

y

x
=
∫

x−2+m dx

y

x
= xm−1

m− 1 + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = xxm−1

m− 1 + c1x

which simplifies to

y = xm

m− 1 + c1x

Summary
The solution(s) found are the following

(1)y = xm

m− 1 + c1x

Verification of solutions

y = xm

m− 1 + c1x

Verified OK.
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6.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x = xm

Integrating both sides gives

u(x) =
∫

xm

x2 dx

= xm−1

m− 1 + c2

Therefore the solution y is

y = ux

= x

(
xm−1

m− 1 + c2

)
Summary
The solution(s) found are the following

(1)y = x

(
xm−1

m− 1 + c2

)
Verification of solutions

y = x

(
xm−1

m− 1 + c2

)
Verified OK.

6.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xm + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 239: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xm + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x−2+m (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R−2+m
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = Rm−1

m− 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= xm−1

m− 1 + c1

Which simplifies to

y

x
= xm−1

m− 1 + c1

Which gives

y = (c1m+ xm−1 − c1)x
m− 1

Summary
The solution(s) found are the following

(1)y = (c1m+ xm−1 − c1)x
m− 1

Verification of solutions

y = (c1m+ xm−1 − c1)x
m− 1

Verified OK.

6.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (xm + y) dx
(−xm − y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xm − y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xm − y)

= −1
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And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−1)− (1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2 (−xm − y)

= −xm − y

x2

And

N = µN

= 1
x2 (x)

= 1
x

1262



Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−xm − y

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xm − y

x2 dx

(3)φ =
y − xm

m−1
x

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
y − xm

m−1
x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y − xm

m−1
x

The solution becomes

y = c1xm− c1x+ xm

m− 1

Summary
The solution(s) found are the following

(1)y = c1xm− c1x+ xm

m− 1
Verification of solutions

y = c1xm− c1x+ xm

m− 1

Verified OK.

6.1.5 Maple step by step solution

Let’s solve
xy′ − y = xm

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ xm

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= xm

x

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − y

x

)
= µ(x)xm

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)xm

x
dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)xm

x
dx+ c1

• Solve for y

y =
∫ µ(x)xm

x
dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

xm

x2 dx+ c1
)

• Evaluate the integrals on the rhs

y = x
(

xm−1

m−1 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x) = x^m+y(x),y(x), singsol=all)� �

y(x) = xm

m− 1 + c1x

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 19� �
DSolve[x y'[x]==x^m+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xm

m− 1 + c1x
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6.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1277

Internal problem ID [3404]
Internal file name [OUTPUT/2897_Sunday_June_05_2022_08_46_39_AM_68419621/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 148.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + y = x sin (x)

6.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = sin (x)

Hence the ode is

y′ + y

x
= sin (x)

The integrating factor µ is

µ = e
∫ 1

x
dx

= x
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The ode becomes

d
dx(µy) = (µ) (sin (x))
d
dx(xy) = (x) (sin (x))

d(xy) = (x sin (x)) dx

Integrating gives

xy =
∫

x sin (x) dx

xy = sin (x)− cos (x)x+ c1

Dividing both sides by the integrating factor µ = x results in

y = sin (x)− cos (x)x
x

+ c1
x

which simplifies to

y = sin (x)− cos (x)x+ c1
x

Summary
The solution(s) found are the following

(1)y = sin (x)− cos (x)x+ c1
x
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Figure 212: Slope field plot

Verification of solutions

y = sin (x)− cos (x)x+ c1
x

Verified OK.

6.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x sin (x)− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 242: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x sin (x)− y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R)−R cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = sin (x)− cos (x)x+ c1

Which simplifies to

yx = sin (x)− cos (x)x+ c1

Which gives

y = sin (x)− cos (x)x+ c1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x sin(x)−y
x

dS
dR

= R sin (R)

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = sin (x)− cos (x)x+ c1
x

1272



Figure 213: Slope field plot

Verification of solutions

y = sin (x)− cos (x)x+ c1
x

Verified OK.

6.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (x sin (x)− y) dx
(−x sin (x) + y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x sin (x) + y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x sin (x) + y)

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

1274



Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x sin (x) + y dx

(3)φ = xy − sin (x) + cos (x)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy − sin (x) + cos (x)x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy − sin (x) + cos (x)x
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The solution becomes

y = sin (x)− cos (x)x+ c1
x

Summary
The solution(s) found are the following

(1)y = sin (x)− cos (x)x+ c1
x

Figure 214: Slope field plot

Verification of solutions

y = sin (x)− cos (x)x+ c1
x

Verified OK.
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6.2.4 Maple step by step solution

Let’s solve
xy′ + y = x sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ sin (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x) sin (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(x)dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
x sin(x)dx+c1

x

• Evaluate the integrals on the rhs
y = sin(x)−cos(x)x+c1

x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x) = x*sin(x)-y(x),y(x), singsol=all)� �

y(x) = −x cos (x) + sin (x) + c1
x

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 19� �
DSolve[x y'[x]==x Sin[x]-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)− x cos(x) + c1
x
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6.3 problem 149
6.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1279
6.3.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1281
6.3.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1282
6.3.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1286
6.3.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1291

Internal problem ID [3405]
Internal file name [OUTPUT/2898_Sunday_June_05_2022_08_46_41_AM_77166542/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 149.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − y = x2 sin (x)

6.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x sin (x)

Hence the ode is

y′ − y

x
= x sin (x)
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ) (x sin (x))

d
dx

(y
x

)
=
(
1
x

)
(x sin (x))

d
(y
x

)
= sin (x) dx

Integrating gives

y

x
=
∫

sin (x) dx
y

x
= − cos (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = − cos (x)x+ c1x

which simplifies to

y = x(− cos (x) + c1)

Summary
The solution(s) found are the following

(1)y = x(− cos (x) + c1)
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Figure 215: Slope field plot

Verification of solutions

y = x(− cos (x) + c1)

Verified OK.

6.3.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x = x2 sin (x)

Integrating both sides gives

u(x) =
∫

sin (x) dx

= − cos (x) + c2

Therefore the solution y is

y = ux

= x(− cos (x) + c2)
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Summary
The solution(s) found are the following

(1)y = x(− cos (x) + c2)

Figure 216: Slope field plot

Verification of solutions

y = x(− cos (x) + c2)

Verified OK.

6.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 sin (x) + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 245: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

1283



The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 sin (x) + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= − cos (x) + c1

Which simplifies to
y

x
= − cos (x) + c1

Which gives

y = −x(cos (x)− c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2 sin(x)+y
x

dS
dR

= sin (R)

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = −x(cos (x)− c1)
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Figure 217: Slope field plot

Verification of solutions

y = −x(cos (x)− c1)

Verified OK.

6.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x2 sin (x) + y

)
dx(

−x2 sin (x)− y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 sin (x)− y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 sin (x)− y

)
= −1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−1)− (1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−x2 sin (x)− y

)
= −x2 sin (x)− y

x2

And

N = µN

= 1
x2 (x)

= 1
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x2 sin (x)− y

x2

)
+
(
1
x

)
dy
dx = 0

1288



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 sin (x)− y

x2 dx

(3)φ = cos (x) + y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x) + y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x) + y

x
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The solution becomes
y = −x(cos (x)− c1)

Summary
The solution(s) found are the following

(1)y = −x(cos (x)− c1)

Figure 218: Slope field plot

Verification of solutions

y = −x(cos (x)− c1)

Verified OK.
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6.3.5 Maple step by step solution

Let’s solve
xy′ − y = x2 sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ x sin (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= x sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x)x sin (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x sin (x) dx+ c1

• Solve for y

y =
∫
µ(x)x sin(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

sin (x) dx+ c1
)

• Evaluate the integrals on the rhs
y = x(− cos (x) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x) = x^2*sin(x)+y(x),y(x), singsol=all)� �

y(x) = (− cos (x) + c1)x

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 14� �
DSolve[x y'[x]==x^2 Sin[x]+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(− cos(x) + c1)

1292



6.4 problem 150
6.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1293
6.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1294
6.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1298
6.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1301

Internal problem ID [3406]
Internal file name [OUTPUT/2899_Sunday_June_05_2022_08_46_42_AM_26278891/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 150.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + y = xn ln (x)

6.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = xn−1 ln (x)

Hence the ode is

y′ + y

x
= xn−1 ln (x)

The integrating factor µ is

µ = e
∫ 1

x
dx

= x
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The ode becomes

d
dx(µy) = (µ)

(
xn−1 ln (x)

)
d
dx(xy) = (x)

(
xn−1 ln (x)

)
d(xy) = (xn ln (x)) dx

Integrating gives

xy =
∫

xn ln (x) dx

xy = x ln (x) en ln(x)

n+ 1 − x en ln(x)

n2 + 2n+ 1 + c1

Dividing both sides by the integrating factor µ = x results in

y =
x ln(x)en ln(x)

n+1 − x en ln(x)

n2+2n+1
x

+ c1
x

which simplifies to

y = x(−1 + (n+ 1) ln (x))xn + c1(n+ 1)2

(n+ 1)2 x

Summary
The solution(s) found are the following

(1)y = x(−1 + (n+ 1) ln (x))xn + c1(n+ 1)2

(n+ 1)2 x
Verification of solutions

y = x(−1 + (n+ 1) ln (x))xn + c1(n+ 1)2

(n+ 1)2 x

Verified OK.

6.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xn ln (x)− y

x
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 248: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xn ln (x)− y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= xn ln (x) (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Rn ln (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R ln (R)Rn

n+ 1 − RRn

n2 + 2n+ 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = x ln (x)xn

n+ 1 − xxn

n2 + 2n+ 1 + c1

Which simplifies to

yx = x ln (x)xn

n+ 1 − xxn

n2 + 2n+ 1 + c1

Which gives

y = xn ln (x)nx+ xxn ln (x) + c1n
2 − xxn + 2nc1 + c1

(n2 + 2n+ 1)x

Summary
The solution(s) found are the following

(1)y = xn ln (x)nx+ xxn ln (x) + c1n
2 − xxn + 2nc1 + c1

(n2 + 2n+ 1)x
Verification of solutions

y = xn ln (x)nx+ xxn ln (x) + c1n
2 − xxn + 2nc1 + c1

(n2 + 2n+ 1)x

Verified OK.
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6.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (xn ln (x)− y) dx
(−xn ln (x) + y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xn ln (x) + y

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−xn ln (x) + y)

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xn ln (x) + y dx

(3)φ =
(
(1 + (−1− n) ln (x))xn + y(n+ 1)2

)
x

(n+ 1)2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
(1 + (−1− n) ln (x))xn + y(n+ 1)2

)
x

(n+ 1)2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
(1 + (−1− n) ln (x))xn + y(n+ 1)2

)
x

(n+ 1)2

The solution becomes

y = xn ln (x)nx+ xxn ln (x) + c1n
2 − xxn + 2nc1 + c1

(n+ 1)2 x

Summary
The solution(s) found are the following

(1)y = xn ln (x)nx+ xxn ln (x) + c1n
2 − xxn + 2nc1 + c1

(n+ 1)2 x
Verification of solutions

y = xn ln (x)nx+ xxn ln (x) + c1n
2 − xxn + 2nc1 + c1

(n+ 1)2 x

Verified OK.
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6.4.4 Maple step by step solution

Let’s solve
xy′ + y = xn ln (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ xn ln(x)

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= xn ln(x)

x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x)xn ln(x)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)xn ln(x)
x

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)xn ln(x)
x

dx+ c1

• Solve for y

y =
∫ µ(x)xn ln(x)

x
dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
xn ln(x)dx+c1

x

• Evaluate the integrals on the rhs

y =
x ln(x)en ln(x)

n+1 − x en ln(x)
n2+2n+1+c1

x

• Simplify
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y = xn+1(−1+(n+1) ln(x))+c1(n+1)2

(n+1)2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(x*diff(y(x),x) = x^n*ln(x)-y(x),y(x), singsol=all)� �

y(x) = x(−1 + (n+ 1) ln (x))xn + c1(n+ 1)2

(n+ 1)2 x

3 Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 29� �
DSolve[x y'[x]==x^n Log[x]-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xn((n+ 1) log(x)− 1)
(n+ 1)2 + c1

x
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6.5 problem 151
6.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1303
6.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1305
6.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1309
6.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1314

Internal problem ID [3407]
Internal file name [OUTPUT/2900_Sunday_June_05_2022_08_46_43_AM_54574555/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 151.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + 2y = sin (x)

6.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = sin (x)
x

Hence the ode is

y′ + 2y
x

= sin (x)
x
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The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
sin (x)

x

)
d
dx
(
x2y
)
=
(
x2)(sin (x)

x

)
d
(
x2y
)
= (x sin (x)) dx

Integrating gives

x2y =
∫

x sin (x) dx

x2y = sin (x)− cos (x)x+ c1

Dividing both sides by the integrating factor µ = x2 results in

y = sin (x)− cos (x)x
x2 + c1

x2

which simplifies to

y = sin (x)− cos (x)x+ c1
x2

Summary
The solution(s) found are the following

(1)y = sin (x)− cos (x)x+ c1
x2
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Figure 219: Slope field plot

Verification of solutions

y = sin (x)− cos (x)x+ c1
x2

Verified OK.

6.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x)− 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 251: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = x2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x)− 2y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R)−R cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y = sin (x)− cos (x)x+ c1

Which simplifies to

x2y = sin (x)− cos (x)x+ c1

Which gives

y = sin (x)− cos (x)x+ c1
x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin(x)−2y
x

dS
dR

= R sin (R)

R = x

S = x2y

Summary
The solution(s) found are the following

(1)y = sin (x)− cos (x)x+ c1
x2
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Figure 220: Slope field plot

Verification of solutions

y = sin (x)− cos (x)x+ c1
x2

Verified OK.

6.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (sin (x)− 2y) dx
(− sin (x) + 2y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x) + 2y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x) + 2y)

= 2

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((2)− (1))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x(− sin (x) + 2y)
= (− sin (x) + 2y)x

And

N = µN

= x(x)
= x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

((− sin (x) + 2y)x) +
(
x2) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(− sin (x) + 2y)x dx

(3)φ = − sin (x) + cos (x)x+ x2y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − sin (x) + cos (x)x+ x2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x) + cos (x)x+ x2y
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The solution becomes

y = sin (x)− cos (x)x+ c1
x2

Summary
The solution(s) found are the following

(1)y = sin (x)− cos (x)x+ c1
x2

Figure 221: Slope field plot

Verification of solutions

y = sin (x)− cos (x)x+ c1
x2

Verified OK.
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6.5.4 Maple step by step solution

Let’s solve
xy′ + 2y = sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ sin(x)

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= sin(x)

x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= µ(x) sin(x)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) sin(x)
x

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) sin(x)
x

dx+ c1

• Solve for y

y =
∫ µ(x) sin(x)

x
dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
x sin(x)dx+c1

x2

• Evaluate the integrals on the rhs
y = sin(x)−cos(x)x+c1

x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x) = sin(x)-2*y(x),y(x), singsol=all)� �

y(x) = −x cos (x) + sin (x) + c1
x2

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 19� �
DSolve[x y'[x]==Sin[x]-2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)− x cos(x) + c1
x2
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6.6 problem 152
6.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1316
6.6.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1317
6.6.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1318
6.6.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 1319
6.6.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1322
6.6.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1325

Internal problem ID [3408]
Internal file name [OUTPUT/2901_Sunday_June_05_2022_08_46_44_AM_64934916/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 152.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − ya = 0

6.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= ya

x
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Where f(x) = a
x
and g(y) = y. Integrating both sides gives

1
y
dy = a

x
dx∫ 1

y
dy =

∫
a

x
dx

ln (y) = a ln (x) + c1

y = ea ln(x)+c1

= c1ea ln(x)

Which simplifies to
y = c1x

a

Summary
The solution(s) found are the following

(1)y = c1x
a

Verification of solutions

y = c1x
a

Verified OK.

6.6.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −a

x
q(x) = 0

Hence the ode is

y′ − ya

x
= 0

The integrating factor µ is

µ = e
∫
− a

x
dx

= e−a ln(x)
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Which simplifies to
µ = x−a

The ode becomes

d
dxµy = 0

d
dx
(
x−ay

)
= 0

Integrating gives

x−ay = c1

Dividing both sides by the integrating factor µ = x−a results in

y = c1x
a

Summary
The solution(s) found are the following

(1)y = c1x
a

Verification of solutions

y = c1x
a

Verified OK.

6.6.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)xa = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(a− 1)
x
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Where f(x) = a−1
x

and g(u) = u. Integrating both sides gives

1
u
du = a− 1

x
dx∫ 1

u
du =

∫
a− 1
x

dx

ln (u) = (a− 1) ln (x) + c2

u = e(a−1) ln(x)+c2

= c2e(a−1) ln(x)

Which simplifies to

u(x) = c2x
a

x

Therefore the solution y is

y = xu

= c2x
a

Summary
The solution(s) found are the following

(1)y = c2x
a

Verification of solutions

y = c2x
a

Verified OK.

6.6.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ya

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 254: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ea ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ea ln(x)dy

Which results in

S = e−a ln(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ya

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −ay x−1−a

Sy = x−a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−ay = c1

Which simplifies to

x−ay = c1

Which gives

y = c1x
a

Summary
The solution(s) found are the following

(1)y = c1x
a

Verification of solutions

y = c1x
a

Verified OK.

6.6.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
ya

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1
ya

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
ya

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
ya

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
ya
. Therefore equation (4) becomes

(5)1
ya

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
ya

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
ya

)
dy

f(y) = ln (y)
a

+ c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (y)
a

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (y)
a

The solution becomes
y = ea ln(x)+c1a

Summary
The solution(s) found are the following

(1)y = ea ln(x)+c1a

Verification of solutions

y = ea ln(x)+c1a

Verified OK.

6.6.6 Maple step by step solution

Let’s solve
xy′ − ya = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= a

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
a
x
dx+ c1

• Evaluate integral
ln (y) = a ln (x) + c1

• Solve for y
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y = ea ln(x)+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(x*diff(y(x),x) = a*y(x),y(x), singsol=all)� �

y(x) = c1x
a

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 16� �
DSolve[x y'[x]==a y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
a

y(x) → 0
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6.7 problem 153
6.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1327
6.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1329
6.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1332
6.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1336

Internal problem ID [3409]
Internal file name [OUTPUT/2902_Sunday_June_05_2022_08_46_45_AM_15581806/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 153.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − ya = x+ 1

6.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −a

x

q(x) = x+ 1
x

Hence the ode is

y′ − ya

x
= x+ 1

x
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The integrating factor µ is

µ = e
∫
− a

x
dx

= e−a ln(x)

Which simplifies to
µ = x−a

The ode becomes

d
dx(µy) = (µ)

(
x+ 1
x

)
d
dx
(
x−ay

)
=
(
x−a
)(x+ 1

x

)
d
(
x−ay

)
=
(
x−1−a(x+ 1)

)
dx

Integrating gives

x−ay =
∫

x−1−a(x+ 1) dx

x−ay = −x−a(ax+ a− 1)
a (a− 1) + c1

Dividing both sides by the integrating factor µ = x−a results in

y = −xax−a(ax+ a− 1)
a (a− 1) + c1x

a

which simplifies to

y = 1 + (−x− 1) a
a (a− 1) + c1x

a

Summary
The solution(s) found are the following

(1)y = 1 + (−x− 1) a
a (a− 1) + c1x

a

Verification of solutions

y = 1 + (−x− 1) a
a (a− 1) + c1x

a

Verified OK.
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6.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ya+ x+ 1
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 257: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = ea ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ea ln(x)dy

Which results in

S = e−a ln(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ya+ x+ 1
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −ay x−1−a

Sy = x−a
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x−1−a(x+ 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R−1−a(R + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R−a(aR + a− 1)
a (a− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−ay = −x−a(ax+ a− 1)
a (a− 1) + c1

Which simplifies to

x−ay = −x−a(ax+ a− 1)
a (a− 1) + c1

Which gives

y = −(x−aax− c1a
2 + x−aa+ c1a− x−a)xa

a (a− 1)

Summary
The solution(s) found are the following

(1)y = −(x−aax− c1a
2 + x−aa+ c1a− x−a)xa

a (a− 1)
Verification of solutions

y = −(x−aax− c1a
2 + x−aa+ c1a− x−a)xa

a (a− 1)

Verified OK.
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6.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (ya+ x+ 1) dx
(−ya− x− 1) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ya− x− 1
N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−ya− x− 1)

= −a

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−a)− (1))

= −1− a

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −1−a

x
dx

The result of integrating gives

µ = e(−1−a) ln(x)

= x−1−a

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−1−a(−ya− x− 1)
= (−ya− x− 1)x−1−a
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And

N = µN

= x−1−a(x)
= x−a

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−ya− x− 1)x−1−a
)
+
(
x−a
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−ya− x− 1)x−1−a dx

(3)φ = (−1 + a2y + (x− y + 1) a)x−a

(a− 1) a + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (a2 − a)x−a

(a− 1) a + f ′(y)

= x−a + f ′(y)

But equation (2) says that ∂φ
∂y

= x−a. Therefore equation (4) becomes

(5)x−a = x−a + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (−1 + a2y + (x− y + 1) a)x−a

(a− 1) a + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(−1 + a2y + (x− y + 1) a)x−a

(a− 1) a

The solution becomes

y = −(x−aax− c1a
2 + x−aa+ c1a− x−a)xa

a (a− 1)

Summary
The solution(s) found are the following

(1)y = −(x−aax− c1a
2 + x−aa+ c1a− x−a)xa

a (a− 1)
Verification of solutions

y = −(x−aax− c1a
2 + x−aa+ c1a− x−a)xa

a (a− 1)

Verified OK.
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6.7.4 Maple step by step solution

Let’s solve
xy′ − ya = x+ 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = ya

x
+ x+1

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − ya

x
= x+1

x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − ya

x

)
= µ(x)(x+1)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − ya

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)a

x

• Solve to find the integrating factor
µ(x) = 1

xa

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(x+1)
x

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)(x+1)
x

dx+ c1

• Solve for y

y =
∫ µ(x)(x+1)

x
dx+c1

µ(x)

• Substitute µ(x) = 1
xa

y = xa
(∫

x+1
xax

dx+ c1
)

• Evaluate the integrals on the rhs

y = xa
(
− ax+a−1

(a−1)a xa + c1
)

• Simplify
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y = c1xa(a−1)a+1+(−x−1)a
(a−1)a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve(x*diff(y(x),x) = 1+x+a*y(x),y(x), singsol=all)� �

y(x) =
(
−x−a(ax+ a− 1)

a (a− 1) + c1

)
xa

3 Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 28� �
DSolve[x y'[x]==1+x+a y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ax+ a− 1
(a− 1)a + c1x

a
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6.8 problem 154
6.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1338
6.8.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1340
6.8.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1341
6.8.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1344
6.8.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1348

Internal problem ID [3410]
Internal file name [OUTPUT/2903_Sunday_June_05_2022_08_46_46_AM_54026806/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 154.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − yb = ax

6.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − b

x
q(x) = a

Hence the ode is

y′ − by

x
= a
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The integrating factor µ is

µ = e
∫
− b

x
dx

= e− ln(x)b

Which simplifies to
µ = x−b

The ode becomes

d
dx(µy) = (µ) (a)

d
dx
(
x−by

)
=
(
x−b
)
(a)

d
(
x−by

)
=
(
a x−b

)
dx

Integrating gives

x−by =
∫

a x−b dx

x−by = −a x−b+1

b− 1 + c1

Dividing both sides by the integrating factor µ = x−b results in

y = −xba x−b+1

b− 1 + c1x
b

which simplifies to

y = − ax

b− 1 + c1x
b

Summary
The solution(s) found are the following

(1)y = − ax

b− 1 + c1x
b

Verification of solutions

y = − ax

b− 1 + c1x
b

Verified OK.
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6.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)xb = ax

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= ub+ a− u

x

Where f(x) = 1
x
and g(u) = ub+ a− u. Integrating both sides gives

1
ub+ a− u

du = 1
x
dx∫ 1

ub+ a− u
du =

∫ 1
x
dx

ln ((b− 1)u+ a)
b− 1 = ln (x) + c2

Raising both side to exponential gives

e
ln((b−1)u+a)

b−1 = eln(x)+c2

Which simplifies to

(ub+ a− u)
1

b−1 = c3x

Which simplifies to

u(x) =
−ac3x+

(
1

c3x

)−b

ec2be−c2

c3x (b− 1)

Therefore the solution y is

y = xu

=
−ac3x+

(
1

c3x

)−b

ec2be−c2

c3 (b− 1)
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Summary
The solution(s) found are the following

(1)y =
−ac3x+

(
1

c3x

)−b

ec2be−c2

c3 (b− 1)
Verification of solutions

y =
−ac3x+

(
1

c3x

)−b

ec2be−c2

c3 (b− 1)

Verified OK.

6.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ax+ by

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 260: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eln(x)b (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x)bdy

Which results in

S = e− ln(x)by

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax+ by

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −by x−b−1

Sy = x−b

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a x−b (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR−b

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R−b+1a

b− 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−by = −a x−b+1

b− 1 + c1

Which simplifies to

x−by = −a x−b+1

b− 1 + c1

Which gives

y = −
(
a x−b+1 − c1b+ c1

)
xb

b− 1

Summary
The solution(s) found are the following

(1)y = −
(
a x−b+1 − c1b+ c1

)
xb

b− 1
Verification of solutions

y = −
(
a x−b+1 − c1b+ c1

)
xb

b− 1

Verified OK.

6.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (ax+ by) dx
(−ax− by) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax− by

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−ax− by)

= −b
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And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−b)− (1))

= −b− 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −b−1

x
dx

The result of integrating gives

µ = e(−b−1) ln(x)

= x−b−1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−b−1(−ax− by)
= (−ax− by)x−b−1

And

N = µN

= x−b−1(x)
= x−b

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−ax− by)x−b−1)+ (x−b
) dy
dx = 0

1346



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−ax− by)x−b−1 dx

(3)φ = (y(b− 1) + ax)x−b

b− 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x−b + f ′(y)

But equation (2) says that ∂φ
∂y

= x−b. Therefore equation (4) becomes

(5)x−b = x−b + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y(b− 1) + ax)x−b

b− 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(y(b− 1) + ax)x−b

b− 1
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The solution becomes

y = −
(
a x−bx− c1b+ c1

)
xb

b− 1

Summary
The solution(s) found are the following

(1)y = −
(
a x−bx− c1b+ c1

)
xb

b− 1
Verification of solutions

y = −
(
a x−bx− c1b+ c1

)
xb

b− 1

Verified OK.

6.8.5 Maple step by step solution

Let’s solve
xy′ − yb = ax

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = by

x
+ a

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − by

x
= a

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − by

x

)
= µ(x) a

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − by

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)b

x

• Solve to find the integrating factor
µ(x) = 1

xb

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) adx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) adx+ c1

• Solve for y

y =
∫
µ(x)adx+c1

µ(x)

• Substitute µ(x) = 1
xb

y = xb
(∫

a
xbdx+ c1

)
• Evaluate the integrals on the rhs

y = xb
(
− xa

(b−1)xb + c1
)

• Simplify
y = − ax

b−1 + c1x
b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*diff(y(x),x) = a*x+b*y(x),y(x), singsol=all)� �

y(x) = − ax

b− 1 + xbc1

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 22� �
DSolve[x y'[x]==a x + b y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ax

1− b
+ c1x

b
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6.9 problem 155
6.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1350
6.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1352
6.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1355
6.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1358

Internal problem ID [3411]
Internal file name [OUTPUT/2904_Sunday_June_05_2022_08_46_47_AM_63568651/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 155.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − yb = x2a

6.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − b

x
q(x) = ax

Hence the ode is

y′ − by

x
= ax
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The integrating factor µ is

µ = e
∫
− b

x
dx

= e− ln(x)b

Which simplifies to
µ = x−b

The ode becomes

d
dx(µy) = (µ) (ax)

d
dx
(
x−by

)
=
(
x−b
)
(ax)

d
(
x−by

)
=
(
a x−b+1) dx

Integrating gives

x−by =
∫

a x−b+1 dx

x−by = −a x−b+2

b− 2 + c1

Dividing both sides by the integrating factor µ = x−b results in

y = −xba x−b+2

b− 2 + c1x
b

which simplifies to

y = − a x2

b− 2 + c1x
b

Summary
The solution(s) found are the following

(1)y = − a x2

b− 2 + c1x
b

Verification of solutions

y = − a x2

b− 2 + c1x
b

Verified OK.
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6.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2a+ by

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 263: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

1352



The above table shows that

ξ(x, y) = 0
η(x, y) = eln(x)b (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x)bdy

Which results in

S = e− ln(x)by

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2a+ by

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −by x−b−1

Sy = x−b
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a x−b+1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR−b+1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R−b+2a

b− 2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−by = −a x−b+2

b− 2 + c1

Which simplifies to

x−by = −a x−b+2

b− 2 + c1

Which gives

y = −
(
a x−b+2 − c1b+ 2c1

)
xb

b− 2

Summary
The solution(s) found are the following

(1)y = −
(
a x−b+2 − c1b+ 2c1

)
xb

b− 2
Verification of solutions

y = −
(
a x−b+2 − c1b+ 2c1

)
xb

b− 2

Verified OK.
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6.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x2a+ by

)
dx(

−x2a− by
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2a− by

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2a− by

)
= −b

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−b)− (1))

= −b− 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −b−1

x
dx

The result of integrating gives

µ = e(−b−1) ln(x)

= x−b−1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−b−1(−x2a− by
)

=
(
−x2a− by

)
x−b−1
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And

N = µN

= x−b−1(x)
= x−b

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

−x2a− by
)
x−b−1)+ (x−b

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
−x2a− by

)
x−b−1 dx

(3)φ = (y(b− 2) + x2a)x−b

b− 2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x−b + f ′(y)

But equation (2) says that ∂φ
∂y

= x−b. Therefore equation (4) becomes

(5)x−b = x−b + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y(b− 2) + x2a)x−b

b− 2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(y(b− 2) + x2a)x−b

b− 2

The solution becomes

y = −
(
a x−bx2 − c1b+ 2c1

)
xb

b− 2

Summary
The solution(s) found are the following

(1)y = −
(
a x−bx2 − c1b+ 2c1

)
xb

b− 2
Verification of solutions

y = −
(
a x−bx2 − c1b+ 2c1

)
xb

b− 2

Verified OK.

6.9.4 Maple step by step solution

Let’s solve
xy′ − yb = x2a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = by

x
+ ax

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
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y′ − by
x
= ax

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − by

x

)
= µ(x) ax

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − by

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)b

x

• Solve to find the integrating factor
µ(x) = 1

xb

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) axdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) axdx+ c1

• Solve for y

y =
∫
µ(x)axdx+c1

µ(x)

• Substitute µ(x) = 1
xb

y = xb
(∫

ax
xb dx+ c1

)
• Evaluate the integrals on the rhs

y = xb
(
− x2a

(b−2)xb + c1
)

• Simplify
y = −a x2

b−2 + c1x
b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x*diff(y(x),x) = a*x^2+b*y(x),y(x), singsol=all)� �

y(x) = − a x2

b− 2 + xbc1

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 24� �
DSolve[x y'[x]==a x^2+b y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ax2

2− b
+ c1x

b
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6.10 problem 156
6.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1361
6.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1363
6.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1366
6.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1369

Internal problem ID [3412]
Internal file name [OUTPUT/2905_Sunday_June_05_2022_08_46_48_AM_4285466/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 156.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − cy = b xn + a

6.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − c

x

q(x) = b xn + a

x

Hence the ode is

y′ − cy

x
= b xn + a

x
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The integrating factor µ is

µ = e
∫
− c

x
dx

= e−c ln(x)

Which simplifies to
µ = x−c

The ode becomes

d
dx(µy) = (µ)

(
b xn + a

x

)
d
dx
(
x−cy

)
=
(
x−c
)(b xn + a

x

)
d
(
x−cy

)
=
(
x−c−1(b xn + a)

)
dx

Integrating gives

x−cy =
∫

x−c−1(b xn + a) dx

x−cy = −ax e(−c−1) ln(x)

c
− bx en ln(x)e(−c−1) ln(x)

c− n
+ c1

Dividing both sides by the integrating factor µ = x−c results in

y = xc

(
−ax e(−c−1) ln(x)

c
− bx en ln(x)e(−c−1) ln(x)

c− n

)
+ c1x

c

which simplifies to

y = −a

c
− b xn

c− n
+ c1x

c

Summary
The solution(s) found are the following

(1)y = −a

c
− b xn

c− n
+ c1x

c

Verification of solutions

y = −a

c
− b xn

c− n
+ c1x

c

Verified OK.
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6.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a+ b xn + cy

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 266: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = ec ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ec ln(x)dy

Which results in

S = e−c ln(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a+ b xn + cy

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −cy x−c−1

Sy = x−c
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x−c−1(b xn + a) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R−c−1(bRn + a)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −aR−c

c
− bRnR−c

c− n
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−cy = −a x−c

c
− b x−cxn

c− n
+ c1

Which simplifies to

x−cy = −a x−c

c
− b x−cxn

c− n
+ c1

Which gives

y = −(−c1x
cc2 + c1x

ccn+ xnbc+ ca− an)x−cxc

c (c− n)

Summary
The solution(s) found are the following

(1)y = −(−c1x
cc2 + c1x

ccn+ xnbc+ ca− an)x−cxc

c (c− n)
Verification of solutions

y = −(−c1x
cc2 + c1x

ccn+ xnbc+ ca− an)x−cxc

c (c− n)

Verified OK.
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6.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (a+ b xn + cy) dx
(−a− b xn − cy) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a− b xn − cy

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−a− b xn − cy)

= −c

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−c)− (1))

= −c− 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ −c−1

x
dx

The result of integrating gives

µ = e(−c−1) ln(x)

= x−c−1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−c−1(−a− b xn − cy)
= (−a− b xn − cy)x−c−1
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And

N = µN

= x−c−1(x)
= x−c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−a− b xn − cy)x−c−1)+ (x−c
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−a− b xn − cy)x−c−1 dx

(3)φ = x−c

(
cy + a

c
+ b xn

c− n

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x−c + f ′(y)

But equation (2) says that ∂φ
∂y

= x−c. Therefore equation (4) becomes

(5)x−c = x−c + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x−c

(
cy + a

c
+ b xn

c− n

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x−c

(
cy + a

c
+ b xn

c− n

)

The solution becomes

y = −(b x−cxnc+ a x−cc− a x−cn− c2c1 + c1cn)xc

c (c− n)

Summary
The solution(s) found are the following

(1)y = −(b x−cxnc+ a x−cc− a x−cn− c2c1 + c1cn)xc

c (c− n)
Verification of solutions

y = −(b x−cxnc+ a x−cc− a x−cn− c2c1 + c1cn)xc

c (c− n)

Verified OK.

6.10.4 Maple step by step solution

Let’s solve
xy′ − cy = b xn + a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = cy

x
+ b xn+a

x
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − cy

x
= b xn+a

x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − cy

x

)
= µ(x)(b xn+a)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − cy

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)c

x

• Solve to find the integrating factor
µ(x) = 1

xc

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(b xn+a)
x

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)(b xn+a)
x

dx+ c1

• Solve for y

y =
∫ µ(x)

(
b xn+a

)
x

dx+c1
µ(x)

• Substitute µ(x) = 1
xc

y = xc
(∫

b xn+a
x xc dx+ c1

)
• Evaluate the integrals on the rhs

y = xc

(
−a

c
− b en ln(x)

c−n

ec ln(x) + c1

)
• Simplify

y = −a
c
− b xn

c−n
+ c1x

c
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(x*diff(y(x),x) = a+b*x^n+c*y(x),y(x), singsol=all)� �

y(x) = − xnb

c− n
− a

c
+ xcc1

3 Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 31� �
DSolve[x y'[x]==a+b x^n+c y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a

c
− bxn

c− n
+ c1x

c
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6.11 problem 157
6.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1372
6.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1374
6.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1378
6.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1383

Internal problem ID [3413]
Internal file name [OUTPUT/2906_Sunday_June_05_2022_08_46_49_AM_68107395/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 157.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + (−x+ 3) y = −2

6.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −x− 3
x

q(x) = −2
x

Hence the ode is

y′ − (x− 3) y
x

= −2
x
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The integrating factor µ is

µ = e
∫
−x−3

x
dx

= e−x+3 ln(x)

Which simplifies to
µ = x3e−x

The ode becomes

d
dx(µy) = (µ)

(
−2
x

)
d
dx
(
x3e−xy

)
=
(
x3e−x

)(
−2
x

)
d
(
x3e−xy

)
=
(
−2 e−xx2) dx

Integrating gives

x3e−xy =
∫

−2 e−xx2 dx

x3e−xy = 2
(
x2 + 2x+ 2

)
e−x + c1

Dividing both sides by the integrating factor µ = x3e−x results in

y = 2 ex(x2 + 2x+ 2) e−x

x3 + c1ex
x3

which simplifies to

y = c1ex + 2x2 + 4x+ 4
x3

Summary
The solution(s) found are the following

(1)y = c1ex + 2x2 + 4x+ 4
x3
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Figure 222: Slope field plot

Verification of solutions

y = c1ex + 2x2 + 4x+ 4
x3

Verified OK.

6.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy − 3y − 2
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 269: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex−3 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex−3 ln(x)dy

Which results in

S = x3e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy − 3y − 2
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy x2(x− 3)
Sy = x3e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2 e−xx2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2 e−RR2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2
(
R2 + 2R + 2

)
e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x3e−xy = 2
(
x2 + 2x+ 2

)
e−x + c1

Which simplifies to

x3e−xy = 2
(
x2 + 2x+ 2

)
e−x + c1

Which gives

y = (2 e−xx2 + 4x e−x + 4 e−x + c1) ex
x3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy−3y−2
x

dS
dR

= −2 e−RR2

R = x

S = x3e−xy

Summary
The solution(s) found are the following

(1)y = (2 e−xx2 + 4x e−x + 4 e−x + c1) ex
x3
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Figure 223: Slope field plot

Verification of solutions

y = (2 e−xx2 + 4x e−x + 4 e−x + c1) ex
x3

Verified OK.

6.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−2− (−x+ 3) y) dx
(2 + (−x+ 3) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2 + (−x+ 3) y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2 + (−x+ 3) y)

= −x+ 3

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−x+ 3)− (1))

= −x+ 2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −x+2

x
dx

The result of integrating gives

µ = e−x+2 ln(x)

= e−xx2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−xx2(2 + (−x+ 3) y)
= −x2e−x(xy − 3y − 2)

And

N = µN

= e−xx2(x)
= x3e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x2e−x(xy − 3y − 2)
)
+
(
x3e−x

) dy
dx = 0

1380



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2e−x(xy − 3y − 2) dx

(3)φ =
(
x3y − 2x2 − 4x− 4

)
e−x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= x3e−x. Therefore equation (4) becomes

(5)x3e−x = x3e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
x3y − 2x2 − 4x− 4

)
e−x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x3y − 2x2 − 4x− 4

)
e−x
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The solution becomes

y = (2 e−xx2 + 4x e−x + 4 e−x + c1) ex
x3

Summary
The solution(s) found are the following

(1)y = (2 e−xx2 + 4x e−x + 4 e−x + c1) ex
x3

Figure 224: Slope field plot

Verification of solutions

y = (2 e−xx2 + 4x e−x + 4 e−x + c1) ex
x3

Verified OK.
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6.11.4 Maple step by step solution

Let’s solve
xy′ + (−x+ 3) y = −2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = (x−3)y

x
− 2

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − (x−3)y

x
= − 2

x

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − (x−3)y

x

)
= −2µ(x)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − (x−3)y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)(x−3)

x

• Solve to find the integrating factor
µ(x) = x3e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−2µ(x)

x
dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−2µ(x)

x
dx+ c1

• Solve for y

y =
∫
− 2µ(x)

x
dx+c1

µ(x)

• Substitute µ(x) = x3e−x

y =
∫
−2 e−xx2dx+c1

x3e−x

• Evaluate the integrals on the rhs

y = 2
(
x2+2x+2

)
e−x+c1

x3e−x

• Simplify
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y = c1ex+2x2+4x+4
x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x*diff(y(x),x)+2+(3-x)*y(x) = 0,y(x), singsol=all)� �

y(x) = exc1 + 2x2 + 4x+ 4
x3

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 25� �
DSolve[x y'[x]+2+(3-x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x2 + 4x+ c1e
x + 4

x3
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6.12 problem 158
6.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1385
6.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1387
6.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1390
6.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1393

Internal problem ID [3414]
Internal file name [OUTPUT/2907_Sunday_June_05_2022_08_46_50_AM_68683150/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 158.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + (ax+ 2) y = −x

6.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−ax− 2
x

q(x) = −1

Hence the ode is

y′ − (−ax− 2) y
x

= −1

The integrating factor µ is

µ = e
∫
−−ax−2

x
dx

= eax+2 ln(x)
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Which simplifies to
µ = x2eax

The ode becomes

d
dx(µy) = (µ) (−1)

d
dx
(
x2eaxy

)
=
(
x2eax

)
(−1)

d
(
x2eaxy

)
=
(
−x2eax

)
dx

Integrating gives

x2eaxy =
∫

−x2eax dx

x2eaxy = −(a2x2 − 2ax+ 2) eax
a3

+ c1

Dividing both sides by the integrating factor µ = x2eax results in

y = −e−ax(a2x2 − 2ax+ 2) eax
x2a3

+ c1e−ax

x2

which simplifies to

y = c1e−axa3 − a2x2 + 2ax− 2
x2a3

Summary
The solution(s) found are the following

(1)y = c1e−axa3 − a2x2 + 2ax− 2
x2a3

Verification of solutions

y = c1e−axa3 − a2x2 + 2ax− 2
x2a3

Verified OK.
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6.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −axy + x+ 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 272: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e−ax−2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−ax−2 ln(x)dy

Which results in

S = x2eaxy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −axy + x+ 2y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y eaxx(ax+ 2)
Sy = x2eax
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x2eax (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R2eaR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R2a2 − 2aR + 2) eaR
a3

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2eaxy = −(a2x2 − 2ax+ 2) eax
a3

+ c1

Which simplifies to

x2eaxy = −(a2x2 − 2ax+ 2) eax
a3

+ c1

Which gives

y = −(eaxa2x2 − a3c1 − 2 eaxax+ 2 eax) e−ax

x2a3

Summary
The solution(s) found are the following

(1)y = −(eaxa2x2 − a3c1 − 2 eaxax+ 2 eax) e−ax

x2a3

Verification of solutions

y = −(eaxa2x2 − a3c1 − 2 eaxax+ 2 eax) e−ax

x2a3

Verified OK.
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6.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−x− (ax+ 2) y) dx
(x+ (ax+ 2) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ (ax+ 2) y
N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(x+ (ax+ 2) y)

= ax+ 2

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((ax+ 2)− (1))

= ax+ 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫

ax+1
x

dx

The result of integrating gives

µ = eax+ln(x)

= x eax

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x eax(x+ (ax+ 2) y)
= x eax(axy + x+ 2y)
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And

N = µN

= x eax(x)
= x2eax

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(x eax(axy + x+ 2y)) +
(
x2eax

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x eax(axy + x+ 2y) dx

(3)φ = (a3x2y + a2x2 − 2ax+ 2) eax
a3

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2eax + f ′(y)

But equation (2) says that ∂φ
∂y

= x2eax. Therefore equation (4) becomes

(5)x2eax = x2eax + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (a3x2y + a2x2 − 2ax+ 2) eax
a3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(a3x2y + a2x2 − 2ax+ 2) eax

a3

The solution becomes

y = −(eaxa2x2 − a3c1 − 2 eaxax+ 2 eax) e−ax

x2a3

Summary
The solution(s) found are the following

(1)y = −(eaxa2x2 − a3c1 − 2 eaxax+ 2 eax) e−ax

x2a3

Verification of solutions

y = −(eaxa2x2 − a3c1 − 2 eaxax+ 2 eax) e−ax

x2a3

Verified OK.

6.12.4 Maple step by step solution

Let’s solve
xy′ + (ax+ 2) y = −x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −1− (ax+2)y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
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y′ + (ax+2)y
x

= −1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (ax+2)y

x

)
= −µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (ax+2)y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(ax+2)

x

• Solve to find the integrating factor
µ(x) = x2eax

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) dx+ c1

• Solve for y

y =
∫
−µ(x)dx+c1

µ(x)

• Substitute µ(x) = x2eax

y =
∫
−x2eaxdx+c1

x2eax

• Evaluate the integrals on the rhs

y = −
(
a2x2−2ax+2

)
eax

a3 +c1

x2eax

• Simplify
y = c1e−axa3−a2x2+2ax−2

x2a3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(x*diff(y(x),x)+x+(a*x+2)*y(x) = 0,y(x), singsol=all)� �

y(x) = e−axc1a
3 − x2a2 + 2ax− 2

a3x2

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 37� �
DSolve[x y'[x]+x+(2+a x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−a2x2−2ax+2

a3
+ c1e

−ax

x2
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6.13 problem 159
6.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1396
6.13.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1397
6.13.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1398
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6.13.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1405

Internal problem ID [3415]
Internal file name [OUTPUT/2908_Sunday_June_05_2022_08_46_51_AM_95328629/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 159.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ + (bx+ a) y = 0

6.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −(bx+ a) y
x
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Where f(x) = − bx+a
x

and g(y) = y. Integrating both sides gives

1
y
dy = −bx+ a

x
dx∫ 1

y
dy =

∫
−bx+ a

x
dx

ln (y) = −bx− a ln (x) + c1

y = e−bx−a ln(x)+c1

= c1e−bx−a ln(x)

Which simplifies to
y = c1e−bxx−a

Summary
The solution(s) found are the following

(1)y = c1e−bxx−a

Verification of solutions

y = c1e−bxx−a

Verified OK.

6.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−bx− a

x
q(x) = 0

Hence the ode is

y′ − (−bx− a) y
x

= 0

The integrating factor µ is

µ = e
∫
−−bx−a

x
dx

= ebx+a ln(x)
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Which simplifies to
µ = ebxxa

The ode becomes

d
dxµy = 0

d
dx
(
ebxxay

)
= 0

Integrating gives

ebxxay = c1

Dividing both sides by the integrating factor µ = ebxxa results in

y = c1e−bxx−a

Summary
The solution(s) found are the following

(1)y = c1e−bxx−a

Verification of solutions

y = c1e−bxx−a

Verified OK.

6.13.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x)) + (bx+ a)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(bx+ a+ 1)
x
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Where f(x) = − bx+a+1
x

and g(u) = u. Integrating both sides gives

1
u
du = −bx+ a+ 1

x
dx∫ 1

u
du =

∫
−bx+ a+ 1

x
dx

ln (u) = −bx− (1 + a) ln (x) + c2

u = e−bx−(1+a) ln(x)+c2

= c2e−bx−(1+a) ln(x)

Which simplifies to

u(x) = c2e−bxx−a

x

Therefore the solution y is

y = xu

= c2e−bxx−a

Summary
The solution(s) found are the following

(1)y = c2e−bxx−a

Verification of solutions

y = c2e−bxx−a

Verified OK.

6.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(bx+ a) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 275: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−bx−a ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−bx−a ln(x)dy

Which results in

S = ebx+a ln(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(bx+ a) y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y xa−1(bx+ a) ebx

Sy = ebxxa

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ebxxay = c1

Which simplifies to

ebxxay = c1

Which gives

y = c1e−bxx−a

Summary
The solution(s) found are the following

(1)y = c1e−bxx−a

Verification of solutions

y = c1e−bxx−a

Verified OK.

6.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
bx+ a

x

)
dx(

−bx+ a

x

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bx+ a

x

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−bx+ a

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−bx+ a

x
dx

(3)φ = −bx− a ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −bx− a ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −bx− a ln (x)− ln (y)

The solution becomes
y = e−bx−a ln(x)−c1

Summary
The solution(s) found are the following

(1)y = e−bx−a ln(x)−c1

Verification of solutions

y = e−bx−a ln(x)−c1

Verified OK.

6.13.6 Maple step by step solution

Let’s solve
xy′ + (bx+ a) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − bx+a

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− bx+a

x
dx+ c1

• Evaluate integral
ln (y) = −bx− a ln (x) + c1

• Solve for y
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y = e−bx−a ln(x)+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+(b*x+a)*y(x) = 0,y(x), singsol=all)� �

y(x) = c1e−bxx−a

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 24� �
DSolve[x y'[x]+(a+ b x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
−ae−bx

y(x) → 0
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Internal problem ID [3416]
Internal file name [OUTPUT/2909_Sunday_June_05_2022_08_46_52_AM_66335948/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 160.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ −
(
−2x2 + 1

)
y = x3

6.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−2x2 + 1
x

q(x) = x2

Hence the ode is

y′ − (−2x2 + 1) y
x

= x2
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The integrating factor µ is

µ = e
∫
−−2x2+1

x
dx

= ex2−ln(x)

Which simplifies to

µ = ex2

x

The ode becomes

d
dx(µy) = (µ)

(
x2)

d
dx

(
ex2

y

x

)
=
(
ex2

x

)(
x2)

d
(
ex2

y

x

)
=
(
x ex2

)
dx

Integrating gives

ex2
y

x
=
∫

x ex2 dx

ex2
y

x
= ex2

2 + c1

Dividing both sides by the integrating factor µ = ex2

x
results in

y = x e−x2ex2

2 + c1x e−x2

which simplifies to

y = x

2 + c1x e−x2

Summary
The solution(s) found are the following

(1)y = x

2 + c1x e−x2
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Figure 225: Slope field plot

Verification of solutions

y = x

2 + c1x e−x2

Verified OK.

6.14.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))−
(
−2x2 + 1

)
u(x)x = x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= x(−2u+ 1)

Where f(x) = x and g(u) = −2u+ 1. Integrating both sides gives

1
−2u+ 1 du = x dx
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∫ 1
−2u+ 1 du =

∫
x dx

− ln (−2u+ 1)
2 = x2

2 + c2

Raising both side to exponential gives

1√
−2u+ 1

= ex2
2 +c2

Which simplifies to

1√
−2u+ 1

= c3e
x2
2

Therefore the solution y is

y = xu

=
x
(
c23ex

2+2c2 − 1
)
e−x2−2c2

2c23

Summary
The solution(s) found are the following

(1)y =
x
(
c23ex

2+2c2 − 1
)
e−x2−2c2

2c23
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Figure 226: Slope field plot

Verification of solutions

y =
x
(
c23ex

2+2c2 − 1
)
e−x2−2c2

2c23

Verified OK.

6.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x3 + 2x2y − y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 278: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2+ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2+ln(x)dy

Which results in

S = ex2
y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x3 + 2x2y − y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ex2
y(2x2 − 1)

x2

Sy =
ex2

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x ex2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R eR2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
y

x
= ex2

2 + c1

Which simplifies to

ex2
y

x
= ex2

2 + c1

Which gives

y =
x
(
ex2 + 2c1

)
e−x2

2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x3+2x2y−y
x

dS
dR

= R eR2

R = x

S = ex2
y

x
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Summary
The solution(s) found are the following

(1)y =
x
(
ex2 + 2c1

)
e−x2

2

Figure 227: Slope field plot

Verification of solutions

y =
x
(
ex2 + 2c1

)
e−x2

2

Verified OK.

6.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x3 +

(
−2x2 + 1

)
y
)
dx(

−x3 −
(
−2x2 + 1

)
y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 −
(
−2x2 + 1

)
y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−x3 −

(
−2x2 + 1

)
y
)

= 2x2 − 1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
2x2 − 1

)
− (1)

)
= 2x2 − 2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 2x2−2

x
dx

The result of integrating gives

µ = ex
2−2 ln(x)

= ex2

x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2

x2

(
−x3 −

(
−2x2 + 1

)
y
)

= −ex2(x3 − 2x2y + y)
x2
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And

N = µN

= ex2

x2 (x)

= ex2

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−ex2(x3 − 2x2y + y)
x2

)
+
(
ex2

x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−ex2(x3 − 2x2y + y)

x2 dx

(3)φ = −(x− 2y) ex2

2x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex2

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= ex2

x
. Therefore equation (4) becomes

(5)ex2

x
= ex2

x
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −(x− 2y) ex2

2x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(x− 2y) ex2

2x

The solution becomes

y =
x
(
ex2 + 2c1

)
e−x2

2

Summary
The solution(s) found are the following

(1)y =
x
(
ex2 + 2c1

)
e−x2

2
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Figure 228: Slope field plot

Verification of solutions

y =
x
(
ex2 + 2c1

)
e−x2

2

Verified OK.

6.14.5 Maple step by step solution

Let’s solve
xy′ − (−2x2 + 1) y = x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −
(
2x2−1

)
y

x
+ x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ +
(
2x2−1

)
y

x
= x2
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• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ +

(
2x2−1

)
y

x

)
= µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ +

(
2x2−1

)
y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = µ(x)
(
2x2−1

)
x

• Solve to find the integrating factor

µ(x) = ex2

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = ex2

x

y =
x
(∫

x ex2dx+c1
)

ex2

• Evaluate the integrals on the rhs

y =
x

(
ex

2

2 +c1

)
ex2

• Simplify
y = x

2 + c1x e−x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x) = x^3+(-2*x^2+1)*y(x),y(x), singsol=all)� �

y(x) = x

2 + e−x2
xc1

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 21� �
DSolve[x y'[x]==x^3+(1-2 x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
1
2 + c1e

−x2
)
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6.15 problem 161
6.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1423
6.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1425
6.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1428
6.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1432

Internal problem ID [3417]
Internal file name [OUTPUT/2910_Sunday_June_05_2022_08_46_53_AM_45245457/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 161.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ +
(
−b x2 + 1

)
y = ax

6.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −b x2 − 1
x

q(x) = a

Hence the ode is

y′ − (b x2 − 1) y
x

= a
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The integrating factor µ is

µ = e
∫
− b x2−1

x
dx

= e− b x2
2 +ln(x)

Which simplifies to

µ = x e− b x2
2

The ode becomes
d
dx(µy) = (µ) (a)

d
dx

(
x e− b x2

2 y
)
=
(
x e− b x2

2

)
(a)

d
(
x e− b x2

2 y
)
=
(
ax e− b x2

2

)
dx

Integrating gives

x e− b x2
2 y =

∫
ax e− b x2

2 dx

x e− b x2
2 y = −a e− b x2

2

b
+ c1

Dividing both sides by the integrating factor µ = x e− b x2
2 results in

y = −e b x2
2 a e− b x2

2

xb
+ c1e

b x2
2

x

which simplifies to

y = c1e
b x2
2 b− a

bx

Summary
The solution(s) found are the following

(1)y = c1e
b x2
2 b− a

bx

Verification of solutions

y = c1e
b x2
2 b− a

bx

Verified OK.
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6.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b x2y + ax− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 281: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e b x2
2 −ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e b x2
2 −ln(x)

dy

Which results in

S = x e− b x2
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b x2y + ax− y

x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e− b x2
2 y
(
−b x2 + 1

)
Sy = x e− b x2

2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ax e− b x2

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR e− bR2

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −a e− bR2
2

b
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x e− b x2
2 y = −a e− b x2

2

b
+ c1

Which simplifies to

(a+ bxy) e− b x2
2 − c1b

b
= 0

Which gives

y = −

(
a e− b x2

2 − c1b
)
e b x2

2

bx

Summary
The solution(s) found are the following

(1)y = −

(
a e− b x2

2 − c1b
)
e b x2

2

bx
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Verification of solutions

y = −

(
a e− b x2

2 − c1b
)
e b x2

2

bx

Verified OK.

6.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

1428



Therefore

(x) dy =
(
ax−

(
−b x2 + 1

)
y
)
dx(

−ax+
(
−b x2 + 1

)
y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax+
(
−b x2 + 1

)
y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−ax+

(
−b x2 + 1

)
y
)

= −b x2 + 1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
−b x2 + 1

)
− (1)

)
= −bx

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−bx dx
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The result of integrating gives

µ = e−
b x2
2

= e− b x2
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− b x2
2
(
−ax+

(
−b x2 + 1

)
y
)

= −e− b x2
2
(
b x2y + ax− y

)
And

N = µN

= e− b x2
2 (x)

= x e− b x2
2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e− b x2
2
(
b x2y + ax− y

))
+
(
x e− b x2

2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e− b x2

2
(
b x2y + ax− y

)
dx

(3)φ = (byx+ a) e− b x2
2

b
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x e− b x2

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x e− b x2
2 . Therefore equation (4) becomes

(5)x e− b x2
2 = x e− b x2

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (byx+ a) e− b x2
2

b
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(byx+ a) e− b x2

2

b

The solution becomes

y = −

(
a e− b x2

2 − c1b
)
e b x2

2

bx

Summary
The solution(s) found are the following

(1)y = −

(
a e− b x2

2 − c1b
)
e b x2

2

bx

Verification of solutions

y = −

(
a e− b x2

2 − c1b
)
e b x2

2

bx

Verified OK.
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6.15.4 Maple step by step solution

Let’s solve
xy′ + (−b x2 + 1) y = ax

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ =
(
b x2−1

)
y

x
+ a

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ −
(
b x2−1

)
y

x
= a

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ −

(
b x2−1

)
y

x

)
= µ(x) a

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ −

(
b x2−1

)
y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)
(
b x2−1

)
x

• Solve to find the integrating factor

µ(x) = x e− b x2
2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) adx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) adx+ c1

• Solve for y

y =
∫
µ(x)adx+c1

µ(x)

• Substitute µ(x) = xe− b x2
2

y =
∫
ax e−

b x2
2 dx+c1

x e−
b x2
2

• Evaluate the integrals on the rhs
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y = −a e−
b x2
2

b
+c1

x e−
b x2
2

• Simplify

y = c1e
b x2
2 b−a
bx

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 25� �
dsolve(x*diff(y(x),x) = a*x-(-b*x^2+1)*y(x),y(x), singsol=all)� �

y(x) = e b x2
2 c1b− a

bx

3 Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 30� �
DSolve[x y'[x]==a x-(1-b x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a+ bc1e
bx2
2

bx
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6.16 problem 162
6.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1434
6.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1436
6.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1439
6.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1443

Internal problem ID [3418]
Internal file name [OUTPUT/2911_Sunday_June_05_2022_08_46_55_AM_79360952/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 162.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ +
(
−x2a+ 2

)
y = −x

6.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −x2a− 2
x

q(x) = −1

Hence the ode is

y′ − (x2a− 2) y
x

= −1
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The integrating factor µ is

µ = e
∫
−x2a−2

x
dx

= e−x2a
2 +2 ln(x)

Which simplifies to

µ = x2e−x2a
2

The ode becomes
d
dx(µy) = (µ) (−1)

d
dx

(
x2e−x2a

2 y
)
=
(
x2e−x2a

2

)
(−1)

d
(
x2e−x2a

2 y
)
=
(
−x2e−x2a

2

)
dx

Integrating gives

x2e−x2a
2 y =

∫
−x2e−x2a

2 dx

x2e−x2a
2 y = x e−x2a

2

a
−

√
π
√
2 erf

(√
2
√
a x

2

)
2a 3

2
+ c1

Dividing both sides by the integrating factor µ = x2e−x2a
2 results in

y =
ex2a

2

(
x e−

x2a
2

a
−

√
π
√
2 erf

(√
2
√
a x

2

)
2a

3
2

)
x2 + c1e

x2a
2

x2

which simplifies to

y =
2c1a

3
2 ex2a

2 −
√
π
√
2 erf

(√
2
√
a x

2

)
ex2a

2 + 2x
√
a

2a 3
2x2

Summary
The solution(s) found are the following

(1)y =
2c1a

3
2 ex2a

2 −
√
π
√
2 erf

(√
2
√
a x

2

)
ex2a

2 + 2x
√
a

2a 3
2x2

Verification of solutions

y =
2c1a

3
2 ex2a

2 −
√
π
√
2 erf

(√
2
√
a x

2

)
ex2a

2 + 2x
√
a

2a 3
2x2

Verified OK.
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6.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2ay − x− 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 284: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = ex2a
2 −2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex2a
2 −2 ln(x)

dy

Which results in

S = x2e−x2a
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2ay − x− 2y
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −e−x2a
2 yx

(
x2a− 2

)
Sy = x2e−x2a

2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x2e−x2a

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R2e−R2a

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R e−R2a
2

a
−

√
π
√
2 erf

(√
2
√
aR

2

)
2a 3

2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2e−x2a
2 y = x e−x2a

2

a
−

√
π
√
2 erf

(√
2
√
a x

2

)
2a 3

2
+ c1

Which simplifies to

x2e−x2a
2 y = x e−x2a

2

a
−

√
π
√
2 erf

(√
2
√
a x

2

)
2a 3

2
+ c1

Which gives

y =
ex2a

2

(
2x e−x2a

2 a
3
2 + 2c1a

5
2 −

√
π
√
2 erf

(√
2
√
a x

2

)
a
)

2x2a
5
2

1438



Summary
The solution(s) found are the following

(1)y =
ex2a

2

(
2x e−x2a

2 a
3
2 + 2c1a

5
2 −

√
π
√
2 erf

(√
2
√
a x

2

)
a
)

2x2a
5
2

Verification of solutions

y =
ex2a

2

(
2x e−x2a

2 a
3
2 + 2c1a

5
2 −

√
π
√
2 erf

(√
2
√
a x

2

)
a
)

2x2a
5
2

Verified OK.

6.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−x−

(
−x2a+ 2

)
y
)
dx(

x+
(
−x2a+ 2

)
y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+
(
−x2a+ 2

)
y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x+

(
−x2a+ 2

)
y
)

= −x2a+ 2

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
−x2a+ 2

)
− (1)

)
= −x2a+ 1

x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ −x2a+1

x
dx

The result of integrating gives

µ = e−
x2a
2 +ln(x)

= x e−x2a
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x e−x2a
2
(
x+

(
−x2a+ 2

)
y
)

= −x e−x2a
2
(
x2ay − x− 2y

)
And

N = µN

= x e−x2a
2 (x)

= x2e−x2a
2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x e−x2a
2
(
x2ay − x− 2y

))
+
(
x2e−x2a

2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x e−x2a

2
(
x2ay − x− 2y

)
dx

(3)φ =
x
(
a

3
2xy −

√
a
)
e−x2a

2 +
√
π
√
2 erf

(√
2
√
a x

2

)
2

a
3
2

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2e−x2a

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2e−x2a
2 . Therefore equation (4) becomes

(5)x2e−x2a
2 = x2e−x2a

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
x
(
a

3
2xy −

√
a
)
e−x2a

2 +
√
π
√
2 erf

(√
2
√
a x

2

)
2

a
3
2

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x
(
a

3
2xy −

√
a
)
e−x2a

2 +
√
π
√
2 erf

(√
2
√
a x

2

)
2

a
3
2
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The solution becomes

y =
ex2a

2

(
2 e−x2a

2 x
√
a−

√
π
√
2 erf

(√
2
√
a x

2

)
+ 2c1a

3
2

)
2a 3

2x2

Summary
The solution(s) found are the following

(1)y =
ex2a

2

(
2 e−x2a

2 x
√
a−

√
π
√
2 erf

(√
2
√
a x

2

)
+ 2c1a

3
2

)
2a 3

2x2

Verification of solutions

y =
ex2a

2

(
2 e−x2a

2 x
√
a−

√
π
√
2 erf

(√
2
√
a x

2

)
+ 2c1a

3
2

)
2a 3

2x2

Verified OK.

6.16.4 Maple step by step solution

Let’s solve
xy′ + (−x2a+ 2) y = −x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −1 +
(
x2a−2

)
y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ −
(
x2a−2

)
y

x
= −1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ −

(
x2a−2

)
y

x

)
= −µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ −

(
x2a−2

)
y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)
(
x2a−2

)
x
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• Solve to find the integrating factor

µ(x) = x2e−x2a
2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) dx+ c1

• Solve for y

y =
∫
−µ(x)dx+c1

µ(x)

• Substitute µ(x) = x2e−x2a
2

y =
∫
−x2e−

x2a
2 dx+c1

x2e−
x2a
2

• Evaluate the integrals on the rhs

y =
x e−

x2a
2

a
−

√
π
√
2 erf

(√
2
√
a x

2

)
2a

3
2

+c1

x2e−
x2a
2

• Simplify

y =
2c1a

3
2 e

x2a
2 −

√
π
√
2 erf

(√
2
√
a x

2

)
e
x2a
2 +2x

√
a

2a
3
2 x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 57� �
dsolve(x*diff(y(x),x)+x+(-a*x^2+2)*y(x) = 0,y(x), singsol=all)� �

y(x) =
−ea x2

2 erf
(√

2
√
a x

2

)√
2
√
π + 2 ea x2

2 c1a
3
2 + 2x

√
a

2a 3
2x2
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3 Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 70� �
DSolve[x y'[x]+x+(2-a x^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−

√
2πe

ax2
2 erf

(√
ax√
2

)
a3/2

+ 2c1e
ax2
2 + 2x

a

2x2
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6.17 problem 163
6.17.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1446

Internal problem ID [3419]
Internal file name [OUTPUT/2912_Sunday_June_05_2022_08_46_56_AM_66503190/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 163.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ + y2 = −x2

6.17.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x2 + y2

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −x− y2

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −x, f1(x) = 0 and f2(x) = − 1
x
. Let

y = −u′

f2u

= −u′

−u
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 = 0

f 2
2 f0 = −1

x

Substituting the above terms back in equation (2) gives

−u′′(x)
x

− u′(x)
x2 − u(x)

x
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 BesselJ (0, x) + c2 BesselY (0, x)

The above shows that

u′(x) = −c1 BesselJ (1, x)− c2 BesselY (1, x)

Using the above in (1) gives the solution

y = (−c1 BesselJ (1, x)− c2 BesselY (1, x))x
c1 BesselJ (0, x) + c2 BesselY (0, x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −(c3 BesselJ (1, x) + BesselY (1, x))x
c3 BesselJ (0, x) + BesselY (0, x)

Summary
The solution(s) found are the following

(1)y = −(c3 BesselJ (1, x) + BesselY (1, x))x
c3 BesselJ (0, x) + BesselY (0, x)

1447



Figure 229: Slope field plot

Verification of solutions

y = −(c3 BesselJ (1, x) + BesselY (1, x))x
c3 BesselJ (0, x) + BesselY (0, x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-y(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x)+x^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −(c1 BesselY (1, x) + BesselJ (1, x))x
c1 BesselY (0, x) + BesselJ (0, x)
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3 Solution by Mathematica
Time used: 0.163 (sec). Leaf size: 45� �
DSolve[x y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x(BesselY(1, x) + c1 BesselJ(1, x))
BesselY(0, x) + c1 BesselJ(0, x)

y(x) → −xBesselJ(1, x)
BesselJ(0, x)
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6.18 problem 164
6.18.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1451
6.18.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1452
6.18.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1458

Internal problem ID [3420]
Internal file name [OUTPUT/2913_Sunday_June_05_2022_08_46_57_AM_7792648/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 164.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactByInspection",
"homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

xy′ − y(y + 1) = x2

6.18.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x(u(x)x+ 1) = x2

Integrating both sides gives ∫ 1
u2 + 1du = x+ c2

arctan (u) = x+ c2

Solving for u gives these solutions

u1 = tan (x+ c2)

Therefore the solution y is

y = xu

= x tan (x+ c2)
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Summary
The solution(s) found are the following

(1)y = x tan (x+ c2)

Figure 230: Slope field plot

Verification of solutions

y = x tan (x+ c2)

Verified OK.

6.18.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x2 + y(y + 1)

)
dx(

−x2 − y(y + 1)
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − y(y + 1)
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − y(y + 1)

)
= −2y − 1
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And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = −x2 − y(y + 1) and N = x by this integrating factor
the ode becomes exact. The new M,N are

M = −x2 − y(y + 1)
y2 + x2

N = x

y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x

x2 + y2

)
dy =

(
−−x2 − y(y + 1)

x2 + y2

)
dx(

−x2 − y(y + 1)
x2 + y2

)
dx+

(
x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − y(y + 1)
x2 + y2

N(x, y) = x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − y(y + 1)

x2 + y2

)
= −x2 + y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
x

x2 + y2

)
= −x2 + y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − y(y + 1)

x2 + y2
dx

(3)φ = −x− arctan
(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
(

x2

y2
+ 1
) + f ′(y)

= x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
x2+y2

. Therefore equation (4) becomes

(5)x

x2 + y2
= x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x− arctan
(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− arctan
(
x

y

)
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The solution becomes
y = − x

tan (x+ c1)

Summary
The solution(s) found are the following

(1)y = − x

tan (x+ c1)

Figure 231: Slope field plot

Verification of solutions

y = − x

tan (x+ c1)

Verified OK.
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6.18.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + y2 + y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x+ y2

x
+ y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 1
x
and f2(x) = 1

x
. Let

y = −u′

f2u

= −u′

u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2

f1f2 =
1
x2

f 2
2 f0 =

1
x

Substituting the above terms back in equation (2) gives

u′′(x)
x

+ u(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin (x) + c2 cos (x)
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The above shows that
u′(x) = c1 cos (x)− c2 sin (x)

Using the above in (1) gives the solution

y = −(c1 cos (x)− c2 sin (x))x
c1 sin (x) + c2 cos (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (−c3 cos (x) + sin (x))x
c3 sin (x) + cos (x)

Summary
The solution(s) found are the following

(1)y = (−c3 cos (x) + sin (x))x
c3 sin (x) + cos (x)

Figure 232: Slope field plot
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Verification of solutions

y = (−c3 cos (x) + sin (x))x
c3 sin (x) + cos (x)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(x*diff(y(x),x) = x^2+y(x)*(1+y(x)),y(x), singsol=all)� �

y(x) = tan (c1 + x)x

3 Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 12� �
DSolve[x y'[x]==x^2+y[x](1+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan(x+ c1)
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6.19 problem 165
6.19.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1461

Internal problem ID [3421]
Internal file name [OUTPUT/2914_Sunday_June_05_2022_08_46_58_AM_15277284/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 165.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ − y + y2 = x
2
3

6.19.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y − y2 + x
2
3

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = 1
x

1
3
− y2

x
+ y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
x
1
3
, f1(x) = 1

x
and f2(x) = − 1

x
. Let

y = −u′

f2u

= −u′

−u
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 = − 1
x2

f 2
2 f0 =

1
x

7
3

Substituting the above terms back in equation (2) gives

−u′′(x)
x

+ u(x)
x

7
3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2e3x
1
3
(
3x 1

3 − 1
)
+ 3c1e−3x

1
3

(
x

1
3 + 1

3

)

The above shows that

u′(x) = −
3
(
c1e−3x

1
3 − c2e3x

1
3
)

x
1
3

Using the above in (1) gives the solution

y = −
3x 2

3

(
c1e−3x

1
3 − c2e3x

1
3
)

c2e3x
1
3
(
3x 1

3 − 1
)
+ 3c1e−3x

1
3
(
x

1
3 + 1

3

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −
3x 2

3

(
−e6x

1
3 + c3

)
(
3x 1

3 − 1
)
e6x

1
3 + 3x 1

3 c3 + c3
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Summary
The solution(s) found are the following

(1)y = −
3x 2

3

(
−e6x

1
3 + c3

)
(
3x 1

3 − 1
)
e6x

1
3 + 3x 1

3 c3 + c3

Figure 233: Slope field plot

Verification of solutions

y = −
3x 2

3

(
−e6x

1
3 + c3

)
(
3x 1

3 − 1
)
e6x

1
3 + 3x 1

3 c3 + c3

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = y(x)/x^(4/3), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- Equivalence, under non-integer power transformations successful

<- Riccati to 2nd Order successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 72� �
dsolve(x*diff(y(x),x)-y(x)+y(x)^2 = x^(2/3),y(x), singsol=all)� �

y(x) =
x

1
3

(
c1e6x

1
3 abs

(
1, 3x 1

3 − 1
)
+ c1e6x

1
3 |3x 1

3 − 1| − 3x 1
3

)
c1e6x

1
3 |3x 1

3 − 1|+ 3x 1
3 + 1
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3 Solution by Mathematica
Time used: 0.203 (sec). Leaf size: 131� �
DSolve[x y'[x]-y[x]+y[x]^2==x^(2/3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3x2/3(c1 cosh (3 3

√
x
)
− i sinh

(
3 3
√
x
))(

−3i 3
√
x− c1

)
cosh

(
3 3
√
x
)
+
(
3c1 3

√
x+ i

)
sinh

(
3 3
√
x
)

y(x) →
3x2/3 cosh

(
3 3
√
x
)

3 3
√
x sinh

(
3 3
√
x
)
− cosh

(
3 3
√
x
)
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6.20 problem 166
6.20.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1466
6.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1467
6.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1471
6.20.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1474
6.20.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1476

Internal problem ID [3422]
Internal file name [OUTPUT/2915_Sunday_June_05_2022_08_47_00_AM_64327053/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 166.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − by2 = a

6.20.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= b y2 + a

x

Where f(x) = 1
x
and g(y) = b y2 + a. Integrating both sides gives

1
b y2 + a

dy = 1
x
dx∫ 1

b y2 + a
dy =

∫ 1
x
dx
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arctan
(

yb√
ab

)
√
ab

= ln (x) + c1

Which results in

y =
tan

(
ln (x)

√
ab+ c1

√
ab
)√

ab

b

Summary
The solution(s) found are the following

(1)y =
tan

(
ln (x)

√
ab+ c1

√
ab
)√

ab

b

Verification of solutions

y =
tan

(
ln (x)

√
ab+ c1

√
ab
)√

ab

b

Verified OK.

6.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b y2 + a

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 287: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b y2 + a

x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

b y2 + a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2b+ a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
arctan

(
Rb√
ab

)
√
ab

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
arctan

(
yb√
ab

)
√
ab

+ c1

Which simplifies to

ln (x) =
arctan

(
yb√
ab

)
√
ab

+ c1

Which gives

y = −
tan

(
− ln (x)

√
ab+ c1

√
ab
)√

ab

b

Summary
The solution(s) found are the following

(1)y = −
tan

(
− ln (x)

√
ab+ c1

√
ab
)√

ab

b

Verification of solutions

y = −
tan

(
− ln (x)

√
ab+ c1

√
ab
)√

ab

b

Verified OK.
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6.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

b y2 + a

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

b y2 + a

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
b y2 + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

b y2 + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
b y2+a

. Therefore equation (4) becomes

(5)1
b y2 + a

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
b y2 + a

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
b y2 + a

)
dy

f(y) =
arctan

(
yb√
ab

)
√
ab

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) +
arctan

(
yb√
ab

)
√
ab

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) +
arctan

(
yb√
ab

)
√
ab

The solution becomes

y =
tan

(
ln (x)

√
ab+ c1

√
ab
)√

ab

b

Summary
The solution(s) found are the following

(1)y =
tan

(
ln (x)

√
ab+ c1

√
ab
)√

ab

b
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Verification of solutions

y =
tan

(
ln (x)

√
ab+ c1

√
ab
)√

ab

b

Verified OK.

6.20.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b y2 + a

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2

x
+ a

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
x
, f1(x) = 0 and f2(x) = b

x
. Let

y = −u′

f2u

= −u′

bu
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − b

x2

f1f2 = 0

f 2
2 f0 =

b2a

x3

Substituting the above terms back in equation (2) gives

bu′′(x)
x

+ bu′(x)
x2 + b2au(x)

x3 = 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
ln (x)

√
a
√
b
)
+ c2 cos

(
ln (x)

√
a
√
b
)

The above shows that

u′(x) =

√
a
√
b
(
c1 cos

(
ln (x)

√
a
√
b
)
− c2 sin

(
ln (x)

√
a
√
b
))

x

Using the above in (1) gives the solution

y = −

√
a
(
c1 cos

(
ln (x)

√
a
√
b
)
− c2 sin

(
ln (x)

√
a
√
b
))

√
b
(
c1 sin

(
ln (x)

√
a
√
b
)
+ c2 cos

(
ln (x)

√
a
√
b
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
−c3 cos

(
ln (x)

√
a
√
b
)
+ sin

(
ln (x)

√
a
√
b
))√

a(
c3 sin

(
ln (x)

√
a
√
b
)
+ cos

(
ln (x)

√
a
√
b
))√

b

Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(
ln (x)

√
a
√
b
)
+ sin

(
ln (x)

√
a
√
b
))√

a(
c3 sin

(
ln (x)

√
a
√
b
)
+ cos

(
ln (x)

√
a
√
b
))√

b

Verification of solutions

y =

(
−c3 cos

(
ln (x)

√
a
√
b
)
+ sin

(
ln (x)

√
a
√
b
))√

a(
c3 sin

(
ln (x)

√
a
√
b
)
+ cos

(
ln (x)

√
a
√
b
))√

b

Verified OK.
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6.20.5 Maple step by step solution

Let’s solve
xy′ − by2 = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+by2
= 1

x

• Integrate both sides with respect to x∫
y′

a+by2
dx =

∫ 1
x
dx+ c1

• Evaluate integral
arctan

(
yb√
ab

)
√
ab

= ln (x) + c1

• Solve for y

y =
tan
(
ln(x)

√
ab+c1

√
ab
)√

ab

b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(x*diff(y(x),x) = a+b*y(x)^2,y(x), singsol=all)� �

y(x) =

√
ab tan

(√
ab (ln (x) + c1)

)
b
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3 Solution by Mathematica
Time used: 10.673 (sec). Leaf size: 69� �
DSolve[x y'[x]==a+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
a tan

(√
a
√
b(log(x) + c1)

)
√
b

y(x) → − i
√
a√
b

y(x) → i
√
a√
b
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6.21 problem 167
6.21.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1478
6.21.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1479

Internal problem ID [3423]
Internal file name [OUTPUT/2916_Sunday_June_05_2022_08_47_01_AM_64069676/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 167.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

xy′ − y − by2 = x2a

6.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− bu(x)2 x2 = x2a

Integrating both sides gives ∫ 1
u2b+ a

du = x+ c2

arctan
(

ub√
ab

)
√
ab

= x+ c2

Solving for u gives these solutions

u1 =
tan

(
c2
√
ab+ x

√
ab
)√

ab

b

Therefore the solution y is

y = xu

=
x tan

(
c2
√
ab+ x

√
ab
)√

ab

b
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Summary
The solution(s) found are the following

(1)y =
x tan

(
c2
√
ab+ x

√
ab
)√

ab

b

Verification of solutions

y =
x tan

(
c2
√
ab+ x

√
ab
)√

ab

b

Verified OK.

6.21.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2a+ b y2 + y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = ax+ b y2

x
+ y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = ax, f1(x) = 1
x
and f2(x) = b

x
. Let

y = −u′

f2u

= −u′

bu
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − b

x2

f1f2 =
b

x2

f 2
2 f0 =

b2a

x
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Substituting the above terms back in equation (2) gives

bu′′(x)
x

+ b2au(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(√

a
√
b x
)
+ c2 cos

(√
a
√
b x
)

The above shows that

u′(x) =
√
a
√
b
(
c1 cos

(√
a
√
b x
)
− c2 sin

(√
a
√
b x
))

Using the above in (1) gives the solution

y = −

√
a
(
c1 cos

(√
a
√
b x
)
− c2 sin

(√
a
√
b x
))

x
√
b
(
c1 sin

(√
a
√
b x
)
+ c2 cos

(√
a
√
b x
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
−c3 cos

(√
a
√
b x
)
+ sin

(√
a
√
b x
))√

a x(
c3 sin

(√
a
√
b x
)
+ cos

(√
a
√
b x
))√

b

Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(√
a
√
b x
)
+ sin

(√
a
√
b x
))√

a x(
c3 sin

(√
a
√
b x
)
+ cos

(√
a
√
b x
))√

b

Verification of solutions

y =

(
−c3 cos

(√
a
√
b x
)
+ sin

(√
a
√
b x
))√

a x(
c3 sin

(√
a
√
b x
)
+ cos

(√
a
√
b x
))√

b

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(x*diff(y(x),x) = a*x^2+y(x)+b*y(x)^2,y(x), singsol=all)� �

y(x) =
tan

(√
ab (c1 + x)

)
x
√
ab

b

3 Solution by Mathematica
Time used: 17.546 (sec). Leaf size: 33� �
DSolve[x y'[x]==a x^2+y[x]+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
ax tan

(√
a
√
b(x+ c1)

)
√
b
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6.22 problem 168
6.22.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1482

Internal problem ID [3424]
Internal file name [OUTPUT/2917_Sunday_June_05_2022_08_47_02_AM_35642763/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 168.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ − (n+ yb) y = a x2n

6.22.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b y2 + a x2n + ny

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2

x
+ a x2n

x
+ ny

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a x2n

x
, f1(x) = n

x
and f2(x) = b

x
. Let

y = −u′

f2u

= −u′

bu
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − b

x2

f1f2 =
nb

x2

f 2
2 f0 =

b2a x2n

x3

Substituting the above terms back in equation (2) gives

bu′′(x)
x

−
(
− b

x2 + nb

x2

)
u′(x) + b2a x2nu(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
xn

√
ab

n

)
+ c2 cos

(
xn

√
ab

n

)

The above shows that

u′(x) =
xn

√
ab
(
c1 cos

(
xn

√
ab

n

)
− c2 sin

(
xn

√
ab

n

))
x

Using the above in (1) gives the solution

y = −
xn

√
ab
(
c1 cos

(
xn

√
ab

n

)
− c2 sin

(
xn

√
ab

n

))
b
(
c1 sin

(
xn

√
ab

n

)
+ c2 cos

(
xn

√
ab

n

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
−c3 cos

(
xn

√
ab

n

)
+ sin

(
xn

√
ab

n

))
xn

√
ab(

c3 sin
(

xn
√
ab

n

)
+ cos

(
xn

√
ab

n

))
b
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Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(
xn

√
ab

n

)
+ sin

(
xn

√
ab

n

))
xn

√
ab(

c3 sin
(

xn
√
ab

n

)
+ cos

(
xn

√
ab

n

))
b

Verification of solutions

y =

(
−c3 cos

(
xn

√
ab

n

)
+ sin

(
xn

√
ab

n

))
xn

√
ab(

c3 sin
(

xn
√
ab

n

)
+ cos

(
xn

√
ab

n

))
b

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 34� �
dsolve(x*diff(y(x),x) = a*x^(2*n)+(n+b*y(x))*y(x),y(x), singsol=all)� �

y(x) =
tan

(
xn√a

√
b−c1n

n

)√
a xn

√
b
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3 Solution by Mathematica
Time used: 0.336 (sec). Leaf size: 139� �
DSolve[x y'[x]==a x^(2 n)+(n+b y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
axn
(
− cos

(√
a
√
bxn

n

)
+ c1 sin

(√
a
√
bxn

n

))
√
b
(
sin
(√

a
√
bxn

n

)
+ c1 cos

(√
a
√
bxn

n

))
y(x) →

√
axn tan

(√
a
√
bxn

n

)
√
b
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6.23 problem 169
6.23.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1486

Internal problem ID [3425]
Internal file name [OUTPUT/2918_Sunday_June_05_2022_08_47_03_AM_14127343/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 169.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ − yb− cy2 = a xn

6.23.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= a xn + by + c y2

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = c y2

x
+ a xn

x
+ by

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a xn

x
, f1(x) = b

x
and f2(x) = c

x
. Let

y = −u′

f2u

= −u′

cu
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − c

x2

f1f2 =
bc

x2

f 2
2 f0 =

c2a xn

x3

Substituting the above terms back in equation (2) gives

cu′′(x)
x

−
(
bc

x2 − c

x2

)
u′(x) + c2a xnu(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
BesselJ

(
b

n
,
2
√
ca x

n
2

n

)
c1 + BesselY

(
b

n
,
2
√
ca x

n
2

n

)
c2

)
x

b
2

The above shows that

u′(x) = −
(√

ca x
n
2 BesselJ

(
b+ n

n
,
2
√
ca x

n
2

n

)
c1

+
√
ca x

n
2 BesselY

(
b+ n

n
,
2
√
ca x

n
2

n

)
c2

− b

(
BesselJ

(
b

n
,
2
√
ca x

n
2

n

)
c1 + BesselY

(
b

n
,
2
√
ca x

n
2

n

)
c2

))
x−1+ b

2

Using the above in (1) gives the solution

y

=

(√
ca x

n
2 BesselJ

(
b+n
n
, 2

√
ca x

n
2

n

)
c1 +

√
ca x

n
2 BesselY

(
b+n
n
, 2

√
ca x

n
2

n

)
c2 − b

(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c1 + BesselY

(
b
n
, 2

√
ca x

n
2

n

)
c2
))

x−1+ b
2xx− b

2

c
(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c1 + BesselY

(
b
n
, 2

√
ca x

n
2

n

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y

=

√
ca
(
BesselJ

(
b+n
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b+n
n
, 2

√
ca x

n
2

n

))
x

n
2 − b

(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b
n
, 2

√
ca x

n
2

n

))
c
(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b
n
, 2

√
ca x

n
2

n

))
Summary
The solution(s) found are the following

(1)y

=

√
ca
(
BesselJ

(
b+n
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b+n
n
, 2

√
ca x

n
2

n

))
x

n
2 − b

(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b
n
, 2

√
ca x

n
2

n

))
c
(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b
n
, 2

√
ca x

n
2

n

))
Verification of solutions
y

=

√
ca
(
BesselJ

(
b+n
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b+n
n
, 2

√
ca x

n
2

n

))
x

n
2 − b

(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b
n
, 2

√
ca x

n
2

n

))
c
(
BesselJ

(
b
n
, 2

√
ca x

n
2

n

)
c3 + BesselY

(
b
n
, 2

√
ca x

n
2

n

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b-1)*(diff(y(x), x))/x-c*a*x^(n-1)*y(x)/x, y(x)` *** Sublevel 2

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 164� �
dsolve(x*diff(y(x),x) = a*x^n+b*y(x)+c*y(x)^2,y(x), singsol=all)� �
y(x)

=

(
BesselY

(
b+n
n
, 2

√
ac x

n
2

n

)
c1 + BesselJ

(
b+n
n
, 2

√
ac x

n
2

n

))√
ac x

n
2 − b

(
BesselY

(
b
n
, 2

√
ac x

n
2

n

)
c1 + BesselJ

(
b
n
, 2

√
ac x

n
2

n

))
c
(
BesselY

(
b
n
, 2

√
ac x

n
2

n

)
c1 + BesselJ

(
b
n
, 2

√
ac x

n
2

n

))
3 Solution by Mathematica
Time used: 0.307 (sec). Leaf size: 402� �
DSolve[x y'[x]==a x^n+b y[x]+c y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

√
a
√
cxn/2

(
−2BesselJ

(
b
n
− 1, 2

√
a
√
cxn/2

n

)
+ c1

(
BesselJ

(
1− b

n
, 2

√
a
√
cxn/2

n

)
− BesselJ

(
− b+n

n
, 2

√
a
√
cxn/2

n

)))
− bc1 BesselJ

(
− b

n
, 2

√
a
√
cxn/2

n

)
2c
(
BesselJ

(
b
n
, 2

√
a
√
cxn/2

n

)
+ c1 BesselJ

(
− b

n
, 2

√
a
√
cxn/2

n

))
y(x) →

−
−
√
a
√
cxn/2 BesselJ

(
1− b

n
, 2

√
a
√
cxn/2

n

)
+
√
a
√
cxn/2 BesselJ

(
− b+n

n
, 2

√
a
√
cxn/2

n

)
+ bBesselJ

(
− b

n
, 2

√
a
√
cxn/2

n

)
2cBesselJ

(
− b

n
, 2

√
a
√
cxn/2

n

)
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6.24 problem 170
6.24.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1491

Internal problem ID [3426]
Internal file name [OUTPUT/2919_Sunday_June_05_2022_08_47_05_AM_98208429/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 170.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ − yb− cy2 = k + a xn

6.24.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= k + a xn + by + c y2

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = c y2

x
+ a xn

x
+ by

x
+ k

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = k+a xn

x
, f1(x) = b

x
and f2(x) = c

x
. Let

y = −u′

f2u

= −u′

cu
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − c

x2

f1f2 =
bc

x2

f 2
2 f0 =

c2(k + a xn)
x3

Substituting the above terms back in equation (2) gives

cu′′(x)
x

−
(
bc

x2 − c

x2

)
u′(x) + c2(k + a xn)u(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x
b
2

(
BesselJ

(√
b2 − 4ck

n
,
2
√
ca x

n
2

n

)
c1 + BesselY

(√
b2 − 4ck

n
,
2
√
ca x

n
2

n

)
c2

)

The above shows that

u′(x)

=

(
−2
(
BesselY

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
c2 + BesselJ

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
c1
)√

ca x
n
2 +

(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c1 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c2
) (√

b2 − 4ck + b
))

x−1+ b
2

2

Using the above in (1) gives the solution

y =

−

(
−2
(
BesselY

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
c2 + BesselJ

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
c1
)√

ca x
n
2 +

(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c1 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c2
) (√

b2 − 4ck + b
))

x−1+ b
2xx− b

2

2c
(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c1 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
2
(
BesselY

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
+ BesselJ

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
c3
)√

ca x
n
2 −

(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c3 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)) (√
b2 − 4ck + b

)
2c
(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c3 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

))
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Summary
The solution(s) found are the following

(1)y

=
2
(
BesselY

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
+ BesselJ

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
c3
)√

ca x
n
2 −

(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c3 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)) (√
b2 − 4ck + b

)
2c
(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c3 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

))
Verification of solutions
y

=
2
(
BesselY

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
+ BesselJ

(√
b2−4ck
n

+ 1, 2
√
ca x

n
2

n

)
c3
)√

ca x
n
2 −

(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c3 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)) (√
b2 − 4ck + b

)
2c
(
BesselJ

(√
b2−4ck
n

, 2
√
ca x

n
2

n

)
c3 + BesselY

(√
b2−4ck
n

, 2
√
ca x

n
2

n

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (b-1)*(diff(y(x), x))/x-c*(a*x^(n-1)*x+k)*y(x)/x^2, y(x)` *** Sub

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 231� �
dsolve(x*diff(y(x),x) = k+a*x^n+b*y(x)+c*y(x)^2,y(x), singsol=all)� �
y(x)

=
2
(
BesselY

(√
b2−4ck
n

+ 1, 2
√
ac x

n
2

n

)
c1 + BesselJ

(√
b2−4ck
n

+ 1, 2
√
ac x

n
2

n

))√
ac x

n
2 −

(
BesselY

(√
b2−4ck
n

, 2
√
ac x

n
2

n

)
c1 + BesselJ

(√
b2−4ck
n

, 2
√
ac x

n
2

n

)) (√
b2 − 4ck + b

)
2c
(
BesselY

(√
b2−4ck
n

, 2
√
ac x

n
2

n

)
c1 + BesselJ

(√
b2−4ck
n

, 2
√
ac x

n
2

n

))
3 Solution by Mathematica
Time used: 0.812 (sec). Leaf size: 806� �
DSolve[x y'[x]==k +a x^n+b y[x]+c y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

√
a
√
cxnGamma

(
n+

√
b2−4ck
n

)
BesselJ

(√
b2−4ck
n

− 1, 2
√
a
√
c
√
xn

n

)
−
√
a
√
cxnGamma

(
n+

√
b2−4ck
n

)
BesselJ

(
n+

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
+ b

√
xn Gamma

(
n+

√
b2−4ck
n

)
BesselJ

(√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
−
√
a
√
cc1x

n Gamma
(
1−

√
b2−4ck
n

)
BesselJ

(
1−

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
+
√
a
√
cc1x

nGamma
(
1−

√
b2−4ck
n

)
BesselJ

(
−n+

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
+ bc1

√
xnGamma

(
1−

√
b2−4ck
n

)
BesselJ

(
−

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
2c
√
xn
(
Gamma

(
n+

√
b2−4ck
n

)
BesselJ

(√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
+ c1Gamma

(
1−

√
b2−4ck
n

)
BesselJ

(
−

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

))
y(x) →

−
−
√
a
√
c
√
xn BesselJ

(
1−

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
+ bBesselJ

(
−

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
+
√
a
√
c
√
xn BesselJ

(
−n+

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
2cBesselJ

(
−

√
b2−4ck
n

, 2
√
a
√
c
√
xn

n

)
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6.25 problem 171
6.25.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1496

Internal problem ID [3427]
Internal file name [OUTPUT/2920_Sunday_June_05_2022_08_47_06_AM_43991331/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 171.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , [_Riccati , _special ]]

xy′ + y2x = −a

6.25.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x y2 + a

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 − a

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −a
x
, f1(x) = 0 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 = −a

x

Substituting the above terms back in equation (2) gives

−u′′(x)− au(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
BesselJ

(
1, 2

√
a
√
x
)
c1 + BesselY

(
1, 2

√
a
√
x
)
c2
)√

x

The above shows that

u′(x) =
√
a
(
BesselJ

(
0, 2

√
a
√
x
)
c1 + BesselY

(
0, 2

√
a
√
x
)
c2
)

Using the above in (1) gives the solution

y =
√
a
(
BesselJ

(
0, 2

√
a
√
x
)
c1 + BesselY

(
0, 2

√
a
√
x
)
c2
)(

BesselJ
(
1, 2

√
a
√
x
)
c1 + BesselY

(
1, 2

√
a
√
x
)
c2
)√

x

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
√
a
(
BesselJ

(
0, 2

√
a
√
x
)
c3 + BesselY

(
0, 2

√
a
√
x
))(

BesselJ
(
1, 2

√
a
√
x
)
c3 + BesselY

(
1, 2

√
a
√
x
))√

x

Summary
The solution(s) found are the following

(1)y =
√
a
(
BesselJ

(
0, 2

√
a
√
x
)
c3 + BesselY

(
0, 2

√
a
√
x
))(

BesselJ
(
1, 2

√
a
√
x
)
c3 + BesselY

(
1, 2

√
a
√
x
))√

x
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Verification of solutions

y =
√
a
(
BesselJ

(
0, 2

√
a
√
x
)
c3 + BesselY

(
0, 2

√
a
√
x
))(

BesselJ
(
1, 2

√
a
√
x
)
c3 + BesselY

(
1, 2

√
a
√
x
))√

x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve(x*diff(y(x),x)+a+x*y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√
a
(
BesselJ

(
0, 2

√
a
√
x
)
c1 + BesselY

(
0, 2

√
a
√
x
))

√
x
(
c1 BesselJ

(
1, 2

√
a
√
x
)
+ BesselY

(
1, 2

√
a
√
x
))
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3 Solution by Mathematica
Time used: 0.244 (sec). Leaf size: 289� �
DSolve[x y'[x]+a+x y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
2
√
a
√
xBesselY

(
0, 2

√
a
√
x
)
+ 2BesselY

(
1, 2

√
a
√
x
)
− 2

√
a
√
xBesselY

(
2, 2

√
a
√
x
)
− i

√
ac1

√
xBesselJ

(
0, 2

√
a
√
x
)
− ic1 BesselJ

(
1, 2

√
a
√
x
)
+ i

√
ac1

√
xBesselJ

(
2, 2

√
a
√
x
)

4xBesselY
(
1, 2

√
a
√
x
)
− 2ic1xBesselJ

(
1, 2

√
a
√
x
)

y(x)→
√
a
√
xBesselJ

(
0, 2

√
a
√
x
)
+ BesselJ

(
1, 2

√
a
√
x
)
−

√
a
√
xBesselJ

(
2, 2

√
a
√
x
)

2xBesselJ
(
1, 2

√
a
√
x
)
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6.26 problem 172
6.26.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1500
6.26.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1504
6.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1508
6.26.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1513

Internal problem ID [3428]
Internal file name [OUTPUT/2921_Sunday_June_05_2022_08_47_07_AM_82311423/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 172.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xy′ + (−yx+ 1) y = 0

6.26.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(xy − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 290: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x y2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2
dy

Which results in

S = − 1
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(xy − 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x2y

Sy =
1

x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
xy

= ln (x) + c1

Which simplifies to

− 1
xy

= ln (x) + c1

Which gives

y = − 1
x (ln (x) + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(xy−1)
x

dS
dR

= 1
R

R = x

S = − 1
xy
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Summary
The solution(s) found are the following

(1)y = − 1
x (ln (x) + c1)

Figure 234: Slope field plot

Verification of solutions

y = − 1
x (ln (x) + c1)

Verified OK.

6.26.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(xy − 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = 1
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
xy

+ 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

+ 1

w′ = w

x
− 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

1505



Where here

p(x) = −1
x

q(x) = −1

Hence the ode is

w′(x)− w(x)
x

= −1

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ) (−1)

d
dx

(w
x

)
=
(
1
x

)
(−1)

d
(w
x

)
=
(
−1
x

)
dx

Integrating gives

w

x
=
∫

−1
x
dx

w

x
= − ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x− ln (x)x

which simplifies to

w(x) = x(− ln (x) + c1)

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= x(− ln (x) + c1)
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Or

y = 1
x (− ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = 1
x (− ln (x) + c1)

Figure 235: Slope field plot

Verification of solutions

y = 1
x (− ln (x) + c1)

Verified OK.
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6.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−(−xy + 1) y) dx
((−xy + 1) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = (−xy + 1) y
N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
((−xy + 1) y)

= −2xy + 1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−2xy + 1)− (1))

= −2y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (xy − 1)((1)− (−2xy + 1))

= − 2x
xy − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (−2xy + 1)
x ((−xy + 1) y)− y (x)

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2 ((−xy + 1) y)

= −xy + 1
y x2

And

N = µN

= 1
y2x2 (x)

= 1
x y2
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−xy + 1
y x2

)
+
(

1
x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xy + 1
y x2 dx

(3)φ = − 1
xy

− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x y2

. Therefore equation (4) becomes

(5)1
x y2

= 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − 1
xy

− ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 1
xy

− ln (x)

The solution becomes

y = − 1
x (ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = − 1
x (ln (x) + c1)

Figure 236: Slope field plot
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Verification of solutions

y = − 1
x (ln (x) + c1)

Verified OK.

6.26.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(xy − 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2 − y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −1
x

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x) + u′(x)
x

= 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 ln (x)

The above shows that
u′(x) = c2

x

Using the above in (1) gives the solution

y = − c2
x (c1 + c2 ln (x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 1
x (c3 + ln (x))

Summary
The solution(s) found are the following

(1)y = − 1
x (c3 + ln (x))
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Figure 237: Slope field plot

Verification of solutions

y = − 1
x (c3 + ln (x))

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+(1-x*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = 1
(− ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 22� �
DSolve[x y'[x]+(1-x y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
−x log(x) + c1x

y(x) → 0
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6.27 problem 173
6.27.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1517
6.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1519
6.27.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1523
6.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1526
6.27.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1531

Internal problem ID [3429]
Internal file name [OUTPUT/2922_Sunday_June_05_2022_08_47_09_AM_84889209/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 173.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

xy′ − (−yx+ 1) y = 0

6.27.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))−
(
−u(x)x2 + 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= −u2x
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Where f(x) = −x and g(u) = u2. Integrating both sides gives

1
u2 du = −x dx∫ 1
u2 du =

∫
−x dx

−1
u
= −x2

2 + c2

The solution is

− 1
u (x) +

x2

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
+ x2

2 − c2 = 0

−x

y
+ x2

2 − c2 = 0

Summary
The solution(s) found are the following

(1)−x

y
+ x2

2 − c2 = 0
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Figure 238: Slope field plot

Verification of solutions

−x

y
+ x2

2 − c2 = 0

Verified OK.

6.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(xy − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 292: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(xy − 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

1521



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= −x2

2 + c1

Which simplifies to

−x

y
= −x2

2 + c1

Which gives

y = − 2x
−x2 + 2c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(xy−1)
x

dS
dR

= −R

R = x

S = −x

y
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Summary
The solution(s) found are the following

(1)y = − 2x
−x2 + 2c1

Figure 239: Slope field plot

Verification of solutions

y = − 2x
−x2 + 2c1

Verified OK.

6.27.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(xy − 1)
x

This is a Bernoulli ODE.
y′ = 1

x
y − y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = −1
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
xy

− 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

− 1

w′ = −w

x
+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 1
x

q(x) = 1

Hence the ode is

w′(x) + w(x)
x

= 1

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = µ

d
dx(xw) = x

d(xw) = xdx

Integrating gives

xw =
∫

x dx

xw = x2

2 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = x

2 + c1
x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= x

2 + c1
x

Or

y = 1
x
2 +

c1
x

Summary
The solution(s) found are the following

(1)y = 1
x
2 +

c1
x
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Figure 240: Slope field plot

Verification of solutions

y = 1
x
2 +

c1
x

Verified OK.

6.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = ((−xy + 1) y) dx
(−(−xy + 1) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −(−xy + 1) y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−(−xy + 1) y)

= 2xy − 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((2xy − 1)− (1))

= 2xy − 2
x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (xy − 1)((1)− (2xy − 1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−(−xy + 1) y)

= xy − 1
y

And

N = µN

= 1
y2

(x)

= x

y2
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

xy − 1
y

)
+
(

x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
xy − 1

y
dx

(3)φ = x(xy − 2)
2y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

2y − x(xy − 2)
2y2 + f ′(y)

= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y2
. Therefore equation (4) becomes

(5)x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x(xy − 2)
2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(xy − 2)

2y

The solution becomes

y = − 2x
−x2 + 2c1

Summary
The solution(s) found are the following

(1)y = − 2x
−x2 + 2c1

Figure 241: Slope field plot
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Verification of solutions

y = − 2x
−x2 + 2c1

Verified OK.

6.27.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y(xy − 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 + y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −1
x

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−u′′(x) + u′(x)
x

= 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1

The above shows that
u′(x) = 2c2x

Using the above in (1) gives the solution

y = 2c2x
c2x2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2x
x2 + c3

Summary
The solution(s) found are the following

(1)y = 2x
x2 + c3
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Figure 242: Slope field plot

Verification of solutions

y = 2x
x2 + c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x) = (1-x*y(x))*y(x),y(x), singsol=all)� �

y(x) = 2x
x2 + 2c1

3 Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 23� �
DSolve[x y'[x]==(1-x y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x
x2 + 2c1

y(x) → 0
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6.28 problem 174
6.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1535
6.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1537
6.28.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1541
6.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1544
6.28.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1549

Internal problem ID [3430]
Internal file name [OUTPUT/2923_Sunday_June_05_2022_08_47_10_AM_79218371/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 174.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

xy′ − (1 + yx) y = 0

6.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))−
(
1 + u(x)x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= u2x
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Where f(x) = x and g(u) = u2. Integrating both sides gives

1
u2 du = x dx∫ 1
u2 du =

∫
x dx

−1
u
= x2

2 + c2

The solution is

− 1
u (x) −

x2

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
− x2

2 − c2 = 0

−x

y
− x2

2 − c2 = 0

Summary
The solution(s) found are the following

(1)−x

y
− x2

2 − c2 = 0
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Figure 243: Slope field plot

Verification of solutions

−x

y
− x2

2 − c2 = 0

Verified OK.

6.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (xy + 1) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 294: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (xy + 1) y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= x2

2 + c1

Which simplifies to

−x

y
= x2

2 + c1

Which gives

y = − 2x
x2 + 2c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (xy+1)y
x

dS
dR

= R

R = x

S = −x

y
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Summary
The solution(s) found are the following

(1)y = − 2x
x2 + 2c1

Figure 244: Slope field plot

Verification of solutions

y = − 2x
x2 + 2c1

Verified OK.

6.28.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (xy + 1) y
x

This is a Bernoulli ODE.
y′ = 1

x
y + y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = 1
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
xy

+ 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

+ 1

w′ = −w

x
− 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 1
x

q(x) = −1

Hence the ode is

w′(x) + w(x)
x

= −1

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ) (−1)
d
dx(xw) = (x) (−1)

d(xw) = (−x) dx

Integrating gives

xw =
∫

−x dx

xw = −x2

2 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = −x

2 + c1
x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −x

2 + c1
x

Or

y = 1
−x

2 +
c1
x

Summary
The solution(s) found are the following

(1)y = 1
−x

2 +
c1
x
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Figure 245: Slope field plot

Verification of solutions

y = 1
−x

2 +
c1
x

Verified OK.

6.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (y(xy + 1)) dx
(−y(xy + 1)) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(xy + 1)
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y(xy + 1))

= −2xy − 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−2xy − 1)− (1))

= −2xy − 2
x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (xy + 1)((1)− (−2xy − 1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y(xy + 1))

= −xy − 1
y

And

N = µN

= 1
y2

(x)

= x

y2
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−xy − 1
y

)
+
(

x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xy − 1

y
dx

(3)φ = −x(xy + 2)
2y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2

2y + x(xy + 2)
2y2 + f ′(y)

= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y2
. Therefore equation (4) becomes

(5)x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x(xy + 2)
2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(xy + 2)
2y

The solution becomes

y = − 2x
x2 + 2c1

Summary
The solution(s) found are the following

(1)y = − 2x
x2 + 2c1

Figure 246: Slope field plot
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Verification of solutions

y = − 2x
x2 + 2c1

Verified OK.

6.28.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (xy + 1) y
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2 + y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
1
x

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)− u′(x)
x

= 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1

The above shows that
u′(x) = 2c2x

Using the above in (1) gives the solution

y = − 2c2x
c2x2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 2x
x2 + c3

Summary
The solution(s) found are the following

(1)y = − 2x
x2 + c3
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Figure 247: Slope field plot

Verification of solutions

y = − 2x
x2 + c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x) = (1+x*y(x))*y(x),y(x), singsol=all)� �

y(x) = − 2x
x2 − 2c1

3 Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 23� �
DSolve[x y'[x]==(1+x y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2x
x2 − 2c1

y(x) → 0

1552



6.29 problem 175
6.29.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1553
6.29.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1557
6.29.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1559

Internal problem ID [3431]
Internal file name [OUTPUT/2924_Sunday_June_05_2022_08_47_11_AM_92014036/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 6
Problem number: 175.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

xy′ − a x3(−yx+ 1) y = 0

6.29.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2ay(xy − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 296: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2e−a x3
3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2e−a x3
3

dy

Which results in

S = −ea x3
3

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2ay(xy − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x2a ea x3
3

y

Sy =
ea x3

3

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x3a ea x3

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R3a eaR3

3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 3 5
6Rπ

9Γ
(2
3

)
(−aR3)

1
3
−R eaR3

3 −
RΓ
(

1
3 ,−

aR3

3

)
(−9aR3)

1
3

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−ea x3
3

y
= 23 5

6xπ

9Γ
(2
3

)
(−a x3)

1
3
− x ea x3

3 −
xΓ
(

1
3 ,−

a x3

3

)
(−9a x3)

1
3

+ c1

Which simplifies to

−ea x3
3

y
= 23 5

6xπ

9Γ
(2
3

)
(−a x3)

1
3
− x ea x3

3 −
xΓ
(

1
3 ,−

a x3

3

)
(−9a x3)

1
3

+ c1

Which gives

y =
9 ea x3

3 Γ
(2
3

)
(−9a x3)

1
3 (−a x3)

1
3

−2 3 5
6xπ (−9a x3)

1
3 + 9 ea x3

3 Γ
(2
3

)
(−9a x3)

1
3 (−a x3)

1
3 x+ 9xΓ

(1
3 ,−

a x3

3

)
Γ
(2
3

)
(−a x3)

1
3 − 9Γ

(2
3

)
(−9a x3)

1
3 (−a x3)

1
3 c1

Summary
The solution(s) found are the following

(1)y

=
9 ea x3

3 Γ
(2
3

)
(−9a x3)

1
3 (−a x3)

1
3

−2 3 5
6xπ (−9a x3)

1
3 + 9 ea x3

3 Γ
(2
3

)
(−9a x3)

1
3 (−a x3)

1
3 x+ 9xΓ

(1
3 ,−

a x3

3

)
Γ
(2
3

)
(−a x3)

1
3 − 9Γ

(2
3

)
(−9a x3)

1
3 (−a x3)

1
3 c1

Verification of solutions
y

=
9 ea x3

3 Γ
(2
3

)
(−9a x3)

1
3 (−a x3)

1
3

−2 3 5
6xπ (−9a x3)

1
3 + 9 ea x3

3 Γ
(2
3

)
(−9a x3)

1
3 (−a x3)

1
3 x+ 9xΓ

(1
3 ,−

a x3

3

)
Γ
(2
3

)
(−a x3)

1
3 − 9Γ

(2
3

)
(−9a x3)

1
3 (−a x3)

1
3 c1

Verified OK.
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6.29.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= −x2ay(xy − 1)

This is a Bernoulli ODE.
y′ = x2ay − a x3y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = x2a

f1(x) = −a x3

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= x2a

y
− a x3 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)
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Substituting equations (5) and (6) into equation (4) gives

−w′(x) = x2aw(x)− a x3

w′ = −x2aw + a x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = x2a

q(x) = a x3

Hence the ode is

w′(x) + x2aw(x) = a x3

The integrating factor µ is

µ = e
∫
x2adx

= ea x3
3

The ode becomes
d
dx(µw) = (µ)

(
a x3)

d
dx

(
ea x3

3 w
)
=
(
ea x3

3

) (
a x3)

d
(
ea x3

3 w
)
=
(
x3a ea x3

3

)
dx

Integrating gives

ea x3
3 w =

∫
x3a ea x3

3 dx

ea x3
3 w = −

3 1
3

(
− 2x

√
3 (−a)

4
3 π

9aΓ
( 2
3
)
(−a x3)

1
3
+ x3

2
3 (−a)

4
3 e

a x3
3

3a +
x(−a)

4
3 Γ
(

1
3 ,−

a x3
3

)
3a(−a x3)

1
3

)
(−a)

1
3

+ c1

Dividing both sides by the integrating factor µ = ea x3
3 results in

w(x) = −
e−a x3

3 3 1
3

(
− 2x

√
3 (−a)

4
3 π

9aΓ
( 2
3
)
(−a x3)

1
3
+ x3

2
3 (−a)

4
3 e

a x3
3

3a +
x(−a)

4
3 Γ
(

1
3 ,−

a x3
3

)
3a(−a x3)

1
3

)
(−a)

1
3

+ c1e−
a x3
3
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which simplifies to

w(x) =
−2 3 5

6xπ e−a x3
3 + 9xΓ

(2
3

)
(−a x3)

1
3 + 33 1

3xΓ
(

1
3 ,−

a x3

3

)
Γ
(2
3

)
e−a x3

3 + 9Γ
(2
3

)
(−a x3)

1
3 c1e−

a x3
3

9Γ
(2
3

)
(−a x3)

1
3

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
=

−2 3 5
6xπ e−a x3

3 + 9xΓ
(2
3

)
(−a x3)

1
3 + 33 1

3xΓ
(

1
3 ,−

a x3

3

)
Γ
(2
3

)
e−a x3

3 + 9Γ
(2
3

)
(−a x3)

1
3 c1e−

a x3
3

9Γ
(2
3

)
(−a x3)

1
3

Or

y =
9Γ
(2
3

)
(−a x3)

1
3

−2 3 5
6xπ e−a x3

3 + 9xΓ
(2
3

)
(−a x3)

1
3 + 33 1

3xΓ
(1
3 ,−

a x3

3

)
Γ
(2
3

)
e−a x3

3 + 9Γ
(2
3

)
(−a x3)

1
3 c1e−

a x3
3

Summary
The solution(s) found are the following

(1)y

=
9Γ
(2
3

)
(−a x3)

1
3

−2 3 5
6xπ e−a x3

3 + 9xΓ
(2
3

)
(−a x3)

1
3 + 33 1

3xΓ
(1
3 ,−

a x3

3

)
Γ
(2
3

)
e−a x3

3 + 9Γ
(2
3

)
(−a x3)

1
3 c1e−

a x3
3

Verification of solutions
y

=
9Γ
(2
3

)
(−a x3)

1
3

−2 3 5
6xπ e−a x3

3 + 9xΓ
(2
3

)
(−a x3)

1
3 + 33 1

3xΓ
(1
3 ,−

a x3

3

)
Γ
(2
3

)
e−a x3

3 + 9Γ
(2
3

)
(−a x3)

1
3 c1e−

a x3
3

Verified OK.

6.29.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −x2ay(xy − 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = −a x3y2 + x2ay

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = x2a and f2(x) = −a x3. Let

y = −u′

f2u

= −u′

−a x3u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −3x2a

f1f2 = −x5a2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−a x3u′′(x)−
(
−x5a2 − 3x2a

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x)

= −

((
ea x3

3 (−a x3)
1
3 3 2

3 + Γ
(

1
3 ,−

a x3

3

))
Γ
(2
3

)
− 2

√
3π
3

)
xc2(−a)

1
3 − 3Γ

(2
3

)
(−a x3)

1
3 c1

3 (−a x3)
1
3 Γ
(2
3

)
The above shows that

u′(x) = c23
2
3x3(−a)

4
3 ea x3

3

3

Using the above in (1) gives the solution

y =

−
c23

2
3 (−a)

4
3 ea x3

3 (−a x3)
1
3 Γ
(2
3

)
a
(((

ea x3
3 (−a x3)

1
3 3 2

3 + Γ
(1
3 ,−

a x3

3

))
Γ
(2
3

)
− 2

√
3π
3

)
xc2 (−a)

1
3 − 3Γ

(2
3

)
(−a x3)

1
3 c1
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y =
3 2

3 (−a)
1
3 ea x3

3 (−a x3)
1
3 Γ
(2
3

)((
ea x3

3 (−a x3)
1
3 3 2

3 + Γ
(1
3 ,−

a x3

3

))
Γ
(2
3

)
− 2

√
3π
3

)
x (−a)

1
3 − 3Γ

(2
3

)
(−a x3)

1
3 c3

Summary
The solution(s) found are the following

y =
3 2

3 (−a)
1
3 ea x3

3 (−a x3)
1
3 Γ
(2
3

)((
ea x3

3 (−a x3)
1
3 3 2

3 + Γ
(1
3 ,−

a x3

3

))
Γ
(2
3

)
− 2

√
3π
3

)
x (−a)

1
3 − 3Γ

(2
3

)
(−a x3)

1
3 c3

(1)
Verification of solutions

y =
3 2

3 (−a)
1
3 ea x3

3 (−a x3)
1
3 Γ
(2
3

)((
ea x3

3 (−a x3)
1
3 3 2

3 + Γ
(1
3 ,−

a x3

3

))
Γ
(2
3

)
− 2

√
3π
3

)
x (−a)

1
3 − 3Γ

(2
3

)
(−a x3)

1
3 c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 95� �
dsolve(x*diff(y(x),x) = a*x^3*(1-x*y(x))*y(x),y(x), singsol=all)� �
y(x) =

−
3Γ
(2
3

)
(−a x3)

1
3 3 2

3

−3Γ
(2
3

)
e−a x3

3 3 2
3 c1 (−a x3)

1
3 − 3Γ

(2
3

)
3 2

3x (−a x3)
1
3 + 2π

√
3 e−a x3

3 x− 3 e−a x3
3 Γ

(2
3

)
Γ
(1
3 ,−

a x3

3

)
x
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3 Solution by Mathematica
Time used: 0.224 (sec). Leaf size: 66� �
DSolve[x y'[x]==a x^3(1-x y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
ax3
3

3
√
−ax3

3
√
3xΓ

(4
3 ,−

ax3

3

)
+ c1

3
√
−ax3

y(x) → 0
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7.1 problem 176
7.1.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1564
7.1.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1566
7.1.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1571

Internal problem ID [3432]
Internal file name [OUTPUT/2925_Sunday_June_05_2022_08_47_13_AM_94252270/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 176.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

xy′ −
(
2x2 + 1

)
y − y2x = x3

7.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))−
(
2x2 + 1

)
u(x)x− u(x)2 x3 = x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= x

(
u2 + 2u+ 1

)
Where f(x) = x and g(u) = u2 + 2u+ 1. Integrating both sides gives

1
u2 + 2u+ 1 du = x dx∫ 1
u2 + 2u+ 1 du =

∫
x dx

− 1
u+ 1 = x2

2 + c2
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The solution is

− 1
u (x) + 1 − x2

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− 1
y
x
+ 1 − x2

2 − c2 = 0

− x

y + x
− x2

2 − c2 = 0

Summary
The solution(s) found are the following

(1)− x

y + x
− x2

2 − c2 = 0

Figure 248: Slope field plot

Verification of solutions

− x

y + x
− x2

2 − c2 = 0

Verified OK.
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7.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x3 + 2x2y + x y2 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x3 + 2x2y + x y2 + y) (b3 − a2)
x

− (x3 + 2x2y + x y2 + y)2 a3
x2

−
(
3x2 + 4xy + y2

x
− x3 + 2x2y + x y2 + y

x2

)
(xa2 + ya3 + a1)

− (2x2 + 2xy + 1) (xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−x6a3 + 4x5ya3 + 6x4y2a3 + 4x3y3a3 + x2y4a3 + 3x4a2 + 2x4b2 − x4b3 + 4x3ya2 + 4x3ya3 + 2x3yb2 + x2y2a2 + 6x2y2a3 + x2y2b3 + 2x y3a3 + 2x3a1 + 2x3b1 + 2x2ya1 + 2x2yb1 + xb1 − ya1
x2

= 0

Setting the numerator to zero gives

(6E)−x6a3 − 4x5ya3 − 6x4y2a3 − 4x3y3a3 − x2y4a3 − 3x4a2 − 2x4b2
+ x4b3 − 4x3ya2 − 4x3ya3 − 2x3yb2 − x2y2a2 − 6x2y2a3 − x2y2b3
− 2x y3a3 − 2x3a1 − 2x3b1 − 2x2ya1 − 2x2yb1 − xb1 + ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
6
1 − 4a3v51v2 − 6a3v41v22 − 4a3v31v32 − a3v

2
1v

4
2 − 3a2v41 − 4a2v31v2

− a2v
2
1v

2
2 − 4a3v31v2 − 6a3v21v22 − 2a3v1v32 − 2b2v41 − 2b2v31v2 + b3v

4
1

− b3v
2
1v

2
2 − 2a1v31 − 2a1v21v2 − 2b1v31 − 2b1v21v2 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
6
1 − 4a3v51v2 − 6a3v41v22 + (−3a2 − 2b2 + b3) v41 − 4a3v31v32

+ (−4a2 − 4a3 − 2b2) v31v2 + (−2a1 − 2b1) v31 − a3v
2
1v

4
2

+ (−a2 − 6a3 − b3) v21v22 + (−2a1 − 2b1) v21v2 − 2a3v1v32 − b1v1 + a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−6a3 = 0
−4a3 = 0
−2a3 = 0
−a3 = 0
−b1 = 0

−2a1 − 2b1 = 0
−4a2 − 4a3 − 2b2 = 0
−3a2 − 2b2 + b3 = 0
−a2 − 6a3 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 2b3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = 2x+ y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2x+ y −
(
x3 + 2x2y + x y2 + y

x

)
(−x)

= x3 + 2x2y + x y2 + 2x+ 2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3 + 2x2y + x y2 + 2x+ 2ydy
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Which results in

S = ln (y + x)
2 − ln (x2 + xy + 2)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + 2x2y + x y2 + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x+ 2y + −2x− y

2x2 + 2xy + 4

Sy =
1

(x2 + xy + 2) (y + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x)
2 − ln (x2 + yx+ 2)

2 = ln (x)
2 + c1
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Which simplifies to

ln (y + x)
2 − ln (x2 + yx+ 2)

2 = ln (x)
2 + c1

Which gives

y = −x(−x2 + e−2c1 − 2)
−x2 + e−2c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+2x2y+x y2+y
x

dS
dR

= 1
2R

R = x

S = ln (y + x)
2 − ln (x2 + xy + 2)

2

Summary
The solution(s) found are the following

(1)y = −x(−x2 + e−2c1 − 2)
−x2 + e−2c1
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Figure 249: Slope field plot

Verification of solutions

y = −x(−x2 + e−2c1 − 2)
−x2 + e−2c1

Verified OK.

7.1.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x3 + 2x2y + x y2 + y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 + 2xy + y2 + y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x2, f1(x) = 2x2+1
x

and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
2x2 + 1

x
f 2
2 f0 = x2

Substituting the above terms back in equation (2) gives

u′′(x)− (2x2 + 1)u′(x)
x

+ x2u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex2
2
(
c2x

2 + c1
)

The above shows that

u′(x) = ex2
2 x
(
c2x

2 + c1 + 2c2
)

Using the above in (1) gives the solution

y = −x(c2x2 + c1 + 2c2)
c2x2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −x(x2 + c3 + 2)
x2 + c3
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Summary
The solution(s) found are the following

(1)y = −x(x2 + c3 + 2)
x2 + c3

Figure 250: Slope field plot

Verification of solutions

y = −x(x2 + c3 + 2)
x2 + c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(x*diff(y(x),x) = x^3+(2*x^2+1)*y(x)+x*y(x)^2,y(x), singsol=all)� �

y(x) = −x(x2 + 2c1 + 2)
x2 + 2c1

3 Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 34� �
DSolve[x y'[x]==x^3+(1+2 x^2)y[x]+x y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x(x2 + 2 + 2c1)
x2 + 2c1

y(x) → −x
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7.2 problem 177
7.2.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1575
7.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1577
7.2.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1581
7.2.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1584
7.2.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1589

Internal problem ID [3433]
Internal file name [OUTPUT/2926_Sunday_June_05_2022_08_47_14_AM_14834089/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 177.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

xy′ − y(2yx+ 1) = 0

7.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x
(
2u(x)x2 + 1

)
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= 2u2x
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Where f(x) = 2x and g(u) = u2. Integrating both sides gives

1
u2 du = 2x dx∫ 1
u2 du =

∫
2x dx

−1
u
= x2 + c2

The solution is

− 1
u (x) − x2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
− x2 − c2 = 0

−x

y
− x2 − c2 = 0

Summary
The solution(s) found are the following

(1)−x

y
− x2 − c2 = 0
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Figure 251: Slope field plot

Verification of solutions

−x

y
− x2 − c2 = 0

Verified OK.

7.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(2xy + 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 298: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(2xy + 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= x2 + c1

Which simplifies to

−x

y
= x2 + c1

Which gives

y = − x

x2 + c1
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(2xy+1)
x

dS
dR

= 2R

R = x

S = −x

y

Summary
The solution(s) found are the following

(1)y = − x

x2 + c1
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Figure 252: Slope field plot

Verification of solutions

y = − x

x2 + c1

Verified OK.

7.2.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(2xy + 1)
x

This is a Bernoulli ODE.
y′ = 1

x
y + 2y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = 2
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
xy

+ 2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

+ 2

w′ = −w

x
− 2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −2
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Hence the ode is

w′(x) + w(x)
x

= −2

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µw) = (µ) (−2)
d
dx(xw) = (x) (−2)

d(xw) = (−2x) dx

Integrating gives

xw =
∫

−2x dx

xw = −x2 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = −x+ c1
x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −x+ c1

x

Or

y = 1
−x+ c1

x

Summary
The solution(s) found are the following

(1)y = 1
−x+ c1

x
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Figure 253: Slope field plot

Verification of solutions

y = 1
−x+ c1

x

Verified OK.

7.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (y(2xy + 1)) dx
(−y(2xy + 1)) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(2xy + 1)
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y(2xy + 1))

= −4xy − 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−4xy − 1)− (1))

= −4xy − 2
x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2x y2 + y
((1)− (−4xy − 1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y(2xy + 1))

= −2xy − 1
y

And

N = µN

= 1
y2

(x)

= x

y2
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2xy − 1
y

)
+
(

x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2xy − 1

y
dx

(3)φ = −x(xy + 1)
y

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2

y
+ x(xy + 1)

y2
+ f ′(y)

= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y2
. Therefore equation (4) becomes

(5)x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x(xy + 1)
y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(xy + 1)
y

The solution becomes
y = − x

x2 + c1

Summary
The solution(s) found are the following

(1)y = − x

x2 + c1

Figure 254: Slope field plot
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Verification of solutions

y = − x

x2 + c1

Verified OK.

7.2.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(2xy + 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2y2 + y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = 2. Let

y = −u′

f2u

= −u′

2u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
2
x

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

2u′′(x)− 2u′(x)
x

= 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1

The above shows that
u′(x) = 2c2x

Using the above in (1) gives the solution

y = − c2x

c2x2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − x

x2 + c3

Summary
The solution(s) found are the following

(1)y = − x

x2 + c3

Figure 255: Slope field plot
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Verification of solutions

y = − x

x2 + c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x) = y(x)*(1+2*x*y(x)),y(x), singsol=all)� �

y(x) = x

−x2 + c1

3 Solution by Mathematica
Time used: 0.133 (sec). Leaf size: 23� �
DSolve[x y'[x]==y[x](1+2 x y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

x2 − c1
y(x) → 0
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7.3 problem 178
7.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1592

Internal problem ID [3434]
Internal file name [OUTPUT/2927_Sunday_June_05_2022_08_47_15_AM_67858945/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 178.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

_Riccati]

xy′ + (2 + axy) y = −bx

7.3.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −ax y2 + bx+ 2y
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −a y2 − b− 2y
x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −b, f1(x) = − 2
x
and f2(x) = −a. Let

y = −u′

f2u

= −u′

−au
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
2a
x

f 2
2 f0 = −a2b

Substituting the above terms back in equation (2) gives

−au′′(x)− 2au′(x)
x

− a2bu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
c1 sinh

(√
−ab x

)
+ c2 cosh

(√
−ab x

)
x

The above shows that

u′(x) =
(
xc1

√
−ab− c2

)
cosh

(√
−ab x

)
+ sinh

(√
−ab x

) (
xc2

√
−ab− c1

)
x2

Using the above in (1) gives the solution

y =
(
xc1

√
−ab− c2

)
cosh

(√
−ab x

)
+ sinh

(√
−ab x

) (
xc2

√
−ab− c1

)
xa
(
c1 sinh

(√
−ab x

)
+ c2 cosh

(√
−ab x

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(
xc3

√
−ab− 1

)
cosh

(√
−ab x

)
+ sinh

(√
−ab x

) (√
−ab x− c3

)
xa
(
c3 sinh

(√
−ab x

)
+ cosh

(√
−ab x

))
Summary
The solution(s) found are the following

(1)y =
(
xc3

√
−ab− 1

)
cosh

(√
−ab x

)
+ sinh

(√
−ab x

) (√
−ab x− c3

)
xa
(
c3 sinh

(√
−ab x

)
+ cosh

(√
−ab x

))
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Verification of solutions

y =
(
xc3

√
−ab− 1

)
cosh

(√
−ab x

)
+ sinh

(√
−ab x

) (√
−ab x− c3

)
xa
(
c3 sinh

(√
−ab x

)
+ cosh

(√
−ab x

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular polynomial solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 86� �
dsolve(x*diff(y(x),x)+b*x+(2+a*x*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = −2abc1x− i
√
a e−2i

√
a
√
b x
√
b x− 2ic1

√
a
√
b− e−2i

√
a
√
b x

xa
(
2ic1

√
a
√
b+ e−2i

√
a
√
b x
)
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3 Solution by Mathematica
Time used: 3.304 (sec). Leaf size: 43� �
DSolve[x y'[x]+b x+(2+a x y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
ax

−
√

b

a
tan

(
ax

√
b

a
− c1

)
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7.4 problem 179
7.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1596

Internal problem ID [3435]
Internal file name [OUTPUT/2928_Sunday_June_05_2022_08_47_16_AM_52953187/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 179.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ + (a2+a3 xy) y = − a1x− a0

7.4.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −a3x y2 + a1x+ a2 y + a0
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = − a3 y2 − a1−a2 y
x

− a0
x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −a1x+a0
x

, f1(x) = −a2
x
and f2(x) = − a3. Let

y = −u′

f2u

= −u′

− a3u (1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
a2 a3
x

f 2
2 f0 = −a32 (a1x+ a0)

x

Substituting the above terms back in equation (2) gives

− a3u′′(x)− a2 a3 u′(x)
x

− a32 (a1x+ a0)u(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e−i
√
a1

√
a3x

(
KummerM

(
i a0

√
a3 + a2

√
a1

2
√
a1

, a2, 2i
√
a1

√
a3x

)
c1

+KummerU
(
i a0

√
a3 + a2

√
a1

2
√
a1

, a2, 2i
√
a1

√
a3x

)
c2

)

The above shows that

u′(x) =

−
e−i

√
a1

√
a3x
(
−

c2
((

− 1
2 a22 +a2

)
a1

3
2 +a0

(
i
√
a3 a1− a0 a3

√
a1

2

))
KummerU

(
(a2+2)

√
a1+i a0

√
a3

2
√
a1 ,a2,2i

√
a1

√
a3x

)
2 −

c1
(
i a1

√
a3 a0+a1

3
2 a2

)
KummerM

(
(a2+2)

√
a1+i a0

√
a3

2
√
a1 ,a2,2i

√
a1

√
a3x

)
2 +

(
a1

3
2 a2
2 + i

(
a1x+ a0

2

)
a1

√
a3
)(

KummerM
(

i a0
√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c1 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c2
))

a1 3
2 x

Using the above in (1) gives the solution

y =

−
−

c2
((

− 1
2 a22 +a2

)
a1

3
2 +a0

(
i
√
a3 a1− a0 a3

√
a1

2

))
KummerU

(
(a2+2)

√
a1+i a0

√
a3

2
√
a1 ,a2,2i

√
a1

√
a3x

)
2 −

c1
(
i a1

√
a3 a0+a1

3
2 a2

)
KummerM

(
(a2+2)

√
a1+i a0

√
a3

2
√
a1 ,a2,2i

√
a1

√
a3x

)
2 +

(
a1

3
2 a2
2 + i

(
a1x+ a0

2

)
a1

√
a3
)(

KummerM
(

i a0
√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c1 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c2
)

a1 3
2 x a3

(
KummerM

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c1 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y

=

(
−
( 1
2 a22 − a2

)
a1

3
2 +i a1

√
a3 a0− a02 a3

√
a1

2

)
KummerU

(
(a2+2)

√
a1+i a0

√
a3

2
√
a1 ,a2,2i

√
a1

√
a3x

)
2 +

c3
(
i a1

√
a3 a0+a1

3
2 a2

)
KummerM

(
(a2+2)

√
a1+i a0

√
a3

2
√

a1 ,a2,2i
√
a1

√
a3x

)
2 −

(
a1

3
2 a2
2 + i

(
a1x+ a0

2

)
a1

√
a3
)(

KummerM
(

i a0
√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c3 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

))
a1 3

2 x a3
(
KummerM

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c3 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

))
Summary
The solution(s) found are the following

(1)y

=

(
−
( 1
2 a22 − a2

)
a1

3
2 +i a1

√
a3 a0− a02 a3

√
a1

2

)
KummerU

(
(a2+2)

√
a1+i a0

√
a3

2
√
a1 ,a2,2i

√
a1

√
a3x

)
2 +

c3
(
i a1

√
a3 a0+a1

3
2 a2

)
KummerM

(
(a2+2)

√
a1+i a0

√
a3

2
√

a1 ,a2,2i
√
a1

√
a3x

)
2 −

(
a1

3
2 a2
2 + i

(
a1x+ a0

2

)
a1

√
a3
)(

KummerM
(

i a0
√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c3 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

))
a1 3

2 x a3
(
KummerM

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c3 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

))
Verification of solutions
y

=

(
−
( 1
2 a22 − a2

)
a1

3
2 +i a1

√
a3 a0− a02 a3

√
a1

2

)
KummerU

(
(a2+2)

√
a1+i a0

√
a3

2
√
a1 ,a2,2i

√
a1

√
a3x

)
2 +

c3
(
i a1

√
a3 a0+a1

3
2 a2

)
KummerM

(
(a2+2)

√
a1+i a0

√
a3

2
√

a1 ,a2,2i
√
a1

√
a3x

)
2 −

(
a1

3
2 a2
2 + i

(
a1x+ a0

2

)
a1

√
a3
)(

KummerM
(

i a0
√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c3 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

))
a1 3

2 x a3
(
KummerM

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

)
c3 +KummerU

(
i a0

√
a3+a2

√
a1

2
√
a1 , a2, 2i

√
a1

√
a3x

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Abel AIR successful: ODE belongs to the 1F1 2-parameter class`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 403� �
dsolve(x*diff(y(x),x)+a0+a1*x+(a2+a3*x*y(x))*y(x) = 0,y(x), singsol=all)� �
y(x) =

−
4 a1

(
a13 a3

(
a3 a0− a2

√
− a1 a3

)
KummerM

(√
− a1 a3 a0+a1(a2+2)

2 a1 , a2+1, 2x
√
− a1 a3

)
−

c1
(
a02 a3+a1 a22

)
KummerU

(√
− a1 a3 a0+ a1(a2+2)

2 a1 ,a2+1,2x
√
− a1 a3

)
4 + a13 a3

(
a2

√
− a1 a3 + a3 a0

)
KummerM

(√
− a1 a3 a0+a1 a2

2 a1 , a2+1, 2x
√
− a1 a3

)
+

KummerU
(√

− a1 a3 a0+ a1 a2
2 a1 ,a2+1,2x

√
− a1 a3

)
c1
(√

− a1 a3 a0− a1 a2
)

2

)
4 a13 a32

(√
− a1 a3 a0+a1 a2

)
KummerM

(√
− a1 a3 a0+a1(a2+2)

2 a1 , a2+1, 2x
√
− a1 a3

)
− c1

√
− a1 a3 (a02 a3+a1 a22)KummerU

(√
− a1 a3 a0+a1(a2+2)

2 a1 , a2+1, 2x
√
− a1 a3

)
− 4

(
a12 a32

(√
− a1 a3 a0− a1 a2

)
KummerM

(√
− a1 a3 a0+a1 a2

2 a1 , a2+1, 2x
√
− a1 a3

)
−

KummerU
(√

− a1 a3 a0+ a1 a2
2 a1 ,a2+1,2x

√
− a1 a3

)
c1
(
a2

√
− a1 a3+a3 a0

)
2

)
a1

3 Solution by Mathematica
Time used: 0.472 (sec). Leaf size: 421� �
DSolve[x y'[x]+a0+a1 x+(a2+a3 x y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−
i

(√
a1c1HypergeometricU

(
1
2

(
i
√
a3a0√
a1 + a2

)
, a2, 2i

√
a1
√
a3x
)
+ c1

(√
a1a2+ ia0

√
a3
)
HypergeometricU

(
1
2

(
i
√
a3a0√
a1 + a2+ 2

)
, a2+ 1, 2i

√
a1
√
a3x
)
+
√
a1
(
2La2

− i
√
a3a0

2
√
a1 −a2

2 −1

(
2i
√
a1
√
a3x
)
+ La2−1

− i
√
a3a0

2
√
a1 −a2

2

(
2i
√
a1
√
a3x
)))

√
a3
(
c1HypergeometricU

(
1
2

(
i
√
a3a0√
a1 + a2

)
, a2, 2i

√
a1
√
a3x
)
+ La2−1

− i
√
a3a0

2
√
a1 −a2

2

(
2i
√
a1
√
a3x
))

y(x) →

(
a0
√
a3−i

√
a1a2

)
HypergeometricU

(
1
2

(
i

√
a3a0√
a1 +a2+2

)
,a2+1,2i

√
a1
√
a3x

)

HypergeometricU
(

1
2

(
i

√
a3a0√
a1 +a2

)
,a2,2i

√
a1
√
a3x

) − i
√
a1

√
a3
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7.5 problem 180
7.5.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1600

Internal problem ID [3436]
Internal file name [OUTPUT/2929_Sunday_June_05_2022_08_47_18_AM_14028383/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 180.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ + a x2y2 + 2y = b

7.5.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −a x2y2 − b+ 2y
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −xa y2 + b

x
− 2y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = b
x
, f1(x) = − 2

x
and f2(x) = −ax. Let

y = −u′

f2u

= −u′

−axu
(1)

1600



Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −a

f1f2 = 2a
f 2
2 f0 = a2xb

Substituting the above terms back in equation (2) gives

−axu′′(x)− au′(x) + a2xbu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 BesselJ
(
0,
√
−ab x

)
+ c2 BesselY

(
0,
√
−ab x

)
The above shows that

u′(x) =
(
−BesselJ

(
1,
√
−ab x

)
c1 − BesselY

(
1,
√
−ab x

)
c2
)√

−ab

Using the above in (1) gives the solution

y =
(
−BesselJ

(
1,
√
−ab x

)
c1 − BesselY

(
1,
√
−ab x

)
c2
)√

−ab

ax
(
c1 BesselJ

(
0,
√
−ab x

)
+ c2 BesselY

(
0,
√
−ab x

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(
−BesselJ

(
1,
√
−ab x

)
c3 − BesselY

(
1,
√
−ab x

))√
−ab

ax
(
c3 BesselJ

(
0,
√
−ab x

)
+ BesselY

(
0,
√
−ab x

))
Summary
The solution(s) found are the following

(1)y =
(
−BesselJ

(
1,
√
−ab x

)
c3 − BesselY

(
1,
√
−ab x

))√
−ab

ax
(
c3 BesselJ

(
0,
√
−ab x

)
+ BesselY

(
0,
√
−ab x

))
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Verification of solutions

y =
(
−BesselJ

(
1,
√
−ab x

)
c3 − BesselY

(
1,
√
−ab x

))√
−ab

ax
(
c3 BesselJ

(
0,
√
−ab x

)
+ BesselY

(
0,
√
−ab x

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x+a*b*y(x), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 68� �
dsolve(x*diff(y(x),x)+a*x^2*y(x)^2+2*y(x) = b,y(x), singsol=all)� �

y(x) =
(
−BesselY

(
1,
√
−ab x

)
c1 − BesselJ

(
1,
√
−ab x

))√
−ab

ax
(
c1 BesselY

(
0,
√
−ab x

)
+ BesselJ

(
0,
√
−ab x

))
3 Solution by Mathematica
Time used: 0.255 (sec). Leaf size: 158� �
DSolve[x y'[x]+a x^2 y[x]^2+2 y[x]==b,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
i
√
b
(
BesselY

(
1,−i

√
a
√
bx
)
− c1 BesselJ

(
1, i

√
a
√
bx
))

√
ax
(
BesselY

(
0,−i

√
a
√
bx
)
+ c1 BesselJ

(
0, i

√
a
√
bx
))

y(x) → −
i
√
bBesselJ

(
1, i

√
a
√
bx
)

√
axBesselJ

(
0, i

√
a
√
bx
)
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7.6 problem 181
7.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1604

Internal problem ID [3437]
Internal file name [OUTPUT/2930_Sunday_June_05_2022_08_47_20_AM_37972834/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 181.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ + (−m+ n) y
2 + xny2 = −xm

7.6.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −2xny2 − ym+ ny + 2xm

2x
This is a Riccati ODE. Comparing the ODE to solve

y′ = −xm

x
+ ym

2x − ny

2x − xny2

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −xm

x
, f1(x) = −−m+n

2x and f2(x) = −xn

x
. Let

y = −u′

f2u

= −u′

−xnu
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

xn

x2 − xnn

x2

f1f2 =
(−m+ n)xn

2x2

f 2
2 f0 = −x2nxm

x3

Substituting the above terms back in equation (2) gives

−xnu′′(x)
x

−
(
xn

x2 − xnn

x2 + (−m+ n)xn

2x2

)
u′(x)− x2nxmu(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
2
√
xm+n

m+ n

)
+ c2 cos

(
2
√
xm+n

m+ n

)

The above shows that

u′(x) =

√
xm+n

(
c1 cos

(
2
√
xm+n

m+n

)
− c2 sin

(
2
√
xm+n

m+n

))
x

Using the above in (1) gives the solution

y =

√
xm+n

(
c1 cos

(
2
√
xm+n

m+n

)
− c2 sin

(
2
√
xm+n

m+n

))
x−n

c1 sin
(

2
√
xm+n

m+n

)
+ c2 cos

(
2
√
xm+n

m+n

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

√
xm+n

(
c3 cos

(
2
√
xm+n

m+n

)
− sin

(
2
√
xm+n

m+n

))
x−n

c3 sin
(

2
√
xm+n

m+n

)
+ cos

(
2
√
xm+n

m+n

)
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Summary
The solution(s) found are the following

(1)y =

√
xm+n

(
c3 cos

(
2
√
xm+n

m+n

)
− sin

(
2
√
xm+n

m+n

))
x−n

c3 sin
(

2
√
xm+n

m+n

)
+ cos

(
2
√
xm+n

m+n

)
Verification of solutions

y =

√
xm+n

(
c3 cos

(
2
√
xm+n

m+n

)
− sin

(
2
√
xm+n

m+n

))
x−n

c3 sin
(

2
√
xm+n

m+n

)
+ cos

(
2
√
xm+n

m+n

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve(x*diff(y(x),x)+x^m+1/2*(n-m)*y(x)+x^n*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = − tan
(
2xn

2+
m
2 + c1(n+m)
n+m

)
x−n

2+
m
2
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3 Solution by Mathematica
Time used: 0.578 (sec). Leaf size: 40� �
DSolve[x y'[x]+x^m+((n-m)/2) y[x]+x^n y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
m−n

2 tan
(
2xm+n

2

m+ n
− c1

)
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7.7 problem 182
7.7.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1608
7.7.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1611
7.7.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1614

Internal problem ID [3438]
Internal file name [OUTPUT/2931_Sunday_June_05_2022_08_47_21_AM_52746984/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 182.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xy′ + (a+ b xny) y = 0

7.7.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(a+ b xny) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 300: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2ea ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

1609



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2ea ln(x)dy

Which results in

S = −e−a ln(x)

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(a+ b xny) y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = a x−1−a

y

Sy =
x−a

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −b xn−1−a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −bRn−1−a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = Rn−ab

−n+ a
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x−a

y
= xn−ab

−n+ a
+ c1

Which simplifies to

−x−a

y
= xn−ab

−n+ a
+ c1

Which gives

y = − x−a(−n+ a)
xn−ab+ c1a− nc1

Summary
The solution(s) found are the following

(1)y = − x−a(−n+ a)
xn−ab+ c1a− nc1

Verification of solutions

y = − x−a(−n+ a)
xn−ab+ c1a− nc1

Verified OK.

7.7.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −(a+ b xny) y
x

This is a Bernoulli ODE.
y′ = −a

x
y − b xn

x
y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −a

x

f1(x) = −b xn

x
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − a

xy
− b xn

x
(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −aw(x)
x

− b xn

x

w′ = aw

x
+ b xn

x
(7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −a

x
q(x) = b xn−1

Hence the ode is

w′(x)− aw(x)
x

= b xn−1

The integrating factor µ is

µ = e
∫
− a

x
dx

= e−a ln(x)

Which simplifies to
µ = x−a

The ode becomes
d
dx(µw) = (µ)

(
b xn−1)

d
dx
(
x−aw

)
=
(
x−a
) (

b xn−1)
d
(
x−aw

)
=
(
b xn−1−a

)
dx

Integrating gives

x−aw =
∫

b xn−1−a dx

x−aw = − xn−ab

−n+ a
+ c1

Dividing both sides by the integrating factor µ = x−a results in

w(x) = −xaxn−ab

−n+ a
+ c1x

a

which simplifies to

w(x) = − b xn

−n+ a
+ c1x

a
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Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= − b xn

−n+ a
+ c1x

a

Or

y = 1
− b xn

−n+a
+ c1xa

Summary
The solution(s) found are the following

(1)y = 1
− b xn

−n+a
+ c1xa

Verification of solutions

y = 1
− b xn

−n+a
+ c1xa

Verified OK.

7.7.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −(a+ b xny) y
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2b xn

x
− ya

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = −a
x
and f2(x) = − b xn

x
. Let

y = −u′

f2u

= −u′

− b xnu
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −b xnn

x2 + b xn

x2

f1f2 =
ab xn

x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−b xnu′′(x)
x

−
(
−b xnn

x2 + b xn

x2 + ab xn

x2

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2x
n−a

The above shows that
u′(x) = c2x

n−1−a(n− a)

Using the above in (1) gives the solution

y = c2x
n−1−a(n− a)x−nx

b (c1 + c2xn−a)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x−a(n− a)
b (c3 + xn−a)

Summary
The solution(s) found are the following

(1)y = x−a(n− a)
b (c3 + xn−a)
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Verification of solutions

y = x−a(n− a)
b (c3 + xn−a)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(x*diff(y(x),x)+(a+b*x^n*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = a− n

c1 (a− n)xa − b xn

3 Solution by Mathematica
Time used: 0.284 (sec). Leaf size: 36� �
DSolve[x y'[x]+(a+b x^n y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a− n

−bxn + c1(a− n)xa

y(x) → 0
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7.8 problem 183
7.8.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1617

Internal problem ID [3439]
Internal file name [OUTPUT/2932_Sunday_June_05_2022_08_47_23_AM_82395362/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 183.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

xy′ + yb+ c xny2 = a xm

7.8.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −c xny2 − a xm + by

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −c xny2

x
+ a xm

x
− by

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a xm

x
, f1(x) = − b

x
and f2(x) = − c xn

x
. Let

y = −u′

f2u

= −u′

− c xnu
x

(1)

1617



Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −c xnn

x2 + c xn

x2

f1f2 =
bc xn

x2

f 2
2 f0 =

c2x2na xm

x3

Substituting the above terms back in equation (2) gives

−c xnu′′(x)
x

−
(
−c xnn

x2 + c xn

x2 + bc xn

x2

)
u′(x) + c2x2na xmu(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x− b
2+

n
2

(
BesselJ

(
b− n

m+ n
,
2
√
−ca x

m
2 +n

2

m+ n

)
c1

+ BesselY
(

b− n

m+ n
,
2
√
−ca x

m
2 +n

2

m+ n

)
c2

)

The above shows that

u′(x) = x−1− b
2+n+m

2
√
−ca

(
−BesselY

(
b+m

m+ n
,
2
√
−ca x

m
2 +n

2

m+ n

)
c2

− BesselJ
(
b+m

m+ n
,
2
√
−ca x

m
2 +n

2

m+ n

)
c1

)

Using the above in (1) gives the solution

y

=
x−1− b

2+n+m
2
√
−ca

(
−BesselY

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c2 − BesselJ

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c1
)
x−nxx

b
2−

n
2

c
(
BesselJ

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c1 + BesselY

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y =
x

m
2 −n

2
√
−ca

(
−BesselY

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
− BesselJ

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c3
)

c
(
BesselJ

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c3 + BesselY

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

))
Summary
The solution(s) found are the following

(1)y =
x

m
2 −n

2
√
−ca

(
−BesselY

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
− BesselJ

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c3
)

c
(
BesselJ

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c3 + BesselY

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

))
Verification of solutions

y =
x

m
2 −n

2
√
−ca

(
−BesselY

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
− BesselJ

(
b+m
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c3
)

c
(
BesselJ

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

)
c3 + BesselY

(
b−n
m+n

, 2
√
−ca x

m
2 +n

2
m+n

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(b-n+1)*(diff(y(x), x))/x+c*x^(n-1)*x^(m-1)*a*y(x), y(x)` *** Su

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 166� �
dsolve(x*diff(y(x),x) = a*x^m-b*y(x)-c*x^n*y(x)^2,y(x), singsol=all)� �
y(x) =

x−n
2+

m
2
√
−ac

(
−BesselY

(
b+m
n+m

, 2
√
−ac x

n
2 +m

2
n+m

)
c1 − BesselJ

(
b+m
n+m

, 2
√
−ac x

n
2 +m

2
n+m

))
c
(
BesselY

(
b−n
n+m

, 2
√
−ac x

n
2 +m

2
n+m

)
c1 + BesselJ

(
b−n
n+m

, 2
√
−ac x

n
2 +m

2
n+m

))
3 Solution by Mathematica
Time used: 0.973 (sec). Leaf size: 1549� �
DSolve[x y'[x]==a x^m-b y[x]-c x^n y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x−n
(
(−1)

n
m+n

√
a
√
cm(m+ n)

2n
m+nxm+n BesselI

(
− b+m

m+n
, 2

√
a
√
c
√
xm+n√

(m+n)2

)
Gamma

(−b+m+2n
m+n

)
((m+ n)2)

b
m+n + (−1)

n
m+n

√
a
√
cn(m+ n)

2n
m+nxm+n BesselI

(
− b+m

m+n
, 2

√
a
√
c
√
xm+n√

(m+n)2

)
Gamma

(−b+m+2n
m+n

)
((m+ n)2)

b
m+n + (−1)

n
m+n

√
a
√
cm(m+ n)

2n
m+nxm+n BesselI

(
n−b
m+n

+ 1, 2
√
a
√
c
√
xm+n√

(m+n)2

)
Gamma

(−b+m+2n
m+n

)
((m+ n)2)

b
m+n + (−1)

n
m+n

√
a
√
cn(m+ n)

2n
m+nxm+n BesselI

(
n−b
m+n

+ 1, 2
√
a
√
c
√
xm+n√

(m+n)2

)
Gamma

(−b+m+2n
m+n

)
((m+ n)2)

b
m+n + (−1)

b
m+n

√
a
√
c(m+ n)

2b
m+n

+1xm+n BesselI
(

b+m
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
c1Gamma

(
b+m
m+n

)
((m+ n)2)

n
m+n + (−1)

b
m+n

√
a
√
cm(m+ n)

2b
m+nxm+n BesselI

(
b−n
m+n

− 1, 2
√
a
√
c
√
xm+n√

(m+n)2

)
c1Gamma

(
b+m
m+n

)
((m+ n)2)

n
m+n + (−1)

b
m+n

√
a
√
cn(m+ n)

2b
m+nxm+n BesselI

(
b−n
m+n

− 1, 2
√
a
√
c
√
xm+n√

(m+n)2

)
c1Gamma

(
b+m
m+n

)
((m+ n)2)

n
m+n − (−1)

n
m+n b(m+ n)

2n
m+n

√
xm+n BesselI

(
n−b
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
Gamma

(−b+m+2n
m+n

)
((m+ n)2)

b
m+n

+ 1
2 + (−1)

n
m+nn(m+ n)

2n
m+n

√
xm+n BesselI

(
n−b
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
Gamma

(−b+m+2n
m+n

)
((m+ n)2)

b
m+n

+ 1
2 + (−1)

b
m+n (n− b)(m+ n)

2b
m+n

√
xm+n BesselI

(
b−n
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
c1Gamma

(
b+m
m+n

)
((m+ n)2)

n
m+n

+ 1
2
)

2c
√

(m+ n)2
√
xm+n

(
(−1)

n
m+n (m+ n)

2n
m+n BesselI

(
n−b
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
Gamma

(−b+m+2n
m+n

)
((m+ n)2)

b
m+n + (−1)

b
m+n (m+ n)

2b
m+n BesselI

(
b−n
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
c1Gamma

(
b+m
m+n

)
((m+ n)2)

n
m+n

)
y(x)

→
x−n
(√

a
√
c(m+ n)

√
xm+n BesselI

(
b+m
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
+ (n− b)

√
(m+ n)2 BesselI

(
b−n
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
+
√
a
√
c(m+ n)

√
xm+n BesselI

(
b−n
m+n

− 1, 2
√
a
√
c
√
xm+n√

(m+n)2

))
2c
√

(m+ n)2 BesselI
(

b−n
m+n

, 2
√
a
√
c
√
xm+n√

(m+n)2

)
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7.9 problem 184
7.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1622
7.9.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1628

Internal problem ID [3440]
Internal file name [OUTPUT/2933_Sunday_June_05_2022_08_47_24_AM_10079094/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 184.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Riccati]

xy′ + y − a xn(−y + x)2 = 2x

7.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = xna x2 − 2xnaxy + xna y2 + 2x− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(xna x2 − 2xnaxy + xna y2 + 2x− y) (b3 − a2)

x

− (xna x2 − 2xnaxy + xna y2 + 2x− y)2 a3
x2

−

(
xnnxa+ 2xnax− 2xnnay − 2xnay + xnna y2

x
+ 2

x

− xna x2 − 2xnaxy + xna y2 + 2x− y

x2

)
(xa2 + ya3 + a1)

− (−2xnax+ 2xnay − 1) (xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−xnanx y2a2 − 2xnanx y2a3 − 2xnanxya1 + 2xna x3a2 + 4xna x3a3 − 2xna x3b2 − xna x3b3 − 3xna y3a3 + xna x2a1 − 2xna x2b1 − xna y2a1 − 2xnan x2ya2 + xnan x2ya3 − 4x2na2x3ya3 + 6x2na2x2y2a3 − 4x2na2x y3a3 + xnan x2a1 + xnan y2a1 − 2xna x2ya2 − 9xna x2ya3 + 2xna x2yb2 + 8xnax y2a3 + xnax y2b3 + 2xnaxyb1 + xnan x3a2 + xnan y3a3 + x2na2x4a3 + x2na2y4a3 − 4xya3 − 2b2x2 + 2x2a2 + 4x2a3 − 2x2b3 + 2y2a3 − xb1 + ya1
x2

= 0

Setting the numerator to zero gives

(6E)

−xnanx y2a2 + 2xnanx y2a3 + 2xnanxya1 − 2xna x3a2
− 4xna x3a3 + 2xna x3b2 + xna x3b3 + 3xna y3a3 − xna x2a1
+ 2xna x2b1 + xna y2a1 + 2xnan x2ya2 − xnan x2ya3 + 4x2na2x3ya3
− 6x2na2x2y2a3 + 4x2na2x y3a3 − xnan x2a1 − xnan y2a1
+ 2xna x2ya2 + 9xna x2ya3 − 2xna x2yb2 − 8xnax y2a3 − xnax y2b3
− 2xnaxyb1 − xnan x3a2 − xnan y3a3 − x2na2x4a3 − x2na2y4a3
+ 4xya3 + 2b2x2 − 2x2a2 − 4x2a3 + 2x2b3 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, xn}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, x
n = v3}
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The above PDE (6E) now becomes

(7E)

−v23a
2v41a3 + 4v23a2v31v2a3 − 6v23a2v21v22a3 + 4v23a2v1v32a3

− v23a
2v42a3 − v3anv

3
1a2 + 2v3anv21v2a2 − v3anv1v

2
2a2 − v3anv

2
1v2a3

+ 2v3anv1v22a3 − v3anv
3
2a3 − v3anv

2
1a1 + 2v3anv1v2a1 − v3anv

2
2a1

− 2v3av31a2 + 2v3av21v2a2 − 4v3av31a3 + 9v3av21v2a3 − 8v3av1v22a3
+ 3v3av32a3 + 2v3av31b2 − 2v3av21v2b2 + v3av

3
1b3 − v3av1v

2
2b3

− v3av
2
1a1 + v3av

2
2a1 + 2v3av21b1 − 2v3av1v2b1 − 2v21a2

− 4v21a3 + 4v1v2a3 − 2v22a3 + 2b2v21 + 2v21b3 − v2a1 + v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

−v23a
2v41a3 + 4v23a2v31v2a3 + (−ana2 − 2aa2 − 4aa3 + 2ab2 + ab3) v31v3

− 6v23a2v21v22a3 + (2ana2 − ana3 + 2aa2 + 9aa3 − 2ab2) v21v2v3
+ (−ana1 − aa1 + 2ab1) v21v3 + (−2a2 − 4a3 + 2b2 + 2b3) v21
+ 4v23a2v1v32a3 + (−ana2 + 2ana3 − 8aa3 − ab3) v1v22v3
+ (2ana1 − 2ab1) v1v2v3 + 4v1v2a3 + v1b1 − v23a

2v42a3
+ (−ana3 + 3aa3) v32v3 + (−ana1 + aa1) v22v3 − 2v22a3 − v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
−2a3 = 0
4a3 = 0

−6a2a3 = 0
−a2a3 = 0
4a2a3 = 0

−2a2 − 4a3 + 2b2 + 2b3 = 0
−ana1 + aa1 = 0
−ana3 + 3aa3 = 0
2ana1 − 2ab1 = 0

−ana1 − aa1 + 2ab1 = 0
−ana2 + 2ana3 − 8aa3 − ab3 = 0

2ana2 − ana3 + 2aa2 + 9aa3 − 2ab2 = 0
−ana2 − 2aa2 − 4aa3 + 2ab2 + ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = (n+ 1) a2
b3 = −na2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = xn− ny + x
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= xn− ny + x−
(
xna x2 − 2xnaxy + xna y2 + 2x− y

x

)
(x)

= −xna x2 + 2xnaxy − xna y2 + xn− ny − x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−xna x2 + 2xnaxy − xna y2 + xn− ny − x+ y
dy

Which results in

S =
2arctan

(
−2xnay+2xn+1a−n+1√

−4x2n+2a2+4xnx2+na2−4xnnxa+4anxn+1+4xnax−4xn+1a−n2+2n−1

)
√
−4x2n+2a2 + 4xnx2+na2 − 4xnnxa+ 4an xn+1 + 4xnax− 4xn+1a− n2 + 2n− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xna x2 − 2xnaxy + xna y2 + 2x− y

x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (n+ 1)x− ny

x (x2+na− 2y xn+1a+ xna y2 − (−y + x) (n− 1))

Sy = − xn

−2ay x1+2n + (−n+ 1)xn+1 + x2na y2 + y (n− 1)xn + x2n+2a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
2 arctanh

(
−2a xny+2xn+1a−n+1

n−1

)
n− 1 = − ln (x) + c1

Which simplifies to

−
2 arctanh

(
−2a xny+2xn+1a−n+1

n−1

)
n− 1 = − ln (x) + c1

Which gives

y =

(
2xn+1a+ tanh

(
−n ln(x)

2 + nc1
2 + ln(x)

2 − c1
2

)
n− n− tanh

(
−n ln(x)

2 + nc1
2 + ln(x)

2 − c1
2

)
+ 1
)
x−n

2a
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Summary
The solution(s) found are the following

(1)y

=

(
2xn+1a+ tanh

(
−n ln(x)

2 + nc1
2 + ln(x)

2 − c1
2

)
n− n− tanh

(
−n ln(x)

2 + nc1
2 + ln(x)

2 − c1
2

)
+ 1
)
x−n

2a
Verification of solutions
y

=

(
2xn+1a+ tanh

(
−n ln(x)

2 + nc1
2 + ln(x)

2 − c1
2

)
n− n− tanh

(
−n ln(x)

2 + nc1
2 + ln(x)

2 − c1
2

)
+ 1
)
x−n

2a

Verified OK.

7.9.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= xna x2 − 2xnaxy + xna y2 + 2x− y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = xnax− 2xnay + xna y2

x
+ 2− y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = xna x2+2x
x

, f1(x) = −2xnax−1
x

and f2(x) = a xn

x
. Let

y = −u′

f2u

= −u′

a xnu
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 = −a xn

x2 + a xnn

x2

f1f2 =
(−2xnax− 1) a xn

x2

f 2
2 f0 =

a2x2n(xna x2 + 2x)
x3

Substituting the above terms back in equation (2) gives

a xnu′′(x)
x

−
(
−a xn

x2 + a xnn

x2 + (−2xnax− 1) a xn

x2

)
u′(x) + a2x2n(xna x2 + 2x)u(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e−
xa xn

n+1

(
c1 +

c2x
n

x

)

The above shows that

u′(x) = −e−
a xn+1
n+1 (−c2(n− 1)xn−1 + a(c1xn+1 + c2x

2n))
x

Using the above in (1) gives the solution

y = e−
a xn+1
n+1 (−c2(n− 1)xn−1 + a(c1xn+1 + c2x

2n))x−ne
a xn+1
n+1

a
(
c1 + c2xn

x

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −n+ 1 + x2ac3 + xnax

a (c3x+ xn)

Summary
The solution(s) found are the following

(1)y = −n+ 1 + x2ac3 + xnax

a (c3x+ xn)
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Verification of solutions

y = −n+ 1 + x2ac3 + xnax

a (c3x+ xn)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = ((x-y(x))*n+x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(x*diff(y(x),x) = 2*x-y(x)+a*x^n*(x-y(x))^2,y(x), singsol=all)� �

y(x) = ax xn − c1x
2 − n+ 1

a xn − c1x

1630



3 Solution by Mathematica
Time used: 1.064 (sec). Leaf size: 164� �
DSolve[x y'[x]==2 x -y[x]+a x^n(x-y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x−n
(
2axn+

√
(n−1)2+1 + 2ac1

√
(n− 1)2xn+1 −

(
n+

√
(n− 1)2 − 1

)
x
√

(n−1)2 − c1
(
−n+

√
(n− 1)2 + 1

)
(n− 1)

)
2a
(
x
√

(n−1)2 + c1
√

(n− 1)2
)

y(x) →
x−n
(
2axn+1 − n+

√
(n− 1)2 + 1

)
2a
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7.10 problem 185
7.10.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1632
7.10.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1635
7.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1638
7.10.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1643

Internal problem ID [3441]
Internal file name [OUTPUT/2934_Sunday_June_05_2022_08_47_26_AM_66463152/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 185.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

xy′ + (1− ay ln (x)) y = 0

7.10.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(ay ln (x)− 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

1632



Table 302: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x y2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2
dy

Which results in

S = − 1
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(ay ln (x)− 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x2y

Sy =
1

x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a ln (x)

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a ln (R)

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −a ln (R)
R

− a

R
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
xy

= −a ln (x)
x

− a

x
+ c1

Which simplifies to

ay ln (x)− 1 + (−c1x+ a) y
xy

= 0

Which gives

y = 1
a ln (x)− c1x+ a

Summary
The solution(s) found are the following

(1)y = 1
a ln (x)− c1x+ a

Verification of solutions

y = 1
a ln (x)− c1x+ a

Verified OK.

7.10.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(ay ln (x)− 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + a ln (x)

x
y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) =
a ln (x)

x
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
xy

+ a ln (x)
x

(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

+ a ln (x)
x

w′ = w

x
− a ln (x)

x
(7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = −a ln (x)
x

Hence the ode is

w′(x)− w(x)
x

= −a ln (x)
x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
−a ln (x)

x

)
d
dx

(w
x

)
=
(
1
x

)(
−a ln (x)

x

)
d
(w
x

)
=
(
−a ln (x)

x2

)
dx

Integrating gives

w

x
=
∫

−a ln (x)
x2 dx

w

x
= a ln (x)

x
+ a

x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = x

(
a ln (x)

x
+ a

x

)
+ c1x

which simplifies to

w(x) = a ln (x) + c1x+ a
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Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= a ln (x) + c1x+ a

Or

y = 1
a ln (x) + c1x+ a

Summary
The solution(s) found are the following

(1)y = 1
a ln (x) + c1x+ a

Verification of solutions

y = 1
a ln (x) + c1x+ a

Verified OK.

7.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy = (−(1− ay ln (x)) y) dx
((1− ay ln (x)) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = (1− ay ln (x)) y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
((1− ay ln (x)) y)

= −2ay ln (x) + 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−2ay ln (x) + 1)− (1))

= −2ay ln (x)
x
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

(1− ay ln (x)) y ((1)− (−2ay ln (x) + 1))

= − 2a ln (x)
ay ln (x)− 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (−2ay ln (x) + 1)
x ((1− ay ln (x)) y)− y (x)

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2 ((1− ay ln (x)) y)

= 1− ay ln (x)
y x2

And

N = µN

= 1
y2x2 (x)

= 1
x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

1− ay ln (x)
y x2

)
+
(

1
x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1− ay ln (x)
y x2 dx

(3)φ = a ln (x)
x

+ a

x
− 1

xy
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x y2
+ f ′(y)

1641



But equation (2) says that ∂φ
∂y

= 1
x y2

. Therefore equation (4) becomes

(5)1
x y2

= 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = a ln (x)
x

+ a

x
− 1

xy
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
a ln (x)

x
+ a

x
− 1

xy

The solution becomes

y = 1
a ln (x)− c1x+ a

Summary
The solution(s) found are the following

(1)y = 1
a ln (x)− c1x+ a

Verification of solutions

y = 1
a ln (x)− c1x+ a

Verified OK.
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7.10.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(ay ln (x)− 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2a ln (x)
x

− y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = a ln(x)

x
. Let

y = −u′

f2u

= −u′

a ln(x)u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −a ln (x)

x2 + a

x2

f1f2 = −a ln (x)
x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

a ln (x)u′′(x)
x

−
(
−2a ln (x)

x2 + a

x2

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = −c2 ln (x) + c1x− c2
x
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The above shows that

u′(x) = c2 ln (x)
x2

Using the above in (1) gives the solution

y = − c2
a (−c2 ln (x) + c1x− c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 1
a (−c3x+ ln (x) + 1)

Summary
The solution(s) found are the following

(1)y = 1
a (−c3x+ ln (x) + 1)

Verification of solutions

y = 1
a (−c3x+ ln (x) + 1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)+(1-a*y(x)*ln(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = 1
a ln (x) + c1x+ a
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3 Solution by Mathematica
Time used: 0.154 (sec). Leaf size: 22� �
DSolve[x y'[x]+(1-a y[x] Log[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
a log(x) + a+ c1x

y(x) → 0
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7.11 problem 186
7.11.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1646
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Internal problem ID [3442]
Internal file name [OUTPUT/2935_Sunday_June_05_2022_08_47_27_AM_14020405/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 186.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactByInspection",
"homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _Riccati]

xy′ − y −
(
x2 − y2

)
f(x) = 0

7.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x−
(
x2 − u(x)2 x2) f(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= f(x)

(
−u2 + 1

)
Where f(x) = f(x) and g(u) = −u2 + 1. Integrating both sides gives

1
−u2 + 1 du = f(x) dx∫ 1
−u2 + 1 du =

∫
f(x) dx

arctanh (u) =
∫

f(x) dx+ c2
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The solution is

arctanh (u(x))−
(∫

f(x) dx
)
− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

arctanh
(y
x

)
−
(∫

f(x) dx
)
− c2 = 0

arctanh
(y
x

)
−
(∫

f(x) dx
)
− c2 = 0

Summary
The solution(s) found are the following

(1)arctanh
(y
x

)
−
(∫

f(x) dx
)
− c2 = 0

Verification of solutions

arctanh
(y
x

)
−
(∫

f(x) dx
)
− c2 = 0

Verified OK.

7.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
y +

(
x2 − y2

)
f(x)

)
dx(

−y −
(
x2 − y2

)
f(x)

)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y −
(
x2 − y2

)
f(x)

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y −

(
x2 − y2

)
f(x)

)
= −1 + 2f(x) y

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2−y2

is an integrating factor.
Therefore by multiplying M = −y − (x2 − y2) f(x) and N = x by this integrating
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factor the ode becomes exact. The new M,N are

M = −y − (x2 − y2) f(x)
x2 − y2

N = x

x2 − y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x

x2 − y2

)
dy =

(
−−y − (x2 − y2) f(x)

x2 − y2

)
dx(

−y − (x2 − y2) f(x)
x2 − y2

)
dx+

(
x

x2 − y2

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −y − (x2 − y2) f(x)
x2 − y2

N(x, y) = x

x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y − (x2 − y2) f(x)

x2 − y2

)
= −x2 − y2

(x2 − y2)2

And

∂N

∂x
= ∂

∂x

(
x

x2 − y2

)
= −x2 − y2

(x2 − y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y − (x2 − y2) f(x)

x2 − y2
dx

(3)φ =
∫ x −y − (_a2 − y2) f(_a)

_a2 − y2
d_a+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

x2 − y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
x2−y2

. Therefore equation (4) becomes

(5)x

x2 − y2
= x

x2 − y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
∫ x −y − (_a2 − y2) f(_a)

_a2 − y2
d_a+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x −y − (_a2 − y2) f(_a)

_a2 − y2
d_a

Summary
The solution(s) found are the following

(1)
∫ x −y − (_a2 − y2) f(_a)

_a2 − y2
d_a = c1

Verification of solutions ∫ x −y − (_a2 − y2) f(_a)
_a2 − y2

d_a = c1

Verified OK.
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7.11.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −−f(x)x2 + f(x) y2 − y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = f(x)x− f(x) y2
x

+ y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = f(x)x, f1(x) = 1
x
and f2(x) = −f(x)

x
. Let

y = −u′

f2u

= −u′

−f(x)u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

f(x)
x2 − f ′(x)

x

f1f2 = −f(x)
x2

f 2
2 f0 =

f(x)3

x

Substituting the above terms back in equation (2) gives

−f(x)u′′(x)
x

+ f ′(x)u′(x)
x

+ f(x)3 u(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = −c1 sinh
(∫

f(x) dx
)
+ c2 cosh

(∫
f(x) dx

)
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The above shows that

u′(x) = f(x)
(
−c1 cosh

(∫
f(x) dx

)
+ c2 sinh

(∫
f(x) dx

))
Using the above in (1) gives the solution

y =
(
−c1 cosh

(∫
f(x) dx

)
+ c2 sinh

(∫
f(x) dx

))
x

−c1 sinh
(∫

f (x) dx
)
+ c2 cosh

(∫
f (x) dx

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(
c3 cosh

(∫
f(x) dx

)
− sinh

(∫
f(x) dx

))
x

c3 sinh
(∫

f (x) dx
)
− cosh

(∫
f (x) dx

)
Summary
The solution(s) found are the following

(1)y =
(
c3 cosh

(∫
f(x) dx

)
− sinh

(∫
f(x) dx

))
x

c3 sinh
(∫

f (x) dx
)
− cosh

(∫
f (x) dx

)
Verification of solutions

y =
(
c3 cosh

(∫
f(x) dx

)
− sinh

(∫
f(x) dx

))
x

c3 sinh
(∫

f (x) dx
)
− cosh

(∫
f (x) dx

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 13� �
dsolve(x*diff(y(x),x) = y(x)+(x^2-y(x)^2)*f(x),y(x), singsol=all)� �

y(x) = tanh
(∫

f(x) dx+ c1

)
x

3 Solution by Mathematica
Time used: 0.384 (sec). Leaf size: 65� �
DSolve[x y'[x]==y[x]+(x^2-y[x]^2)f[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x− x exp

(
2
(∫ x

1 −f(K[1])dK[1] + c1
))

1 + exp
(
2
(∫ x

1 −f(K[1])dK[1] + c1
))

y(x) → −x
y(x) → x
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Internal problem ID [3443]
Internal file name [OUTPUT/2936_Sunday_June_05_2022_08_47_29_AM_11910161/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 187.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − y
(
y2 + 1

)
= 0

7.12.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(y2 + 1)
x

Where f(x) = 1
x
and g(y) = y(y2 + 1). Integrating both sides gives

1
y (y2 + 1) dy = 1

x
dx
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∫ 1
y (y2 + 1) dy =

∫ 1
x
dx

− ln (y2 + 1)
2 + ln (y) = ln (x) + c1

Raising both side to exponential gives

e−
ln
(
y2+1

)
2 +ln(y) = eln(x)+c1

Which simplifies to
y√

y2 + 1
= c2x

Summary
The solution(s) found are the following

(1)y = c2x

√
− 1
c22x

2 − 1

Figure 256: Slope field plot
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Verification of solutions

y = c2x

√
− 1
c22x

2 − 1

Verified OK.

7.12.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x
(
u(x)2 x2 + 1

)
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= u3x

Where f(x) = x and g(u) = u3. Integrating both sides gives

1
u3 du = x dx∫ 1
u3 du =

∫
x dx

− 1
2u2 = x2

2 + c2

The solution is

− 1
2u (x)2

− x2

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− x2

2y2 − x2

2 − c2 = 0

− x2

2y2 − x2

2 − c2 = 0

Summary
The solution(s) found are the following

(1)− x2

2y2 − x2

2 − c2 = 0
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Figure 257: Slope field plot

Verification of solutions

− x2

2y2 − x2

2 − c2 = 0

Verified OK.

7.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(y2 + 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 304: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y2 + 1)
x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y2 + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R2 + 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R2 + 1)
2 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = − ln (y2 + 1)
2 + ln (y) + c1

Which simplifies to

ln (x) = − ln (y2 + 1)
2 + ln (y) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
y2+1

)
x

dS
dR

= 1
R(R2+1)

R = y

S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) = − ln (y2 + 1)
2 + ln (y) + c1
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Figure 258: Slope field plot

Verification of solutions

ln (x) = − ln (y2 + 1)
2 + ln (y) + c1

Verified OK.

7.12.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(y2 + 1)
x

This is a Bernoulli ODE.
y′ = 1

x
y + 1

x
y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) =
1
x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 1
x y2

+ 1
x

(4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = w(x)

x
+ 1

x

w′ = −2w
x

− 2
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = −2
x
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Hence the ode is

w′(x) + 2w(x)
x

= −2
x

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ)

(
−2
x

)
d
dx
(
x2w

)
=
(
x2)(−2

x

)
d
(
x2w

)
= (−2x) dx

Integrating gives

x2w =
∫

−2x dx

x2w = −x2 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = −1 + c1
x2

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −1 + c1
x2

Solving for y gives

y(x) = x√
−x2 + c1

y(x) = − x√
−x2 + c1

Summary
The solution(s) found are the following

(1)y = x√
−x2 + c1

(2)y = − x√
−x2 + c1
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Figure 259: Slope field plot

Verification of solutions

y = x√
−x2 + c1

Verified OK.

y = − x√
−x2 + c1

Verified OK.

7.12.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

1665



Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
y (y2 + 1)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

y (y2 + 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
y (y2 + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

1666



And
∂N

∂x
= ∂

∂x

(
1

y (y2 + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y(y2+1) . Therefore equation (4) becomes

(5)1
y (y2 + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y (y2 + 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y (y2 + 1)

)
dy

f(y) = − ln (y2 + 1)
2 + ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y2 + 1)
2 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y2 + 1)
2 + ln (y)

Summary
The solution(s) found are the following

(1)− ln (x)− ln (y2 + 1)
2 + ln (y) = c1

Figure 260: Slope field plot

Verification of solutions

− ln (x)− ln (y2 + 1)
2 + ln (y) = c1

Verified OK.
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7.12.6 Maple step by step solution

Let’s solve
xy′ − y(y2 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(y2+1) =
1
x

• Integrate both sides with respect to x∫
y′

y(y2+1)dx =
∫ 1

x
dx+ c1

• Evaluate integral

− ln
(
y2+1

)
2 + ln (y) = ln (x) + c1

• Solve for y{
y = x ec1√

−x2(ec1 )2+1
, y = − x ec1√

−x2(ec1 )2+1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(x*diff(y(x),x) = y(x)*(1+y(x)^2),y(x), singsol=all)� �

y(x) = x√
−x2 + c1

y(x) = − x√
−x2 + c1
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3 Solution by Mathematica
Time used: 0.681 (sec). Leaf size: 110� �
DSolve[x y'[x]==y[x](1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − iec1x√
−1 + e2c1x2

y(x) → iec1x√
−1 + e2c1x2

y(x) → 0
y(x) → −i
y(x) → i

y(x) → − ix√
x2

y(x) → ix√
x2

1670



7.13 problem 188
7.13.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1671
7.13.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1675
7.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1679

Internal problem ID [3444]
Internal file name [OUTPUT/2937_Sunday_June_05_2022_08_47_30_AM_48384149/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 188.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xy′ + y
(
1− y2x

)
= 0

7.13.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(x y2 − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 307: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3x2dy

Which results in

S = − 1
2y2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(x y2 − 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y2x3

Sy =
1

y3x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
2y2x2 = −1

x
+ c1

Which simplifies to

− 1
2y2x2 = −1

x
+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
x y2−1

)
x

dS
dR

= 1
R2

R = x

S = − 1
2y2x2

Summary
The solution(s) found are the following

(1)− 1
2y2x2 = −1

x
+ c1
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Figure 261: Slope field plot

Verification of solutions

− 1
2y2x2 = −1

x
+ c1

Verified OK.

7.13.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(x y2 − 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = 1
n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
x y2

+ 1 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x)

x
+ 1

w′ = 2w
x

− 2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −2
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Hence the ode is

w′(x)− 2w(x)
x

= −2

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ) (−2)

d
dx

( w
x2

)
=
(

1
x2

)
(−2)

d
( w
x2

)
=
(
− 2
x2

)
dx

Integrating gives

w

x2 =
∫

− 2
x2 dx

w

x2 = 2
x
+ c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = c1x
2 + 2x

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= c1x
2 + 2x

Solving for y gives

y(x) = 1√
x (c1x+ 2)

y(x) = − 1√
x (c1x+ 2)
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Summary
The solution(s) found are the following

(1)y = 1√
x (c1x+ 2)

(2)y = − 1√
x (c1x+ 2)

Figure 262: Slope field plot

Verification of solutions

y = 1√
x (c1x+ 2)

Verified OK.

y = − 1√
x (c1x+ 2)

Verified OK.
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7.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−y
(
−x y2 + 1

))
dx(

y
(
−x y2 + 1

))
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
−x y2 + 1

)
N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y
(
−x y2 + 1

))
= −3x y2 + 1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
−3x y2 + 1

)
− (1)

)
= −3y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (x y2 − 1)
(
(1)−

(
−3x y2 + 1

))
= − 3xy

x y2 − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (−3x y2 + 1)
x (y (−x y2 + 1))− y (x)

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt

The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(
y
(
−x y2 + 1

))
= −x y2 + 1

y2x3

And

N = µN

= 1
x3y3

(x)

= 1
y3x2

1681



A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−x y2 + 1
y2x3

)
+
(

1
y3x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x y2 + 1

y2x3 dx

(3)φ = 2x y2 − 1
2y2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

xy
− 2x y2 − 1

y3x2 + f ′(y)

= 1
y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y3x2 . Therefore equation (4) becomes

(5)1
y3x2 = 1

y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2x y2 − 1
2y2x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
2x y2 − 1
2y2x2

Summary
The solution(s) found are the following

(1)2y2x− 1
2y2x2 = c1

Figure 263: Slope field plot
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Verification of solutions

2y2x− 1
2y2x2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x)+(1-x*y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) = 1√
x (c1x+ 2)

y(x) = − 1√
x (c1x+ 2)

3 Solution by Mathematica
Time used: 0.423 (sec). Leaf size: 40� �
DSolve[x y'[x]+(1-x y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x(2 + c1x)

y(x) → 1√
x(2 + c1x)

y(x) → 0
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7.14 problem 189
7.14.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1685
7.14.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1688
7.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1691

Internal problem ID [3445]
Internal file name [OUTPUT/2938_Sunday_June_05_2022_08_47_32_AM_8566915/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 189.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

xy′ + y − a
(
x2 + 1

)
y3 = 0

7.14.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(a x2y2 + a y2 − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 309: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3x2dy

Which results in

S = − 1
2y2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(a x2y2 + a y2 − 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y2x3

Sy =
1

y3x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (x2 + 1) a

x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (R2 + 1) a

R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a

(
− 1
2R2 + ln (R)

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
2y2x2 = a

(
− 1
2x2 + ln (x)

)
+ c1

Which simplifies to

− 1
2y2x2 = a

(
− 1
2x2 + ln (x)

)
+ c1

Summary
The solution(s) found are the following

(1)− 1
2y2x2 = a

(
− 1
2x2 + ln (x)

)
+ c1

Verification of solutions

− 1
2y2x2 = a

(
− 1
2x2 + ln (x)

)
+ c1

Verified OK.

7.14.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(a x2y2 + a y2 − 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + x2a+ a

x
y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) =
x2a+ a

x
n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
x y2

+ x2a+ a

x
(4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x)

x
+ x2a+ a

x

w′ = 2w
x

− 2(x2a+ a)
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −2
x

q(x) = −2(x2 + 1) a
x

Hence the ode is

w′(x)− 2w(x)
x

= −2(x2 + 1) a
x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ)

(
−2(x2 + 1) a

x

)
d
dx

( w
x2

)
=
(

1
x2

)(
−2(x2 + 1) a

x

)
d
( w
x2

)
=
(
−2(x2 + 1) a

x3

)
dx

Integrating gives

w

x2 =
∫

−2(x2 + 1) a
x3 dx

w

x2 = a

x2 − 2a ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = x2
( a

x2 − 2a ln (x)
)
+ c1x

2

which simplifies to

w(x) = −2a x2 ln (x) + c1x
2 + a

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −2a x2 ln (x) + c1x
2 + a
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Solving for y gives

y(x) = 1√
−2a x2 ln (x) + c1x2 + a

y(x) = − 1√
−2a x2 ln (x) + c1x2 + a

Summary
The solution(s) found are the following

(1)y = 1√
−2a x2 ln (x) + c1x2 + a

(2)y = − 1√
−2a x2 ln (x) + c1x2 + a

Verification of solutions

y = 1√
−2a x2 ln (x) + c1x2 + a

Verified OK.

y = − 1√
−2a x2 ln (x) + c1x2 + a

Verified OK.

7.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−y + a

(
x2 + 1

)
y3
)
dx(

y − a
(
x2 + 1

)
y3
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − a
(
x2 + 1

)
y3

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y − a

(
x2 + 1

)
y3
)

= 1− 3y2
(
x2 + 1

)
a

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
1− 3y2

(
x2 + 1

)
a
)
− (1)

)
= −3y2(x2 + 1) a

x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y − a (x2 + 1) y3
(
(1)−

(
1− 3y2

(
x2 + 1

)
a
))

= − 3y(x2 + 1) a
−1 + y2 (x2 + 1) a

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (1− 3y2(x2 + 1) a)
x (y − a (x2 + 1) y3)− y (x)

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(
y − a

(
x2 + 1

)
y3
)

= 1 + (−x2 − 1) a y2
y2x3

And

N = µN

= 1
x3y3

(x)

= 1
y3x2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

1 + (−x2 − 1) a y2
y2x3

)
+
(

1
y3x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1 + (−x2 − 1) a y2
y2x3 dx

(3)φ = a

2x2 − 1
2y2x2 − a ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y3x2 . Therefore equation (4) becomes

(5)1
y3x2 = 1

y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = a

2x2 − 1
2y2x2 − a ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
a

2x2 − 1
2y2x2 − a ln (x)

Summary
The solution(s) found are the following

(1)a

2x2 − 1
2y2x2 − a ln (x) = c1
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Verification of solutions

a

2x2 − 1
2y2x2 − a ln (x) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 43� �
dsolve(x*diff(y(x),x)+y(x) = a*(x^2+1)*y(x)^3,y(x), singsol=all)� �

y(x) = 1√
−2x2 ln (x) a+ c1x2 + a

y(x) = − 1√
−2x2 ln (x) a+ c1x2 + a

3 Solution by Mathematica
Time used: 0.545 (sec). Leaf size: 56� �
DSolve[x y'[x]+y[x]==a(1+x^2)y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
−2ax2 log(x) + a+ c1x2

y(x) → 1√
−2ax2 log(x) + a+ c1x2

y(x) → 0
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7.15 problem 190
7.15.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1697
7.15.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1700

Internal problem ID [3446]
Internal file name [OUTPUT/2939_Sunday_June_05_2022_08_47_33_AM_36354524/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 190.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

xy′ − ya− b
(
x2 + 1

)
y3 = 0

7.15.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(b x2y2 + b y2 + a)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 311: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3e−2a ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3e−2a ln(x)dy

Which results in

S = −e2a ln(x)
2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(b x2y2 + b y2 + a)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −a x−1+2a

y2

Sy =
x2a

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x−1+2a(x2 + 1

)
b (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R−1+2a(R2 + 1

)
b
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2ab(R2a+ a+ 1)
2a (1 + a) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2a

2y2 = x2ab(x2a+ a+ 1)
2a (1 + a) + c1

Which simplifies to

−x2a

2y2 = x2ab(x2a+ a+ 1)
2a (1 + a) + c1

Summary
The solution(s) found are the following

(1)−x2a

2y2 = x2ab(x2a+ a+ 1)
2a (1 + a) + c1

Verification of solutions

−x2a

2y2 = x2ab(x2a+ a+ 1)
2a (1 + a) + c1

Verified OK.

7.15.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(b x2y2 + b y2 + a)
x

This is a Bernoulli ODE.
y′ = a

x
y + b x2 + b

x
y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
a

x

f1(x) =
b x2 + b

x
n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= a

x y2
+ b x2 + b

x
(4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = aw(x)

x
+ b x2 + b

x

w′ = −2aw
x

− 2(b x2 + b)
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 2a
x

q(x) = −2(x2 + 1) b
x

Hence the ode is

w′(x) + 2aw(x)
x

= −2(x2 + 1) b
x

The integrating factor µ is

µ = e
∫ 2a

x
dx

= e2a ln(x)

Which simplifies to
µ = x2a

The ode becomes

d
dx(µw) = (µ)

(
−2(x2 + 1) b

x

)
d
dx
(
x2aw

)
=
(
x2a)(−2(x2 + 1) b

x

)
d
(
x2aw

)
=
(
−2x−1+2a(x2 + 1

)
b
)
dx

Integrating gives

x2aw =
∫

−2x−1+2a(x2 + 1
)
b dx

x2aw = −x2ab(x2a+ a+ 1)
a (1 + a) + c1

Dividing both sides by the integrating factor µ = x2a results in

w(x) = −x−2ax2ab(x2a+ a+ 1)
a (1 + a) + c1x

−2a

which simplifies to

w(x) = −b(x2a+ a+ 1)
a (1 + a) + c1x

−2a
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Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −b(x2a+ a+ 1)
a (1 + a) + c1x

−2a

Solving for y gives

y(x) =
√

(c1x−2a (1 + a) a− (1 + (x2 + 1) a) b) (1 + a) a
c1x−2a (1 + a) a− (1 + (x2 + 1) a) b

y(x) = −
√

(c1x−2a (1 + a) a− (1 + (x2 + 1) a) b) (1 + a) a
c1x−2a (1 + a) a− (1 + (x2 + 1) a) b

Summary
The solution(s) found are the following

(1)y =
√

(c1x−2a (1 + a) a− (1 + (x2 + 1) a) b) (1 + a) a
c1x−2a (1 + a) a− (1 + (x2 + 1) a) b

(2)y = −
√

(c1x−2a (1 + a) a− (1 + (x2 + 1) a) b) (1 + a) a
c1x−2a (1 + a) a− (1 + (x2 + 1) a) b

Verification of solutions

y =
√

(c1x−2a (1 + a) a− (1 + (x2 + 1) a) b) (1 + a) a
c1x−2a (1 + a) a− (1 + (x2 + 1) a) b

Verified OK.

y = −
√

(c1x−2a (1 + a) a− (1 + (x2 + 1) a) b) (1 + a) a
c1x−2a (1 + a) a− (1 + (x2 + 1) a) b

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 150� �
dsolve(x*diff(y(x),x) = a*y(x)+b*(x^2+1)*y(x)^3,y(x), singsol=all)� �

y(x) = −
√

x2a (−ab x2+2a + (a+ 1) (c1a− b x2a)) a (a+ 1)
−ab x2+2a + (a+ 1) (c1a− b x2a)

y(x) =
√

x2a (−ab x2+2a + (a+ 1) (c1a− b x2a)) a (a+ 1)
−ab x2+2a + (a+ 1) (c1a− b x2a)

3 Solution by Mathematica
Time used: 3.908 (sec). Leaf size: 108� �
DSolve[x y'[x]==a y[x]+b(1+x^2)y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − i
√
a
√
a+ 1xa√

bx2a (ax2 + a+ 1)− a(a+ 1)c1

y(x) → i
√
a
√
a+ 1xa√

bx2a (ax2 + a+ 1)− a(a+ 1)c1
y(x) → 0
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7.16 problem 191
7.16.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1705
7.16.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1708

Internal problem ID [3447]
Internal file name [OUTPUT/2940_Sunday_June_05_2022_08_47_36_AM_32349667/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 191.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xy′ + 2y − a x2kyk = 0

7.16.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y + a x2kyk

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 313: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = yke2(k−1) ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

yke2(k−1) ln(x)dy

Which results in

S = −y y−ke(−2k+2) ln(x)

k − 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y + a x2kyk

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x1−2ky−k+1

Sy = y−kx−2k+2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ax (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = aR2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y−k+1x−2k+2

k − 1 = x2a

2 + c1

Which simplifies to

−y−k+1x−2k+2

k − 1 = x2a

2 + c1

Which gives

y = e−
2k ln(x)−2 ln(x)+ln

(
− 1

2x2ak+1
2x2a−c1k+c1

)
k−1

Summary
The solution(s) found are the following

(1)y = e−
2k ln(x)−2 ln(x)+ln

(
− 1

2x2ak+1
2x2a−c1k+c1

)
k−1

Verification of solutions

y = e−
2k ln(x)−2 ln(x)+ln

(
− 1

2x2ak+1
2x2a−c1k+c1

)
k−1

Verified OK.

7.16.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −2y + a x2kyk

x

This is a Bernoulli ODE.
y′ = −2

x
y + a x2k

x
yk (1)

1708



The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −2
x

f1(x) =
a x2k

x
n = k

Dividing both sides of ODE (1) by yn = yk gives

y′y−k = −2y−k+1

x
+ a x2k

x
(4)

Let

w = y1−n

= y−k+1 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = (−k + 1) y−ky′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
−k + 1 = −2w(x)

x
+ a x2k

x

w′ = −2(−k + 1)w
x

+ (−k + 1) a x2k

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −2k − 2
x

q(x) = −a x−1+2k(k − 1)

Hence the ode is

w′(x)− (2k − 2)w(x)
x

= −a x−1+2k(k − 1)

The integrating factor µ is

µ = e
∫
− 2k−2

x
dx

= e(−2k+2) ln(x)

Which simplifies to
µ = x−2k+2

The ode becomes
d
dx(µw) = (µ)

(
−a x−1+2k(k − 1)

)
d
dx
(
x−2k+2w

)
=
(
x−2k+2) (−a x−1+2k(k − 1)

)
d
(
x−2k+2w

)
= (−(k − 1) ax) dx

Integrating gives

x−2k+2w =
∫

−(k − 1) ax dx

x−2k+2w = −x2a(k − 1)
2 + c1

Dividing both sides by the integrating factor µ = x−2k+2 results in

w(x) = −x2k−2x2a(k − 1)
2 + c1x

2k−2

which simplifies to

w(x) = −x2k(x2a(k − 1)− 2c1)
2x2

Replacing w in the above by y−k+1 using equation (5) gives the final solution.

y−k+1 = −x2k(x2a(k − 1)− 2c1)
2x2
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Summary
The solution(s) found are the following

(1)y−k+1 = −x2k(x2a(k − 1)− 2c1)
2x2

Verification of solutions

y−k+1 = −x2k(x2a(k − 1)− 2c1)
2x2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve(x*diff(y(x),x)+2*y(x) = a*x^(2*k)*y(x)^k,y(x), singsol=all)� �

y(x) =
(
−a(k − 1)x2 + 2c1

x2

)− 1
k−1

x− 2k
k−12

1
k−1

3 Solution by Mathematica
Time used: 16.14 (sec). Leaf size: 45� �
DSolve[x y'[x]+2 y[x]==a x^(2 k)y[x]^k,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
1
2ax

2k − 1
2akx

2k + c1x
2k−2

)
1

1−k
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7.17 problem 192
7.17.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1712
7.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1714
7.17.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1718
7.17.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1721
7.17.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1725

Internal problem ID [3448]
Internal file name [OUTPUT/2941_Sunday_June_05_2022_08_47_37_AM_6530841/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 192.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − 4y + 4√y = 0

7.17.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
4y − 4√y

x

Where f(x) = 1
x
and g(y) = 4y − 4√y. Integrating both sides gives

1
4y − 4√y

dy = 1
x
dx

∫ 1
4y − 4√y

dy =
∫ 1

x
dx
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−
arctanh

(√
y
)

2 + ln (y − 1)
4 = ln (x) + c1

The solution is

−
arctanh

(√
y
)

2 + ln (y − 1)
4 − ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)−
arctanh

(√
y
)

2 + ln (y − 1)
4 − ln (x)− c1 = 0

Figure 264: Slope field plot

Verification of solutions

−
arctanh

(√
y
)

2 + ln (y − 1)
4 − ln (x)− c1 = 0

Verified OK.
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7.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
4y − 4√y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 315: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
4y − 4√y

x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4y − 4√y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4R− 4
√
R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
arctanh

(√
R
)

2 + ln (−1 +R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = −
arctanh

(√
y
)

2 + ln (y − 1)
4 + c1

Which simplifies to

ln (x) = −
arctanh

(√
y
)

2 + ln (y − 1)
4 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4y−4√y

x
dS
dR

= 1
4R−4

√
R

R = y

S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) = −
arctanh

(√
y
)

2 + ln (y − 1)
4 + c1
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Figure 265: Slope field plot

Verification of solutions

ln (x) = −
arctanh

(√
y
)

2 + ln (y − 1)
4 + c1

Verified OK.

7.17.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

=
4y − 4√y

x

This is a Bernoulli ODE.
y′ = 4

x
y − 4

x

√
y (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
4
x

f1(x) = −4
x

n = 1
2

Dividing both sides of ODE (1) by yn = √
y gives

y′
1
√
y
=

4√y

x
− 4

x
(4)

Let

w = y1−n

= √
y (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 1
2√y

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

2w′(x) = 4w(x)
x

− 4
x

w′ = 2w
x

− 2
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −2
x
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Hence the ode is

w′(x)− 2w(x)
x

= −2
x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ)

(
−2
x

)
d
dx

( w
x2

)
=
(

1
x2

)(
−2
x

)
d
( w
x2

)
=
(
− 2
x3

)
dx

Integrating gives

w

x2 =
∫

− 2
x3 dx

w

x2 = 1
x2 + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = c1x
2 + 1

Replacing w in the above by √
y using equation (5) gives the final solution.

√
y = c1x

2 + 1

Summary
The solution(s) found are the following

(1)√
y = c1x

2 + 1

1720



Figure 266: Slope field plot

Verification of solutions
√
y = c1x

2 + 1

Verified OK.

7.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

4y − 4√y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

4y − 4√y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
4y − 4√y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

4y − 4√y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
4y−4√y

. Therefore equation (4) becomes

(5)1
4y − 4√y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
4
(
−y +√

y
)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
4y − 4√y

)
dy

f(y) = −
arctanh

(√
y
)

2 + ln (y − 1)
4 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)−
arctanh

(√
y
)

2 + ln (y − 1)
4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)−
arctanh

(√
y
)

2 + ln (y − 1)
4

Summary
The solution(s) found are the following

(1)−
arctanh

(√
y
)

2 + ln (y − 1)
4 − ln (x) = c1

Figure 267: Slope field plot

Verification of solutions

−
arctanh

(√
y
)

2 + ln (y − 1)
4 − ln (x) = c1

Verified OK.
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7.17.5 Maple step by step solution

Let’s solve
xy′ − 4y + 4√y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

4y−4√y
= 1

x

• Integrate both sides with respect to x∫
y′

4y−4√y
dx =

∫ 1
x
dx+ c1

• Evaluate integral

−arctanh
(√

y
)

2 + ln(y−1)
4 = ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x) = 4*y(x)-4*sqrt(y(x)),y(x), singsol=all)� �

−c1x
2 +

√
y (x)− 1 = 0
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3 Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 31� �
DSolve[x y'[x]==4(y[x]-Sqrt[y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
1 + e

c1
2 x2
)

2

y(x) → 0
y(x) → 1
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7.18 problem 193
7.18.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1727
7.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1729
7.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1732
7.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1738

Internal problem ID [3449]
Internal file name [OUTPUT/2942_Sunday_June_05_2022_08_47_38_AM_22798255/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 193.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ + 2y −
√
y2 + 1 = 0

7.18.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −2y +
√
y2 + 1

x

Where f(x) = 1
x
and g(y) = −2y +

√
y2 + 1. Integrating both sides gives

1
−2y +

√
y2 + 1

dy = 1
x
dx∫ 1

−2y +
√
y2 + 1

dy =
∫ 1

x
dx∫ y 1

−2_a+
√
_a2 + 1

d_a = ln (x) + c1
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Which results in ∫ y 1
−2_a+

√
_a2 + 1

d_a = ln (x) + c1

The solution is ∫ y 1
−2_a+

√
_a2 + 1

d_a− ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1

−2_a+
√
_a2 + 1

d_a− ln (x)− c1 = 0

Figure 268: Slope field plot

Verification of solutions∫ y 1
−2_a+

√
_a2 + 1

d_a− ln (x)− c1 = 0

Verified OK.
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7.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y +
√
y2 + 1

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 318: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y +
√
y2 + 1

x

1730



Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

−2y +
√
y2 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

−2R +
√
R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 1

−2R +
√
R2 + 1

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y 1

−2_a+
√
_a2 + 1

d_a+ c1

Which simplifies to

ln (x) =
∫ y 1

−2_a+
√
_a2 + 1

d_a+ c1

This results in

ln (x) =
∫ y 1

−2_a+
√
_a2 + 1

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y 1

−2_a+
√
_a2 + 1

d_a+ c1
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Figure 269: Slope field plot

Verification of solutions

ln (x) =
∫ y 1

−2_a+
√
_a2 + 1

d_a+ c1

Verified OK.

7.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−2y +
√
y2 + 1

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

−2y +
√
y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
−2y +

√
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

−2y +
√
y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−2y+

√
y2+1

. Therefore equation (4) becomes

(5)1
−2y +

√
y2 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
−2y +

√
y2 + 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
−2y +

√
y2 + 1

)
dy

f(y) = −

√
3
√

9
(
y −

√
3
3

)2
+ 6

√
3
(
y −

√
3
3

)
+ 12

18

− arcsinh (y)
3 +

arctanh

 3

 8
3+

2
√
3
(
y−

√
3

3

)
3

√
3

4
√

9
(
y−

√
3

3

)2
+6

√
3
(
y−

√
3
3

)
+12


3

+

√
3
√

9
(
y +

√
3
3

)2
− 6

√
3
(
y +

√
3
3

)
+ 12

18

−

arctanh

 3

 8
3−

2
√
3
(
y+

√
3

3

)
3

√
3

4
√

9
(
y+

√
3

3

)2
−6

√
3
(
y+

√
3

3

)
+12


3 − ln (3y2 − 1)

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)−

√
3
√

9
(
y −

√
3
3

)2
+ 6

√
3
(
y −

√
3
3

)
+ 12

18

− arcsinh (y)
3 +

arctanh

 3

 8
3+

2
√
3
(
y−

√
3

3

)
3

√
3

4
√

9
(
y−

√
3

3

)2
+6

√
3
(
y−

√
3

3

)
+12


3

+

√
3
√

9
(
y +

√
3
3

)2
− 6

√
3
(
y +

√
3
3

)
+ 12

18

−

arctanh

 3

 8
3−

2
√
3
(
y+

√
3

3

)
3

√
3

4
√

9
(
y+

√
3

3

)2
−6

√
3
(
y+

√
3

3

)
+12


3 − ln (3y2 − 1)

3 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)−

√
3
√
9
(
y −

√
3
3

)2
+ 6

√
3
(
y −

√
3
3

)
+ 12

18

− arcsinh (y)
3 +

arctanh

 3

 8
3+

2
√

3
(
y−

√
3

3

)
3

√
3

4
√

9
(
y−

√
3
3

)2
+6

√
3
(
y−

√
3

3

)
+12


3

+

√
3
√

9
(
y +

√
3
3

)2
− 6

√
3
(
y +

√
3
3

)
+ 12

18

−

arctanh

 3

 8
3−

2
√
3
(
y+

√
3

3

)
3

√
3

4
√

9
(
y+

√
3

3

)2
−6

√
3
(
y+

√
3

3

)
+12


3 − ln (3y2 − 1)

3

Summary
The solution(s) found are the following

(1)

− ln (x)−

√
3
√
9
(
y −

√
3
3

)2
+ 6

√
3
(
y −

√
3
3

)
+ 12

18

− arcsinh (y)
3 +

arctanh

 3

 8
3+

2
√
3
(
y−

√
3

3

)
3

√
3

4
√

9
(
y−

√
3
3

)2
+6

√
3
(
y−

√
3

3

)
+12


3

+

√
3
√

9
(
y +

√
3
3

)2
− 6

√
3
(
y +

√
3
3

)
+ 12

18

−

arctanh

 3

 8
3−

2
√
3
(
y+

√
3

3

)
3

√
3

4
√

9
(
y+

√
3

3

)2
−6

√
3
(
y+

√
3

3

)
+12


3 − ln (3y2 − 1)

3 = c1
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Figure 270: Slope field plot

Verification of solutions

− ln (x)−

√
3
√
9
(
y −

√
3
3

)2
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3 − ln (3y2 − 1)

3 = c1

Verified OK.
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7.18.4 Maple step by step solution

Let’s solve
xy′ + 2y −

√
y2 + 1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−2y+
√

y2+1
= 1

x

• Integrate both sides with respect to x∫
y′

−2y+
√

y2+1
dx =

∫ 1
x
dx+ c1

• Evaluate integral

−
√
3
√

9
(
y−

√
3

3

)2
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√
3
(
y−

√
3

3

)
+12

18 − arcsinh(y)
3 +
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√
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3
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√
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√
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√
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√
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√
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 8
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2
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3
(
y+

√
3
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)
3

√
3

4

√
9
(
y+

√
3

3

)2
−6

√
3
(
y+

√
3

3

)
+12


3 − ln

(
3y2−1

)
3 = ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x)+2*y(x) = sqrt(1+y(x)^2),y(x), singsol=all)� �

ln (x)−
(∫ y(x) 1

−2_a+
√
_a2 + 1

d_a
)

+ c1 = 0
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3 Solution by Mathematica
Time used: 60.221 (sec). Leaf size: 2509� �
DSolve[x y'[x]+2 y[x]==Sqrt[1+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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7.19 problem 194
7.19.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1740

Internal problem ID [3450]
Internal file name [OUTPUT/2943_Sunday_June_05_2022_08_47_40_AM_78071544/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 194.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ − y −
√
y2 + x2 = 0

7.19.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y +
√
x2 + y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y +

√
x2 + y2

)
(b3 − a2)

x
−
(
y +

√
x2 + y2

)2
a3

x2

−
(

1√
x2 + y2

− y +
√
x2 + y2

x2

)
(xa2 + ya3 + a1)

−

(
1 + y√

x2+y2

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−(x2 + y2)
3
2 a3 + x3a2 − x3b3 + 2x2ya3 + x2yb2 + y3a3 +

√
x2 + y2 xb1 −

√
x2 + y2 ya1 + xyb1 − a1y

2
√
x2 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−
(
x2 + y2

) 3
2 a3 − x3a2 + x3b3 − 2x2ya3 − x2yb2 − y3a3

−
√

x2 + y2 xb1 +
√

x2 + y2 ya1 − xyb1 + a1y
2 = 0

Simplifying the above gives

(6E)−
(
x2 + y2

) 3
2 a3 +

(
x2 + y2

)
xb3 −

(
x2 + y2

)
ya3 − x3a2 − x2ya3 − x2yb2

− x y2b3 +
(
x2 + y2

)
a1 −

√
x2 + y2 xb1 +

√
x2 + y2 ya1 − x2a1 − xyb1 = 0

Since the PDE has radicals, simplifying gives

−x3a2 + x3b3 −
√

x2 + y2 a3x
2 − 2x2ya3 − x2yb2 −

√
x2 + y2 a3y

2

− y3a3 −
√
x2 + y2 xb1 − xyb1 +

√
x2 + y2 ya1 + a1y

2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−v31a2 − 2v21v2a3 − v3a3v
2
1 − v32a3 − v3a3v

2
2 − v21v2b2

+ v31b3 + a1v
2
2 + v3v2a1 − v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(b3 − a2) v31 + (−2a3 − b2) v21v2 − v3a3v
2
1 − v1v2b1

− v3v1b1 − v32a3 − v3a3v
2
2 + a1v

2
2 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−a3 = 0
−b1 = 0

−2a3 − b2 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y +

√
x2 + y2

x

)
(x)

= −
√

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
x2 + y2

dy

Which results in

S = − ln
(
y +

√
x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y +
√
x2 + y2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x√
x2 + y2

(
y +

√
x2 + y2

)
Sy = − 1√

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2
(
y
√
x2 + y2 + x2 + y2

)
x
√
x2 + y2

(
y +

√
x2 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
y +

√
y2 + x2

)
= −2 ln (x) + c1

Which simplifies to

− ln
(
y +

√
y2 + x2

)
= −2 ln (x) + c1

Which gives

y = −e−c1(−x2 + e2c1)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+
√

x2+y2

x
dS
dR

= − 2
R

R = x

S = − ln
(
y +

√
x2 + y2

)

Summary
The solution(s) found are the following

(1)y = −e−c1(−x2 + e2c1)
2
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Figure 271: Slope field plot

Verification of solutions

y = −e−c1(−x2 + e2c1)
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(x*diff(y(x),x) = y(x)+sqrt(x^2+y(x)^2),y(x), singsol=all)� �

−c1x
2 +

√
x2 + y (x)2 + y(x)
x2 = 0

3 Solution by Mathematica
Time used: 0.352 (sec). Leaf size: 27� �
DSolve[x y'[x]==y[x]+Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
(
−1 + e2c1x2)
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7.20 problem 195
7.20.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1748

Internal problem ID [3451]
Internal file name [OUTPUT/2944_Sunday_June_05_2022_08_47_42_AM_8587903/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 195.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ − y −
√

x2 − y2 = 0

7.20.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y +
√
x2 − y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y +

√
x2 − y2

)
(b3 − a2)

x
−
(
y +

√
x2 − y2

)2
a3

x2

−
(

1√
x2 − y2

− y +
√
x2 − y2

x2

)
(xa2 + ya3 + a1)

−

(
1− y√

x2−y2

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−(x2 − y2)
3
2 a3 + x3a2 − x3b3 + 2x2ya3 − x2yb2 − y3a3 +

√
x2 − y2 xb1 −

√
x2 − y2 ya1 − xyb1 + y2a1√

x2 − y2 x2

= 0

Setting the numerator to zero gives

(6E)−
(
x2 − y2

) 3
2 a3 − x3a2 + x3b3 − 2x2ya3 + x2yb2 + y3a3

−
√

x2 − y2 xb1 +
√

x2 − y2 ya1 + xyb1 − y2a1 = 0

Simplifying the above gives

(6E)−
(
x2 − y2

) 3
2 a3 +

(
x2 − y2

)
xb3 −

(
x2 − y2

)
ya3 − x3a2 − x2ya3 + x2yb2

+ x y2b3 +
(
x2 − y2

)
a1 −

√
x2 − y2 xb1 +

√
x2 − y2 ya1 − x2a1 + xyb1 = 0

Since the PDE has radicals, simplifying gives

−x3a2 + x3b3 − x2
√

x2 − y2 a3 − 2x2ya3 + x2yb2 +
√
x2 − y2 y2a3

+ y3a3 −
√

x2 − y2 xb1 + xyb1 +
√

x2 − y2 ya1 − y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 − y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 − y2 = v3
}

The above PDE (6E) now becomes

(7E)−v31a2 − 2v21v2a3 − v21v3a3 + v32a3 + v3v
2
2a3 + v21v2b2

+ v31b3 − v22a1 + v3v2a1 + v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(b3 − a2) v31 + (−2a3 + b2) v21v2 − v21v3a3 + v1v2b1
− v3v1b1 + v32a3 + v3v

2
2a3 − v22a1 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b1 = 0

−a1 = 0
−a3 = 0
−b1 = 0

−2a3 + b2 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y +

√
x2 − y2

x

)
(x)

= −
√
x2 − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
x2 − y2

dy

Which results in

S = − arctan
(

y√
x2 − y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y +
√
x2 − y2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y√
x2 − y2 x

Sy = − 1√
x2 − y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arctan
(

y√
x2 − y2

)
= − ln (x) + c1

Which simplifies to

− arctan
(

y√
x2 − y2

)
= − ln (x) + c1

Which gives

y = − tan (− ln (x) + c1)
√

x2

tan (− ln (x) + c1)2 + 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+
√

x2−y2

x
dS
dR

= − 1
R

R = x

S = − arctan
(

y√
x2 − y2

)

Summary
The solution(s) found are the following

(1)y = − tan (− ln (x) + c1)
√

x2

tan (− ln (x) + c1)2 + 1
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Figure 272: Slope field plot

Verification of solutions

y = − tan (− ln (x) + c1)
√

x2

tan (− ln (x) + c1)2 + 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x) = y(x)+sqrt(x^2-y(x)^2),y(x), singsol=all)� �

− arctan

 y(x)√
x2 − y (x)2

+ ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.238 (sec). Leaf size: 18� �
DSolve[x y'[x]==y[x]+Sqrt[x^2-y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x cosh(i log(x) + c1)
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7.21 problem 196
Internal problem ID [3452]
Internal file name [OUTPUT/2945_Sunday_June_05_2022_08_47_44_AM_68847625/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 196.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

xy′ − y − x
√

y2 + x2 = 0

Unable to determine ODE type.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)-(x^2*y(x)+2*(diff(y(x), x))*x-2*y(x))/x^2, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`[0, (x^2+y^2)^(1/2)]� �
3 Solution by Maple
Time used: 0.813 (sec). Leaf size: 28� �
dsolve(x*diff(y(x),x) = y(x)+x*sqrt(x^2+y(x)^2),y(x), singsol=all)� �

ln
(
y(x) +

√
x2 + y (x)2

)
− x− ln (x)− c1 = 0
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3 Solution by Mathematica
Time used: 0.282 (sec). Leaf size: 30� �
DSolve[x y'[x]==y[x]+x Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2xe

−x−c1
(
−1 + e2(x+c1)

)
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7.22 problem 197
Internal problem ID [3453]
Internal file name [OUTPUT/2946_Sunday_June_05_2022_08_47_49_AM_80337687/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 197.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

xy′ − y + x(−y + x)
√

y2 + x2 = 0

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`[0, (x-y)*(x^2+y^2)^(1/2)/x]� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 50� �
dsolve(x*diff(y(x),x) = y(x)-x*(x-y(x))*sqrt(x^2+y(x)^2),y(x), singsol=all)� �

ln (2) + ln

x

(√
2x2 + 2y (x)2 + y(x) + x

)
−x+ y (x)

+
√
2x2

2 − ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 1.529 (sec). Leaf size: 84� �
DSolve[x y'[x]==y[x]-x(x-y[x])Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x tanh

(
x2+2c1
2
√
2

)(
2 +

√
2 tanh

(
x2+2c1
2
√
2

))
√
2 + 2 tanh

(
x2+2c1
2
√
2

)
y(x) → x
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7.23 problem 198
7.23.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1761

Internal problem ID [3454]
Internal file name [OUTPUT/2947_Sunday_June_05_2022_08_47_51_AM_51586844/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 198.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y − a
√

y2 + b2x2 = 0

7.23.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y + a
√
b2x2 + y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y + a

√
b2x2 + y2

)
(b3 − a2)

x
−
(
y + a

√
b2x2 + y2

)2
a3

x2

−
(

a b2√
b2x2 + y2

− y + a
√
b2x2 + y2

x2

)
(xa2 + ya3 + a1)

−

(
1 + ya√

b2x2+y2

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−a b2x3a2 − a b2x3b3 + 2a b2x2ya3 + (b2x2 + y2)
3
2 a2a3 + a x2yb2 + a y3a3 + axyb1 − a y2a1 +

√
b2x2 + y2 xb1 −

√
b2x2 + y2 ya1√

b2x2 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−a b2x3a2 + a b2x3b3 − 2a b2x2ya3 −
(
b2x2 + y2

) 3
2 a2a3 − a x2yb2

− a y3a3 − axyb1 + a y2a1 −
√
b2x2 + y2 xb1 +

√
b2x2 + y2 ya1 = 0

Simplifying the above gives

(6E)−a b2x3a2 − a b2x2ya3 −
(
b2x2 + y2

) 3
2 a2a3 − a b2x2a1

+
(
b2x2 + y2

)
axb3 −

(
b2x2 + y2

)
aya3 − a x2yb2 − ax y2b3

+
(
b2x2 + y2

)
aa1 − axyb1 −

√
b2x2 + y2 xb1 +

√
b2x2 + y2 ya1 = 0

Since the PDE has radicals, simplifying gives

−a2b2x2
√
b2x2 + y2 a3 − a b2x3a2 + a b2x3b3 − 2a b2x2ya3 − a2

√
b2x2 + y2 y2a3

− a x2yb2 − a y3a3 − axyb1 + a y2a1 −
√

b2x2 + y2 xb1 +
√
b2x2 + y2 ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
b2x2 + y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

b2x2 + y2 = v3
}

The above PDE (6E) now becomes

(7E)−a2b2v21v3a3 − a b2v31a2 − 2a b2v21v2a3 + a b2v31b3 − a2v3v
2
2a3

− av32a3 − av21v2b2 + av22a1 − av1v2b1 + v3v2a1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(
−a b2a2 + a b2b3

)
v31 +

(
−2a b2a3 − ab2

)
v21v2 − a2b2v21v3a3

− av1v2b1 − v3v1b1 − av32a3 − a2v3v
2
2a3 + av22a1 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
aa1 = 0
−b1 = 0

−aa3 = 0
−ab1 = 0
−a2a3 = 0

−a2b2a3 = 0
−a b2a2 + a b2b3 = 0
−2a b2a3 − ab2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y + a

√
b2x2 + y2

x

)
(x)

= −a
√
b2x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a
√
b2x2 + y2

dy

Which results in

S = −
ln
(
y +

√
b2x2 + y2

)
a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + a
√
b2x2 + y2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − b2x

a
√
b2x2 + y2

(
y +

√
b2x2 + y2

)
Sy = − 1

a
√
b2x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

(
b2x2 + y2 +

√
b2x2 + y2 y

)
(1 + a)

√
b2x2 + y2 a

(
y +

√
b2x2 + y2

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1− a

aR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
a

− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
ln
(
y +

√
y2 + b2x2

)
a

= − ln (x)
a

− ln (x) + c1

Which simplifies to

−
ln
(
y +

√
y2 + b2x2

)
a

= − ln (x)
a

− ln (x) + c1
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Which gives

y = −
x
(
b2e2c1a−2a ln(x) − 1

)
e−c1a+a ln(x)

2

Summary
The solution(s) found are the following

(1)y = −
x
(
b2e2c1a−2a ln(x) − 1

)
e−c1a+a ln(x)

2
Verification of solutions

y = −
x
(
b2e2c1a−2a ln(x) − 1

)
e−c1a+a ln(x)

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(x*diff(y(x),x) = y(x)+a*sqrt(y(x)^2+b^2*x^2),y(x), singsol=all)� �

x−1−ay(x) + x−1−a

√
y (x)2 + b2x2 − c1 = 0
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3 Solution by Mathematica
Time used: 0.402 (sec). Leaf size: 73� �
DSolve[x y'[x]==y[x]+a Sqrt[y[x]^2+b^2 x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2be

−c1
(
x1−a − e2c1xa+1)

y(x) → 1
2be

−c1x1−a
(
−1 + e2c1x2a)
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7.24 problem 199
7.24.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1768

Internal problem ID [3455]
Internal file name [OUTPUT/2948_Sunday_June_05_2022_08_47_52_AM_55843479/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 199.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[`y=_G(x,y') `]

xy′ +
(
sin (y)− 3 cos (y)x2) cos (y) = 0

7.24.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy =
(
− cos (y)

(
sin (y)− 3 cos (y)x2)) dx(

cos (y)
(
sin (y)− 3 cos (y)x2)) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = cos (y)
(
sin (y)− 3 cos (y)x2)

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
cos (y)

(
sin (y)− 3 cos (y)x2))

= 3 sin (2y)x2 + cos (2y)

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
− sin (y)

(
sin (y)− 3 cos (y)x2)+ cos (y)

(
cos (y) + 3 sin (y)x2))− (1)

)
= −1 + 3 sin (2y)x2 + cos (2y)

x
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= sec (y)

sin (y)− 3 cos (y)x2

(
(1)−

(
− sin (y)

(
sin (y)− 3 cos (y)x2)+ cos (y)

(
cos (y) + 3 sin (y)x2)))

= 2 tan (y)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
2 tan(y) dy

The result of integrating gives

µ = e−2 ln(cos(y))

= sec (y)2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= sec (y)2
(
cos (y)

(
sin (y)− 3 cos (y)x2))

= tan (y)− 3x2

And

N = µN

= sec (y)2 (x)
= x sec (y)2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

tan (y)− 3x2)+ (x sec (y)2) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
tan (y)− 3x2 dx

(3)φ = x
(
−x2 + tan (y)

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

(
1 + tan (y)2

)
+ f ′(y)

= x sec (y)2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x sec (y)2. Therefore equation (4) becomes

(5)x sec (y)2 = x sec (y)2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x
(
−x2 + tan (y)

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
−x2 + tan (y)

)
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Summary
The solution(s) found are the following

(1)x
(
−x2 + tan (y)

)
= c1

Figure 273: Slope field plot

Verification of solutions

x
(
−x2 + tan (y)

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, (1+cos(2*y))/x]� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+(sin(y(x))-3*x^2*cos(y(x)))*cos(y(x)) = 0,y(x), singsol=all)� �

y(x) = arctan
(
x3 + 2c1

x

)
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3 Solution by Mathematica
Time used: 1.87 (sec). Leaf size: 53� �
DSolve[x y'[x]+(Sin[y[x]]-3 x^2 Cos[y[x]]) Cos[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctan
(
x2 + c1

2x

)
y(x) → −1

2π
√

1
x2x

y(x) → 1
2π
√

1
x2x
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7.25 problem 200
7.25.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1775
7.25.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1777

Internal problem ID [3456]
Internal file name [OUTPUT/2949_Sunday_June_05_2022_08_47_55_AM_94155910/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 200.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y + x cos
(y
x

)
= −x

7.25.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x+ x cos (u(x)) = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − cos (u)− 1
x

Where f(x) = 1
x
and g(u) = − cos (u)− 1. Integrating both sides gives

1
− cos (u)− 1 du = 1

x
dx∫ 1

− cos (u)− 1 du =
∫ 1

x
dx

− tan
(u
2

)
= ln (x) + c2
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The solution is

− tan
(
u(x)
2

)
− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− tan
( y

2x

)
− ln (x)− c2 = 0

− tan
( y

2x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)− tan
( y

2x

)
− ln (x)− c2 = 0

Figure 274: Slope field plot

Verification of solutions

− tan
( y

2x

)
− ln (x)− c2 = 0

Verified OK.
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7.25.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −
x cos

(
y
x

)
+ x− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
x cos

(
y
x

)
+ x− y

)
(b3 − a2)

x
−
(
x cos

(
y
x

)
+ x− y

)2
a3

x2

−

(
−
cos
(
y
x

)
+ y sin

( y
x

)
x

+ 1
x

+
x cos

(
y
x

)
+ x− y

x2

)
(xa2 + ya3 + a1)

+
(
− sin

(
y
x

)
− 1
)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−
cos
(
y
x

)2
x2a3 − cos

(
y
x

)
x2a2 + 2 cos

(
y
x

)
x2a3 + cos

(
y
x

)
x2b3 − 2 cos

(
y
x

)
xya3 + sin

(
y
x

)
x2b2 − sin

(
y
x

)
xya2 + sin

(
y
x

)
xyb3 − sin

(
y
x

)
y2a3 + sin

(
y
x

)
xb1 − sin

(
y
x

)
ya1 − x2a2 + x2a3 + x2b3 − 2xya3 + xb1 − ya1

x2

= 0
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Setting the numerator to zero gives

(6E)

− cos
(y
x

)2
x2a3 + cos

(y
x

)
x2a2 − 2 cos

(y
x

)
x2a3

− cos
(y
x

)
x2b3 + 2 cos

(y
x

)
xya3 − sin

(y
x

)
x2b2

+ sin
(y
x

)
xya2 − sin

(y
x

)
xyb3 + sin

(y
x

)
y2a3 − sin

(y
x

)
xb1

+ sin
(y
x

)
ya1 + x2a2 − x2a3 − x2b3 + 2xya3 − xb1 + ya1 = 0

Simplifying the above gives

(6E)x2a2 −
3x2a3
2 − x2b3 + 2xya3 − xb1 + ya1 −

x2a3 cos
(2y

x

)
2 + cos

(y
x

)
x2a2

− 2 cos
(y
x

)
x2a3 − cos

(y
x

)
x2b3 + 2 cos

(y
x

)
xya3 − sin

(y
x

)
x2b2

+ sin
(y
x

)
xya2 − sin

(y
x

)
xyb3 + sin

(y
x

)
y2a3 − sin

(y
x

)
xb1 + sin

(y
x

)
ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, cos

(y
x

)
, cos

(
2y
x

)
, sin

(y
x

)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, cos
(y
x

)
= v3, cos

(
2y
x

)
= v4, sin

(y
x

)
= v5

}

The above PDE (6E) now becomes

(7E)v21a2 −
3
2v

2
1a3 − v21b3 + 2v1v2a3 − v1b1 + v2a1 −

1
2v

2
1a3v4 + v3v

2
1a2 − 2v3v21a3

−v3v
2
1b3+2v3v1v2a3−v5v

2
1b2+v5v1v2a2−v5v1v2b3+v5v

2
2a3−v5v1b1+v5v2a1

= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
a2 −

3a3
2 − b3

)
v21 − v1b1 + v2a1 + 2v3v1v2a3 + (−b3 + a2) v2v1v5 + 2v1v2a3

− v21a3v4
2 + (a2 − 2a3 − b3) v21v3 − v5v

2
1b2 + v5v

2
2a3 − v5v1b1 + v5v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
2a3 = 0

−a3
2 = 0

−b1 = 0
−b2 = 0

−b3 + a2 = 0
a2 − 2a3 − b3 = 0

a2 −
3a3
2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
−
x cos

(
y
x

)
+ x− y

x

)
(x)

= x cos
(y
x

)
+ x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x cos
(
y
x

)
+ x

dy

Which results in

S = tan
( y

2x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
x cos

(
y
x

)
+ x− y

x

1780



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
sec
(

y
2x

)2
y

2x2

Sy =
sec
(

y
2x

)2
2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

tan
( y

2x

)
= − ln (x) + c1

Which simplifies to

tan
( y

2x

)
= − ln (x) + c1

Which gives

y = 2arctan (− ln (x) + c1)x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x cos
( y
x

)
+x−y

x
dS
dR

= − 1
R

R = x

S = tan
( y

2x

)

Summary
The solution(s) found are the following

(1)y = 2arctan (− ln (x) + c1)x

1782



Figure 275: Slope field plot

Verification of solutions

y = 2arctan (− ln (x) + c1)x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)+x-y(x)+x*cos(y(x)/x) = 0,y(x), singsol=all)� �

y(x) = −2 arctan (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.435 (sec). Leaf size: 31� �
DSolve[x y'[x]+x -y[x]+x Cos[y[x]/x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x arctan(− log(x) + c1)
y(x) → −πx
y(x) → πx
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7.26 problem 201
7.26.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1785
7.26.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1787
7.26.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1789

Internal problem ID [3457]
Internal file name [OUTPUT/2950_Sunday_June_05_2022_08_47_56_AM_34170541/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 201.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ + x cos
(y
x

)2
− y = 0

7.26.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = − cos
(y
x

)2
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u
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Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −1
b = 1

f

(
bx

y

)
= cos

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = −cos (u(x))2

x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −cos (u)2

x

Where f(x) = − 1
x
and g(u) = cos (u)2. Integrating both sides gives

1
cos (u)2

du = −1
x
dx

∫ 1
cos (u)2

du =
∫

−1
x
dx

tan (u) = − ln (x) + c1

The solution is
tan (u(x)) + ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

tan
(y
x

)
+ ln (x)− c1 = 0
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Summary
The solution(s) found are the following

(1)tan
(y
x

)
+ ln (x)− c1 = 0

Figure 276: Slope field plot

Verification of solutions

tan
(y
x

)
+ ln (x)− c1 = 0

Verified OK.

7.26.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x)) + x cos (u(x))2 − u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −cos (u)2

x
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Where f(x) = − 1
x
and g(u) = cos (u)2. Integrating both sides gives

1
cos (u)2

du = −1
x
dx

∫ 1
cos (u)2

du =
∫

−1
x
dx

tan (u) = − ln (x) + c2

The solution is
tan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

tan
(y
x

)
+ ln (x)− c2 = 0

tan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)tan
(y
x

)
+ ln (x)− c2 = 0

Figure 277: Slope field plot
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Verification of solutions

tan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

7.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
−x cos

(
y
x

)2 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 321: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−x cos

(
y
x

)2 + y

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

sec
(
y
x

)2
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)2 S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1etan(R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1etan

( y
x

)

Which simplifies to

−1
x
= c1etan

( y
x

)

Which gives

y = arctan
(
ln
(
− 1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x cos
( y
x

)2+y

x
dS
dR

= sec (R)2 S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arctan
(
ln
(
− 1
c1x

))
x
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Figure 278: Slope field plot

Verification of solutions

y = arctan
(
ln
(
− 1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x) = y(x)-x*cos(y(x)/x)^2,y(x), singsol=all)� �

y(x) = − arctan (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.492 (sec). Leaf size: 37� �
DSolve[x y'[x]==y[x]-x Cos[y[x]/x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arctan(− log(x) + 2c1)
y(x) → −πx

2
y(x) → πx

2
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7.27 problem 202
7.27.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1796
7.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1798
7.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1802
7.27.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1806

Internal problem ID [3458]
Internal file name [OUTPUT/2951_Sunday_June_05_2022_08_47_58_AM_19065913/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 202.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ −
(
−2x2 + 1

)
cot (y)2 = 0

7.27.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −cot (y)2 (2x2 − 1)
x

Where f(x) = −2x2−1
x

and g(y) = cot (y)2. Integrating both sides gives

1
cot (y)2

dy = −2x2 − 1
x

dx

∫ 1
cot (y)2

dy =
∫

−2x2 − 1
x

dx

tan (y)− y = −x2 + ln (x) + c1
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Which results in

y = RootOf
(
− tan (_Z) + _Z− x2 + ln (x) + c1

)
Summary
The solution(s) found are the following

(1)y = RootOf
(
− tan (_Z) + _Z− x2 + ln (x) + c1

)

Figure 279: Slope field plot

Verification of solutions

y = RootOf
(
− tan (_Z) + _Z− x2 + ln (x) + c1

)
Verified OK.
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7.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −cot (y)2 (2x2 − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 323: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − x

2x2 − 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x
2x2−1

dx

Which results in

S = −x2 + ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −cot (y)2 (2x2 − 1)
x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −2x+ 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = tan (R)−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2 + ln (x) = tan (y)− y + c1

Which simplifies to

−x2 + ln (x) = tan (y)− y + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − cot(y)2
(
2x2−1

)
x

dS
dR

= tan (R)2

R = y

S = −x2 + ln (x)

Summary
The solution(s) found are the following

(1)−x2 + ln (x) = tan (y)− y + c1
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Figure 280: Slope field plot

Verification of solutions

−x2 + ln (x) = tan (y)− y + c1

Verified OK.

7.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
cot (y)2

)
dy =

(
2x2 − 1

x

)
dx(

−2x2 − 1
x

)
dx+

(
− 1
cot (y)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x2 − 1
x

N(x, y) = − 1
cot (y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2x2 − 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− 1
cot (y)2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x2 − 1

x
dx

(3)φ = −x2 + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
cot(y)2 . Therefore equation (4) becomes

(5)− 1
cot (y)2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
cot (y)2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− tan (y)2

)
dy

f(y) = − tan (y) + y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2 + ln (x)− tan (y) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 + ln (x)− tan (y) + y

Summary
The solution(s) found are the following

(1)−x2 + y − tan (y) + ln (x) = c1

Figure 281: Slope field plot

Verification of solutions

−x2 + y − tan (y) + ln (x) = c1

Verified OK.
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7.27.4 Maple step by step solution

Let’s solve
xy′ − (−2x2 + 1) cot (y)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cot(y)2 = −2x2+1
x

• Integrate both sides with respect to x∫
y′

cot(y)2dx =
∫ −2x2+1

x
dx+ c1

• Evaluate integral
π
2 + 1

cot(y) − y = −x2 + ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x*diff(y(x),x) = (-2*x^2+1)*cot(y(x))^2,y(x), singsol=all)� �

x2 + π

2 − ln (x)− y(x) + c1 + tan (y(x)) = 0
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3 Solution by Mathematica
Time used: 0.555 (sec). Leaf size: 55� �
DSolve[x y'[x]==(1-2 x^2)Cot[y[x]]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
1
2(tan(#1)− arctan(tan(#1)))&

] [
−x2

2 + log(x)
2 + c1

]
y(x) → −π

2
y(x) → π

2
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7.28 problem 203
7.28.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1808
7.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1810
7.28.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1813
7.28.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1817

Internal problem ID [3459]
Internal file name [OUTPUT/2952_Sunday_June_05_2022_08_47_59_AM_23872339/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 203.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − y + cot (y)2 = 0

7.28.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y − cot (y)2

x

Where f(x) = 1
x
and g(y) = y − cot (y)2. Integrating both sides gives

1
y − cot (y)2

dy = 1
x
dx

∫ 1
y − cot (y)2

dy =
∫ 1

x
dx

∫ y 1
_a− cot (_a)2

d_a = ln (x) + c1
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Which results in ∫ y 1
_a− cot (_a)2

d_a = ln (x) + c1

The solution is ∫ y 1
_a− cot (_a)2

d_a− ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1

_a− cot (_a)2
d_a− ln (x)− c1 = 0

Figure 282: Slope field plot

Verification of solutions∫ y 1
_a− cot (_a)2

d_a− ln (x)− c1 = 0

Verified OK.
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7.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −cot (y)2 − y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 326: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

1810



The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −cot (y)2 − y

x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y − cot (y)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R− cot (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 +
∫ 1

R− cot (R)2
dR (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = c1 +
∫ y 1

_a− cot (_a)2
d_a

Which simplifies to

ln (x) = c1 +
∫ y 1

_a− cot (_a)2
d_a

This results in

ln (x) = c1 +
∫ y 1

_a− cot (_a)2
d_a

Summary
The solution(s) found are the following

(1)ln (x) = c1 +
∫ y 1

_a− cot (_a)2
d_a
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Figure 283: Slope field plot

Verification of solutions

ln (x) = c1 +
∫ y 1

_a− cot (_a)2
d_a

Verified OK.

7.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y − cot (y)2
)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

y − cot (y)2
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
y − cot (y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

y − cot (y)2
)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y−cot(y)2 . Therefore equation (4) becomes

(5)1
y − cot (y)2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
cot (y)2 − y

= 1
y − cot (y)2
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Integrating the above w.r.t y results in

∫
f ′(y) dy =

∫ ( 1
y − cot (y)2

)
dy

f(y) =
∫ y

0

1
_a− cot (_a)2

d_a+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) +
∫ y

0

1
_a− cot (_a)2

d_a+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) +
∫ y

0

1
_a− cot (_a)2

d_a

Summary
The solution(s) found are the following

(1)− ln (x) +
∫ y

0

1
_a− cot (_a)2

d_a = c1
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Figure 284: Slope field plot

Verification of solutions

− ln (x) +
∫ y

0

1
_a− cot (_a)2

d_a = c1

Verified OK.

7.28.4 Maple step by step solution

Let’s solve
xy′ − y + cot (y)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y−cot(y)2 = 1
x

• Integrate both sides with respect to x∫
y′

y−cot(y)2dx =
∫ 1

x
dx+ c1

• Cannot compute integral
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∫
y′

y−cot(y)2dx = ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x*diff(y(x),x) = y(x)-cot(y(x))^2,y(x), singsol=all)� �

ln (x) + c1 +
∫ y(x) 1

cot (_a)2 − _a
d_a = 0

3 Solution by Mathematica
Time used: 3.204 (sec). Leaf size: 49� �
DSolve[x y'[x]==y[x]-x Cot[y[x]]^2/x,y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ InverseFunction

[∫ #1

1

cos(2K[1])− 1
K[1] cos(2K[1]) + cos(2K[1])−K[1] + 1dK[1]&

]
[log(x)

+ c1]
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7.29 problem 204
7.29.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1819

Internal problem ID [3460]
Internal file name [OUTPUT/2953_Sunday_June_05_2022_08_48_00_AM_71873846/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 204.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

xy′ + y + 2x sec (yx) = 0

7.29.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy = (−y − 2x sec (xy)) dx
(2x sec (xy) + y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x sec (xy) + y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2x sec (xy) + y)

= 2 sec (xy) tan (xy)x2 + 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
2 sec (xy) tan (xy)x2 + 1

)
− (1)

)
= 2x sec (xy) tan (xy)
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2x sec (xy) + y

(
(1)−

(
2 sec (xy) tan (xy)x2 + 1

))
= − 2 tan (xy)x2

y cos (xy) + 2x

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (2 sec (xy) tan (xy)x2 + 1)
x (2x sec (xy) + y)− y (x)

= − tan (xy)

Replacing all powers of terms xy by t gives

R = − tan (t)

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫
(− tan(t)) dt

The result of integrating gives

µ = eln(cos(t))

= cos (t)

Now t is replaced back with xy giving

µ = cos (xy)
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= cos (xy) (2x sec (xy) + y)
= y cos (xy) + 2x

And

N = µN

= cos (xy) (x)
= cos (xy)x

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0

(y cos (xy) + 2x) + (cos (xy)x) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y cos (xy) + 2x dx

(3)φ = sin (xy) + x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (xy)x+ f ′(y)
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But equation (2) says that ∂φ
∂y

= cos (xy)x. Therefore equation (4) becomes

(5)cos (xy)x = cos (xy)x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (xy) + x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (xy) + x2

Summary
The solution(s) found are the following

(1)sin (yx) + x2 = c1

Figure 285: Slope field plot
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Verification of solutions

sin (yx) + x2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, sec(y*x)/x], [0, (tan(y*x)+x^2*sec(y*x))/x]� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+y(x)+2*x*sec(x*y(x)) = 0,y(x), singsol=all)� �

y(x) = arcsin (−x2 + c1)
x
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3 Solution by Mathematica
Time used: 0.465 (sec). Leaf size: 19� �
DSolve[x y'[x]+y[x]+2 x Sec[x y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −arcsin (x2 − c1)
x
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7.30 problem 205
7.30.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1826
7.30.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1828
7.30.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1830

Internal problem ID [3461]
Internal file name [OUTPUT/2954_Sunday_June_05_2022_08_48_02_AM_35598518/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 7
Problem number: 205.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y + x sec
(y
x

)
= 0

7.30.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = − sec
(y
x

)
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

1826



The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −1
b = 1

f

(
bx

y

)
= sec

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = −sec (u(x))
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −sec (u)
x

Where f(x) = − 1
x
and g(u) = sec (u). Integrating both sides gives

1
sec (u) du = −1

x
dx∫ 1

sec (u) du =
∫

−1
x
dx

sin (u) = − ln (x) + c1

The solution is
sin (u(x)) + ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

sin
(y
x

)
+ ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)sin
(y
x

)
+ ln (x)− c1 = 0
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Figure 286: Slope field plot

Verification of solutions

sin
(y
x

)
+ ln (x)− c1 = 0

Verified OK.

7.30.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x+ x sec (u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −sec (u)
x

Where f(x) = − 1
x
and g(u) = sec (u). Integrating both sides gives

1
sec (u) du = −1

x
dx
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∫ 1
sec (u) du =

∫
−1
x
dx

sin (u) = − ln (x) + c2

The solution is
sin (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

sin
(y
x

)
+ ln (x)− c2 = 0

sin
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)sin
(y
x

)
+ ln (x)− c2 = 0

Figure 287: Slope field plot
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Verification of solutions

sin
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

7.30.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
x sec

(
y
x

)
− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 329: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
x sec

(
y
x

)
− y

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

cos
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= S(R) cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1esin(R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1esin

( y
x

)

Which simplifies to

−1
x
= c1esin

( y
x

)

Which gives

y = arcsin
(
ln
(
− 1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x sec
( y
x

)
−y

x
dS
dR

= S(R) cos (R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arcsin
(
ln
(
− 1
c1x

))
x
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Figure 288: Slope field plot

Verification of solutions

y = arcsin
(
ln
(
− 1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)-y(x)+x*sec(y(x)/x) = 0,y(x), singsol=all)� �

y(x) = − arcsin (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.408 (sec). Leaf size: 15� �
DSolve[x y'[x]-y[x]+x Sec[y[x]/x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin(− log(x) + c1)
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8.1 problem 206
8.1.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1838
8.1.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1841
8.1.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1842

Internal problem ID [3462]
Internal file name [OUTPUT/2955_Sunday_June_05_2022_08_48_04_AM_37127878/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 206.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y − x sec
(y
x

)2
= 0

8.1.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = sec
(y
x

)2
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

1838



Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= sec

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = sec (u(x))2

x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= sec (u)2

x

Where f(x) = 1
x
and g(u) = sec (u)2. Integrating both sides gives

1
sec (u)2

du = 1
x
dx

∫ 1
sec (u)2

du =
∫ 1

x
dx

cos (u) sin (u)
2 + u

2 = ln (x) + c1

The solution is
cos (u(x)) sin (u(x))

2 + u(x)
2 − ln (x)− c1 = 0
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Therefore the solution is found using y = ux. Hence

cos
(
y
x

)
sin
(
y
x

)
2 + y

2x − ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)
cos
(
y
x

)
sin
(
y
x

)
2 + y

2x − ln (x)− c1 = 0

Figure 289: Slope field plot

Verification of solutions

cos
(
y
x

)
sin
(
y
x

)
2 + y

2x − ln (x)− c1 = 0

Verified OK.
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8.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− x sec (u(x))2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= sec (u)2

x

Where f(x) = 1
x
and g(u) = sec (u)2. Integrating both sides gives

1
sec (u)2

du = 1
x
dx

∫ 1
sec (u)2

du =
∫ 1

x
dx

cos (u) sin (u)
2 + u

2 = ln (x) + c2

The solution is
cos (u(x)) sin (u(x))

2 + u(x)
2 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

cos
(
y
x

)
sin
(
y
x

)
2 + y

2x − ln (x)− c2 = 0

sin
(2y

x

)
4 + y

2x − ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
sin
(2y

x

)
4 + y

2x − ln (x)− c2 = 0
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Figure 290: Slope field plot

Verification of solutions

sin
(2y

x

)
4 + y

2x − ln (x)− c2 = 0

Verified OK.

8.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
y + x sec

(
y
x

)2
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 331: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
y + x sec

(
y
x

)2
x

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

cos
(
y
x

)2
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −S(R) cos (R)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1e−
R
2 − sin(2R)

4 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1e−

y
2x−

sin
( 2y

x

)
4

Which simplifies to

−1
x
= c1e−

y
2x−

sin
( 2y

x

)
4

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+x sec
( y
x

)2
x

dS
dR

= −S(R) cos (R)2

R = y

x

S = −1
x
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Summary
The solution(s) found are the following

(1)−1
x
= c1e−

y
2x−

sin
( 2y

x

)
4

Figure 291: Slope field plot

Verification of solutions

−1
x
= c1e−

y
2x−

sin
( 2y

x

)
4

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 31� �
dsolve(x*diff(y(x),x) = y(x)+x*sec(y(x)/x)^2,y(x), singsol=all)� �

x sin
(

2y(x)
x

)
+ 2y(x)

4x − ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.255 (sec). Leaf size: 31� �
DSolve[x y'[x]==y[x]+x Sec[y[x]/x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)
2x + 1

4 sin
(
2y(x)
x

)
= log(x) + c1, y(x)

]
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8.2 problem 207
Internal problem ID [3463]
Internal file name [OUTPUT/2956_Sunday_June_05_2022_08_48_05_AM_71334099/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 207.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

xy′ − sin (−y + x) = 0

Unable to determine ODE type.

1848



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve(x*diff(y(x),x) = sin(x-y(x)),y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x y'[x]==Sin[x-y[x]],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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8.3 problem 208
8.3.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1851
8.3.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1853
8.3.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1855

Internal problem ID [3464]
Internal file name [OUTPUT/2957_Sunday_June_05_2022_08_48_09_AM_95157351/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 208.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y − sin
(y
x

)
x = 0

8.3.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = sin
(y
x

)
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= sin

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = sin (u(x))
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= sin (u)
x

Where f(x) = 1
x
and g(u) = sin (u). Integrating both sides gives

1
sin (u) du = 1

x
dx∫ 1

sin (u) du =
∫ 1

x
dx

ln (− cot (u) + csc (u)) = ln (x) + c1

Raising both side to exponential gives

− cot (u) + csc (u) = eln(x)+c1

Which simplifies to

− cot (u) + csc (u) = c2x

Therefore the solution is

y = ux

= x arctan
(

2c2ec1x
e2c1c22x2 + 1 ,−

e2c1c22x2 − 1
e2c1c22x2 + 1

)
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Summary
The solution(s) found are the following

(1)y = x arctan
(

2c2ec1x
e2c1c22x2 + 1 ,−

e2c1c22x2 − 1
e2c1c22x2 + 1

)

Figure 292: Slope field plot

Verification of solutions

y = x arctan
(

2c2ec1x
e2c1c22x2 + 1 ,−

e2c1c22x2 − 1
e2c1c22x2 + 1

)
Verified OK.

8.3.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− sin (u(x))x = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= sin (u)
x

Where f(x) = 1
x
and g(u) = sin (u). Integrating both sides gives

1
sin (u) du = 1

x
dx∫ 1

sin (u) du =
∫ 1

x
dx

ln (− cot (u) + csc (u)) = ln (x) + c2

Raising both side to exponential gives

− cot (u) + csc (u) = eln(x)+c2

Which simplifies to

− cot (u) + csc (u) = c3x

Therefore the solution y is

y = xu

= x arctan
(

2c3ec2x
c23e2c2x2 + 1 ,−

c23e2c2x2 − 1
c23e2c2x2 + 1

)
Summary
The solution(s) found are the following

(1)y = x arctan
(

2c3ec2x
c23e2c2x2 + 1 ,−

c23e2c2x2 − 1
c23e2c2x2 + 1

)
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Figure 293: Slope field plot

Verification of solutions

y = x arctan
(

2c3ec2x
c23e2c2x2 + 1 ,−

c23e2c2x2 − 1
c23e2c2x2 + 1

)
Verified OK.

8.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
y + sin

(
y
x

)
x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 333: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
y + sin

(
y
x

)
x

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

csc
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − csc (R)S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1(csc (R) + cot (R)) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1

(
csc
(y
x

)
+ cot

(y
x

))
Which simplifies to

−1
x
= c1

(
csc
(y
x

)
+ cot

(y
x

))
Which gives

y = arctan
(
− 2c1x
c21x

2 + 1 ,−
c21x

2 − 1
c21x

2 + 1

)
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+sin
( y
x

)
x

x
dS
dR

= − csc (R)S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arctan
(
− 2c1x
c21x

2 + 1 ,−
c21x

2 − 1
c21x

2 + 1

)
x
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Figure 294: Slope field plot

Verification of solutions

y = arctan
(
− 2c1x
c21x

2 + 1 ,−
c21x

2 − 1
c21x

2 + 1

)
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x) = y(x)+x*sin(y(x)/x),y(x), singsol=all)� �

y(x) = arctan
(

2xc1
c21x

2 + 1 ,
−c21x

2 + 1
c21x

2 + 1

)
x

3 Solution by Mathematica
Time used: 0.325 (sec). Leaf size: 52� �
DSolve[x y'[x]==y[x]+x Sin[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos(− tanh(log(x) + c1))
y(x) → x arccos(− tanh(log(x) + c1))
y(x) → 0
y(x) → −πx
y(x) → πx
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8.4 problem 209
8.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1862
8.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1864
8.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1868
8.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1872

Internal problem ID [3465]
Internal file name [OUTPUT/2958_Sunday_June_05_2022_08_48_11_AM_40605405/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 209.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ + tan (y) = 0

8.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −tan (y)
x

Where f(x) = − 1
x
and g(y) = tan (y). Integrating both sides gives

1
tan (y) dy = −1

x
dx∫ 1

tan (y) dy =
∫

−1
x
dx

ln (sin (y)) = − ln (x) + c1
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Raising both side to exponential gives

sin (y) = e− ln(x)+c1

Which simplifies to

sin (y) = c2
x

Summary
The solution(s) found are the following

(1)y = arcsin
(
c2ec1
x

)

Figure 295: Slope field plot

Verification of solutions

y = arcsin
(
c2ec1
x

)
Verified OK.
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8.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −tan (y)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 335: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x
dx

Which results in

S = − ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −tan (y)
x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cot (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cot (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) = ln (sin (y)) + c1

Which simplifies to

− ln (x) = ln (sin (y)) + c1

Which gives

y = arcsin
(
e−c1

x

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − tan(y)
x

dS
dR

= cot (R)

R = y

S = − ln (x)

Summary
The solution(s) found are the following

(1)y = arcsin
(
e−c1

x

)

1867



Figure 296: Slope field plot

Verification of solutions

y = arcsin
(
e−c1

x

)
Verified OK.

8.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
tan (y)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 1
tan (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 1
tan (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
tan (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
tan(y) . Therefore equation (4) becomes

(5)− 1
tan (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
tan (y)

= − cot (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− cot (y)) dy

f(y) = − ln (sin (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (sin (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (sin (y))

Summary
The solution(s) found are the following

(1)− ln (x)− ln (sin (y)) = c1

Figure 297: Slope field plot
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Verification of solutions

− ln (x)− ln (sin (y)) = c1

Verified OK.

8.4.4 Maple step by step solution

Let’s solve
xy′ + tan (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

tan(y) = − 1
x

• Integrate both sides with respect to x∫
y′

tan(y)dx =
∫
− 1

x
dx+ c1

• Evaluate integral
ln (sin (y)) = − ln (x) + c1

• Solve for y
y = arcsin

( ec1
x

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)+tan(y(x)) = 0,y(x), singsol=all)� �

y(x) = arcsin
(

1
c1x

)
3 Solution by Mathematica
Time used: 14.286 (sec). Leaf size: 19� �
DSolve[x y'[x]+Tan[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin
(
ec1

x

)
y(x) → 0
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8.5 problem 210
8.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1874

Internal problem ID [3466]
Internal file name [OUTPUT/2959_Sunday_June_05_2022_08_48_12_AM_62895673/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 210.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

xy′ + tan (y + x) = −x

8.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x+ tan (y + x)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ tan (y + x)) (b3 − a2)

x
− (x+ tan (y + x))2 a3

x2

−

(
−2 + tan (y + x)2

x
+ x+ tan (y + x)

x2

)
(xa2 + ya3 + a1)

+
(
1 + tan (y + x)2

)
(xb2 + yb3 + b1)

x
= 0

Putting the above in normal form gives

tan (y + x)2 x2a2 + tan (y + x)2 x2b2 + tan (y + x)2 xya3 + tan (y + x)2 xyb3 + tan (y + x)2 xa1 + tan (y + x)2 xb1 − tan (y + x)2 a3 − 2 tan (y + x)xa3 − tan (y + x)xb3 − tan (y + x) ya3 + 2x2a2 − x2a3 + 2b2x2 − x2b3 + xya3 + xyb3 − tan (y + x) a1 + xa1 + xb1
x2

= 0

Setting the numerator to zero gives

(6E)
tan (y + x)2 x2a2 + tan (y + x)2 x2b2 + tan (y + x)2 xya3
+ tan (y + x)2 xyb3 + tan (y + x)2 xa1 + tan (y + x)2 xb1 − tan (y + x)2 a3
− 2 tan (y + x)xa3 − tan (y + x)xb3 − tan (y + x) ya3 + 2x2a2 − x2a3
+ 2b2x2 − x2b3 + xya3 + xyb3 − tan (y + x) a1 + xa1 + xb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, tan (y + x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, tan (y + x) = v3}

The above PDE (6E) now becomes

(7E)v23v
2
1a2+v23v1v2a3+v23v

2
1b2+v23v1v2b3+v23v1a1+v23v1b1+2v21a2−v21a3+v1v2a3

−2v3v1a3−v3v2a3−v23a3+2b2v21 −v21b3+v1v2b3−v3v1b3+v1a1−v3a1+v1b1
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)(a2 + b2) v21v23 + (2a2 − a3 + 2b2 − b3) v21 + (a3 + b3) v1v2v23 + (a3 + b3) v1v2
+ (a1 + b1) v1v23 + (−2a3 − b3) v1v3 + (a1 + b1) v1 − v3v2a3 − v23a3 − v3a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1 = 0
−a3 = 0

a1 + b1 = 0
a2 + b2 = 0

−2a3 − b3 = 0
a3 + b3 = 0

2a2 − a3 + 2b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b2

a3 = 0
b1 = 0
b2 = b2

b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
−x+ tan (y + x)

x

)
(−x)

= − tan (x) + tan (y)
1− tan (x) tan (y)

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− tan(x)+tan(y)
1−tan(x) tan(y)

dy

Which results in

S = − ln (tan (x) + tan (y)) +
ln
(
1 + tan (y)2

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x+ tan (y + x)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1− tan (x)2

tan (x) + tan (y)

Sy =
tan (x) tan (y)− 1
tan (x) + tan (y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − tan (x)x+ 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − tan (R)R + 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (cos (R)) + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (tan (x) + tan (y)) + ln (sec (y)) = ln (cos (x)) + ln (x) + c1

Which simplifies to

− ln (tan (x) + tan (y)) + ln (sec (y)) = ln (cos (x)) + ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x+tan(y+x)
x

dS
dR

= − tan(R)R+1
R

R = x

S = − ln (tan (x) + tan (y)) + ln (sec (y))
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Summary
The solution(s) found are the following

(1)− ln (tan (x) + tan (y)) + ln (sec (y)) = ln (cos (x)) + ln (x) + c1

Figure 298: Slope field plot

Verification of solutions

− ln (tan (x) + tan (y)) + ln (sec (y)) = ln (cos (x)) + ln (x) + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.531 (sec). Leaf size: 117� �
dsolve(x*diff(y(x),x)+x+tan(x+y(x)) = 0,y(x), singsol=all)� �

y(x) = arctan
(
c1
x
,

√
−c21 + x2

x

)
− x

y(x) = arctan
(
c1
x
,−
√
−c21 + x2

x

)
− x

y(x) = arctan
(
−c1

x
,

√
−c21 + x2

x

)
− x

y(x) = arctan
(
−c1

x
,−
√
−c21 + x2

x

)
− x

3 Solution by Mathematica
Time used: 4.917 (sec). Leaf size: 16� �
DSolve[x y'[x]+x+Tan[x+y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ arcsin
(c1
x

)
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8.6 problem 211
8.6.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1881
8.6.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1883
8.6.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1885

Internal problem ID [3467]
Internal file name [OUTPUT/2960_Sunday_June_05_2022_08_48_13_AM_8926720/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 211.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y + x tan
(y
x

)
= 0

8.6.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = − tan
(y
x

)
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −1
b = 1

f

(
bx

y

)
= tan

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = −tan (u(x))
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −tan (u)
x

Where f(x) = − 1
x
and g(u) = tan (u). Integrating both sides gives

1
tan (u) du = −1

x
dx∫ 1

tan (u) du =
∫

−1
x
dx

ln (sin (u)) = − ln (x) + c1

Raising both side to exponential gives

sin (u) = e− ln(x)+c1

Which simplifies to

sin (u) = c2
x

Therefore the solution is

y = ux

= x arcsin
(
c2ec1
x

)
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Summary
The solution(s) found are the following

(1)y = x arcsin
(
c2ec1
x

)

Figure 299: Slope field plot

Verification of solutions

y = x arcsin
(
c2ec1
x

)
Verified OK.

8.6.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x+ x tan (u(x)) = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −tan (u)
x

Where f(x) = − 1
x
and g(u) = tan (u). Integrating both sides gives

1
tan (u) du = −1

x
dx∫ 1

tan (u) du =
∫

−1
x
dx

ln (sin (u)) = − ln (x) + c2

Raising both side to exponential gives

sin (u) = e− ln(x)+c2

Which simplifies to

sin (u) = c3
x

Therefore the solution y is

y = xu

= x arcsin
(
c3ec2
x

)
Summary
The solution(s) found are the following

(1)y = x arcsin
(
c3ec2
x

)
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Figure 300: Slope field plot

Verification of solutions

y = x arcsin
(
c3ec2
x

)
Verified OK.

8.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
x tan

(
y
x

)
− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 338: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
x tan

(
y
x

)
− y

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

cot
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cot (R)S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 sin (R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1 sin

(y
x

)
Which simplifies to

−1
x
= c1 sin

(y
x

)
Which gives

y = − arcsin
(

1
c1x

)
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x tan
( y
x

)
−y

x
dS
dR

= cot (R)S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = − arcsin
(

1
c1x

)
x
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Figure 301: Slope field plot

Verification of solutions

y = − arcsin
(

1
c1x

)
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(x*diff(y(x),x) = y(x)-x*tan(y(x)/x),y(x), singsol=all)� �

y(x) = x arcsin
(

1
c1x

)
3 Solution by Mathematica
Time used: 14.133 (sec). Leaf size: 21� �
DSolve[x y'[x]==y[x]-x Tan[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin
(
ec1

x

)
y(x) → 0
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8.7 problem 212
8.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1892

Internal problem ID [3468]
Internal file name [OUTPUT/2961_Sunday_June_05_2022_08_48_15_AM_28930647/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 212.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[`y=_G(x,y') `]

xy′ −
(
y2 + 1

) (
x2 + arctan (y)

)
= 0

8.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (y2 + 1) (x2 + arctan (y))
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+(y2 + 1) (x2 + arctan (y)) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x

− (y2 + 1)2 (x2 + arctan (y))2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2

−
(
2 + 2y2 − (y2 + 1) (x2 + arctan (y))

x2

)(
x3a7 + x2ya8 + x y2a9 + y3a10

+ x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)
−
(
2y(x2 + arctan (y))

x
+ 1

x

)(
x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, arctan (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, arctan (y) = v3}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)

v3v1b3 + v3v2a3 − v51v
4
2a5 − 2v41v52a6 − v1v

2
2b6 − 2v23v52a6

−4v23v32a6+v3v
4
2a6−v23v1a5−2v23v2a6+(−2a2+b3+b4) v31

+ (−4a7 + b8 − a5) v51 + (2b7 − 3a4 + b5 − a3) v41 − v61v
4
2a8

− 2v51v52a9 − 3v41v62a10 − 2v61v22a8 − 4v51v32a9 − v21v
5
2a10

−2v61v2b7−v1v
3
2b10−3v23v62a10−2v3v41a8−v23v

2
1a8+v3v

5
2a10

− v21v2a3− v1v2b3+(a3+a10) v32v3+(−2a3−a4+ b5) v21v3
+ (a1 + a6) v22v3 + (−2a5 − 4a7 − b8) v22v51
+ (−4a6 − 3a8) v32v41 + (−2a5 + 2b6 − 2b1 + b8) v2v31
+ (−a1 − a6) v22v21 + (−2a5 − 2a7 + b8) v31v3
+(2b9−2b2−2a6−3a8) v2v41+(−2a9+3b10−2a2−b3) v22v31
+ (−6a10 − a3) v42v41 + (−2a9 − 2b4) v2v51
+ (−3a10 − 2a3 − 3a4 − b5) v22v41 + (−a10 − a3) v32v21
− 2v3v41v42a8 − 4v3v31v52a9 − 6v3v21v62a10 − v23v

2
1v

4
2a8

− 2v23v1v52a9 − 4v3v41v22a8 − 8v3v31v32a9 − 2v23v21v22a8
− 4v23v1v32a9 + (−6a10 − a3) v42v23 + (−3a10 − 2a3) v22v23
+ (−2a9 + b10) v42v31 − 2v3v31v42a5 − 4v3v21v52a6 − v23v1v

4
2a5

− 2v23v1v22a5 − 2v23v1v2a9 − 2v3v41v2b7 + v1v3v
4
2b10

+ (−4a6 − 2b2 − a8 + 2b9) v2v21v3 + (−2b1 + 2b6) v2v1v3
+ (−b3 + 3b10) v22v1v3 + (−12a10 − 2a3) v42v21v3
+ (−4a9 − 2b4) v2v31v3 + (−6a10 − a4 − b5 − 4a3) v22v21v3
+ (−4a5 − 2a7 − b8) v22v31v3 + (−8a6 − a8) v32v21v3 + v3a1
− v61a8 − v21a1 − v1b1 − v23a3 − 2v31v32a5 − v21v

4
2a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
a1 = 0
a3 = 0
a6 = 0
a10 = 0
b3 = 0
b10 = 0

−a1 = 0
−a3 = 0
−2a5 = 0
−a5 = 0
−4a6 = 0
−2a6 = 0
−a6 = 0
−4a8 = 0
−2a8 = 0
−a8 = 0
−8a9 = 0
−4a9 = 0
−2a9 = 0
−6a10 = 0
−3a10 = 0
−a10 = 0
−b1 = 0
−b3 = 0
−b6 = 0
−2b7 = 0
−b10 = 0

−a1 − a6 = 0
a1 + a6 = 0
a3 + a10 = 0

−8a6 − a8 = 0
−4a6 − 3a8 = 0
−4a9 − 2b4 = 0
−2a9 − 2b4 = 0
−2a9 + b10 = 0

−12a10 − 2a3 = 0
−6a10 − a3 = 0
−3a10 − 2a3 = 0
−a10 − a3 = 0
−2b1 + 2b6 = 0
−b3 + 3b10 = 0

−2a2 + b3 + b4 = 0
−2a3 − a4 + b5 = 0

−4a5 − 2a7 − b8 = 0
−2a5 − 4a7 − b8 = 0
−2a5 − 2a7 + b8 = 0
−4a7 + b8 − a5 = 0

−2a5 + 2b6 − 2b1 + b8 = 0
−4a6 − 2b2 − a8 + 2b9 = 0
−2a9 + 3b10 − 2a2 − b3 = 0
−6a10 − a4 − b5 − 4a3 = 0
−3a10 − 2a3 − 3a4 − b5 = 0

2b7 − 3a4 + b5 − a3 = 0
2b9 − 2b2 − 2a6 − 3a8 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0
a9 = 0
a10 = 0
b1 = 0
b2 = b9

b3 = 0
b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = 0
b9 = b9

b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = x y2 + x

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2 + x
dy

Which results in

S = arctan (y)
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (y2 + 1) (x2 + arctan (y))
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −arctan (y)
x2

Sy =
1

x (y2 + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (y)
x

= x+ c1

Which simplifies to
arctan (y)

x
= x+ c1

Which gives

y = tan
(
c1x+ x2)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
y2+1

)(
x2+arctan(y)

)
x

dS
dR

= 1

R = x

S = arctan (y)
x

Summary
The solution(s) found are the following

(1)y = tan
(
c1x+ x2)
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Figure 302: Slope field plot

Verification of solutions

y = tan
(
c1x+ x2)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3`[0, x*y^2+x]� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 10� �
dsolve(x*diff(y(x),x) = (1+y(x)^2)*(x^2+arctan(y(x))),y(x), singsol=all)� �

y(x) = tan ((c1 + x)x)

3 Solution by Mathematica
Time used: 0.315 (sec). Leaf size: 14� �
DSolve[x y'[x]==(1+y[x]^2)(x^2+ArcTan[y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan(x(x+ 2c1))
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8.8 problem 213
8.8.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1901
8.8.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1903
8.8.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1905

Internal problem ID [3469]
Internal file name [OUTPUT/2962_Sunday_June_05_2022_08_48_16_AM_19683441/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 213.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y − x e
y
x = 0

8.8.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = e
y
x + y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= e

y
x

Substituting the above in (2) results in the u(x) ode as

u′(x) = eu(x)
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= eu
x

Where f(x) = 1
x
and g(u) = eu. Integrating both sides gives

1
eu du = 1

x
dx∫ 1

eu du =
∫ 1

x
dx

−e−u = ln (x) + c1

The solution is
−e−u(x) − ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

−e−
y
x − ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)−e−
y
x − ln (x)− c1 = 0
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Figure 303: Slope field plot

Verification of solutions

−e−
y
x − ln (x)− c1 = 0

Verified OK.

8.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− x eu(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= eu
x

Where f(x) = 1
x
and g(u) = eu. Integrating both sides gives

1
eu du = 1

x
dx
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∫ 1
eu du =

∫ 1
x
dx

−e−u = ln (x) + c2

The solution is
−e−u(x) − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−e−
y
x − ln (x)− c2 = 0

−e−
y
x − ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)−e−
y
x − ln (x)− c2 = 0

Figure 304: Slope field plot

Verification of solutions

−e−
y
x − ln (x)− c2 = 0

Verified OK.
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8.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + x e y
x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 340: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= xy

x2

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x

And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + x e y
x

x

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e− y

x

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −S(R) e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1ee
−R (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1ee

− y
x
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Which simplifies to

−1
x
= c1ee

− y
x

Which gives

y = − ln
(
ln
(
− 1
c1x

))
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+x e
y
x

x
dS
dR

= −S(R) e−R

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = − ln
(
ln
(
− 1
c1x

))
x
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Figure 305: Slope field plot

Verification of solutions

y = − ln
(
ln
(
− 1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x) = y(x)+x*exp(y(x)/x),y(x), singsol=all)� �

y(x) = ln
(
− 1
ln (x) + c1

)
x

3 Solution by Mathematica
Time used: 0.322 (sec). Leaf size: 18� �
DSolve[x y'[x]==y[x]+x Exp[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x log(− log(x)− c1)
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8.9 problem 214
8.9.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1911
8.9.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1913

Internal problem ID [3470]
Internal file name [OUTPUT/2963_Sunday_June_05_2022_08_48_17_AM_80482220/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 214.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y − x e
y
x = x

8.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− x eu(x) = x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= eu + 1
x

Where f(x) = 1
x
and g(u) = eu + 1. Integrating both sides gives

1
eu + 1 du = 1

x
dx∫ 1

eu + 1 du =
∫ 1

x
dx

− ln (eu + 1) + ln (eu) = ln (x) + c2
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Raising both side to exponential gives

e− ln(eu+1)+ln(eu) = eln(x)+c2

Which simplifies to
eu

eu + 1 = c3x

Therefore the solution y is

y = xu

= x ln
(
− c3x

c3x− 1

)
Summary
The solution(s) found are the following

(1)y = x ln
(
− c3x

c3x− 1

)

Figure 306: Slope field plot

Verification of solutions

y = x ln
(
− c3x

c3x− 1

)
Verified OK.
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8.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x+ y + x e y
x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
x+ y + x e y

x

)
(b3 − a2)

x
−
(
x+ y + x e y

x

)2
a3

x2

−

1 + e y
x − y e

y
x

x

x
− x+ y + x e y

x

x2

 (xa2 + ya3 + a1)

−
(
e y

x + 1
)
(xb2 + yb3 + b1)

x
= 0

Putting the above in normal form gives

−e 2y
x x2a3 + e y

xx2a2 + 2 e y
xx2a3 + e y

xx2b2 − e y
xx2b3 − e y

xxya2 + 2 e y
xxya3 + e y

xxyb3 − e y
xy2a3 + e y

xxb1 − e y
xya1 + x2a2 + x2a3 − x2b3 + 2xya3 + xb1 − ya1

x2

= 0

Setting the numerator to zero gives

(6E)−e
2y
x x2a3−e

y
xx2a2−2 e

y
xx2a3−e

y
xx2b2+e

y
xx2b3+e

y
xxya2−2 e

y
xxya3−e

y
xxyb3

+ e
y
xy2a3 − e

y
xxb1 + e

y
xya1 − x2a2 − x2a3 + x2b3 − 2xya3 − xb1 + ya1 = 0
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Simplifying the above gives

(6E)−e
2y
x x2a3−e

y
xx2a2−2 e

y
xx2a3−e

y
xx2b2+e

y
xx2b3+e

y
xxya2−2 e

y
xxya3−e

y
xxyb3

+ e
y
xy2a3 − e

y
xxb1 + e

y
xya1 − x2a2 − x2a3 + x2b3 − 2xya3 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y, e

y
x , e

2y
x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, e
y
x = v3, e

2y
x = v4

}
The above PDE (6E) now becomes

(7E)−v3v
2
1a2+v3v1v2a2−2v3v21a3−v4v

2
1a3−2v3v1v2a3+v3v

2
2a3−v3v

2
1b2+v3v

2
1b3

− v3v1v2b3+ v3v2a1− v21a2− v21a3− 2v1v2a3− v3v1b1+ v21b3+ v2a1− v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)(−a2 − 2a3 − b2 + b3) v21v3 − v4v
2
1a3 + (−a2 − a3 + b3) v21

+(a2−2a3− b3) v1v2v3−2v1v2a3− v3v1b1− v1b1+ v3v
2
2a3+ v3v2a1+ v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0

−2a3 = 0
−a3 = 0
−b1 = 0

−a2 − a3 + b3 = 0
a2 − 2a3 − b3 = 0

−a2 − 2a3 − b2 + b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x+ y + x e y

x

x

)
(x)

= −x− x e
y
x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x− x e y
x

dy
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Which results in

S = ln
(
e

y
x + 1

)
− ln

(
e

y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ y + x e y
x

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x2
(
e y

x + 1
)

Sy = − 1
x
(
e y

x + 1
)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
e y

x + 1
)
x− y

x
= − ln (x) + c1
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Which simplifies to

ln
(
e y

x + 1
)
x− y

x
= − ln (x) + c1

Which gives

y = ln (x)x+ x ln
(

1
ec1 − x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+y+x e
y
x

x
dS
dR

= − 1
R

R = x

S =
ln
(
e y

x + 1
)
x− y

x

Summary
The solution(s) found are the following

(1)y = ln (x)x+ x ln
(

1
ec1 − x

)
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Figure 307: Slope field plot

Verification of solutions

y = ln (x)x+ x ln
(

1
ec1 − x

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(x*diff(y(x),x) = x+y(x)+x*exp(y(x)/x),y(x), singsol=all)� �

y(x) =
(
ln
(
− x

x ec1 − 1

)
+ c1

)
x

3 Solution by Mathematica
Time used: 4.516 (sec). Leaf size: 38� �
DSolve[x y'[x]==x+y[x]+x Exp[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x log
(
1
2

(
−1 + tanh

(
1
2(− log(x)− c1)

)))
y(x) → iπx
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8.10 problem 215
8.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1920
8.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1922
8.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1926
8.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1930

Internal problem ID [3471]
Internal file name [OUTPUT/2964_Sunday_June_05_2022_08_48_19_AM_58347616/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 215.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ − y ln (y) = 0

8.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y ln (y)
x

Where f(x) = 1
x
and g(y) = ln (y) y. Integrating both sides gives

1
ln (y) y dy = 1

x
dx∫ 1

ln (y) y dy =
∫ 1

x
dx

ln (ln (y)) = ln (x) + c1

1920



Raising both side to exponential gives

ln (y) = eln(x)+c1

Which simplifies to

ln (y) = c2x

Summary
The solution(s) found are the following

(1)y = ec2ec1x

Figure 308: Slope field plot

Verification of solutions

y = ec2ec1x

Verified OK.
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8.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y ln (y)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 342: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y ln (y)
x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y ln (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R ln (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (ln (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = ln (ln (y)) + c1

Which simplifies to

ln (x) = ln (ln (y)) + c1

Which gives

y = ex e−c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y ln(y)
x

dS
dR

= 1
R ln(R)

R = y

S = ln (x)

Summary
The solution(s) found are the following

(1)y = ex e−c1
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Figure 309: Slope field plot

Verification of solutions

y = ex e−c1

Verified OK.

8.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y ln (y)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

y ln (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
y ln (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y ln (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y ln(y) . Therefore equation (4) becomes

(5)1
y ln (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y ln (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y ln (y)

)
dy

f(y) = ln (ln (y)) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (ln (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (ln (y))

The solution becomes
y = eec1x

Summary
The solution(s) found are the following

(1)y = eec1x

Figure 310: Slope field plot

Verification of solutions

y = eec1x

Verified OK.
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8.10.4 Maple step by step solution

Let’s solve
xy′ − y ln (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y ln(y) =
1
x

• Integrate both sides with respect to x∫
y′

y ln(y)dx =
∫ 1

x
dx+ c1

• Evaluate integral
ln (ln (y)) = ln (x) + c1

• Solve for y
y = eec1x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 8� �
dsolve(x*diff(y(x),x) = y(x)*ln(y(x)),y(x), singsol=all)� �

y(x) = ec1x
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3 Solution by Mathematica
Time used: 0.18 (sec). Leaf size: 18� �
DSolve[x y'[x]==y[x] Log[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ee
c1x

y(x) → 1
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8.11 problem 216
8.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1932
8.11.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1938

Internal problem ID [3472]
Internal file name [OUTPUT/2965_Sunday_June_05_2022_08_48_20_AM_94042241/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 216.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − (ln (x)− ln (y) + 1) y = 0

8.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (ln (x)− ln (y) + 1) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(ln (x)− ln (y) + 1) y(b3 − a2)
x

− (ln (x)− ln (y) + 1)2 y2a3
x2

−
(

y

x2 − (ln (x)− ln (y) + 1) y
x2

)
(xa2 + ya3 + a1)

−
(
−1
x
+ ln (x)− ln (y) + 1

x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− ln (x)2 y2a3 − 2 ln (x) ln (y) y2a3 + ln (y)2 y2a3 + ln (x)x2b2 + ln (x) y2a3 − ln (y)x2b2 − ln (y) y2a3 + ln (x)xb1 − ln (x) ya1 − ln (y)xb1 + ln (y) ya1 − b2x
2 + xya2 − xyb3 + y2a3

x2

= 0

Setting the numerator to zero gives

(6E)− ln (x)2 y2a3 + 2 ln (x) ln (y) y2a3 − ln (y)2 y2a3 − ln (x)x2b2
− ln (x) y2a3 + ln (y)x2b2 + ln (y) y2a3 − ln (x)xb1 + ln (x) ya1
+ ln (y)xb1 − ln (y) ya1 + b2x

2 − xya2 + xyb3 − y2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (x) , ln (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (x) = v3, ln (y) = v4}

The above PDE (6E) now becomes

(7E)−v23v
2
2a3 + 2v3v4v22a3 − v24v

2
2a3 − v3v

2
2a3 + v4v

2
2a3 − v3v

2
1b2 + v4v

2
1b2

+ v3v2a1 − v4v2a1 − v1v2a2 − v22a3 − v3v1b1 + v4v1b1 + b2v
2
1 + v1v2b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v3v
2
1b2 + v4v

2
1b2 + b2v

2
1 + (b3 − a2) v1v2 − v3v1b1 + v4v1b1 − v23v

2
2a3

+ 2v3v4v22a3 − v3v
2
2a3 − v24v

2
2a3 + v4v

2
2a3 − v22a3 + v3v2a1 − v4v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b1 = 0
b2 = 0

−a1 = 0
−a3 = 0
2a3 = 0
−b1 = 0
−b2 = 0

b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
(ln (x)− ln (y) + 1) y

x

)
(x)

= − ln (x) y + ln (y) y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− ln (x) y + ln (y) ydy

Which results in

S = ln (ln (x)− ln (y))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (ln (x)− ln (y) + 1) y
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x (ln (x)− ln (y))

Sy = − 1
y (ln (x)− ln (y))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (ln (x)− ln (y)) = − ln (x) + c1

Which simplifies to

ln (ln (x)− ln (y)) = − ln (x) + c1

Which gives

y = e
ln(x)x−ec1

x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (ln(x)−ln(y)+1)y
x

dS
dR

= − 1
R

R = x

S = ln (ln (x)− ln (y))

Summary
The solution(s) found are the following

(1)y = e
ln(x)x−ec1

x
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Figure 311: Slope field plot

Verification of solutions

y = e
ln(x)x−ec1

x

Verified OK.

8.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = ((ln (x)− ln (y) + 1) y) dx
(−(ln (x)− ln (y) + 1) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −(ln (x)− ln (y) + 1) y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−(ln (x)− ln (y) + 1) y)

= − ln (x) + ln (y)

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((− ln (x) + ln (y))− (1))

= − ln (x) + ln (y)− 1
x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

(ln (x)− ln (y) + 1) y ((1)− (− ln (x) + ln (y)))

= −1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 1

y
dy

The result of integrating gives

µ = e− ln(y)

= 1
y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y
(−(ln (x)− ln (y) + 1) y)

= − ln (x) + ln (y)− 1

And

N = µN

= 1
y
(x)

= x

y
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(− ln (x) + ln (y)− 1) +
(
x

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− ln (x) + ln (y)− 1 dx

(3)φ = −x(ln (x)− ln (y)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y
. Therefore equation (4) becomes

(5)x

y
= x

y
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x(ln (x)− ln (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(ln (x)− ln (y))

The solution becomes

y = e
ln(x)x+c1

x

Summary
The solution(s) found are the following

(1)y = e
ln(x)x+c1

x

Figure 312: Slope field plot

Verification of solutions

y = e
ln(x)x+c1

x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x) = (1+ln(x)-ln(y(x)))*y(x),y(x), singsol=all)� �

y(x) = x e
c1
x

3 Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 22� �
DSolve[x y'[x]==(1+Log[x]-Log[y[x]])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xe
ec1
x

y(x) → x
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8.12 problem 217
8.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1944
8.12.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1950

Internal problem ID [3473]
Internal file name [OUTPUT/2966_Sunday_June_05_2022_08_48_22_AM_47256649/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 217.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

xy′ + (1− ln (x)− ln (y)) y = 0

8.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(ln (x) + ln (y)− 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

y(ln (x) + ln (y)− 1) (b3 − a2)
x

− y2(ln (x) + ln (y)− 1)2 a3
x2

−
(

y

x2 − y(ln (x) + ln (y)− 1)
x2

)
(xa2 + ya3 + a1)

−
(
ln (x) + ln (y)− 1

x
+ 1

x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− ln (x)2 y2a3 + 2 ln (x) ln (y) y2a3 + ln (y)2 y2a3 + ln (x)x2b2 − 3 ln (x) y2a3 + ln (y)x2b2 − 3 ln (y) y2a3 + ln (x)xb1 − ln (x) ya1 + ln (y)xb1 − ln (y) ya1 − b2x
2 + xya2 + xyb3 + 3y2a3 + 2ya1

x2

= 0

Setting the numerator to zero gives

(6E)− ln (x)2 y2a3 − 2 ln (x) ln (y) y2a3 − ln (y)2 y2a3 − ln (x)x2b2
+ 3 ln (x) y2a3 − ln (y)x2b2 + 3 ln (y) y2a3 − ln (x)xb1 + ln (x) ya1
− ln (y)xb1 + ln (y) ya1 + b2x

2 − xya2 − xyb3 − 3y2a3 − 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (x) , ln (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (x) = v3, ln (y) = v4}

The above PDE (6E) now becomes

(7E)−v23v
2
2a3− 2v3v4v22a3− v24v

2
2a3+3v3v22a3+3v4v22a3− v3v

2
1b2− v4v

2
1b2+ v3v2a1

+ v4v2a1 − v1v2a2 − 3v22a3 − v3v1b1 − v4v1b1 + b2v
2
1 − v1v2b3 − 2v2a1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v3v
2
1b2 − v4v

2
1b2 + b2v

2
1 + (−a2 − b3) v1v2 − v3v1b1 − v4v1b1 − v23v

2
2a3

−2v3v4v22a3+3v3v22a3−v24v
2
2a3+3v4v22a3−3v22a3+v3v2a1+v4v2a1−2v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−2a1 = 0
−3a3 = 0
−2a3 = 0
−a3 = 0
3a3 = 0
−b1 = 0
−b2 = 0

−a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(ln (x) + ln (y)− 1)

x

)
(−x)

= ln (x) y + ln (y) y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ln (x) y + ln (y) ydy

Which results in

S = ln (ln (x) + ln (y))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(ln (x) + ln (y)− 1)
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x (ln (x) + ln (y))

Sy =
1

y (ln (x) + ln (y))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (ln (x) + ln (y)) = ln (x) + c1

Which simplifies to

ln (ln (x) + ln (y)) = ln (x) + c1

Which gives

y = eec1x
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(ln(x)+ln(y)−1)
x

dS
dR

= 1
R

R = x

S = ln (ln (x) + ln (y))

Summary
The solution(s) found are the following

(1)y = eec1x
x
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Figure 313: Slope field plot

Verification of solutions

y = eec1x
x

Verified OK.

8.12.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−(1− ln (x)− ln (y)) y) dx
((1− ln (x)− ln (y)) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = (1− ln (x)− ln (y)) y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
((1− ln (x)− ln (y)) y)

= − ln (x)− ln (y)

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = (1− ln (x)− ln (y)) y and N = x by this integrating
factor the ode becomes exact. The new M,N are

M = 1− ln (x)− ln (y)
x2

N = 1
xy

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
1
xy

)
dy =

(
−1− ln (x)− ln (y)

x2

)
dx(

1− ln (x)− ln (y)
x2

)
dx+

(
1
xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1− ln (x)− ln (y)
x2

N(x, y) = 1
xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
1− ln (x)− ln (y)

x2

)
= − 1

x2y

And
∂N

∂x
= ∂

∂x

(
1
xy

)
= − 1

x2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1− ln (x)− ln (y)
x2 dx

(3)φ = ln (x) + ln (y)
x

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

xy
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
xy
. Therefore equation (4) becomes

(5)1
xy

= 1
xy

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x) + ln (y)
x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x) + ln (y)

x

The solution becomes

y = ec1x
x

Summary
The solution(s) found are the following

(1)y = ec1x
x
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Figure 314: Slope field plot

Verification of solutions

y = ec1x
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)+(1-ln(x)-ln(y(x)))*y(x) = 0,y(x), singsol=all)� �

y(x) = ec1x
x

3 Solution by Mathematica
Time used: 0.232 (sec). Leaf size: 26� �
DSolve[x y'[x]+(1-Log[x]-Log[y[x]])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ee
−c1x

x

y(x) → 1
x
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8.13 problem 218
8.13.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1957
8.13.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1959
8.13.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1961

Internal problem ID [3474]
Internal file name [OUTPUT/2967_Sunday_June_05_2022_08_48_24_AM_16487388/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 218.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y + 2x tanh
(y
x

)
= 0

8.13.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = −2 tanh
(y
x

)
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −2
b = 1

f

(
bx

y

)
= tanh

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = −2 tanh (u(x))
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2 tanh (u)
x

Where f(x) = − 2
x
and g(u) = tanh (u). Integrating both sides gives

1
tanh (u) du = −2

x
dx∫ 1

tanh (u) du =
∫

−2
x
dx

ln (sinh (u)) = −2 ln (x) + c1

Raising both side to exponential gives

sinh (u) = e−2 ln(x)+c1

Which simplifies to

sinh (u) = c2
x2

Therefore the solution is

y = ux

= x arcsinh
(
c2ec1
x2

)
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Summary
The solution(s) found are the following

(1)y = x arcsinh
(
c2ec1
x2

)

Figure 315: Slope field plot

Verification of solutions

y = x arcsinh
(
c2ec1
x2

)
Verified OK.

8.13.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x+ 2x tanh (u(x)) = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2 tanh (u)
x

Where f(x) = − 2
x
and g(u) = tanh (u). Integrating both sides gives

1
tanh (u) du = −2

x
dx∫ 1

tanh (u) du =
∫

−2
x
dx

ln (sinh (u)) = −2 ln (x) + c2

Raising both side to exponential gives

sinh (u) = e−2 ln(x)+c2

Which simplifies to

sinh (u) = c3
x2

Therefore the solution y is

y = xu

= x arcsinh
(
c3ec2
x2

)
Summary
The solution(s) found are the following

(1)y = x arcsinh
(
c3ec2
x2

)
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Figure 316: Slope field plot

Verification of solutions

y = x arcsinh
(
c3ec2
x2

)
Verified OK.

8.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
2x tanh

(
y
x

)
− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 345: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
2x tanh

(
y
x

)
− y

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

coth
(
y
x

)
2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= coth (R)S(R)

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1
√

sinh (R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1

√
sinh

(y
x

)
Which simplifies to

−1
x
= c1

√
sinh

(y
x

)
Which gives

y = arcsinh
(

1
c21x

2

)
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x tanh
( y
x

)
−y

x
dS
dR

= coth(R)S(R)
2

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arcsinh
(

1
c21x

2

)
x
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Figure 317: Slope field plot

Verification of solutions

y = arcsinh
(

1
c21x

2

)
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.985 (sec). Leaf size: 34� �
dsolve(x*diff(y(x),x) = y(x)-2*x*tanh(y(x)/x),y(x), singsol=all)� �

y(x) = arctanh
(

1√
−c1x4 + 1

)
x

y(x) = − arctanh
(

1√
−c1x4 + 1

)
x

3 Solution by Mathematica
Time used: 11.37 (sec). Leaf size: 21� �
DSolve[x y'[x]==y[x]-2 x Tanh[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xarcsinh
(
ec1

x2

)
y(x) → 0
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8.14 problem 219
Internal problem ID [3475]
Internal file name [OUTPUT/2968_Sunday_June_05_2022_08_48_26_AM_52474258/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 219.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

xy′ + ny − f(x) g(xny) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
<- symmetry pattern of the form [F(x),G(x)*y+H(x)] successful
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*n/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 33� �
dsolve(x*diff(y(x),x)+n*y(x) = f(x)*g(x^n*y(x)),y(x), singsol=all)� �

y(x) = RootOf
(
−
(∫

xn−1f(x) dx
)
+
∫ _Z 1

g (_a)d_a+ c1

)
x−n
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3 Solution by Mathematica
Time used: 1.899 (sec). Leaf size: 41� �
DSolve[x y'[x]+ n y[x]==f[x] g[x^n y[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[∫ xny(x)

1

1
g(K[1])dK[1] =

∫ x

1
f(K[2])K[2]n−1dK[2] + c1, y(x)

]
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8.15 problem 220
8.15.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1971

Internal problem ID [3476]
Internal file name [OUTPUT/2969_Sunday_June_05_2022_08_48_28_AM_35434582/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 220.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

xy′ − yf(xmyn) = 0

8.15.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = yf(xmyn)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

yf(xmyn) (b3 − a2)
x

− y2f(xmyn)2 a3
x2

−
(
yD(f) (xmyn)xmmyn

x2 − yf(xmyn)
x2

)
(xa2 + ya3 + a1)

−
(
f(xmyn)

x
+ D(f) (xmyn)xmynn

x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−xmynD(f) (xmyn)mxya2 + xmynD(f) (xmyn)my2a3 + xmynD(f) (xmyn)nx2b2 + xmynD(f) (xmyn)nxyb3 + xmynD(f) (xmyn)mya1 + xmynD(f) (xmyn)nxb1 + y2f(xmyn)2 a3 + f(xmyn)x2b2 − f(xmyn) y2a3 + f(xmyn)xb1 − f(xmyn) ya1 − b2x
2

x2

= 0

Setting the numerator to zero gives

(6E)
−xmynD(f) (xmyn)mxya2 − xmynD(f) (xmyn)my2a3
− xmynD(f) (xmyn)nx2b2 − xmynD(f) (xmyn)nxyb3
− xmynD(f) (xmyn)mya1 − xmynD(f) (xmyn)nxb1 − y2f(xmyn)2 a3
− f(xmyn)x2b2 + f(xmyn) y2a3 − f(xmyn)xb1 + f(xmyn) ya1 + b2x

2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, xm, yn, f(xmyn) , D(f) (xmyn)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, x
m = v3, y

n = v4, f(xmyn) = v5, D(f) (xmyn) = v6}

The above PDE (6E) now becomes

(7E)−v3v4v6mv1v2a2−v3v4v6mv22a3−v3v4v6nv
2
1b2−v3v4v6nv1v2b3−v3v4v6mv2a1

− v3v4v6nv1b1 − v22v
2
5a3 + v5v

2
2a3 − v5v

2
1b2 + v5v2a1 − v5v1b1 + b2v

2
1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6}
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Equation (7E) now becomes

(8E)−v3v4v6nv
2
1b2 − v5v

2
1b2 + b2v

2
1 + (−ma2 − nb3) v1v2v3v4v6 − v3v4v6nv1b1

− v5v1b1 − v3v4v6mv22a3 − v22v
2
5a3 + v5v

2
2a3 − v3v4v6mv2a1 + v5v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b2 = 0

−a3 = 0
−b1 = 0
−b2 = 0

−ma1 = 0
−ma3 = 0
−nb1 = 0
−nb2 = 0

−ma2 − nb3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 = −nb3
m

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −xn

m

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−xn
m

= −ym

xn

This is easily solved to give

y = c1x
−m

n

Where now the coordinate R is taken as the constant of integration. Hence

R = y x
m
n

And S is found from

dS = dx

ξ

= dx

−xn
m

Integrating gives

S =
∫

dx

T

= −m ln (x)
n

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = yf(xmyn)
x

Evaluating all the partial derivatives gives

Rx = my x
m−n

n

n
Ry = x

m
n

Sx = −m

xn
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − mx−m

n

y (nf (xmyn) +m) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − m

R (nf (Rn) +m)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− m

R (nf (Rn) +m)dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−m ln (x)
n

=
∫ yx

m
n

− m

_a (nf (_an) +m)d_a+ c1

Which simplifies to

−m ln (x)
n

=
∫ yx

m
n

− m

_a (nf (_an) +m)d_a+ c1
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Summary
The solution(s) found are the following

(1)−m ln (x)
n

=
∫ yx

m
n

− m

_a (nf (_an) +m)d_a+ c1

Verification of solutions

−m ln (x)
n

=
∫ yx

m
n

− m

_a (nf (_an) +m)d_a+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -m*y(x)/(n*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 39� �
dsolve(x*diff(y(x),x) = y(x)*f(x^m*y(x)^n),y(x), singsol=all)� �∫ y(x)

_b

1
(f (xm_an)n+m)_ad_a−

ln (x)
n

− c1 = 0
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3 Solution by Mathematica
Time used: 0.362 (sec). Leaf size: 186� �
DSolve[x y'[x]==y[x] f[x^m y[x]^n] ,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[∫ y(x)

1

(
− n

(m+ nf (xmK[2]n))K[2]

−
∫ x

1

(
n2K[1]m−1K[2]n−1f ′(K[1]mK[2]n)

m+ nf (K[1]mK[2]n) −n3f(K[1]mK[2]n)K[1]m−1K[2]n−1f ′(K[1]mK[2]n)
(m+ nf (K[1]mK[2]n))2

)
dK[1]

)
dK[2]

+
∫ x

1

nf(K[1]my(x)n)
(m+ nf (K[1]my(x)n))K[1]dK[1] = c1, y(x)

]
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8.16 problem 221
8.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1978
8.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1980
8.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1984
8.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1989

Internal problem ID [3477]
Internal file name [OUTPUT/2970_Sunday_June_05_2022_08_48_29_AM_65258331/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 221.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ 1) y′ − y = x3(3x+ 4)

8.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x+ 1

q(x) = x3(3x+ 4)
x+ 1

Hence the ode is

y′ − y

x+ 1 = x3(3x+ 4)
x+ 1
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The integrating factor µ is

µ = e
∫
− 1

x+1dx

= 1
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
x3(3x+ 4)

x+ 1

)
d
dx

(
y

x+ 1

)
=
(

1
x+ 1

)(
x3(3x+ 4)

x+ 1

)
d
(

y

x+ 1

)
=
(
x3(3x+ 4)
(x+ 1)2

)
dx

Integrating gives

y

x+ 1 =
∫

x3(3x+ 4)
(x+ 1)2

dx

y

x+ 1 = x3 − x2 + x+ 1
x+ 1 + c1

Dividing both sides by the integrating factor µ = 1
x+1 results in

y = (x+ 1)
(
x3 − x2 + x+ 1

x+ 1

)
+ c1(x+ 1)

which simplifies to

y = x4 + c1x+ c1 + x+ 1

Summary
The solution(s) found are the following

(1)y = x4 + c1x+ c1 + x+ 1
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Figure 318: Slope field plot

Verification of solutions

y = x4 + c1x+ c1 + x+ 1

Verified OK.

8.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x4 + 4x3 + y

x+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 347: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x+ 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x+ 1dy

Which results in

S = y

x+ 1
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x4 + 4x3 + y

x+ 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x+ 1)2

Sy =
1

x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x3(3x+ 4)

(x+ 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3(3R + 4)

(R + 1)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3 −R2 +R + 1
R + 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x+ 1 = x3 − x2 + x+ 1
x+ 1 + c1

Which simplifies to
y

x+ 1 = x3 − x2 + x+ 1
x+ 1 + c1

Which gives

y = x4 + c1x+ c1 + x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x4+4x3+y
x+1

dS
dR

= R3(3R+4)
(R+1)2

R = x

S = y

x+ 1

Summary
The solution(s) found are the following

(1)y = x4 + c1x+ c1 + x+ 1
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Figure 319: Slope field plot

Verification of solutions

y = x4 + c1x+ c1 + x+ 1

Verified OK.

8.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 1) dy =
(
x3(3x+ 4) + y

)
dx(

−x3(3x+ 4)− y
)
dx+(x+ 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3(3x+ 4)− y

N(x, y) = x+ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3(3x+ 4)− y

)
= −1

And
∂N

∂x
= ∂

∂x
(x+ 1)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ 1((−1)− (1))

= − 2
x+ 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 2

x+1 dx

The result of integrating gives

µ = e−2 ln(x+1)

= 1
(x+ 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x+ 1)2

(
−x3(3x+ 4)− y

)
= −3x4 − 4x3 − y

(x+ 1)2

And

N = µN

= 1
(x+ 1)2

(x+ 1)

= 1
x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−3x4 − 4x3 − y

(x+ 1)2
)
+
(

1
x+ 1

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x4 − 4x3 − y

(x+ 1)2
dx

(3)φ = −x4 − x+ y − 1
x+ 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x+ 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x+1 . Therefore equation (4) becomes

(5)1
x+ 1 = 1

x+ 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x4 − x+ y − 1
x+ 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x4 − x+ y − 1

x+ 1
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The solution becomes
y = x4 + c1x+ c1 + x+ 1

Summary
The solution(s) found are the following

(1)y = x4 + c1x+ c1 + x+ 1

Figure 320: Slope field plot

Verification of solutions

y = x4 + c1x+ c1 + x+ 1

Verified OK.
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8.16.4 Maple step by step solution

Let’s solve
(x+ 1) y′ − y = x3(3x+ 4)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = y
x+1 +

x3(3x+4)
x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − y
x+1 = x3(3x+4)

x+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − y

x+1

)
= µ(x)x3(3x+4)

x+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x+1

• Solve to find the integrating factor
µ(x) = 1

x+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)x3(3x+4)
x+1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)x3(3x+4)

x+1 dx+ c1

• Solve for y

y =
∫ µ(x)x3(3x+4)

x+1 dx+c1

µ(x)

• Substitute µ(x) = 1
x+1

y = (x+ 1)
(∫ x3(3x+4)

(x+1)2 dx+ c1
)

• Evaluate the integrals on the rhs
y = (x+ 1)

(
x3 − x2 + x+ 1

x+1 + c1
)
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• Simplify
y = x4 + c1x+ c1 + x+ 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve((1+x)*diff(y(x),x) = x^3*(4+3*x)+y(x),y(x), singsol=all)� �

y(x) = x4 + c1x+ c1 + x+ 1

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 18� �
DSolve[(1+x) y'[x]==x^3(4+3 x)+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4 + (4 + c1)x+ 4 + c1
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8.17 problem 222
8.17.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1991
8.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1993
8.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1997
8.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2002

Internal problem ID [3478]
Internal file name [OUTPUT/2971_Sunday_June_05_2022_08_48_30_AM_58226521/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 222.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ 1) y′ − 2y = (x+ 1)4

8.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 2
x+ 1

q(x) = (x+ 1)3

Hence the ode is

y′ − 2y
x+ 1 = (x+ 1)3
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The integrating factor µ is

µ = e
∫
− 2

x+1dx

= 1
(x+ 1)2

The ode becomes

d
dx(µy) = (µ)

(
(x+ 1)3

)
d
dx

(
y

(x+ 1)2
)

=
(

1
(x+ 1)2

)(
(x+ 1)3

)
d
(

y

(x+ 1)2
)

= (x+ 1) dx

Integrating gives

y

(x+ 1)2
=
∫

x+ 1dx

y

(x+ 1)2
= 1

2x
2 + x+ c1

Dividing both sides by the integrating factor µ = 1
(x+1)2 results in

y = (x+ 1)2
(
1
2x

2 + x

)
+ c1(x+ 1)2

which simplifies to

y = (x+ 1)2 (x2 + 2c1 + 2x)
2

Summary
The solution(s) found are the following

(1)y = (x+ 1)2 (x2 + 2c1 + 2x)
2
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Figure 321: Slope field plot

Verification of solutions

y = (x+ 1)2 (x2 + 2c1 + 2x)
2

Verified OK.

8.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x4 + 4x3 + 6x2 + 4x+ 2y + 1
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 350: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = (x+ 1)2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

(x+ 1)2
dy

Which results in

S = y

(x+ 1)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x4 + 4x3 + 6x2 + 4x+ 2y + 1
x+ 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2y
(x+ 1)3

Sy =
1

(x+ 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x+ 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R

2 +R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(x+ 1)2
= 1

2x
2 + x+ c1

Which simplifies to

y

(x+ 1)2
= 1

2x
2 + x+ c1

Which gives

y = (x+ 1)2 (x2 + 2c1 + 2x)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x4+4x3+6x2+4x+2y+1
x+1

dS
dR

= R + 1

R = x

S = y

(x+ 1)2
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Summary
The solution(s) found are the following

(1)y = (x+ 1)2 (x2 + 2c1 + 2x)
2

Figure 322: Slope field plot

Verification of solutions

y = (x+ 1)2 (x2 + 2c1 + 2x)
2

Verified OK.

8.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 1) dy =
(
(x+ 1)4 + 2y

)
dx(

−(x+ 1)4 − 2y
)
dx+(x+ 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −(x+ 1)4 − 2y
N(x, y) = x+ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−(x+ 1)4 − 2y

)
= −2
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And
∂N

∂x
= ∂

∂x
(x+ 1)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ 1((−2)− (1))

= − 3
x+ 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 3

x+1 dx

The result of integrating gives

µ = e−3 ln(x+1)

= 1
(x+ 1)3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x+ 1)3

(
−(x+ 1)4 − 2y

)
= −(x+ 1)4 − 2y

(x+ 1)3

And

N = µN

= 1
(x+ 1)3

(x+ 1)

= 1
(x+ 1)2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(x+ 1)4 − 2y
(x+ 1)3

)
+
(

1
(x+ 1)2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−(x+ 1)4 − 2y

(x+ 1)3
dx

(3)φ = −x2

2 − x+ y

(x+ 1)2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

(x+ 1)2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
(x+1)2 . Therefore equation (4) becomes

(5)1
(x+ 1)2

= 1
(x+ 1)2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2

2 − x+ y

(x+ 1)2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − x+ y

(x+ 1)2

The solution becomes

y = (x+ 1)2 (x2 + 2c1 + 2x)
2

Summary
The solution(s) found are the following

(1)y = (x+ 1)2 (x2 + 2c1 + 2x)
2

Figure 323: Slope field plot
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Verification of solutions

y = (x+ 1)2 (x2 + 2c1 + 2x)
2

Verified OK.

8.17.4 Maple step by step solution

Let’s solve
(x+ 1) y′ − 2y = (x+ 1)4

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2y

x+1 + (x+ 1)3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y

x+1 = (x+ 1)3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 2y

x+1

)
= µ(x) (x+ 1)3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2y

x+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

x+1

• Solve to find the integrating factor
µ(x) = 1

(x+1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x+ 1)3 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x+ 1)3 dx+ c1

• Solve for y

y =
∫
µ(x)(x+1)3dx+c1

µ(x)

• Substitute µ(x) = 1
(x+1)2

2002



y = (x+ 1)2
(∫

(x+ 1) dx+ c1
)

• Evaluate the integrals on the rhs
y = (x+ 1)2

(1
2x

2 + x+ c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((1+x)*diff(y(x),x) = (1+x)^4+2*y(x),y(x), singsol=all)� �

y(x) =
(
1
2x

2 + x+ c1

)
(x+ 1)2

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 22� �
DSolve[(1+x) y'[x]==(1+x)^4+2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ 1)2
(
x2

2 + x+ c1

)
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8.18 problem 223
8.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2004
8.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2006
8.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2009
8.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2012

Internal problem ID [3479]
Internal file name [OUTPUT/2972_Sunday_June_05_2022_08_48_32_AM_26904971/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 223.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ 1) y′ − ny = ex(x+ 1)n+1

8.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − n

x+ 1
q(x) = ex(x+ 1)n

Hence the ode is

y′ − ny

x+ 1 = ex(x+ 1)n
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The integrating factor µ is

µ = e
∫
− n

x+1dx

= e−n ln(x+1)

Which simplifies to
µ = (x+ 1)−n

The ode becomes

d
dx(µy) = (µ) (ex(x+ 1)n)

d
dx
(
(x+ 1)−n y

)
=
(
(x+ 1)−n) (ex(x+ 1)n)

d
(
(x+ 1)−n y

)
= ex dx

Integrating gives

(x+ 1)−n y =
∫

ex dx

(x+ 1)−n y = ex + c1

Dividing both sides by the integrating factor µ = (x+ 1)−n results in

y = ex(x+ 1)n + c1(x+ 1)n

which simplifies to

y = (ex + c1) (x+ 1)n

Summary
The solution(s) found are the following

(1)y = (ex + c1) (x+ 1)n

Verification of solutions

y = (ex + c1) (x+ 1)n

Verified OK.
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8.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ex(x+ 1)n+1 + ny

x+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 353: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = en ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

en ln(x+1)dy

Which results in

S = e−n ln(x+1)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ex(x+ 1)n+1 + ny

x+ 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −ny(x+ 1)−1−n

Sy = (x+ 1)−n
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 1)−n y = ex + c1

Which simplifies to

(x+ 1)−n y = ex + c1

Which gives

y = (ex + c1) (x+ 1)n

Summary
The solution(s) found are the following

(1)y = (ex + c1) (x+ 1)n

Verification of solutions

y = (ex + c1) (x+ 1)n

Verified OK.
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8.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 1) dy =
(
ex(x+ 1)n+1 + ny

)
dx(

−ex(x+ 1)n+1 − ny
)
dx+(x+ 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ex(x+ 1)n+1 − ny

N(x, y) = x+ 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−ex(x+ 1)n+1 − ny

)
= −n

And
∂N

∂x
= ∂

∂x
(x+ 1)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ 1((−n)− (1))

= −1− n

x+ 1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ −1−n

x+1 dx

The result of integrating gives

µ = e(−1−n) ln(x+1)

= (x+ 1)−1−n

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= (x+ 1)−1−n (−ex(x+ 1)n+1 − ny
)

= −(x+ 1)−1−n (ex(x+ 1)n+1 + ny
)
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And

N = µN

= (x+ 1)−1−n (x+ 1)
= (x+ 1)−n

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(x+ 1)−1−n (ex(x+ 1)n+1 + ny
))

+
(
(x+ 1)−n) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−(x+ 1)−1−n (ex(x+ 1)n+1 + ny

)
dx

(3)φ = −ex + (x+ 1)−n y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (x+ 1)−n + f ′(y)

But equation (2) says that ∂φ
∂y

= (x+ 1)−n. Therefore equation (4) becomes

(5)(x+ 1)−n = (x+ 1)−n + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −ex + (x+ 1)−n y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex + (x+ 1)−n y

The solution becomes
y = (ex + c1) (x+ 1)n

Summary
The solution(s) found are the following

(1)y = (ex + c1) (x+ 1)n

Verification of solutions

y = (ex + c1) (x+ 1)n

Verified OK.

8.18.4 Maple step by step solution

Let’s solve
(x+ 1) y′ − ny = ex(x+ 1)n+1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = ny
x+1 +

ex(x+1)n+1

x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − ny
x+1 = ex(x+1)n+1

x+1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − ny

x+1

)
= µ(x)ex(x+1)n+1

x+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − ny

x+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)n

x+1

• Solve to find the integrating factor
µ(x) = 1

(x+1)n

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)ex(x+1)n+1

x+1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)ex(x+1)n+1

x+1 dx+ c1

• Solve for y

y =
∫ µ(x)ex(x+1)n+1

x+1 dx+c1

µ(x)

• Substitute µ(x) = 1
(x+1)n

y = (x+ 1)n
(∫ ex(x+1)n+1

(x+1)n(x+1)dx+ c1
)

• Evaluate the integrals on the rhs
y = (ex + c1) (x+ 1)n

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve((1+x)*diff(y(x),x) = exp(x)*(1+x)^(n+1)+n*y(x),y(x), singsol=all)� �

y(x) = (ex + c1) (x+ 1)n

3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 17� �
DSolve[(1+x) y'[x]==Exp[x](1+x)^(n+1)+n y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (ex + c1) (x+ 1)n
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8.19 problem 224
8.19.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2015
8.19.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2018
8.19.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2021

Internal problem ID [3480]
Internal file name [OUTPUT/2973_Sunday_June_05_2022_08_48_33_AM_80472491/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 224.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

(x+ 1) y′ − ya− bxy2 = 0

8.19.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(bxy + a)
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 356: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2e−a ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2e−a ln(x+1)dy

Which results in

S = −ea ln(x+1)

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(bxy + a)
x+ 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −a(x+ 1)a−1

y

Sy =
(x+ 1)a

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= bx(x+ 1)a−1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= bR(R + 1)a−1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = b(R + 1)a (Ra− 1)
a (1 + a) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−(x+ 1)a

y
= b(x+ 1)a (ax− 1)

a (1 + a) + c1

Which simplifies to

−(x+ 1)a

y
= b(x+ 1)a (ax− 1)

a (1 + a) + c1

Which gives

y = − (x+ 1)a (1 + a) a
(x+ 1)a abx+ c1a2 − b (x+ 1)a + c1a

Summary
The solution(s) found are the following

(1)y = − (x+ 1)a (1 + a) a
(x+ 1)a abx+ c1a2 − b (x+ 1)a + c1a

Verification of solutions

y = − (x+ 1)a (1 + a) a
(x+ 1)a abx+ c1a2 − b (x+ 1)a + c1a

Verified OK.

8.19.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(bxy + a)
x+ 1

This is a Bernoulli ODE.
y′ = a

x+ 1y +
bx

x+ 1y
2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
a

x+ 1

f1(x) =
bx

x+ 1
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= a

(x+ 1) y + bx

x+ 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = aw(x)
x+ 1 + bx

x+ 1

w′ = − aw

x+ 1 − bx

x+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = a

x+ 1

q(x) = − bx

x+ 1

Hence the ode is

w′(x) + aw(x)
x+ 1 = − bx

x+ 1

The integrating factor µ is

µ = e
∫

a
x+1dx

= ea ln(x+1)

Which simplifies to
µ = (x+ 1)a

The ode becomes

d
dx(µw) = (µ)

(
− bx

x+ 1

)
d
dx((x+ 1)aw) = ((x+ 1)a)

(
− bx

x+ 1

)
d((x+ 1)aw) =

(
−bx(x+ 1)a−1) dx

Integrating gives

(x+ 1)aw =
∫

−bx(x+ 1)a−1 dx

(x+ 1)aw = −b(x+ 1)a (ax− 1)
a (1 + a) + c1

Dividing both sides by the integrating factor µ = (x+ 1)a results in

w(x) = −(x+ 1)−a b(x+ 1)a (ax− 1)
a (1 + a) + c1(x+ 1)−a
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which simplifies to

w(x) = −b(ax− 1)
a (1 + a) + c1(x+ 1)−a

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −b(ax− 1)

a (1 + a) + c1(x+ 1)−a

Or

y = 1
− b(ax−1)

a(1+a) + c1 (x+ 1)−a

Summary
The solution(s) found are the following

(1)y = 1
− b(ax−1)

a(1+a) + c1 (x+ 1)−a

Verification of solutions

y = 1
− b(ax−1)

a(1+a) + c1 (x+ 1)−a

Verified OK.

8.19.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(bxy + a)
x+ 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = bx y2

x+ 1 + ya

x+ 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = a
x+1 and f2(x) = bx

x+1 . Let

y = −u′

f2u

= −u′

bxu
x+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

b

x+ 1 − bx

(x+ 1)2

f1f2 =
abx

(x+ 1)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

bxu′′(x)
x+ 1 −

(
b

x+ 1 − bx

(x+ 1)2
+ abx

(x+ 1)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + (ax− 1) (x+ 1)a c2

The above shows that
u′(x) = axc2(1 + a) (x+ 1)a−1

Using the above in (1) gives the solution

y = −ac2(1 + a) (x+ 1)a−1 (x+ 1)
b (c1 + (ax− 1) (x+ 1)a c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − a(1 + a) (x+ 1)a

b ((x+ 1)a ax− (x+ 1)a + c3)
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Summary
The solution(s) found are the following

(1)y = − a(1 + a) (x+ 1)a

b ((x+ 1)a ax− (x+ 1)a + c3)
Verification of solutions

y = − a(1 + a) (x+ 1)a

b ((x+ 1)a ax− (x+ 1)a + c3)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve((1+x)*diff(y(x),x) = a*y(x)+b*x*y(x)^2,y(x), singsol=all)� �

y(x) = (a+ 1) a
ac1 (a+ 1) (x+ 1)−a − bxa+ b

3 Solution by Mathematica
Time used: 0.299 (sec). Leaf size: 44� �
DSolve[(1+x) y'[x]==a y[x]+b x y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − a(a+ 1)(x+ 1)a
b(x+ 1)a(ax− 1)− a(a+ 1)c1

y(x) → 0

2023



8.20 problem 225
8.20.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2024
8.20.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2028

Internal problem ID [3481]
Internal file name [OUTPUT/2974_Sunday_June_05_2022_08_48_34_AM_7096954/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 225.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Bernoulli]

(x+ 1) y′ + y + (x+ 1)4 y3 = 0

8.20.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(x4y2 + 4x3y2 + 6y2x2 + 4x y2 + y2 + 1)
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 358: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3(x+ 1)2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3 (x+ 1)2
dy

Which results in

S = − 1
2 (x+ 1)2 y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(x4y2 + 4x3y2 + 6y2x2 + 4x y2 + y2 + 1)
x+ 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
(x+ 1)3 y2

Sy =
1

y3 (x+ 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1−R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
2R

2 −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
2 (x+ 1)2 y2

= −1
2x

2 − x+ c1

Which simplifies to

− 1
2 (x+ 1)2 y2

= −1
2x

2 − x+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x4y2+4x3y2+6y2x2+4x y2+y2+1

)
x+1

dS
dR

= −1−R

R = x

S = − 1
2 (x+ 1)2 y2

Summary
The solution(s) found are the following

(1)− 1
2 (x+ 1)2 y2

= −1
2x

2 − x+ c1
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Figure 324: Slope field plot

Verification of solutions

− 1
2 (x+ 1)2 y2

= −1
2x

2 − x+ c1

Verified OK.

8.20.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(x4y2 + 4x3y2 + 6y2x2 + 4x y2 + y2 + 1)
x+ 1

This is a Bernoulli ODE.

y′ = − 1
x+ 1y −

x4 + 4x3 + 6x2 + 4x+ 1
x+ 1 y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
x+ 1

f1(x) = −x4 + 4x3 + 6x2 + 4x+ 1
x+ 1

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
(x+ 1) y2 − x4 + 4x3 + 6x2 + 4x+ 1

x+ 1 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x)

x+ 1 − x4 + 4x3 + 6x2 + 4x+ 1
x+ 1

w′ = 2w
x+ 1 + 2x4 + 8x3 + 12x2 + 8x+ 2

x+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − 2
x+ 1

q(x) = 2(x+ 1)3

Hence the ode is

w′(x)− 2w(x)
x+ 1 = 2(x+ 1)3

The integrating factor µ is

µ = e
∫
− 2

x+1dx

= 1
(x+ 1)2

The ode becomes
d
dx(µw) = (µ)

(
2(x+ 1)3

)
d
dx

(
w

(x+ 1)2
)

=
(

1
(x+ 1)2

)(
2(x+ 1)3

)
d
(

w

(x+ 1)2
)

= (2 + 2x) dx

Integrating gives

w

(x+ 1)2
=
∫

2 + 2x dx

w

(x+ 1)2
= x2 + 2x+ c1

Dividing both sides by the integrating factor µ = 1
(x+1)2 results in

w(x) = (x+ 1)2
(
x2 + 2x

)
+ c1(x+ 1)2

which simplifies to

w(x) = (x+ 1)2
(
x2 + c1 + 2x

)
Replacing w in the above by 1

y2
using equation (5) gives the final solution.

1
y2

= (x+ 1)2
(
x2 + c1 + 2x

)
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Solving for y gives

y(x) = 1√
x2 + c1 + 2x (x+ 1)

y(x) = − 1√
x2 + c1 + 2x (x+ 1)

Summary
The solution(s) found are the following

(1)y = 1√
x2 + c1 + 2x (x+ 1)

(2)y = − 1√
x2 + c1 + 2x (x+ 1)

Figure 325: Slope field plot
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Verification of solutions

y = 1√
x2 + c1 + 2x (x+ 1)

Verified OK.

y = − 1√
x2 + c1 + 2x (x+ 1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 40� �
dsolve((1+x)*diff(y(x),x)+y(x)+(1+x)^4*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = 1√
x2 + c1 + 2x (x+ 1)

y(x) = − 1√
x2 + c1 + 2x (x+ 1)

3 Solution by Mathematica
Time used: 0.555 (sec). Leaf size: 54� �
DSolve[(1+x) y'[x]+y[x]+(1+x)^4 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
(x+ 1)2 (x2 + 2x+ c1)

y(x) → 1√
(x+ 1)2 (x2 + 2x+ c1)

y(x) → 0
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8.21 problem 226
8.21.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2033
8.21.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2037

Internal problem ID [3482]
Internal file name [OUTPUT/2975_Sunday_June_05_2022_08_48_37_AM_48225045/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 226.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

(x+ 1) y′ −
(
1− xy3

)
y = 0

8.21.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(x y3 − 1)
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 360: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y4

(x+ 1)3
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4

(x+1)3
dy

Which results in

S = −(x+ 1)3

3y3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(x y3 − 1)
x+ 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −(x+ 1)2

y3

Sy =
(x+ 1)3

y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x(x+ 1)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R(R + 1)2

2035



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
4R

4 − 2
3R

3 − 1
2R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−(x+ 1)3

3y3 = −1
4x

4 − 2
3x

3 − 1
2x

2 + c1

Which simplifies to

−(x+ 1)3

3y3 = −1
4x

4 − 2
3x

3 − 1
2x

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x y3−1

)
x+1

dS
dR

= −R(R + 1)2

R = x

S = −(x+ 1)3

3y3

Summary
The solution(s) found are the following

(1)−(x+ 1)3

3y3 = −1
4x

4 − 2
3x

3 − 1
2x

2 + c1
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Figure 326: Slope field plot

Verification of solutions

−(x+ 1)3

3y3 = −1
4x

4 − 2
3x

3 − 1
2x

2 + c1

Verified OK.

8.21.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(x y3 − 1)
x+ 1

This is a Bernoulli ODE.
y′ = 1

x+ 1y −
x

x+ 1y
4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

x+ 1
f1(x) = − x

x+ 1
n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= 1
(x+ 1) y3 − x

x+ 1 (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = w(x)

x+ 1 − x

x+ 1
w′ = − 3w

x+ 1 + 3x
x+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 3
x+ 1

q(x) = 3x
x+ 1
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Hence the ode is

w′(x) + 3w(x)
x+ 1 = 3x

x+ 1

The integrating factor µ is

µ = e
∫ 3

x+1dx

= (x+ 1)3

The ode becomes

d
dx(µw) = (µ)

(
3x

x+ 1

)
d
dx
(
(x+ 1)3w

)
=
(
(x+ 1)3

)( 3x
x+ 1

)
d
(
(x+ 1)3w

)
=
(
3x(x+ 1)2

)
dx

Integrating gives

(x+ 1)3w =
∫

3x(x+ 1)2 dx

(x+ 1)3w = 3
4x

4 + 2x3 + 3
2x

2 + c1

Dividing both sides by the integrating factor µ = (x+ 1)3 results in

w(x) =
3
4x

4 + 2x3 + 3
2x

2

(x+ 1)3
+ c1

(x+ 1)3

which simplifies to

w(x) = 3x4 + 8x3 + 6x2 + 4c1
4 (x+ 1)3

Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= 3x4 + 8x3 + 6x2 + 4c1
4 (x+ 1)3
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Solving for y gives

y(x) =
2 2

3

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
3 (x+ 1)

3x4 + 8x3 + 6x2 + 4c1

y(x) =

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
−1 + i

√
3
)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1

y(x) = −

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
1 + i

√
3
)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1

Summary
The solution(s) found are the following

(1)y =
2 2

3

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
3 (x+ 1)

3x4 + 8x3 + 6x2 + 4c1

(2)y =

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
−1 + i

√
3
)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1

(3)y = −

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
1 + i

√
3
)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1
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Figure 327: Slope field plot

Verification of solutions

y =
2 2

3

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
3 (x+ 1)

3x4 + 8x3 + 6x2 + 4c1

Verified OK.

y =

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
−1 + i

√
3
)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1

Verified OK.

y = −

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
1 + i

√
3
)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 180� �
dsolve((1+x)*diff(y(x),x) = (1-x*y(x)^3)*y(x),y(x), singsol=all)� �

y(x) =
2 2

3

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
3 (x+ 1)

3x4 + 8x3 + 6x2 + 4c1

y(x) = −

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
1 + i

√
3
)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1

y(x) =

(
(3x4 + 8x3 + 6x2 + 4c1)2

) 1
32 2

3
(
i
√
3− 1

)
(x+ 1)

6x4 + 16x3 + 12x2 + 8c1

3 Solution by Mathematica
Time used: 0.322 (sec). Leaf size: 124� �
DSolve[(1+x) y'[x]==(1-x y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − (−2)2/3(x+ 1)
3
√
−3x4 − 8x3 − 6x2 − 4c1

y(x) → − 22/3(x+ 1)
3
√
−3x4 − 8x3 − 6x2 − 4c1

y(x) →
3
√
−122/3(x+ 1)

3
√
−3x4 − 8x3 − 6x2 − 4c1

y(x) → 0
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8.22 problem 227
8.22.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2043

Internal problem ID [3483]
Internal file name [OUTPUT/2976_Sunday_June_05_2022_08_48_40_AM_73079488/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 227.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

(x+ 1) y′ − y − (x+ 1)
√

y + 1 = 1

8.22.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
√
y + 1x+

√
y + 1 + y + 1

x+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(√

y + 1 x+
√
y + 1 + y + 1

)
(b3 − a2)

x+ 1

−
(√

y + 1x+
√
y + 1 + y + 1

)2
a3

(x+ 1)2

−
(√

y + 1
x+ 1 −

√
y + 1x+

√
y + 1 + y + 1

(x+ 1)2
)
(xa2 + ya3 + a1)

−

(
x

2
√
y+1 +

1
2
√
y+1 + 1

)
(xb2 + yb3 + b1)

x+ 1 = 0

Putting the above in normal form gives

−x3b2 + x2b1 + 2x2b2 + 2xb1 + 2(y + 1)
3
2 a3 + 2a2 + 4a3 + b1 − 2b3 + 8xya3 + 2

√
y + 1 ya3 + 2

√
y + 1xb1 − 2

√
y + 1xb2 − 2

√
y + 1xb3 − 2

√
y + 1 ya1 + 2

√
y + 1 ya2 + 2(y + 1)

3
2 x2a3 + 4(y + 1)

3
2 xa3 + 4xa3 − x2yb3 − 2xyb3 − 2x2b3 + 4xa2 + 8ya3 + xb2 − yb3 − 2

√
y + 1 a1 + 2

√
y + 1 a2 + 2a3

√
y + 1 + 2

√
y + 1 b1 − 2b2

√
y + 1− 2

√
y + 1 b3 + 2a2y + 4y2a3 + 2x2a2 + 2x2a2y + 4xa2y − 4xb3 + 4x y2a3

2 (x+ 1)2
√
y + 1

= 0

Setting the numerator to zero gives

(6E)

−x3b2 − x2b1 − 2x2b2 − 2xb1 − 2(y + 1)
3
2 a3 − 2a2 − 4a3 − b1 + 2b3

− 8xya3 − 2
√
y + 1 ya3 − 2

√
y + 1xb1 + 2

√
y + 1xb2 + 2

√
y + 1 xb3

+ 2
√

y + 1 ya1 − 2
√

y + 1 ya2 − 2(y + 1)
3
2 x2a3 − 4(y + 1)

3
2 xa3 − 4xa3

+ x2yb3 + 2xyb3 + 2x2b3 − 4xa2 − 8ya3 − xb2 + yb3 + 2
√
y + 1 a1

− 2
√

y + 1 a2 − 2a3
√
y + 1− 2

√
y + 1 b1 + 2b2

√
y + 1 + 2

√
y + 1 b3

− 2a2y − 4y2a3 − 2x2a2 − 2x2a2y − 4xa2y + 4xb3 − 4x y2a3 = 0

Simplifying the above gives

(6E)

−x3b2 − x2b1 − 2x2b2 − 2xb1 − 2(y + 1)
3
2 a3 − 2(y + 1) a2 − 4(y + 1) a3

+ 2(y + 1) b3 − b1 − 4(y + 1)xya3 − 2
√
y + 1 ya3 − 4(y + 1) ya3

− 2
√

y + 1xb1 + 2
√

y + 1xb2 + 2
√
y + 1xb3 + 2

√
y + 1 ya1

− 2
√

y + 1 ya2 + 2(y + 1)x2b3 − 4(y + 1)xa2 − 4(y + 1)xa3
+ 4(y + 1)xb3 − 2(y + 1)

3
2 x2a3 − 4(y + 1)

3
2 xa3 − 2(y + 1)x2a2

− x2yb3 − 2xyb3 − xb2 − yb3 + 2
√

y + 1 a1 − 2
√
y + 1 a2

− 2a3
√

y + 1− 2
√

y + 1 b1 + 2b2
√

y + 1 + 2
√

y + 1 b3 = 0
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Since the PDE has radicals, simplifying gives

−x3b2 − x2b1 − 2x2b2 − 2xb1 − 2a2 − 4a3 − b1 +2b3 − 8xya3 − 2
√
y + 1x2a3y

− 4
√

y + 1xa3y − 4
√

y + 1 ya3 − 2
√

y + 1xb1 + 2
√

y + 1xb2
+ 2
√

y + 1 xb3 + 2
√

y + 1 ya1 − 2
√
y + 1 ya2 − 4xa3 + x2yb3 + 2xyb3

+ 2x2b3 − 4xa2 − 8ya3 − xb2 + yb3 + 2
√
y + 1 a1 − 2

√
y + 1 a2 − 4a3

√
y + 1

− 2
√

y + 1 b1 + 2b2
√

y + 1 + 2
√
y + 1 b3 − 2a2y − 4y2a3 − 2

√
y + 1x2a3

− 2x2a2 − 2x2a2y − 4xa2y + 4xb3 − 4
√
y + 1 xa3 − 4x y2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y + 1 = v3
}

The above PDE (6E) now becomes

(7E)
−2v3v21a3v2 − 2v21a2v2 − 2v3v21a3 − 4v1v22a3 − 4v3v1a3v2 − v31b2 + v21v2b3
+ 2v3v2a1 − 2v21a2 − 4v1a2v2 − 2v3v2a2 − 8v1v2a3 − 4v3v1a3 − 4v22a3
− 4v3v2a3− v21b1− 2v3v1b1− 2v21b2 +2v3v1b2 +2v21b3 +2v1v2b3 +2v3v1b3
+2v3a1 − 4v1a2 − 2a2v2 − 2v3a2 − 4v1a3 − 8v2a3 − 4a3v3 − 2v1b1 − 2v3b1
− v1b2 + 2b2v3 + 4v1b3 + v2b3 + 2v3b3 − 2a2 − 4a3 − b1 + 2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)
−v31b2−2v3v21a3v2+(−2a2+b3) v21v2−2v3v21a3+(−2a2−b1−2b2+2b3) v21
− 4v1v22a3 − 4v3v1a3v2 + (−4a2 − 8a3 + 2b3) v1v2
+ (−4a3 − 2b1 + 2b2 + 2b3) v1v3 + (−4a2 − 4a3 − 2b1 − b2 + 4b3) v1
− 4v22a3 + (2a1 − 2a2 − 4a3) v2v3 + (−2a2 − 8a3 + b3) v2
+ (2a1 − 2a2 − 4a3 − 2b1 + 2b2 + 2b3) v3 − 2a2 − 4a3 − b1 + 2b3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a3 = 0
−2a3 = 0
−b2 = 0

−2a2 + b3 = 0
2a1 − 2a2 − 4a3 = 0

−4a2 − 8a3 + 2b3 = 0
−2a2 − 8a3 + b3 = 0

−2a2 − 4a3 − b1 + 2b3 = 0
−2a2 − b1 − 2b2 + 2b3 = 0
−4a3 − 2b1 + 2b2 + 2b3 = 0

−4a2 − 4a3 − 2b1 − b2 + 4b3 = 0
2a1 − 2a2 − 4a3 − 2b1 + 2b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = a2

a2 = a2

a3 = 0
b1 = 2a2
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 1
η = 2 + 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2 + 2y −
(√

y + 1x+
√
y + 1 + y + 1

x+ 1

)
(x+ 1)

= −
√

y + 1x−
√

y + 1 + y + 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
y + 1x−

√
y + 1 + y + 1

dy

Which results in

S = ln (−x2 − 2x+ y)
x2 + 2x+ 1 + x(x+ 2) ln (−x2 − 2x+ y)

x2 + 2x+ 1 +
2 ln

(√
y + 1− 1− x

)
2 + 2x −

2 ln
(√

y + 1 + x+ 1
)

2 + 2x +
2x ln

(√
y + 1− 1− x

)
2 + 2x −

2x ln
(√

y + 1 + x+ 1
)

2 + 2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
y + 1x+

√
y + 1 + y + 1

x+ 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2√
y + 1− 1− x

Sy =
1

√
y + 1

(√
y + 1− 1− x

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= (x+ 1)

√
y + 1− y − 1

√
y + 1

(
−
√
y + 1 + 1 + x

)
(x+ 1)

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
−x2 − 2x+ y

)
+ ln

(√
y + 1− 1− x

)
− ln

(√
y + 1 + x+ 1

)
= ln (x+ 1) + c1

Which simplifies to

ln
(
−x2 − 2x+ y

)
+ ln

(√
y + 1− 1− x

)
− ln

(√
y + 1 + x+ 1

)
= ln (x+ 1) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√
y+1x+

√
y+1+y+1

x+1
dS
dR

= 1
R+1

R = x

S = ln
(
−x2 − 2x+ y

)
+ ln

(√
y + 1− 1− x

)
− ln

(√
y + 1 + x+ 1

)
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Summary
The solution(s) found are the following

(1)ln
(
−x2 − 2x+ y

)
+ ln

(√
y + 1− 1− x

)
− ln

(√
y + 1 + x+ 1

)
= ln (x+ 1) + c1

Figure 328: Slope field plot

Verification of solutions

ln
(
−x2 − 2x+ y

)
+ ln

(√
y + 1− 1− x

)
− ln

(√
y + 1 + x+ 1

)
= ln (x+ 1) + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = (2*y(x)+2)/(x+1), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 81� �
dsolve((1+x)*diff(y(x),x) = 1+y(x)+(1+x)*sqrt(1+y(x)),y(x), singsol=all)� �
(−c1y(x) + 1 + c1x

2 + (2c1 + 1)x)
√

y (x) + 1− (−c1y(x)− 1 + c1x
2 + (2c1 − 1)x) (x+ 1)

(x2 + 2x− y (x))
(
−
√

y (x) + 1 + x+ 1
)

= 0

3 Solution by Mathematica
Time used: 0.237 (sec). Leaf size: 60� �
DSolve[(1+x) y'[x]==(1+y[x])+(1+x)Sqrt[1+y[x]],y[x],x,IncludeSingularSolutions -> True]� �
Solve

2√y(x) + 1 arctan
(

x+1√
−y(x)−1

)
√

−y(x)− 1
+log

(
y(x)−(x+1)2+1

)
− log(x+1) = c1, y(x)
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8.23 problem 228
8.23.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2051
8.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2052

Internal problem ID [3484]
Internal file name [OUTPUT/2977_Sunday_June_05_2022_08_48_41_AM_61921181/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 228.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(x+ a) y′ = bx

8.23.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

bx

x+ a
dx

= b(x− a ln (x+ a)) + c1

Summary
The solution(s) found are the following

(1)y = b(x− a ln (x+ a)) + c1

Verification of solutions

y = b(x− a ln (x+ a)) + c1

Verified OK.
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8.23.2 Maple step by step solution

Let’s solve
(x+ a) y′ = bx

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ = bx

x+a

• Integrate both sides with respect to x∫
y′dx =

∫
bx
x+a

dx+ c1

• Evaluate integral
y = b(x− a ln (x+ a)) + c1

• Solve for y
y = − ln (x+ a) ab+ bx+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve((a+x)*diff(y(x),x) = b*x,y(x), singsol=all)� �

y(x) = − ln (x+ a) ab+ bx+ c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 19� �
DSolve[(a+x) y'[x]==b x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ab log(a+ x) + bx+ c1
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8.24 problem 229
8.24.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2053
8.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2055
8.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2058
8.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2061

Internal problem ID [3485]
Internal file name [OUTPUT/2978_Sunday_June_05_2022_08_48_42_AM_27788341/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 229.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ a) y′ − y = bx

8.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x+ a

q(x) = bx

x+ a

Hence the ode is

y′ − y

x+ a
= bx

x+ a

2053



The integrating factor µ is

µ = e
∫
− 1

x+a
dx

= 1
x+ a

The ode becomes

d
dx(µy) = (µ)

(
bx

x+ a

)
d
dx

(
y

x+ a

)
=
(

1
x+ a

)(
bx

x+ a

)
d
(

y

x+ a

)
=
(

bx

(x+ a)2
)

dx

Integrating gives

y

x+ a
=
∫

bx

(x+ a)2
dx

y

x+ a
= b

(
a

x+ a
+ ln (x+ a)

)
+ c1

Dividing both sides by the integrating factor µ = 1
x+a

results in

y = (x+ a) b
(

a

x+ a
+ ln (x+ a)

)
+ c1(x+ a)

which simplifies to

y = b(x+ a) ln (x+ a) + (b+ c1) a+ c1x

Summary
The solution(s) found are the following

(1)y = b(x+ a) ln (x+ a) + (b+ c1) a+ c1x

Verification of solutions

y = b(x+ a) ln (x+ a) + (b+ c1) a+ c1x

Verified OK.
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8.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = bx+ y

x+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 363: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = x+ a (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x+ a
dy

Which results in

S = y

x+ a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = bx+ y

x+ a
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x+ a)2

Sy =
1

x+ a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= bx

(x+ a)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= bR

(R + a)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = b

(
a

R + a
+ ln (R + a)

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x+ a
= b

(
a

x+ a
+ ln (x+ a)

)
+ c1

Which simplifies to
y

x+ a
= b

(
a

x+ a
+ ln (x+ a)

)
+ c1

Which gives

y = ln (x+ a) ab+ ln (x+ a) bx+ c1a+ c1x+ ab

Summary
The solution(s) found are the following

(1)y = ln (x+ a) ab+ ln (x+ a) bx+ c1a+ c1x+ ab

Verification of solutions

y = ln (x+ a) ab+ ln (x+ a) bx+ c1a+ c1x+ ab

Verified OK.
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8.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ a) dy = (bx+ y) dx
(−bx− y) dx+(x+ a) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bx− y

N(x, y) = x+ a
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−bx− y)

= −1

And
∂N

∂x
= ∂

∂x
(x+ a)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ a
((−1)− (1))

= − 2
x+ a

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x+a
dx

The result of integrating gives

µ = e−2 ln(x+a)

= 1
(x+ a)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x+ a)2

(−bx− y)

= −bx− y

(x+ a)2
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And

N = µN

= 1
(x+ a)2

(x+ a)

= 1
x+ a

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−bx− y

(x+ a)2
)
+
(

1
x+ a

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−bx− y

(x+ a)2
dx

(3)φ = −ab+ y

x+ a
− b ln (x+ a) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x+ a
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x+a

. Therefore equation (4) becomes

(5)1
x+ a

= 1
x+ a

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −ab+ y

x+ a
− b ln (x+ a) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−ab+ y

x+ a
− b ln (x+ a)

The solution becomes

y = ln (x+ a) ab+ ln (x+ a) bx+ c1a+ c1x+ ab

Summary
The solution(s) found are the following

(1)y = ln (x+ a) ab+ ln (x+ a) bx+ c1a+ c1x+ ab

Verification of solutions

y = ln (x+ a) ab+ ln (x+ a) bx+ c1a+ c1x+ ab

Verified OK.

8.24.4 Maple step by step solution

Let’s solve
(x+ a) y′ − y = bx

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x+a
+ bx

x+a
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x+a
= bx

x+a

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x+a

)
= µ(x)bx

x+a

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x+a

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x+a

• Solve to find the integrating factor
µ(x) = 1

x+a

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)bx
x+a

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)bx
x+a

dx+ c1

• Solve for y

y =
∫ µ(x)bx

x+a
dx+c1

µ(x)

• Substitute µ(x) = 1
x+a

y = (x+ a)
(∫

bx
(x+a)2dx+ c1

)
• Evaluate the integrals on the rhs

y = (x+ a)
(
b
(

a
x+a

+ ln (x+ a)
)
+ c1

)
• Simplify

y = b(x+ a) ln (x+ a) + (b+ c1) a+ c1x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve((a+x)*diff(y(x),x) = b*x+y(x),y(x), singsol=all)� �

y(x) = b(x+ a) ln (x+ a) + (b+ c1) a+ c1x

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 26� �
DSolve[(a+x) y'[x]==b x+ y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (a+ x)
(

ab

a+ x
+ b log(a+ x) + c1

)
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8.25 problem 230
8.25.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2064
8.25.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2065
8.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2069
8.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2072

Internal problem ID [3486]
Internal file name [OUTPUT/2979_Sunday_June_05_2022_08_48_43_AM_75869677/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 230.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ a) y′ + y = −b x2

8.25.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x+ a

q(x) = − b x2

x+ a

Hence the ode is

y′ + y

x+ a
= − b x2

x+ a
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The integrating factor µ is

µ = e
∫ 1

x+a
dx

= x+ a

The ode becomes

d
dx(µy) = (µ)

(
− b x2

x+ a

)
d
dx((x+ a) y) = (x+ a)

(
− b x2

x+ a

)
d((x+ a) y) =

(
−b x2) dx

Integrating gives

(x+ a) y =
∫

−b x2 dx

(x+ a) y = −b x3

3 + c1

Dividing both sides by the integrating factor µ = x+ a results in

y = − x3b

3 (x+ a) +
c1

x+ a

Summary
The solution(s) found are the following

(1)y = − x3b

3 (x+ a) +
c1

x+ a

Verification of solutions

y = − x3b

3 (x+ a) +
c1

x+ a

Verified OK.

8.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −b x2 + y

x+ a

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 366: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x+ a

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x+a

dy

Which results in

S = (x+ a) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −b x2 + y

x+ a

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x+ a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −b x2 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −bR2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −bR3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ a) y = −b x3

3 + c1

Which simplifies to

(x+ a) y = −b x3

3 + c1

Which gives

y = −b x3 + 3c1
3x+ 3a

Summary
The solution(s) found are the following

(1)y = −b x3 + 3c1
3x+ 3a

Verification of solutions

y = −b x3 + 3c1
3x+ 3a

Verified OK.
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8.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ a) dy =
(
−b x2 − y

)
dx(

b x2 + y
)
dx+(x+ a) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = b x2 + y

N(x, y) = x+ a
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
b x2 + y

)
= 1

And
∂N

∂x
= ∂

∂x
(x+ a)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
b x2 + y dx

(3)φ = 1
3b x

3 + xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x+ a. Therefore equation (4) becomes

(5)x+ a = x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = a

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(a) dy

f(y) = ya+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
3b x

3 + xy + ya+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
3b x

3 + xy + ya

The solution becomes

y = −b x3 + 3c1
3x+ 3a

Summary
The solution(s) found are the following

(1)y = −b x3 + 3c1
3x+ 3a

Verification of solutions

y = −b x3 + 3c1
3x+ 3a

Verified OK.
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8.25.4 Maple step by step solution

Let’s solve
(x+ a) y′ + y = −b x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x+a
− b x2

x+a

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x+a
= − b x2

x+a

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

x+a

)
= −µ(x)b x2

x+a

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x+a

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x+a

• Solve to find the integrating factor
µ(x) = x+ a

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)b x2

x+a
dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
−µ(x)b x2

x+a
dx+ c1

• Solve for y

y =
∫
−µ(x)b x2

x+a
dx+c1

µ(x)

• Substitute µ(x) = x+ a

y =
∫
−b x2dx+c1

x+a

• Evaluate the integrals on the rhs

y = − b x3
3 +c1
x+a

• Simplify
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y = −b x3+3c1
3x+3a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve((a+x)*diff(y(x),x)+b*x^2+y(x) = 0,y(x), singsol=all)� �

y(x) = −b x3 + 3c1
3x+ 3a

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 25� �
DSolve[(a+x) y'[x]+b x^2+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −bx3 + 3c1
3(a+ x)
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8.26 problem 231
8.26.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2074
8.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2076
8.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2079
8.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2082

Internal problem ID [3487]
Internal file name [OUTPUT/2980_Sunday_June_05_2022_08_48_44_AM_99440472/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 231.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ a) y′ − 3y = 2(x+ a)5

8.26.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 3
x+ a

q(x) = 2(x+ a)4

Hence the ode is

y′ − 3y
x+ a

= 2(x+ a)4
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The integrating factor µ is

µ = e
∫
− 3

x+a
dx

= 1
(x+ a)3

The ode becomes

d
dx(µy) = (µ)

(
2(x+ a)4

)
d
dx

(
y

(x+ a)3
)

=
(

1
(x+ a)3

)(
2(x+ a)4

)
d
(

y

(x+ a)3
)

= (2x+ 2a) dx

Integrating gives

y

(x+ a)3
=
∫

2x+ 2a dx

y

(x+ a)3
= 2ax+ x2 + c1

Dividing both sides by the integrating factor µ = 1
(x+a)3 results in

y = (x+ a)3
(
2ax+ x2)+ c1(x+ a)3

which simplifies to

y = (x+ a)3
(
2ax+ x2 + c1

)
Summary
The solution(s) found are the following

(1)y = (x+ a)3
(
2ax+ x2 + c1

)
Verification of solutions

y = (x+ a)3
(
2ax+ x2 + c1

)
Verified OK.
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8.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2a5 + 10a4x+ 20a3x2 + 20a2x3 + 10a x4 + 2x5 + 3y
x+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 369: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = (x+ a)3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

(x+ a)3
dy

Which results in

S = y

(x+ a)3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2a5 + 10a4x+ 20a3x2 + 20a2x3 + 10a x4 + 2x5 + 3y
x+ a
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3y
(x+ a)4

Sy =
1

(x+ a)3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 2x+ 2a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R + 2a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + 2aR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(x+ a)3
= 2ax+ x2 + c1

Which simplifies to
y

(x+ a)3
= 2ax+ x2 + c1

Which gives

y = (x+ a)3
(
2ax+ x2 + c1

)
Summary
The solution(s) found are the following

(1)y = (x+ a)3
(
2ax+ x2 + c1

)
Verification of solutions

y = (x+ a)3
(
2ax+ x2 + c1

)
Verified OK.
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8.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ a) dy =
(
2(x+ a)5 + 3y

)
dx(

−2(x+ a)5 − 3y
)
dx+(x+ a) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2(x+ a)5 − 3y
N(x, y) = x+ a
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2(x+ a)5 − 3y

)
= −3

And
∂N

∂x
= ∂

∂x
(x+ a)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ a
((−3)− (1))

= − 4
x+ a

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4

x+a
dx

The result of integrating gives

µ = e−4 ln(x+a)

= 1
(x+ a)4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x+ a)4

(
−2(x+ a)5 − 3y

)
= −2(x+ a)5 − 3y

(x+ a)4
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And

N = µN

= 1
(x+ a)4

(x+ a)

= 1
(x+ a)3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2(x+ a)5 − 3y
(x+ a)4

)
+
(

1
(x+ a)3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−2(x+ a)5 − 3y

(x+ a)4
dx

(3)φ = −x2 − 2ax+ y

(x+ a)3
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

(x+ a)3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
(x+a)3 . Therefore equation (4) becomes

(5)1
(x+ a)3

= 1
(x+ a)3

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2 − 2ax+ y

(x+ a)3
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 − 2ax+ y

(x+ a)3

The solution becomes
y = (x+ a)3

(
2ax+ x2 + c1

)
Summary
The solution(s) found are the following

(1)y = (x+ a)3
(
2ax+ x2 + c1

)
Verification of solutions

y = (x+ a)3
(
2ax+ x2 + c1

)
Verified OK.

8.26.4 Maple step by step solution

Let’s solve
(x+ a) y′ − 3y = 2(x+ a)5

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 3y

x+a
+ 2(x+ a)4
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 3y

x+a
= 2(x+ a)4

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 3y

x+a

)
= 2µ(x) (x+ a)4

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 3y

x+a

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −3µ(x)

x+a

• Solve to find the integrating factor
µ(x) = 1

(x+a)3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) (x+ a)4 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) (x+ a)4 dx+ c1

• Solve for y

y =
∫
2µ(x)(x+a)4dx+c1

µ(x)

• Substitute µ(x) = 1
(x+a)3

y = (x+ a)3
(∫

(2x+ 2a) dx+ c1
)

• Evaluate the integrals on the rhs
y = (x+ a)3 (2ax+ x2 + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve((a+x)*diff(y(x),x) = 2*(a+x)^5+3*y(x),y(x), singsol=all)� �

y(x) =
(
2ax+ x2 + c1

)
(x+ a)3

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 21� �
DSolve[(a+x) y'[x]==2(a+x)^5+3 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (a+ x)3
(
2ax+ x2 + c1

)
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8.27 problem 232
8.27.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2085
8.27.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2086
8.27.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2088
8.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2091
8.27.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2094

Internal problem ID [3488]
Internal file name [OUTPUT/2981_Sunday_June_05_2022_08_48_46_AM_835775/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 232.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ a) y′ − cy = b

8.27.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= cy + b

x+ a

Where f(x) = 1
x+a

and g(y) = cy + b. Integrating both sides gives

1
cy + b

dy = 1
x+ a

dx∫ 1
cy + b

dy =
∫ 1

x+ a
dx

ln (cy + b)
c

= ln (x+ a) + c1
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Raising both side to exponential gives

e
ln(cy+b)

c = eln(x+a)+c1

Which simplifies to

(cy + b)
1
c = c2(x+ a)

Which simplifies to

y =

(
1

c2(x+a)

)−c

ec1c − b

c

Summary
The solution(s) found are the following

(1)y =

(
1

c2(x+a)

)−c

ec1c − b

c

Verification of solutions

y =

(
1

c2(x+a)

)−c

ec1c − b

c

Verified OK.

8.27.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − c

x+ a

q(x) = b

x+ a

Hence the ode is

y′ − cy

x+ a
= b

x+ a

The integrating factor µ is

µ = e
∫
− c

x+a
dx

= e−c ln(x+a)
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Which simplifies to
µ = (x+ a)−c

The ode becomes

d
dx(µy) = (µ)

(
b

x+ a

)
d
dx
(
(x+ a)−c y

)
=
(
(x+ a)−c)( b

x+ a

)
d
(
(x+ a)−c y

)
=
(
b(x+ a)−c−1) dx

Integrating gives

(x+ a)−c y =
∫

b(x+ a)−c−1 dx

(x+ a)−c y = −b(x+ a)−c

c
+ c1

Dividing both sides by the integrating factor µ = (x+ a)−c results in

y = −(x+ a)c b(x+ a)−c

c
+ c1(x+ a)c

which simplifies to

y = −b

c
+ c1(x+ a)c

Summary
The solution(s) found are the following

(1)y = −b

c
+ c1(x+ a)c

Verification of solutions

y = −b

c
+ c1(x+ a)c

Verified OK.
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8.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cy + b

x+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 372: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = ec ln(x+a) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ec ln(x+a)dy

Which results in

S = e−c ln(x+a)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cy + b

x+ a

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −cy(x+ a)−c−1

Sy = (x+ a)−c
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b(x+ a)−c−1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b(R + a)−c−1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −b(R + a)−c

c
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ a)−c y = −b(x+ a)−c

c
+ c1

Which simplifies to

(x+ a)−c (b+ cy)− c1c

c
= 0

Which gives

y = −
(
b(x+ a)−c − c1c

)
(x+ a)c

c

Summary
The solution(s) found are the following

(1)y = −
(
b(x+ a)−c − c1c

)
(x+ a)c

c

Verification of solutions

y = −
(
b(x+ a)−c − c1c

)
(x+ a)c

c

Verified OK.
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8.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

cy + b

)
dy =

(
1

x+ a

)
dx(

− 1
x+ a

)
dx+

(
1

cy + b

)
dy = 0 (2A)

2091



Comparing (1A) and (2A) shows that

M(x, y) = − 1
x+ a

N(x, y) = 1
cy + b

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x+ a

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

cy + b

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x+ a

dx

(3)φ = − ln (x+ a) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
cy+b

. Therefore equation (4) becomes

(5)1
cy + b

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
cy + b

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
cy + b

)
dy

f(y) = ln (cy + b)
c

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x+ a) + ln (cy + b)
c

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ a) + ln (cy + b)
c

The solution becomes

y = ec1c+c ln(x+a) − b

c

Summary
The solution(s) found are the following

(1)y = ec1c+c ln(x+a) − b

c

Verification of solutions

y = ec1c+c ln(x+a) − b

c

Verified OK.
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8.27.5 Maple step by step solution

Let’s solve
(x+ a) y′ − cy = b

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

b+cy
= 1

x+a

• Integrate both sides with respect to x∫
y′

b+cy
dx =

∫ 1
x+a

dx+ c1

• Evaluate integral
ln(b+cy)

c
= ln (x+ a) + c1

• Solve for y

y = ec1c+c ln(x+a)−b
c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((a+x)*diff(y(x),x) = b+c*y(x),y(x), singsol=all)� �

y(x) = −b

c
+ (x+ a)c c1
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3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 30� �
DSolve[(a+x) y'[x]==(b+c y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −b

c
+ c1(a+ x)c

y(x) → −b

c
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8.28 problem 233
8.28.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2096
8.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2098
8.28.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2101
8.28.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2105

Internal problem ID [3489]
Internal file name [OUTPUT/2982_Sunday_June_05_2022_08_48_47_AM_15370648/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 233.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ a) y′ − cy = bx

8.28.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − c

x+ a

q(x) = bx

x+ a

Hence the ode is

y′ − cy

x+ a
= bx

x+ a
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The integrating factor µ is

µ = e
∫
− c

x+a
dx

= e−c ln(x+a)

Which simplifies to
µ = (x+ a)−c

The ode becomes

d
dx(µy) = (µ)

(
bx

x+ a

)
d
dx
(
(x+ a)−c y

)
=
(
(x+ a)−c)( bx

x+ a

)
d
(
(x+ a)−c y

)
=
(
bx(x+ a)−c−1) dx

Integrating gives

(x+ a)−c y =
∫

bx(x+ a)−c−1 dx

(x+ a)−c y = −b(x+ a)−c (cx+ a)
c (c− 1) + c1

Dividing both sides by the integrating factor µ = (x+ a)−c results in

y = −(x+ a)c b(x+ a)−c (cx+ a)
c (c− 1) + c1(x+ a)c

which simplifies to

y = −b(cx+ a)
c (c− 1) + c1(x+ a)c

Summary
The solution(s) found are the following

(1)y = −b(cx+ a)
c (c− 1) + c1(x+ a)c

Verification of solutions

y = −b(cx+ a)
c (c− 1) + c1(x+ a)c

Verified OK.
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8.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = bx+ cy

x+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 375: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = ec ln(x+a) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ec ln(x+a)dy

Which results in

S = e−c ln(x+a)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = bx+ cy

x+ a

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −cy(x+ a)−c−1

Sy = (x+ a)−c
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= bx(x+ a)−c−1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= bR(R + a)−c−1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −b(R + a)−c (Rc+ a)
c (c− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ a)−c y = −b(x+ a)−c (cx+ a)
c (c− 1) + c1

Which simplifies to

(x+ a)−c y = −b(x+ a)−c (cx+ a)
c (c− 1) + c1

Which gives

y = −
(
(x+ a)−c bcx+ (x+ a)−c ab− c2c1 + c1c

)
(x+ a)c

c (c− 1)

Summary
The solution(s) found are the following

(1)y = −
(
(x+ a)−c bcx+ (x+ a)−c ab− c2c1 + c1c

)
(x+ a)c

c (c− 1)
Verification of solutions

y = −
(
(x+ a)−c bcx+ (x+ a)−c ab− c2c1 + c1c

)
(x+ a)c

c (c− 1)

Verified OK.
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8.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ a) dy = (bx+ cy) dx
(−bx− cy) dx+(x+ a) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bx− cy

N(x, y) = x+ a
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−bx− cy)

= −c

And
∂N

∂x
= ∂

∂x
(x+ a)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ a
((−c)− (1))

= −c− 1
x+ a

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ −c−1

x+a
dx

The result of integrating gives

µ = e(−c−1) ln(x+a)

= (x+ a)−c−1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= (x+ a)−c−1 (−bx− cy)
= (−bx− cy) (x+ a)−c−1
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And

N = µN

= (x+ a)−c−1 (x+ a)
= (x+ a)−c

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−bx− cy) (x+ a)−c−1)+ ((x+ a)−c) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−bx− cy) (x+ a)−c−1 dx

(3)φ = (x+ a)−c (c2y + (bx− y) c+ ab)
c (c− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (x+ a)−c (c2 − c)

c (c− 1) + f ′(y)

= (x+ a)−c + f ′(y)

But equation (2) says that ∂φ
∂y

= (x+ a)−c. Therefore equation (4) becomes

(5)(x+ a)−c = (x+ a)−c + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (x+ a)−c (c2y + (bx− y) c+ ab)
c (c− 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x+ a)−c (c2y + (bx− y) c+ ab)

c (c− 1)

The solution becomes

y = −
(
(x+ a)−c bcx+ (x+ a)−c ab− c2c1 + c1c

)
(x+ a)c

c (c− 1)

Summary
The solution(s) found are the following

(1)y = −
(
(x+ a)−c bcx+ (x+ a)−c ab− c2c1 + c1c

)
(x+ a)c

c (c− 1)
Verification of solutions

y = −
(
(x+ a)−c bcx+ (x+ a)−c ab− c2c1 + c1c

)
(x+ a)c

c (c− 1)

Verified OK.
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8.28.4 Maple step by step solution

Let’s solve
(x+ a) y′ − cy = bx

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = cy

x+a
+ bx

x+a

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − cy

x+a
= bx

x+a

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − cy

x+a

)
= µ(x)bx

x+a

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − cy

x+a

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)c

x+a

• Solve to find the integrating factor
µ(x) = 1

(x+a)c

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)bx
x+a

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)bx
x+a

dx+ c1

• Solve for y

y =
∫ µ(x)bx

x+a
dx+c1

µ(x)

• Substitute µ(x) = 1
(x+a)c

y = (x+ a)c
(∫

bx
(x+a)c(x+a)dx+ c1

)
• Evaluate the integrals on the rhs

y = (x+ a)c
(
− b(cx+a)

c(c−1)(x+a)c + c1
)
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• Simplify

y = −b(cx+a)+c1(x+a)cc(c−1)
c(c−1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve((a+x)*diff(y(x),x) = b*x+c*y(x),y(x), singsol=all)� �

y(x) = (x+ a)c c1 −
b(cx+ a)
c (c− 1)

3 Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 32� �
DSolve[(a+x) y'[x]==b x+c y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ab+ bcx

c− c2
+ c1(a+ x)c

2106



8.29 problem 234
8.29.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2107
8.29.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2108
8.29.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2111
8.29.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2114
8.29.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2117
8.29.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2119

Internal problem ID [3490]
Internal file name [OUTPUT/2983_Sunday_June_05_2022_08_48_48_AM_53307630/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 234.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ a) y′ − y(1− ya) = 0

8.29.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(ya− 1)
x+ a

Where f(x) = − 1
x+a

and g(y) = y(ya− 1). Integrating both sides gives

1
y (ya− 1) dy = − 1

x+ a
dx∫ 1

y (ya− 1) dy =
∫

− 1
x+ a

dx
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ln (ya− 1)− ln (y) = − ln (x+ a) + c1

Raising both side to exponential gives

eln(ya−1)−ln(y) = e− ln(x+a)+c1

Which simplifies to

ya− 1
y

= c2
x+ a

Summary
The solution(s) found are the following

(1)y = − x+ a

−a2 − ax+ c2

Verification of solutions

y = − x+ a

−a2 − ax+ c2

Verified OK.

8.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(ya− 1)
x+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 378: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x− a

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x− a
dx

Which results in

S = − ln (−x− a)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(ya− 1)
x+ a

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − 1
x+ a

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (ya− 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (Ra− 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (Ra− 1)− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−x− a) = ln (ya− 1)− ln (y) + c1

Which simplifies to

− ln (−x− a) = ln (ya− 1)− ln (y) + c1

Which gives

y = ec1(x+ a)
a2ec1 + ax ec1 + 1

Summary
The solution(s) found are the following

(1)y = ec1(x+ a)
a2ec1 + ax ec1 + 1

Verification of solutions

y = ec1(x+ a)
a2ec1 + ax ec1 + 1

Verified OK.

8.29.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(ya− 1)
x+ a

This is a Bernoulli ODE.
y′ = 1

x+ a
y − a

x+ a
y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

x+ a

f1(x) = − a

x+ a

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
(x+ a) y − a

x+ a
(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x+ a

− a

x+ a

w′ = − w

x+ a
+ a

x+ a
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 1
x+ a

q(x) = a

x+ a

Hence the ode is

w′(x) + w(x)
x+ a

= a

x+ a

The integrating factor µ is

µ = e
∫ 1

x+a
dx

= x+ a

The ode becomes

d
dx(µw) = (µ)

(
a

x+ a

)
d
dx((x+ a)w) = (x+ a)

(
a

x+ a

)
d((x+ a)w) = a dx

Integrating gives

(x+ a)w =
∫

a dx

(x+ a)w = ax+ c1

Dividing both sides by the integrating factor µ = x+ a results in

w(x) = xa

x+ a
+ c1

x+ a

which simplifies to

w(x) = ax+ c1
x+ a

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= ax+ c1

x+ a
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Or

y = x+ a

ax+ c1

Summary
The solution(s) found are the following

(1)y = x+ a

ax+ c1

Verification of solutions

y = x+ a

ax+ c1

Verified OK.

8.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y (ya− 1)

)
dy =

(
1

x+ a

)
dx(

− 1
x+ a

)
dx+

(
− 1
y (ya− 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x+ a

N(x, y) = − 1
y (ya− 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x+ a

)
= 0

And

∂N

∂x
= ∂

∂x

(
− 1
y (ya− 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x+ a

dx

(3)φ = − ln (x+ a) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y(ya−1) . Therefore equation (4) becomes

(5)− 1
y (ya− 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y (ya− 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y (ya− 1)

)
dy

f(y) = − ln (ya− 1) + ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x+ a)− ln (ya− 1) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ a)− ln (ya− 1) + ln (y)
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The solution becomes

y = ec1(x+ a)
−1 + a2ec1 + ax ec1

Summary
The solution(s) found are the following

(1)y = ec1(x+ a)
−1 + a2ec1 + ax ec1

Verification of solutions

y = ec1(x+ a)
−1 + a2ec1 + ax ec1

Verified OK.

8.29.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y(ya− 1)
x+ a

This is a Riccati ODE. Comparing the ODE to solve

y′ = − y2a

x+ a
+ y

x+ a

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x+a

and f2(x) = − a
x+a

. Let

y = −u′

f2u

= −u′

− au
x+a

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 =

a

(x+ a)2

f1f2 = − a

(x+ a)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−au′′(x)
x+ a

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2

The above shows that
u′(x) = c1

Using the above in (1) gives the solution

y = c1(x+ a)
a (c1x+ c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3(x+ a)
a (c3x+ 1)

Summary
The solution(s) found are the following

(1)y = c3(x+ a)
a (c3x+ 1)

Verification of solutions

y = c3(x+ a)
a (c3x+ 1)

Verified OK.
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8.29.6 Maple step by step solution

Let’s solve
(x+ a) y′ − y(1− ya) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(1−ya) =
1

x+a

• Integrate both sides with respect to x∫
y′

y(1−ya)dx =
∫ 1

x+a
dx+ c1

• Evaluate integral
− ln (ya− 1) + ln (y) = ln (x+ a) + c1

• Solve for y
y = ec1 (x+a)

−1+a2ec1+ax ec1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve((a+x)*diff(y(x),x) = y(x)*(1-a*y(x)),y(x), singsol=all)� �

y(x) = x+ a

ax+ c1
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3 Solution by Mathematica
Time used: 0.719 (sec). Leaf size: 34� �
DSolve[(a+x) y'[x]==y[x](1-a y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a+ x

a2 + ax+ ec1
y(x) → 0

y(x) → 1
a
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8.30 problem 235
8.30.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2121
8.30.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2124

Internal problem ID [3491]
Internal file name [OUTPUT/2984_Sunday_June_05_2022_08_48_49_AM_43433809/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 235.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

(−x+ a) y′ − y − (cx+ b) y3 = 0

8.30.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(cx y2 + b y2 + 1)
−x+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 381: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3(−x+ a)2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3 (−x+ a)2
dy

Which results in

S = − 1
2 (−x+ a)2 y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(cx y2 + b y2 + 1)
−x+ a

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
(−x+ a)3 y2

Sy =
1

y3 (−x+ a)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cx+ b

(−x+ a)3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Rc+ b

(−R + a)3

2123



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c

R− a
+ ca+ b

2 (R− a)2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
2 (−x+ a)2 y2

= c

x− a
+ ca+ b

2 (x− a)2
+ c1

Which simplifies to

− 1
2 (−x+ a)2 y2

= c

x− a
+ ca+ b

2 (x− a)2
+ c1

Summary
The solution(s) found are the following

(1)− 1
2 (−x+ a)2 y2

= c

x− a
+ ca+ b

2 (x− a)2
+ c1

Verification of solutions

− 1
2 (−x+ a)2 y2

= c

x− a
+ ca+ b

2 (x− a)2
+ c1

Verified OK.

8.30.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(cx y2 + b y2 + 1)
−x+ a

This is a Bernoulli ODE.
y′ = 1

−x+ a
y + cx+ b

−x+ a
y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

−x+ a

f1(x) =
cx+ b

−x+ a

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 1
(−x+ a) y2 + cx+ b

−x+ a
(4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = w(x)

−x+ a
+ cx+ b

−x+ a

w′ = − 2w
−x+ a

− 2(cx+ b)
−x+ a

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 2
−x+ a

q(x) = −2cx− 2b
−x+ a

Hence the ode is

w′(x) + 2w(x)
−x+ a

= −2cx− 2b
−x+ a

The integrating factor µ is

µ = e
∫ 2

−x+a
dx

= 1
(−x+ a)2

The ode becomes
d
dx(µw) = (µ)

(
−2cx− 2b
−x+ a

)
d
dx

(
w

(−x+ a)2
)

=
(

1
(−x+ a)2

)(
−2cx− 2b
−x+ a

)
d
(

w

(−x+ a)2
)

=
(
−2cx− 2b
(−x+ a)3

)
dx

Integrating gives
w

(−x+ a)2
=
∫

−2cx− 2b
(−x+ a)3

dx

w

(−x+ a)2
= − 2c

x− a
− ca+ b

(x− a)2
+ c1

Dividing both sides by the integrating factor µ = 1
(−x+a)2 results in

w(x) = (−x+ a)2
(
− 2c
x− a

− ca+ b

(x− a)2
)
+ c1(−x+ a)2

which simplifies to

w(x) = c1(−x+ a)2 + (−2x+ a) c− b

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= c1(−x+ a)2 + (−2x+ a) c− b
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Solving for y gives

y(x) = 1√
a2c1 − 2ac1x+ c1x2 + ca− 2cx− b

y(x) = − 1√
c1 (−x+ a)2 + (−2x+ a) c− b

Summary
The solution(s) found are the following

(1)y = 1√
a2c1 − 2ac1x+ c1x2 + ca− 2cx− b

(2)y = − 1√
c1 (−x+ a)2 + (−2x+ a) c− b

Verification of solutions

y = 1√
a2c1 − 2ac1x+ c1x2 + ca− 2cx− b

Verified OK.

y = − 1√
c1 (−x+ a)2 + (−2x+ a) c− b

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve((a-x)*diff(y(x),x) = y(x)+(c*x+b)*y(x)^3,y(x), singsol=all)� �

y(x) = 1√
c1a2 − 2ac1x+ c1x2 + ac− 2cx− b

y(x) = − 1√
(a− x)2 c1 + ac− 2cx− b

3 Solution by Mathematica
Time used: 0.469 (sec). Leaf size: 82� �
DSolve[(a-x) y'[x]==y[x]+(b+c x)y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
a2c1 + a(c− 2c1x)− b+ x(−2c+ c1x)

y(x) → 1√
a2c1 + a(c− 2c1x)− b+ x(−2c+ c1x)

y(x) → 0
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8.31 problem 236
8.31.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2129
8.31.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2131
8.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2135
8.31.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2140

Internal problem ID [3492]
Internal file name [OUTPUT/2985_Sunday_June_05_2022_08_48_52_AM_85616667/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 236.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2xy′ + y = 2x3

8.31.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
2x

q(x) = x2

Hence the ode is

y′ + y

2x = x2

The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x
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The ode becomes
d
dx(µy) = (µ)

(
x2)

d
dx
(√

x y
)
=
(√

x
) (

x2)
d
(√

x y
)
= x

5
2 dx

Integrating gives
√
x y =

∫
x

5
2 dx

√
x y = 2x 7

2

7 + c1

Dividing both sides by the integrating factor µ =
√
x results in

y = 2x3

7 + c1√
x

Summary
The solution(s) found are the following

(1)y = 2x3

7 + c1√
x

Figure 329: Slope field plot
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Verification of solutions

y = 2x3

7 + c1√
x

Verified OK.

8.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−2x3 + y

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 383: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x

dy

Which results in

S =
√
x y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x3 + y

2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

2
√
x

Sy =
√
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

5
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

5
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R 7
2

7 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y
√
x = 2x 7

2

7 + c1

Which simplifies to

y
√
x = 2x 7

2

7 + c1

Which gives

y = 2x 7
2 + 7c1
7
√
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x3+y
2x

dS
dR

= R
5
2

R = x

S =
√
x y
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Summary
The solution(s) found are the following

(1)y = 2x 7
2 + 7c1
7
√
x

Figure 330: Slope field plot

Verification of solutions

y = 2x 7
2 + 7c1
7
√
x

Verified OK.

8.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x) dy =
(
2x3 − y

)
dx(

−2x3 + y
)
dx+(2x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x3 + y

N(x, y) = 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−2x3 + y

)
= 1

And

∂N

∂x
= ∂

∂x
(2x)

= 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x((1)− (2))

= − 1
2x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 1

2x dx

The result of integrating gives

µ = e−
ln(x)

2

= 1√
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x

(
−2x3 + y

)
= −2x3 + y√

x
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And

N = µN

= 1√
x
(2x)

= 2
√
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x3 + y√
x

)
+
(
2
√
x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3 + y√

x
dx

(3)φ = −2(2x3 − 7y)
√
x

7 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

√
x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2
√
x. Therefore equation (4) becomes

(5)2
√
x = 2

√
x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −2(2x3 − 7y)
√
x

7 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2(2x3 − 7y)
√
x

7

The solution becomes

y = 4x 7
2 + 7c1
14
√
x

Summary
The solution(s) found are the following

(1)y = 4x 7
2 + 7c1
14
√
x
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Figure 331: Slope field plot

Verification of solutions

y = 4x 7
2 + 7c1
14
√
x

Verified OK.

8.31.4 Maple step by step solution

Let’s solve
2xy′ + y = 2x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

2x + x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

2x = x2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + y

2x

)
= µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

2x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

2x

• Solve to find the integrating factor
µ(x) =

√
x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) =
√
x

y =
∫
x
5
2 dx+c1√

x

• Evaluate the integrals on the rhs

y =
2x

7
2

7 +c1√
x

• Simplify

y = 2x
7
2+7c1
7
√
x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(2*x*diff(y(x),x) = 2*x^3-y(x),y(x), singsol=all)� �

y(x) = 2x3

7 + c1√
x

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 21� �
DSolve[2 x y'[x]==2 x^3-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3

7 + c1√
x
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8.32 problem 237
8.32.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2143

Internal problem ID [3493]
Internal file name [OUTPUT/2986_Sunday_June_05_2022_08_48_53_AM_361749/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 237.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

2xy′ − 4ixy − y2 = −1

8.32.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 4ixy + y2 − 1
2x

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2iy + y2

2x − 1
2x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 1
2x , f1(x) = 2i and f2(x) = 1

2x . Let

y = −u′

f2u

= −u′

u
2x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

2x2

f1f2 =
i

x

f 2
2 f0 = − 1

8x3

Substituting the above terms back in equation (2) gives

u′′(x)
2x −

(
i

x
− 1

2x2

)
u′(x)− u(x)

8x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = eix(c2 BesselK (1,−ix)− c2 BesselK (0,−ix)
+ c1(iBesselJ (1, x)− BesselJ (0, x)))

√
x

The above shows that

u′(x)
=

−eix(c2 BesselK (1,−ix) + c2 BesselK (0,−ix) + c1(iBesselJ (1, x) + BesselJ (0, x)))
2
√
x

Using the above in (1) gives the solution

y = c2 BesselK (1,−ix) + c2 BesselK (0,−ix) + c1(iBesselJ (1, x) + BesselJ (0, x))
c2 BesselK (1,−ix)− c2 BesselK (0,−ix) + c1 (iBesselJ (1, x)− BesselJ (0, x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = iBesselJ (1, x) c3 + BesselJ (0, x) c3 + BesselK (1,−ix) + BesselK (0,−ix)
iBesselJ (1, x) c3 − BesselJ (0, x) c3 + BesselK (1,−ix)− BesselK (0,−ix)
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Summary
The solution(s) found are the following

(1)y = iBesselJ (1, x) c3 + BesselJ (0, x) c3 + BesselK (1,−ix) + BesselK (0,−ix)
iBesselJ (1, x) c3 − BesselJ (0, x) c3 + BesselK (1,−ix)− BesselK (0,−ix)

Figure 332: Slope field plot

Verification of solutions

y = iBesselJ (1, x) c3 + BesselJ (0, x) c3 + BesselK (1,−ix) + BesselK (0,−ix)
iBesselJ (1, x) c3 − BesselJ (0, x) c3 + BesselK (1,−ix)− BesselK (0,−ix)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> searching for a solution in terms of Whittaker functions
<- solution in terms of Whittaker functions successful

<- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) class`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 64� �
dsolve(2*x*diff(y(x),x)+1 = 4*I*x*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) = iBesselJ (1, x)− BesselK (1, ix) c1 + BesselK (0, ix) c1 + BesselJ (0, x)
iBesselJ (1, x)− BesselK (1, ix) c1 − BesselK (0, ix) c1 − BesselJ (0, x)
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3 Solution by Mathematica
Time used: 0.538 (sec). Leaf size: 202� �
DSolve[2 x y'[x]+1==4 I x y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

(1− i)c1eix
√
x((x− i) BesselJ(0, x)− BesselJ(1, x) + xBesselJ(2, x))− 4ixG2,0

1,2

−2ix

∣∣∣∣∣∣ −1
−3

2 ,−
1
2


G2,0

1,2

−2ix

∣∣∣∣∣∣ 1
−1

2 ,
1
2

+ (1 + i)c1eix
√
x(BesselJ(0, x)− iBesselJ(1, x))

y(x) → − i((x− i) BesselJ(0, x)− BesselJ(1, x) + xBesselJ(2, x))
BesselJ(0, x)− iBesselJ(1, x)

y(x) → − i((x− i) BesselJ(0, x)− BesselJ(1, x) + xBesselJ(2, x))
BesselJ(0, x)− iBesselJ(1, x)
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8.33 problem 238
8.33.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2148
8.33.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2150
8.33.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2154
8.33.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2157
8.33.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2161

Internal problem ID [3494]
Internal file name [OUTPUT/2987_Sunday_June_05_2022_08_48_55_AM_35495735/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 238.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2xy′ − y
(
y2 + 1

)
= 0

8.33.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(y2 + 1)
2x

Where f(x) = 1
2x and g(y) = y(y2 + 1). Integrating both sides gives

1
y (y2 + 1) dy = 1

2x dx∫ 1
y (y2 + 1) dy =

∫ 1
2x dx
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− ln (y2 + 1)
2 + ln (y) = ln (x)

2 + c1

Raising both side to exponential gives

e−
ln
(
y2+1

)
2 +ln(y) = e

ln(x)
2 +c1

Which simplifies to
y√

y2 + 1
=

√
x c2

Summary
The solution(s) found are the following

(1)y =
√
x c2

√
− 1
c22x− 1

Figure 333: Slope field plot

Verification of solutions

y =
√
x c2

√
− 1
c22x− 1

Verified OK.
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8.33.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(y2 + 1)
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 386: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 2x
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

2xdx

Which results in

S = ln (x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y2 + 1)
2x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y2 + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R2 + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R2 + 1)
2 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1

Which simplifies to

ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
y2+1

)
2x

dS
dR

= 1
R(R2+1)

R = y

S = ln (x)
2

Summary
The solution(s) found are the following

(1)ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1
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Figure 334: Slope field plot

Verification of solutions

ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1

Verified OK.

8.33.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(y2 + 1)
2x

This is a Bernoulli ODE.
y′ = 1

2xy +
1
2xy

3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) =
1
2x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 1
2x y2 + 1

2x (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = w(x)

2x + 1
2x

w′ = −w

x
− 1

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −1
x
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Hence the ode is

w′(x) + w(x)
x

= −1
x

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ)

(
−1
x

)
d
dx(xw) = (x)

(
−1
x

)
d(xw) = −1 dx

Integrating gives

xw =
∫

−1 dx

xw = −x+ c1

Dividing both sides by the integrating factor µ = x results in

w(x) = −1 + c1
x

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −1 + c1
x

Solving for y gives

y(x) =
√
(−x+ c1)x
−x+ c1

y(x) =
√
(−x+ c1)x
x− c1

Summary
The solution(s) found are the following

(1)y =
√

(−x+ c1)x
−x+ c1

(2)y =
√

(−x+ c1)x
x− c1
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Figure 335: Slope field plot

Verification of solutions

y =
√

(−x+ c1)x
−x+ c1

Verified OK.

y =
√

(−x+ c1)x
x− c1

Verified OK.

8.33.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2
y (y2 + 1)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
2

y (y2 + 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 2
y (y2 + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
2

y (y2 + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2
y(y2+1) . Therefore equation (4) becomes

(5)2
y (y2 + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2
y (y2 + 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 2
y (y2 + 1)

)
dy

f(y) = − ln
(
y2 + 1

)
+ 2 ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln
(
y2 + 1

)
+ 2 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln
(
y2 + 1

)
+ 2 ln (y)

Summary
The solution(s) found are the following

(1)− ln (x)− ln
(
y2 + 1

)
+ 2 ln (y) = c1

Figure 336: Slope field plot

Verification of solutions

− ln (x)− ln
(
y2 + 1

)
+ 2 ln (y) = c1

Verified OK.
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8.33.5 Maple step by step solution

Let’s solve
2xy′ − y(y2 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(y2+1) =
1
2x

• Integrate both sides with respect to x∫
y′

y(y2+1)dx =
∫ 1

2xdx+ c1

• Evaluate integral

− ln
(
y2+1

)
2 + ln (y) = ln(x)

2 + c1

• Solve for y{
y =

√(
−x+e−2c1

)
x

−x+e−2c1 , y = −
√(

−x+e−2c1
)
x

−x+e−2c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(2*x*diff(y(x),x) = y(x)*(1+y(x)^2),y(x), singsol=all)� �

y(x) =
√
(c1 − x)x
c1 − x

y(x) =
√
(c1 − x)x
−c1 + x
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3 Solution by Mathematica
Time used: 0.534 (sec). Leaf size: 82� �
DSolve[2 x y'[x]==y[x](1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − iec1
√
x√

−1 + e2c1x

y(x) → iec1
√
x√

−1 + e2c1x
y(x) → 0
y(x) → −i
y(x) → i
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8.34 problem 239
8.34.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2163
8.34.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2165
8.34.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2169
8.34.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2173
8.34.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2176

Internal problem ID [3495]
Internal file name [OUTPUT/2988_Sunday_June_05_2022_08_48_56_AM_94418887/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 239.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2xy′ + y
(
y2 + 1

)
= 0

8.34.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(y2 + 1)
2x

Where f(x) = − 1
2x and g(y) = y(y2 + 1). Integrating both sides gives

1
y (y2 + 1) dy = − 1

2x dx∫ 1
y (y2 + 1) dy =

∫
− 1
2x dx
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− ln (y2 + 1)
2 + ln (y) = − ln (x)

2 + c1

Raising both side to exponential gives

e−
ln
(
y2+1

)
2 +ln(y) = e−

ln(x)
2 +c1

Which simplifies to
y√

y2 + 1
= c2√

x

The solution is
y√

y2 + 1
= c2√

x

Summary
The solution(s) found are the following

(1)y√
y2 + 1

= c2√
x

Figure 337: Slope field plot
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Verification of solutions
y√

y2 + 1
= c2√

x

Verified OK.

8.34.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(y2 + 1)
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 389: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −2x
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−2xdx

Which results in

S = − ln (x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(y2 + 1)
2x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − 1
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y2 + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R2 + 1)

2167



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R2 + 1)
2 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1

Which simplifies to

− ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
y2+1

)
2x

dS
dR

= 1
R(R2+1)

R = y

S = − ln (x)
2

Summary
The solution(s) found are the following

(1)− ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1
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Figure 338: Slope field plot

Verification of solutions

− ln (x)
2 = − ln (y2 + 1)

2 + ln (y) + c1

Verified OK.

8.34.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(y2 + 1)
2x

This is a Bernoulli ODE.
y′ = − 1

2xy −
1
2xy

3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2x

f1(x) = − 1
2x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
2x y2 − 1

2x (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x)

2x − 1
2x

w′ = w

x
+ 1

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = 1
x
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Hence the ode is

w′(x)− w(x)
x

= 1
x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
1
x

)
d
dx

(w
x

)
=
(
1
x

)(
1
x

)
d
(w
x

)
= 1

x2 dx

Integrating gives

w

x
=
∫ 1

x2 dx

w

x
= −1

x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x− 1

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= c1x− 1

Solving for y gives

y(x) = 1√
c1x− 1

y(x) = − 1√
c1x− 1
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Summary
The solution(s) found are the following

(1)y = 1√
c1x− 1

(2)y = − 1√
c1x− 1

Figure 339: Slope field plot

Verification of solutions

y = 1√
c1x− 1

Verified OK.

y = − 1√
c1x− 1

Verified OK.
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8.34.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 2
y (y2 + 1)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 2
y (y2 + 1)

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 2
y (y2 + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 2
y (y2 + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= − 2
y(y2+1) . Therefore equation (4) becomes

(5)− 2
y (y2 + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 2
y (y2 + 1)

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 2
y (y2 + 1)

)
dy

f(y) = ln
(
y2 + 1

)
− 2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln
(
y2 + 1

)
− 2 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln
(
y2 + 1

)
− 2 ln (y)

Summary
The solution(s) found are the following

(1)− ln (x) + ln
(
y2 + 1

)
− 2 ln (y) = c1
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Figure 340: Slope field plot

Verification of solutions

− ln (x) + ln
(
y2 + 1

)
− 2 ln (y) = c1

Verified OK.

8.34.5 Maple step by step solution

Let’s solve
2xy′ + y(y2 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(y2+1) = − 1
2x

• Integrate both sides with respect to x∫
y′

y(y2+1)dx =
∫
− 1

2xdx+ c1

• Evaluate integral
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− ln
(
y2+1

)
2 + ln (y) = − ln(x)

2 + c1

• Solve for y{
y =

√
−
(
−x+e2c1

)
e2c1

−x+e2c1 , y = −
√

−
(
−x+e2c1

)
e2c1

−x+e2c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(2*x*diff(y(x),x)+y(x)*(1+y(x)^2) = 0,y(x), singsol=all)� �

y(x) = 1√
c1x− 1

y(x) = − 1√
c1x− 1

3 Solution by Mathematica
Time used: 0.442 (sec). Leaf size: 72� �
DSolve[2 x y'[x]+y[x](1+y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − iec1√
−x+ e2c1

y(x) → iec1√
−x+ e2c1

y(x) → 0
y(x) → −i
y(x) → i
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8.35 problem 240
8.35.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2178
8.35.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2182

Internal problem ID [3496]
Internal file name [OUTPUT/2989_Sunday_June_05_2022_08_48_57_AM_1983419/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 8
Problem number: 240.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

2xy′ −
(
1 + x− 6y2

)
y = 0

8.35.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(6y2 − x− 1) y
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 392: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3e−x−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3e−x−ln(x)dy

Which results in

S = −x ex
2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(6y2 − x− 1) y
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −ex(x+ 1)
2y2

Sy =
x ex
y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3 ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3 eR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x ex
2y2 = −3 ex + c1

Which simplifies to

−x ex
2y2 = −3 ex + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
6y2−x−1

)
y

2x
dS
dR

= −3 eR

R = x

S = −x ex
2y2

Summary
The solution(s) found are the following

(1)−x ex
2y2 = −3 ex + c1
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Figure 341: Slope field plot

Verification of solutions

−x ex
2y2 = −3 ex + c1

Verified OK.

8.35.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −(6y2 − x− 1) y
2x

This is a Bernoulli ODE.
y′ = −−x− 1

2x y − 3
x
y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −−x− 1
2x

f1(x) = −3
x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= −−x− 1
2x y2 − 3

x
(4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −(−x− 1)w(x)

2x − 3
x

w′ = (−x− 1)w
x

+ 6
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −−x− 1
x

q(x) = 6
x
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Hence the ode is

w′(x)− (−x− 1)w(x)
x

= 6
x

The integrating factor µ is

µ = e
∫
−−x−1

x
dx

= ex+ln(x)

Which simplifies to
µ = x ex

The ode becomes

d
dx(µw) = (µ)

(
6
x

)
d
dx(x e

xw) = (x ex)
(
6
x

)
d(x exw) = (6 ex) dx

Integrating gives

x exw =
∫

6 ex dx

x exw = 6 ex + c1

Dividing both sides by the integrating factor µ = x ex results in

w(x) = 6 e−xex
x

+ c1e−x

x

which simplifies to

w(x) = c1e−x + 6
x

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= c1e−x + 6
x
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Solving for y gives

y(x) =
√

(c1e−x + 6)x
c1e−x + 6

y(x) = −
√
(c1e−x + 6)x
c1e−x + 6

Summary
The solution(s) found are the following

(1)y =
√

(c1e−x + 6)x
c1e−x + 6

(2)y = −
√

(c1e−x + 6)x
c1e−x + 6

Figure 342: Slope field plot
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Verification of solutions

y =
√
(c1e−x + 6)x
c1e−x + 6

Verified OK.

y = −
√

(c1e−x + 6)x
c1e−x + 6

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
dsolve(2*x*diff(y(x),x) = (1+x-6*y(x)^2)*y(x),y(x), singsol=all)� �

y(x) =
√
(e−xc1 + 6)x
e−xc1 + 6

y(x) = −
√

(e−xc1 + 6)x
e−xc1 + 6

3 Solution by Mathematica
Time used: 0.671 (sec). Leaf size: 65� �
DSolve[2 x y'[x]==(1+x-6 y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ex/2
√
x√

6ex + c1

y(x) → ex/2
√
x√

6ex + c1
y(x) → 0
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9 Various 9
9.1 problem 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2188
9.2 problem 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2198
9.3 problem 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2214
9.4 problem 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2226
9.5 problem 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2240
9.6 problem 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2249
9.7 problem 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2253
9.8 problem 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2263
9.9 problem 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277
9.10 problem 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2287
9.11 problem 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2299
9.12 problem 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310
9.13 problem 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2323
9.14 problem 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2334
9.15 problem 255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2345
9.16 problem 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2358
9.17 problem 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2371
9.18 problem 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2382
9.19 problem 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2396
9.20 problem 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2408
9.21 problem 261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2422
9.22 problem 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2433
9.23 problem 263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2443
9.24 problem 264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2448
9.25 problem 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2463
9.26 problem 266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2467
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9.1 problem 241
9.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2188
9.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2189
9.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2192
9.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2196

Internal problem ID [3497]
Internal file name [OUTPUT/2990_Sunday_June_05_2022_08_48_59_AM_53067305/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 241.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2xy′ + 4y +
√

a2 − 4b− 4cy = −a

9.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
−2y − a

2 −
√

a2−4cy−4b
2

x

Where f(x) = 1
x
and g(y) = −2y − a

2 −
√

a2−4cy−4b
2 . Integrating both sides gives

1
−2y − a

2 −
√

a2−4cy−4b
2

dy = 1
x
dx

∫ 1
−2y − a

2 −
√

a2−4cy−4b
2

dy =
∫ 1

x
dx
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∫ y 1
−2_a− a

2 −
√

−4_ac+a2−4b
2

d_a = ln (x) + c1

Which results in ∫ y 1
−2_a− a

2 −
√

−4_ac+a2−4b
2

d_a = ln (x) + c1

The solution is ∫ y 1
−2_a− a

2 −
√

−4_ac+a2−4b
2

d_a− ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1

−2_a− a
2 −

√
−4_ac+a2−4b

2

d_a− ln (x)− c1 = 0

Verification of solutions∫ y 1
−2_a− a

2 −
√

−4_ac+a2−4b
2

d_a− ln (x)− c1 = 0

Verified OK.

9.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4y + a+
√
a2 − 4cy − 4b
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 394: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4y + a+
√
a2 − 4cy − 4b
2x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 2

4y + a+
√
a2 − 4cy − 4b

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

4R + a+
√
−4Rc+ a2 − 4b
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− 2
4R + a+

√
−4Rc+ a2 − 4b

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

− 2
4_a+ a+

√
−4_ac+ a2 − 4b

d_a+ c1

Which simplifies to

ln (x) =
∫ y

− 2
4_a+ a+

√
−4_ac+ a2 − 4b

d_a+ c1

This results in

ln (x) =
∫ y

− 2
4_a+ a+

√
−4_ac+ a2 − 4b

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

− 2
4_a+ a+

√
−4_ac+ a2 − 4b

d_a+ c1

Verification of solutions

ln (x) =
∫ y

− 2
4_a+ a+

√
−4_ac+ a2 − 4b

d_a+ c1

Verified OK.

9.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−2y − a
2 −

√
a2−4cy−4b

2

)
dy =

(
1
x

)
dx

(
−1
x

)
dx+

(
1

−2y − a
2 −

√
a2−4cy−4b

2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
−2y − a

2 −
√

a2−4cy−4b
2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

−2y − a
2 −

√
a2−4cy−4b

2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1

−2y−a
2−

√
a2−4cy−4b

2

. Therefore equation (4) becomes

(5)1
−2y − a

2 −
√

a2−4cy−4b
2

= 0 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − 2
4y + a+

√
a2 − 4cy − 4b

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 2
4y + a+

√
a2 − 4cy − 4b

)
dy

f(y) = −
ln
(
−4cy − c

√
a2 − 4cy − 4b− ca

)
4 +

c arctanh
(

2
√

a2−4cy−4b−c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

+
ln
(
−4cy + c

√
a2 − 4cy − 4b− ca

)
4 +

c arctanh
(

2
√

a2−4cy−4b+c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

− ln (2ya+ cy + 4y2 + b)
4 −

c arctanh
(

2a+c+8y√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)−
ln
(
−4cy − c

√
a2 − 4cy − 4b− ca

)
4 +

c arctanh
(

2
√

a2−4cy−4b−c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

+
ln
(
−4cy + c

√
a2 − 4cy − 4b− ca

)
4 +

c arctanh
(

2
√

a2−4cy−4b+c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

− ln (2ya+ cy + 4y2 + b)
4 −

c arctanh
(

2a+c+8y√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)−
ln
(
−4cy − c

√
a2 − 4cy − 4b− ca

)
4 +

c arctanh
(

2
√

a2−4cy−4b−c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

+
ln
(
−4cy + c

√
a2 − 4cy − 4b− ca

)
4 +

c arctanh
(

2
√

a2−4cy−4b+c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

− ln (2ya+ cy + 4y2 + b)
4 −

c arctanh
(

2a+c+8y√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b
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Summary
The solution(s) found are the following

(1)

− ln (x)−
ln
(
−4cy − c

√
a2 − 4b− 4cy − ca

)
4 +

c arctanh
(

2
√

a2−4b−4cy−c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

+
ln
(
−4cy + c

√
a2 − 4b− 4cy − ca

)
4 +

c arctanh
(

2
√

a2−4b−4cy+c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

− ln (2ya+ cy + 4y2 + b)
4 −

c arctanh
(

2a+c+8y√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

= c1

Verification of solutions

− ln (x)−
ln
(
−4cy − c

√
a2 − 4b− 4cy − ca

)
4 +

c arctanh
(

2
√

a2−4b−4cy−c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

+
ln
(
−4cy + c

√
a2 − 4b− 4cy − ca

)
4 +

c arctanh
(

2
√

a2−4b−4cy+c√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

− ln (2ya+ cy + 4y2 + b)
4 −

c arctanh
(

2a+c+8y√
4a2+4ca+c2−16b

)
2
√
4a2 + 4ca+ c2 − 16b

= c1

Verified OK.

9.1.4 Maple step by step solution

Let’s solve
2xy′ + 4y +

√
a2 − 4b− 4cy = −a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−4y−a−
√

a2−4b−4cy
= 1

2x

• Integrate both sides with respect to x∫
y′

−4y−a−
√

a2−4b−4cy
dx =

∫ 1
2xdx+ c1

• Evaluate integral

−
ln
(
−4cy−c

√
a2−4b−4cy−ca

)
8 +

c arctanh
(

2
√

a2−4b−4cy−c√
4a2+4ca+c2−16b

)
4
√
4a2+4ca+c2−16b +

ln
(
−4cy+c

√
a2−4b−4cy−ca

)
8 +

c arctanh
(

2
√

a2−4b−4cy+c√
4a2+4ca+c2−16b

)
4
√
4a2+4ca+c2−16b − ln

(
2ya+cy+4y2+b

)
8 −

c arctanh
(

2a+c+8y√
4a2+4ca+c2−16b

)
4
√
4a2+4ca+c2−16b = ln(x)

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(2*x*diff(y(x),x)+4*y(x)+a+sqrt(a^2-4*b-4*c*y(x)) = 0,y(x), singsol=all)� �

ln (x) + 2
(∫ y(x) 1

4_a+ a+
√
−4_ac+ a2 − 4b

d_a
)

+ c1 = 0

3 Solution by Mathematica
Time used: 0.808 (sec). Leaf size: 177� �
DSolve[2 x y'[x]+4 y[x]+a +Sqrt[a^2-4 b- 4 c y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction

14
log

(
c
(√

a2 − 4(#1c+ b) + 4#1+ a
))

−
2c arctan

(
c−2

√
a2−4(#1c+b)

√
−4a2−4ac+16b−c2

)
√
−4a2 − 4ac+ 16b− c2

&


[
− log(x)

2 + c1

]

y(x) → 1
8

(
−
√

(2a+ c)2 − 16b− 2a− c
)

y(x) → 1
8

(√
(2a+ c)2 − 16b− 2a− c

)
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9.2 problem 242
9.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2198
9.2.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 2200
9.2.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2203
9.2.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2207
9.2.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2212

Internal problem ID [3498]
Internal file name [OUTPUT/2991_Sunday_June_05_2022_08_49_01_AM_49400366/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 242.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeMapleC",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(1− 2x) y′ + 6y = 32x+ 16

9.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 6
2x− 1

q(x) = −32x− 16
2x− 1

Hence the ode is

y′ − 6y
2x− 1 = −32x− 16

2x− 1
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The integrating factor µ is

µ = e
∫
− 6

2x−1dx

= 1
(2x− 1)3

The ode becomes

d
dx(µy) = (µ)

(
−32x− 16
2x− 1

)
d
dx

(
y

(2x− 1)3
)

=
(

1
(2x− 1)3

)(
−32x− 16
2x− 1

)
d
(

y

(2x− 1)3
)

=
(
−32x− 16
(2x− 1)4

)
dx

Integrating gives

y

(2x− 1)3
=
∫

−32x− 16
(2x− 1)4

dx

y

(2x− 1)3
= 4

(2x− 1)2
+ 16

3 (2x− 1)3
+ c1

Dividing both sides by the integrating factor µ = 1
(2x−1)3 results in

y = (2x− 1)3
(

4
(2x− 1)2

+ 16
3 (2x− 1)3

)
+ c1(2x− 1)3

which simplifies to

y = 8
(
x− 1

2

)3

c1 + 8x+ 4
3

Summary
The solution(s) found are the following

(1)y = 8
(
x− 1

2

)3

c1 + 8x+ 4
3
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Figure 343: Slope field plot

Verification of solutions

y = 8
(
x− 1

2

)3

c1 + 8x+ 4
3

Verified OK.

9.2.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)
d

dX
Y (X) = −32X − 32x0 − 16 + 6Y (X) + 6y0

2X + 2x0 − 1
Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
1
2

y0 =
16
3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −16X + 3Y (X)

X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −16X + 3Y
X

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that bothM = −16X+3Y andN = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives
du
dXX + u = −16 + 3u

du
dX = −16 + 2u(X)

X
Or

d

dX
u(X)− −16 + 2u(X)

X
= 0

Or (
d

dX
u(X)

)
X − 2u(X) + 16 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −16 + 2u
X

Where f(X) = 1
X

and g(u) = −16 + 2u. Integrating both sides gives

1
−16 + 2u du = 1

X
dX∫ 1

−16 + 2u du =
∫ 1

X
dX

ln (−8 + u)
2 = ln (X) + c2
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Raising both side to exponential gives
√
−8 + u = eln(X)+c2

Which simplifies to
√
−8 + u = c3X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X
(
c23e2c2X2 + 8

)
Using the solution for Y (X)

Y (X) = X
(
c23e2c2X2 + 8

)
And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 16
3

X = x+ 1
2

Then the solution in y becomes

y − 16
3 =

(
x− 1

2

)(
c23e2c2

(
x− 1

2

)2

+ 8
)

Summary
The solution(s) found are the following

(1)y − 16
3 =

(
x− 1

2

)(
c23e2c2

(
x− 1

2

)2

+ 8
)
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Figure 344: Slope field plot

Verification of solutions

y − 16
3 =

(
x− 1

2

)(
c23e2c2

(
x− 1

2

)2

+ 8
)

Verified OK.

9.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −16− 32x+ 6y
2x− 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 397: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = (2x− 1)3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

(2x− 1)3
dy

Which results in

S = y

(2x− 1)3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −16− 32x+ 6y
2x− 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 6y
(2x− 1)4

Sy =
1

(2x− 1)3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −32x− 16

(2x− 1)4
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −32R− 16

(2R− 1)4
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 4
(2R− 1)2

+ 16
3 (2R− 1)3

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(2x− 1)3
= 4

(2x− 1)2
+ 16

3 (2x− 1)3
+ c1

Which simplifies to

y

(2x− 1)3
= 4

(2x− 1)2
+ 16

3 (2x− 1)3
+ c1

Which gives

y = 8x+ 4
3 + 8c1x3 − 12c1x2 + 6c1x− c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −16−32x+6y
2x−1

dS
dR

= −32R−16
(2R−1)4

R = x

S = y

(2x− 1)3
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Summary
The solution(s) found are the following

(1)y = 8x+ 4
3 + 8c1x3 − 12c1x2 + 6c1x− c1

Figure 345: Slope field plot

Verification of solutions

y = 8x+ 4
3 + 8c1x3 − 12c1x2 + 6c1x− c1

Verified OK.

9.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(1− 2x) dy = (16 + 32x− 6y) dx
(−16− 32x+ 6y) dx+(1− 2x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −16− 32x+ 6y
N(x, y) = 1− 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−16− 32x+ 6y)

= 6
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And
∂N

∂x
= ∂

∂x
(1− 2x)

= −2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

1− 2x((6)− (−2))

= − 8
2x− 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 8

2x−1 dx

The result of integrating gives

µ = e−4 ln(2x−1)

= 1
(2x− 1)4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(2x− 1)4

(−16− 32x+ 6y)

= −16− 32x+ 6y
(2x− 1)4

And

N = µN

= 1
(2x− 1)4

(1− 2x)

= − 1
(2x− 1)3
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−16− 32x+ 6y
(2x− 1)4

)
+
(
− 1
(2x− 1)3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−16− 32x+ 6y

(2x− 1)4
dx

(3)φ = 24x+ 4− 3y
3 (2x− 1)3

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

(2x− 1)3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
(2x−1)3 . Therefore equation (4) becomes

(5)− 1
(2x− 1)3

= − 1
(2x− 1)3

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 24x+ 4− 3y
3 (2x− 1)3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
24x+ 4− 3y
3 (2x− 1)3

The solution becomes

y = −8c1x3 + 12c1x2 − 6c1x+ c1 + 8x+ 4
3

Summary
The solution(s) found are the following

(1)y = −8c1x3 + 12c1x2 − 6c1x+ c1 + 8x+ 4
3

Figure 346: Slope field plot
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Verification of solutions

y = −8c1x3 + 12c1x2 − 6c1x+ c1 + 8x+ 4
3

Verified OK.

9.2.5 Maple step by step solution

Let’s solve
(1− 2x) y′ + 6y = 32x+ 16

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 6y

2x−1 −
16(1+2x)
2x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 6y

2x−1 = −16(1+2x)
2x−1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 6y

2x−1

)
= −16µ(x)(1+2x)

2x−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 6y

2x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −6µ(x)

2x−1

• Solve to find the integrating factor
µ(x) = 1

(2x−1)3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−16µ(x)(1+2x)

2x−1 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−16µ(x)(1+2x)

2x−1 dx+ c1

• Solve for y

y =
∫
− 16µ(x)(1+2x)

2x−1 dx+c1

µ(x)

• Substitute µ(x) = 1
(2x−1)3
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y = (2x− 1)3
(∫

−16(1+2x)
(2x−1)4 dx+ c1

)
• Evaluate the integrals on the rhs

y = (2x− 1)3
(

4
(2x−1)2 +

16
3(2x−1)3 + c1

)
• Simplify

y = 8
(
x− 1

2

)3
c1 + 8x+ 4

3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((1-2*x)*diff(y(x),x) = 16+32*x-6*y(x),y(x), singsol=all)� �

y(x) = 4
3 + 8x+ (2x− 1)3 c1

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 22� �
DSolve[(1-2 x)y'[x]==2(8+16 x-3 y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 8x+ c1(2x− 1)3 + 4
3
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9.3 problem 243
9.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2214
9.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2216
9.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2220
9.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2224

Internal problem ID [3499]
Internal file name [OUTPUT/2992_Sunday_June_05_2022_08_49_02_AM_20540824/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 243.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(1 + 2x) y′ − 4 e−y = −2

9.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 4 e−y − 2
1 + 2x

Where f(x) = 1
1+2x and g(y) = 4 e−y − 2. Integrating both sides gives

1
4 e−y − 2 dy = 1

1 + 2x dx∫ 1
4 e−y − 2 dy =

∫ 1
1 + 2x dx

− ln (2 e−y − 1)
2 + ln (e−y)

2 = ln (1 + 2x)
2 + c1
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The above can be written as(
−1
2

)(
ln
(
2 e−y − 1

)
− ln

(
e−y
))

= ln (1 + 2x)
2 + 2c1

ln
(
2 e−y − 1

)
− ln

(
e−y
)
= (−2)

(
ln (1 + 2x)

2 + 2c1
)

= − ln (1 + 2x)− 4c1

Raising both side to exponential gives

eln
(
2 e−y−1

)
−ln

(
e−y

)
= e− ln(1+2x)−2c1

Which simplifies to

2− ey = − 2c1
1 + 2x

= c2
1 + 2x

Summary
The solution(s) found are the following

(1)y = ln
(
−−2 + c2 − 4x

1 + 2x

)

Figure 347: Slope field plot
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Verification of solutions

y = ln
(
−−2 + c2 − 4x

1 + 2x

)
Verified OK.

9.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 4 e−y − 2
1 + 2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 400: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1 + 2x
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1 + 2xdx

Which results in

S = ln (1 + 2x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4 e−y − 2
1 + 2x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
1 + 2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4 e−y − 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4 e−R − 2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
ln
(
2 e−R − 1

)
2 +

ln
(
e−R
)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (1 + 2x)
2 = − ln (2 e−y − 1)

2 + ln (e−y)
2 + c1

Which simplifies to

ln (1 + 2x)
2 + ln (2 e−y − 1)

2 + y

2 − c1 = 0

Which gives

y = ln
(
−−2 + e2c1 − 4x

1 + 2x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4 e−y−2
1+2x

dS
dR

= 1
4 e−R−2

R = y

S = ln (1 + 2x)
2
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Summary
The solution(s) found are the following

(1)y = ln
(
−−2 + e2c1 − 4x

1 + 2x

)

Figure 348: Slope field plot

Verification of solutions

y = ln
(
−−2 + e2c1 − 4x

1 + 2x

)
Verified OK.

9.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

4 e−y − 2

)
dy =

(
1

1 + 2x

)
dx(

− 1
1 + 2x

)
dx+

(
1

4 e−y − 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
1 + 2x

N(x, y) = 1
4 e−y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

2221



Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
1 + 2x

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

4 e−y − 2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
1 + 2x dx

(3)φ = − ln (1 + 2x)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
4 e−y−2 . Therefore equation (4) becomes

(5)1
4 e−y − 2 = 0 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1
4 e−y − 2

= 1
4 e−y − 2

Integrating the above w.r.t y results in

∫
f ′(y) dy =

∫ ( 1
4 e−y − 2

)
dy

f(y) = − ln (2 e−y − 1)
2 + ln (e−y)

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (1 + 2x)
2 − ln (2 e−y − 1)

2 + ln (e−y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (1 + 2x)
2 − ln (2 e−y − 1)

2 + ln (e−y)
2

The solution becomes

y = − ln
(

1 + 2x
−1 + 4x e2c1 + 2 e2c1

)
− 2c1

Summary
The solution(s) found are the following

(1)y = − ln
(

1 + 2x
−1 + 4x e2c1 + 2 e2c1

)
− 2c1
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Figure 349: Slope field plot

Verification of solutions

y = − ln
(

1 + 2x
−1 + 4x e2c1 + 2 e2c1

)
− 2c1

Verified OK.

9.3.4 Maple step by step solution

Let’s solve
(1 + 2x) y′ − 4 e−y = −2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

4 e−y−2 = 1
1+2x

• Integrate both sides with respect to x∫
y′

4 e−y−2dx =
∫ 1

1+2xdx+ c1

• Evaluate integral
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− ln
(
2 e−y−1

)
2 + ln

(
e−y

)
2 = ln(1+2x)

2 + c1

• Solve for y

y = − ln
(

1+2x
−1+4x e2c1+2 e2c1

)
− 2c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 31� �
dsolve((1+2*x)*diff(y(x),x) = 4*exp(-y(x))-2,y(x), singsol=all)� �

y(x) = − ln
(

2x+ 1
−1 + (4x+ 2) e2c1

)
− 2c1

3 Solution by Mathematica
Time used: 0.656 (sec). Leaf size: 26� �
DSolve[(1+2 x)y'[x]==4 Exp[-y[x]]-2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
2 + ec1

2x+ 1

)
y(x) → log(2)
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9.4 problem 244
9.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2226
9.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2228
9.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2232
9.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2237

Internal problem ID [3500]
Internal file name [OUTPUT/2993_Sunday_June_05_2022_08_49_03_AM_24492293/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 244.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2(1− x) y′ − y = 4x
√
1− x

9.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
2x− 2

q(x) = 2x√
1− x

Hence the ode is

y′ + y

2x− 2 = 2x√
1− x
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The integrating factor µ is

µ = e
∫ 1

2x−2dx

=
√
x− 1

The ode becomes

d
dx(µy) = (µ)

(
2x√
1− x

)
d
dx
(√

x− 1 y
)
=
(√

x− 1
)( 2x√

1− x

)
d
(√

x− 1 y
)
=
(
2x

√
x− 1√

1− x

)
dx

Integrating gives

√
x− 1 y =

∫ 2x
√
x− 1√

1− x
dx

√
x− 1 y = x2√x− 1√

1− x
+ c1

Dividing both sides by the integrating factor µ =
√
x− 1 results in

y = x2
√
1− x

+ c1√
x− 1

Summary
The solution(s) found are the following

(1)y = x2
√
1− x

+ c1√
x− 1
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Figure 350: Slope field plot

Verification of solutions

y = x2
√
1− x

+ c1√
x− 1

Verified OK.

9.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4x
√
1− x+ y

2 (x− 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 403: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x− 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x−1

dy

Which results in

S =
√
x− 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x
√
1− x+ y

2 (x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

2
√
x− 1

Sy =
√
x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2x

√
1− x√

x− 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R

√
1−R√

R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2√1−R√
R− 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x− 1 y = −x2√1− x√

x− 1
+ c1

Which simplifies to

√
x− 1 y = −x2√1− x√

x− 1
+ c1

Which gives

y = −
√
1− xx2 − c1

√
x− 1

x− 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x
√
1−x+y

2(x−1)
dS
dR

= −2R
√
1−R√

R−1

R = x

S =
√
x− 1 y
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Summary
The solution(s) found are the following

(1)y = −
√
1− xx2 − c1

√
x− 1

x− 1

Figure 351: Slope field plot

Verification of solutions

y = −
√
1− xx2 − c1

√
x− 1

x− 1

Verified OK.

9.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2x+ 2) dy =
(
4x

√
1− x+ y

)
dx(

−4x
√
1− x− y

)
dx+(−2x+ 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x
√
1− x− y

N(x, y) = −2x+ 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−4x

√
1− x− y

)
= −1

And

∂N

∂x
= ∂

∂x
(−2x+ 2)

= −2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2x+ 2((−1)− (−2))

= 1
−2x+ 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

−2x+2 dx

The result of integrating gives

µ = e−
ln(1−x)

2

= 1√
1− x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
1− x

(
−4x

√
1− x− y

)
= −4x

√
1− x− y√
1− x
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And

N = µN

= 1√
1− x

(−2x+ 2)

= 2
√
1− x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−4x
√
1− x− y√
1− x

)
+
(
2
√
1− x

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−4x

√
1− x− y√
1− x

dx

(3)φ = −2x2 + 2y
√
1− x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

√
1− x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2
√
1− x. Therefore equation (4) becomes

(5)2
√
1− x = 2

√
1− x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −2x2 + 2y
√
1− x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2x2 + 2y
√
1− x

The solution becomes

y = 2x2 + c1

2
√
1− x

Summary
The solution(s) found are the following

(1)y = 2x2 + c1

2
√
1− x
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Figure 352: Slope field plot

Verification of solutions

y = 2x2 + c1

2
√
1− x

Verified OK.

9.4.4 Maple step by step solution

Let’s solve
2(1− x) y′ − y = 4x

√
1− x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

2(x−1) +
2x√
1−x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

2(x−1) =
2x√
1−x

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + y

2(x−1)

)
= 2µ(x)x√

1−x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

2(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

2(x−1)

• Solve to find the integrating factor
µ(x) =

√
x− 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)x√
1−x

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)x√
1−x

dx+ c1

• Solve for y

y =
∫ 2µ(x)x√

1−x
dx+c1

µ(x)

• Substitute µ(x) =
√
x− 1

y =
∫ 2x

√
x−1√

1−x
dx+c1

√
x−1

• Evaluate the integrals on the rhs

y =
x2

√
x−1√

1−x
+c1

√
x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(2*(1-x)*diff(y(x),x) = 4*x*sqrt(1-x)+y(x),y(x), singsol=all)� �

y(x) = x2
√
1− x

+ c1√
x− 1

3 Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 32� �
DSolve[2(1-x)y'[x]==4 x Sqrt[1-x]+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x2 +
√
2c1

2
√
1− x
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9.5 problem 245
9.5.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2240
9.5.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2244

Internal problem ID [3501]
Internal file name [OUTPUT/2994_Sunday_June_05_2022_08_49_05_AM_52015553/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 245.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Bernoulli]

2(x+ 1) y′ + 2y + (x+ 1)4 y3 = 0

9.5.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(x4y2 + 4x3y2 + 6y2x2 + 4x y2 + y2 + 2)
2 (x+ 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 406: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3(x+ 1)2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3 (x+ 1)2
dy

Which results in

S = − 1
2 (x+ 1)2 y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(x4y2 + 4x3y2 + 6y2x2 + 4x y2 + y2 + 2)
2 (x+ 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
(x+ 1)3 y2

Sy =
1

y3 (x+ 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x

2 − 1
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

2 − 1
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
4R

2 − 1
2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
2 (x+ 1)2 y2

= −1
4x

2 − 1
2x+ c1

Which simplifies to

− 1
2 (x+ 1)2 y2

= −1
4x

2 − 1
2x+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x4y2+4x3y2+6y2x2+4x y2+y2+2

)
2(x+1)

dS
dR

= −R
2 − 1

2

R = x

S = − 1
2 (x+ 1)2 y2

Summary
The solution(s) found are the following

(1)− 1
2 (x+ 1)2 y2

= −1
4x

2 − 1
2x+ c1
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Figure 353: Slope field plot

Verification of solutions

− 1
2 (x+ 1)2 y2

= −1
4x

2 − 1
2x+ c1

Verified OK.

9.5.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(x4y2 + 4x3y2 + 6y2x2 + 4x y2 + y2 + 2)
2 (x+ 1)

This is a Bernoulli ODE.

y′ = − 1
x+ 1y −

x4 + 4x3 + 6x2 + 4x+ 1
2 (x+ 1) y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
x+ 1

f1(x) = −x4 + 4x3 + 6x2 + 4x+ 1
2 (x+ 1)

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
(x+ 1) y2 − x4 + 4x3 + 6x2 + 4x+ 1

2 (x+ 1) (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x)

x+ 1 − x4 + 4x3 + 6x2 + 4x+ 1
2 (x+ 1)

w′ = 2w
x+ 1 + x4 + 4x3 + 6x2 + 4x+ 1

x+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − 2
x+ 1

q(x) = (x+ 1)3

Hence the ode is

w′(x)− 2w(x)
x+ 1 = (x+ 1)3

The integrating factor µ is

µ = e
∫
− 2

x+1dx

= 1
(x+ 1)2

The ode becomes
d
dx(µw) = (µ)

(
(x+ 1)3

)
d
dx

(
w

(x+ 1)2
)

=
(

1
(x+ 1)2

)(
(x+ 1)3

)
d
(

w

(x+ 1)2
)

= (x+ 1) dx

Integrating gives
w

(x+ 1)2
=
∫

x+ 1dx

w

(x+ 1)2
= 1

2x
2 + x+ c1

Dividing both sides by the integrating factor µ = 1
(x+1)2 results in

w(x) = (x+ 1)2
(
1
2x

2 + x

)
+ c1(x+ 1)2

which simplifies to

w(x) = (x+ 1)2 (x2 + 2c1 + 2x)
2

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= (x+ 1)2 (x2 + 2c1 + 2x)
2
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Solving for y gives

y(x) = 2√
2x2 + 4c1 + 4x (x+ 1)

y(x) = − 2√
2x2 + 4c1 + 4x (x+ 1)

Summary
The solution(s) found are the following

(1)y = 2√
2x2 + 4c1 + 4x (x+ 1)

(2)y = − 2√
2x2 + 4c1 + 4x (x+ 1)

Figure 354: Slope field plot
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Verification of solutions

y = 2√
2x2 + 4c1 + 4x (x+ 1)

Verified OK.

y = − 2√
2x2 + 4c1 + 4x (x+ 1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
dsolve(2*(1+x)*diff(y(x),x)+2*y(x)+(1+x)^4*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = − 2√
2x2 + 4c1 + 4x (x+ 1)

y(x) = 2√
2x2 + 4c1 + 4x (x+ 1)

3 Solution by Mathematica
Time used: 0.629 (sec). Leaf size: 69� �
DSolve[2(1+x)y'[x]+2 y[x]+(1+x)^4 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2√

(x+ 1)2 (x2 + 2x+ 2c1)

y(x) →
√
2√

(x+ 1)2 (x2 + 2x+ 2c1)
y(x) → 0
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9.6 problem 246
9.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2249

Internal problem ID [3502]
Internal file name [OUTPUT/2995_Sunday_June_05_2022_08_49_07_AM_18535337/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 246.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

3xy′ − (1− 3y) y = 3x 2
3

9.6.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 3x 2
3 − 3y2 + y

3x
This is a Riccati ODE. Comparing the ODE to solve

y′ = 1
x

1
3
− y2

x
+ y

3x
With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
x
1
3
, f1(x) = 1

3x and f2(x) = − 1
x
. Let

y = −u′

f2u

= −u′

−u
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 = − 1
3x2

f 2
2 f0 =

1
x

7
3

Substituting the above terms back in equation (2) gives

−u′′(x)
x

− 2u′(x)
3x2 + u(x)

x
7
3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
3x
√
− 1
x

4
3

)
+ c2 cos

(
3x
√

− 1
x

4
3

)
The above shows that

u′(x) =
c2 sin

(
3x
√

− 1
x
4
3

)
− c1 cos

(
3x
√
− 1

x
4
3

)
x

4
3

√
− 1

x
4
3

Using the above in (1) gives the solution

y =
c2 sin

(
3x
√
− 1

x
4
3

)
− c1 cos

(
3x
√
− 1

x
4
3

)
x

1
3

√
− 1

x
4
3

(
c1 sin

(
3x
√

− 1
x
4
3

)
+ c2 cos

(
3x
√
− 1

x
4
3

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
sin
(
3x
√
− 1

x
4
3

)
− c3 cos

(
3x
√

− 1
x
4
3

)
x

1
3

√
− 1

x
4
3

(
c3 sin

(
3x
√
− 1

x
4
3

)
+ cos

(
3x
√

− 1
x
4
3

))
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Summary
The solution(s) found are the following

(1)y =
sin
(
3x
√
− 1

x
4
3

)
− c3 cos

(
3x
√

− 1
x
4
3

)
x

1
3

√
− 1

x
4
3

(
c3 sin

(
3x
√
− 1

x
4
3

)
+ cos

(
3x
√

− 1
x
4
3

))

Figure 355: Slope field plot

Verification of solutions

y =
sin
(
3x
√
− 1

x
4
3

)
− c3 cos

(
3x
√

− 1
x
4
3

)
x

1
3

√
− 1

x
4
3

(
c3 sin

(
3x
√
− 1

x
4
3

)
+ cos

(
3x
√

− 1
x
4
3

))
Verified OK.

2251



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(3*x*diff(y(x),x) = 3*x^(2/3)+(1-3*y(x))*y(x),y(x), singsol=all)� �

y(x) = i tan
(
−3ix 1

3 + c1
)
x

1
3

3 Solution by Mathematica
Time used: 0.181 (sec). Leaf size: 79� �
DSolve[3 x y'[x]==3 x^(2/3)+(1-3 y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
x
(
i cosh

(
3 3
√
x
)
+ c1 sinh

(
3 3
√
x
))

i sinh
(
3 3
√
x
)
+ c1 cosh

(
3 3
√
x
)

y(x) → 3
√
x tanh

(
3 3
√
x
)
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9.7 problem 247
9.7.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2253
9.7.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2257

Internal problem ID [3503]
Internal file name [OUTPUT/2996_Sunday_June_05_2022_08_49_09_AM_56625590/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 247.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

3xy′ −
(
2 + xy3

)
y = 0

9.7.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x y3 + 2) y
3x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

2253



Table 408: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y4

x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4

x2

dy

Which results in

S = − x2

3y3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x y3 + 2) y
3x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
3y3

Sy =
x2

y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3

9 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x2

3y3 = x3

9 + c1

Which simplifies to

− x2

3y3 = x3

9 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
x y3+2

)
y

3x
dS
dR

= R2

3

R = x

S = − x2

3y3

Summary
The solution(s) found are the following

(1)− x2

3y3 = x3

9 + c1
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Figure 356: Slope field plot

Verification of solutions

− x2

3y3 = x3

9 + c1

Verified OK.

9.7.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (x y3 + 2) y
3x

This is a Bernoulli ODE.
y′ = 2

3xy +
1
3y

4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
3x

f1(x) =
1
3

n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= 2
3x y3 + 1

3 (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = 2w(x)

3x + 1
3

w′ = −2w
x

− 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = −1
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Hence the ode is

w′(x) + 2w(x)
x

= −1

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ) (−1)
d
dx
(
x2w

)
=
(
x2) (−1)

d
(
x2w

)
=
(
−x2) dx

Integrating gives

x2w =
∫

−x2 dx

x2w = −x3

3 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = −x

3 + c1
x2

Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= −x

3 + c1
x2

Solving for y gives

y(x) = −
3 1

3

(
x2(x3 − 3c1)2

) 1
3

x3 − 3c1

y(x) =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 − 3 1
3

)
−2x3 + 6c1

y(x) =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 + 3 1
3

)
2x3 − 6c1
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Summary
The solution(s) found are the following

(1)y = −
3 1

3

(
x2(x3 − 3c1)2

) 1
3

x3 − 3c1

(2)y =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 − 3 1
3

)
−2x3 + 6c1

(3)y =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 + 3 1
3

)
2x3 − 6c1

Figure 357: Slope field plot
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Verification of solutions

y = −
3 1

3

(
x2(x3 − 3c1)2

) 1
3

x3 − 3c1

Verified OK.

y =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 − 3 1
3

)
−2x3 + 6c1

Verified OK.

y =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 + 3 1
3

)
2x3 − 6c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 115� �
dsolve(3*x*diff(y(x),x) = (2+x*y(x)^3)*y(x),y(x), singsol=all)� �

y(x) = −
3 1

3

(
x2(x3 − 3c1)2

) 1
3

x3 − 3c1

y(x) =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 + 3 1
3

)
2x3 − 6c1

y(x) =

(
x2(x3 − 3c1)2

) 1
3
(
i3 5

6 − 3 1
3

)
−2x3 + 6c1
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3 Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 89� �
DSolve[3 x y'[x]==(2+x y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3
√
−3x2/3

3
√

−x3 + 3c1

y(x) → x2/3

3

√
−x3

3 + c1

y(x) → (−1)2/3x2/3

3

√
−x3

3 + c1

y(x) → 0
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9.8 problem 248
9.8.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2263
9.8.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2267
9.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2271

Internal problem ID [3504]
Internal file name [OUTPUT/2997_Sunday_June_05_2022_08_49_11_AM_14055673/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 248.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

3xy′ −
(
1 + 3xy3 ln (x)

)
y = 0

9.8.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (1 + 3x y3 ln (x)) y
3x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 410: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y4

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4

x

dy

Which results in

S = − x

3y3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (1 + 3x y3 ln (x)) y
3x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
3y3

Sy =
x

y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ln (x)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= ln (R)R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 ln (R)
2 − R2

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x

3y3 = ln (x)x2

2 − x2

4 + c1

Which simplifies to

− x

3y3 = ln (x)x2

2 − x2

4 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
1+3x y3 ln(x)

)
y

3x
dS
dR

= ln (R)R

R = x

S = − x

3y3

Summary
The solution(s) found are the following

(1)− x

3y3 = ln (x)x2

2 − x2

4 + c1
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Figure 358: Slope field plot

Verification of solutions

− x

3y3 = ln (x)x2

2 − x2

4 + c1

Verified OK.

9.8.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (1 + 3x y3 ln (x)) y
3x

This is a Bernoulli ODE.
y′ = 1

3xy + ln (x) y4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
3x

f1(x) = ln (x)
n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= 1
3x y3 + ln (x) (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = w(x)

3x + ln (x)

w′ = −w

x
− 3 ln (x) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −3 ln (x)
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Hence the ode is

w′(x) + w(x)
x

= −3 ln (x)

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ) (−3 ln (x))
d
dx(xw) = (x) (−3 ln (x))

d(xw) = (−3 ln (x)x) dx

Integrating gives

xw =
∫

−3 ln (x)x dx

xw = −3 ln (x)x2

2 + 3x2

4 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) =
−3 ln(x)x2

2 + 3x2

4
x

+ c1
x

which simplifies to

w(x) = −6 ln (x)x2 + 3x2 + 4c1
4x

Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= −6 ln (x)x2 + 3x2 + 4c1
4x

Solving for y gives

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

y(x) = −
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (−1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1
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Summary
The solution(s) found are the following

(1)y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

(2)y = −
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

(3)y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (−1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

Figure 359: Slope field plot
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Verification of solutions

y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

Verified OK.

y = −
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

Verified OK.

y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (−1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

Verified OK.

9.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(3x) dy =
((
1 + 3x y3 ln (x)

)
y
)
dx(

−
(
1 + 3x y3 ln (x)

)
y
)
dx+(3x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
(
1 + 3x y3 ln (x)

)
y

N(x, y) = 3x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−
(
1 + 3x y3 ln (x)

)
y
)

= −12x y3 ln (x)− 1

And
∂N

∂x
= ∂

∂x
(3x)

= 3

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x
((
−12x y3 ln (x)− 1

)
− (3)

)
=

−4x y3 ln (x)− 4
3

x
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y + 3y4 ln (x)x
(
(3)−

(
−12x y3 ln (x)− 1

))
= −4

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 4

y
dy

The result of integrating gives

µ = e−4 ln(y)

= 1
y4

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y4
(
−
(
1 + 3x y3 ln (x)

)
y
)

= −1− 3x y3 ln (x)
y3

And

N = µN

= 1
y4

(3x)

= 3x
y4

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−1− 3x y3 ln (x)
y3

)
+
(
3x
y4

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1− 3x y3 ln (x)

y3
dx

(3)φ = − x

y3
− 3 ln (x)x2

2 + 3x2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x

y4
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3x
y4
. Therefore equation (4) becomes

(5)3x
y4

= 3x
y4

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − x

y3
− 3 ln (x)x2

2 + 3x2

4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x

y3
− 3 ln (x)x2

2 + 3x2

4

Summary
The solution(s) found are the following

(1)− x

y3
− 3 ln (x)x2

2 + 3x2

4 = c1

Figure 360: Slope field plot

Verification of solutions

− x

y3
− 3 ln (x)x2

2 + 3x2

4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 162� �
dsolve(3*x*diff(y(x),x) = (1+3*x*y(x)^3*ln(x))*y(x),y(x), singsol=all)� �

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

y(x) = −

(
1 + i

√
3
)
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

12 ln (x)x2 − 6x2 − 8c1

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (
i
√
3− 1

)
12 ln (x)x2 − 6x2 − 8c1

3 Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 120� �
DSolve[3 x y'[x]==(1+3 x y[x]^3 Log[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−2)2/3 3
√
x

3
√

3x2 − 6x2 log(x) + 4c1

y(x) → 22/3 3
√
x

3
√

3x2 − 6x2 log(x) + 4c1

y(x) → −
3
√
−122/3 3

√
x

3
√

3x2 − 6x2 log(x) + 4c1
y(x) → 0
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9.9 problem 249
9.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2277
9.9.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2278
9.9.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2279
9.9.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2282
9.9.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2285

Internal problem ID [3505]
Internal file name [OUTPUT/2998_Sunday_June_05_2022_08_49_14_AM_21297040/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 249.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2 + y = a

9.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= a− y

x2

Where f(x) = 1
x2 and g(y) = a− y. Integrating both sides gives

1
a− y

dy = 1
x2 dx∫ 1

a− y
dy =

∫ 1
x2 dx

− ln (a− y) = −1
x
+ c1
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Raising both side to exponential gives

1
a− y

= e− 1
x
+c1

Which simplifies to

1
a− y

= c2e−
1
x

Summary
The solution(s) found are the following

(1)y =

(
c2e

c1x−1
x a− 1

)
e−

c1x−1
x

c2

Verification of solutions

y =

(
c2e

c1x−1
x a− 1

)
e−

c1x−1
x

c2

Verified OK.

9.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x2

q(x) = a

x2

Hence the ode is

y′ + y

x2 = a

x2

The integrating factor µ is

µ = e
∫ 1

x2 dx

= e− 1
x
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The ode becomes

d
dx(µy) = (µ)

( a

x2

)
d
dx

(
e− 1

xy
)
=
(
e− 1

x

)( a

x2

)
d
(
e− 1

xy
)
=
(
a e− 1

x

x2

)
dx

Integrating gives

e− 1
xy =

∫
a e− 1

x

x2 dx

e− 1
xy = a e− 1

x + c1

Dividing both sides by the integrating factor µ = e− 1
x results in

y = e 1
xa e− 1

x + c1e
1
x

which simplifies to

y = a+ c1e
1
x

Summary
The solution(s) found are the following

(1)y = a+ c1e
1
x

Verification of solutions

y = a+ c1e
1
x

Verified OK.

9.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−a+ y

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

2279



The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 412: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e 1

x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e 1
x

dy

Which results in

S = e− 1
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−a+ y

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e− 1
xy

x2

Sy = e− 1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a e− 1

x

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a e− 1

R

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a e− 1
R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− 1
xy = a e− 1

x + c1

Which simplifies to

e− 1
x (y − a)− c1 = 0

Which gives

y =
(
a e− 1

x + c1
)
e 1

x

Summary
The solution(s) found are the following

(1)y =
(
a e− 1

x + c1
)
e 1

x

Verification of solutions

y =
(
a e− 1

x + c1
)
e 1

x

Verified OK.

9.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
a− y

)
dy =

(
1
x2

)
dx(

− 1
x2

)
dx+

(
1

a− y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = 1
a− y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

a− y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
a−y

. Therefore equation (4) becomes

(5)1
a− y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
a− y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
a− y

)
dy

f(y) = − ln (a− y) + c1

2284



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
− ln (a− y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
− ln (a− y)

The solution becomes
y = −e−

c1x−1
x + a

Summary
The solution(s) found are the following

(1)y = −e−
c1x−1

x + a

Verification of solutions

y = −e−
c1x−1

x + a

Verified OK.

9.9.5 Maple step by step solution

Let’s solve
y′x2 + y = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a−y
= 1

x2

• Integrate both sides with respect to x∫
y′

a−y
dx =

∫ 1
x2dx+ c1

• Evaluate integral
− ln (a− y) = − 1

x
+ c1
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• Solve for y

y = −e−
c1x−1

x + a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x^2*diff(y(x),x) = a-y(x),y(x), singsol=all)� �

y(x) = a+ c1e
1
x

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 20� �
DSolve[x^2 y'[x]==a-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a+ c1e
1
x

y(x) → a
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9.10 problem 250
9.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2287
9.10.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2289
9.10.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2289
9.10.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2292
9.10.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2296

Internal problem ID [3506]
Internal file name [OUTPUT/2999_Sunday_June_05_2022_08_49_15_AM_14856372/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 250.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 − yx = c x2 + bx+ a

9.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = c x2 + bx+ a

x2

Hence the ode is

y′ − y

x
= c x2 + bx+ a

x2
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
c x2 + bx+ a

x2

)
d
dx

(y
x

)
=
(
1
x

)(
c x2 + bx+ a

x2

)
d
(y
x

)
=
(
c x2 + bx+ a

x3

)
dx

Integrating gives

y

x
=
∫

c x2 + bx+ a

x3 dx

y

x
= − b

x
− a

2x2 + c ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
− b

x
− a

2x2 + c ln (x)
)
+ c1x

which simplifies to

y = x

(
− b

x
− a

2x2 + c ln (x) + c1

)
Summary
The solution(s) found are the following

(1)y = x

(
− b

x
− a

2x2 + c ln (x) + c1

)
Verification of solutions

y = x

(
− b

x
− a

2x2 + c ln (x) + c1

)
Verified OK.
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9.10.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − u(x)x2 = c x2 + bx+ a

Integrating both sides gives

u(x) =
∫

c x2 + bx+ a

x3 dx

= − b

x
− a

2x2 + c ln (x) + c2

Therefore the solution y is

y = xu

= x

(
− b

x
− a

2x2 + c ln (x) + c2

)
Summary
The solution(s) found are the following

(1)y = x

(
− b

x
− a

2x2 + c ln (x) + c2

)
Verification of solutions

y = x

(
− b

x
− a

2x2 + c ln (x) + c2

)
Verified OK.

9.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = c x2 + bx+ xy + a

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 415: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = c x2 + bx+ xy + a

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= c x2 + bx+ a

x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2c+Rb+ a

R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − b

R
− a

2R2 + c ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= − b

x
− a

2x2 + c ln (x) + c1

Which simplifies to

y

x
= − b

x
− a

2x2 + c ln (x) + c1

Which gives

y = 2c ln (x)x2 + 2c1x2 − 2bx− a

2x
Summary
The solution(s) found are the following

(1)y = 2c ln (x)x2 + 2c1x2 − 2bx− a

2x
Verification of solutions

y = 2c ln (x)x2 + 2c1x2 − 2bx− a

2x

Verified OK.

9.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
c x2 + bx+ xy + a

)
dx(

−c x2 − bx− xy − a
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −c x2 − bx− xy − a

N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−c x2 − bx− xy − a

)
= −x
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And

∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((−x)− (2x))

= −3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
−c x2 − bx− xy − a

)
= −c x2 + (−b− y)x− a

x3

And

N = µN

= 1
x3

(
x2)

= 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−c x2 + (−b− y)x− a

x3

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−c x2 + (−b− y)x− a

x3 dx

(3)φ = b+ y

x
+ a

2x2 − c ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = b+ y

x
+ a

2x2 − c ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
b+ y

x
+ a

2x2 − c ln (x)

The solution becomes

y = 2c ln (x)x2 + 2c1x2 − 2bx− a

2x

Summary
The solution(s) found are the following

(1)y = 2c ln (x)x2 + 2c1x2 − 2bx− a

2x
Verification of solutions

y = 2c ln (x)x2 + 2c1x2 − 2bx− a

2x

Verified OK.

9.10.5 Maple step by step solution

Let’s solve
y′x2 − yx = c x2 + bx+ a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ c x2+bx+a

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= c x2+bx+a

x2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − y

x

)
= µ(x)

(
c x2+bx+a

)
x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
c x2+bx+a

)
x2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
c x2+bx+a

)
x2 dx+ c1

• Solve for y

y =
∫ µ(x)

(
c x2+bx+a

)
x2 dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

c x2+bx+a
x3 dx+ c1

)
• Evaluate the integrals on the rhs

y = x
(
− b

x
− a

2x2 + c ln (x) + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x^2*diff(y(x),x) = a+b*x+c*x^2+x*y(x),y(x), singsol=all)� �

y(x) = xc ln (x)− a

2x − b+ c1x

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 26� �
DSolve[x^2 y'[x]==a+b x+c x^2+x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − a

2x − b+ cx log(x) + c1x
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9.11 problem 251
9.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2299
9.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2301
9.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2304
9.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2307

Internal problem ID [3507]
Internal file name [OUTPUT/3000_Sunday_June_05_2022_08_49_16_AM_22951260/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 251.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 + yx = c x2 + bx+ a

9.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = c x2 + bx+ a

x2

Hence the ode is

y′ + y

x
= c x2 + bx+ a

x2
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The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µy) = (µ)

(
c x2 + bx+ a

x2

)
d
dx(xy) = (x)

(
c x2 + bx+ a

x2

)
d(xy) =

(
c x2 + bx+ a

x

)
dx

Integrating gives

xy =
∫

c x2 + bx+ a

x
dx

xy = c x2

2 + bx+ a ln (x) + c1

Dividing both sides by the integrating factor µ = x results in

y =
c x2

2 + bx+ a ln (x)
x

+ c1
x

which simplifies to

y =
c x2

2 + bx+ a ln (x) + c1
x

Summary
The solution(s) found are the following

(1)y =
c x2

2 + bx+ a ln (x) + c1
x

Verification of solutions

y =
c x2

2 + bx+ a ln (x) + c1
x

Verified OK.
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9.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−c x2 − bx+ xy − a

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 418: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−c x2 − bx+ xy − a

x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= c x2 + bx+ a

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2c+Rb+ a

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2c

2 +Rb+ a ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = c x2

2 + bx+ a ln (x) + c1

Which simplifies to

yx = c x2

2 + bx+ a ln (x) + c1

Which gives

y = c x2 + 2a ln (x) + 2bx+ 2c1
2x

Summary
The solution(s) found are the following

(1)y = c x2 + 2a ln (x) + 2bx+ 2c1
2x

Verification of solutions

y = c x2 + 2a ln (x) + 2bx+ 2c1
2x

Verified OK.
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9.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
c x2 + bx− xy + a

)
dx(

−c x2 − bx+ xy − a
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −c x2 − bx+ xy − a

N(x, y) = x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−c x2 − bx+ xy − a

)
= x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((x)− (2x))

= −1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
−c x2 − bx+ xy − a

)
= −c x2 + (−b+ y)x− a

x

2305



And

N = µN

= 1
x

(
x2)

= x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−c x2 + (−b+ y)x− a

x

)
+ (x) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−c x2 + (−b+ y)x− a

x
dx

(3)φ = −a ln (x)− x
(cx
2 + b− y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −a ln (x)− x
(cx
2 + b− y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −a ln (x)− x
(cx
2 + b− y

)
The solution becomes

y = c x2 + 2a ln (x) + 2bx+ 2c1
2x

Summary
The solution(s) found are the following

(1)y = c x2 + 2a ln (x) + 2bx+ 2c1
2x

Verification of solutions

y = c x2 + 2a ln (x) + 2bx+ 2c1
2x

Verified OK.

9.11.4 Maple step by step solution

Let’s solve
y′x2 + yx = c x2 + bx+ a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = − y
x
+ c x2+bx+a

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= c x2+bx+a

x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

x

)
= µ(x)

(
c x2+bx+a

)
x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
c x2+bx+a

)
x2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
c x2+bx+a

)
x2 dx+ c1

• Solve for y

y =
∫ µ(x)

(
c x2+bx+a

)
x2 dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫

c x2+bx+a
x

dx+c1
x

• Evaluate the integrals on the rhs

y =
c x2
2 +bx+a ln(x)+c1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x^2*diff(y(x),x) = a+b*x+c*x^2-x*y(x),y(x), singsol=all)� �

y(x) = cx

2 + b+ a ln (x)
x

+ c1
x

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 26� �
DSolve[x^2 y'[x]==a+b x+c x^2-x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a log(x)
x

+ b+ cx

2 + c1
x
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9.12 problem 252
9.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2310
9.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2312
9.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2316
9.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2321

Internal problem ID [3508]
Internal file name [OUTPUT/3001_Sunday_June_05_2022_08_49_18_AM_40574105/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 252.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 + (1− 2x) y = x2

9.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x− 1
x2

q(x) = 1

Hence the ode is

y′ − (2x− 1) y
x2 = 1
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The integrating factor µ is

µ = e
∫
− 2x−1

x2 dx

= e− 1
x
−2 ln(x)

Which simplifies to

µ = e− 1
x

x2

The ode becomes

d
dx(µy) = µ

d
dx

(
e− 1

xy

x2

)
= e− 1

x

x2

d
(
e− 1

xy

x2

)
= e− 1

x

x2 dx

Integrating gives

e− 1
xy

x2 =
∫ e− 1

x

x2 dx

e− 1
xy

x2 = e− 1
x + c1

Dividing both sides by the integrating factor µ = e−
1
x

x2 results in

y = x2e 1
x e− 1

x + c1x
2e 1

x

which simplifies to

y = x2
(
1 + c1e

1
x

)
Summary
The solution(s) found are the following

(1)y = x2
(
1 + c1e

1
x

)
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Figure 361: Slope field plot

Verification of solutions

y = x2
(
1 + c1e

1
x

)
Verified OK.

9.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + 2xy − y

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 421: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e 1

x
+2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e 1
x
+2 ln(x)

dy

Which results in

S = e− 1
xy

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 2xy − y

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (1− 2x) y e− 1
x

x4

Sy =
e− 1

x

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e− 1

x

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e− 1

R

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e− 1
R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− 1
xy

x2 = e− 1
x + c1

Which simplifies to

e− 1
xy

x2 = e− 1
x + c1

Which gives

y = x2
(
e− 1

x + c1
)
e 1

x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+2xy−y
x2

dS
dR

= e−
1
R

R2

R = x

S = e− 1
xy

x2
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Summary
The solution(s) found are the following

(1)y = x2
(
e− 1

x + c1
)
e 1

x

Figure 362: Slope field plot

Verification of solutions

y = x2
(
e− 1

x + c1
)
e 1

x

Verified OK.

9.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

2316



Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
−(1− 2x) y + x2) dx(

(1− 2x) y − x2) dx+(x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = (1− 2x) y − x2

N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
(1− 2x) y − x2)

= 1− 2x
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And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((1− 2x)− (2x))

= 1− 4x
x2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1−4x

x2 dx

The result of integrating gives

µ = e−
1
x
−4 ln(x)

= e− 1
x

x4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− 1
x

x4

(
(1− 2x) y − x2)

= −e− 1
x (x2 + 2xy − y)

x4

And

N = µN

= e− 1
x

x4

(
x2)

= e− 1
x

x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e− 1
x (x2 + 2xy − y)

x4

)
+
(
e− 1

x

x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−e− 1

x (x2 + 2xy − y)
x4 dx

(3)φ = −(x2 − y) e− 1
x

x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e− 1

x

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−
1
x

x2 . Therefore equation (4) becomes

(5)e− 1
x

x2 = e− 1
x

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −(x2 − y) e− 1
x

x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(x2 − y) e− 1
x

x2

The solution becomes

y = x2
(
e− 1

x + c1
)
e 1

x

Summary
The solution(s) found are the following

(1)y = x2
(
e− 1

x + c1
)
e 1

x

Figure 363: Slope field plot
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Verification of solutions

y = x2
(
e− 1

x + c1
)
e 1

x

Verified OK.

9.12.4 Maple step by step solution

Let’s solve
y′x2 + (1− 2x) y = x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1 + (2x−1)y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − (2x−1)y

x2 = 1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − (2x−1)y

x2

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − (2x−1)y

x2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)(2x−1)

x2

• Solve to find the integrating factor

µ(x) = e−
1
x

x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = e−
1
x

x2
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y =
x2

(∫ e−
1
x

x2 dx+c1

)
e−

1
x

• Evaluate the integrals on the rhs

y =
x2
(
e−

1
x+c1

)
e−

1
x

• Simplify

y = x2
(
1 + c1e

1
x

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x^2*diff(y(x),x)+(1-2*x)*y(x) = x^2,y(x), singsol=all)� �

y(x) = x2
(
1 + c1e

1
x

)
3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 19� �
DSolve[x^2 y'[x]+(1-2 x)y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2
(
1 + c1e

1
x

)
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9.13 problem 253
9.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2323
9.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2325
9.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2328
9.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2332

Internal problem ID [3509]
Internal file name [OUTPUT/3002_Sunday_June_05_2022_08_49_19_AM_85882698/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 253.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 − bxy = a

9.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − b

x

q(x) = a

x2

Hence the ode is

y′ − by

x
= a

x2
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The integrating factor µ is

µ = e
∫
− b

x
dx

= e− ln(x)b

Which simplifies to
µ = x−b

The ode becomes

d
dx(µy) = (µ)

( a

x2

)
d
dx
(
x−by

)
=
(
x−b
) ( a

x2

)
d
(
x−by

)
=
(
a x−b−2) dx

Integrating gives

x−by =
∫

a x−b−2 dx

x−by = −a x−b−1

b+ 1 + c1

Dividing both sides by the integrating factor µ = x−b results in

y = −xba x−b−1

b+ 1 + c1x
b

which simplifies to

y = − a

x (b+ 1) + c1x
b

Summary
The solution(s) found are the following

(1)y = − a

x (b+ 1) + c1x
b

Verification of solutions

y = − a

x (b+ 1) + c1x
b

Verified OK.
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9.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = bxy + a

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 424: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = eln(x)b (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x)bdy

Which results in

S = e− ln(x)by

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = bxy + a

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −by x−b−1

Sy = x−b
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a x−b−2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR−b−2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R−b−1a

b+ 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−by = −a x−b−1

b+ 1 + c1

Which simplifies to

x−by = −a x−b−1

b+ 1 + c1

Which gives

y = −
(
a x−b−1 − c1b− c1

)
xb

b+ 1

Summary
The solution(s) found are the following

(1)y = −
(
a x−b−1 − c1b− c1

)
xb

b+ 1
Verification of solutions

y = −
(
a x−b−1 − c1b− c1

)
xb

b+ 1

Verified OK.
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9.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy = (bxy + a) dx

(−bxy − a) dx+
(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bxy − a

N(x, y) = x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−bxy − a)

= −bx

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((−bx)− (2x))

= −b− 2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −b−2

x
dx

The result of integrating gives

µ = e(−b−2) ln(x)

= x−b−2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−b−2(−bxy − a)
= (−bxy − a)x−b−2
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And

N = µN

= x−b−2(x2)
= x−b

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−bxy − a)x−b−2)+ (x−b
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−bxy − a)x−b−2 dx

(3)φ = (xy(b+ 1) + a)x−b−1

b+ 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= xx−b−1 + f ′(y)

= x−b + f ′(y)

But equation (2) says that ∂φ
∂y

= x−b. Therefore equation (4) becomes

(5)x−b = x−b + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (xy(b+ 1) + a)x−b−1

b+ 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(xy(b+ 1) + a)x−b−1

b+ 1

The solution becomes

y = −
(
a x−b−1 − c1b− c1

)
xb+1

x (b+ 1)

Summary
The solution(s) found are the following

(1)y = −
(
a x−b−1 − c1b− c1

)
xb+1

x (b+ 1)
Verification of solutions

y = −
(
a x−b−1 − c1b− c1

)
xb+1

x (b+ 1)

Verified OK.
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9.13.4 Maple step by step solution

Let’s solve
y′x2 − bxy = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = by

x
+ a

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − by

x
= a

x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − by

x

)
= µ(x)a

x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − by

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)b

x

• Solve to find the integrating factor
µ(x) = 1

xb

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)a
x2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)a
x2 dx+ c1

• Solve for y

y =
∫ µ(x)a

x2 dx+c1

µ(x)

• Substitute µ(x) = 1
xb

y = xb
(∫

a
xbx2dx+ c1

)
• Evaluate the integrals on the rhs

y = xb
(
− a

x(b+1)xb + c1
)

• Simplify
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y = − a
x(b+1) + c1x

b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x^2*diff(y(x),x) = a+b*x*y(x),y(x), singsol=all)� �

y(x) = − a

x (b+ 1) + xbc1

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 22� �
DSolve[x^2 y'[x]==a+b x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − a

bx+ x
+ c1x

b
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9.14 problem 254
9.14.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2334
9.14.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2335
9.14.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2336
9.14.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 2337
9.14.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2340
9.14.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2343

Internal problem ID [3510]
Internal file name [OUTPUT/3003_Sunday_June_05_2022_08_49_20_AM_75569609/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 254.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2 − (bx+ a) y = 0

9.14.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (bx+ a) y
x2
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Where f(x) = bx+a
x2 and g(y) = y. Integrating both sides gives

1
y
dy = bx+ a

x2 dx∫ 1
y
dy =

∫
bx+ a

x2 dx

ln (y) = −a

x
+ ln (x) b+ c1

y = e− a
x
+ln(x)b+c1

= c1e−
a
x
+ln(x)b

Which simplifies to
y = c1e−

a
xxb

Summary
The solution(s) found are the following

(1)y = c1e−
a
xxb

Verification of solutions

y = c1e−
a
xxb

Verified OK.

9.14.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −bx+ a

x2

q(x) = 0

Hence the ode is

y′ − (bx+ a) y
x2 = 0

The integrating factor µ is

µ = e
∫
− bx+a

x2 dx

= e a
x
−ln(x)b
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Which simplifies to
µ = x−be a

x

The ode becomes

d
dxµy = 0

d
dx
(
x−be a

xy
)
= 0

Integrating gives

x−be a
xy = c1

Dividing both sides by the integrating factor µ = x−be a
x results in

y = c1e−
a
xxb

Summary
The solution(s) found are the following

(1)y = c1e−
a
xxb

Verification of solutions

y = c1e−
a
xxb

Verified OK.

9.14.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − (bx+ a)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(bx+ a− x)
x2
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Where f(x) = bx+a−x
x2 and g(u) = u. Integrating both sides gives

1
u
du = bx+ a− x

x2 dx∫ 1
u
du =

∫
bx+ a− x

x2 dx

ln (u) = −a

x
+ (b− 1) ln (x) + c2

u = e− a
x
+(b−1) ln(x)+c2

= c2e−
a
x
+(b−1) ln(x)

Which simplifies to

u(x) = c2e−
a
xxb

x

Therefore the solution y is

y = ux

= c2e−
a
xxb

Summary
The solution(s) found are the following

(1)y = c2e−
a
xxb

Verification of solutions

y = c2e−
a
xxb

Verified OK.

9.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (bx+ a) y
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 427: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− a

x
+ln(x)b (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− a
x
+ln(x)bdy

Which results in

S = e a
x
−ln(x)by

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (bx+ a) y
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y x−b−2(bx+ a) e a

x

Sy = x−be a
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−be a
xy = c1

Which simplifies to

x−be a
xy = c1

Which gives

y = c1e−
a
xxb

Summary
The solution(s) found are the following

(1)y = c1e−
a
xxb

Verification of solutions

y = c1e−
a
xxb

Verified OK.

9.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
bx+ a

x2

)
dx(

−bx+ a

x2

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bx+ a

x2

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−bx+ a

x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−bx+ a

x2 dx

(3)φ = a

x
− ln (x) b+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = a

x
− ln (x) b+ ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
a

x
− ln (x) b+ ln (y)

The solution becomes

y = e
ln(x)bx+c1x−a

x

Summary
The solution(s) found are the following

(1)y = e
ln(x)bx+c1x−a

x

Verification of solutions

y = e
ln(x)bx+c1x−a

x

Verified OK.

9.14.6 Maple step by step solution

Let’s solve
y′x2 − (bx+ a) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= bx+a

x2

• Integrate both sides with respect to x∫
y′

y
dx =

∫
bx+a
x2 dx+ c1

• Evaluate integral
ln (y) = −a

x
+ ln (x) b+ c1
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• Solve for y

y = e
ln(x)bx+c1x−a

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x^2*diff(y(x),x) = (b*x+a)*y(x),y(x), singsol=all)� �

y(x) = c1e−
a
xxb

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 24� �
DSolve[x^2 y'[x]==(a+b x)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
− a

xxb

y(x) → 0
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9.15 problem 255
9.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2345
9.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2347
9.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2351
9.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2355

Internal problem ID [3511]
Internal file name [OUTPUT/3004_Sunday_June_05_2022_08_49_22_AM_885985/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 255.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 + x(x+ 2) y = x
(
1− e−2x)− 2

9.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−2− x

x

q(x) = −x e−2x + x− 2
x2

Hence the ode is

y′ − (−2− x) y
x

= −x e−2x + x− 2
x2
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The integrating factor µ is

µ = e
∫
−−2−x

x
dx

= ex+2 ln(x)

Which simplifies to
µ = x2ex

The ode becomes

d
dx(µy) = (µ)

(
−x e−2x + x− 2

x2

)
d
dx
(
exx2y

)
=
(
x2ex

)(−x e−2x + x− 2
x2

)
d
(
exx2y

)
=
(
−x e−x + (x− 2) ex

)
dx

Integrating gives

exx2y =
∫

−x e−x + (x− 2) ex dx

exx2y = x ex − 3 ex + x e−x + e−x + c1

Dividing both sides by the integrating factor µ = x2ex results in

y = e−x(x ex − 3 ex + x e−x + e−x)
x2 + c1e−x

x2

which simplifies to

y = ((x− 3) e2x + c1ex + x+ 1) e−2x

x2

Summary
The solution(s) found are the following

(1)y = ((x− 3) e2x + c1ex + x+ 1) e−2x

x2
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Figure 364: Slope field plot

Verification of solutions

y = ((x− 3) e2x + c1ex + x+ 1) e−2x

x2

Verified OK.

9.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2y + x e−2x + 2xy − x+ 2
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 430: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x−2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x−2 ln(x)dy

Which results in

S = exx2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2y + x e−2x + 2xy − x+ 2
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exyx(x+ 2)
Sy = x2ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x e−x + (x− 2) ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R e−R + (R− 2) eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eRR− 3 eR +R e−R + e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exx2y = x e−x + x ex + e−x − 3 ex + c1

Which simplifies to

exx2y = x e−x + x ex + e−x − 3 ex + c1

Which gives

y = e−x(x e−x + x ex + e−x − 3 ex + c1)
x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2y+x e−2x+2xy−x+2
x2

dS
dR

= −R e−R + (R− 2) eR

R = x

S = exx2y

Summary
The solution(s) found are the following

(1)y = e−x(x e−x + x ex + e−x − 3 ex + c1)
x2
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Figure 365: Slope field plot

Verification of solutions

y = e−x(x e−x + x ex + e−x − 3 ex + c1)
x2

Verified OK.

9.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
−x(x+ 2) y + x

(
1− e−2x)− 2

)
dx(

x(x+ 2) y − x
(
1− e−2x)+ 2

)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x(x+ 2) y − x
(
1− e−2x)+ 2

N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x(x+ 2) y − x

(
1− e−2x)+ 2

)
= x(x+ 2)

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((x(x+ 2))− (2x))

= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
x(x+ 2) y − x

(
1− e−2x)+ 2

)
= x e−x + ex

(
2 + x2y + (2y − 1)x

)
And

N = µN

= ex
(
x2)

= x2ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x e−x + ex
(
2 + x2y + (2y − 1)x

))
+
(
x2ex

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x e−x + ex

(
2 + x2y + (2y − 1)x

)
dx

(3)φ = (−x− 1) e−x +
(
x2y − x+ 3

)
ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2ex + f ′(y)

But equation (2) says that ∂φ
∂y

= x2ex. Therefore equation (4) becomes

(5)x2ex = x2ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (−x− 1) e−x +
(
x2y − x+ 3

)
ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (−x− 1) e−x +
(
x2y − x+ 3

)
ex

The solution becomes

y = e−x(x e−x + x ex + e−x − 3 ex + c1)
x2

2354



Summary
The solution(s) found are the following

(1)y = e−x(x e−x + x ex + e−x − 3 ex + c1)
x2

Figure 366: Slope field plot

Verification of solutions

y = e−x(x e−x + x ex + e−x − 3 ex + c1)
x2

Verified OK.

9.15.4 Maple step by step solution

Let’s solve
y′x2 + x(x+ 2) y = x(1− e−2x)− 2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = − (x+2)y
x

− x e−2x−x+2
x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (x+2)y

x
= −x e−2x−x+2

x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (x+2)y

x

)
= −µ(x)

(
x e−2x−x+2

)
x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (x+2)y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(x+2)

x

• Solve to find the integrating factor
µ(x) = x2ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)

(
x e−2x−x+2

)
x2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
−µ(x)

(
x e−2x−x+2

)
x2 dx+ c1

• Solve for y

y =
∫
−

µ(x)
(
x e−2x−x+2

)
x2 dx+c1

µ(x)

• Substitute µ(x) = x2ex

y =
∫
−ex

(
x e−2x−x+2

)
dx+c1

x2ex

• Evaluate the integrals on the rhs

y =
x
ex+x ex+ 1

ex−3 ex+c1
exx2

• Simplify

y =
(
(x−3)e2x+c1ex+x+1

)
e−2x

x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x^2*diff(y(x),x)+x*(2+x)*y(x) = x*(1-exp(-2*x))-2,y(x), singsol=all)� �

y(x) = e−xc1 + e−2xx+ e−2x + x− 3
x2

3 Solution by Mathematica
Time used: 0.173 (sec). Leaf size: 32� �
DSolve[x^2*y'[x]+x*(2+x)*y[x]==x*(1-Exp[-2*x])-2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(e2x(x− 3) + x+ c1e
x + 1)

x2
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9.16 problem 256
9.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2358
9.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2360
9.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2364
9.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2369

Internal problem ID [3512]
Internal file name [OUTPUT/3005_Sunday_June_05_2022_08_49_23_AM_40478830/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 256.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 + 2x(1− x) y = ex(2 ex − 1)

9.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x− 2
x

q(x) = ex(2 ex − 1)
x2

Hence the ode is

y′ − (2x− 2) y
x

= ex(2 ex − 1)
x2
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The integrating factor µ is

µ = e
∫
− 2x−2

x
dx

= e−2x+2 ln(x)

Which simplifies to
µ = e−2xx2

The ode becomes

d
dx(µy) = (µ)

(
ex(2 ex − 1)

x2

)
d
dx
(
e−2xx2y

)
=
(
e−2xx2)(ex(2 ex − 1)

x2

)
d
(
e−2xx2y

)
=
(
2− e−x

)
dx

Integrating gives

e−2xx2y =
∫

2− e−x dx

e−2xx2y = 2x+ e−x + c1

Dividing both sides by the integrating factor µ = e−2xx2 results in

y = e2x(2x+ e−x)
x2 + c1e2x

x2

which simplifies to

y = (2x+ c1) e2x + ex
x2

Summary
The solution(s) found are the following

(1)y = (2x+ c1) e2x + ex
x2
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Figure 367: Slope field plot

Verification of solutions

y = (2x+ c1) e2x + ex
x2

Verified OK.

9.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x2y − 2xy − ex + 2 e2x
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 433: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e2x−2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2x−2 ln(x)dy

Which results in

S = e−2xx2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x2y − 2xy − ex + 2 e2x
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2 e−2xyx(x− 1)
Sy = e−2xx2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2− e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2− e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e−R + 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−2xx2y = 2x+ e−x + c1

Which simplifies to

e−2xx2y = 2x+ e−x + c1

Which gives

y = e2x(2x+ e−x + c1)
x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x2y−2xy−ex+2 e2x
x2

dS
dR

= 2− e−R

R = x

S = e−2xx2y

Summary
The solution(s) found are the following

(1)y = e2x(2x+ e−x + c1)
x2
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Figure 368: Slope field plot

Verification of solutions

y = e2x(2x+ e−x + c1)
x2

Verified OK.

9.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy = (−2x(1− x) y + ex(2 ex − 1)) dx

(2x(1− x) y − ex(2 ex − 1)) dx+
(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x(1− x) y − ex(2 ex − 1)
N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2x(1− x) y − ex(2 ex − 1))

= −2x(x− 1)

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((2x(1− x))− (2x))

= −2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2 dx

The result of integrating gives

µ = e−2x

= e−2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−2x(2x(1− x) y − ex(2 ex − 1))

= −2
(
x2y − xy − ex

2 + e2x
)
e−2x

And

N = µN

= e−2x(x2)
= e−2xx2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2
(
x2y − xy − ex

2 + e2x
)
e−2x

)
+
(
e−2xx2) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2
(
x2y − xy − ex

2 + e2x
)
e−2x dx

(3)φ = e−2xx2y − e−x − 2x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−2xx2 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−2xx2. Therefore equation (4) becomes

(5)e−2xx2 = e−2xx2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = e−2xx2y − e−x − 2x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = e−2xx2y − e−x − 2x
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The solution becomes

y = e2x(2x+ e−x + c1)
x2

Summary
The solution(s) found are the following

(1)y = e2x(2x+ e−x + c1)
x2

Figure 369: Slope field plot

Verification of solutions

y = e2x(2x+ e−x + c1)
x2

Verified OK.
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9.16.4 Maple step by step solution

Let’s solve
y′x2 + 2x(1− x) y = ex(2 ex − 1)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2(x−1)y

x
+ ex(2 ex−1)

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2(x−1)y

x
= ex(2 ex−1)

x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − 2(x−1)y

x

)
= µ(x)ex(2 ex−1)

x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2(x−1)y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)(x−1)

x

• Solve to find the integrating factor
µ(x) = e−2xx2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)ex(2 ex−1)
x2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)ex(2 ex−1)
x2 dx+ c1

• Solve for y

y =
∫ µ(x)ex

(
2 ex−1

)
x2 dx+c1

µ(x)

• Substitute µ(x) = e−2xx2

y =
∫
ex(2 ex−1)e−2xdx+c1

e−2xx2

• Evaluate the integrals on the rhs

y = 2x+ 1
ex+c1

e−2xx2

• Simplify
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y = (2x+c1)(ex)2+ex
x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x^2*diff(y(x),x)+2*x*(1-x)*y(x) = exp(x)*(2*exp(x)-1),y(x), singsol=all)� �

y(x) = (2x+ c1) e2x + ex
x2

3 Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 24� �
DSolve[x^2 y'[x]+2 x(1-x)y[x]==Exp[x](2 Exp[x]-1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(1 + ex(2x+ c1))
x2
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9.17 problem 257
9.17.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2371
9.17.2 Solving as first order ode lie symmetry calculated ode . . . . . . 2373
9.17.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2378

Internal problem ID [3513]
Internal file name [OUTPUT/3006_Sunday_June_05_2022_08_49_25_AM_79697607/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 257.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 + yx+ y2 = −x2

9.17.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 + u(x)x2 + u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 − 2u− 1
x

Where f(x) = 1
x
and g(u) = −u2 − 2u− 1. Integrating both sides gives

1
−u2 − 2u− 1 du = 1

x
dx
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∫ 1
−u2 − 2u− 1 du =

∫ 1
x
dx

1
u+ 1 = ln (x) + c2

The solution is
1

u (x) + 1 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

1
y
x
+ 1 − ln (x)− c2 = 0

(− ln (x)− c2) y − x(c2 + ln (x)− 1)
y + x

= 0

Summary
The solution(s) found are the following

(1)(− ln (x)− c2) y − x(c2 + ln (x)− 1)
y + x

= 0

Figure 370: Slope field plot
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Verification of solutions

(− ln (x)− c2) y − x(c2 + ln (x)− 1)
y + x

= 0

Verified OK.

9.17.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2 + xy + y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(x2 + xy + y2) (b3 − a2)
x2 − (x2 + xy + y2)2 a3

x4

−
(
−2x+ y

x2 + 2x2 + 2xy + 2y2
x3

)
(xa2 + ya3 + a1)

+ (x+ 2y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

x4a2 − x4a3 + 2b2x4 − x4b3 − 2x3ya3 + 2x3yb2 − x2y2a2 − 4x2y2a3 + x2y2b3 − 4x y3a3 − y4a3 + x3b1 − x2ya1 + 2x2yb1 − 2x y2a1
x4

= 0
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Setting the numerator to zero gives

(6E)x4a2 − x4a3 + 2b2x4 − x4b3 − 2x3ya3 + 2x3yb2 − x2y2a2 − 4x2y2a3
+ x2y2b3 − 4x y3a3 − y4a3 + x3b1 − x2ya1 + 2x2yb1 − 2x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
1 − a2v

2
1v

2
2 − a3v

4
1 − 2a3v31v2 − 4a3v21v22 − 4a3v1v32 − a3v

4
2 + 2b2v41

+ 2b2v31v2 − b3v
4
1 + b3v

2
1v

2
2 − a1v

2
1v2 − 2a1v1v22 + b1v

3
1 + 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 + 2b2 − b3) v41 + (−2a3 + 2b2) v31v2 + b1v
3
1 + (−a2 − 4a3 + b3) v21v22

+ (−a1 + 2b1) v21v2 − 4a3v1v32 − 2a1v1v22 − a3v
4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a1 = 0
−4a3 = 0
−a3 = 0

−a1 + 2b1 = 0
−2a3 + 2b2 = 0

−a2 − 4a3 + b3 = 0
a2 − a3 + 2b2 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x2 + xy + y2

x2

)
(x)

= x2 + 2xy + y2

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+2xy+y2

x

dy
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Which results in

S = − x

y + x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + xy + y2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(y + x)2

Sy =
x

(y + x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x

y + x
= − ln (x) + c1
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Which simplifies to

− x

y + x
= − ln (x) + c1

Which gives

y = −x(ln (x)− c1 − 1)
ln (x)− c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+xy+y2

x2
dS
dR

= − 1
R

R = x

S = − x

y + x

Summary
The solution(s) found are the following

(1)y = −x(ln (x)− c1 − 1)
ln (x)− c1
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Figure 371: Slope field plot

Verification of solutions

y = −x(ln (x)− c1 − 1)
ln (x)− c1

Verified OK.

9.17.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x2 + xy + y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −1− y

x
− y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −1, f1(x) = − 1
x
and f2(x) = − 1

x2 . Let

y = −u′

f2u

= −u′

− u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2
x3

f1f2 =
1
x3

f 2
2 f0 = − 1

x4

Substituting the above terms back in equation (2) gives

−u′′(x)
x2 − 3u′(x)

x3 − u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 ln (x)
x

The above shows that

u′(x) = c2 − c1 − c2 ln (x)
x2

Using the above in (1) gives the solution

y = x(c2 − c1 − c2 ln (x))
c1 + c2 ln (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −(−1 + c3 + ln (x))x
c3 + ln (x)
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Summary
The solution(s) found are the following

(1)y = −(−1 + c3 + ln (x))x
c3 + ln (x)

Figure 372: Slope field plot

Verification of solutions

y = −(−1 + c3 + ln (x))x
c3 + ln (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x)+x^2+x*y(x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −x(ln (x) + c1 − 1)
ln (x) + c1

3 Solution by Mathematica
Time used: 0.144 (sec). Leaf size: 31� �
DSolve[x^2 y'[x]+x^2+x y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x)− 1− c1)
− log(x) + c1

y(x) → −x
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9.18 problem 258
9.18.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 2382
9.18.2 Solving as first order ode lie symmetry calculated ode . . . . . . 2386
9.18.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2392

Internal problem ID [3514]
Internal file name [OUTPUT/3007_Sunday_June_05_2022_08_49_26_AM_54229828/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 258.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , _Riccati]

y′x2 − (1 + 2x− y)2 = 0

9.18.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = (−1− 2X − 2x0 + Y (X) + y0)2

(X + x0)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 4X2 − 4XY (X) + Y (X)2

X2
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 4X2 − 4XY + Y 2

X2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 4X2 − 4XY + Y 2 and N = X2 are both
homogeneous and of the same order n = 2. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u2 − 4u+ 4

du
dX = u(X)2 − 5u(X) + 4

X

Or
d

dX
u(X)− u(X)2 − 5u(X) + 4

X
= 0

Or (
d

dX
u(X)

)
X − u(X)2 + 5u(X)− 4 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= u2 − 5u+ 4
X
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Where f(X) = 1
X

and g(u) = u2 − 5u+ 4. Integrating both sides gives

1
u2 − 5u+ 4 du = 1

X
dX∫ 1

u2 − 5u+ 4 du =
∫ 1

X
dX

− ln (u− 1)
3 + ln (u− 4)

3 = ln (X) + c2

The above can be written as(
−1
3

)
(ln (u− 1)− ln (u− 4)) = ln (X) + 2c2

ln (u− 1)− ln (u− 4) = (−3) (ln (X) + 2c2)
= −3 ln (X)− 6c2

Raising both side to exponential gives

eln(u−1)−ln(u−4) = e−3 ln(X)−3c2

Which simplifies to
u− 1
u− 4 = −3c2

X3

= c3
X3

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X(X3 − 4c3)
X3 − c3

Using the solution for Y (X)

Y (X) = X(X3 − 4c3)
X3 − c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
X = x
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Then the solution in y becomes

y − 1 = x(x3 − 4c3)
x3 − c3

Summary
The solution(s) found are the following

(1)y − 1 = x(x3 − 4c3)
x3 − c3

Figure 373: Slope field plot

Verification of solutions

y − 1 = x(x3 − 4c3)
x3 − c3

Verified OK.

2385



9.18.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (−1− 2x+ y)2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−1− 2x+ y)2 (b3 − a2)

x2 − (−1− 2x+ y)4 a3
x4

−

(
−4(−1− 2x+ y)

x2 − 2(−1− 2x+ y)2

x3

)
(xa2 + ya3 + a1)

− 2(−1− 2x+ y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−4x4a2 + 16x4a3 − 5b2x4 − 4x4b3 − 32x3ya3 + 2x3yb2 − x2y2a2 + 28x2y2a3 + x2y2b3 − 10x y3a3 + y4a3 + 32x3a3 − 4x3b1 − 2x3b2 − 4x3b3 + 4x2ya1 + 2x2ya2 − 52x2ya3 + 2x2yb1 − 2x y2a1 + 28x y2a3 − 4y3a3 − 4x2a1 − x2a2 + 24x2a3 − 2x2b1 − x2b3 + 4xya1 − 26xya3 + 6y2a3 − 2xa1 + 8xa3 − 4ya3 + a3
x4

= 0

Setting the numerator to zero gives

(6E)
−4x4a2 − 16x4a3 + 5b2x4 + 4x4b3 + 32x3ya3 − 2x3yb2 + x2y2a2
− 28x2y2a3 − x2y2b3 + 10x y3a3 − y4a3 − 32x3a3 + 4x3b1 + 2x3b2
+ 4x3b3 − 4x2ya1 − 2x2ya2 + 52x2ya3 − 2x2yb1 + 2x y2a1
− 28x y2a3 + 4y3a3 + 4x2a1 + x2a2 − 24x2a3 + 2x2b1 + x2b3
− 4xya1 + 26xya3 − 6y2a3 + 2xa1 − 8xa3 + 4ya3 − a3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−4a2v41 + a2v

2
1v

2
2 − 16a3v41 + 32a3v31v2 − 28a3v21v22 + 10a3v1v32 − a3v

4
2

+5b2v41 − 2b2v31v2+4b3v41 − b3v
2
1v

2
2 − 4a1v21v2+2a1v1v22 − 2a2v21v2− 32a3v31

+ 52a3v21v2 − 28a3v1v22 + 4a3v32 + 4b1v31 − 2b1v21v2 + 2b2v31 + 4b3v31 + 4a1v21
−4a1v1v2+a2v

2
1−24a3v21+26a3v1v2−6a3v22+2b1v21+b3v

2
1+2a1v1−8a3v1

+ 4a3v2 − a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−4a2−16a3+5b2+4b3) v41+(32a3−2b2) v31v2+(−32a3+4b1+2b2+4b3) v31
+ (a2 − 28a3 − b3) v21v22 + (−4a1 − 2a2 + 52a3 − 2b1) v21v2
+ (4a1 + a2 − 24a3 + 2b1 + b3) v21 + 10a3v1v32 + (2a1 − 28a3) v1v22
+(−4a1+26a3) v1v2+(2a1−8a3) v1−a3v

4
2+4a3v32−6a3v22+4a3v2−a3 = 0

2387



Setting each coefficients in (8E) to zero gives the following equations to solve

−6a3 = 0
−a3 = 0
4a3 = 0
10a3 = 0

−4a1 + 26a3 = 0
2a1 − 28a3 = 0
2a1 − 8a3 = 0
32a3 − 2b2 = 0

a2 − 28a3 − b3 = 0
−4a1 − 2a2 + 52a3 − 2b1 = 0
−4a2 − 16a3 + 5b2 + 4b3 = 0
−32a3 + 4b1 + 2b2 + 4b3 = 0

4a1 + a2 − 24a3 + 2b1 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = −b3

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y − 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
(−1− 2x+ y)2

x2

)
(x)

= −4x2 + 5xy − y2 − 5x+ 2y − 1
x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x2+5xy−y2−5x+2y−1
x

dy

Which results in

S = ln (y − 1− x)
3 − ln (−1 + y − 4x)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (−1− 2x+ y)2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y − 1
(x− y + 1) (1− y + 4x)

Sy = − x

(x− y + 1) (1− y + 4x)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y − x− 1)
3 − ln (−1 + y − 4x)

3 = − ln (x) + c1

Which simplifies to

ln (y − x− 1)
3 − ln (−1 + y − 4x)

3 = − ln (x) + c1

Which gives

y = 4 e3c1x− x4 + e3c1 − x3

−x3 + e3c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (−1−2x+y)2
x2

dS
dR

= − 1
R

R = x

S = ln (y − 1− x)
3 − ln (−1 + y − 4x)

3

Summary
The solution(s) found are the following

(1)y = 4 e3c1x− x4 + e3c1 − x3

−x3 + e3c1
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Figure 374: Slope field plot

Verification of solutions

y = 4 e3c1x− x4 + e3c1 − x3

−x3 + e3c1

Verified OK.

9.18.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (−1− 2x+ y)2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 4− 4y
x

+ y2

x2 + 4
x
− 2y

x2 + 1
x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = (−1−2x)2
x2 , f1(x) = −2−4x

x2 and f2(x) = 1
x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
−2− 4x

x4

f 2
2 f0 =

(−1− 2x)2

x6

Substituting the above terms back in equation (2) gives

u′′(x)
x2 −

(
− 2
x3 + −2− 4x

x4

)
u′(x) + (−1− 2x)2 u(x)

x6 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e 1
x (c2x3 + c1)

x4

The above shows that

u′(x) = −e 1
x (c2x4 + c2x

3 + 4c1x+ c1)
x6

Using the above in (1) gives the solution

y = c2x
4 + c2x

3 + 4c1x+ c1
c2x3 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = x4 + x3 + 4c3x+ c3
x3 + c3

Summary
The solution(s) found are the following

(1)y = x4 + x3 + 4c3x+ c3
x3 + c3

Figure 375: Slope field plot

Verification of solutions

y = x4 + x3 + 4c3x+ c3
x3 + c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.719 (sec). Leaf size: 24� �
dsolve(x^2*diff(y(x),x) = (1+2*x-y(x))^2,y(x), singsol=all)� �

y(x) = 1 + x(c1x3 − 4)
c1x3 − 1

3 Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 41� �
DSolve[x^2 y'[x]==(1+2 x-y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4 + x3 + 12c1x+ 3c1
x3 + 3c1

y(x) → 4x+ 1
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9.19 problem 259
9.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2396
9.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2397
9.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2401
9.19.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2404
9.19.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2406

Internal problem ID [3515]
Internal file name [OUTPUT/3008_Sunday_June_05_2022_08_49_28_AM_44270739/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 259.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2 − by2 = a

9.19.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= b y2 + a

x2

Where f(x) = 1
x2 and g(y) = b y2 + a. Integrating both sides gives

1
b y2 + a

dy = 1
x2 dx∫ 1

b y2 + a
dy =

∫ 1
x2 dx
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arctan
(

yb√
ab

)
√
ab

= −1
x
+ c1

Which results in

y =
tan

(√
ab (c1x−1)

x

)√
ab

b

Summary
The solution(s) found are the following

(1)y =
tan

(√
ab (c1x−1)

x

)√
ab

b

Verification of solutions

y =
tan

(√
ab (c1x−1)

x

)√
ab

b

Verified OK.

9.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b y2 + a

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 436: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2dx

Which results in

S = −1
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b y2 + a

x2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

b y2 + a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2b+ a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
arctan

(
Rb√
ab

)
√
ab

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
=

arctan
(

yb√
ab

)
√
ab

+ c1

Which simplifies to

−1
x
=

arctan
(

yb√
ab

)
√
ab

+ c1

Which gives

y = −
tan

(√
ab (c1x+1)

x

)√
ab

b

Summary
The solution(s) found are the following

(1)y = −
tan

(√
ab (c1x+1)

x

)√
ab

b

Verification of solutions

y = −
tan

(√
ab (c1x+1)

x

)√
ab

b

Verified OK.

2400



9.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

b y2 + a

)
dy =

(
1
x2

)
dx(

− 1
x2

)
dx+

(
1

b y2 + a

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = 1
b y2 + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

b y2 + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
b y2+a

. Therefore equation (4) becomes

(5)1
b y2 + a

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
b y2 + a

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
b y2 + a

)
dy

f(y) =
arctan

(
yb√
ab

)
√
ab

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
+

arctan
(

yb√
ab

)
√
ab

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
+

arctan
(

yb√
ab

)
√
ab

The solution becomes

y =
tan

(√
ab (c1x−1)

x

)√
ab

b

Summary
The solution(s) found are the following

(1)y =
tan

(√
ab (c1x−1)

x

)√
ab

b
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Verification of solutions

y =
tan

(√
ab (c1x−1)

x

)√
ab

b

Verified OK.

9.19.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b y2 + a

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2

x2 + a

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
x2 , f1(x) = 0 and f2(x) = b

x2 . Let

y = −u′

f2u

= −u′

bu
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −2b

x3

f1f2 = 0

f 2
2 f0 =

b2a

x6

Substituting the above terms back in equation (2) gives

bu′′(x)
x2 + 2bu′(x)

x3 + b2au(x)
x6 = 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(√

a
√
b

x

)
+ c2 cos

(√
a
√
b

x

)

The above shows that

u′(x) =

√
a
√
b
(
−c1 cos

(√
a
√
b

x

)
+ c2 sin

(√
a
√
b

x

))
x2

Using the above in (1) gives the solution

y = −

√
a
(
−c1 cos

(√
a
√
b

x

)
+ c2 sin

(√
a
√
b

x

))
√
b
(
c1 sin

(√
a
√
b

x

)
+ c2 cos

(√
a
√
b

x

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
c3 cos

(√
a
√
b

x

)
− sin

(√
a
√
b

x

))√
a(

c3 sin
(√

a
√
b

x

)
+ cos

(√
a
√
b

x

))√
b

Summary
The solution(s) found are the following

(1)y =

(
c3 cos

(√
a
√
b

x

)
− sin

(√
a
√
b

x

))√
a(

c3 sin
(√

a
√
b

x

)
+ cos

(√
a
√
b

x

))√
b

Verification of solutions

y =

(
c3 cos

(√
a
√
b

x

)
− sin

(√
a
√
b

x

))√
a(

c3 sin
(√

a
√
b

x

)
+ cos

(√
a
√
b

x

))√
b

Verified OK.
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9.19.5 Maple step by step solution

Let’s solve
y′x2 − by2 = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a+by2
= 1

x2

• Integrate both sides with respect to x∫
y′

a+by2
dx =

∫ 1
x2dx+ c1

• Evaluate integral
arctan

(
yb√
ab

)
√
ab

= − 1
x
+ c1

• Solve for y

y =
tan
(√

ab (c1x−1)
x

)√
ab

b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(x^2*diff(y(x),x) = a+b*y(x)^2,y(x), singsol=all)� �

y(x) =
tan

(√
ab (c1x−1)

x

)√
ab

b
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3 Solution by Mathematica
Time used: 0.184 (sec). Leaf size: 75� �
DSolve[x^2 y'[x]==a + b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
a tan

(√
a
√
b(1−c1x)
x

)
√
b

y(x) → − i
√
a√
b

y(x) → i
√
a√
b
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9.20 problem 260
9.20.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2408
9.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2409
9.20.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2412
9.20.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2415
9.20.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2419

Internal problem ID [3516]
Internal file name [OUTPUT/3009_Sunday_June_05_2022_08_49_29_AM_79087709/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 260.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByIn-
spection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′x2 − (ya+ x) y = 0

9.20.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − (u(x)xa+ x)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2a

x
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Where f(x) = a
x
and g(u) = u2. Integrating both sides gives

1
u2 du = a

x
dx∫ 1

u2 du =
∫

a

x
dx

−1
u
= a ln (x) + c2

The solution is

− 1
u (x) − a ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
− a ln (x)− c2 = 0

−x

y
− a ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)−x

y
− a ln (x)− c2 = 0

Verification of solutions

−x

y
− a ln (x)− c2 = 0

Verified OK.

9.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (ya+ x) y
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

2409



The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 439: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (ya+ x) y
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= a ln (x) + c1

Which simplifies to

−x

y
= a ln (x) + c1

Which gives

y = − x

a ln (x) + c1

Summary
The solution(s) found are the following

(1)y = − x

a ln (x) + c1

Verification of solutions

y = − x

a ln (x) + c1

Verified OK.

9.20.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (ya+ x) y
x2

This is a Bernoulli ODE.
y′ = 1

x
y + a

x2y
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) =
a

x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
xy

+ a

x2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

+ a

x2

w′ = −w

x
− a

x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 1
x

q(x) = − a

x2

Hence the ode is

w′(x) + w(x)
x

= − a

x2

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ)

(
− a

x2

)
d
dx(wx) = (x)

(
− a

x2

)
d(wx) =

(
−a

x

)
dx

Integrating gives

wx =
∫

−a

x
dx

wx = −a ln (x) + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = −a ln (x)
x

+ c1
x

which simplifies to

w(x) = −a ln (x) + c1
x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −a ln (x) + c1

x

Or

y = x

−a ln (x) + c1
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Summary
The solution(s) found are the following

(1)y = x

−a ln (x) + c1

Verification of solutions

y = x

−a ln (x) + c1

Verified OK.

9.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy = (y(ya+ x)) dx

(−y(ya+ x)) dx+
(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(ya+ x)
N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y(ya+ x))

= −2ya− x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
xy2

is an integrating factor.
Therefore by multiplying M = −(ya+ x) y and N = x2 by this integrating factor the
ode becomes exact. The new M,N are

M = −ya+ x

xy

N = x

y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x

y2

)
dy =

(
ya+ x

xy

)
dx(

−ya+ x

xy

)
dx+

(
x

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ya+ x

xy

N(x, y) = x

y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−ya+ x

xy

)
= 1

y2

And

∂N

∂x
= ∂

∂x

(
x

y2

)
= 1

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ya+ x

xy
dx

(3)φ = −a ln (x)− x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y2
. Therefore equation (4) becomes

(5)x

y2
= x

y2
+ f ′(y)

2418



Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −a ln (x)− x

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −a ln (x)− x

y

The solution becomes
y = − x

a ln (x) + c1

Summary
The solution(s) found are the following

(1)y = − x

a ln (x) + c1

Verification of solutions

y = − x

a ln (x) + c1

Verified OK.

9.20.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (ya+ x) y
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2a

x2 + y

x
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = a

x2 . Let

y = −u′

f2u

= −u′

au
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −2a

x3

f1f2 =
a

x3

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

au′′(x)
x2 + au′(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 ln (x)

The above shows that
u′(x) = c2

x

Using the above in (1) gives the solution

y = − c2x

a (c1 + c2 ln (x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = − x

a (c3 + ln (x))

Summary
The solution(s) found are the following

(1)y = − x

a (c3 + ln (x))
Verification of solutions

y = − x

a (c3 + ln (x))

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x) = (x+a*y(x))*y(x),y(x), singsol=all)� �

y(x) = − x

a ln (x)− c1

3 Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 22� �
DSolve[x^2 y'[x]==(x+a y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

−a log(x) + c1
y(x) → 0
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9.21 problem 261
9.21.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2422
9.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2424
9.21.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2427
9.21.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2429

Internal problem ID [3517]
Internal file name [OUTPUT/3010_Sunday_June_05_2022_08_49_31_AM_57808066/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 261.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′x2 − (ax+ yb) y = 0

9.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − (ax+ u(x)xb)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(ub+ a− 1)
x
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Where f(x) = 1
x
and g(u) = u(ub+ a− 1). Integrating both sides gives

1
u (ub+ a− 1) du = 1

x
dx∫ 1

u (ub+ a− 1) du =
∫ 1

x
dx

− ln (ub+ a− 1)
a− 1 + ln (u)

a− 1 = ln (x) + c2

The above can be written as(
− 1
a− 1

)
(ln (ub+ a− 1)− ln (u)) = ln (x) + 2c2

ln (ub+ a− 1)− ln (u) = (−a+ 1) (ln (x) + 2c2)
= −(a− 1) (ln (x) + 2c2)

Raising both side to exponential gives

eln(ub+a−1)−ln(u) = e−(a−1)(ln(x)+c2)

Which simplifies to
ub+ a− 1

u
= −c2(a− 1) e−(a−1) ln(x)

= c3e−(a−1) ln(x)

Which simplifies to

u(x) = a− 1
c3x−ax− b

Therefore the solution y is

y = xu

= x(a− 1)
c3x−ax− b

Summary
The solution(s) found are the following

(1)y = x(a− 1)
c3x−ax− b

Verification of solutions

y = x(a− 1)
c3x−ax− b

Verified OK.
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9.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (ax+ by) y
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 441: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = y2e−a ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2e−a ln(x)dy

Which results in

S = −ea ln(x)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (ax+ by) y
x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −a xa−1

y

Sy =
xa

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b x−2+a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= bR−2+a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = Ra−1b

a− 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−xa

y
= xa−1b

a− 1 + c1

Which simplifies to

−xa

y
= xa−1b

a− 1 + c1

Which gives

y = − xa(a− 1)
xa−1b+ c1a− c1

Summary
The solution(s) found are the following

(1)y = − xa(a− 1)
xa−1b+ c1a− c1
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Verification of solutions

y = − xa(a− 1)
xa−1b+ c1a− c1

Verified OK.

9.21.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (ax+ by) y
x2

This is a Bernoulli ODE.
y′ = a

x
y + b

x2y
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
a

x

f1(x) =
b

x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= a

xy
+ b

x2 (4)

Let

w = y1−n

= 1
y

(5)
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Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = aw(x)
x

+ b

x2

w′ = −aw

x
− b

x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = a

x

q(x) = − b

x2

Hence the ode is

w′(x) + aw(x)
x

= − b

x2

The integrating factor µ is

µ = e
∫

a
x
dx

= ea ln(x)

Which simplifies to
µ = xa

The ode becomes

d
dx(µw) = (µ)

(
− b

x2

)
d
dx(x

aw) = (xa)
(
− b

x2

)
d(xaw) =

(
−b x−2+a

)
dx
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Integrating gives

xaw =
∫

−b x−2+a dx

xaw = −xa−1b

a− 1 + c1

Dividing both sides by the integrating factor µ = xa results in

w(x) = −x−axa−1b

a− 1 + c1x
−a

which simplifies to

w(x) = − b

x (a− 1) + c1x
−a

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= − b

x (a− 1) + c1x
−a

Or

y = 1
− b

x(a−1) + c1x−a

Summary
The solution(s) found are the following

(1)y = 1
− b

x(a−1) + c1x−a

Verification of solutions

y = 1
− b

x(a−1) + c1x−a

Verified OK.

9.21.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (ax+ by) y
x2
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This is a Riccati ODE. Comparing the ODE to solve

y′ = ya

x
+ b y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = a
x
and f2(x) = b

x2 . Let

y = −u′

f2u

= −u′

bu
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −2b

x3

f1f2 =
ab

x3

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

bu′′(x)
x2 −

(
−2b
x3 + ab

x3

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2x
a−1

The above shows that
u′(x) = c2x

−2+a(a− 1)

Using the above in (1) gives the solution

y = −c2x
−2+a(a− 1)x2

b (c1 + c2xa−1)
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − xa(a− 1)
b (c3 + xa−1)

Summary
The solution(s) found are the following

(1)y = − xa(a− 1)
b (c3 + xa−1)

Verification of solutions

y = − xa(a− 1)
b (c3 + xa−1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 27� �
dsolve(x^2*diff(y(x),x) = (a*x+b*y(x))*y(x),y(x), singsol=all)� �

y(x) = x(a− 1)
(a− 1) c1x−a+1 − b
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3 Solution by Mathematica
Time used: 0.174 (sec). Leaf size: 36� �
DSolve[x^2 y'[x]==(a x+b y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − (a− 1)xa+1

bxa − (a− 1)c1x
y(x) → 0
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9.22 problem 262
9.22.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2433
9.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 2434
9.22.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2439

Internal problem ID [3518]
Internal file name [OUTPUT/3011_Sunday_June_05_2022_08_49_32_AM_77695482/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 262.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 + bxy + cy2 = −x2a

9.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 + b x2u(x) + cu(x)2 x2 = −x2a

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −c u2 − bu− a− u

x

Where f(x) = 1
x
and g(u) = −c u2 − bu− a− u. Integrating both sides gives

1
−c u2 − bu− a− u

du = 1
x
dx
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∫ 1
−c u2 − bu− a− u

du =
∫ 1

x
dx

−
2 arctan

(
2cu+b+1√

4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

= ln (x) + c2

The solution is

−
2 arctan

(
2cu(x)+b+1√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−
2 arctan

( 2cy
x

+b+1√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

− ln (x)− c2 = 0

−
2 arctan

(
2cy+bx+x

x
√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)−
2 arctan

(
2cy+bx+x

x
√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

− ln (x)− c2 = 0

Verification of solutions

−
2 arctan

(
2cy+bx+x

x
√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

− ln (x)− c2 = 0

Verified OK.

9.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2a+ bxy + c y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(x2a+ bxy + c y2) (b3 − a2)
x2 − (x2a+ bxy + c y2)2 a3

x4

−
(
−2ax+ by

x2 + 2x2a+ 2bxy + 2c y2
x3

)
(xa2 + ya3 + a1)

+ (bx+ 2cy) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−a2x4a3 + 2ab x3ya3 + 2ac x2y2a3 + b2x2y2a3 + 2bcx y3a3 + c2y4a3 − a x4a2 + a x4b3 − b x4b2 + b x2y2a3 − 2c x3yb2 + c x2y2a2 − c x2y2b3 + 2cx y3a3 − b x3b1 + b x2ya1 − 2c x2yb1 + 2cx y2a1 − b2x
4

x4

= 0

Setting the numerator to zero gives

(6E)−a2x4a3 − 2ab x3ya3 − 2ac x2y2a3 − b2x2y2a3 − 2bcx y3a3 − c2y4a3
+ a x4a2 − a x4b3 + b x4b2 − b x2y2a3 + 2c x3yb2 − c x2y2a2 + c x2y2b3
− 2cx y3a3 + b x3b1 − b x2ya1 + 2c x2yb1 − 2cx y2a1 + b2x

4 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−a2a3v
4
1 − 2aba3v31v2 − 2aca3v21v22 − b2a3v

2
1v

2
2 − 2bca3v1v32 − c2a3v

4
2

+ aa2v
4
1 − ab3v

4
1 − ba3v

2
1v

2
2 + bb2v

4
1 − ca2v

2
1v

2
2 − 2ca3v1v32 + 2cb2v31v2

+ cb3v
2
1v

2
2 − ba1v

2
1v2 + bb1v

3
1 − 2ca1v1v22 + 2cb1v21v2 + b2v

4
1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(
−a2a3 + aa2 − ab3 + bb2 + b2

)
v41 + (−2aba3 + 2cb2) v31v2

+ bb1v
3
1 +

(
−2aca3 − b2a3 − ba3 − ca2 + cb3

)
v21v

2
2

+ (−ba1 + 2cb1) v21v2 + (−2bca3 − 2ca3) v1v32 − 2ca1v1v22 − c2a3v
4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

bb1 = 0
−2ca1 = 0
−c2a3 = 0

−2bca3 − 2ca3 = 0
−ba1 + 2cb1 = 0

−2aba3 + 2cb2 = 0
−2aca3 − b2a3 − ba3 − ca2 + cb3 = 0

−a2a3 + aa2 − ab3 + bb2 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x2a+ bxy + c y2

x2

)
(x)

= x2a+ bxy + c y2 + xy

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2a+bxy+c y2+xy
x

dy

Which results in

S =
2x arctan

(
bx+2cy+x√

4a x2c−b2x2−2b x2−x2

)
√
4a x2c− b2x2 − 2b x2 − x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2a+ bxy + c y2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2a+ xy (b+ 1) + c y2

Sy =
x

x2a+ xy (b+ 1) + c y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 arctan
(

2cy+bx+x

x
√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

= − ln (x) + c1

Which simplifies to

2 arctan
(

2cy+bx+x

x
√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

= − ln (x) + c1

2438



Which gives

y =
x
(√

4ca− b2 − 2b− 1 tan
(
− ln(x)

√
4ca−b2−2b−1

2 + c1
√
4ca−b2−2b−1

2

)
− b− 1

)
2c

Summary
The solution(s) found are the following

(1)y =
x
(√

4ca− b2 − 2b− 1 tan
(
− ln(x)

√
4ca−b2−2b−1

2 + c1
√
4ca−b2−2b−1

2

)
− b− 1

)
2c

Verification of solutions

y =
x
(√

4ca− b2 − 2b− 1 tan
(
− ln(x)

√
4ca−b2−2b−1

2 + c1
√
4ca−b2−2b−1

2

)
− b− 1

)
2c

Verified OK.

9.22.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x2a+ bxy + c y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −a− by

x
− c y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −a, f1(x) = − b
x
and f2(x) = − c

x2 . Let

y = −u′

f2u

= −u′

− cu
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 =

2c
x3

f1f2 =
bc

x3

f 2
2 f0 = −c2a

x4

Substituting the above terms back in equation (2) gives

−cu′′(x)
x2 −

(
2c
x3 + bc

x3

)
u′(x)− c2au(x)

x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
x− b

2

(
x
√

−4ca+b2+2b+1
2 c1 + x−

√
−4ca+b2+2b+1

2 c2
)

√
x

The above shows that

u′(x) =

−
x− 3

2−
b
2

(
c2
(
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 + x
√

−4ca+b2+2b+1
2 c1

(
b+ 1−

√
−4ca+ b2 + 2b+ 1

))
2

Using the above in (1) gives the solution

y =

−
x− 3

2−
b
2

(
c2
(
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 + x
√

−4ca+b2+2b+1
2 c1

(
b+ 1−

√
−4ca+ b2 + 2b+ 1

))
x

5
2x

b
2

2c
(
x
√

−4ca+b2+2b+1
2 c1 + x−

√
−4ca+b2+2b+1

2 c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

−

((
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 + x
√

−4ca+b2+2b+1
2 c3

(
b+ 1−

√
−4ca+ b2 + 2b+ 1

))
x

2c
(
x
√

−4ca+b2+2b+1
2 c3 + x−

√
−4ca+b2+2b+1

2

)
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Summary
The solution(s) found are the following

(1)y =

−

((
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 + x
√

−4ca+b2+2b+1
2 c3

(
b+ 1−

√
−4ca+ b2 + 2b+ 1

))
x

2c
(
x
√

−4ca+b2+2b+1
2 c3 + x−

√
−4ca+b2+2b+1

2

)
Verification of solutions
y =

−

((
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 + x
√

−4ca+b2+2b+1
2 c3

(
b+ 1−

√
−4ca+ b2 + 2b+ 1

))
x

2c
(
x
√

−4ca+b2+2b+1
2 c3 + x−

√
−4ca+b2+2b+1

2

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve(x^2*diff(y(x),x)+a*x^2+b*x*y(x)+c*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −
x
(√

4ac− b2 − 2b− 1 tan
(√

4ac−b2−2b−1 (ln(x)+c1)
2

)
+ b+ 1

)
2c
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3 Solution by Mathematica
Time used: 60.134 (sec). Leaf size: 66� �
DSolve[x^2 y'[x]+a x^2 +b x y[x]+c y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

x
(
−
√
4ac− b2 − 2b− 1 tan

(1
2

√
4ac− b2 − 2b− 1(− log(x) + c1)

)
+ b+ 1

)
2c
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9.23 problem 263
9.23.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2443

Internal problem ID [3519]
Internal file name [OUTPUT/3012_Sunday_June_05_2022_08_49_34_AM_9278046/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 263.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′x2 − y2x2 = b xn + a

9.23.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= a+ b xn + y2x2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2 + b xn

x2 + a

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = b xn+a
x2 , f1(x) = 0 and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

b xn + a

x2

Substituting the above terms back in equation (2) gives

u′′(x) + (b xn + a)u(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
BesselY

(√
1− 4a
n

,
2
√
b x

n
2

n

)
c2 + BesselJ

(√
1− 4a
n

,
2
√
b x

n
2

n

)
c1

)
√
x

The above shows that

u′(x)

=
−2

√
b
(
BesselY

(√
1−4a+n

n
, 2

√
b x

n
2

n

)
c2 + BesselJ

(√
1−4a+n

n
, 2

√
b x

n
2

n

)
c1
)
x

n
2 +

(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
c2 + BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c1
) (√

1− 4a+ 1
)

2
√
x

Using the above in (1) gives the solution

y =

−
−2

√
b
(
BesselY

(√
1−4a+n

n
, 2

√
b x

n
2

n

)
c2 + BesselJ

(√
1−4a+n

n
, 2

√
b x

n
2

n

)
c1
)
x

n
2 +

(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
c2 + BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c1
) (√

1− 4a+ 1
)

2x
(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
c2 + BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c1
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
2
√
b
(
BesselJ

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

)
c3 + BesselY

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

))
x

n
2 −

(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
+ BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c3
) (√

1− 4a+ 1
)

2x
(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
+ BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c3
)
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Summary
The solution(s) found are the following

(1)y

=
2
√
b
(
BesselJ

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

)
c3 + BesselY

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

))
x

n
2 −

(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
+ BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c3
) (√

1− 4a+ 1
)

2x
(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
+ BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c3
)

Verification of solutions
y

=
2
√
b
(
BesselJ

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

)
c3 + BesselY

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

))
x

n
2 −

(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
+ BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c3
) (√

1− 4a+ 1
)

2x
(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
+ BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

)
c3
)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(x^(n-2)*b*x^2+a)*y(x)/x^2, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 196� �
dsolve(x^2*diff(y(x),x) = a+b*x^n+x^2*y(x)^2,y(x), singsol=all)� �
y(x)

=
2
√
b
(
BesselY

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

)
c1 + BesselJ

(√
1−4a
n

+ 1, 2
√
b x

n
2

n

))
x

n
2 −

(√
1− 4a+ 1

) (
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
c1 + BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

))
2x
(
BesselY

(√
1−4a
n

, 2
√
b x

n
2

n

)
c1 + BesselJ

(√
1−4a
n

, 2
√
b x

n
2

n

))
3 Solution by Mathematica
Time used: 0.976 (sec). Leaf size: 1434� �
DSolve[x^2 y'[x]==a+b x^n + x^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
−n

2
√

(1−4a)n2

n2 +1(xn)
i
√
4a−1
n

+1 BesselJ
(√

(1−4a)n2

n2 − 1, 2
√
b
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9.24 problem 264
9.24.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2448
9.24.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2454
9.24.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2460

Internal problem ID [3520]
Internal file name [OUTPUT/3013_Sunday_June_05_2022_08_49_36_AM_12103233/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 264.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

y′x2 + xy(4 + yx) = −2

9.24.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y2x2 + 4xy + 2
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(y2x2 + 4xy + 2) (b3 − a2)
x2 − (y2x2 + 4xy + 2)2 a3

x4

−
(
−2x y2 + 4y

x2 + 2y2x2 + 8xy + 4
x3

)
(xa2 + ya3 + a1)

+ (2x2y + 4x) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−x4y4a3 + 2x5yb2 + x4y2a2 + x4y2b3 − 8x3y3a3 + 2x4yb1 + 5b2x4 − 24x2y2a3 + 4x3b1 − 4x2ya1 − 2x2a2 − 2x2b3 − 20xya3 − 4xa1 − 4a3
x4

= 0

Setting the numerator to zero gives

(6E)−x4y4a3 + 2x5yb2 + x4y2a2 + x4y2b3 − 8x3y3a3 + 2x4yb1 + 5b2x4

− 24x2y2a3 + 4x3b1 − 4x2ya1 − 2x2a2 − 2x2b3 − 20xya3 − 4xa1 − 4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
4
1v

4
2 + a2v

4
1v

2
2 − 8a3v31v32 + 2b2v51v2 + b3v

4
1v

2
2 + 2b1v41v2 − 24a3v21v22

+ 5b2v41 − 4a1v21v2 + 4b1v31 − 2a2v21 − 20a3v1v2 − 2b3v21 − 4a1v1 − 4a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v51v2 − a3v
4
1v

4
2 + (a2 + b3) v41v22 + 2b1v41v2 + 5b2v41 − 8a3v31v32 + 4b1v31

− 24a3v21v22 − 4a1v21v2 + (−2a2 − 2b3) v21 − 20a3v1v2 − 4a1v1 − 4a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−24a3 = 0
−20a3 = 0
−8a3 = 0
−4a3 = 0
−a3 = 0
2b1 = 0
4b1 = 0
2b2 = 0
5b2 = 0

−2a2 − 2b3 = 0
a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y2x2 + 4xy + 2

x2

)
(−x)

= −y2x2 − 3xy − 2
x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y2x2−3xy−2
x

dy

Which results in

S = − ln (xy + 1) + ln (xy + 2)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2x2 + 4xy + 2
x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(xy + 2) (xy + 1)
Sy = − x

(xy + 2) (xy + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (1 + yx) + ln (yx+ 2) = ln (x) + c1

Which simplifies to

− ln (1 + yx) + ln (yx+ 2) = ln (x) + c1

Which gives

y = − ec1x− 2
x (ec1x− 1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2x2+4xy+2
x2

dS
dR

= 1
R

R = x

S = − ln (xy + 1) + ln (xy + 2)

Summary
The solution(s) found are the following

(1)y = − ec1x− 2
x (ec1x− 1)
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Figure 376: Slope field plot

Verification of solutions

y = − ec1x− 2
x (ec1x− 1)

Verified OK.

9.24.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

2454



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy = (−2− xy(xy + 4)) dx

(2 + xy(xy + 4)) dx+
(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2 + xy(xy + 4)
N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2 + xy(xy + 4))

= 2x2y + 4x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2

((
x(xy + 4) + x2y

)
− (2x)

)
= 2xy + 2

x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2x2 + 4xy + 2
(
(2x)−

(
x(xy + 4) + x2y

))
= − 2x(xy + 1)

y2x2 + 4xy + 2

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2x)− (x(xy + 4) + x2y)
x (2 + xy (xy + 4))− y (x2)

= − 2
xy + 2

Replacing all powers of terms xy by t gives

R = − 2
t+ 2

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t+2

)
dt
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The result of integrating gives

µ = e−2 ln(t+2)

= 1
(t+ 2)2

Now t is replaced back with xy giving

µ = 1
(xy + 2)2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy + 2)2

(2 + xy(xy + 4))

= y2x2 + 4xy + 2
(xy + 2)2

And

N = µN

= 1
(xy + 2)2

(
x2)

= x2

(xy + 2)2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y2x2 + 4xy + 2
(xy + 2)2

)
+
(

x2

(xy + 2)2
)

dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2x2 + 4xy + 2

(xy + 2)2
dx

(3)φ = x+ 2
y (xy + 2) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 2

y2 (xy + 2) −
2x

y (xy + 2)2
+ f ′(y)

= −4xy − 4
y2 (xy + 2)2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2

(xy+2)2 . Therefore equation (4) becomes

(5)x2

(xy + 2)2
= −4xy − 4

y2 (xy + 2)2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x+ 2
y (xy + 2) −

1
y
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x+ 2
y (xy + 2) −

1
y

The solution becomes

y = − 2c1 − x

(−x+ c1)x

Summary
The solution(s) found are the following

(1)y = − 2c1 − x

(−x+ c1)x

Figure 377: Slope field plot

Verification of solutions

y = − 2c1 − x

(−x+ c1)x

Verified OK.
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9.24.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2x2 + 4xy + 2
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 − 4y
x

− 2
x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 2
x2 , f1(x) = − 4

x
and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
4
x

f 2
2 f0 = − 2

x2

Substituting the above terms back in equation (2) gives

−u′′(x)− 4u′(x)
x

− 2u(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x+ c1
x2
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The above shows that

u′(x) = −c2x− 2c1
x3

Using the above in (1) gives the solution

y = −c2x− 2c1
x (c2x+ c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −2c3 − x

x (x+ c3)

Summary
The solution(s) found are the following

(1)y = −2c3 − x

x (x+ c3)

Figure 378: Slope field plot
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Verification of solutions

y = −2c3 − x

x (x+ c3)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x)+2+x*y(x)*(4+x*y(x)) = 0,y(x), singsol=all)� �

y(x) = −2c1 + x

(c1 − x)x

3 Solution by Mathematica
Time used: 0.16 (sec). Leaf size: 26� �
DSolve[x^2 y'[x]+2 + x y[x](4+x y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
x
+ 1

x+ c1

y(x) → −2
x
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9.25 problem 265
9.25.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2463

Internal problem ID [3521]
Internal file name [OUTPUT/3014_Sunday_June_05_2022_08_49_38_AM_16724665/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 265.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′x2 + ax(−yx+ 1)− y2x2 = −2

9.25.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= a x2y + y2x2 − ax− 2
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = ya+ y2 − a

x
− 2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −ax−2
x2 , f1(x) = a and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = a

f 2
2 f0 =

−ax− 2
x2

Substituting the above terms back in equation (2) gives

u′′(x)− au′(x) + (−ax− 2)u(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = (a2x2 − 2ax+ 2) eaxc1 + c2
x

The above shows that

u′(x) = c1(ax− 1) (a2x2 + 2) eax − c2
x2

Using the above in (1) gives the solution

y = − c1(ax− 1) (a2x2 + 2) eax − c2
x ((a2x2 − 2ax+ 2) eaxc1 + c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −c3(ax− 1) (a2x2 + 2) eax + 1
x ((a2x2 − 2ax+ 2) eaxc3 + 1)

Summary
The solution(s) found are the following

(1)y = −c3(ax− 1) (a2x2 + 2) eax + 1
x ((a2x2 − 2ax+ 2) eaxc3 + 1)
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Verification of solutions

y = −c3(ax− 1) (a2x2 + 2) eax + 1
x ((a2x2 − 2ax+ 2) eaxc3 + 1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = a*(diff(y(x), x))+(a*x+2)*y(x)/x^2, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- Riccati to 2nd Order successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 52� �
dsolve(x^2*diff(y(x),x)+2+a*x*(1-x*y(x))-x^2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −(ax− 1) (x2a2 + 2) eax + c1
x ((x2a2 − 2ax+ 2) eax + c1)
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3 Solution by Mathematica
Time used: 0.366 (sec). Leaf size: 78� �
DSolve[x^2 y'[x]+2+a x(1-x y[x])-x^2 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → eax(−a3x3 + a2x2 − 2ax+ 2) + a3c1
x (eax (a2x2 − 2ax+ 2) + a3c1)

y(x) → 1
x
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9.26 problem 266
9.26.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2467
9.26.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2472
9.26.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2477

Internal problem ID [3522]
Internal file name [OUTPUT/3015_Sunday_June_05_2022_08_49_39_AM_64970863/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 9
Problem number: 266.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Riccati , _special ]]

y′x2 − b x2y2 = a

9.26.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = b x2y2 + a

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

2467



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(b x2y2 + a) (b3 − a2)

x2 − (b x2y2 + a)2 a3
x4

−
(
2b y2
x

− 2(b x2y2 + a)
x3

)
(xa2 + ya3 + a1)− 2by(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−b2x4y4a3 + 2b x5yb2 + b x4y2a2 + b x4y2b3 + 2ab x2y2a3 + 2b x4yb1 − b2x
4 − a x2a2 − a x2b3 − 2axya3 + a2a3 − 2axa1

x4

= 0

Setting the numerator to zero gives

(6E)−b2x4y4a3 − 2b x5yb2 − b x4y2a2 − b x4y2b3 − 2ab x2y2a3 − 2b x4yb1
+ b2x

4 + a x2a2 + a x2b3 + 2axya3 − a2a3 + 2axa1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−b2a3v
4
1v

4
2 − ba2v

4
1v

2
2 − 2bb2v51v2 − bb3v

4
1v

2
2 − 2aba3v21v22 − 2bb1v41v2

+ b2v
4
1 + aa2v

2
1 + 2aa3v1v2 + ab3v

2
1 − a2a3 + 2aa1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−2bb2v51v2 − b2a3v
4
1v

4
2 + (−ba2 − bb3) v41v22 − 2bb1v41v2 + b2v

4
1

− 2aba3v21v22 + (aa2 + ab3) v21 + 2aa3v1v2 + 2aa1v1 − a2a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve
b2 = 0

2aa1 = 0
2aa3 = 0

−a2a3 = 0
−2bb1 = 0
−2bb2 = 0
−b2a3 = 0

−2aba3 = 0
aa2 + ab3 = 0

−ba2 − bb3 = 0
Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation
η = η − ω(x, y) ξ

= y −
(
b x2y2 + a

x2

)
(−x)

= b x2y2 + xy + a

x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

b x2y2+xy+a
x

dy

Which results in

S =
2x arctan

(
2b x2y+x√
4ab x2−x2

)
√
4ab x2 − x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b x2y2 + a

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

b x2y2 + xy + a

Sy =
x

b x2y2 + xy + a
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 arctan
(

2bxy+1√
4ab−1

)
√
4ab− 1

= ln (x) + c1

Which simplifies to

2 arctan
(

2bxy+1√
4ab−1

)
√
4ab− 1

= ln (x) + c1

Which gives

y =
tan

(
ln(x)

√
4ab−1
2 + c1

√
4ab−1
2

)√
4ab− 1− 1

2bx
Summary
The solution(s) found are the following

(1)y =
tan

(
ln(x)

√
4ab−1
2 + c1

√
4ab−1
2

)√
4ab− 1− 1

2bx
Verification of solutions

y =
tan

(
ln(x)

√
4ab−1
2 + c1

√
4ab−1
2

)√
4ab− 1− 1

2bx

Verified OK.
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9.26.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
b x2y2 + a

)
dx(

−b x2y2 − a
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −b x2y2 − a

N(x, y) = x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−b x2y2 − a

)
= −2b x2y

And

∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2

((
−2b x2y

)
− (2x)

)
= −2bxy − 2

x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

b x2y2 + a

(
(2x)−

(
−2b x2y

))
= −2x(bxy + 1)

b x2y2 + a

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2x)− (−2b x2y)
x (−b x2y2 − a)− y (x2)

= −2bxy − 2
b x2y2 + xy + a

Replacing all powers of terms xy by t gives

R = −2bt− 2
b t2 + a+ t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( −2bt−2

b t2+a+t

)
dt

The result of integrating gives

µ = e
− ln

(
b t2+a+t

)
−

2 arctan
(

2bt+1√
4ab−1

)
√
4ab−1

= e−
2 arctan

(
2bt+1√
4ab−1

)
√
4ab−1

b t2 + a+ t

Now t is replaced back with xy giving

µ = e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a

(
−b x2y2 − a

)
= (−b x2y2 − a) e−

2 arctan
(

2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a
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And

N = µN

= e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a

(
x2)

= x2e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(−b x2y2 − a) e−

2 arctan
(

2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a

+

x2e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a

 dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ (−b x2y2 − a) e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a
dx

(3)φ = −e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1 x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4b x2e−

2 arctan
(

2bxy+1√
4ab−1

)
√
4ab−1

(4ab− 1)
(

(2bxy+1)2
4ab−1 + 1

) + f ′(y)
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= x2e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2e
−

2 arctan
(

2bxy+1√
4ab−1

)
√
4ab−1

b x2y2+xy+a
. Therefore equation (4) becomes

(5)x2e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a
= x2e−

2 arctan
(

2bxy+1√
4ab−1

)
√
4ab−1

b x2y2 + xy + a
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1 x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e−
2 arctan

(
2bxy+1√
4ab−1

)
√
4ab−1 x

The solution becomes

y = −
tan

(
ln
(
− c1

x

)√
4ab−1

2

)√
4ab− 1 + 1

2bx

Summary
The solution(s) found are the following

(1)y = −
tan

(
ln
(
− c1

x

)√
4ab−1

2

)√
4ab− 1 + 1

2bx
Verification of solutions

y = −
tan

(
ln
(
− c1

x

)√
4ab−1

2

)√
4ab− 1 + 1

2bx

Verified OK.
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9.26.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b x2y2 + a

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2 + a

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
x2 , f1(x) = 0 and f2(x) = b. Let

y = −u′

f2u

= −u′

bu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

b2a

x2

Substituting the above terms back in equation (2) gives

bu′′(x) + b2au(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
√
x
(
c1x

√
−4ab+1

2 + c2x
−

√
−4ab+1

2

)
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The above shows that

u′(x) =
−c2

(
−1 +

√
−4ab+ 1

)
x−

√
−4ab+1

2 + c1x
√
−4ab+1

2
(
1 +

√
−4ab+ 1

)
2
√
x

Using the above in (1) gives the solution

y = −
−c2

(
−1 +

√
−4ab+ 1

)
x−

√
−4ab+1

2 + c1x
√
−4ab+1

2
(
1 +

√
−4ab+ 1

)
2xb

(
c1x

√
−4ab+1

2 + c2x
−

√
−4ab+1

2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(
−1 +

√
−4ab+ 1

)
x−

√
−4ab+1

2 − c3x
√
−4ab+1

2
(
1 +

√
−4ab+ 1

)
2xb

(
c3x

√
−4ab+1

2 + x−
√
−4ab+1

2

)
Summary
The solution(s) found are the following

(1)y =
(
−1 +

√
−4ab+ 1

)
x−

√
−4ab+1

2 − c3x
√
−4ab+1

2
(
1 +

√
−4ab+ 1

)
2xb

(
c3x

√
−4ab+1

2 + x−
√
−4ab+1

2

)
Verification of solutions

y =
(
−1 +

√
−4ab+ 1

)
x−

√
−4ab+1

2 − c3x
√
−4ab+1

2
(
1 +

√
−4ab+ 1

)
2xb

(
c3x

√
−4ab+1

2 + x−
√
−4ab+1

2

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 40� �
dsolve(x^2*diff(y(x),x) = a+b*x^2*y(x)^2,y(x), singsol=all)� �

y(x) =
−1 + tan

(√
4ab−1 (ln(x)−c1)

2

)√
4ab− 1

2bx

3 Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 77� �
DSolve[x^2 y'[x]==a+b x^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−1 +

√
1− 4ab

(
−1 + 2c1

x
√
1−4ab+c1

)
2bx

y(x) →
√
1− 4ab− 1

2bx
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10.1 problem 267
10.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2481

Internal problem ID [3523]
Internal file name [OUTPUT/3016_Sunday_June_05_2022_08_49_41_AM_57847417/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 267.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′x2 − y2c x2 = b xn + a

10.1.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= a+ b xn + y2c x2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = c y2 + b xn

x2 + a

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = b xn+a
x2 , f1(x) = 0 and f2(x) = c. Let

y = −u′

f2u

= −u′

cu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

c2(b xn + a)
x2

Substituting the above terms back in equation (2) gives

cu′′(x) + c2(b xn + a)u(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x)=
(
BesselY

(√
−4ca+ 1

n
,
2
√
cb x

n
2

n

)
c2+BesselJ

(√
−4ca+ 1

n
,
2
√
cb x

n
2

n

)
c1

)
√
x

The above shows that

u′(x)

=
−2

√
cb
(
BesselY

(√
−4ca+1+n

n
, 2

√
cb x

n
2

n

)
c2 + BesselJ

(√
−4ca+1+n

n
, 2

√
cb x

n
2

n

)
c1
)
x

n
2 +

(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c2 + BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c1
) (√

−4ca+ 1 + 1
)

2
√
x

Using the above in (1) gives the solution

y =

−
−2

√
cb
(
BesselY

(√
−4ca+1+n

n
, 2

√
cb x

n
2

n

)
c2 + BesselJ

(√
−4ca+1+n

n
, 2

√
cb x

n
2

n

)
c1
)
x

n
2 +

(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c2 + BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c1
) (√

−4ca+ 1 + 1
)

2xc
(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c2 + BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c1
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
2
(
BesselJ

(√
−4ca+1

n
+ 1, 2

√
cb x

n
2

n

)
c3 + BesselY

(√
−4ca+1

n
+ 1, 2

√
cb x

n
2

n

))√
cb x

n
2 −

(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
+ BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c3
) (√

−4ca+ 1 + 1
)

2xc
(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
+ BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c3
)
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Summary
The solution(s) found are the following

(1)y

=
2
(
BesselJ

(√
−4ca+1

n
+ 1, 2

√
cb x

n
2

n

)
c3 + BesselY

(√
−4ca+1

n
+ 1, 2

√
cb x

n
2

n

))√
cb x

n
2 −

(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
+ BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c3
) (√

−4ca+ 1 + 1
)

2xc
(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
+ BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c3
)

Verification of solutions
y

=
2
(
BesselJ

(√
−4ca+1

n
+ 1, 2

√
cb x

n
2

n

)
c3 + BesselY

(√
−4ca+1

n
+ 1, 2

√
cb x

n
2

n

))√
cb x

n
2 −

(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
+ BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c3
) (√

−4ca+ 1 + 1
)

2xc
(
BesselY

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
+ BesselJ

(√
−4ca+1

n
, 2

√
cb x

n
2

n

)
c3
)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -c*(x^(n-2)*b*x^2+a)*y(x)/x^2, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �

2484



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 220� �
dsolve(x^2*diff(y(x),x) = a+b*x^n+c*x^2*y(x)^2,y(x), singsol=all)� �
y(x)

=
2
(
BesselY

(√
−4ac+1

n
+ 1, 2

√
bc x

n
2

n

)
c1 + BesselJ

(√
−4ac+1

n
+ 1, 2

√
bc x

n
2

n

))√
bc x

n
2 −

(√
−4ac+ 1 + 1

) (
BesselY

(√
−4ac+1

n
, 2

√
bc x

n
2

n

)
c1 + BesselJ

(√
−4ac+1

n
, 2

√
bc x

n
2

n

))
2xc

(
BesselY

(√
−4ac+1

n
, 2

√
bc x

n
2

n

)
c1 + BesselJ

(√
−4ac+1

n
, 2

√
bc x

n
2

n

))
3 Solution by Mathematica
Time used: 1.136 (sec). Leaf size: 1779� �
DSolve[x^2 y'[x]==a+b x^n+c x^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
−b

i
√
4ac−1
n

+ 1
2n

2
√

(1−4ac)n2

n2 +1(xn)
i
√
4ac−1
n

+1 BesselJ
(√

(1−4ac)n2

n2 − 1, 2
√
b
√
c
√
xn

n

)
Gamma

(
n+

√
1−4ac
n

)
c

i
√
4ac−1
n

+ 1
2 + b

i
√
4ac−1
n

+ 1
2n

2
√

(1−4ac)n2

n2 +1(xn)
i
√
4ac−1
n

+1 BesselJ
(√

(1−4ac)n2

n2 + 1, 2
√
b
√
c
√
xn

n

)
Gamma

(
n+

√
1−4ac
n

)
c

i
√
4ac−1
n

+ 1
2 − b

i
√

4ac−1
n n

2
√

(1−4ac)n2

n2 +1(xn)
i
√
4ac−1
n

+ 1
2 BesselJ

(√
(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
Gamma

(
n+

√
1−4ac
n

)
c

i
√

4ac−1
n − ib

i
√
4ac−1
n

√
4ac− 1n

2
√

(1−4ac)n2

n2 +1(xn)
i
√
4ac−1
n

+ 1
2 BesselJ

(√
(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
Gamma

(
n+

√
1−4ac
n

)
c

i
√
4ac−1
n + b

i
√
4ac−1
n n

2
√

(1−4ac)n2

n2
√

(1− 4ac)n2(xn)
i
√

4ac−1
n

+ 1
2 BesselJ

(√
(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
Gamma

(
n+

√
1−4ac
n

)
c

i
√

4ac−1
n − b

√
(1−4ac)n2

n2 n
2i

√
4ac−1
n

(
−i

√
4ac− 1n+ n+

√
(1− 4ac)n2

)
(xn)

√
(1−4ac)n2

n2 + 1
2 BesselJ

(
−
√

(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
c1Gamma

(
1−

√
1−4ac
n

)
c

√
(1−4ac)n2

n2 − b

√
(1−4ac)n2

n2 + 1
2n

2i
√
4ac−1
n

+1(xn)
√

(1−4ac)n2

n2 +1 BesselJ
(
−
√

(1−4ac)n2

n2 − 1, 2
√
b
√
c
√
xn

n

)
c1Gamma

(
1−

√
1−4ac
n

)
c

√
(1−4ac)n2

n2 + 1
2 + b

√
(1−4ac)n2

n2 + 1
2n

2i
√
4ac−1
n

+1(xn)
√

(1−4ac)n2

n2 +1 BesselJ
(
1−

√
(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
c1Gamma

(
1−

√
1−4ac
n

)
c

√
(1−4ac)n2

n2 + 1
2

2cnx
√
xn

(
b

i
√
4ac−1
n c

i
√

4ac−1
n n

2
√

(1−4ac)n2

n2 BesselJ
(√

(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
Gamma

(
n+

√
1−4ac
n

)
(xn)

i
√
4ac−1
n + b

√
(1−4ac)n2

n2 c

√
(1−4ac)n2

n2 n
2i

√
4ac−1
n BesselJ

(
−
√

(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
c1Gamma

(
1−

√
1−4ac
n

)
(xn)

√
(1−4ac)n2

n2

)
y(x)

→

√
b
√
c
√
xn

(
BesselJ

(
1−

√
(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

)
−BesselJ

(
−
√

(1−4ac)n2

n2 −1, 2
√
b
√
c
√
xn

n

))

BesselJ
(
−
√

(1−4ac)n2

n2 , 2
√
b
√
c
√
xn

n

) −
√

n2(1−4ac)
n

+ i
√
4ac− 1− 1

2cx
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10.2 problem 268
10.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2486
10.2.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2491
10.2.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2496

Internal problem ID [3524]
Internal file name [OUTPUT/3017_Sunday_June_05_2022_08_49_43_AM_83722216/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 268.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

y′x2 − bxy − y2c x2 = a

10.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2c x2 + bxy + a

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(y2c x2 + bxy + a) (b3 − a2)
x2 − (y2c x2 + bxy + a)2 a3

x4

−
(
2x y2c+ by

x2 − 2(y2c x2 + bxy + a)
x3

)
(xa2 + ya3 + a1)

− (2yc x2 + bx) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−c2x4y4a3 + 2bc x3y3a3 + 2c x5yb2 + c x4y2a2 + c x4y2b3 + 2ac x2y2a3 + b2x2y2a3 + 2c x4yb1 + b x4b2 − b x2y2a3 + 2abxya3 + b x3b1 − b x2ya1 − b2x
4 − a x2a2 − a x2b3 − 2axya3 + a2a3 − 2axa1

x4

= 0

Setting the numerator to zero gives

(6E)−c2x4y4a3 − 2bc x3y3a3 − 2c x5yb2 − c x4y2a2 − c x4y2b3 − 2ac x2y2a3
− b2x2y2a3 − 2c x4yb1 − b x4b2 + b x2y2a3 − 2abxya3 − b x3b1
+ b x2ya1 + b2x

4 + a x2a2 + a x2b3 + 2axya3 − a2a3 + 2axa1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−c2a3v
4
1v

4
2 − 2bca3v31v32 − ca2v

4
1v

2
2 − 2cb2v51v2 − cb3v

4
1v

2
2 − 2aca3v21v22

− b2a3v
2
1v

2
2 − 2cb1v41v2 + ba3v

2
1v

2
2 − bb2v

4
1 − 2aba3v1v2 + ba1v

2
1v2

− bb1v
3
1 + b2v

4
1 + aa2v

2
1 + 2aa3v1v2 + ab3v

2
1 − a2a3 + 2aa1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−2cb2v51v2 − c2a3v
4
1v

4
2 + (−ca2 − cb3) v41v22 − 2cb1v41v2 + (−bb2 + b2) v41

− 2bca3v31v32 − bb1v
3
1 +

(
−2aca3 − b2a3 + ba3

)
v21v

2
2 + ba1v

2
1v2

+ (aa2 + ab3) v21 + (−2aba3 + 2aa3) v1v2 + 2aa1v1 − a2a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

ba1 = 0
2aa1 = 0

−a2a3 = 0
−bb1 = 0
−2cb1 = 0
−2cb2 = 0
−c2a3 = 0

−2bca3 = 0
−bb2 + b2 = 0

−2aba3 + 2aa3 = 0
aa2 + ab3 = 0

−ca2 − cb3 = 0
−2aca3 − b2a3 + ba3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y2c x2 + bxy + a

x2

)
(−x)

= y2c x2 + bxy + xy + a

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2c x2+bxy+xy+a
x

dy

Which results in

S =
2x arctan

(
2yc x2+bx+x√

4a x2c−b2x2−2b x2−x2

)
√
4a x2c− b2x2 − 2b x2 − x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2c x2 + bxy + a

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

y2c x2 + xy (b+ 1) + a

Sy =
x

y2c x2 + xy (b+ 1) + a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 arctan
(

2ycx+b+1√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

= ln (x) + c1

Which simplifies to

2 arctan
(

2ycx+b+1√
4ca−b2−2b−1

)
√
4ca− b2 − 2b− 1

= ln (x) + c1
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Which gives

y =
tan

(
ln(x)

√
4ca−b2−2b−1

2 + c1
√
4ca−b2−2b−1

2

)√
4ca− b2 − 2b− 1− b− 1

2cx
Summary
The solution(s) found are the following

(1)y =
tan

(
ln(x)

√
4ca−b2−2b−1

2 + c1
√
4ca−b2−2b−1

2

)√
4ca− b2 − 2b− 1− b− 1

2cx
Verification of solutions

y =
tan

(
ln(x)

√
4ca−b2−2b−1

2 + c1
√
4ca−b2−2b−1

2

)√
4ca− b2 − 2b− 1− b− 1

2cx

Verified OK.

10.2.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
y2c x2 + bxy + a

)
dx(

−y2c x2 − bxy − a
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2c x2 − bxy − a

N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y2c x2 − bxy − a

)
= −2yc x2 − bx

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2

((
−2yc x2 − bx

)
− (2x)

)
= −2cxy − b− 2

x
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y2c x2 + bxy + a

(
(2x)−

(
−2yc x2 − bx

))
= − x(2cxy + b+ 2)

y2c x2 + bxy + a

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2x)− (−2yc x2 − bx)
x (−y2c x2 − bxy − a)− y (x2)

= −2cxy − b− 2
y2c x2 + xy (b+ 1) + a

Replacing all powers of terms xy by t gives

R = −2ct− b− 2
c t2 + t (b+ 1) + a

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( −2ct−b−2

c t2+t(b+1)+a

)
dt

The result of integrating gives

µ = e
− ln

(
c t2+tb+a+t

)
−

2 arctan
(

2ct+b+1√
4ca−b2−2b−1

)
√

4ca−b2−2b−1

= e−
2 arctan

(
2ct+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

c t2 + tb+ a+ t
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Now t is replaced back with xy giving

µ = e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + bxy + xy + a

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + bxy + xy + a

(
−y2c x2 − bxy − a

)

= −(y2c x2 + bxy + a) e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a

And

N = µN

= e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + bxy + xy + a

(
x2)

= x2e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0−(y2c x2 + bxy + a) e−

2 arctan
(

2cxy+b+1√
4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a

+

x2e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a

 dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−(y2c x2 + bxy + a) e−

2 arctan
(

2cxy+b+1√
4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a
dx

(3)φ = −e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1 x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4c x2e−

2 arctan
(

2cxy+b+1√
4ca−b2−2b−1

)
√

4ca−b2−2b−1

(4ca− b2 − 2b− 1)
(

(2cxy+b+1)2
4ca−b2−2b−1 + 1

) + f ′(y)

= x2e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2e
−

2 arctan
(

2cxy+b+1√
4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2+xy(b+1)+a
. Therefore equation (4) becomes

(5)x2e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a
= x2e−

2 arctan
(

2cxy+b+1√
4ca−b2−2b−1

)
√

4ca−b2−2b−1

y2c x2 + xy (b+ 1) + a
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1 x+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e−
2 arctan

(
2cxy+b+1√

4ca−b2−2b−1

)
√

4ca−b2−2b−1 x

The solution becomes

y = −
tan

(
ln
(
− c1

x

)√
4ca−b2−2b−1
2

)√
4ca− b2 − 2b− 1 + b+ 1

2cx

Summary
The solution(s) found are the following

(1)y = −
tan

(
ln
(
− c1

x

)√
4ca−b2−2b−1
2

)√
4ca− b2 − 2b− 1 + b+ 1

2cx
Verification of solutions

y = −
tan

(
ln
(
− c1

x

)√
4ca−b2−2b−1
2

)√
4ca− b2 − 2b− 1 + b+ 1

2cx

Verified OK.

10.2.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2c x2 + bxy + a

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = c y2 + by

x
+ a

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
x2 , f1(x) = b

x
and f2(x) = c. Let

y = −u′

f2u

= −u′

cu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
bc

x

f 2
2 f0 =

c2a

x2

Substituting the above terms back in equation (2) gives

cu′′(x)− bcu′(x)
x

+ c2au(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x
b
2
√
x
(
x
√

−4ca+b2+2b+1
2 c1 + x−

√
−4ca+b2+2b+1

2 c2
)

The above shows that

u′(x)

=
x

b
2

(
c2
(
b+ 1−

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 + x
√

−4ca+b2+2b+1
2 c1

(
b+ 1 +

√
−4ca+ b2 + 2b+ 1

))
2
√
x

Using the above in (1) gives the solution

y =

−
c2
(
b+ 1−

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 + x
√

−4ca+b2+2b+1
2 c1

(
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
2xc

(
x
√

−4ca+b2+2b+1
2 c1 + x−

√
−4ca+b2+2b+1

2 c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
(
−b− 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 − x
√

−4ca+b2+2b+1
2 c3

(
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
2xc

(
x
√

−4ca+b2+2b+1
2 c3 + x−

√
−4ca+b2+2b+1

2

)
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Summary
The solution(s) found are the following

(1)y

=
(
−b− 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 − x
√

−4ca+b2+2b+1
2 c3

(
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
2xc

(
x
√

−4ca+b2+2b+1
2 c3 + x−

√
−4ca+b2+2b+1

2

)
Verification of solutions
y

=
(
−b− 1 +

√
−4ca+ b2 + 2b+ 1

)
x−

√
−4ca+b2+2b+1

2 − x
√

−4ca+b2+2b+1
2 c3

(
b+ 1 +

√
−4ca+ b2 + 2b+ 1

)
2xc

(
x
√

−4ca+b2+2b+1
2 c3 + x−

√
−4ca+b2+2b+1

2

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve(x^2*diff(y(x),x) = a+b*x*y(x)+c*x^2*y(x)^2,y(x), singsol=all)� �

y(x) =
−1− b+ tan

(√
4ac−b2−2b−1 (ln(x)−c1)

2

)√
4ac− b2 − 2b− 1

2cx
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3 Solution by Mathematica
Time used: 0.272 (sec). Leaf size: 99� �
DSolve[x^2 y'[x]==a+b x y[x]+c x^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−4ac+ b2 + 2b+ 1

(
1− 2c1

x
√

−4ac+b2+2b+1+c1

)
+ b+ 1

2cx

y(x) → −−
√
−4ac+ b2 + 2b+ 1 + b+ 1

2cx
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10.3 problem 269
10.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2500

Internal problem ID [3525]
Internal file name [OUTPUT/3018_Sunday_June_05_2022_08_49_45_AM_9252279/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 269.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′x2 − bxy − c x4y2 = a

10.3.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= c x4y2 + bxy + a

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2c x2 + by

x
+ a

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a
x2 , f1(x) = b

x
and f2(x) = c x2. Let

y = −u′

f2u

= −u′

c x2u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 2cx

f1f2 = bcx

f 2
2 f0 = c2x2a

Substituting the above terms back in equation (2) gives

c x2u′′(x)− (bcx+ 2cx)u′(x) + c2x2au(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =

−
(
x
√
ca
(
BesselJ

(1
2 −

b
2 ,
√
ca x

)
c1 + BesselY

(1
2 −

b
2 ,
√
ca x

)
c2
)
+
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
c2 + BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c1
)
(b+ 1)

)
x

b
2+

1
2

√
ca

The above shows that

u′(x) =
ac x

b
2+

3
2
(
−BesselY

(
−1

2 −
b
2 ,
√
ca x

)
c2 − BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c1
)

√
ca

Using the above in (1) gives the solution

y

=
a x

b
2+

3
2
(
−BesselY

(
−1

2 −
b
2 ,
√
ca x

)
c2 − BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c1
)
x− 1

2−
b
2

x2
(
x
√
ca
(
BesselJ

(1
2 −

b
2 ,
√
ca x

)
c1 + BesselY

(1
2 −

b
2 ,
√
ca x

)
c2
)
+
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
c2 + BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c1
)
(b+ 1)

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

−
a
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
+ BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c3
)(

x
√
ca
(
BesselJ

(1
2 −

b
2 ,
√
ca x

)
c3 + BesselY

(1
2 −

b
2 ,
√
ca x

))
+
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
+ BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c3
)
(b+ 1)

)
x
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Summary
The solution(s) found are the following

(1)y =

−
a
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
+ BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c3
)(

x
√
ca
(
BesselJ

(1
2 −

b
2 ,
√
ca x

)
c3 + BesselY

(1
2 −

b
2 ,
√
ca x

))
+
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
+ BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c3
)
(b+ 1)

)
x

Verification of solutions
y =

−
a
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
+ BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c3
)(

x
√
ca
(
BesselJ

(1
2 −

b
2 ,
√
ca x

)
c3 + BesselY

(1
2 −

b
2 ,
√
ca x

))
+
(
BesselY

(
−1

2 −
b
2 ,
√
ca x

)
+ BesselJ

(
−1

2 −
b
2 ,
√
ca x

)
c3
)
(b+ 1)

)
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (2+b)*(diff(y(x), x))/x-y(x)*a*c, y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 111� �
dsolve(x^2*diff(y(x),x) = a+b*x*y(x)+c*x^4*y(x)^2,y(x), singsol=all)� �
y(x) =

−
a
(
BesselY

(
−1

2 −
b
2 , x

√
ac
)
c1 + BesselJ

(
−1

2 −
b
2 , x

√
ac
))

x
(
x
√
ac
(
c1 BesselY

(1
2 −

b
2 , x

√
ac
)
+ BesselJ

(1
2 −

b
2 , x

√
ac
))

+ (b+ 1)
(
BesselY

(
−1

2 −
b
2 , x

√
ac
)
c1 + BesselJ

(
−1

2 −
b
2 , x

√
ac
)))

3 Solution by Mathematica
Time used: 0.387 (sec). Leaf size: 394� �
DSolve[x^2 y'[x]==a+b x y[x]+c x^4 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−
√
a
√
cxBesselY

(
b+1
2 ,

√
a
√
cx
)
+ (b+ 3)BesselY

(
b+3
2 ,

√
a
√
cx
)
−

√
a
√
cxBesselY

(
b+5
2 ,

√
a
√
cx
)
+
√
a
√
cc1xBesselJ

(
b+1
2 ,

√
a
√
cx
)
+ bc1 BesselJ

(
b+3
2 ,

√
a
√
cx
)
+ 3c1 BesselJ

(
b+3
2 ,

√
a
√
cx
)
−
√
a
√
cc1xBesselJ

(
b+5
2 ,

√
a
√
cx
)

2cx3
(
BesselY

(
b+3
2 ,

√
a
√
cx
)
+ c1 BesselJ

(
b+3
2 ,

√
a
√
cx
))

y(x) →

−
√
a
√
cxBesselJ

(
b+1
2 ,

√
a
√
cx
)
+ (b+ 3)BesselJ

(
b+3
2 ,

√
a
√
cx
)
−
√
a
√
cxBesselJ

(
b+5
2 ,

√
a
√
cx
)

2cx3 BesselJ
(
b+3
2 ,

√
a
√
cx
)
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10.4 problem 270
10.4.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2505
10.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2507
10.4.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2511

Internal problem ID [3526]
Internal file name [OUTPUT/3019_Sunday_June_05_2022_08_49_46_AM_38821042/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 270.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

y′x2 +
(
x2 + y2 − x

)
y = 0

10.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 +
(
x2 + u(x)2 x2 − x

)
u(x)x = 0

Integrating both sides gives ∫
− 1
u (u2 + 1)du =

∫
dx

ln (u2 + 1)
2 − ln (u) = x+ c2

Raising both side to exponential gives

e
ln
(
u2+1

)
2 −ln(u) = ex+c2

Which simplifies to
√
u2 + 1
u

= c3ex
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Therefore the solution y is

y = xu

= x√
c23e2x − 1

Summary
The solution(s) found are the following

(1)y = x√
c23e2x − 1

Figure 379: Slope field plot

Verification of solutions

y = x√
c23e2x − 1

Verified OK.
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10.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(x2 + y2 − x) y
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 443: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

2507



The above table shows that

ξ(x, y) = 0
η(x, y) = y3e2x−2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3e2x−2 ln(x)dy

Which results in

S = −e−2xx2

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(x2 + y2 − x) y
x2

2508



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e−2xx(x− 1)
y2

Sy =
e−2xx2

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −e−2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −e−2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e−2R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−e−2xx2

2y2 = e−2x

2 + c1

Which simplifies to

−e−2xx2

2y2 = e−2x

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
x2+y2−x

)
y

x2
dS
dR

= −e−2R

R = x

S = −e−2xx2

2y2

Summary
The solution(s) found are the following

(1)−e−2xx2

2y2 = e−2x

2 + c1
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Figure 380: Slope field plot

Verification of solutions

−e−2xx2

2y2 = e−2x

2 + c1

Verified OK.

10.4.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −(x2 + y2 − x) y
x2

This is a Bernoulli ODE.
y′ = −x2 − x

x2 y − 1
x2y

3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

2511



The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −x2 − x

x2

f1(x) = − 1
x2

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= −x2 − x

x2y2
− 1

x2 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −(x2 − x)w(x)

x2 − 1
x2

w′ = 2(x2 − x)w
x2 + 2

x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2x− 2
x

q(x) = 2
x2
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Hence the ode is

w′(x)− (2x− 2)w(x)
x

= 2
x2

The integrating factor µ is

µ = e
∫
− 2x−2

x
dx

= e−2x+2 ln(x)

Which simplifies to
µ = e−2xx2

The ode becomes

d
dx(µw) = (µ)

(
2
x2

)
d
dx
(
e−2xx2w

)
=
(
e−2xx2)( 2

x2

)
d
(
e−2xx2w

)
=
(
2 e−2x) dx

Integrating gives

e−2xx2w =
∫

2 e−2x dx

e−2xx2w = −e−2x + c1

Dividing both sides by the integrating factor µ = e−2xx2 results in

w(x) = −e2xe−2x

x2 + c1e2x
x2

which simplifies to

w(x) = e2xc1 − 1
x2

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= e2xc1 − 1
x2
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Solving for y gives

y(x) = x√
e2xc1 − 1

y(x) = − x√
e2xc1 − 1

Summary
The solution(s) found are the following

(1)y = x√
e2xc1 − 1

(2)y = − x√
e2xc1 − 1

Figure 381: Slope field plot
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Verification of solutions

y = x√
e2xc1 − 1

Verified OK.

y = − x√
e2xc1 − 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
dsolve(x^2*diff(y(x),x)+(x^2+y(x)^2-x)*y(x) = 0,y(x), singsol=all)� �

y(x) = x√
c1e2x − 1

y(x) = − x√
c1e2x − 1

3 Solution by Mathematica
Time used: 4.843 (sec). Leaf size: 47� �
DSolve[x^2 y'[x]+(x^2+y[x]^2-x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x√
−1 + c1e2x

y(x) → x√
−1 + c1e2x

y(x) → 0
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10.5 problem 271
10.5.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2516
10.5.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2520

Internal problem ID [3527]
Internal file name [OUTPUT/3020_Sunday_June_05_2022_08_49_48_AM_41452453/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 271.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′x2 − 2y
(
x− y2

)
= 0

10.5.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y(y2 − x)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 445: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y3

x4 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

2517



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3

x4

dy

Which results in

S = − x4

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y(y2 − x)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x3

y2

Sy =
x4

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2R3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x4

2y2 = −2x3

3 + c1

Which simplifies to

− x4

2y2 = −2x3

3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y
(
y2−x

)
x2

dS
dR

= −2R2

R = x

S = − x4

2y2

Summary
The solution(s) found are the following

(1)− x4

2y2 = −2x3

3 + c1
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Figure 382: Slope field plot

Verification of solutions

− x4

2y2 = −2x3

3 + c1

Verified OK.

10.5.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −2y(y2 − x)
x2

This is a Bernoulli ODE.
y′ = 2

x
y − 2

x2y
3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
x

f1(x) = − 2
x2

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 2
x y2

− 2
x2 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = 2w(x)

x
− 2

x2

w′ = −4w
x

+ 4
x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4
x

q(x) = 4
x2
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Hence the ode is

w′(x) + 4w(x)
x

= 4
x2

The integrating factor µ is

µ = e
∫ 4

x
dx

= x4

The ode becomes

d
dx(µw) = (µ)

(
4
x2

)
d
dx
(
x4w

)
=
(
x4)( 4

x2

)
d
(
x4w

)
=
(
4x2) dx

Integrating gives

x4w =
∫

4x2 dx

x4w = 4x3

3 + c1

Dividing both sides by the integrating factor µ = x4 results in

w(x) = 4
3x + c1

x4

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= 4
3x + c1

x4

Solving for y gives

y(x) = 3x2
√
12x3 + 9c1

y(x) = − 3x2
√
12x3 + 9c1
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Summary
The solution(s) found are the following

(1)y = 3x2
√
12x3 + 9c1

(2)y = − 3x2
√
12x3 + 9c1

Figure 383: Slope field plot

Verification of solutions

y = 3x2
√
12x3 + 9c1

Verified OK.

y = − 3x2
√
12x3 + 9c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(x^2*diff(y(x),x) = 2*y(x)*(x-y(x)^2),y(x), singsol=all)� �

y(x) = − 3x2
√
12x3 + 9c1

y(x) = 3x2
√
12x3 + 9c1

3 Solution by Mathematica
Time used: 0.238 (sec). Leaf size: 51� �
DSolve[x^2 y'[x]==2 y[x](x-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x2√
4x3

3 + c1

y(x) → x2√
4x3

3 + c1

y(x) → 0
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10.6 problem 272
10.6.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 2525

Internal problem ID [3528]
Internal file name [OUTPUT/3021_Sunday_June_05_2022_08_49_51_AM_70790848/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 272.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_rational , _Abel]

Unable to solve or complete the solution.

y′x2 − a x2y2 + ay3 = 0

10.6.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −ay3

x2 + ay2 (1)

Therefore

f0(x) = 0
f1(x) = 0
f2(x) = a

f3(x) = − a

x2
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Since f2(x) = a is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(

a

− 3a
x2

)
= u(x) + x2

3

The above transformation applied to (1) gives a new ODE as

u′(x) = 2a x4

27 + x2au(x)
3 − au(x)3

x2 − 2x
3 (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = −au(x)3

x2 + x2au(x)
3 − −2a x6 + 18x3

27x2 (1)

Therefore

f0(x) =
2
27a x

4 − 2
3x

f1(x) =
x2a

3
f2(x) = 0

f3(x) = − a

x2

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

((
8a x3
27 − 2

3

)
a

x2 + 2
( 2
27a x

4− 2
3x
)
a

x3 −
( 2
27a x

4 − 2
3x
)
a2
)3

x8

27a4
( 2
27a x

4 − 2
3x
)5

Since the Abel invariant depends on x then unable to solve this ode at this time.
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Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 148� �
dsolve(x^2*diff(y(x),x) = a*x^2*y(x)^2-a*y(x)^3,y(x), singsol=all)� �
y(x)

= 1

−ax− 2 2
3 (−a)

2
3 RootOf

(
AiryBi

((_Z2
2
1
3 (−a)

1
3 x−1

)
2
2
3

2(−a)
1
3 x

)
c1_Z+ _ZAiryAi

((_Z2
2
1
3 (−a)

1
3 x−1

)
2
2
3

2(−a)
1
3 x

)
+AiryBi

(
1,
(
_Z2

2
1
3 (−a)

1
3 x−1

)
2
2
3

2(−a)
1
3 x

)
c1 +AiryAi

(
1,
(
_Z2

2
1
3 (−a)

1
3 x−1

)
2
2
3

2(−a)
1
3 x

))
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3 Solution by Mathematica
Time used: 0.458 (sec). Leaf size: 267� �
DSolve[x^2 y'[x]==a x^2 y[x]^2-a y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

Solve


(
− 1

22/3a2/3y(x) −
3
√
ax

22/3

)
AiryAi

((
−

3
√
ax

22/3 − 1
22/3a2/3y(x)

)2

+ 1
3
√
2 3
√
ax

)
+AiryAiPrime

((
−

3
√
ax

22/3 − 1
22/3a2/3y(x)

)2

+ 1
3
√
2 3
√
ax

)
(
− 1

22/3a2/3y(x) −
3
√
ax

22/3

)
AiryBi

((
−

3
√
ax

22/3 − 1
22/3a2/3y(x)

)2

+ 1
3
√
2 3
√
ax

)
+AiryBiPrime

((
−

3
√
ax

22/3 − 1
22/3a2/3y(x)

)2

+ 1
3
√
2 3
√
ax

)

+ c1 = 0, y(x)
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10.7 problem 273
10.7.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 2529

Internal problem ID [3529]
Internal file name [OUTPUT/3022_Sunday_June_05_2022_08_49_52_AM_81239861/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 273.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_rational , _Abel]

Unable to solve or complete the solution.

y′x2 + ay2 + b x2y3 = 0

10.7.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −by3 − ay2

x2 (1)

Therefore

f0(x) = 0
f1(x) = 0

f2(x) = − a

x2

f3(x) = −b
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Since f2(x) = − a
x2 is not zero, then the first step is to apply the following transformation

to remove f2. Let y = u(x)− f2
3f3 or

y = u(x)−
(− a

x2

−3b

)
= u(x)− a

3b x2

The above transformation applied to (1) gives a new ODE as

u′(x) = −bu(x)3 + u(x) a2
3b x4 − 2a

3b x3 − 2a3
27b2x6 (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = −bu(x)3 + u(x) a2
3b x4 − 18ab x3 + 2a3

27x6b2
(1)

Therefore

f0(x) = − 2a
3b x3 − 2a3

27b2x6

f1(x) =
a2

3b x4

f2(x) = 0
f3(x) = −b

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

((
2a
x4b

+ 4a3
9x7b2

)
b−

(
− 2a

3b x3−
2a3

27b2x6

)
a2

x4

)3

27b4
(
− 2a

3b x3 − 2a3
27b2x6

)5
Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 178� �
dsolve(x^2*diff(y(x),x)+a*y(x)^2+b*x^2*y(x)^3 = 0,y(x), singsol=all)� �
y(x) =

− 2 1
3abx

2 1
3a2b− 2 (a2b2)

2
3 RootOf

(
AiryBi

(
− b2

2
3 x−2_Z2

(a2b2)
1
3

2(a2b2)
1
3

)
c1_Z+ _ZAiryAi

(
− b2

2
3 x−2_Z2

(a2b2)
1
3

2(a2b2)
1
3

)
+AiryBi

(
1,− b2

2
3 x−2_Z2

(a2b2)
1
3

2(a2b2)
1
3

)
c1 +AiryAi

(
1,− b2

2
3 x−2_Z2

(a2b2)
1
3

2(a2b2)
1
3

))
x
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3 Solution by Mathematica
Time used: 0.609 (sec). Leaf size: 343� �
DSolve[x^2 y'[x]+a y[x]^2+b x^2 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


(

a2/3

22/3
3√
bx

+ 1

22/3 3
√
a

3√
by(x)

)
AiryAi

((
a2/3

22/3
3√
bx

+ 1

22/3
3√
by(x) 3

√
a

)2

−
3√
bx

3
√
2a2/3

)
+AiryAiPrime

((
a2/3

22/3
3√
bx

+ 1

22/3
3√
by(x) 3

√
a

)2

−
3√
bx

3
√
2a2/3

)
(

a2/3

22/3
3√
bx

+ 1

22/3 3
√
a

3√
by(x)

)
AiryBi

((
a2/3

22/3
3√
bx

+ 1

22/3
3√
by(x) 3

√
a

)2

−
3√
bx

3
√
2a2/3

)
+AiryBiPrime

((
a2/3

22/3
3√
bx

+ 1

22/3
3√
by(x) 3

√
a

)2

−
3√
bx

3
√
2a2/3

)

+ c1 = 0, y(x)
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10.8 problem 274
10.8.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2533
10.8.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2536

Internal problem ID [3530]
Internal file name [OUTPUT/3023_Sunday_June_05_2022_08_49_55_AM_556566/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 274.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′x2 −
(
ax+ by3

)
y = 0

10.8.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (b y3 + ax) y
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 447: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y4e−3a ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4e−3a ln(x)dy

Which results in

S = −e3a ln(x)
3y3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (b y3 + ax) y
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −a x−1+3a

y3

Sy =
x3a

y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b x−2+3a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= bR−2+3a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R−1+3ab

−1 + 3a + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x3a

3y3 = x−1+3ab

−1 + 3a + c1

Which simplifies to

−x3a

3y3 = x−1+3ab

−1 + 3a + c1

Summary
The solution(s) found are the following

(1)−x3a

3y3 = x−1+3ab

−1 + 3a + c1

Verification of solutions

−x3a

3y3 = x−1+3ab

−1 + 3a + c1

Verified OK.

10.8.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (b y3 + ax) y
x2

This is a Bernoulli ODE.
y′ = a

x
y + b

x2y
4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
a

x

f1(x) =
b

x2

n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= a

x y3
+ b

x2 (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = aw(x)

x
+ b

x2

w′ = −3aw
x

− 3b
x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 3a
x

q(x) = −3b
x2

Hence the ode is

w′(x) + 3aw(x)
x

= −3b
x2

The integrating factor µ is

µ = e
∫ 3a

x
dx

= e3a ln(x)

Which simplifies to
µ = x3a

The ode becomes

d
dx(µw) = (µ)

(
−3b
x2

)
d
dx
(
x3aw

)
=
(
x3a)(−3b

x2

)
d
(
x3aw

)
=
(
−3b x−2+3a) dx

Integrating gives

x3aw =
∫

−3b x−2+3a dx

x3aw = −3x−1+3ab

−1 + 3a + c1

Dividing both sides by the integrating factor µ = x3a results in

w(x) = −3x−3ax−1+3ab

−1 + 3a + c1x
−3a

which simplifies to

w(x) = − 3b
x (−1 + 3a) + c1x

−3a
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Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= − 3b
x (−1 + 3a) + c1x

−3a

Solving for y gives

y(x) =
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3

−3b+ x1−3ac1 (−1 + 3a)

y(x) =
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3 (−1 + i
√
3
)

(6a− 2) c1x1−3a − 6b

y(x) = −
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3 (1 + i
√
3
)

(6a− 2) c1x1−3a − 6b

Summary
The solution(s) found are the following

(1)y =
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3

−3b+ x1−3ac1 (−1 + 3a)

(2)y =
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3 (−1 + i
√
3
)

(6a− 2) c1x1−3a − 6b

(3)y = −
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3 (1 + i
√
3
)

(6a− 2) c1x1−3a − 6b
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Verification of solutions

y =
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3

−3b+ x1−3ac1 (−1 + 3a)

Verified OK.

y =
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3 (−1 + i
√
3
)

(6a− 2) c1x1−3a − 6b

Verified OK.

y = −
27 1

3

((
c1
(
−1

3 + a
)
x1−3a − b

)2
x
(
−1

3 + a
)) 1

3 (1 + i
√
3
)

(6a− 2) c1x1−3a − 6b

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 174� �
dsolve(x^2*diff(y(x),x) = (a*x+b*y(x)^3)*y(x),y(x), singsol=all)� �

y(x) =
27 1

3

((
a− 1

3

)
x
(
c1
(
a− 1

3

)
x−3a+1 − b

)2) 1
3

c1 (3a− 1)x−3a+1 − 3b

y(x) = −
27 1

3

((
a− 1

3

)
x
(
c1
(
a− 1

3

)
x−3a+1 − b

)2) 1
3 (1 + i

√
3
)

(6a− 2) c1x−3a+1 − 6b

y(x) =
27 1

3

((
a− 1

3

)
x
(
c1
(
a− 1

3

)
x−3a+1 − b

)2) 1
3 (
i
√
3− 1

)
(6a− 2) c1x−3a+1 − 6b
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3 Solution by Mathematica
Time used: 3.526 (sec). Leaf size: 149� �
DSolve[x^2 y'[x]==(a x+b y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
(1− 3a)x3a+1

3
√

3bx3a + (1− 3a)c1x

y(x) → −
3
√
−1 3
√

(1− 3a)x3a+1

3
√

3bx3a + (1− 3a)c1x

y(x) → (−1)2/3 3
√
(1− 3a)x3a+1

3
√

3bx3a + (1− 3a)c1x
y(x) → 0
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10.9 problem 275
10.9.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2542
10.9.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2546

Internal problem ID [3531]
Internal file name [OUTPUT/3024_Sunday_June_05_2022_08_49_58_AM_43293635/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 275.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′x2 + yx+√
y = 0

10.9.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
xy +√

y

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 449: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) =
√
y

√
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

√
y√
x

dy

Which results in

S = 2√y
√
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
xy +√

y

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
y

√
x

Sy =
√
x

√
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

x
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R
3
2

2544



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2√
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2√y
√
x = 2√

x
+ c1

Which simplifies to

2√y
√
x = 2√

x
+ c1

Which gives

y =
(
c1
√
x+ 2

)2
4x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −xy+√
y

x2
dS
dR

= − 1
R

3
2

R = x

S = 2√y
√
x
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Summary
The solution(s) found are the following

(1)y =
(
c1
√
x+ 2

)2
4x2

Figure 384: Slope field plot

Verification of solutions

y =
(
c1
√
x+ 2

)2
4x2

Verified OK.

10.9.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −
xy +√

y

x2

This is a Bernoulli ODE.
y′ = −1

x
y − 1

x2
√
y (1)

2546



The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = − 1
x2

n = 1
2

Dividing both sides of ODE (1) by yn = √
y gives

y′
1
√
y
= −

√
y

x
− 1

x2 (4)

Let

w = y1−n

= √
y (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 1
2√y

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

2w′(x) = −w(x)
x

− 1
x2

w′ = − w

2x − 1
2x2 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
2x

q(x) = − 1
2x2

Hence the ode is

w′(x) + w(x)
2x = − 1

2x2

The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x

The ode becomes

d
dx(µw) = (µ)

(
− 1
2x2

)
d
dx
(√

xw
)
=
(√

x
)(

− 1
2x2

)
d
(√

xw
)
=
(
− 1
2x 3

2

)
dx

Integrating gives

√
xw =

∫
− 1
2x 3

2
dx

√
xw = 1√

x
+ c1

Dividing both sides by the integrating factor µ =
√
x results in

w(x) = 1
x
+ c1√

x

Replacing w in the above by √
y using equation (5) gives the final solution.

√
y = 1

x
+ c1√

x
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Summary
The solution(s) found are the following

(1)√
y = 1

x
+ c1√

x

Figure 385: Slope field plot

Verification of solutions

√
y = 1

x
+ c1√

x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x^2*diff(y(x),x)+x*y(x)+sqrt(y(x)) = 0,y(x), singsol=all)� �

√
y (x)− 1

x
− c1√

x
= 0

3 Solution by Mathematica
Time used: 0.151 (sec). Leaf size: 21� �
DSolve[x^2 y'[x]+x y[x]+Sqrt[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
1 + c1

√
x
) 2

x2
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10.10 problem 276
Internal problem ID [3532]
Internal file name [OUTPUT/3025_Sunday_June_05_2022_08_49_59_AM_79187334/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 276.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′x2 − sec (y)− 3x tan (y) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, 1/x*(4*tan(y)*x+sec(y))]� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x) = sec(y(x))+3*x*tan(y(x)),y(x), singsol=all)� �

y(x) = arcsin
(
c1x

4 − 1
4x

)
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3 Solution by Mathematica
Time used: 10.03 (sec). Leaf size: 23� �
DSolve[x^2 y'[x]==Sec[y[x]]+3 x Tan[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arcsin
(

1
4x + 3c1x3

)
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10.11 problem 277
10.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2554
10.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2556
10.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2560
10.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2565

Internal problem ID [3533]
Internal file name [OUTPUT/3026_Sunday_June_05_2022_08_50_01_AM_88497827/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 277.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ − y = −x2 + 1

10.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x2 − 1

q(x) = 1

Hence the ode is

y′ + y

x2 − 1 = 1
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The integrating factor µ is

µ = e
∫ 1

x2−1dx

=
√
−x2 + 1
x+ 1

The ode becomes

d
dx(µy) = µ

d
dx

(√
−x2 + 1 y
x+ 1

)
=

√
−x2 + 1
x+ 1

d
(√

−x2 + 1 y
x+ 1

)
=

√
−x2 + 1
x+ 1 dx

Integrating gives
√
−x2 + 1 y
x+ 1 =

∫ √
−x2 + 1
x+ 1 dx

√
−x2 + 1 y
x+ 1 =

√
− (x+ 1)2 + 2x+ 2 + arcsin (x) + c1

Dividing both sides by the integrating factor µ =
√
−x2+1
x+1 results in

y =
(x+ 1)

(√
− (x+ 1)2 + 2x+ 2 + arcsin (x)

)
√
−x2 + 1

+ c1(x+ 1)√
−x2 + 1

which simplifies to

y =
(√

−x2 + 1 + c1 + arcsin (x)
)
(x+ 1)

√
−x2 + 1

Summary
The solution(s) found are the following

(1)y =
(√

−x2 + 1 + c1 + arcsin (x)
)
(x+ 1)

√
−x2 + 1
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Figure 386: Slope field plot

Verification of solutions

y =
(√

−x2 + 1 + c1 + arcsin (x)
)
(x+ 1)

√
−x2 + 1

Verified OK.

10.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x2 + y + 1
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 451: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x+ 1√
−x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x+1√
−x2+1

dy

Which results in

S =
√
−x2 + 1 y
x+ 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x2 + y + 1
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x+ 1)
√
−x2 + 1

Sy =
√
−x2 + 1
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − x− 1√

−x2 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − R− 1√

−R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
−R2 + 1 + arcsin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
−x2 + 1 y
x+ 1 =

√
−x2 + 1 + c1 + arcsin (x)

Which simplifies to
√
−x2 + 1 y
x+ 1 =

√
−x2 + 1 + c1 + arcsin (x)

Which gives

y =
√
−x2 + 1x+ x arcsin (x) + c1x+

√
−x2 + 1 + arcsin (x) + c1√

−x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x2+y+1
x2−1

dS
dR

= − R−1√
−R2+1

R = x

S =
√
−x2 + 1 y
x+ 1
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Summary
The solution(s) found are the following

(1)y =
√
−x2 + 1 x+ x arcsin (x) + c1x+

√
−x2 + 1 + arcsin (x) + c1√

−x2 + 1

Figure 387: Slope field plot

Verification of solutions

y =
√
−x2 + 1 x+ x arcsin (x) + c1x+

√
−x2 + 1 + arcsin (x) + c1√

−x2 + 1

Verified OK.

10.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy =

(
−x2 + y + 1

)
dx(

x2 − y − 1
)
dx+

(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 − y − 1
N(x, y) = −x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 − y − 1

)
= −1

And

∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((−1)− (−2x))

= 1− 2x
x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1−2x

x2−1 dx

The result of integrating gives

µ = e−
ln(x−1)

2 − 3 ln(x+1)
2

= 1
√
x− 1 (x+ 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
√
x− 1 (x+ 1)

3
2

(
x2 − y − 1

)
= x2 − y − 1

√
x− 1 (x+ 1)

3
2

2562



And

N = µN

= 1
√
x− 1 (x+ 1)

3
2

(
−x2 + 1

)
= −

√
x− 1√
x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 − y − 1
√
x− 1 (x+ 1)

3
2

)
+
(
−
√
x− 1√
x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 − y − 1

√
x− 1 (x+ 1)

3
2
dx

(3)φ =
(
(−x− 1) ln

(
x+

√
x2 − 1

)
+ (x− y + 1)

√
x2 − 1

)√
x− 1

√
x+ 1

√
x2 − 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

√
x− 1√
x+ 1

+ f ′(y)

But equation (2) says that ∂φ
∂y

= −
√
x−1√
x+1 . Therefore equation (4) becomes

(5)−
√
x− 1√
x+ 1

= −
√
x− 1√
x+ 1

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
(−x− 1) ln

(
x+

√
x2 − 1

)
+ (x− y + 1)

√
x2 − 1

)√
x− 1

√
x+ 1

√
x2 − 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
(−x− 1) ln

(
x+

√
x2 − 1

)
+ (x− y + 1)

√
x2 − 1

)√
x− 1

√
x+ 1

√
x2 − 1

The solution becomes

y =

−
ln
(
x+

√
x2 − 1

)√
x− 1x−

√
x2 − 1

√
x− 1x+ c1

√
x2 − 1

√
x+ 1 + ln

(
x+

√
x2 − 1

)√
x− 1−

√
x2 − 1

√
x− 1

√
x2 − 1

√
x− 1

Summary
The solution(s) found are the following

(1)y =

−
ln
(
x+

√
x2 − 1

)√
x− 1x−

√
x2 − 1

√
x− 1x+ c1

√
x2 − 1

√
x+ 1 + ln

(
x+

√
x2 − 1

)√
x− 1−

√
x2 − 1

√
x− 1

√
x2 − 1

√
x− 1
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Figure 388: Slope field plot

Verification of solutions
y =

−
ln
(
x+

√
x2 − 1

)√
x− 1x−

√
x2 − 1

√
x− 1x+ c1

√
x2 − 1

√
x+ 1 + ln

(
x+

√
x2 − 1

)√
x− 1−

√
x2 − 1

√
x− 1

√
x2 − 1

√
x− 1

Verified OK.

10.11.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ − y = −x2 + 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1− y

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x2−1 = 1
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x2−1

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x2−1

• Solve to find the integrating factor

µ(x) =
√

−(x−1)(x+1)
x+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) =
√

−(x−1)(x+1)
x+1

y =
(x+1)

(∫ √−(x−1)(x+1)
x+1 dx+c1

)
√

−(x−1)(x+1)

• Evaluate the integrals on the rhs

y =
(x+1)

(√
−(x+1)2+2x+2+arcsin(x)+c1

)
√

−(x−1)(x+1)

• Simplify

y =
(√

−x2+1+c1+arcsin(x)
)
(x+1)

√
−x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve((-x^2+1)*diff(y(x),x) = 1-x^2+y(x),y(x), singsol=all)� �

y(x) =
(√

−x2 + 1 + arcsin (x) + c1
)
(x+ 1)

√
−x2 + 1

3 Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 56� �
DSolve[(1-x^2)y'[x]==1-x^2+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
x+ 1

(
−2 arctan

(√
1−x2

x−1

)
+
√
1− x2 + c1

)
√
1− x
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10.12 problem 278
10.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2568
10.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2570
10.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2574
10.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2579

Internal problem ID [3534]
Internal file name [OUTPUT/3027_Sunday_June_05_2022_08_50_03_AM_36542742/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 278.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ − yx = −1

10.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 − 1
q(x) = 1

x2 − 1

Hence the ode is

y′ + xy

x2 − 1 = 1
x2 − 1
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The integrating factor µ is

µ = e
∫

x
x2−1dx

= e
ln(x−1)

2 + ln(x+1)
2

Which simplifies to
µ =

√
x− 1

√
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
1

x2 − 1

)
d
dx

(√
x− 1

√
x+ 1 y

)
=
(√

x− 1
√
x+ 1

)( 1
x2 − 1

)
d
(√

x− 1
√
x+ 1 y

)
=
(√

x− 1
√
x+ 1

x2 − 1

)
dx

Integrating gives

√
x− 1

√
x+ 1 y =

∫ √
x− 1

√
x+ 1

x2 − 1 dx

√
x− 1

√
x+ 1 y =

√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1

Dividing both sides by the integrating factor µ =
√
x− 1

√
x+ 1 results in

y =
ln
(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y =
ln
(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1
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Figure 389: Slope field plot

Verification of solutions

y =
ln
(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1

Verified OK.

10.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy − 1
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 454: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln(x−1)

2 − ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

2571



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln(x−1)

2 − ln(x+1)
2

dy

Which results in

S = eln
(√

x−1
)
+ln

(√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy − 1
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x− 1

√
x+ 1

Sy =
√
x− 1

√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

x− 1
√
x+ 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

R− 1
√
R + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√

(R− 1) (R + 1) ln
(
R +

√
R2 − 1

)
√
R− 1

√
R + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x− 1

√
x+ 1 y =

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
√
x+ 1

√
x− 1

+ c1

Which simplifies to

√
x− 1

√
x+ 1 y =

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
√
x+ 1

√
x− 1

+ c1

Which gives

y =
c1
√
x− 1

√
x+ 1 +

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
x2 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −xy−1
x2−1

dS
dR

= 1√
R−1

√
R+1

R = x

S =
√
x− 1

√
x+ 1 y
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Summary
The solution(s) found are the following

(1)y =
c1
√
x− 1

√
x+ 1 +

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
x2 − 1

Figure 390: Slope field plot

Verification of solutions

y =
c1
√
x− 1

√
x+ 1 +

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
x2 − 1

Verified OK.

10.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy = (xy − 1) dx

(−xy + 1) dx+
(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy + 1
N(x, y) = −x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(−xy + 1)

= −x

And

∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((−x)− (−2x))

= − x

x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− x

x2−1 dx

The result of integrating gives

µ = e−
ln(x−1)

2 − ln(x+1)
2

= 1√
x− 1

√
x+ 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x− 1

√
x+ 1

(−xy + 1)

= − xy − 1√
x− 1

√
x+ 1
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And

N = µN

= 1√
x− 1

√
x+ 1

(
−x2 + 1

)
= −x2 + 1√

x− 1
√
x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− xy − 1√
x− 1

√
x+ 1

)
+
(

−x2 + 1√
x− 1

√
x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− xy − 1√

x− 1
√
x+ 1

dx

(3)φ = −
√
x− 1

√
x+ 1

(
y
√
x2 − 1− ln

(
x+

√
x2 − 1

))
√
x2 − 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

√
x− 1

√
x+ 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2+1√
x−1

√
x+1 . Therefore equation (4) becomes

(5)−x2 + 1√
x− 1

√
x+ 1

= −
√
x− 1

√
x+ 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
√
x− 1

√
x+ 1

(
y
√
x2 − 1− ln

(
x+

√
x2 − 1

))
√
x2 − 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
√
x− 1

√
x+ 1

(
y
√
x2 − 1− ln

(
x+

√
x2 − 1

))
√
x2 − 1

The solution becomes

y = −
−
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = −
−
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1
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Figure 391: Slope field plot

Verification of solutions

y = −
−
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1

Verified OK.

10.12.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ − yx = −1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2−1 +
1

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2−1 = 1
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + xy

x2−1

)
= µ(x)

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) =

√
x− 1

√
x+ 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x2−1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x2−1dx+ c1

• Solve for y

y =
∫ µ(x)

x2−1dx+c1

µ(x)

• Substitute µ(x) =
√
x− 1

√
x+ 1

y =
∫ √

x−1
√
x+1

x2−1 dx+c1
√
x−1

√
x+1

• Evaluate the integrals on the rhs

y =
√
x−1

√
x+1 ln

(
x+
√

x2−1
)

√
x2−1

+c1
√
x−1

√
x+1

• Simplify

y =
√
x−1

√
x+1 ln

(
x+

√
x2−1

)
+c1

√
x2−1

√
x2−1

√
x−1

√
x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve((-x^2+1)*diff(y(x),x)+1 = x*y(x),y(x), singsol=all)� �

y(x) =
√
x2 − 1 ln

(
x+

√
x2 − 1

)
(x− 1) (x+ 1) + c1√

x− 1
√
x+ 1

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 54� �
DSolve[(1-x^2)y'[x]+1==x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
− log

(
1− x√

x2−1

)
+ log

(
x√
x2−1 + 1

)
+ 2c1

2
√
x2 − 1
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10.13 problem 279
10.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2582
10.13.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2584
10.13.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2586
10.13.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2590
10.13.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2595

Internal problem ID [3535]
Internal file name [OUTPUT/3028_Sunday_June_05_2022_08_50_04_AM_56094958/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 279.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ + yx = 5

10.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = − 5

x2 − 1

Hence the ode is

y′ − xy

x2 − 1 = − 5
x2 − 1
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The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

µ = 1√
x− 1

√
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
− 5
x2 − 1

)
d
dx

(
y√

x− 1
√
x+ 1

)
=
(

1√
x− 1

√
x+ 1

)(
− 5
x2 − 1

)
d
(

y√
x− 1

√
x+ 1

)
=
(
− 5
(x2 − 1)

√
x− 1

√
x+ 1

)
dx

Integrating gives

y√
x− 1

√
x+ 1

=
∫

− 5
(x2 − 1)

√
x− 1

√
x+ 1

dx

y√
x− 1

√
x+ 1

= 5
√
x− 1

√
x+ 1x

x2 − 1 + c1

Dividing both sides by the integrating factor µ = 1√
x−1

√
x+1 results in

y = 5(x− 1) (x+ 1)x
x2 − 1 + c1

√
x− 1

√
x+ 1

which simplifies to

y = 5x+ c1
√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = 5x+ c1
√
x− 1

√
x+ 1
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Figure 392: Slope field plot

Verification of solutions

y = 5x+ c1
√
x− 1

√
x+ 1

Verified OK.

10.13.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
−x2 + 1

)
(u′(x)x+ u(x)) + u(x)x2 = 5

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u− 5
x (x2 − 1)

Where f(x) = 1
x(x2−1) and g(u) = u− 5. Integrating both sides gives

1
u− 5 du = 1

x (x2 − 1) dx
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∫ 1
u− 5 du =

∫ 1
x (x2 − 1) dx

ln (u− 5) = ln (x+ 1)
2 + ln (x− 1)

2 − ln (x) + c2

Raising both side to exponential gives

u− 5 = e
ln(x+1)

2 + ln(x−1)
2 −ln(x)+c2

Which simplifies to

u− 5 = c3e
ln(x+1)

2 + ln(x−1)
2 −ln(x)

Which simplifies to

u(x) = c3
√
x+ 1

√
x− 1 ec2

x
+ 5

Therefore the solution y is

y = xu

= x

(
c3
√
x+ 1

√
x− 1 ec2

x
+ 5
)

Summary
The solution(s) found are the following

(1)y = x

(
c3
√
x+ 1

√
x− 1 ec2

x
+ 5
)
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Figure 393: Slope field plot

Verification of solutions

y = x

(
c3
√
x+ 1

√
x− 1 ec2

x
+ 5
)

Verified OK.

10.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy − 5
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 457: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x−1)

2 + ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x−1)

2 + ln(x+1)
2

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy − 5
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x− 1)
3
2 (x+ 1)

3
2

Sy =
1√

x− 1
√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 5

(x− 1)
3
2 (x+ 1)

3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 5

(R− 1)
3
2 (R + 1)

3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 5R√
R− 1

√
R + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x− 1

√
x+ 1

= 5x√
x− 1

√
x+ 1

+ c1

Which simplifies to

y√
x− 1

√
x+ 1

= 5x√
x− 1

√
x+ 1

+ c1

Which gives

y = 5x+ c1
√
x− 1

√
x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy−5
x2−1

dS
dR

= − 5
(R−1)

3
2 (R+1)

3
2

R = x

S = y√
x− 1

√
x+ 1
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Summary
The solution(s) found are the following

(1)y = 5x+ c1
√
x− 1

√
x+ 1

Figure 394: Slope field plot

Verification of solutions

y = 5x+ c1
√
x− 1

√
x+ 1

Verified OK.

10.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy = (−xy + 5) dx

(xy − 5) dx+
(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy − 5
N(x, y) = −x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(xy − 5)

= x
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And
∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((x)− (−2x))

= − 3x
x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

x2−1 dx

The result of integrating gives

µ = e−
3 ln(x−1)

2 − 3 ln(x+1)
2

= 1
(x− 1)

3
2 (x+ 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)

3
2 (x+ 1)

3
2
(xy − 5)

= xy − 5
(x− 1)

3
2 (x+ 1)

3
2

And

N = µN

= 1
(x− 1)

3
2 (x+ 1)

3
2

(
−x2 + 1

)
= − 1√

x− 1
√
x+ 1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

xy − 5
(x− 1)

3
2 (x+ 1)

3
2

)
+
(
− 1√

x− 1
√
x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
xy − 5

(x− 1)
3
2 (x+ 1)

3
2
dx

(3)φ = 5x− y√
x− 1

√
x+ 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1√

x− 1
√
x+ 1

+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
x−1

√
x+1 . Therefore equation (4) becomes

(5)− 1√
x− 1

√
x+ 1

= − 1√
x− 1

√
x+ 1

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 5x− y√
x− 1

√
x+ 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
5x− y√

x− 1
√
x+ 1

The solution becomes
y = −c1

√
x− 1

√
x+ 1 + 5x

Summary
The solution(s) found are the following

(1)y = −c1
√
x− 1

√
x+ 1 + 5x

Figure 395: Slope field plot
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Verification of solutions

y = −c1
√
x− 1

√
x+ 1 + 5x

Verified OK.

10.13.5 Maple step by step solution

Let’s solve
(−x2 + 1) y′ + yx = 5

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xy

x2−1 −
5

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − xy

x2−1 = − 5
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − xy

x2−1

)
= −5µ(x)

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) = 1√

x−1
√
x+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−5µ(x)

x2−1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−5µ(x)

x2−1dx+ c1

• Solve for y

y =
∫
− 5µ(x)

x2−1 dx+c1

µ(x)

• Substitute µ(x) = 1√
x−1

√
x+1
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y =
√
x− 1

√
x+ 1

(∫
− 5

(x2−1)
√
x−1

√
x+1dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x− 1

√
x+ 1

(
5
√
x−1

√
x+1x

x2−1 + c1
)

• Simplify

y =
(
5
√
x−1

√
x+1x+c1

(
x2−1

))√
x−1

√
x+1

x2−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve((-x^2+1)*diff(y(x),x) = 5-x*y(x),y(x), singsol=all)� �

y(x) =
√
x− 1

√
x+ 1 c1 + 5x

3 Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 21� �
DSolve[(1-x^2)y'[x]==5 -x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 5x+ c1
√
x2 − 1
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10.14 problem 280
10.14.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2597
10.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2599
10.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2602
10.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2605

Internal problem ID [3536]
Internal file name [OUTPUT/3029_Sunday_June_05_2022_08_50_06_AM_34475250/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 280.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ + yx = −a

10.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 + 1
q(x) = − a

x2 + 1

Hence the ode is

y′ + xy

x2 + 1 = − a

x2 + 1
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The integrating factor µ is

µ = e
∫

x
x2+1dx

=
√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
− a

x2 + 1

)
d
dx

(√
x2 + 1 y

)
=
(√

x2 + 1
)(

− a

x2 + 1

)
d
(√

x2 + 1 y
)
=
(
− a√

x2 + 1

)
dx

Integrating gives

√
x2 + 1 y =

∫
− a√

x2 + 1
dx

√
x2 + 1 y = −a arcsinh (x) + c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 results in

y = −a arcsinh (x)√
x2 + 1

+ c1√
x2 + 1

which simplifies to

y = −a arcsinh (x) + c1√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −a arcsinh (x) + c1√
x2 + 1

Verification of solutions

y = −a arcsinh (x) + c1√
x2 + 1

Verified OK.

2598



10.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy + a

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 460: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1

dy

Which results in

S =
√
x2 + 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy + a

x2 + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x2 + 1

Sy =
√
x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − a√

x2 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − a√

R2 + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −a arcsinh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y = −a arcsinh (x) + c1

Which simplifies to
√
x2 + 1 y = −a arcsinh (x) + c1

Which gives

y = −a arcsinh (x)− c1√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −a arcsinh (x)− c1√
x2 + 1

Verification of solutions

y = −a arcsinh (x)− c1√
x2 + 1

Verified OK.

2601



10.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy = (−xy − a) dx

(xy + a) dx+
(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy + a

N(x, y) = x2 + 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(xy + a)

= x

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((x)− (2x))

= − x

x2 + 1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− x

x2+1 dx

The result of integrating gives

µ = e−
ln
(
x2+1

)
2

= 1√
x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + 1

(xy + a)

= xy + a√
x2 + 1
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And

N = µN

= 1√
x2 + 1

(
x2 + 1

)
=

√
x2 + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

xy + a√
x2 + 1

)
+
(√

x2 + 1
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
xy + a√
x2 + 1

dx

(3)φ = a arcsinh (x) +
√
x2 + 1 y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1. Therefore equation (4) becomes

(5)
√
x2 + 1 =

√
x2 + 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = a arcsinh (x) +
√
x2 + 1 y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = a arcsinh (x) +
√
x2 + 1 y

The solution becomes

y = −a arcsinh (x)− c1√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −a arcsinh (x)− c1√
x2 + 1

Verification of solutions

y = −a arcsinh (x)− c1√
x2 + 1

Verified OK.

10.14.4 Maple step by step solution

Let’s solve
(x2 + 1) y′ + yx = −a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2+1 −
a

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2+1 = − a
x2+1
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + xy

x2+1

)
= −µ(x)a

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)a

x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)a

x2+1dx+ c1

• Solve for y

y =
∫
−µ(x)a

x2+1 dx+c1

µ(x)

• Substitute µ(x) =
√
x2 + 1

y =
∫
− a√

x2+1
dx+c1

√
x2+1

• Evaluate the integrals on the rhs
y = −a arcsinh(x)+c1√

x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve((x^2+1)*diff(y(x),x)+a+x*y(x) = 0,y(x), singsol=all)� �

y(x) = −a arcsinh (x) + c1√
x2 + 1

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 34� �
DSolve[(1+x^2)y'[x]+a+x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
a log

(√
x2 + 1− x

)
+ c1√

x2 + 1
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10.15 problem 281
10.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2608
10.15.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2610
10.15.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2611
10.15.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2614
10.15.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2618

Internal problem ID [3537]
Internal file name [OUTPUT/3030_Sunday_June_05_2022_08_50_07_AM_57185167/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 281.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ − yx = −a

10.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 + 1
q(x) = − a

x2 + 1

Hence the ode is

y′ − xy

x2 + 1 = − a

x2 + 1
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The integrating factor µ is

µ = e
∫
− x

x2+1dx

= 1√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
− a

x2 + 1

)
d
dx

(
y√

x2 + 1

)
=
(

1√
x2 + 1

)(
− a

x2 + 1

)
d
(

y√
x2 + 1

)
=
(
− a

(x2 + 1)
3
2

)
dx

Integrating gives

y√
x2 + 1

=
∫

− a

(x2 + 1)
3
2
dx

y√
x2 + 1

= − xa√
x2 + 1

+ c1

Dividing both sides by the integrating factor µ = 1√
x2+1 results in

y = −ax+ c1
√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −ax+ c1
√
x2 + 1

Verification of solutions

y = −ax+ c1
√
x2 + 1

Verified OK.
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10.15.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + 1

)
(u′(x)x+ u(x))− u(x)x2 = −a

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u− a

x (x2 + 1)

Where f(x) = 1
x(x2+1) and g(u) = −u− a. Integrating both sides gives

1
−u− a

du = 1
x (x2 + 1) dx∫ 1

−u− a
du =

∫ 1
x (x2 + 1) dx

− ln (u+ a) = − ln (x2 + 1)
2 + ln (x) + c2

Raising both side to exponential gives

1
u+ a

= e−
ln
(
x2+1

)
2 +ln(x)+c2

Which simplifies to

1
u+ a

= c3e−
ln
(
x2+1

)
2 +ln(x)

Which simplifies to

u(x) = −

(
c3ec2xa√

x2+1 − 1
)
e−c2

√
x2 + 1

c3x

Therefore the solution y is

y = xu

= −

(
c3ec2xa√

x2+1 − 1
)
e−c2

√
x2 + 1

c3
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Summary
The solution(s) found are the following

(1)y = −

(
c3ec2xa√

x2+1 − 1
)
e−c2

√
x2 + 1

c3

Verification of solutions

y = −

(
c3ec2xa√

x2+1 − 1
)
e−c2

√
x2 + 1

c3

Verified OK.

10.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy − a

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 463: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) =

√
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2 + 1
dy

Which results in

S = y√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy − a

x2 + 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x2 + 1)
3
2

Sy =
1√

x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − a

(x2 + 1)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − a

(R2 + 1)
3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − Ra√
R2 + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x2 + 1

= − xa√
x2 + 1

+ c1

Which simplifies to
y√

x2 + 1
= − xa√

x2 + 1
+ c1

Which gives

y = −ax+ c1
√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −ax+ c1
√
x2 + 1

Verification of solutions

y = −ax+ c1
√
x2 + 1

Verified OK.

10.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy = (xy − a) dx

(−xy + a) dx+
(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy + a

N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xy + a)

= −x
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And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((−x)− (2x))

= − 3x
x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

x2+1 dx

The result of integrating gives

µ = e−
3 ln

(
x2+1

)
2

= 1
(x2 + 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x2 + 1)

3
2
(−xy + a)

= −xy + a

(x2 + 1)
3
2

And

N = µN

= 1
(x2 + 1)

3
2

(
x2 + 1

)
= 1√

x2 + 1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−xy + a

(x2 + 1)
3
2

)
+
(

1√
x2 + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xy + a

(x2 + 1)
3
2
dx

(3)φ = ax+ y√
x2 + 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1√

x2 + 1
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
x2+1 . Therefore equation (4) becomes

(5)1√
x2 + 1

= 1√
x2 + 1

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ax+ y√
x2 + 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ax+ y√
x2 + 1

The solution becomes
y = −ax+ c1

√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −ax+ c1
√
x2 + 1

Verification of solutions

y = −ax+ c1
√
x2 + 1

Verified OK.

10.15.5 Maple step by step solution

Let’s solve
(x2 + 1) y′ − yx = −a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xy

x2+1 −
a

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − xy

x2+1 = − a
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − xy

x2+1

)
= −µ(x)a

x2+1
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = 1√

x2+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)a

x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)a

x2+1dx+ c1

• Solve for y

y =
∫
−µ(x)a

x2+1 dx+c1

µ(x)

• Substitute µ(x) = 1√
x2+1

y =
√
x2 + 1

(∫
− a

(x2+1)
3
2
dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x2 + 1

(
− xa√

x2+1 + c1
)

• Simplify
y = −ax+ c1

√
x2 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((x^2+1)*diff(y(x),x)+a-x*y(x) = 0,y(x), singsol=all)� �

y(x) =
√
x2 + 1 c1 − ax

3 Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 22� �
DSolve[(1+x^2)y'[x]+a-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ax+ c1
√
x2 + 1
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10.16 problem 282
10.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2621
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Internal problem ID [3538]
Internal file name [OUTPUT/3031_Sunday_June_05_2022_08_50_09_AM_54539711/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 282.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ − yx = −a

10.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 − 1
q(x) = a

x2 − 1

Hence the ode is

y′ + xy

x2 − 1 = a

x2 − 1
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The integrating factor µ is

µ = e
∫

x
x2−1dx

= e
ln(x−1)

2 + ln(x+1)
2

Which simplifies to
µ =

√
x− 1

√
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
a

x2 − 1

)
d
dx

(√
x− 1

√
x+ 1 y

)
=
(√

x− 1
√
x+ 1

)( a

x2 − 1

)
d
(√

x− 1
√
x+ 1 y

)
=
(√

x− 1
√
x+ 1 a

x2 − 1

)
dx

Integrating gives

√
x− 1

√
x+ 1 y =

∫ √
x− 1

√
x+ 1 a

x2 − 1 dx

√
x− 1

√
x+ 1 y =

a
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1

Dividing both sides by the integrating factor µ =
√
x− 1

√
x+ 1 results in

y =
a ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y =
a ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1

Verification of solutions

y =
a ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1

Verified OK.
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10.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy − a

x2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 466: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln(x−1)

2 − ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln(x−1)

2 − ln(x+1)
2

dy

Which results in

S = eln
(√

x−1
)
+ln

(√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy − a

x2 − 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x− 1

√
x+ 1

Sy =
√
x− 1

√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a√

x− 1
√
x+ 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a√

R− 1
√
R + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
a
√

(R− 1) (R + 1) ln
(
R +

√
R2 − 1

)
√
R− 1

√
R + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x− 1

√
x+ 1 y =

a
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

Which simplifies to

√
x− 1

√
x+ 1 y =

a
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

Which gives

y =
a
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
+ c1

√
x− 1

√
x+ 1

x2 − 1
Summary
The solution(s) found are the following

(1)y =
a
√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
+ c1

√
x− 1

√
x+ 1

x2 − 1
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Verification of solutions

y =
a
√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
+ c1

√
x− 1

√
x+ 1

x2 − 1

Verified OK.

10.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−x2 + 1
)
dy = (xy − a) dx

(−xy + a) dx+
(
−x2 + 1

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −xy + a

N(x, y) = −x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xy + a)

= −x

And
∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((−x)− (−2x))

= − x

x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− x

x2−1 dx

The result of integrating gives

µ = e−
ln(x−1)

2 − ln(x+1)
2

= 1√
x− 1

√
x+ 1
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x− 1

√
x+ 1

(−xy + a)

= −xy + a√
x− 1

√
x+ 1

And

N = µN

= 1√
x− 1

√
x+ 1

(
−x2 + 1

)
= −x2 + 1√

x− 1
√
x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−xy + a√
x− 1

√
x+ 1

)
+
(

−x2 + 1√
x− 1

√
x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xy + a√

x− 1
√
x+ 1

dx

(3)φ =
(
a ln

(
x+

√
x2 − 1

)
− y

√
x2 − 1

)√
x− 1

√
x+ 1

√
x2 − 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

√
x− 1

√
x+ 1 + f ′(y)
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But equation (2) says that ∂φ
∂y

= −x2+1√
x−1

√
x+1 . Therefore equation (4) becomes

(5)−x2 + 1√
x− 1

√
x+ 1

= −
√
x− 1

√
x+ 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
a ln

(
x+

√
x2 − 1

)
− y

√
x2 − 1

)√
x− 1

√
x+ 1

√
x2 − 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
a ln

(
x+

√
x2 − 1

)
− y

√
x2 − 1

)√
x− 1

√
x+ 1

√
x2 − 1

The solution becomes

y = −
−a

√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = −
−a

√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1

Verification of solutions

y = −
−a

√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1

Verified OK.
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10.16.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ − yx = −a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2−1 +
a

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2−1 = a
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + xy

x2−1

)
= µ(x)a

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) =

√
x− 1

√
x+ 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)a
x2−1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)a
x2−1dx+ c1

• Solve for y

y =
∫ µ(x)a

x2−1 dx+c1

µ(x)

• Substitute µ(x) =
√
x− 1

√
x+ 1

y =
∫ √

x−1
√
x+1 a

x2−1 dx+c1
√
x−1

√
x+1

• Evaluate the integrals on the rhs

y =
a
√
x−1

√
x+1 ln

(
x+
√

x2−1
)

√
x2−1

+c1
√
x−1

√
x+1
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• Simplify

y =
a
√
x−1

√
x+1 ln

(
x+

√
x2−1

)
+c1

√
x2−1

√
x2−1

√
x−1

√
x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 46� �
dsolve((-x^2+1)*diff(y(x),x)+a-x*y(x) = 0,y(x), singsol=all)� �

y(x) =
a
√
x2 − 1 ln

(
x+

√
x2 − 1

)
(x− 1) (x+ 1) + c1√

x− 1
√
x+ 1

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 57� �
DSolve[(1-x^2)y'[x]+a-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−a log

(
1− x√

x2−1

)
+ a log

(
x√
x2−1 + 1

)
+ 2c1

2
√
x2 − 1
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10.17 problem 283
10.17.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2632
10.17.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2634
10.17.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2636
10.17.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2640
10.17.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2644

Internal problem ID [3539]
Internal file name [OUTPUT/3032_Sunday_June_05_2022_08_50_10_AM_35706966/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 283.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−x2 + 1

)
y′ + yx = x

10.17.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(y − 1)
x2 − 1

Where f(x) = x
x2−1 and g(y) = y − 1. Integrating both sides gives

1
y − 1 dy = x

x2 − 1 dx∫ 1
y − 1 dy =

∫
x

x2 − 1 dx

ln (y − 1) = ln (x− 1)
2 + ln (x+ 1)

2 + c1
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Raising both side to exponential gives

y − 1 = e
ln(x−1)

2 + ln(x+1)
2 +c1

Which simplifies to

y − 1 = c2e
ln(x−1)

2 + ln(x+1)
2

Which simplifies to
y = c2

√
x− 1

√
x+ 1 ec1 + 1

Summary
The solution(s) found are the following

(1)y = c2
√
x− 1

√
x+ 1 ec1 + 1

Figure 396: Slope field plot

Verification of solutions

y = c2
√
x− 1

√
x+ 1 ec1 + 1

Verified OK.
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10.17.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = − x

x2 − 1
Hence the ode is

y′ − xy

x2 − 1 = − x

x2 − 1
The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

µ = 1√
x− 1

√
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
− x

x2 − 1

)
d
dx

(
y√

x− 1
√
x+ 1

)
=
(

1√
x− 1

√
x+ 1

)(
− x

x2 − 1

)
d
(

y√
x− 1

√
x+ 1

)
=
(
− x

(x2 − 1)
√
x− 1

√
x+ 1

)
dx

Integrating gives

y√
x− 1

√
x+ 1

=
∫

− x

(x2 − 1)
√
x− 1

√
x+ 1

dx

y√
x− 1

√
x+ 1

=
√
x− 1

√
x+ 1

x2 − 1 + c1

Dividing both sides by the integrating factor µ = 1√
x−1

√
x+1 results in

y = (x− 1) (x+ 1)
x2 − 1 + c1

√
x− 1

√
x+ 1
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which simplifies to

y = 1 + c1
√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = 1 + c1
√
x− 1

√
x+ 1

Figure 397: Slope field plot

Verification of solutions

y = 1 + c1
√
x− 1

√
x+ 1

Verified OK.
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10.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y − 1)
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 469: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x−1)

2 + ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x−1)

2 + ln(x+1)
2

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y − 1)
x2 − 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x− 1)
3
2 (x+ 1)

3
2

Sy =
1√

x− 1
√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − x

(x− 1)
3
2 (x+ 1)

3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − R

(R− 1)
3
2 (R + 1)

3
2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1√
R− 1

√
R + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x− 1

√
x+ 1

= 1√
x− 1

√
x+ 1

+ c1

Which simplifies to

y√
x− 1

√
x+ 1

= 1√
x− 1

√
x+ 1

+ c1

Which gives

y = 1 + c1
√
x− 1

√
x+ 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(y−1)
x2−1

dS
dR

= − R

(R−1)
3
2 (R+1)

3
2

R = x

S = y√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = 1 + c1
√
x− 1

√
x+ 1
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Figure 398: Slope field plot

Verification of solutions

y = 1 + c1
√
x− 1

√
x+ 1

Verified OK.

10.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y − 1

)
dy =

(
x

x2 − 1

)
dx(

− x

x2 − 1

)
dx+

(
1

y − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 − 1
N(x, y) = 1

y − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 − 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 − 1 dx

(3)φ = − ln (x− 1)
2 − ln (x+ 1)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y−1 . Therefore equation (4) becomes

(5)1
y − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y − 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y − 1

)
dy

f(y) = ln (y − 1) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (y − 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (y − 1)

The solution becomes
y = e

ln(x−1)
2 + ln(x+1)

2 +c1 + 1

Summary
The solution(s) found are the following

(1)y = e
ln(x−1)

2 + ln(x+1)
2 +c1 + 1

Figure 399: Slope field plot
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Verification of solutions

y = e
ln(x−1)

2 + ln(x+1)
2 +c1 + 1

Verified OK.

10.17.5 Maple step by step solution

Let’s solve
(−x2 + 1) y′ + yx = x

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y−1 = x
(x−1)(x+1)

• Integrate both sides with respect to x∫
y′

y−1dx =
∫

x
(x−1)(x+1)dx+ c1

• Evaluate integral
ln (y − 1) = ln((x−1)(x+1))

2 + c1

• Solve for y

y = e
ln((x−1)(x+1))

2 +c1 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((-x^2+1)*diff(y(x),x)-x+x*y(x) = 0,y(x), singsol=all)� �

y(x) =
√
x− 1

√
x+ 1 c1 + 1
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3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 24� �
DSolve[(1-x^2)y'[x]-x +x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 + c1
√
x2 − 1

y(x) → 1
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10.18 problem 284
10.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2646
10.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2648
10.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2653
10.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2657

Internal problem ID [3540]
Internal file name [OUTPUT/3033_Sunday_June_05_2022_08_50_12_AM_95283926/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 284.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ + yx = x2

10.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1

q(x) = − x2

x2 − 1

Hence the ode is

y′ − xy

x2 − 1 = − x2

x2 − 1
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The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

µ = 1√
x− 1

√
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
− x2

x2 − 1

)
d
dx

(
y√

x− 1
√
x+ 1

)
=
(

1√
x− 1

√
x+ 1

)(
− x2

x2 − 1

)
d
(

y√
x− 1

√
x+ 1

)
=
(
− x2

(x2 − 1)
√
x− 1

√
x+ 1

)
dx

Integrating gives

y√
x− 1

√
x+ 1

=
∫

− x2

(x2 − 1)
√
x− 1

√
x+ 1

dx

y√
x− 1

√
x+ 1

= −
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

√
x2 − 1

+ c1

Dividing both sides by the integrating factor µ = 1√
x−1

√
x+1 results in

y = −
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1
√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = −
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1
√
x− 1

√
x+ 1
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Figure 400: Slope field plot

Verification of solutions

y = −
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1
√
x− 1

√
x+ 1

Verified OK.

10.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y − x)
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 472: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x−1)

2 + ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

2649



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x−1)

2 + ln(x+1)
2

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y − x)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x− 1)
3
2 (x+ 1)

3
2

Sy =
1√

x− 1
√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − x2

(x− 1)
3
2 (x+ 1)

3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − R2

(R− 1)
3
2 (R + 1)

3
2

2650



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
ln
(
R +

√
R2 − 1

)
R2 −R

√
R2 − 1− ln

(
R +

√
R2 − 1

)
√
R− 1

√
R + 1

√
R2 − 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x− 1

√
x+ 1

= −
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

√
x2 − 1

+ c1

Which simplifies to

(x2 − 1) ln
(
x+

√
x2 − 1

)
−

√
x2 − 1

(
c1
√
x− 1

√
x+ 1 + x− y

)
√
x+ 1

√
x− 1

√
x2 − 1

= 0

Which gives

y = −
−c1

√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(y−x)
x2−1

dS
dR

= − R2

(R−1)
3
2 (R+1)

3
2

R = x

S = y√
x− 1

√
x+ 1
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Summary
The solution(s) found are the following
y

= −
−c1

√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

(1)

Figure 401: Slope field plot

Verification of solutions

y=−
−c1

√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

Verified OK.
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10.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy =

(
x2 − xy

)
dx(

−x2 + xy
)
dx+

(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + xy

N(x, y) = −x2 + 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 + xy

)
= x

And
∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((x)− (−2x))

= − 3x
x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

x2−1 dx

The result of integrating gives

µ = e−
3 ln(x−1)

2 − 3 ln(x+1)
2

= 1
(x− 1)

3
2 (x+ 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)

3
2 (x+ 1)

3
2

(
−x2 + xy

)
= (y − x)x

(x− 1)
3
2 (x+ 1)

3
2
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And

N = µN

= 1
(x− 1)

3
2 (x+ 1)

3
2

(
−x2 + 1

)
= − 1√

x− 1
√
x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(y − x)x
(x− 1)

3
2 (x+ 1)

3
2

)
+
(
− 1√

x− 1
√
x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (y − x)x
(x− 1)

3
2 (x+ 1)

3
2
dx

(3)φ = −
(x2 − 1) ln

(
x+

√
x2 − 1

)
− (−y + x)

√
x2 − 1

√
x− 1

√
x+ 1

√
x2 − 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1√

x− 1
√
x+ 1

+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
x−1

√
x+1 . Therefore equation (4) becomes

(5)− 1√
x− 1

√
x+ 1

= − 1√
x− 1

√
x+ 1

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
(x2 − 1) ln

(
x+

√
x2 − 1

)
− (−y + x)

√
x2 − 1

√
x− 1

√
x+ 1

√
x2 − 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(x2 − 1) ln

(
x+

√
x2 − 1

)
− (−y + x)

√
x2 − 1

√
x− 1

√
x+ 1

√
x2 − 1

The solution becomes

y = −
c1
√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

Summary
The solution(s) found are the following

y = −
c1
√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

(1)
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Figure 402: Slope field plot

Verification of solutions

y = −
c1
√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

Verified OK.

10.18.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ + yx = x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xy

x2−1 −
x2

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − xy

x2−1 = − x2

x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − xy

x2−1

)
= −µ(x)x2

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) = 1√

x−1
√
x+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)x2

x2−1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
−µ(x)x2

x2−1 dx+ c1

• Solve for y

y =
∫
−µ(x)x2

x2−1 dx+c1

µ(x)

• Substitute µ(x) = 1√
x−1

√
x+1

y =
√
x− 1

√
x+ 1

(∫
− x2

(x2−1)
√
x−1

√
x+1dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x− 1

√
x+ 1

(
−

ln
(
x+

√
x2−1

)
x2−x

√
x2−1−ln

(
x+

√
x2−1

)
√
x−1

√
x+1

√
x2−1 + c1

)
• Simplify

y =
c1
√
x−1

√
x+1

√
x2−1−ln

(
x+

√
x2−1

)
x2+x

√
x2−1+ln

(
x+

√
x2−1

)
√
x2−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 66� �
dsolve((-x^2+1)*diff(y(x),x)-x^2+x*y(x) = 0,y(x), singsol=all)� �
y(x)

=
√
x− 1

√
x+ 1 c1

√
x2 − 1− ln

(
x+

√
x2 − 1

)
x2 +

√
x2 − 1x+ ln

(
x+

√
x2 − 1

)
√
x2 − 1

3 Solution by Mathematica
Time used: 0.095 (sec). Leaf size: 43� �
DSolve[(1-x^2)y'[x]-x^2 +x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
x2 − 1 log

(√
x2 − 1− x

)
+ c1

√
x2 − 1 + x
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10.19 problem 285
10.19.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2660
10.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2662
10.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2667
10.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2671

Internal problem ID [3541]
Internal file name [OUTPUT/3034_Sunday_June_05_2022_08_50_13_AM_3933009/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 285.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ + yx = −x2

10.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1

q(x) = x2

x2 − 1

Hence the ode is

y′ − xy

x2 − 1 = x2

x2 − 1
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The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

µ = 1√
x− 1

√
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
x2

x2 − 1

)
d
dx

(
y√

x− 1
√
x+ 1

)
=
(

1√
x− 1

√
x+ 1

)(
x2

x2 − 1

)
d
(

y√
x− 1

√
x+ 1

)
=
(

x2

(x2 − 1)
√
x− 1

√
x+ 1

)
dx

Integrating gives

y√
x− 1

√
x+ 1

=
∫

x2

(x2 − 1)
√
x− 1

√
x+ 1

dx

y√
x− 1

√
x+ 1

=
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

√
x2 − 1

+ c1

Dividing both sides by the integrating factor µ = 1√
x−1

√
x+1 results in

y =
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1
√
x− 1

√
x+ 1

which simplifies to

y =
(x2 − 1) ln

(
x+

√
x2 − 1

)
−

√
x2 − 1

(
−c1

√
x− 1

√
x+ 1 + x

)
√
x2 − 1

Summary
The solution(s) found are the following

(1)y =
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
√
x2 − 1

(
−c1

√
x− 1

√
x+ 1 + x

)
√
x2 − 1
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Figure 403: Slope field plot

Verification of solutions

y =
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
√
x2 − 1

(
−c1

√
x− 1

√
x+ 1 + x

)
√
x2 − 1

Verified OK.

10.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y + x)
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 475: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x−1)

2 + ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x−1)

2 + ln(x+1)
2

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y + x)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x− 1)
3
2 (x+ 1)

3
2

Sy =
1√

x− 1
√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2

(x− 1)
3
2 (x+ 1)

3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

(R− 1)
3
2 (R + 1)

3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
ln
(
R +

√
R2 − 1

)
R2 −R

√
R2 − 1− ln

(
R +

√
R2 − 1

)
√
R− 1

√
R + 1

√
R2 − 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x− 1

√
x+ 1

=
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

√
x2 − 1

+ c1

Which simplifies to

−
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
(
−c1

√
x− 1

√
x+ 1 + x+ y

)√
x2 − 1

√
x+ 1

√
x− 1

√
x2 − 1

= 0

Which gives

y =
c1
√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(y+x)
x2−1

dS
dR

= R2

(R−1)
3
2 (R+1)

3
2

R = x

S = y√
x− 1

√
x+ 1
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Summary
The solution(s) found are the following

y =
c1
√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

(1)

Figure 404: Slope field plot

Verification of solutions

y =
c1
√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

Verified OK.
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10.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy =

(
−x2 − xy

)
dx(

x2 + xy
)
dx+

(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + xy

N(x, y) = −x2 + 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 + xy

)
= x

And
∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((x)− (−2x))

= − 3x
x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

x2−1 dx

The result of integrating gives

µ = e−
3 ln(x−1)

2 − 3 ln(x+1)
2

= 1
(x− 1)

3
2 (x+ 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)

3
2 (x+ 1)

3
2

(
x2 + xy

)
= x(y + x)

(x− 1)
3
2 (x+ 1)

3
2
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And

N = µN

= 1
(x− 1)

3
2 (x+ 1)

3
2

(
−x2 + 1

)
= − 1√

x− 1
√
x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x(y + x)
(x− 1)

3
2 (x+ 1)

3
2

)
+
(
− 1√

x− 1
√
x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x(y + x)

(x− 1)
3
2 (x+ 1)

3
2
dx

(3)φ =
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
√
x2 − 1 (y + x)

√
x− 1

√
x+ 1

√
x2 − 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1√

x− 1
√
x+ 1

+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
x−1

√
x+1 . Therefore equation (4) becomes

(5)− 1√
x− 1

√
x+ 1

= − 1√
x− 1

√
x+ 1

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
√
x2 − 1 (y + x)

√
x− 1

√
x+ 1

√
x2 − 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
√
x2 − 1 (y + x)

√
x− 1

√
x+ 1

√
x2 − 1

The solution becomes

y =
−c1

√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

Summary
The solution(s) found are the following

y =
−c1

√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

(1)
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Figure 405: Slope field plot

Verification of solutions

y =
−c1

√
x− 1

√
x+ 1

√
x2 − 1 + ln

(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

)
√
x2 − 1

Verified OK.

10.19.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ + yx = −x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xy

x2−1 +
x2

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − xy

x2−1 = x2

x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − xy

x2−1

)
= µ(x)x2

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) = 1√

x−1
√
x+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)x2

x2−1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)x2

x2−1 dx+ c1

• Solve for y

y =
∫ µ(x)x2

x2−1 dx+c1

µ(x)

• Substitute µ(x) = 1√
x−1

√
x+1

y =
√
x− 1

√
x+ 1

(∫
x2

(x2−1)
√
x−1

√
x+1dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x− 1

√
x+ 1

(
ln
(
x+

√
x2−1

)
x2−x

√
x2−1−ln

(
x+

√
x2−1

)
√
x−1

√
x+1

√
x2−1 + c1

)
• Simplify

y =
(
x2−1

)
ln
(
x+

√
x2−1

)
−
√
x2−1

(
−c1

√
x−1

√
x+1+x

)
√
x2−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 53� �
dsolve((-x^2+1)*diff(y(x),x)+x^2+x*y(x) = 0,y(x), singsol=all)� �

y(x) =
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
√
x2 − 1

(
−
√
x− 1

√
x+ 1 c1 + x

)
√
x2 − 1

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 46� �
DSolve[(1-x^2)y'[x]+x^2 +x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x2 − 1 log

(√
x2 − 1− x

)
+ c1

√
x2 − 1− x
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10.20 problem 286
10.20.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2674
10.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2676
10.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2680
10.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2685

Internal problem ID [3542]
Internal file name [OUTPUT/3035_Sunday_June_05_2022_08_50_14_AM_1303240/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 286.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ + yx = x

(
x2 + 1

)
10.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 + 1
q(x) = x

Hence the ode is

y′ + xy

x2 + 1 = x
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The integrating factor µ is

µ = e
∫

x
x2+1dx

=
√
x2 + 1

The ode becomes

d
dx(µy) = (µ) (x)

d
dx

(√
x2 + 1 y

)
=
(√

x2 + 1
)
(x)

d
(√

x2 + 1 y
)
=
(√

x2 + 1x
)
dx

Integrating gives

√
x2 + 1 y =

∫ √
x2 + 1x dx

√
x2 + 1 y = (x2 + 1)

3
2

3 + c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 results in

y = x2

3 + 1
3 + c1√

x2 + 1

Summary
The solution(s) found are the following

(1)y = x2

3 + 1
3 + c1√

x2 + 1
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Figure 406: Slope field plot

Verification of solutions

y = x2

3 + 1
3 + c1√

x2 + 1

Verified OK.

10.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x(−x2 + y − 1)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 478: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1

dy

Which results in

S =
√
x2 + 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(−x2 + y − 1)
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x2 + 1

Sy =
√
x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

√
x2 + 1x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

√
R2 + 1R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (R2 + 1)
3
2

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y = (x2 + 1)

3
2

3 + c1

Which simplifies to

√
x2 + 1 y = (x2 + 1)

3
2

3 + c1

Which gives

y = (x2 + 1)
3
2 + 3c1

3
√
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
(
−x2+y−1

)
x2+1

dS
dR

=
√
R2 + 1R

R = x

S =
√
x2 + 1 y
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Summary
The solution(s) found are the following

(1)y = (x2 + 1)
3
2 + 3c1

3
√
x2 + 1

Figure 407: Slope field plot

Verification of solutions

y = (x2 + 1)
3
2 + 3c1

3
√
x2 + 1

Verified OK.

10.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy =

(
x
(
x2 + 1

)
− xy

)
dx(

−x
(
x2 + 1

)
+ xy

)
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
x2 + 1

)
+ xy

N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−x
(
x2 + 1

)
+ xy

)
= x

And

∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((x)− (2x))

= − x

x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− x

x2+1 dx

The result of integrating gives

µ = e−
ln
(
x2+1

)
2

= 1√
x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + 1

(
−x
(
x2 + 1

)
+ xy

)
= x(−x2 + y − 1)√

x2 + 1
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And

N = µN

= 1√
x2 + 1

(
x2 + 1

)
=

√
x2 + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x(−x2 + y − 1)√
x2 + 1

)
+
(√

x2 + 1
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x(−x2 + y − 1)√

x2 + 1
dx

(3)φ = −(x2 − 3y + 1)
√
x2 + 1

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1. Therefore equation (4) becomes

(5)
√
x2 + 1 =

√
x2 + 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −(x2 − 3y + 1)
√
x2 + 1

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(x2 − 3y + 1)
√
x2 + 1

3

The solution becomes

y =
√
x2 + 1x2 +

√
x2 + 1 + 3c1

3
√
x2 + 1

Summary
The solution(s) found are the following

(1)y =
√
x2 + 1x2 +

√
x2 + 1 + 3c1

3
√
x2 + 1
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Figure 408: Slope field plot

Verification of solutions

y =
√
x2 + 1x2 +

√
x2 + 1 + 3c1

3
√
x2 + 1

Verified OK.

10.20.4 Maple step by step solution

Let’s solve
(x2 + 1) y′ + yx = x(x2 + 1)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2+1 + x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2+1 = x

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + xy

x2+1

)
= µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) =
√
x2 + 1

y =
∫ √

x2+1xdx+c1√
x2+1

• Evaluate the integrals on the rhs

y =
(
x2+1

) 3
2

3 +c1√
x2+1

• Simplify

y =
√
x2+1x2+

√
x2+1+3c1

3
√
x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve((x^2+1)*diff(y(x),x) = x*(x^2+1)-x*y(x),y(x), singsol=all)� �

y(x) = x2

3 + 1
3 + c1√

x2 + 1

3 Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 27� �
DSolve[(1+x^2)*y'[x]==x*(1+x^2)-x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3
(
x2 + 1

)
+ c1√

x2 + 1
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10.21 problem 287
10.21.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2688
10.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2690
10.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2694
10.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2699

Internal problem ID [3543]
Internal file name [OUTPUT/3036_Sunday_June_05_2022_08_50_16_AM_2656414/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 287.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ − x

(
3x2 − y

)
= 0

10.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 + 1

q(x) = 3x3

x2 + 1

Hence the ode is

y′ + xy

x2 + 1 = 3x3

x2 + 1
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The integrating factor µ is

µ = e
∫

x
x2+1dx

=
√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
3x3

x2 + 1

)
d
dx

(√
x2 + 1 y

)
=
(√

x2 + 1
)( 3x3

x2 + 1

)
d
(√

x2 + 1 y
)
=
(

3x3
√
x2 + 1

)
dx

Integrating gives

√
x2 + 1 y =

∫ 3x3
√
x2 + 1

dx
√
x2 + 1 y =

√
x2 + 1

(
x2 − 2

)
+ c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 results in

y = x2 − 2 + c1√
x2 + 1

Summary
The solution(s) found are the following

(1)y = x2 − 2 + c1√
x2 + 1
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Figure 409: Slope field plot

Verification of solutions

y = x2 − 2 + c1√
x2 + 1

Verified OK.

10.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x(−3x2 + y)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 481: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1

dy

Which results in

S =
√
x2 + 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(−3x2 + y)
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x2 + 1

Sy =
√
x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3x3

√
x2 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3R3

√
R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
R2 + 1

(
R2 − 2

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y =

√
x2 + 1

(
x2 − 2

)
+ c1

Which simplifies to (
−x2 + y + 2

)√
x2 + 1− c1 = 0

Which gives

y =
√
x2 + 1x2 − 2

√
x2 + 1 + c1√

x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
(
−3x2+y

)
x2+1

dS
dR

= 3R3
√
R2+1

R = x

S =
√
x2 + 1 y
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Summary
The solution(s) found are the following

(1)y =
√
x2 + 1 x2 − 2

√
x2 + 1 + c1√

x2 + 1

Figure 410: Slope field plot

Verification of solutions

y =
√
x2 + 1 x2 − 2

√
x2 + 1 + c1√

x2 + 1

Verified OK.

10.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy =

(
x
(
3x2 − y

))
dx(

−x
(
3x2 − y

))
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
3x2 − y

)
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−x
(
3x2 − y

))
= x

And

∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((x)− (2x))

= − x

x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− x

x2+1 dx

The result of integrating gives

µ = e−
ln
(
x2+1

)
2

= 1√
x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + 1

(
−x
(
3x2 − y

))
= −3x3 + xy√

x2 + 1

2696



And

N = µN

= 1√
x2 + 1

(
x2 + 1

)
=

√
x2 + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−3x3 + xy√
x2 + 1

)
+
(√

x2 + 1
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x3 + xy√

x2 + 1
dx

(3)φ = −
(
x2 − y − 2

)√
x2 + 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1. Therefore equation (4) becomes

(5)
√
x2 + 1 =

√
x2 + 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
(
x2 − y − 2

)√
x2 + 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
x2 − y − 2

)√
x2 + 1

The solution becomes

y =
√
x2 + 1 x2 − 2

√
x2 + 1 + c1√

x2 + 1

Summary
The solution(s) found are the following

(1)y =
√
x2 + 1 x2 − 2

√
x2 + 1 + c1√

x2 + 1
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Figure 411: Slope field plot

Verification of solutions

y =
√
x2 + 1 x2 − 2

√
x2 + 1 + c1√

x2 + 1

Verified OK.

10.21.4 Maple step by step solution

Let’s solve
(x2 + 1) y′ − x(3x2 − y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2+1 +
3x3

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2+1 = 3x3

x2+1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + xy

x2+1

)
= 3µ(x)x3

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 3µ(x)x3

x2+1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ 3µ(x)x3

x2+1 dx+ c1

• Solve for y

y =
∫ 3µ(x)x3

x2+1 dx+c1

µ(x)

• Substitute µ(x) =
√
x2 + 1

y =
∫ 3x3√

x2+1
dx+c1

√
x2+1

• Evaluate the integrals on the rhs

y =
√
x2+1

(
x2−2

)
+c1√

x2+1

• Simplify

y =
√
x2+1x2−2

√
x2+1+c1√

x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((x^2+1)*diff(y(x),x) = x*(3*x^2-y(x)),y(x), singsol=all)� �

y(x) = x2 − 2 + c1√
x2 + 1

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 22� �
DSolve[(1+x^2)*y'[x]==x*(3*x^2-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + c1√
x2 + 1

− 2
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Internal problem ID [3544]
Internal file name [OUTPUT/3037_Sunday_June_05_2022_08_50_17_AM_76301306/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 288.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−x2 + 1

)
y′ + 2yx = 0

10.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2xy
x2 − 1
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Where f(x) = 2x
x2−1 and g(y) = y. Integrating both sides gives

1
y
dy = 2x

x2 − 1 dx∫ 1
y
dy =

∫ 2x
x2 − 1 dx

ln (y) = ln (x− 1) + ln (x+ 1) + c1

y = eln(x−1)+ln(x+1)+c1

= c1eln(x−1)+ln(x+1)

Which simplifies to
y = c1

(
x2 − 1

)
Summary
The solution(s) found are the following

(1)y = c1
(
x2 − 1

)

Figure 412: Slope field plot

Verification of solutions

y = c1
(
x2 − 1

)
Verified OK.
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10.22.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 2x
x2 − 1

q(x) = 0

Hence the ode is

y′ − 2xy
x2 − 1 = 0

The integrating factor µ is

µ = e
∫
− 2x

x2−1dx

= e− ln(x−1)−ln(x+1)

Which simplifies to

µ = 1
x2 − 1

The ode becomes

d
dxµy = 0

d
dx

(
y

x2 − 1

)
= 0

Integrating gives
y

x2 − 1 = c1

Dividing both sides by the integrating factor µ = 1
x2−1 results in

y = c1
(
x2 − 1

)
Summary
The solution(s) found are the following

(1)y = c1
(
x2 − 1

)
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Figure 413: Slope field plot

Verification of solutions

y = c1
(
x2 − 1

)
Verified OK.

10.22.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
−x2 + 1

)
(u′(x)x+ u(x)) + 2u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 + 1)
x (x2 − 1)

2705



Where f(x) = x2+1
x(x2−1) and g(u) = u. Integrating both sides gives

1
u
du = x2 + 1

x (x2 − 1) dx∫ 1
u
du =

∫
x2 + 1

x (x2 − 1) dx

ln (u) = ln (x+ 1) + ln (x− 1)− ln (x) + c2

u = eln(x+1)+ln(x−1)−ln(x)+c2

= c2eln(x+1)+ln(x−1)−ln(x)

Which simplifies to

u(x) = c2

(
x− 1

x

)

Therefore the solution y is

y = ux

= xc2

(
x− 1

x

)
Summary
The solution(s) found are the following

(1)y = xc2

(
x− 1

x

)
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Figure 414: Slope field plot

Verification of solutions

y = xc2

(
x− 1

x

)
Verified OK.

10.22.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 484: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eln(x−1)+ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x−1)+ln(x+1)dy

Which results in

S = y

(x+ 1) (x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2yx
(x2 − 1)2

Sy =
1

x2 − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 − 1 = c1

Which simplifies to
y

x2 − 1 = c1

Which gives

y = c1
(
x2 − 1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2xy
x2−1

dS
dR

= 0

R = x

S = y

x2 − 1

Summary
The solution(s) found are the following

(1)y = c1
(
x2 − 1

)
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Figure 415: Slope field plot

Verification of solutions

y = c1
(
x2 − 1

)
Verified OK.

10.22.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
2y

)
dy =

(
x

x2 − 1

)
dx(

− x

x2 − 1

)
dx+

(
1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 − 1
N(x, y) = 1

2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 − 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 − 1 dx

(3)φ = − ln (x− 1)
2 − ln (x+ 1)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y . Therefore equation (4) becomes

(5)1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2y

)
dy

f(y) = ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (y)
2

The solution becomes
y = e2c1(x+ 1) (x− 1)

Summary
The solution(s) found are the following

(1)y = e2c1(x+ 1) (x− 1)
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Figure 416: Slope field plot

Verification of solutions

y = e2c1(x+ 1) (x− 1)

Verified OK.

10.22.6 Maple step by step solution

Let’s solve
(−x2 + 1) y′ + 2yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 2x

−x2+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 2x

−x2+1dx+ c1

• Evaluate integral
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ln (y) = ln (x− 1) + ln (x+ 1) + c1

• Solve for y
y = ec1(x+ 1) (x− 1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((-x^2+1)*diff(y(x),x)+2*x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1x
2 − c1

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 18� �
DSolve[(1-x^2)y'[x]+2 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
(
x2 − 1

)
y(x) → 0
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10.23 problem 289
10.23.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2717
10.23.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 2719
10.23.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2721
10.23.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2725
10.23.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2729

Internal problem ID [3545]
Internal file name [OUTPUT/3038_Sunday_June_05_2022_08_50_19_AM_97946056/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 289.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ − 2x(−y + x) = 0

10.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 + 1

q(x) = 2x2

x2 + 1

Hence the ode is

y′ + 2xy
x2 + 1 = 2x2

x2 + 1
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The integrating factor µ is

µ = e
∫ 2x

x2+1dx

= x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
2x2

x2 + 1

)
d
dx
((
x2 + 1

)
y
)
=
(
x2 + 1

)( 2x2

x2 + 1

)
d
((
x2 + 1

)
y
)
=
(
2x2) dx

Integrating gives (
x2 + 1

)
y =

∫
2x2 dx(

x2 + 1
)
y = 2x3

3 + c1

Dividing both sides by the integrating factor µ = x2 + 1 results in

y = 2x3

3 (x2 + 1) +
c1

x2 + 1

which simplifies to

y = 2x3 + 3c1
3x2 + 3

Summary
The solution(s) found are the following

(1)y = 2x3 + 3c1
3x2 + 3
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Figure 417: Slope field plot

Verification of solutions

y = 2x3 + 3c1
3x2 + 3

Verified OK.

10.23.2 Solving as differentialType ode

Writing the ode as

y′ = 2x(−y + x)
x2 + 1 (1)

Which becomes

0 =
(
−x2 − 1

)
dy + (2x(−y + x)) dx (2)

But the RHS is complete differential because(
−x2 − 1

)
dy + (2x(−y + x)) dx = d

(
2
3x

3 − x2y − y

)
Hence (2) becomes

0 = d

(
2
3x

3 − x2y − y

)

2719



Integrating both sides gives gives these solutions

y = 2x3 + 3c1
3x2 + 3 + c1

Summary
The solution(s) found are the following

(1)y = 2x3 + 3c1
3x2 + 3 + c1

Figure 418: Slope field plot

Verification of solutions

y = 2x3 + 3c1
3x2 + 3 + c1

Verified OK.
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10.23.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x(y − x)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 487: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2+1

dy

Which results in

S =
(
x2 + 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x(y − x)
x2 + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)
y = 2x3

3 + c1

Which simplifies to

(
x2 + 1

)
y = 2x3

3 + c1

Which gives

y = 2x3 + 3c1
3x2 + 3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x(y−x)
x2+1

dS
dR

= 2R2

R = x

S =
(
x2 + 1

)
y

Summary
The solution(s) found are the following

(1)y = 2x3 + 3c1
3x2 + 3
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Figure 419: Slope field plot

Verification of solutions

y = 2x3 + 3c1
3x2 + 3

Verified OK.

10.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy = (2x(−y + x)) dx

(−2x(−y + x)) dx+
(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x(−y + x)
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2x(−y + x))

= 2x

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x(−y + x) dx

(3)φ = −2
3x

3 + x2y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 1. Therefore equation (4) becomes

(5)x2 + 1 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2
3x

3 + x2y + y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2
3x

3 + x2y + y

The solution becomes

y = 2x3 + 3c1
3x2 + 3

Summary
The solution(s) found are the following

(1)y = 2x3 + 3c1
3x2 + 3

Figure 420: Slope field plot

Verification of solutions

y = 2x3 + 3c1
3x2 + 3

Verified OK.
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10.23.5 Maple step by step solution

Let’s solve
(x2 + 1) y′ − 2x(−y + x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2xy

x2+1 +
2x2

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2xy

x2+1 = 2x2

x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 2xy

x2+1

)
= 2µ(x)x2

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)x2

x2+1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ 2µ(x)x2

x2+1 dx+ c1

• Solve for y

y =
∫ 2µ(x)x2

x2+1 dx+c1

µ(x)

• Substitute µ(x) = x2 + 1

y =
∫
2x2dx+c1
x2+1

• Evaluate the integrals on the rhs

y =
2x3
3 +c1
x2+1

• Simplify
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y = 2x3+3c1
3x2+3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((x^2+1)*diff(y(x),x) = 2*x*(x-y(x)),y(x), singsol=all)� �

y(x) = 2x3 + 3c1
3x2 + 3

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 25� �
DSolve[(1+x^2)y'[x]==2 x(x-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3 + 3c1
3x2 + 3
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10.24.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2731
10.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2733
10.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2737
10.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2742

Internal problem ID [3546]
Internal file name [OUTPUT/3039_Sunday_June_05_2022_08_50_20_AM_49245315/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 290.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ − 2yx = 2x

(
x2 + 1

)2
10.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 2x
x2 + 1

q(x) = 2x
(
x2 + 1

)
Hence the ode is

y′ − 2xy
x2 + 1 = 2x

(
x2 + 1

)
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The integrating factor µ is

µ = e
∫
− 2x

x2+1dx

= 1
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
2x
(
x2 + 1

))
d
dx

(
y

x2 + 1

)
=
(

1
x2 + 1

)(
2x
(
x2 + 1

))
d
(

y

x2 + 1

)
= (2x) dx

Integrating gives

y

x2 + 1 =
∫

2x dx
y

x2 + 1 = x2 + c1

Dividing both sides by the integrating factor µ = 1
x2+1 results in

y = x2(x2 + 1
)
+ c1

(
x2 + 1

)
which simplifies to

y =
(
x2 + 1

) (
x2 + c1

)
Summary
The solution(s) found are the following

(1)y =
(
x2 + 1

) (
x2 + c1

)
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Figure 421: Slope field plot

Verification of solutions

y =
(
x2 + 1

) (
x2 + c1

)
Verified OK.

10.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x(x4 + 2x2 + y + 1)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 490: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2 + 1dy

Which results in

S = y

x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x(x4 + 2x2 + y + 1)
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2xy
(x2 + 1)2

Sy =
1

x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 + 1 = x2 + c1

Which simplifies to
y

x2 + 1 = x2 + c1

Which gives

y =
(
x2 + 1

) (
x2 + c1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x
(
x4+2x2+y+1

)
x2+1

dS
dR

= 2R

R = x

S = y

x2 + 1

Summary
The solution(s) found are the following

(1)y =
(
x2 + 1

) (
x2 + c1

)
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Figure 422: Slope field plot

Verification of solutions

y =
(
x2 + 1

) (
x2 + c1

)
Verified OK.

10.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

2737



Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 + 1
)
dy =

(
2x
(
x2 + 1

)2 + 2xy
)
dx(

−2x
(
x2 + 1

)2 − 2xy
)
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x
(
x2 + 1

)2 − 2xy
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2x

(
x2 + 1

)2 − 2xy
)

= −2x

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((−2x)− (2x))

= − 4x
x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4x

x2+1 dx

The result of integrating gives

µ = e−2 ln
(
x2+1

)
= 1

(x2 + 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x2 + 1)2

(
−2x

(
x2 + 1

)2 − 2xy
)

= −2x(x4 + 2x2 + y + 1)
(x2 + 1)2

And

N = µN

= 1
(x2 + 1)2

(
x2 + 1

)
= 1

x2 + 1
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x(x4 + 2x2 + y + 1)
(x2 + 1)2

)
+
(

1
x2 + 1

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x(x4 + 2x2 + y + 1)

(x2 + 1)2
dx

(3)φ = −x2 + y

x2 + 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x2+1 . Therefore equation (4) becomes

(5)1
x2 + 1 = 1

x2 + 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2 + y

x2 + 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 + y

x2 + 1
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The solution becomes
y =

(
x2 + 1

) (
x2 + c1

)
Summary
The solution(s) found are the following

(1)y =
(
x2 + 1

) (
x2 + c1

)

Figure 423: Slope field plot

Verification of solutions

y =
(
x2 + 1

) (
x2 + c1

)
Verified OK.

2741



10.24.4 Maple step by step solution

Let’s solve
(x2 + 1) y′ − 2yx = 2x(x2 + 1)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2xy

x2+1 + 2x(x2 + 1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2xy

x2+1 = 2x(x2 + 1)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 2xy

x2+1

)
= 2µ(x)x(x2 + 1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = 1

x2+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x)x(x2 + 1) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x)x(x2 + 1) dx+ c1

• Solve for y

y =
∫
2µ(x)x

(
x2+1

)
dx+c1

µ(x)

• Substitute µ(x) = 1
x2+1

y = (x2 + 1)
(∫

2xdx+ c1
)

• Evaluate the integrals on the rhs
y = (x2 + 1) (x2 + c1)

2742



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((x^2+1)*diff(y(x),x) = 2*x*(x^2+1)^2+2*x*y(x),y(x), singsol=all)� �

y(x) =
(
x2 + c1

) (
x2 + 1

)
3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 17� �
DSolve[(1+x^2)y'[x]==2 x(1+x^2)^2+2 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x2 + 1

) (
x2 + c1

)
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10.25 problem 291
10.25.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2744
10.25.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2746
10.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2750
10.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2754

Internal problem ID [3547]
Internal file name [OUTPUT/3040_Sunday_June_05_2022_08_50_22_AM_85962144/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 10
Problem number: 291.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ − 2yx = − cos (x)

10.25.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 − 1

q(x) = cos (x)
x2 − 1

Hence the ode is

y′ + 2xy
x2 − 1 = cos (x)

x2 − 1
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The integrating factor µ is

µ = e
∫ 2x

x2−1dx

= eln(x−1)+ln(x+1)

Which simplifies to
µ = x2 − 1

The ode becomes

d
dx(µy) = (µ)

(
cos (x)
x2 − 1

)
d
dx
((
x2 − 1

)
y
)
=
(
x2 − 1

)(cos (x)
x2 − 1

)
d
((
x2 − 1

)
y
)
= cos (x) dx

Integrating gives (
x2 − 1

)
y =

∫
cos (x) dx(

x2 − 1
)
y = sin (x) + c1

Dividing both sides by the integrating factor µ = x2 − 1 results in

y = sin (x)
x2 − 1 + c1

x2 − 1

which simplifies to

y = sin (x) + c1
x2 − 1

Summary
The solution(s) found are the following

(1)y = sin (x) + c1
x2 − 1
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Figure 424: Slope field plot

Verification of solutions

y = sin (x) + c1
x2 − 1

Verified OK.

10.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy + cos (x)
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 493: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(x−1)−ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x−1)−ln(x+1)dy

Which results in

S = (x− 1) (x+ 1) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy + cos (x)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y − y = sin (x) + c1

Which simplifies to

x2y − y = sin (x) + c1

Which gives

y = sin (x) + c1
x2 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2xy+cos(x)
x2−1

dS
dR

= cos (R)

R = x

S = x2y − y

Summary
The solution(s) found are the following

(1)y = sin (x) + c1
x2 − 1
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Figure 425: Slope field plot

Verification of solutions

y = sin (x) + c1
x2 − 1

Verified OK.

10.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy = (− cos (x) + 2xy) dx

(−2xy + cos (x)) dx+
(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy + cos (x)
N(x, y) = −x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy + cos (x))

= −2x

And
∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

2751



Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2xy + cos (x) dx

(3)φ = −x2y + sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2 + 1. Therefore equation (4) becomes

(5)−x2 + 1 = −x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2y + sin (x) + y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2y + sin (x) + y

The solution becomes

y = −c1 + sin (x)
x2 − 1

Summary
The solution(s) found are the following

(1)y = −c1 + sin (x)
x2 − 1

Figure 426: Slope field plot

Verification of solutions

y = −c1 + sin (x)
x2 − 1

Verified OK.
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10.25.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ − 2yx = − cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2xy

x2−1 +
cos(x)
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2xy

x2−1 = cos(x)
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2xy

x2−1

)
= µ(x) cos(x)

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) = (x− 1) (x+ 1)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) cos(x)
x2−1 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) cos(x)
x2−1 dx+ c1

• Solve for y

y =
∫ µ(x) cos(x)

x2−1 dx+c1

µ(x)

• Substitute µ(x) = (x− 1) (x+ 1)

y =
∫ (x−1)(x+1) cos(x)

x2−1 dx+c1

(x−1)(x+1)

• Evaluate the integrals on the rhs
y = sin(x)+c1

(x−1)(x+1)

• Simplify
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y = sin(x)+c1
x2−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((-x^2+1)*diff(y(x),x)+cos(x) = 2*x*y(x),y(x), singsol=all)� �

y(x) = sin (x) + c1
x2 − 1

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 18� �
DSolve[(1-x^2)y'[x]+Cos[x]==2 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1
x2 − 1
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11.1 problem 292
11.1.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2757
11.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2759
11.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2763
11.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2767

Internal problem ID [3548]
Internal file name [OUTPUT/3041_Sunday_June_05_2022_08_50_23_AM_4202635/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 292.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

2yx+
(
x2 + 1

)
y′ = tan (x)

11.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 + 1

q(x) = tan (x)
x2 + 1

Hence the ode is

y′ + 2xy
x2 + 1 = tan (x)

x2 + 1
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The integrating factor µ is

µ = e
∫ 2x

x2+1dx

= x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
tan (x)
x2 + 1

)
d
dx
((
x2 + 1

)
y
)
=
(
x2 + 1

)(tan (x)
x2 + 1

)
d
((
x2 + 1

)
y
)
= tan (x) dx

Integrating gives (
x2 + 1

)
y =

∫
tan (x) dx(

x2 + 1
)
y = − ln (cos (x)) + c1

Dividing both sides by the integrating factor µ = x2 + 1 results in

y = − ln (cos (x))
x2 + 1 + c1

x2 + 1

which simplifies to

y = − ln (cos (x)) + c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = − ln (cos (x)) + c1
x2 + 1
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Figure 427: Slope field plot

Verification of solutions

y = − ln (cos (x)) + c1
x2 + 1

Verified OK.

11.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −− tan (x) + 2xy
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 496: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2+1

dy

Which results in

S =
(
x2 + 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −− tan (x) + 2xy
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)
y = − ln (cos (x)) + c1

Which simplifies to (
x2 + 1

)
y = − ln (cos (x)) + c1

Which gives

y = − ln (cos (x))− c1
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −− tan(x)+2xy
x2+1

dS
dR

= tan (R)

R = x

S =
(
x2 + 1

)
y

Summary
The solution(s) found are the following

(1)y = − ln (cos (x))− c1
x2 + 1
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Figure 428: Slope field plot

Verification of solutions

y = − ln (cos (x))− c1
x2 + 1

Verified OK.

11.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy = (tan (x)− 2xy) dx

(− tan (x) + 2xy) dx+
(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x) + 2xy
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− tan (x) + 2xy)

= 2x

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (x) + 2xy dx

(3)φ = x2y + ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 1. Therefore equation (4) becomes

(5)x2 + 1 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2y + ln (cos (x)) + y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2y + ln (cos (x)) + y

The solution becomes

y = − ln (cos (x))− c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = − ln (cos (x))− c1
x2 + 1

Figure 429: Slope field plot

Verification of solutions

y = − ln (cos (x))− c1
x2 + 1

Verified OK.
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11.1.4 Maple step by step solution

Let’s solve
2yx+ (x2 + 1) y′ = tan (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2xy

x2+1 +
tan(x)
x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2xy

x2+1 = tan(x)
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2xy

x2+1

)
= µ(x) tan(x)

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) tan(x)
x2+1 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) tan(x)
x2+1 dx+ c1

• Solve for y

y =
∫ µ(x) tan(x)

x2+1 dx+c1

µ(x)

• Substitute µ(x) = x2 + 1

y =
∫
tan(x)dx+c1

x2+1

• Evaluate the integrals on the rhs
y = − ln(cos(x))+c1

x2+1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve((x^2+1)*diff(y(x),x) = tan(x)-2*x*y(x),y(x), singsol=all)� �

y(x) = − ln (cos (x)) + c1
x2 + 1

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 21� �
DSolve[(1+x^2)y'[x]==Tan[x]-2 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − log(cos(x)) + c1
x2 + 1
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11.2 problem 293
11.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2769
11.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2771
11.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2774
11.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2778

Internal problem ID [3549]
Internal file name [OUTPUT/3042_Sunday_June_05_2022_08_50_25_AM_12427086/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 293.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ − 4yx = a

11.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 4x
x2 − 1

q(x) = − a

x2 − 1

Hence the ode is

y′ + 4xy
x2 − 1 = − a

x2 − 1
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The integrating factor µ is

µ = e
∫ 4x

x2−1dx

= e2 ln(x−1)+2 ln(x+1)

Which simplifies to
µ = x4 − 2x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
− a

x2 − 1

)
d
dx
((
x4 − 2x2 + 1

)
y
)
=
(
x4 − 2x2 + 1

)(
− a

x2 − 1

)
d
((
x4 − 2x2 + 1

)
y
)
=
((
−x2 + 1

)
a
)
dx

Integrating gives (
x4 − 2x2 + 1

)
y =

∫ (
−x2 + 1

)
a dx(

x4 − 2x2 + 1
)
y = a

(
−1
3x

3 + x

)
+ c1

Dividing both sides by the integrating factor µ = x4 − 2x2 + 1 results in

y =
a
(
−1

3x
3 + x

)
x4 − 2x2 + 1 + c1

x4 − 2x2 + 1

which simplifies to

y = −a x3 + 3ax+ 3c1
3x4 − 6x2 + 3

Summary
The solution(s) found are the following

(1)y = −a x3 + 3ax+ 3c1
3x4 − 6x2 + 3

Verification of solutions

y = −a x3 + 3ax+ 3c1
3x4 − 6x2 + 3

Verified OK.
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11.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4xy + a

x2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 499: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e−2 ln(x−1)−2 ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−2 ln(x−1)−2 ln(x+1)dy

Which results in

S = (x− 1)2 (x+ 1)2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4xy + a

x2 − 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 4y

(
x3 − x

)
Sy = (x− 1)2 (x+ 1)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(
−x2 + 1

)
a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=
(
−R2 + 1

)
a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
3R

3a+ aR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)2 (x+ 1)2 y = −1
3a x

3 + ax+ c1

Which simplifies to

(x− 1)2 (x+ 1)2 y = −1
3a x

3 + ax+ c1

Which gives

y = −a x3 + 3ax+ 3c1
3 (x− 1)2 (x+ 1)2

Summary
The solution(s) found are the following

(1)y = −a x3 + 3ax+ 3c1
3 (x− 1)2 (x+ 1)2

Verification of solutions

y = −a x3 + 3ax+ 3c1
3 (x− 1)2 (x+ 1)2

Verified OK.
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11.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy = (4xy + a) dx

(−4xy − a) dx+
(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4xy − a

N(x, y) = −x2 + 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−4xy − a)

= −4x

And
∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((−4x)− (−2x))

= 2x
x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2x

x2−1 dx

The result of integrating gives

µ = eln(x−1)+ln(x+1)

= x2 − 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2 − 1(−4xy − a)
= −(4xy + a)

(
x2 − 1

)
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And

N = µN

= x2 − 1
(
−x2 + 1

)
= −

(
x2 − 1

)2
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(4xy + a)
(
x2 − 1

))
+
(
−
(
x2 − 1

)2) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−(4xy + a)

(
x2 − 1

)
dx

(3)φ = −x4y − 1
3a x

3 + 2x2y + ax+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x4 + 2x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −(x2 − 1)2. Therefore equation (4) becomes

(5)−
(
x2 − 1

)2 = −x4 + 2x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x4y − 1
3a x

3 + 2x2y + ax− y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x4y − 1
3a x

3 + 2x2y + ax− y

The solution becomes

y = −a x3 − 3ax+ 3c1
3 (x4 − 2x2 + 1)

Summary
The solution(s) found are the following

(1)y = −a x3 − 3ax+ 3c1
3 (x4 − 2x2 + 1)

Verification of solutions

y = −a x3 − 3ax+ 3c1
3 (x4 − 2x2 + 1)

Verified OK.
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11.2.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ − 4yx = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 4xy

x2−1 −
a

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 4xy

x2−1 = − a
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 4xy

x2−1

)
= −µ(x)a

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 4xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 4µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) = (x− 1)2 (x+ 1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)a

x2−1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)a

x2−1dx+ c1

• Solve for y

y =
∫
−µ(x)a

x2−1 dx+c1

µ(x)

• Substitute µ(x) = (x− 1)2 (x+ 1)2

y =
∫
− (x−1)2(x+1)2a

x2−1 dx+c1

(x−1)2(x+1)2

• Evaluate the integrals on the rhs

y = −a
( 1
3x

3−x
)
+c1

(x−1)2(x+1)2
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• Simplify
y = −a x3+3ax+3c1

3(x−1)2(x+1)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve((-x^2+1)*diff(y(x),x) = a+4*x*y(x),y(x), singsol=all)� �

y(x) = −a x3 + 3ax+ 3c1
3 (x− 1)2 (x+ 1)2

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 30� �
DSolve[(1-x^2)y'[x]==a+4 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ax(x2 − 3) + 3c1
3 (x2 − 1)2
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Internal problem ID [3550]
Internal file name [OUTPUT/3043_Sunday_June_05_2022_08_50_26_AM_81757884/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 294.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ − (2bx+ a) y = 0

11.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (2bx+ a) y
x2 + 1
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Where f(x) = 2bx+a
x2+1 and g(y) = y. Integrating both sides gives

1
y
dy = 2bx+ a

x2 + 1 dx∫ 1
y
dy =

∫ 2bx+ a

x2 + 1 dx

ln (y) = b ln
(
x2 + 1

)
+ a arctan (x) + c1

y = eb ln
(
x2+1

)
+a arctan(x)+c1

= c1eb ln
(
x2+1

)
+a arctan(x)

Which simplifies to

y = c1
(
x2 + 1

)b ea arctan(x)
Summary
The solution(s) found are the following

(1)y = c1
(
x2 + 1

)b ea arctan(x)
Verification of solutions

y = c1
(
x2 + 1

)b ea arctan(x)
Verified OK.

11.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2bx+ a

x2 + 1
q(x) = 0

Hence the ode is

y′ − (2bx+ a) y
x2 + 1 = 0

The integrating factor µ is

µ = e
∫
− 2bx+a

x2+1 dx

= e−b ln
(
x2+1

)
−a arctan(x)
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Which simplifies to

µ =
(
x2 + 1

)−b e−a arctan(x)

The ode becomes

d
dxµy = 0

d
dx

((
x2 + 1

)−b e−a arctan(x)y
)
= 0

Integrating gives (
x2 + 1

)−b e−a arctan(x)y = c1

Dividing both sides by the integrating factor µ = (x2 + 1)−b e−a arctan(x) results in

y = c1
(
x2 + 1

)b ea arctan(x)
Summary
The solution(s) found are the following

(1)y = c1
(
x2 + 1

)b ea arctan(x)
Verification of solutions

y = c1
(
x2 + 1

)b ea arctan(x)
Verified OK.

11.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + 1

)
(u′(x)x+ u(x))− (2bx+ a)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(2b x2 + ax− x2 − 1)
x (x2 + 1)
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Where f(x) = 2b x2+ax−x2−1
x(x2+1) and g(u) = u. Integrating both sides gives

1
u
du = 2b x2 + ax− x2 − 1

x (x2 + 1) dx∫ 1
u
du =

∫ 2b x2 + ax− x2 − 1
x (x2 + 1) dx

ln (u) = b ln
(
x2 + 1

)
+ a arctan (x)− ln (x) + c2

u = eb ln
(
x2+1

)
+a arctan(x)−ln(x)+c2

= c2eb ln
(
x2+1

)
+a arctan(x)−ln(x)

Which simplifies to

u(x) = c2(x2 + 1)b ea arctan(x)
x

Therefore the solution y is

y = ux

= c2
(
x2 + 1

)b ea arctan(x)
Summary
The solution(s) found are the following

(1)y = c2
(
x2 + 1

)b ea arctan(x)
Verification of solutions

y = c2
(
x2 + 1

)b ea arctan(x)
Verified OK.

11.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (2bx+ a) y
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 502: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eb ln

(
x2+1

)
+a arctan(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eb ln(x2+1)+a arctan(x)dy

Which results in

S = eb ln
(

1
x2+1

)
−a arctan(x)

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (2bx+ a) y
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y
(
x2 + 1

)−b−1 (2bx+ a) e−a arctan(x)

Sy =
(
x2 + 1

)−b e−a arctan(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)−b e−a arctan(x)y = c1

Which simplifies to (
x2 + 1

)−b e−a arctan(x)y = c1

Which gives

y = c1
(
x2 + 1

)b ea arctan(x)
Summary
The solution(s) found are the following

(1)y = c1
(
x2 + 1

)b ea arctan(x)
Verification of solutions

y = c1
(
x2 + 1

)b ea arctan(x)
Verified OK.

11.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
2bx+ a

x2 + 1

)
dx(

−2bx+ a

x2 + 1

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2bx+ a

x2 + 1
N(x, y) = 1

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2bx+ a

x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2bx+ a

x2 + 1 dx

(3)φ = −b ln
(
x2 + 1

)
− a arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −b ln
(
x2 + 1

)
− a arctan (x) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −b ln
(
x2 + 1

)
− a arctan (x) + ln (y)

Summary
The solution(s) found are the following

(1)−b ln
(
x2 + 1

)
− a arctan (x) + ln (y) = c1

Verification of solutions

−b ln
(
x2 + 1

)
− a arctan (x) + ln (y) = c1

Verified OK.

11.3.6 Maple step by step solution

Let’s solve
(x2 + 1) y′ − (2bx+ a) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2bx+a

x2+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 2bx+a
x2+1 dx+ c1

• Evaluate integral
ln (y) = b ln (x2 + 1) + a arctan (x) + c1

• Solve for y
y = eb ln

(
x2+1

)
+a arctan(x)+c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve((x^2+1)*diff(y(x),x) = (2*b*x+a)*y(x),y(x), singsol=all)� �

y(x) = c1
(
x2 + 1

)b ea arctan(x)
3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 26� �
DSolve[(1+x^2)y'[x]==(a+2 b x)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
(
x2 + 1

)b
ea arctan(x)

y(x) → 0
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Internal problem ID [3551]
Internal file name [OUTPUT/3044_Sunday_June_05_2022_08_50_27_AM_15855925/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 295.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ − y2 = 1

11.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1
x2 + 1

Where f(x) = 1
x2+1 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = 1

x2 + 1 dx∫ 1
y2 + 1 dy =

∫ 1
x2 + 1 dx

arctan (y) = arctan (x) + c1
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Which results in
y = tan (arctan (x) + c1)

Summary
The solution(s) found are the following

(1)y = tan (arctan (x) + c1)

Figure 430: Slope field plot

Verification of solutions

y = tan (arctan (x) + c1)

Verified OK.
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11.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 505: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2 + 1dx

Which results in

S = arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1
x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (x) = arctan (y) + c1

Which simplifies to

arctan (x) = arctan (y) + c1

Which gives

y = − tan (− arctan (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1
x2+1

dS
dR

= 1
R2+1

R = y

S = arctan (x)

Summary
The solution(s) found are the following

(1)y = − tan (− arctan (x) + c1)
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Figure 431: Slope field plot

Verification of solutions

y = − tan (− arctan (x) + c1)

Verified OK.

11.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
1

x2 + 1

)
dx(

− 1
x2 + 1

)
dx+

(
1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 + 1

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 + 1 dx

(3)φ = − arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan (x) + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan (x) + arctan (y)

Summary
The solution(s) found are the following

(1)− arctan (x) + arctan (y) = c1

Figure 432: Slope field plot

Verification of solutions

− arctan (x) + arctan (y) = c1

Verified OK.
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11.4.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2 + 1
x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 + 1 + 1
x2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
x2+1 , f1(x) = 0 and f2(x) = 1

x2+1 . Let

y = −u′

f2u

= −u′

u
x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2x

(x2 + 1)2

f1f2 = 0

f 2
2 f0 =

1
(x2 + 1)3

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 1 + 2xu′(x)

(x2 + 1)2
+ u(x)

(x2 + 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2√
x2 + 1
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The above shows that

u′(x) = −c2x+ c1

(x2 + 1)
3
2

Using the above in (1) gives the solution

y = −−c2x+ c1
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −c3 + x

c3x+ 1

Summary
The solution(s) found are the following

(1)y = −c3 + x

c3x+ 1

Figure 433: Slope field plot
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Verification of solutions

y = −c3 + x

c3x+ 1

Verified OK.

11.4.5 Maple step by step solution

Let’s solve
(x2 + 1) y′ − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2+1 = 1
x2+1

• Integrate both sides with respect to x∫
y′

y2+1dx =
∫ 1

x2+1dx+ c1

• Evaluate integral
arctan (y) = arctan (x) + c1

• Solve for y
y = tan (arctan (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �

2803



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve((x^2+1)*diff(y(x),x) = 1+y(x)^2,y(x), singsol=all)� �

y(x) = tan (arctan (x) + c1)

3 Solution by Mathematica
Time used: 0.237 (sec). Leaf size: 25� �
DSolve[(1+x^2)y'[x]==(1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan(arctan(x) + c1)
y(x) → −i
y(x) → i
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Internal problem ID [3552]
Internal file name [OUTPUT/3045_Sunday_June_05_2022_08_50_29_AM_12790060/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 296.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−x2 + 1

)
y′ + y2 = 1

11.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 − 1
x2 − 1

Where f(x) = 1
x2−1 and g(y) = y2 − 1. Integrating both sides gives

1
y2 − 1 dy = 1

x2 − 1 dx∫ 1
y2 − 1 dy =

∫ 1
x2 − 1 dx

− arctanh (y) = − arctanh (x) + c1
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Which results in
y = − tanh (− arctanh (x) + c1)

Summary
The solution(s) found are the following

(1)y = − tanh (− arctanh (x) + c1)

Figure 434: Slope field plot

Verification of solutions

y = − tanh (− arctanh (x) + c1)

Verified OK.

2806



11.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 − 1
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 508: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 − 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2 − 1dx

Which results in

S = − arctanh (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 − 1
x2 − 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2 − 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 − 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − arctanh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arctanh (x) = − arctanh (y) + c1

Which simplifies to

− arctanh (x) = − arctanh (y) + c1

Which gives

y = tanh (arctanh (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2−1
x2−1

dS
dR

= 1
R2−1

R = y

S = − arctanh (x)

Summary
The solution(s) found are the following

(1)y = tanh (arctanh (x) + c1)
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Figure 435: Slope field plot

Verification of solutions

y = tanh (arctanh (x) + c1)

Verified OK.

11.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 − 1

)
dy =

(
1

x2 − 1

)
dx(

− 1
x2 − 1

)
dx+

(
1

y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 − 1

N(x, y) = 1
y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 − 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 − 1 dx

(3)φ = arctanh (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2−1 . Therefore equation (4) becomes

(5)1
y2 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 − 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 − 1

)
dy

f(y) = − arctanh (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = arctanh (x)− arctanh (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = arctanh (x)− arctanh (y)

The solution becomes
y = − tanh (− arctanh (x) + c1)

Summary
The solution(s) found are the following

(1)y = − tanh (− arctanh (x) + c1)

Figure 436: Slope field plot

Verification of solutions

y = − tanh (− arctanh (x) + c1)

Verified OK.
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11.5.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2 − 1
x2 − 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 − 1 − 1
x2 − 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 1
x2−1 , f1(x) = 0 and f2(x) = 1

x2−1 . Let

y = −u′

f2u

= −u′

u
x2−1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2x

(x2 − 1)2

f1f2 = 0

f 2
2 f0 = − 1

(x2 − 1)3

Substituting the above terms back in equation (2) gives

u′′(x)
x2 − 1 + 2xu′(x)

(x2 − 1)2
− u(x)

(x2 − 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2√
−x2 + 1
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The above shows that

u′(x) = c2x+ c1

(−x2 + 1)
3
2

Using the above in (1) gives the solution

y = − (c2x+ c1) (x2 − 1)
(−x2 + 1) (c1x+ c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x+ c3
c3x+ 1

Summary
The solution(s) found are the following

(1)y = x+ c3
c3x+ 1

Figure 437: Slope field plot
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Verification of solutions

y = x+ c3
c3x+ 1

Verified OK.

11.5.5 Maple step by step solution

Let’s solve
(−x2 + 1) y′ + y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1−y2
= 1

−x2+1

• Integrate both sides with respect to x∫
y′

1−y2
dx =

∫ 1
−x2+1dx+ c1

• Evaluate integral
arctanh(y) = arctanh(x) + c1

• Solve for y
y = tanh (arctanh(x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((-x^2+1)*diff(y(x),x) = 1-y(x)^2,y(x), singsol=all)� �

y(x) = − tanh (− arctanh (x) + c1)

3 Solution by Mathematica
Time used: 0.589 (sec). Leaf size: 47� �
DSolve[(1-x^2)y'[x]==(1-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x+ e2c1(x− 1) + 1
−x+ e2c1(x− 1)− 1

y(x) → −1
y(x) → 1
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11.6 problem 297
11.6.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2819
11.6.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2826

Internal problem ID [3553]
Internal file name [OUTPUT/3046_Sunday_June_05_2022_08_50_30_AM_74755590/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 297.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

_Riccati]

(
−x2 + 1

)
y′ + (2x− y) y = 1

11.6.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−2xy + y2 + 1
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2 −
(−2xy + y2 + 1) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x2 − 1

− (−2xy + y2 + 1)2 (xa5 + 2ya6 + a3)
(x2 − 1)2

−
(

2y
x2 − 1 + 2(−2xy + y2 + 1)x

(x2 − 1)2
)(

x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

+ (−2x+ 2y) (x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)
x2 − 1 = 0

Putting the above in normal form gives

−2x4ya4 − 2x4yb4 − x4yb5 + 4x3y2a5 − x3y2b5 − 2x3y2b6 − 3x2y3a5 + 6x2y3a6 + x y4a5 − 6x y4a6 + 2y5a6 + x4b2 − 2x3yb2 + x2y2a2 + 2x2y2a3 − x2y2b3 − 2x y3a3 + y4a3 + 2x3b1 + 2x3b4 + x3b5 − 2x2ya1 − 6x2ya4 − 3x2ya5 − 2x2yb1 + 2x2yb4 + 2x2yb5 + 2x2yb6 + 2x y2a1 + 2x y2a4 − 2x y2a5 − 6x y2a6 + x y2b5 + 2x y2b6 + y3a5 + 2y3a6 + x2a2 + x2b3 − 4xya2 − 2xya3 + 2xyb2 + y2a2 + y2b3 + 2xa1 + 2xa4 + xa5 − 2xb1 − 2xb4 − xb5 − 2ya1 + ya5 + 2ya6 + 2yb1 − yb5 − 2yb6 + a2 + a3 − b2 − b3

(x2 − 1)2
= 0

Setting the numerator to zero gives

(6E)

−2x4ya4 + 2x4yb4 + x4yb5 − 4x3y2a5 + x3y2b5 + 2x3y2b6 + 3x2y3a5
−6x2y3a6−x y4a5+6x y4a6−2y5a6−x4b2+2x3yb2−x2y2a2−2x2y2a3
+ x2y2b3 + 2x y3a3 − y4a3 − 2x3b1 − 2x3b4 − x3b5 + 2x2ya1 + 6x2ya4
+ 3x2ya5 + 2x2yb1 − 2x2yb4 − 2x2yb5 − 2x2yb6 − 2x y2a1 − 2x y2a4
+ 2x y2a5 + 6x y2a6 − x y2b5 − 2x y2b6 − y3a5 − 2y3a6 − x2a2 − x2b3
+4xya2+2xya3−2xyb2−y2a2−y2b3−2xa1−2xa4−xa5+2xb1+2xb4
+ xb5 + 2ya1 − ya5 − 2ya6 − 2yb1 + yb5 + 2yb6 − a2 − a3 + b2 + b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

−2a4v41v2 − 4a5v31v22 + 3a5v21v32 − a5v1v
4
2 − 6a6v21v32 + 6a6v1v42 − 2a6v52

+ 2b4v41v2 + b5v
4
1v2 + b5v

3
1v

2
2 + 2b6v31v22 − a2v

2
1v

2
2 − 2a3v21v22 + 2a3v1v32

− a3v
4
2 − b2v

4
1 + 2b2v31v2 + b3v

2
1v

2
2 + 2a1v21v2 − 2a1v1v22 + 6a4v21v2

− 2a4v1v22 + 3a5v21v2 + 2a5v1v22 − a5v
3
2 + 6a6v1v22 − 2a6v32 − 2b1v31

+ 2b1v21v2 − 2b4v31 − 2b4v21v2 − b5v
3
1 − 2b5v21v2 − b5v1v

2
2 − 2b6v21v2

− 2b6v1v22 − a2v
2
1 + 4a2v1v2 − a2v

2
2 + 2a3v1v2 − 2b2v1v2 − b3v

2
1

− b3v
2
2 − 2a1v1 + 2a1v2 − 2a4v1 − a5v1 − a5v2 − 2a6v2 + 2b1v1

− 2b1v2 + 2b4v1 + b5v1 + b5v2 + 2b6v2 − a2 − a3 + b2 + b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(−2a4 + 2b4 + b5) v41v2 − b2v
4
1 + (−4a5 + b5 + 2b6) v31v22 + 2b2v31v2

+ (−2b1 − 2b4 − b5) v31 + (3a5 − 6a6) v21v32 + (−a2 − 2a3 + b3) v21v22
+ (2a1 + 6a4 + 3a5 + 2b1 − 2b4 − 2b5 − 2b6) v21v2 + (−a2 − b3) v21
+(−a5+6a6) v1v42 +2a3v1v32 +(−2a1− 2a4+2a5+6a6− b5− 2b6) v1v22
+ (4a2 + 2a3 − 2b2) v1v2 + (−2a1 − 2a4 − a5 + 2b1 + 2b4 + b5) v1
− 2a6v52 − a3v

4
2 + (−a5 − 2a6) v32 + (−a2 − b3) v22

+ (2a1 − a5 − 2a6 − 2b1 + b5 + 2b6) v2 − a2 − a3 + b2 + b3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
2a3 = 0

−2a6 = 0
−b2 = 0
2b2 = 0

−a2 − b3 = 0
−a5 − 2a6 = 0
−a5 + 6a6 = 0
3a5 − 6a6 = 0

−a2 − 2a3 + b3 = 0
4a2 + 2a3 − 2b2 = 0
−2a4 + 2b4 + b5 = 0
−4a5 + b5 + 2b6 = 0
−2b1 − 2b4 − b5 = 0

−a2 − a3 + b2 + b3 = 0
−2a1 − 2a4 − a5 + 2b1 + 2b4 + b5 = 0

−2a1 − 2a4 + 2a5 + 6a6 − b5 − 2b6 = 0
2a1 − a5 − 2a6 − 2b1 + b5 + 2b6 = 0

2a1 + 6a4 + 3a5 + 2b1 − 2b4 − 2b5 − 2b6 = 0
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Solving the above equations for the unknowns gives

a1 = −b4 + b6

a2 = 0
a3 = 0
a4 = b4 − b6

a5 = 0
a6 = 0
b1 = −b4 + b6

b2 = 0
b3 = 0
b4 = b4

b5 = −2b6
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x2 − 1

η = x2 − 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x2 − 1−
(
−−2xy + y2 + 1

x2 − 1

)(
x2 − 1

)
= x2 − 2xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2 − 2xy + y2
dy

Which results in

S = − 1
y − x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2xy + y2 + 1
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
(−y + x)2

Sy =
1

(−y + x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

x2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2 − 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctanh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
−y + x

= arctanh (x) + c1

Which simplifies to

1
−y + x

= arctanh (x) + c1

Which gives

y = arctanh (x)x+ c1x− 1
arctanh (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2xy+y2+1
x2−1

dS
dR

= − 1
R2−1

R = x

S = 1
−y + x
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Summary
The solution(s) found are the following

(1)y = arctanh (x)x+ c1x− 1
arctanh (x) + c1

Figure 438: Slope field plot

Verification of solutions

y = arctanh (x)x+ c1x− 1
arctanh (x) + c1

Verified OK.

11.6.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −−2xy + y2 + 1
x2 − 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2xy
x2 − 1 − y2

x2 − 1 − 1
x2 − 1
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 1
x2−1 , f1(x) =

2x
x2−1 and f2(x) = − 1

x2−1 . Let

y = −u′

f2u

= −u′

− u
x2−1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2x
(x2 − 1)2

f1f2 = − 2x
(x2 − 1)2

f 2
2 f0 = − 1

(x2 − 1)3

Substituting the above terms back in equation (2) gives

− u′′(x)
x2 − 1 − u(x)

(x2 − 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
√
x2 − 1 (c2 ln (x+ 1)− c2 ln (x− 1) + c1)

The above shows that

u′(x) = ln (x+ 1) c2x− ln (x− 1) c2x+ c1x− 2c2√
x2 − 1

Using the above in (1) gives the solution

y = ln (x+ 1) c2x− ln (x− 1) c2x+ c1x− 2c2
c2 ln (x+ 1)− c2 ln (x− 1) + c1
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = ln (x+ 1)x− ln (x− 1)x+ c3x− 2
ln (x+ 1)− ln (x− 1) + c3

Summary
The solution(s) found are the following

(1)y = ln (x+ 1)x− ln (x− 1)x+ c3x− 2
ln (x+ 1)− ln (x− 1) + c3

Figure 439: Slope field plot

Verification of solutions

y = ln (x+ 1)x− ln (x− 1)x+ c3x− 2
ln (x+ 1)− ln (x− 1) + c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular case Kamke (d) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve((-x^2+1)*diff(y(x),x) = 1-(2*x-y(x))*y(x),y(x), singsol=all)� �

y(x) = x+ 1
− arctanh (x) + c1

3 Solution by Mathematica
Time used: 0.213 (sec). Leaf size: 52� �
DSolve[(1-x^2)y'[x]==1-(2 x-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x log(1− x)− x log(x+ 1) + 2c1x+ 2
log(1− x)− log(x+ 1) + 2c1

y(x) → x
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11.7 problem 298
11.7.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2830

Internal problem ID [3554]
Internal file name [OUTPUT/3047_Sunday_June_05_2022_08_50_32_AM_54502821/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 298.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

(
−x2 + 1

)
y′ − n

(
y2 − 2yx+ 1

)
= 0

11.7.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −n(−2xy + y2 + 1)
x2 − 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2nxy
x2 − 1 − n y2

x2 − 1 − n

x2 − 1
With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − n
x2−1 , f1(x) =

2nx
x2−1 and f2(x) = − n

x2−1 . Let

y = −u′

f2u

= −u′

− nu
x2−1

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2nx
(x2 − 1)2

f1f2 = − 2n2x

(x2 − 1)2

f 2
2 f0 = − n3

(x2 − 1)3

Substituting the above terms back in equation (2) gives

−nu′′(x)
x2 − 1 −

(
− 2n2x

(x2 − 1)2
+ 2nx

(x2 − 1)2
)
u′(x)− n3u(x)

(x2 − 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = (LegendreP (n− 1, x) c1 + LegendreQ (n− 1, x) c2)
(
x2 − 1

)n
2

The above shows that

u′(x) = n
(
x2 − 1

)n
2−1 (LegendreP (n, x) c1 + LegendreQ (n, x) c2)

Using the above in (1) gives the solution

y = (x2 − 1)
n
2−1 (LegendreP (n, x) c1 + LegendreQ (n, x) c2) (x2 − 1) (x2 − 1)−

n
2

LegendreP (n− 1, x) c1 + LegendreQ (n− 1, x) c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = LegendreP (n, x) c3 + LegendreQ (n, x)
LegendreP (n− 1, x) c3 + LegendreQ (n− 1, x)

Summary
The solution(s) found are the following

(1)y = LegendreP (n, x) c3 + LegendreQ (n, x)
LegendreP (n− 1, x) c3 + LegendreQ (n− 1, x)
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Verification of solutions

y = LegendreP (n, x) c3 + LegendreQ (n, x)
LegendreP (n− 1, x) c3 + LegendreQ (n− 1, x)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Abel AIR successful: ODE belongs to the 2F1 3-parameter class`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 279� �
dsolve((-x^2+1)*diff(y(x),x) = n*(1-2*x*y(x)+y(x)^2),y(x), singsol=all)� �
y(x)

=

(
x+1
x−1

)n (−x
2 −

1
2

)2n(16(x+ 1)2
((
x− 1

2

)
n+ 1

2 −
x
2

)
hypergeom

(
[−n+ 1,−n+ 1] , [2− 2n] ,− 2

x−1

)
c1
(
x+1
x−1

)−n + (x− 1)
(
(x+ 1)2 n

(
x+1
x−1

)n (−x
2 −

1
2

)−2n hypergeom
(
[n, n] , [2n] ,− 2

x−1

)
− 16

(
HeunCPrime

(
0,2n−1,0,0,n2−n+ 1

2 ,
2

x+1

)
(x+1)

(
−x

2−
1
2
)−2n

8 +HeunCPrime
(
0,−2n+ 1, 0, 0, n2 − n+ 1

2 ,
2

x+1

)
c1

)
(x− 1)

))
(x+ 1)2

(
8c1 hypergeom

(
[−n+ 1,−n+ 1] , [2− 2n] ,− 2

x−1

) (
−x

2 −
1
2

)2n + (x+1
x−1

)2n hypergeom ([n, n] , [2n] ,− 2
x−1

)
(x− 1)

)
n
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3 Solution by Mathematica
Time used: 0.361 (sec). Leaf size: 47� �
DSolve[(1-x^2)*y'[x]==n*(1-2*x*y[x]+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Qn(x) + c1Pn(x)
Qn−1(x) + c1Pn−1(x)

y(x) → Pn(x)
Pn−1(x)

2833



11.8 problem 299
11.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2834
11.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2836
11.8.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2840
11.8.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2843
11.8.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2847
11.8.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2849

Internal problem ID [3555]
Internal file name [OUTPUT/3048_Sunday_June_05_2022_08_50_35_AM_72505350/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 299.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ + xy(1− y) = 0

11.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= xy(y − 1)
x2 + 1

Where f(x) = x
x2+1 and g(y) = y(y − 1). Integrating both sides gives

1
y (y − 1) dy = x

x2 + 1 dx
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∫ 1
y (y − 1) dy =

∫
x

x2 + 1 dx

ln (y − 1)− ln (y) = ln (x2 + 1)
2 + c1

Raising both side to exponential gives

eln(y−1)−ln(y) = e
ln
(
x2+1

)
2 +c1

Which simplifies to

y − 1
y

= c2
√
x2 + 1

Summary
The solution(s) found are the following

(1)y = − 1
−1 + c2

√
x2 + 1

Figure 440: Slope field plot
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Verification of solutions

y = − 1
−1 + c2

√
x2 + 1

Verified OK.

11.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy(y − 1)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 511: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2 + 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2+1
x

dx

Which results in

S = ln (x2 + 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy(y − 1)
x2 + 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

x2 + 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y − 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R− 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R− 1)− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + 1)
2 = ln (y − 1)− ln (y) + c1

Which simplifies to

ln (x2 + 1)
2 = ln (y − 1)− ln (y) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy(y−1)
x2+1

dS
dR

= 1
R(R−1)

R = y

S = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)ln (x2 + 1)
2 = ln (y − 1)− ln (y) + c1
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Figure 441: Slope field plot

Verification of solutions

ln (x2 + 1)
2 = ln (y − 1)− ln (y) + c1

Verified OK.

11.8.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= xy(y − 1)
x2 + 1

This is a Bernoulli ODE.
y′ = − x

x2 + 1y +
x

x2 + 1y
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − x

x2 + 1
f1(x) =

x

x2 + 1
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − x

(x2 + 1) y + x

x2 + 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −xw(x)
x2 + 1 + x

x2 + 1
w′ = xw

x2 + 1 − x

x2 + 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − x

x2 + 1
q(x) = − x

x2 + 1
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Hence the ode is

w′(x)− xw(x)
x2 + 1 = − x

x2 + 1
The integrating factor µ is

µ = e
∫
− x

x2+1dx

= 1√
x2 + 1

The ode becomes

d
dx(µw) = (µ)

(
− x

x2 + 1

)
d
dx

(
w√

x2 + 1

)
=
(

1√
x2 + 1

)(
− x

x2 + 1

)
d
(

w√
x2 + 1

)
=
(
− x

(x2 + 1)
3
2

)
dx

Integrating gives

w√
x2 + 1

=
∫

− x

(x2 + 1)
3
2
dx

w√
x2 + 1

= 1√
x2 + 1

+ c1

Dividing both sides by the integrating factor µ = 1√
x2+1 results in

w(x) = 1 + c1
√
x2 + 1

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 1 + c1

√
x2 + 1

Or

y = 1
1 + c1

√
x2 + 1

Summary
The solution(s) found are the following

(1)y = 1
1 + c1

√
x2 + 1
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Figure 442: Slope field plot

Verification of solutions

y = 1
1 + c1

√
x2 + 1

Verified OK.

11.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y (y − 1)

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
1

y (y − 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1
N(x, y) = 1

y (y − 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y (y − 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y(y−1) . Therefore equation (4) becomes

(5)1
y (y − 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y (y − 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y (y − 1)

)
dy

f(y) = ln (y − 1)− ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + ln (y − 1)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + ln (y − 1)− ln (y)

Summary
The solution(s) found are the following

(1)− ln (x2 + 1)
2 + ln (y − 1)− ln (y) = c1

Figure 443: Slope field plot

Verification of solutions

− ln (x2 + 1)
2 + ln (y − 1)− ln (y) = c1

Verified OK.
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11.8.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= xy(y − 1)
x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = − xy

x2 + 1 + x y2

x2 + 1
With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − x
x2+1 and f2(x) = x

x2+1 . Let

y = −u′

f2u

= −u′

xu
x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2 + 1 − 2x2

(x2 + 1)2

f1f2 = − x2

(x2 + 1)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

xu′′(x)
x2 + 1 −

(
1

x2 + 1 − 3x2

(x2 + 1)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2√
x2 + 1
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The above shows that
u′(x) = − c2x

(x2 + 1)
3
2

Using the above in (1) gives the solution

y = c2
√
x2 + 1

(
c1 + c2√

x2+1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 1
c3
√
x2 + 1 + 1

Summary
The solution(s) found are the following

(1)y = 1
c3
√
x2 + 1 + 1

Figure 444: Slope field plot
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Verification of solutions

y = 1
c3
√
x2 + 1 + 1

Verified OK.

11.8.6 Maple step by step solution

Let’s solve
(x2 + 1) y′ + xy(1− y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(1−y) = − x
x2+1

• Integrate both sides with respect to x∫
y′

y(1−y)dx =
∫
− x

x2+1dx+ c1

• Evaluate integral

− ln (y − 1) + ln (y) = − ln
(
x2+1

)
2 + c1

• Solve for y{
y = e2c1+

√
e2c1x2+e2c1

−x2+e2c1−1 , y = −−e2c1+
√

e2c1x2+e2c1
−x2+e2c1−1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((x^2+1)*diff(y(x),x)+x*y(x)*(1-y(x)) = 0,y(x), singsol=all)� �

y(x) = 1
1 +

√
x2 + 1 c1

3 Solution by Mathematica
Time used: 2.27 (sec). Leaf size: 33� �
DSolve[(1+x^2)y'[x]+x y[x](1-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
1 + ec1

√
x2 + 1

y(x) → 0
y(x) → 1
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11.9 problem 300
11.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2851
11.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2852
11.9.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2855
11.9.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2858
11.9.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2861
11.9.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2863

Internal problem ID [3556]
Internal file name [OUTPUT/3049_Sunday_June_05_2022_08_50_37_AM_30001344/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 300.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−x2 + 1

)
y′ − xy(1 + ya) = 0

11.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −xy(ya+ 1)
x2 − 1

Where f(x) = − x
x2−1 and g(y) = y(ya+ 1). Integrating both sides gives

1
y (ya+ 1) dy = − x

x2 − 1 dx
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∫ 1
y (ya+ 1) dy =

∫
− x

x2 − 1 dx

− ln (ya+ 1) + ln (y) = − ln (x− 1)
2 − ln (x+ 1)

2 + c1

Raising both side to exponential gives

e− ln(ya+1)+ln(y) = e−
ln(x−1)

2 − ln(x+1)
2 +c1

Which simplifies to
y

ya+ 1 = c2e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

y = − c2
√
x− 1

√
x+ 1

(
−1 + c2a√

x−1
√
x+1

)
Summary
The solution(s) found are the following

(1)y = − c2
√
x− 1

√
x+ 1

(
−1 + c2a√

x−1
√
x+1

)
Verification of solutions

y = − c2
√
x− 1

√
x+ 1

(
−1 + c2a√

x−1
√
x+1

)
Verified OK.

11.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy(ya+ 1)
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 514: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x2 − 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x2−1
x

dx

Which results in

S = − ln (x− 1)
2 − ln (x+ 1)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy(ya+ 1)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − x

x2 − 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (ya+ 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (Ra+ 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (Ra+ 1) + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (1 + ya) + ln (y) + c1

Which simplifies to

− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (1 + ya) + ln (y) + c1

Summary
The solution(s) found are the following

(1)− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (1 + ya) + ln (y) + c1

Verification of solutions

− ln (x− 1)
2 − ln (x+ 1)

2 = − ln (1 + ya) + ln (y) + c1

Verified OK.

11.9.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −xy(ya+ 1)
x2 − 1

This is a Bernoulli ODE.
y′ = − x

x2 − 1y −
ax

x2 − 1y
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − x

x2 − 1
f1(x) = − ax

x2 − 1
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − x

(x2 − 1) y − ax

x2 − 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −xw(x)
x2 − 1 − ax

x2 − 1
w′ = xw

x2 − 1 + ax

x2 − 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = ax

x2 − 1
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Hence the ode is

w′(x)− xw(x)
x2 − 1 = ax

x2 − 1

The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

µ = 1√
x− 1

√
x+ 1

The ode becomes

d
dx(µw) = (µ)

(
ax

x2 − 1

)
d
dx

(
w√

x− 1
√
x+ 1

)
=
(

1√
x− 1

√
x+ 1

)(
ax

x2 − 1

)
d
(

w√
x− 1

√
x+ 1

)
=
(

ax

(x2 − 1)
√
x− 1

√
x+ 1

)
dx

Integrating gives

w√
x− 1

√
x+ 1

=
∫

ax

(x2 − 1)
√
x− 1

√
x+ 1

dx

w√
x− 1

√
x+ 1

= −
√
x− 1

√
x+ 1 a

x2 − 1 + c1

Dividing both sides by the integrating factor µ = 1√
x−1

√
x+1 results in

w(x) = −(x− 1) (x+ 1) a
x2 − 1 + c1

√
x− 1

√
x+ 1

which simplifies to

w(x) = −a+ c1
√
x− 1

√
x+ 1

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −a+ c1

√
x− 1

√
x+ 1
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Or

y = 1
−a+ c1

√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = 1
−a+ c1

√
x− 1

√
x+ 1

Verification of solutions

y = 1
−a+ c1

√
x− 1

√
x+ 1

Verified OK.

11.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y (ya+ 1)

)
dy =

(
x

x2 − 1

)
dx(

− x

x2 − 1

)
dx+

(
− 1
y (ya+ 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 − 1
N(x, y) = − 1

y (ya+ 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 − 1

)
= 0

And

∂N

∂x
= ∂

∂x

(
− 1
y (ya+ 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 − 1 dx

(3)φ = − ln (x− 1)
2 − ln (x+ 1)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y(ya+1) . Therefore equation (4) becomes

(5)− 1
y (ya+ 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y (ya+ 1)

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y (ya+ 1)

)
dy

f(y) = ln (ya+ 1)− ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (ya+ 1)− ln (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (ya+ 1)− ln (y)

Summary
The solution(s) found are the following

(1)− ln (x− 1)
2 − ln (x+ 1)

2 + ln (1 + ya)− ln (y) = c1

Verification of solutions

− ln (x− 1)
2 − ln (x+ 1)

2 + ln (1 + ya)− ln (y) = c1

Verified OK.

11.9.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −xy(ya+ 1)
x2 − 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = − x y2a

x2 − 1 − xy

x2 − 1
With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − x
x2−1 and f2(x) = − ax

x2−1 . Let

y = −u′

f2u

= −u′

− axu
x2−1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

2861



But

f ′
2 = − a

x2 − 1 + 2a x2

(x2 − 1)2

f1f2 =
a x2

(x2 − 1)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−axu′′(x)
x2 − 1 −

(
− a

x2 − 1 + 3a x2

(x2 − 1)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2√

x2 − 1

The above shows that
u′(x) = − c2x

(x2 − 1)
3
2

Using the above in (1) gives the solution

y = − c2
√
x2 − 1 a

(
c1 + c2√

x2−1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 1
a
(
c3
√
x2 − 1 + 1

)
Summary
The solution(s) found are the following

(1)y = − 1
a
(
c3
√
x2 − 1 + 1

)
Verification of solutions

y = − 1
a
(
c3
√
x2 − 1 + 1

)
Verified OK.
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11.9.6 Maple step by step solution

Let’s solve
(−x2 + 1) y′ − xy(1 + ya) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(1+ya) =
x

−x2+1

• Integrate both sides with respect to x∫
y′

y(1+ya)dx =
∫

x
−x2+1dx+ c1

• Evaluate integral
− ln (1 + ya) + ln (y) = − ln(x−1)

2 − ln(x+1)
2 + c1

• Solve for y{
y = −e2c1a+

√
e2c1x2−e2c1

e2c1a2−x2+1 , y = − e2c1a+
√

e2c1x2−e2c1
e2c1a2−x2+1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve((-x^2+1)*diff(y(x),x) = x*y(x)*(1+a*y(x)),y(x), singsol=all)� �

y(x) = 1√
x− 1

√
x+ 1 c1 − a
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3 Solution by Mathematica
Time used: 3.979 (sec). Leaf size: 47� �
DSolve[(1-x^2)y'[x]==x y[x](1+a y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ec1

−
√
1− x2 + aec1

y(x) → 0

y(x) → −1
a
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11.10 problem 301
11.10.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 2865

Internal problem ID [3557]
Internal file name [OUTPUT/3050_Sunday_June_05_2022_08_50_39_AM_23875904/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 301.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_rational , _Abel]

Unable to solve or complete the solution.

(
x2 + 1

)
y′ − y2 + 2xy

(
1 + y2

)
= 1

11.10.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = − 2xy3
x2 + 1 + y2

x2 + 1 − 2xy
x2 + 1 + 1

x2 + 1 (1)

Therefore

f0(x) =
1

x2 + 1
f1(x) = − 2x

x2 + 1
f2(x) =

1
x2 + 1

f3(x) = − 2x
x2 + 1
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Since f2(x) = 1
x2+1 is not zero, then the first step is to apply the following transformation

to remove f2. Let y = u(x)− f2
3f3 or

y = u(x)−
(

1
x2+1

− 6x
x2+1

)
= u(x) + 1

6x
The above transformation applied to (1) gives a new ODE as

u′(x) = −2xu(x)3

x2 + 1 − 2xu(x)
x2 + 1 + u(x)

6x (x2 + 1) +
5

6 (x2 + 1) +
5

27x2 (x2 + 1) (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = −2xu(x)3

x2 + 1 − (108x3 − 9x)u(x)
54x2 (x2 + 1) − −45x2 − 10

54x2 (x2 + 1) (1)

Therefore

f0(x) =
5

27x2 (x2 + 1) +
5

6 (x2 + 1)

f1(x) = − 2x
x2 + 1 + 1

6x (x2 + 1)
f2(x) = 0

f3(x) = − 2x
x2 + 1

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

2
(
− 10

27x3
(
x2+1

)− 10
27x

(
x2+1

)2− 5x
3
(
x2+1

)2
)
x

x2+1 +
(

5
27x2(x2+1) +

5
6(x2+1)

)(
− 2

x2+1 +
4x2

(x2+1)2

)
−

6
(

5
27x2

(
x2+1

)+ 5
6
(
x2+1

)
)
x

(
− 2x

x2+1+
1

6x
(
x2+1

)
)

x2+1


3

(x2 + 1)4

432x4
(

5
27x2(x2+1) +

5
6(x2+1)

)5
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Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 65� �
dsolve((x^2+1)*diff(y(x),x) = 1+y(x)^2-2*x*y(x)*(1+y(x)^2),y(x), singsol=all)� �

c1 +
x(

(x2+1)
(
y(x)2+1

)
(−1+xy(x))2

) 1
4
+

(x+ y(x)) hypergeom
([1

2 ,
5
4

]
,
[3
2

]
,− (x+y(x))2

(−1+xy(x))2

)
2xy (x)− 2 = 0
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3 Solution by Mathematica
Time used: 0.401 (sec). Leaf size: 203� �
DSolve[(1+x^2)y'[x]==1+y[x]^2-2 x y[x](1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

Solve

c1 =
1
2

(
1

ix
x2+1−

ix2y(x)
x2+1

+ i
x

)
4

√√√√1−
(

1
ix

x2+1 −
ix2y(x)
x2+1

+ i

x

)2

Hypergeometric2F1
(

1
2 ,

5
4 ,

3
2 ,

(
1

ix
x2+1−

ix2y(x)
x2+1

+ i
x

)2
)

+ ix

4

√√√√−1 +
(

1
ix

x2+1 −
ix2y(x)
x2+1

+ i

x

)2
, y(x)
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11.11 problem 302
Internal problem ID [3558]
Internal file name [OUTPUT/3051_Sunday_June_05_2022_08_50_41_AM_90702269/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 302.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

(
x2 + 1

)
y′ + cos (y)x sin (y)− x

(
x2 + 1

)
cos (y)2 = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 142� �
dsolve((x^2+1)*diff(y(x),x)+x*sin(y(x))*cos(y(x)) = x*(x^2+1)*cos(y(x))^2,y(x), singsol=all)� �

y(x) =
arctan

(
6
√
x2+1

(
x2√x2+1+

√
x2+1+3c1

)
10+6c1(x2+1)

3
2+x6+3x4+12x2+9c21

,
8+6

(
−x2−1

)
c1
√
x2+1−x6−3x4+6x2−9c21

10+6c1(x2+1)
3
2+x6+3x4+12x2+9c21

)
2
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3 Solution by Mathematica
Time used: 8.716 (sec). Leaf size: 97� �
DSolve[(1+x^2)y'[x]+x Sin[y[x]] Cos[y[x]]==x(1+x^2) (Cos[y[x]])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctan
(
x4 + 2x2 − 6c1

√
x2 + 1 + 1

3x2 + 3

)

y(x) → −1
2π
√

1
x2 + 1

√
x2 + 1

y(x) → 1
2π
√

1
x2 + 1

√
x2 + 1
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11.12 problem 303
11.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2872
11.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2874
11.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2878
11.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2883

Internal problem ID [3559]
Internal file name [OUTPUT/3052_Sunday_June_05_2022_08_50_45_AM_79627487/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 303.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ + y arccot (x) = x2 + 1

11.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = arccot (x)
x2 + 1

q(x) = 1

Hence the ode is

y′ + arccot (x) y
x2 + 1 = 1
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The integrating factor µ is

µ = e
∫ arccot(x)

x2+1 dx

= e−
arccot(x)2

2

The ode becomes

d
dx(µy) = µ

d
dx

(
e−

arccot(x)2
2 y

)
= e−

arccot(x)2
2

d
(
e−

arccot(x)2
2 y

)
= e−

arccot(x)2
2 dx

Integrating gives

e−
arccot(x)2

2 y =
∫

e−
arccot(x)2

2 dx

e−
arccot(x)2

2 y =
∫

e−
arccot(x)2

2 dx+ c1

Dividing both sides by the integrating factor µ = e−
arccot(x)2

2 results in

y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx

)
+ c1e

arccot(x)2
2

which simplifies to

y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx+ c1

)
Summary
The solution(s) found are the following

(1)y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx+ c1

)
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Figure 445: Slope field plot

Verification of solutions

y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx+ c1

)
Verified OK.

11.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y arccot (x)− x2 − 1
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 517: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
arccot(x)2

2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
arccot(x)2

2

dy

Which results in

S = e−
arccot(x)2

2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y arccot (x)− x2 − 1
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = arccot (x) e−
arccot(x)2

2 y

x2 + 1
Sy = e−

arccot(x)2
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−

arccot(x)2
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−

arccot(R)2
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

e−
arccot(R)2

2 dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−
arccot(x)2

2 y =
∫

e−
arccot(x)2

2 dx+ c1

Which simplifies to

e−
arccot(x)2

2 y =
∫

e−
arccot(x)2

2 dx+ c1

Which gives

y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx+ c1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y arccot(x)−x2−1
x2+1

dS
dR

= e−
arccot(R)2

2

R = x

S = e−
arccot(x)2

2 y
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Summary
The solution(s) found are the following

(1)y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx+ c1

)

Figure 446: Slope field plot

Verification of solutions

y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx+ c1

)
Verified OK.

11.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the

2878



ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy =

(
1 + x2 − y arccot (x)

)
dx(

y arccot (x)− x2 − 1
)
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y arccot (x)− x2 − 1
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
y arccot (x)− x2 − 1

)
= arccot (x)

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((arccot (x))− (2x))

= arccot (x)− 2x
x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ arccot(x)−2x

x2+1 dx

The result of integrating gives

µ = e−
arccot(x)2

2 −ln
(
x2+1

)

= e−
(π−2 arctan(x))2

8

x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−
(π−2 arctan(x))2

8

x2 + 1
(
y arccot (x)− x2 − 1

)
= −e−

arccot(x)2
2 (1 + x2 − y arccot (x))

x2 + 1
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And

N = µN

= e−
(π−2 arctan(x))2

8

x2 + 1
(
x2 + 1

)
= e−

(π−2 arctan(x))2
8

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−
arccot(x)2

2 (1 + x2 − y arccot (x))
x2 + 1

)
+
(
e−

(π−2 arctan(x))2
8

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−e−

arccot(x)2
2 (1 + x2 − y arccot (x))

x2 + 1 dx

(3)φ =
∫ x

−e−
arccot(_a)2

2 (1 + _a2 − y arccot (_a))
_a2 + 1 d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−

arccot(x)2
2 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−
(π−2 arctan(x))2

8 . Therefore equation (4) becomes

(5)e−
(π−2 arctan(x))2

8 = e−
arccot(x)2

2 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
∫ x

−e−
arccot(_a)2

2 (1 + _a2 − y arccot (_a))
_a2 + 1 d_a+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

−e−
arccot(_a)2

2 (1 + _a2 − y arccot (_a))
_a2 + 1 d_a

Summary
The solution(s) found are the following

(1)
∫ x

−e−
arccot(_a)2

2 (1 + _a2 − y arccot (_a))
_a2 + 1 d_a = c1
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Figure 447: Slope field plot

Verification of solutions∫ x

−e−
arccot(_a)2

2 (1 + _a2 − y arccot (_a))
_a2 + 1 d_a = c1

Verified OK.

11.12.4 Maple step by step solution

Let’s solve
(x2 + 1) y′ + y arccot(x) = x2 + 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1− arccot(x)y

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + arccot(x)y

x2+1 = 1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + arccot(x)y

x2+1

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + arccot(x)y

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)arccot(x)

x2+1

• Solve to find the integrating factor

µ(x) = e−
arccot(x)2

2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = e−
arccot(x)2

2

y =
∫
e−

arccot(x)2
2 dx+c1

e−
arccot(x)2

2

• Simplify

y = e
arccot(x)2

2

(∫
e−

arccot(x)2
2 dx+ c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((x^2+1)*diff(y(x),x) = 1+x^2-y(x)*arccot(x),y(x), singsol=all)� �

y(x) =
(∫

e−
arccot(x)2

2 dx+ c1

)
e

arccot(x)2
2

3 Solution by Mathematica
Time used: 3.503 (sec). Leaf size: 37� �
DSolve[(1+x^2)y'[x]==(1+x^2)-y[x] ArcCot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
1
2 cot−1(x)2

(∫ x

1
e−

1
2 cot−1(K[1])2dK[1] + c1

)
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11.13 problem 304
11.13.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2886
11.13.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2890
11.13.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2894

Internal problem ID [3560]
Internal file name [OUTPUT/3053_Sunday_June_05_2022_08_50_46_AM_29388255/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 304.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

(
−x2 + 4

)
y′ + 4y − (x+ 2) y2 = 0

11.13.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(xy + 2y − 4)
x2 − 4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 520: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2eln(x+2)−ln(x−2) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2eln(x+2)−ln(x−2)dy

Which results in

S = − x− 2
(x+ 2) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(xy + 2y − 4)
x2 − 4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4
(x+ 2)2 y

Sy =
x− 2

(x+ 2) y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

x+ 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R + 2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R + 2) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x+ 2
(x+ 2) y = − ln (x+ 2) + c1

Which simplifies to

−x+ 2
(x+ 2) y = − ln (x+ 2) + c1

Which gives

y = x− 2
ln (x+ 2)x− c1x+ 2 ln (x+ 2)− 2c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(xy+2y−4)
x2−4

dS
dR

= − 1
R+2

R = x

S = −x+ 2
(x+ 2) y
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Summary
The solution(s) found are the following

(1)y = x− 2
ln (x+ 2)x− c1x+ 2 ln (x+ 2)− 2c1

Figure 448: Slope field plot

Verification of solutions

y = x− 2
ln (x+ 2)x− c1x+ 2 ln (x+ 2)− 2c1

Verified OK.

11.13.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(xy + 2y − 4)
x2 − 4

This is a Bernoulli ODE.
y′ = 4

x2 − 4y −
x+ 2
x2 − 4y

2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
4

x2 − 4
f1(x) = − x+ 2

x2 − 4
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 4
(x2 − 4) y − x+ 2

x2 − 4 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = 4w(x)
x2 − 4 − x+ 2

x2 − 4
w′ = − 4w

x2 − 4 + x+ 2
x2 − 4 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4
x2 − 4

q(x) = 1
x− 2

Hence the ode is

w′(x) + 4w(x)
x2 − 4 = 1

x− 2

The integrating factor µ is

µ = e
∫ 4

x2−4dx

= e− ln(x+2)+ln(x−2)

Which simplifies to

µ = x− 2
x+ 2

The ode becomes

d
dx(µw) = (µ)

(
1

x− 2

)
d
dx

(
(x− 2)w
x+ 2

)
=
(
x− 2
x+ 2

)(
1

x− 2

)
d
(
(x− 2)w
x+ 2

)
= 1

x+ 2 dx

Integrating gives

(x− 2)w
x+ 2 =

∫ 1
x+ 2 dx

(x− 2)w
x+ 2 = ln (x+ 2) + c1

Dividing both sides by the integrating factor µ = x−2
x+2 results in

w(x) = (x+ 2) ln (x+ 2)
x− 2 + c1(x+ 2)

x− 2
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which simplifies to

w(x) = (x+ 2) (ln (x+ 2) + c1)
x− 2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= (x+ 2) (ln (x+ 2) + c1)

x− 2
Or

y = x− 2
(x+ 2) (ln (x+ 2) + c1)

Summary
The solution(s) found are the following

(1)y = x− 2
(x+ 2) (ln (x+ 2) + c1)

Figure 449: Slope field plot

Verification of solutions

y = x− 2
(x+ 2) (ln (x+ 2) + c1)

Verified OK.
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11.13.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y(xy + 2y − 4)
x2 − 4

This is a Riccati ODE. Comparing the ODE to solve

y′ = − y2x

x2 − 4 − 2y2
x2 − 4 + 4y

x2 − 4
With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 4
x2−4 and f2(x) = − x+2

x2−4 . Let

y = −u′

f2u

= −u′

− (x+2)u
x2−4

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2 − 4 + 2(x+ 2)x
(x2 − 4)2

f1f2 = − 4(x+ 2)
(x2 − 4)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−(x+ 2)u′′(x)
x2 − 4 −

(
− 1
x2 − 4 + 2(x+ 2)x

(x2 − 4)2
− 4(x+ 2)

(x2 − 4)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2 ln (x+ 2) + c1
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The above shows that
u′(x) = c2

x+ 2

Using the above in (1) gives the solution

y = c2(x2 − 4)
(x+ 2)2 (c2 ln (x+ 2) + c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x− 2
(ln (x+ 2) + c3) (x+ 2)

Summary
The solution(s) found are the following

(1)y = x− 2
(ln (x+ 2) + c3) (x+ 2)

Figure 450: Slope field plot
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Verification of solutions

y = x− 2
(ln (x+ 2) + c3) (x+ 2)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve((-x^2+4)*diff(y(x),x)+4*y(x) = (2+x)*y(x)^2,y(x), singsol=all)� �

y(x) = −2 + x

(ln (2 + x) + c1) (2 + x)

3 Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 32� �
DSolve[(4-x^2)y'[x]+4 y[x]==(2+x)y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2− x

(x+ 2)(− log(x+ 2) + c1)
y(x) → 0
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11.14 problem 305
11.14.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2897
11.14.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2899
11.14.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2900
11.14.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2903
11.14.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2907

Internal problem ID [3561]
Internal file name [OUTPUT/3054_Sunday_June_05_2022_08_50_48_AM_3739660/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 305.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
a2 + x2) y′ − yx = b

11.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

a2 + x2

q(x) = b

a2 + x2

Hence the ode is

y′ − xy

a2 + x2 = b

a2 + x2
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The integrating factor µ is

µ = e
∫
− x

a2+x2 dx

= 1√
a2 + x2

The ode becomes

d
dx(µy) = (µ)

(
b

a2 + x2

)
d
dx

(
y√

a2 + x2

)
=
(

1√
a2 + x2

)(
b

a2 + x2

)
d
(

y√
a2 + x2

)
=
(

b

(a2 + x2)
3
2

)
dx

Integrating gives

y√
a2 + x2

=
∫

b

(a2 + x2)
3
2
dx

y√
a2 + x2

= xb√
a2 + x2 a2

+ c1

Dividing both sides by the integrating factor µ = 1√
a2+x2 results in

y = xb

a2
+ c1

√
a2 + x2

Summary
The solution(s) found are the following

(1)y = xb

a2
+ c1

√
a2 + x2

Verification of solutions

y = xb

a2
+ c1

√
a2 + x2

Verified OK.
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11.14.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
a2 + x2) (u′(x)x+ u(x))− u(x)x2 = b

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u a2 + b

(a2 + x2)x

Where f(x) = 1
(a2+x2)x and g(u) = −u a2 + b. Integrating both sides gives

1
−u a2 + b

du = 1
(a2 + x2)x dx∫ 1

−u a2 + b
du =

∫ 1
(a2 + x2)x dx

− ln (−u a2 + b)
a2

= − ln (a2 + x2)
2a2 + ln (x)

a2
+ c2

Raising both side to exponential gives

e−
ln
(
−u a2+b

)
a2 = e−

ln
(
a2+x2

)
2a2 + ln(x)

a2 +c2

Which simplifies to

(
−u a2 + b

)− 1
a2 = c3e−

ln
(
a2+x2

)
2a2 + ln(x)

a2

Which simplifies to

u(x) = −

(
1
c3

)a2
e−c2a2

√
a2

x2 + 1− b

a2

Therefore the solution y is

y = xu

= −
x

((
1
c3

)a2
e−c2a2

√
a2

x2 + 1− b

)
a2
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Summary
The solution(s) found are the following

(1)y = −
x

((
1
c3

)a2
e−c2a2

√
a2

x2 + 1− b

)
a2

Verification of solutions

y = −
x

((
1
c3

)a2
e−c2a2

√
a2

x2 + 1− b

)
a2

Verified OK.

11.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy + b

a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 522: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) =

√
a2 + x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

a2 + x2
dy

Which results in

S = y√
a2 + x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy + b

a2 + x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(a2 + x2)
3
2

Sy =
1√

a2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b

(a2 + x2)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b

(R2 + a2)
3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = Rb√
R2 + a2 a2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
a2 + x2

= xb√
a2 + x2 a2

+ c1

Which simplifies to
y√

a2 + x2
= xb√

a2 + x2 a2
+ c1

Which gives

y = c1
√
a2 + x2 a2 + bx

a2

Summary
The solution(s) found are the following

(1)y = c1
√
a2 + x2 a2 + bx

a2

Verification of solutions

y = c1
√
a2 + x2 a2 + bx

a2

Verified OK.

11.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
a2 + x2) dy = (xy + b) dx

(−xy − b) dx+
(
a2 + x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy − b

N(x, y) = a2 + x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xy − b)

= −x
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And
∂N

∂x
= ∂

∂x

(
a2 + x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

a2 + x2 ((−x)− (2x))

= − 3x
a2 + x2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

a2+x2 dx

The result of integrating gives

µ = e−
3 ln

(
a2+x2

)
2

= 1
(a2 + x2)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(a2 + x2)

3
2
(−xy − b)

= − xy + b

(a2 + x2)
3
2

And

N = µN

= 1
(a2 + x2)

3
2

(
a2 + x2)

= 1√
a2 + x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− xy + b

(a2 + x2)
3
2

)
+
(

1√
a2 + x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− xy + b

(a2 + x2)
3
2
dx

(3)φ = a2y − bx√
a2 + x2 a2

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1√

a2 + x2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
a2+x2 . Therefore equation (4) becomes

(5)1√
a2 + x2

= 1√
a2 + x2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = a2y − bx√
a2 + x2 a2

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
a2y − bx√
a2 + x2 a2

The solution becomes

y = c1
√
a2 + x2 a2 + bx

a2

Summary
The solution(s) found are the following

(1)y = c1
√
a2 + x2 a2 + bx

a2

Verification of solutions

y = c1
√
a2 + x2 a2 + bx

a2

Verified OK.

11.14.5 Maple step by step solution

Let’s solve
(a2 + x2) y′ − yx = b

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xy

a2+x2 + b
a2+x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − xy

a2+x2 = b
a2+x2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − xy

a2+x2

)
= µ(x)b

a2+x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xy

a2+x2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = − µ(x)x

a2+x2

• Solve to find the integrating factor
µ(x) = 1√

a2+x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)b
a2+x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)b
a2+x2dx+ c1

• Solve for y

y =
∫ µ(x)b

a2+x2 dx+c1

µ(x)

• Substitute µ(x) = 1√
a2+x2

y =
√
a2 + x2

(∫
b

(a2+x2)
3
2
dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
a2 + x2

(
xb√

a2+x2 a2
+ c1

)
• Simplify

y = c1
√
a2+x2 a2+bx

a2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve((a^2+x^2)*diff(y(x),x) = b+x*y(x),y(x), singsol=all)� �

y(x) =
√
a2 + x2 c1a

2 + bx

a2

3 Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 26� �
DSolve[(a^2+x^2)y'[x]==b+x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → bx

a2
+ c1

√
a2 + x2

2909
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Internal problem ID [3562]
Internal file name [OUTPUT/3055_Sunday_June_05_2022_08_50_50_AM_68691897/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 306.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
a2 + x2) y′ − (b+ y)

(
x+

√
a2 + x2

)
= 0

11.15.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
(b+ y)

(
x+

√
a2 + x2

)
a2 + x2

Where f(x) = x+
√
a2+x2

a2+x2 and g(y) = b+ y. Integrating both sides gives

1
b+ y

dy = x+
√
a2 + x2

a2 + x2 dx
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∫ 1
b+ y

dy =
∫

x+
√
a2 + x2

a2 + x2 dx

ln (b+ y) = ln
(
x+

√
a2 + x2

)
+ ln (a2 + x2)

2 + c1

Raising both side to exponential gives

b+ y = eln
(
x+

√
a2+x2

)
+

ln
(
a2+x2

)
2 +c1

Which simplifies to

b+ y = c2eln
(
x+

√
a2+x2

)
+

ln
(
a2+x2

)
2

Summary
The solution(s) found are the following

(1)y = c2eln
(
x+

√
a2+x2

)
+

ln
(
a2+x2

)
2 +c1 − b

Verification of solutions

y = c2eln
(
x+

√
a2+x2

)
+

ln
(
a2+x2

)
2 +c1 − b

Verified OK.

11.15.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −x+
√
a2 + x2

a2 + x2

q(x) =
b
(
x+

√
a2 + x2

)
a2 + x2

Hence the ode is

y′ −
(
x+

√
a2 + x2

)
y

a2 + x2 =
b
(
x+

√
a2 + x2

)
a2 + x2
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The integrating factor µ is

µ = e
∫
−x+

√
a2+x2

a2+x2 dx

= e− ln
(
x+

√
a2+x2

)
−

ln
(
a2+x2

)
2

Which simplifies to

µ = 1(
x+

√
a2 + x2

)√
a2 + x2

The ode becomes

d
dx(µy) = (µ)

(
b
(
x+

√
a2 + x2

)
a2 + x2

)
d
dx

(
y(

x+
√
a2 + x2

)√
a2 + x2

)
=
(

1(
x+

√
a2 + x2

)√
a2 + x2

)(
b
(
x+

√
a2 + x2

)
a2 + x2

)

d
(

y(
x+

√
a2 + x2

)√
a2 + x2

)
=
(

b

(a2 + x2)
3
2

)
dx

Integrating gives

y(
x+

√
a2 + x2

)√
a2 + x2

=
∫

b

(a2 + x2)
3
2
dx

y(
x+

√
a2 + x2

)√
a2 + x2

= xb√
a2 + x2 a2

+ c1

Dividing both sides by the integrating factor µ = 1(
x+

√
a2+x2

)√
a2+x2

results in

y =
(
x+

√
a2 + x2

)
xb

a2
+ c1

(
x+

√
a2 + x2

)√
a2 + x2

which simplifies to

y =
(
x+

√
a2 + x2

) (
c1
√
a2 + x2 a2 + bx

)
a2

Summary
The solution(s) found are the following

(1)y =
(
x+

√
a2 + x2

) (
c1
√
a2 + x2 a2 + bx

)
a2
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Verification of solutions

y =
(
x+

√
a2 + x2

) (
c1
√
a2 + x2 a2 + bx

)
a2

Verified OK.

11.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
(b+ y)

(
x+

√
a2 + x2

)
a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 525: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = eln
(
x+

√
a2+x2

)
+

ln
(
a2+x2

)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln
(
x+

√
a2+x2

)
+

ln
(
a2+x2

)
2

dy

Which results in

S = y(
x+

√
a2 + x2

)√
a2 + x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(b+ y)

(
x+

√
a2 + x2

)
a2 + x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(
−a2 − 2x2 − 2

√
a2 + x2 x

)
y(√

a2 + x2 x+ a2 + x2
)2√

a2 + x2

Sy =
1√

a2 + x2 x+ a2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
a2 + 2x2 + 2

√
a2 + x2 x

)
b(√

a2 + x2 x+ a2 + x2
)2√

a2 + x2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

(
a2 + 2R2 + 2

√
R2 + a2R

)
b(√

R2 + a2R + a2 +R2
)2√

R2 + a2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = bR

a2
√
R2 + a2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
a2 + x2 x+ a2 + x2

= xb√
a2 + x2 a2

+ c1

Which simplifies to

y√
a2 + x2 x+ a2 + x2

= xb√
a2 + x2 a2

+ c1

Which gives

y =
√
a2 + x2 c1a

4 +
√
a2 + x2 c1a

2x2 + c1a
4x+ c1a

2x3 + x2
√
a2 + x2 b+ a2bx+ b x3

√
a2 + x2 a2

Summary
The solution(s) found are the following

y =
√
a2 + x2 c1a

4 +
√
a2 + x2 c1a

2x2 + c1a
4x+ c1a

2x3 + x2
√
a2 + x2 b+ a2bx+ b x3

√
a2 + x2 a2

(1)
Verification of solutions

y =
√
a2 + x2 c1a

4 +
√
a2 + x2 c1a

2x2 + c1a
4x+ c1a

2x3 + x2
√
a2 + x2 b+ a2bx+ b x3

√
a2 + x2 a2

Verified OK.

11.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

b+ y

)
dy =

(
x+

√
a2 + x2

a2 + x2

)
dx(

−x+
√
a2 + x2

a2 + x2

)
dx+

(
1

b+ y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+
√
a2 + x2

a2 + x2

N(x, y) = 1
b+ y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+

√
a2 + x2

a2 + x2

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

b+ y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−x+

√
a2 + x2

a2 + x2 dx

(3)φ = − ln
(
x+

√
a2 + x2

)
− ln (a2 + x2)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
b+y

. Therefore equation (4) becomes

(5)1
b+ y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
b+ y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
b+ y

)
dy

f(y) = ln (b+ y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln
(
x+

√
a2 + x2

)
− ln (a2 + x2)

2 + ln (b+ y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln
(
x+

√
a2 + x2

)
− ln (a2 + x2)

2 + ln (b+ y)

The solution becomes

y = e
ln
(
a2+x2

)
2 +c1

√
a2 + x2 + e

ln
(
a2+x2

)
2 +c1x− b

Summary
The solution(s) found are the following

(1)y = e
ln
(
a2+x2

)
2 +c1

√
a2 + x2 + e

ln
(
a2+x2

)
2 +c1x− b

Verification of solutions

y = e
ln
(
a2+x2

)
2 +c1

√
a2 + x2 + e

ln
(
a2+x2

)
2 +c1x− b

Verified OK.
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11.15.5 Maple step by step solution

Let’s solve
(a2 + x2) y′ − (b+ y)

(
x+

√
a2 + x2

)
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

b+y
= x+

√
a2+x2

a2+x2

• Integrate both sides with respect to x∫
y′

b+y
dx =

∫
x+

√
a2+x2

a2+x2 dx+ c1

• Evaluate integral

ln (b+ y) = ln
(
x+

√
a2 + x2

)
+ ln

(
a2+x2)
2 + c1

• Solve for y

y = e
ln
(
a2+x2

)
2 +c1

√
a2 + x2 + e

ln
(
a2+x2

)
2 +c1x− b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve((a^2+x^2)*diff(y(x),x) = (b+y(x))*(x+sqrt(a^2+x^2)),y(x), singsol=all)� �

y(x) =
(√

a2 + x2 c1a
2 + bx

) (
x
√
a2 + x2 + a2 + x2)

√
a2 + x2 a2
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3 Solution by Mathematica
Time used: 0.28 (sec). Leaf size: 81� �
DSolve[(a^2+x^2)y'[x]==(b+y[x])(x+Sqrt[a^2+x^2]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x
(
x−

√
a2 + x2

)
+ a2

) (
bx− c1

√
a2 + x2

)
√
a2 + x2

(
x−

√
a2 + x2

)2
y(x) → −b
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11.16 problem 307
11.16.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2922
11.16.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2925
11.16.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2928

Internal problem ID [3563]
Internal file name [OUTPUT/3056_Sunday_June_05_2022_08_50_51_AM_35411193/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 307.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

(
a2 + x2) y′ + y(−y + x) = 0

11.16.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(y − x)
a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 528: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2

√
a2 + x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2
√
a2 + x2

dy

Which results in

S = − 1√
a2 + x2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y − x)
a2 + x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

(a2 + x2)
3
2 y

Sy =
1

y2
√
a2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(a2 + x2)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R2 + a2)
3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R√
R2 + a2 a2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1√
a2 + x2 y

= x√
a2 + x2 a2

+ c1

Which simplifies to

− 1√
a2 + x2 y

= x√
a2 + x2 a2

+ c1

Which gives

y = − a2

c1
√
a2 + x2 a2 + x

Summary
The solution(s) found are the following

(1)y = − a2

c1
√
a2 + x2 a2 + x

Verification of solutions

y = − a2

c1
√
a2 + x2 a2 + x

Verified OK.

11.16.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(y − x)
a2 + x2

This is a Bernoulli ODE.

y′ = − x

a2 + x2y +
1

a2 + x2y
2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − x

a2 + x2

f1(x) =
1

a2 + x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − x

(a2 + x2) y + 1
a2 + x2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = − xw(x)
a2 + x2 + 1

a2 + x2

w′ = xw

a2 + x2 − 1
a2 + x2 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − x

a2 + x2

q(x) = − 1
a2 + x2

Hence the ode is

w′(x)− xw(x)
a2 + x2 = − 1

a2 + x2

The integrating factor µ is

µ = e
∫
− x

a2+x2 dx

= 1√
a2 + x2

The ode becomes

d
dx(µw) = (µ)

(
− 1
a2 + x2

)
d
dx

(
w√

a2 + x2

)
=
(

1√
a2 + x2

)(
− 1
a2 + x2

)
d
(

w√
a2 + x2

)
=
(
− 1
(a2 + x2)

3
2

)
dx

Integrating gives

w√
a2 + x2

=
∫

− 1
(a2 + x2)

3
2
dx

w√
a2 + x2

= − x√
a2 + x2 a2

+ c1

Dividing both sides by the integrating factor µ = 1√
a2+x2 results in

w(x) = − x

a2
+ c1

√
a2 + x2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= − x

a2
+ c1

√
a2 + x2
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Or

y = 1
− x

a2
+ c1

√
a2 + x2

Summary
The solution(s) found are the following

(1)y = 1
− x

a2
+ c1

√
a2 + x2

Verification of solutions

y = 1
− x

a2
+ c1

√
a2 + x2

Verified OK.

11.16.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(y − x)
a2 + x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

a2 + x2 − xy

a2 + x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − x
a2+x2 and f2(x) = 1

a2+x2 . Let

y = −u′

f2u

= −u′

u
a2+x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 = − 2x

(a2 + x2)2

f1f2 = − x

(a2 + x2)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
a2 + x2 + 3xu′(x)

(a2 + x2)2
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
xc2√
a2 + x2

The above shows that

u′(x) = c2a
2

(a2 + x2)
3
2

Using the above in (1) gives the solution

y = − c2a
2

√
a2 + x2

(
c1 + xc2√

a2+x2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = a2

−c3
√
a2 + x2 − x

Summary
The solution(s) found are the following

(1)y = a2

−c3
√
a2 + x2 − x
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Verification of solutions

y = a2

−c3
√
a2 + x2 − x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve((a^2+x^2)*diff(y(x),x)+(x-y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = a2√
a2 + x2 c1a2 − x

3 Solution by Mathematica
Time used: 0.266 (sec). Leaf size: 37� �
DSolve[(x^2+a^2)y'[x]+(x-y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a2

−x+ a2c1
√
a2 + x2

y(x) → 0
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11.17 problem 308
11.17.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2931
11.17.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2939

Internal problem ID [3564]
Internal file name [OUTPUT/3057_Sunday_June_05_2022_08_50_53_AM_75369017/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 308.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , _Riccati]

(
a2 + x2) y′ − 3yx+ 2y2 = a2

11.17.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−a2 − 3xy + 2y2
a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− (−a2 − 3xy + 2y2) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
a2 + x2

− (−a2 − 3xy + 2y2)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
(a2 + x2)2

−
(

3y
a2 + x2 + 2(−a2 − 3xy + 2y2)x

(a2 + x2)2
)(

x3a7 + x2ya8

+ x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

+(−3x+ 4y) (x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)
a2 + x2

= 0

Putting the above in normal form gives

−−3a4x2b7 − 3a2x4b7 − 2x5yb8 − a4y2b9 − 4x4y2b9 + 3a4x2a7 − a4x2b8 + a4y2a9 − 3a4y2b10 + a2x4a7 − a2x4b8 − 2a2y4a9 + 2a2y4b10 + 6x5ya7 − 2x4y2a7 + 12x4y2a8 − 2x4y2b8 − 12x3y3a8 + 18x3y3a9 − 6x3y3b10 − 22x2y4a9 + 2x2y4b10 + a4x2a8 + 3a4y2a10 − 9a2y4a10 + 4x2y4a8 + 24x2y4a10 + 8x y5a9 − 32x y5a10 − 4x5yb7 + 3a2xb1 + 3a2ya1 − 4a2yb1 − 3x2ya1 − 4x2yb1 + 4x y2a1 − 2a4xyb8 − 4a2x3yb8 − 5a2x2y2b9 + 2a4xya8 − 2a4xyb9 + 12a2x3ya7 + 6a2x3ya8 − 2a2x3yb9 − 6a2x2y2a7 + 5a2x2y2a8 + 11a2x2y2a9 − 2a2x2y2b8 − 3a2x2y2b10 − 4a2x y3a8 − 2a2x y3a9 − 6a2x y3b10 + 6a2xya2 + 4a2xya3 − 4a2xyb2 + 2a4xya9 + 16a2x y3a10 − 4a2x3yb7 + 9a2x2ya4 + 5a2x2ya5 − 4a2x2yb4 − 2a2x2yb5 − 2a2x2yb6 − 4a2x y2a4 + 2a2x y2a5 + 10a2x y2a6 − 2a2x y2b5 − 3a2x y2b6 − 2a4yb6 − a2x3b4 − a2x3b5 − 2a2y3a5 − 5a2y3a6 + 3x4ya4 − 4x4yb4 − x4yb5 + 9x3y2a5 − 2x3y2b5 − 3x3y2b6 − 10x2y3a5 + 15x2y3a6 + 4x y4a5 − 20x y4a6 + 2a4xa4 + a4xa5 − 2a4xb4 − a4xb5 + a4ya5 + 2a4ya6 − a4yb5 + 12y6a10 + a4a2 + a4a3 − a4b2 − a4b3 + 2x4b2 + 4y4a3 + 3x3b1 − a2x2a2 + a2x2b2 − a2x2b3 − 2a2y2a2 − a2y2a3 − 2a2y2b3 − 4x3yb2 + 2x2y2a2 + 6x2y2a3 − 2x2y2b3 − 8x y3a3 − 2a2xa1 + x5b4 + 8y5a6
(a2 + x2)2

= 0
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Setting the numerator to zero gives

(6E)

3a4x2b7+3a2x4b7+2x5yb8+a4y2b9+4x4y2b9− 3a4x2a7
+a4x2b8−a4y2a9+3a4y2b10−a2x4a7+a2x4b8+2a2y4a9
− 2a2y4b10 − 6x5ya7 + 2x4y2a7 − 12x4y2a8 + 2x4y2b8
+12x3y3a8− 18x3y3a9+6x3y3b10+22x2y4a9− 2x2y4b10
− a4x2a8 − 3a4y2a10 + 9a2y4a10 − 4x2y4a8 − 24x2y4a10
−8x y5a9+32x y5a10+4x5yb7−3a2xb1−3a2ya1+4a2yb1
+ 3x2ya1 + 4x2yb1 − 4x y2a1 + 2a4xyb8 + 4a2x3yb8
+5a2x2y2b9−2a4xya8+2a4xyb9−12a2x3ya7−6a2x3ya8
+ 2a2x3yb9 + 6a2x2y2a7 − 5a2x2y2a8 − 11a2x2y2a9
+ 2a2x2y2b8 + 3a2x2y2b10 + 4a2x y3a8 + 2a2x y3a9
+ 6a2x y3b10 − 6a2xya2 − 4a2xya3 + 4a2xyb2 − 2a4xya9
− 16a2x y3a10 + 4a2x3yb7 − 9a2x2ya4 − 5a2x2ya5
+4a2x2yb4+2a2x2yb5+2a2x2yb6+4a2x y2a4−2a2x y2a5
− 10a2x y2a6 + 2a2x y2b5 + 3a2x y2b6 + 2a4yb6 + a2x3b4
+ a2x3b5 +2a2y3a5 +5a2y3a6 − 3x4ya4 +4x4yb4 + x4yb5
− 9x3y2a5 + 2x3y2b5 + 3x3y2b6 + 10x2y3a5 − 15x2y3a6
− 4x y4a5 +20x y4a6 − 2a4xa4 − a4xa5 +2a4xb4 + a4xb5
− a4ya5 − 2a4ya6 + a4yb5 − 12y6a10 − a4a2 − a4a3
+ a4b2 + a4b3 − 2x4b2 − 4y4a3 − 3x3b1 + a2x2a2 − a2x2b2
+a2x2b3+2a2y2a2+a2y2a3+2a2y2b3+4x3yb2−2x2y2a2
−6x2y2a3+2x2y2b3+8x y3a3+2a2xa1−x5b4−8y5a6 =0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

4a2v21v2b4 + 2a2v21v2b5 + 2a2v21v2b6 + 4a2v1v22a4
− 2a2v1v22a5 − 10a2v1v22a6 + 2a2v1v22b5 + 3a2v1v22b6
+ 4a2v31v2b8 + 5a2v21v22b9 − 2a4v1v2a8 + 2a4v1v2b9
− 12a2v31v2a7 − 6a2v31v2a8 + 2a2v31v2b9 + 6a2v21v22a7
− 5a2v21v22a8 − 11a2v21v22a9 + 2a2v21v22b8 + 3a2v21v22b10
+ 4a2v1v32a8 + 2a2v1v32a9 + 6a2v1v32b10 − 6a2v1v2a2
− 4a2v1v2a3 + 4a2v1v2b2 − 2a4v1v2a9 − 16a2v1v32a10
+ 4a2v31v2b7 − 9a2v21v2a4 − 5a2v21v2a5 + 2a4v1v2b8
+ a2v22a3 + 2a2v22b3 + 4v31v2b2 − 2v21v22a2 − 6v21v22a3
+ 2v21v22b3 + 8v1v32a3 + 2a2v1a1 + 3a4v21b7 + 3a2v41b7
+2v51v2b8+a4v22b9+4v41v22b9− 3a4v21a7+a4v21b8−a4v22a9
+ 3a4v22b10 − a2v41a7 + a2v41b8 + 2a2v42a9 − 2a2v42b10
− 6v51v2a7 + 2v41v22a7 − 12v41v22a8 + 2v41v22b8 + 12v31v32a8
− 18v31v32a9 + 6v31v32b10 + 22v21v42a9 − 2v21v42b10 − a4v21a8
− 3a4v22a10 + 9a2v42a10 − 4v21v42a8 − 24v21v42a10 − 8v1v52a9
+ 32v1v52a10 + 4v51v2b7 − 3a2v1b1 − 3a2v2a1 + 4a2v2b1
+ 3v21v2a1 + 4v21v2b1 − 4v1v22a1 + 2a4v2b6 + a2v31b4
+ a2v31b5 + 2a2v32a5 + 5a2v32a6 − 3v41v2a4 + 4v41v2b4
+ v41v2b5 − 9v31v22a5 + 2v31v22b5 + 3v31v22b6 + 10v21v32a5
− 15v21v32a6 − 4v1v42a5 + 20v1v42a6 − 2a4v1a4 − a4v1a5
+ 2a4v1b4 + a4v1b5 − a4v2a5 − 2a4v2a6 + a4v2b5 + a2v21a2
− a2v21b2 + a2v21b3 + 2a2v22a2 − a4a2 − a4a3 + a4b2 + a4b3
− 12v62a10 − 2v41b2 − 4v42a3 − 3v31b1 − v51b4 − 8v52a6 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

(
4a2a8 + 2a2a9 − 16a2a10 + 6a2b10 + 8a3

)
v32v1

+ (2b8 − 6a7 + 4b7) v2v51 + (4b9 + 2a7 − 12a8 + 2b8) v22v41
+ (12a8 − 18a9 + 6b10) v32v31
+ (22a9 − 2b10 − 4a8 − 24a10) v42v21 + (−8a9 + 32a10) v52v1
+ (−3a4 + 4b4 + b5) v2v41 + (−9a5 + 2b5 + 3b6) v22v31
+ (10a5 − 15a6) v32v21 + (−4a5 + 20a6) v42v1
+
(
−9a2a4 − 5a2a5 + 4a2b4 + 2a2b5 + 2a2b6 + 3a1 + 4b1

)
v2v

2
1

+
(
4a2a4 − 2a2a5 − 10a2a6 + 2a2b5 + 3a2b6 − 4a1

)
v22v1

+
(
−12a2a7 − 6a2a8 + 4a2b7 + 4a2b8 + 2a2b9 + 4b2

)
v2v

3
1

+
(
6a2a7 − 5a2a8 − 11a2a9 + 2a2b8

+ 5a2b9 + 3a2b10 − 2a2 − 6a3 + 2b3
)
v22v

2
1

+
(
−2a4a8−2a4a9+2a4b8+2a4b9−6a2a2−4a2a3+4a2b2

)
v2v1

− a4a2 − a4a3 + a4b2 + a4b3 +
(
a2b4 + a2b5 − 3b1

)
v31

+
(
−2a4a4 − a4a5 + 2a4b4 + a4b5 + 2a2a1 − 3a2b1

)
v1

+
(
−a4a5 − 2a4a6 + a4b5 + 2a4b6 − 3a2a1 + 4a2b1

)
v2

+
(
2a2a5 + 5a2a6

)
v32 +

(
2a2a9 + 9a2a10 − 2a2b10 − 4a3

)
v42

+
(
−3a4a7 − a4a8 + 3a4b7 + a4b8 + a2a2 − a2b2 + a2b3

)
v21

+
(
−a4a9 − 3a4a10 + a4b9 +3a4b10 +2a2a2 + a2a3 +2a2b3

)
v22

+
(
−a2a7+3a2b7+a2b8−2b2

)
v41−12v62a10−v51b4−8v52a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−8a6 = 0
−12a10 = 0

−b4 = 0
−4a5 + 20a6 = 0
10a5 − 15a6 = 0

−8a9 + 32a10 = 0
−3a4 + 4b4 + b5 = 0
−9a5 + 2b5 + 3b6 = 0

12a8 − 18a9 + 6b10 = 0
2b8 − 6a7 + 4b7 = 0

22a9 − 2b10 − 4a8 − 24a10 = 0
4b9 + 2a7 − 12a8 + 2b8 = 0

2a2a5 + 5a2a6 = 0
a2b4 + a2b5 − 3b1 = 0

−a4a2 − a4a3 + a4b2 + a4b3 = 0
2a2a9 + 9a2a10 − 2a2b10 − 4a3 = 0

−a2a7 + 3a2b7 + a2b8 − 2b2 = 0
4a2a8 + 2a2a9 − 16a2a10 + 6a2b10 + 8a3 = 0

4a2a4 − 2a2a5 − 10a2a6 + 2a2b5 + 3a2b6 − 4a1 = 0
−2a4a4 − a4a5 + 2a4b4 + a4b5 + 2a2a1 − 3a2b1 = 0
−a4a5 − 2a4a6 + a4b5 + 2a4b6 − 3a2a1 + 4a2b1 = 0
−12a2a7 − 6a2a8 + 4a2b7 + 4a2b8 + 2a2b9 + 4b2 = 0

−9a2a4 − 5a2a5 + 4a2b4 + 2a2b5 + 2a2b6 + 3a1 + 4b1 = 0
−2a4a8 − 2a4a9 + 2a4b8 + 2a4b9 − 6a2a2 − 4a2a3 + 4a2b2 = 0
−a4a9 − 3a4a10 + a4b9 + 3a4b10 + 2a2a2 + a2a3 + 2a2b3 = 0

−3a4a7 − a4a8 + 3a4b7 + a4b8 + a2a2 − a2b2 + a2b3 = 0
6a2a7 − 5a2a8 − 11a2a9 + 2a2b8 + 5a2b9 + 3a2b10 − 2a2 − 6a3 + 2b3 = 0
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Solving the above equations for the unknowns gives

a1 = a2a4

a2 = a2a7

a3 = a2a8

a4 = a4

a5 = 0
a6 = 0
a7 = a7

a8 = a8

a9 = 0
a10 = 0
b1 = a2a4

b2 = 2a2a7 −
3
2a

2a8 +
1
2a

2b9

b3 = −a2a7 +
5
2a

2a8 −
1
2a

2b9

b4 = 0
b5 = 3a4
b6 = −2a4
b7 = b9 + 2a7 − 3a8
b8 = −a7 − 2b9 + 6a8
b9 = b9

b10 = −2a8

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0

η = x3 − 2x2y + x y2 + 1
2x a

2 − 1
2a

2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3 − 2x2y + x y2 + 1
2x a

2 − 1
2a

2y
dy

Which results in

S = −2 ln (y − x)
a2

+ 2 ln (−a2 − 2x2 + 2xy)
a2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−a2 − 3xy + 2y2
a2 + x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
2

y−x
+ −8x+4y

−a2−2x2+2xy

a2

Sy =
2

(−y + x) (a2 + 2x2 − 2xy)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x

a2 (a2 + x2) (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R

a2 (R2 + a2)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 + a2)
a2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (y − x) + 2 ln (−a2 − 2x2 + 2yx)
a2

= ln (a2 + x2)
a2

+ c1

Which simplifies to

−2 ln (y − x) + 2 ln (−a2 − 2x2 + 2yx)
a2

= ln (a2 + x2)
a2

+ c1

Summary
The solution(s) found are the following

(1)−2 ln (y − x) + 2 ln (−a2 − 2x2 + 2yx)
a2

= ln (a2 + x2)
a2

+ c1

Verification of solutions

−2 ln (y − x) + 2 ln (−a2 − 2x2 + 2yx)
a2

= ln (a2 + x2)
a2

+ c1

Verified OK.

11.17.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −−a2 − 3xy + 2y2
a2 + x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = a2

a2 + x2 + 3xy
a2 + x2 − 2y2

a2 + x2
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a2

a2+x2 , f1(x) = 3x
a2+x2 and f2(x) = − 2

a2+x2 . Let

y = −u′

f2u

= −u′

− 2u
a2+x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

4x
(a2 + x2)2

f1f2 = − 6x
(a2 + x2)2

f 2
2 f0 =

4a2

(a2 + x2)3

Substituting the above terms back in equation (2) gives

− 2u′′(x)
a2 + x2 + 2xu′(x)

(a2 + x2)2
+ 4a2u(x)

(a2 + x2)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1
(
a2 + x2)+ c2

√
a2 + x2 x

The above shows that

u′(x) = 2c1x
√
a2 + x2 + c2(a2 + 2x2)√

a2 + x2

Using the above in (1) gives the solution

y =
√
a2 + x2

(
2c1x

√
a2 + x2 + c2(a2 + 2x2)

)
2c1 (a2 + x2) + 2c2

√
a2 + x2 x
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(
2c3x

√
a2 + x2 + a2 + 2x2)√a2 + x2

2c3a2 + 2c3x2 + 2
√
a2 + x2 x

Summary
The solution(s) found are the following

(1)y =
(
2c3x

√
a2 + x2 + a2 + 2x2)√a2 + x2

2c3a2 + 2c3x2 + 2
√
a2 + x2 x

Verification of solutions

y =
(
2c3x

√
a2 + x2 + a2 + 2x2)√a2 + x2

2c3a2 + 2c3x2 + 2
√
a2 + x2 x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Abel AIR successful: ODE belongs to the 2F1 3-parameter class`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 235� �
dsolve((a^2+x^2)*diff(y(x),x) = a^2+3*x*y(x)-2*y(x)^2,y(x), singsol=all)� �
y(x) =

−
2
(√

2
√

ix−a
a

c1a
2(ia− x)HeunCPrime

(
0,−1

2 , 2, 0,
5
4 ,

−ia+x
ia+x

)
+
√

ix+a
a

a2(ia− x)HeunCPrime
(
0, 12 , 2, 0,

5
4 ,

−ia+x
ia+x

)
+

√
2x
(
iax− 1

2a
2+ 1

2x
2)c1√ ix−a

a

2 −
√

ix+a
a

(
ia3−3ia x2+3x a2−x3)

4

)
a(

i
√
2
√

ix−a
a

c1x+
√

ix+a
a

(ix−a)
2

)
(ia+ x)2

3 Solution by Mathematica
Time used: 1.077 (sec). Leaf size: 63� �
DSolve[(a^2+x^2)y'[x]==a^2+3 x y[x]-2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a2c1(−x)
√
a2 + x2 + a2 + 2x2

2x− a2c1
√
a2 + x2

y(x) → x
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11.18 problem 309
11.18.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2943
11.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2944
11.18.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2947
11.18.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2950
11.18.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2953
11.18.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2955

Internal problem ID [3565]
Internal file name [OUTPUT/3058_Sunday_June_05_2022_08_50_55_AM_56949234/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 309.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
a2 + x2) y′ + yx+ bxy2 = 0

11.18.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −xy(by + 1)
a2 + x2

Where f(x) = − x
a2+x2 and g(y) = y(by + 1). Integrating both sides gives

1
y (by + 1) dy = − x

a2 + x2 dx
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∫ 1
y (by + 1) dy =

∫
− x

a2 + x2 dx

− ln (by + 1) + ln (y) = − ln (a2 + x2)
2 + c1

Raising both side to exponential gives

e− ln(by+1)+ln(y) = e−
ln
(
a2+x2

)
2 +c1

Which simplifies to
y

by + 1 = c2√
a2 + x2

Summary
The solution(s) found are the following

(1)y = c2

−c2b+
√
a2 + x2

Verification of solutions

y = c2

−c2b+
√
a2 + x2

Verified OK.

11.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy(by + 1)
a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 530: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −a2 + x2

x
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−a2+x2

x

dx

Which results in

S = − ln (a2 + x2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy(by + 1)
a2 + x2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − x

a2 + x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (by + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (Rb+ 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (Rb+ 1) + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (a2 + x2)
2 = − ln (yb+ 1) + ln (y) + c1

Which simplifies to

− ln (a2 + x2)
2 = − ln (yb+ 1) + ln (y) + c1

Summary
The solution(s) found are the following

(1)− ln (a2 + x2)
2 = − ln (yb+ 1) + ln (y) + c1

Verification of solutions

− ln (a2 + x2)
2 = − ln (yb+ 1) + ln (y) + c1

Verified OK.

11.18.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −xy(by + 1)
a2 + x2

This is a Bernoulli ODE.

y′ = − x

a2 + x2y −
bx

a2 + x2y
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − x

a2 + x2

f1(x) = − bx

a2 + x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − x

(a2 + x2) y − bx

a2 + x2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = − xw(x)
a2 + x2 − bx

a2 + x2

w′ = xw

a2 + x2 + bx

a2 + x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − x

a2 + x2

q(x) = bx

a2 + x2

Hence the ode is

w′(x)− xw(x)
a2 + x2 = bx

a2 + x2

The integrating factor µ is

µ = e
∫
− x

a2+x2 dx

= 1√
a2 + x2

The ode becomes
d
dx(µw) = (µ)

(
bx

a2 + x2

)
d
dx

(
w√

a2 + x2

)
=
(

1√
a2 + x2

)(
bx

a2 + x2

)
d
(

w√
a2 + x2

)
=
(

bx

(a2 + x2)
3
2

)
dx

Integrating gives

w√
a2 + x2

=
∫

bx

(a2 + x2)
3
2
dx

w√
a2 + x2

= − b√
a2 + x2

+ c1

Dividing both sides by the integrating factor µ = 1√
a2+x2 results in

w(x) = −b+ c1
√
a2 + x2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −b+ c1

√
a2 + x2

Or

y = 1
−b+ c1

√
a2 + x2
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Summary
The solution(s) found are the following

(1)y = 1
−b+ c1

√
a2 + x2

Verification of solutions

y = 1
−b+ c1

√
a2 + x2

Verified OK.

11.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y (by + 1)

)
dy =

(
x

a2 + x2

)
dx(

− x

a2 + x2

)
dx+

(
− 1
y (by + 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

a2 + x2

N(x, y) = − 1
y (by + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

a2 + x2

)
= 0

And

∂N

∂x
= ∂

∂x

(
− 1
y (by + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

a2 + x2 dx

(3)φ = − ln (a2 + x2)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y(by+1) . Therefore equation (4) becomes

(5)− 1
y (by + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y (by + 1)

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y (by + 1)

)
dy

f(y) = ln (by + 1)− ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (a2 + x2)
2 + ln (by + 1)− ln (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (a2 + x2)
2 + ln (by + 1)− ln (y)

Summary
The solution(s) found are the following

(1)− ln (a2 + x2)
2 + ln (yb+ 1)− ln (y) = c1

Verification of solutions

− ln (a2 + x2)
2 + ln (yb+ 1)− ln (y) = c1

Verified OK.

11.18.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −xy(by + 1)
a2 + x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = − bx y2

a2 + x2 − xy

a2 + x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − x
a2+x2 and f2(x) = − bx

a2+x2 . Let

y = −u′

f2u

= −u′

− bxu
a2+x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 =

2b x2

(a2 + x2)2
− b

a2 + x2

f1f2 =
b x2

(a2 + x2)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−bxu′′(x)
a2 + x2 −

(
3b x2

(a2 + x2)2
− b

a2 + x2

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2√

a2 + x2

The above shows that
u′(x) = − c2x

(a2 + x2)
3
2

Using the above in (1) gives the solution

y = − c2
√
a2 + x2 b

(
c1 + c2√

a2+x2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 1
b
(
c3
√
a2 + x2 + 1

)
Summary
The solution(s) found are the following

(1)y = − 1
b
(
c3
√
a2 + x2 + 1

)
Verification of solutions

y = − 1
b
(
c3
√
a2 + x2 + 1

)
Verified OK.
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11.18.6 Maple step by step solution

Let’s solve
(a2 + x2) y′ + yx+ bxy2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(yb+1) = − x
a2+x2

• Integrate both sides with respect to x∫
y′

y(yb+1)dx =
∫
− x

a2+x2dx+ c1

• Evaluate integral

− ln (yb+ 1) + ln (y) = − ln
(
a2+x2)
2 + c1

• Solve for y{
y = −e2c1b+

√
e2c1a2+e2c1x2

e2c1b2−a2−x2 , y = − e2c1b+
√

e2c1a2+e2c1x2

e2c1b2−a2−x2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve((a^2+x^2)*diff(y(x),x)+x*y(x)+b*x*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 1√
a2 + x2 c1 − b
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3 Solution by Mathematica
Time used: 3.985 (sec). Leaf size: 47� �
DSolve[(x^2+a^2)y'[x]+x y[x]+b x y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ec1

−
√
a2 + x2 + bec1

y(x) → 0

y(x) → −1
b

2956



11.19 problem 310
11.19.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2957
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Internal problem ID [3566]
Internal file name [OUTPUT/3059_Sunday_June_05_2022_08_50_57_AM_95472410/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 310.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(1− x) y′ − y(x+ 1) = a

11.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − −x− 1
x (x− 1)

q(x) = − a

x (x− 1)

Hence the ode is

y′ − (−x− 1) y
x (x− 1) = − a

x (x− 1)
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The integrating factor µ is

µ = e
∫
− −x−1

x(x−1)dx

= e2 ln(x−1)−ln(x)

Which simplifies to

µ = (x− 1)2

x

The ode becomes
d
dx(µy) = (µ)

(
− a

x (x− 1)

)
d
dx

(
(x− 1)2 y

x

)
=
(
(x− 1)2

x

)(
− a

x (x− 1)

)

d
(
(x− 1)2 y

x

)
=
(
−(x− 1) a

x2

)
dx

Integrating gives

(x− 1)2 y
x

=
∫

−(x− 1) a
x2 dx

(x− 1)2 y
x

= −a

x
− a ln (x) + c1

Dividing both sides by the integrating factor µ = (x−1)2
x

results in

y =
x
(
−a

x
− a ln (x)

)
(x− 1)2

+ c1x

(x− 1)2

which simplifies to

y = − ln (x) ax+ c1x− a

(x− 1)2

Summary
The solution(s) found are the following

(1)y = − ln (x) ax+ c1x− a

(x− 1)2

Verification of solutions

y = − ln (x) ax+ c1x− a

(x− 1)2

Verified OK.
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11.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy + a+ y

x (x− 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 533: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e−2 ln(x−1)+ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−2 ln(x−1)+ln(x)dy

Which results in

S = (x− 1)2 y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy + a+ y

x (x− 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(x2 − 1)
x2

Sy =
(x− 1)2

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −(x− 1) a

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −(R− 1) a

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − a

R
− a ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)2 y
x

= −a

x
− a ln (x) + c1

Which simplifies to

(x− 1)2 y
x

= −a

x
− a ln (x) + c1

Which gives

y = − ln (x) ax− c1x+ a

(x− 1)2

Summary
The solution(s) found are the following

(1)y = − ln (x) ax− c1x+ a

(x− 1)2
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Verification of solutions

y = − ln (x) ax− c1x+ a

(x− 1)2

Verified OK.

11.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x(1− x)) dy = (a+ y(x+ 1)) dx
(−a− y(x+ 1)) dx+(x(1− x)) dy = 0 (2A)

2962



Comparing (1A) and (2A) shows that

M(x, y) = −a− y(x+ 1)
N(x, y) = x(1− x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−a− y(x+ 1))

= −x− 1

And
∂N

∂x
= ∂

∂x
(x(1− x))

= 1− 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x− 1)((−x− 1)− (1− 2x))

= −x+ 2
x (x− 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −x+2

x(x−1) dx

The result of integrating gives

µ = eln(x−1)−2 ln(x)

= x− 1
x2
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 1
x2 (−a− y(x+ 1))

= −(x− 1) (xy + a+ y)
x2

And

N = µN

= x− 1
x2 (x(1− x))

= −(x− 1)2

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(x− 1) (xy + a+ y)
x2

)
+
(
−(x− 1)2

x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−(x− 1) (xy + a+ y)

x2 dx

(3)φ = − ln (x) ax− x2y − a− y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2 − 1

x
+ f ′(y)
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But equation (2) says that ∂φ
∂y

= − (x−1)2
x

. Therefore equation (4) becomes

(5)−(x− 1)2

x
= −x2 − 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2) dy

f(y) = 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) ax− x2y − a− y

x
+ 2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
− ln (x) ax− x2y − a− y

x
+ 2y

The solution becomes

y = − ln (x) ax+ c1x+ a

x2 − 2x+ 1

Summary
The solution(s) found are the following

(1)y = − ln (x) ax+ c1x+ a

x2 − 2x+ 1
Verification of solutions

y = − ln (x) ax+ c1x+ a

x2 − 2x+ 1

Verified OK.
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11.19.4 Maple step by step solution

Let’s solve
x(1− x) y′ − y(x+ 1) = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (x+1)y

x(x−1) −
a

x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (x+1)y

x(x−1) = − a
x(x−1)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (x+1)y

x(x−1)

)
= − µ(x)a

x(x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (x+1)y

x(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(x+1)

x(x−1)

• Solve to find the integrating factor

µ(x) = (x−1)2
x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)a

x(x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− µ(x)a

x(x−1)dx+ c1

• Solve for y

y =
∫
− µ(x)a

x(x−1)dx+c1

µ(x)

• Substitute µ(x) = (x−1)2
x

y =
x
(∫

− (x−1)a
x2 dx+c1

)
(x−1)2

• Evaluate the integrals on the rhs
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y = x
(
− a

x
−a ln(x)+c1

)
(x−1)2

• Simplify
y = − ln(x)ax+c1x−a

(x−1)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x*(1-x)*diff(y(x),x) = a+(1+x)*y(x),y(x), singsol=all)� �

y(x) = −ax ln (x) + c1x− a

(x− 1)2

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 24� �
DSolve[x(1-x)y'[x]==a+(1+x)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ax log(x) + a− c1x

(x− 1)2
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11.20 problem 311
11.20.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2968
11.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2970
11.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2974
11.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2979

Internal problem ID [3567]
Internal file name [OUTPUT/3060_Sunday_June_05_2022_08_50_58_AM_87278041/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 311.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(1− x) y′ − 2yx = 2

11.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x− 1

q(x) = − 2
x (x− 1)

Hence the ode is

y′ + 2y
x− 1 = − 2

x (x− 1)
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The integrating factor µ is

µ = e
∫ 2

x−1dx

= (x− 1)2

The ode becomes

d
dx(µy) = (µ)

(
− 2
x (x− 1)

)
d
dx
(
(x− 1)2 y

)
=
(
(x− 1)2

)(
− 2
x (x− 1)

)
d
(
(x− 1)2 y

)
=
(
−2x+ 2

x

)
dx

Integrating gives

(x− 1)2 y =
∫

−2x+ 2
x

dx

(x− 1)2 y = −2x+ 2 ln (x) + c1

Dividing both sides by the integrating factor µ = (x− 1)2 results in

y = −2x+ 2 ln (x)
(x− 1)2

+ c1

(x− 1)2

which simplifies to

y = −2x+ 2 ln (x) + c1

(x− 1)2

Summary
The solution(s) found are the following

(1)y = −2x+ 2 ln (x) + c1

(x− 1)2
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Figure 451: Slope field plot

Verification of solutions

y = −2x+ 2 ln (x) + c1

(x− 1)2

Verified OK.

11.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2(xy + 1)
x (x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 536: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x− 1)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x−1)2

dy

Which results in

S = (x− 1)2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(xy + 1)
x (x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2(x− 1) y
Sy = (x− 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2x+ 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R + 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2R + 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)2 y = −2x+ 2 ln (x) + c1

Which simplifies to

(x− 1)2 y = −2x+ 2 ln (x) + c1

Which gives

y = −2x+ 2 ln (x) + c1

(x− 1)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2(xy+1)
x(x−1)

dS
dR

= −2R+2
R

R = x

S = (x− 1)2 y

Summary
The solution(s) found are the following

(1)y = −2x+ 2 ln (x) + c1

(x− 1)2
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Figure 452: Slope field plot

Verification of solutions

y = −2x+ 2 ln (x) + c1

(x− 1)2

Verified OK.

11.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(1− x)) dy = (2xy + 2) dx
(−2xy − 2) dx+(x(1− x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy − 2
N(x, y) = x(1− x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy − 2)

= −2x

And
∂N

∂x
= ∂

∂x
(x(1− x))

= 1− 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x− 1)((−2x)− (1− 2x))

= 1
x (x− 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1

x(x−1) dx

The result of integrating gives

µ = eln(x−1)−ln(x)

= x− 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 1
x

(−2xy − 2)

= −2(x− 1) (xy + 1)
x

And

N = µN

= x− 1
x

(x(1− x))

= −(x− 1)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2(x− 1) (xy + 1)
x

)
+
(
−(x− 1)2

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2(x− 1) (xy + 1)

x
dx

(3)φ = 2 ln (x)− x2y + (2y − 2)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2 + 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −(x− 1)2. Therefore equation (4) becomes

(5)−(x− 1)2 = −x2 + 2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 2 ln (x)− x2y + (2y − 2)x− y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2 ln (x)− x2y + (2y − 2)x− y

The solution becomes

y = −c1 + 2 ln (x)− 2x
x2 − 2x+ 1

Summary
The solution(s) found are the following

(1)y = −c1 + 2 ln (x)− 2x
x2 − 2x+ 1

Figure 453: Slope field plot

Verification of solutions

y = −c1 + 2 ln (x)− 2x
x2 − 2x+ 1

Verified OK.
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11.20.4 Maple step by step solution

Let’s solve
x(1− x) y′ − 2yx = 2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2y

x−1 −
2

x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x−1 = − 2
x(x−1)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x−1

)
= − 2µ(x)

x(x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x−1

• Solve to find the integrating factor
µ(x) = (x− 1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− 2µ(x)

x(x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− 2µ(x)

x(x−1)dx+ c1

• Solve for y

y =
∫
− 2µ(x)

x(x−1)dx+c1

µ(x)

• Substitute µ(x) = (x− 1)2

y =
∫
− 2(x−1)

x
dx+c1

(x−1)2

• Evaluate the integrals on the rhs
y = −2x+2 ln(x)+c1

(x−1)2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*(1-x)*diff(y(x),x) = 2+2*x*y(x),y(x), singsol=all)� �

y(x) = −2x+ 2 ln (x) + c1

(x− 1)2

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 21� �
DSolve[x(1-x)y'[x]==2(1+x y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x+ 2 log(x) + c1
(x− 1)2
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11.21 problem 312
11.21.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2981
11.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2983
11.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2987
11.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2992

Internal problem ID [3568]
Internal file name [OUTPUT/3061_Sunday_June_05_2022_08_51_00_AM_38341744/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 312.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(1− x) y′ − 2yx = −2

11.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x− 1

q(x) = 2
x (x− 1)

Hence the ode is

y′ + 2y
x− 1 = 2

x (x− 1)
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The integrating factor µ is

µ = e
∫ 2

x−1dx

= (x− 1)2

The ode becomes

d
dx(µy) = (µ)

(
2

x (x− 1)

)
d
dx
(
(x− 1)2 y

)
=
(
(x− 1)2

)( 2
x (x− 1)

)
d
(
(x− 1)2 y

)
=
(
2x− 2

x

)
dx

Integrating gives

(x− 1)2 y =
∫ 2x− 2

x
dx

(x− 1)2 y = 2x− 2 ln (x) + c1

Dividing both sides by the integrating factor µ = (x− 1)2 results in

y = 2x− 2 ln (x)
(x− 1)2

+ c1

(x− 1)2

which simplifies to

y = 2x− 2 ln (x) + c1

(x− 1)2

Summary
The solution(s) found are the following

(1)y = 2x− 2 ln (x) + c1

(x− 1)2
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Figure 454: Slope field plot

Verification of solutions

y = 2x− 2 ln (x) + c1

(x− 1)2

Verified OK.

11.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2(xy − 1)
x (x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 539: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x− 1)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x−1)2

dy

Which results in

S = (x− 1)2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(xy − 1)
x (x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2(x− 1) y
Sy = (x− 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x− 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R− 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R− 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)2 y = 2x− 2 ln (x) + c1

Which simplifies to

(x− 1)2 y = 2x− 2 ln (x) + c1

Which gives

y = −−c1 + 2 ln (x)− 2x
(x− 1)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2(xy−1)
x(x−1)

dS
dR

= 2R−2
R

R = x

S = (x− 1)2 y

Summary
The solution(s) found are the following

(1)y = −−c1 + 2 ln (x)− 2x
(x− 1)2
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Figure 455: Slope field plot

Verification of solutions

y = −−c1 + 2 ln (x)− 2x
(x− 1)2

Verified OK.

11.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(1− x)) dy = (2xy − 2) dx
(−2xy + 2) dx+(x(1− x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy + 2
N(x, y) = x(1− x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy + 2)

= −2x

And
∂N

∂x
= ∂

∂x
(x(1− x))

= 1− 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x− 1)((−2x)− (1− 2x))

= 1
x (x− 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1

x(x−1) dx

The result of integrating gives

µ = eln(x−1)−ln(x)

= x− 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 1
x

(−2xy + 2)

= −2(x− 1) (xy − 1)
x

And

N = µN

= x− 1
x

(x(1− x))

= −(x− 1)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2(x− 1) (xy − 1)
x

)
+
(
−(x− 1)2

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2(x− 1) (xy − 1)

x
dx

(3)φ = −2 ln (x)− x2y + (2 + 2y)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2 + 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −(x− 1)2. Therefore equation (4) becomes

(5)−(x− 1)2 = −x2 + 2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2 ln (x)− x2y + (2 + 2y)x− y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2 ln (x)− x2y + (2 + 2y)x− y

The solution becomes

y = −−2x+ 2 ln (x) + c1
x2 − 2x+ 1

Summary
The solution(s) found are the following

(1)y = −−2x+ 2 ln (x) + c1
x2 − 2x+ 1

Figure 456: Slope field plot

Verification of solutions

y = −−2x+ 2 ln (x) + c1
x2 − 2x+ 1

Verified OK.
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11.21.4 Maple step by step solution

Let’s solve
x(1− x) y′ − 2yx = −2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2y

x−1 +
2

x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x−1 = 2
x(x−1)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x−1

)
= 2µ(x)

x(x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x−1

• Solve to find the integrating factor
µ(x) = (x− 1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)
x(x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)
x(x−1)dx+ c1

• Solve for y

y =
∫ 2µ(x)

x(x−1)dx+c1

µ(x)

• Substitute µ(x) = (x− 1)2

y =
∫ 2(x−1)

x
dx+c1

(x−1)2

• Evaluate the integrals on the rhs
y = 2x−2 ln(x)+c1

(x−1)2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*(1-x)*diff(y(x),x) = 2*x*y(x)-2,y(x), singsol=all)� �

y(x) = 2x− 2 ln (x) + c1

(x− 1)2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 21� �
DSolve[x(1-x)y'[x]==2(x y[x]-1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x− 2 log(x) + c1
(x− 1)2
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11.22 problem 313
11.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2994
11.22.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2996
11.22.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2998
11.22.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 2999
11.22.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3003
11.22.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3007

Internal problem ID [3569]
Internal file name [OUTPUT/3062_Sunday_June_05_2022_08_51_02_AM_57558445/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 313.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(x+ 1) y′ − (1− 2x) y = 0

11.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(2x− 1)
x (x+ 1)
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Where f(x) = − 2x−1
x(x+1) and g(y) = y. Integrating both sides gives

1
y
dy = − 2x− 1

x (x+ 1) dx∫ 1
y
dy =

∫
− 2x− 1
x (x+ 1) dx

ln (y) = −3 ln (x+ 1) + ln (x) + c1

y = e−3 ln(x+1)+ln(x)+c1

= c1e−3 ln(x+1)+ln(x)

Which simplifies to

y = c1x

(x+ 1)3

Summary
The solution(s) found are the following

(1)y = c1x

(x+ 1)3

Figure 457: Slope field plot
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Verification of solutions

y = c1x

(x+ 1)3

Verified OK.

11.22.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 2x
x (x+ 1)

q(x) = 0

Hence the ode is

y′ − (1− 2x) y
x (x+ 1) = 0

The integrating factor µ is

µ = e
∫
− 1−2x

x(x+1)dx

= e3 ln(x+1)−ln(x)

Which simplifies to

µ = (x+ 1)3

x

The ode becomes

d
dxµy = 0

d
dx

(
(x+ 1)3 y

x

)
= 0

Integrating gives

(x+ 1)3 y
x

= c1
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Dividing both sides by the integrating factor µ = (x+1)3
x

results in

y = c1x

(x+ 1)3

Summary
The solution(s) found are the following

(1)y = c1x

(x+ 1)3

Figure 458: Slope field plot

Verification of solutions

y = c1x

(x+ 1)3

Verified OK.
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11.22.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(x+ 1) (u′(x)x+ u(x))− (1− 2x)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 3u
x+ 1

Where f(x) = − 3
x+1 and g(u) = u. Integrating both sides gives

1
u
du = − 3

x+ 1 dx∫ 1
u
du =

∫
− 3
x+ 1 dx

ln (u) = −3 ln (x+ 1) + c2

u = e−3 ln(x+1)+c2

= c2

(x+ 1)3

Therefore the solution y is

y = xu

= xc2

(x+ 1)3

Summary
The solution(s) found are the following

(1)y = xc2

(x+ 1)3
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Figure 459: Slope field plot

Verification of solutions

y = xc2

(x+ 1)3

Verified OK.

11.22.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(2x− 1)
x (x+ 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 542: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−3 ln(x+1)+ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−3 ln(x+1)+ln(x)dy

Which results in

S = (x+ 1)3 y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(2x− 1)
x (x+ 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (x+ 1)2 y(2x− 1)
x2

Sy =
(x+ 1)3

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 1)3 y
x

= c1

Which simplifies to

(x+ 1)3 y
x

= c1

Which gives

y = c1x

(x+ 1)3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(2x−1)
x(x+1)

dS
dR

= 0

R = x

S = (x+ 1)3 y
x
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Summary
The solution(s) found are the following

(1)y = c1x

(x+ 1)3

Figure 460: Slope field plot

Verification of solutions

y = c1x

(x+ 1)3

Verified OK.

11.22.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−1
y

)
dy =

(
2x− 1
x (x+ 1)

)
dx(

− 2x− 1
x (x+ 1)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 2x− 1
x (x+ 1)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 2x− 1
x (x+ 1)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 2x− 1
x (x+ 1) dx

(3)φ = −3 ln (x+ 1) + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −3 ln (x+ 1) + ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3 ln (x+ 1) + ln (x)− ln (y)

The solution becomes

y = x e−c1

(x+ 1)3

Summary
The solution(s) found are the following

(1)y = x e−c1

(x+ 1)3

Figure 461: Slope field plot
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Verification of solutions

y = x e−c1

(x+ 1)3

Verified OK.

11.22.6 Maple step by step solution

Let’s solve
x(x+ 1) y′ − (1− 2x) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1−2x

x(x+1)

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1−2x
x(x+1)dx+ c1

• Evaluate integral
ln (y) = −3 ln (x+ 1) + ln (x) + c1

• Solve for y
y = ec1x

x3+3x2+3x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*(1+x)*diff(y(x),x) = (1-2*x)*y(x),y(x), singsol=all)� �

y(x) = c1x

(x+ 1)3

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 19� �
DSolve[x(1+x)y'[x]==(1-2 x)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x

(x+ 1)3
y(x) → 0
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11.23 problem 314
11.23.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3009
11.23.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3011
11.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3014
11.23.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3018

Internal problem ID [3570]
Internal file name [OUTPUT/3063_Sunday_June_05_2022_08_51_03_AM_43612871/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 314.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(1− x) y′ + (1 + 2x) y = a

11.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1 + 2x
x (x− 1)

q(x) = − a

x (x− 1)

Hence the ode is

y′ − (1 + 2x) y
x (x− 1) = − a

x (x− 1)
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The integrating factor µ is

µ = e
∫
− 1+2x

x(x−1)dx

= e−3 ln(x−1)+ln(x)

Which simplifies to

µ = x

(x− 1)3

The ode becomes

d
dx(µy) = (µ)

(
− a

x (x− 1)

)
d
dx

(
xy

(x− 1)3
)

=
(

x

(x− 1)3
)(

− a

x (x− 1)

)
d
(

xy

(x− 1)3
)

=
(
− a

(x− 1)4
)

dx

Integrating gives

xy

(x− 1)3
=
∫

− a

(x− 1)4
dx

xy

(x− 1)3
= a

3 (x− 1)3
+ c1

Dividing both sides by the integrating factor µ = x
(x−1)3 results in

y = a

3x + c1(x− 1)3

x

which simplifies to

y = 3c1(x− 1)3 + a

3x
Summary
The solution(s) found are the following

(1)y = 3c1(x− 1)3 + a

3x
Verification of solutions

y = 3c1(x− 1)3 + a

3x

Verified OK.
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11.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy − a+ y

x (x− 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 545: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e3 ln(x−1)−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e3 ln(x−1)−ln(x)dy

Which results in

S = xy

(x− 1)3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy − a+ y

x (x− 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(−1− 2x)
(x− 1)4

Sy =
x

(x− 1)3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − a

(x− 1)4
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − a

(R− 1)4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a

3 (R− 1)3
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy

(x− 1)3
= a

3 (x− 1)3
+ c1

Which simplifies to
xy

(x− 1)3
= a

3 (x− 1)3
+ c1

Which gives

y = 3c1x3 − 9c1x2 + 9c1x+ a− 3c1
3x

Summary
The solution(s) found are the following

(1)y = 3c1x3 − 9c1x2 + 9c1x+ a− 3c1
3x
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Verification of solutions

y = 3c1x3 − 9c1x2 + 9c1x+ a− 3c1
3x

Verified OK.

11.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x(1− x)) dy = (−(1 + 2x) y + a) dx
((1 + 2x) y − a) dx+(x(1− x)) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = (1 + 2x) y − a

N(x, y) = x(1− x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
((1 + 2x) y − a)

= 1 + 2x

And
∂N

∂x
= ∂

∂x
(x(1− x))

= 1− 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x− 1)((1 + 2x)− (1− 2x))

= − 4
x− 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 4

x−1 dx

The result of integrating gives

µ = e−4 ln(x−1)

= 1
(x− 1)4
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)4

((1 + 2x) y − a)

= 2xy − a+ y

(x− 1)4

And

N = µN

= 1
(x− 1)4

(x(1− x))

= − x

(x− 1)3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2xy − a+ y

(x− 1)4
)
+
(
− x

(x− 1)3
)

dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2xy − a+ y

(x− 1)4
dx

(3)φ = −3xy + a

3 (x− 1)3
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

(x− 1)3
+ f ′(y)
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But equation (2) says that ∂φ
∂y

= − x
(x−1)3 . Therefore equation (4) becomes

(5)− x

(x− 1)3
= − x

(x− 1)3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −3xy + a

3 (x− 1)3
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−3xy + a

3 (x− 1)3

The solution becomes

y = −3c1x3 − 9c1x2 + 9c1x− a− 3c1
3x

Summary
The solution(s) found are the following

(1)y = −3c1x3 − 9c1x2 + 9c1x− a− 3c1
3x

Verification of solutions

y = −3c1x3 − 9c1x2 + 9c1x− a− 3c1
3x

Verified OK.
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11.23.4 Maple step by step solution

Let’s solve
x(1− x) y′ + (1 + 2x) y = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = (1+2x)y

x(x−1) − a
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − (1+2x)y

x(x−1) = − a
x(x−1)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − (1+2x)y

x(x−1)

)
= − µ(x)a

x(x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − (1+2x)y

x(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)(1+2x)

x(x−1)

• Solve to find the integrating factor
µ(x) = x

(x−1)3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)a

x(x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− µ(x)a

x(x−1)dx+ c1

• Solve for y

y =
∫
− µ(x)a

x(x−1)dx+c1

µ(x)

• Substitute µ(x) = x
(x−1)3

y =
(x−1)3

(∫
− a

(x−1)4
dx+c1

)
x

• Evaluate the integrals on the rhs
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y =
(x−1)3

(
a

3(x−1)3
+c1

)
x

• Simplify

y = 3c1(x−1)3+a
3x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 19� �
dsolve(x*(1-x)*diff(y(x),x)+(1+2*x)*y(x) = a,y(x), singsol=all)� �

y(x) = 3(x− 1)3 c1 + a

3x

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 23� �
DSolve[x(1-x)y'[x]+(1+2 x)y[x]==a,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a− 3c1(x− 1)3
3x
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11.24 problem 315
11.24.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3020
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Internal problem ID [3571]
Internal file name [OUTPUT/3064_Sunday_June_05_2022_08_51_05_AM_80567773/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 315.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(1− x) y′ − 2(−x+ 2) y = a

11.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 2x− 4
x (x− 1)

q(x) = − a

x (x− 1)

Hence the ode is

y′ − (2x− 4) y
x (x− 1) = − a

x (x− 1)
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The integrating factor µ is

µ = e
∫
− 2x−4

x(x−1)dx

= e2 ln(x−1)−4 ln(x)

Which simplifies to

µ = (x− 1)2

x4

The ode becomes
d
dx(µy) = (µ)

(
− a

x (x− 1)

)
d
dx

(
(x− 1)2 y

x4

)
=
(
(x− 1)2

x4

)(
− a

x (x− 1)

)

d
(
(x− 1)2 y

x4

)
=
(
−(x− 1) a

x5

)
dx

Integrating gives

(x− 1)2 y
x4 =

∫
−(x− 1) a

x5 dx

(x− 1)2 y
x4 = −a

(
− 1
3x3 + 1

4x4

)
+ c1

Dividing both sides by the integrating factor µ = (x−1)2
x4 results in

y = −
x4a
(
− 1

3x3 + 1
4x4

)
(x− 1)2

+ c1x
4

(x− 1)2

which simplifies to

y = 12c1x4 + 4ax− 3a
12 (x− 1)2

Summary
The solution(s) found are the following

(1)y = 12c1x4 + 4ax− 3a
12 (x− 1)2

Verification of solutions

y = 12c1x4 + 4ax− 3a
12 (x− 1)2

Verified OK.
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11.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy − a− 4y
x (x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 548: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e−2 ln(x−1)+4 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−2 ln(x−1)+4 ln(x)dy

Which results in

S = (x− 1)2 y
x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy − a− 4y
x (x− 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2(x− 1) y(x− 2)
x5

Sy =
(x− 1)2

x4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −(x− 1) a

x5 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −(R− 1) a

R5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a

3R3 − a

4R4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)2 y
x4 = a

3x3 − a

4x4 + c1

Which simplifies to

(x− 1)2 y
x4 = a

3x3 − a

4x4 + c1

Which gives

y = 12c1x4 + 4ax− 3a
12 (x− 1)2

Summary
The solution(s) found are the following

(1)y = 12c1x4 + 4ax− 3a
12 (x− 1)2
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Verification of solutions

y = 12c1x4 + 4ax− 3a
12 (x− 1)2

Verified OK.

11.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x(1− x)) dy = (a+ 2(−x+ 2) y) dx
(−a− 2(−x+ 2) y) dx+(x(1− x)) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −a− 2(−x+ 2) y
N(x, y) = x(1− x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−a− 2(−x+ 2) y)

= 2x− 4

And
∂N

∂x
= ∂

∂x
(x(1− x))

= 1− 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x− 1)((2x− 4)− (1− 2x))

= −4x+ 5
x (x− 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −4x+5

x(x−1) dx

The result of integrating gives

µ = eln(x−1)−5 ln(x)

= x− 1
x5
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 1
x5 (−a− 2(−x+ 2) y)

= −(−2xy + a+ 4y) (x− 1)
x5

And

N = µN

= x− 1
x5 (x(1− x))

= −(x− 1)2

x4

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(−2xy + a+ 4y) (x− 1)
x5

)
+
(
−(x− 1)2

x4

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−(−2xy + a+ 4y) (x− 1)

x5 dx

(3)φ = −12x2y + 4(a+ 6y)x− 3a− 12y
12x4 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −12x2 + 24x− 12

12x4 + f ′(y)

= −(x− 1)2

x4 + f ′(y)

But equation (2) says that ∂φ
∂y

= − (x−1)2
x4 . Therefore equation (4) becomes

(5)−(x− 1)2

x4 = −(x− 1)2

x4 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −12x2y + 4(a+ 6y)x− 3a− 12y
12x4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−12x2y + 4(a+ 6y)x− 3a− 12y

12x4

The solution becomes

y = −12c1x4 − 4ax+ 3a
12 (x2 − 2x+ 1)

Summary
The solution(s) found are the following

(1)y = −12c1x4 − 4ax+ 3a
12 (x2 − 2x+ 1)
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Verification of solutions

y = −12c1x4 − 4ax+ 3a
12 (x2 − 2x+ 1)

Verified OK.

11.24.4 Maple step by step solution

Let’s solve
x(1− x) y′ − 2(−x+ 2) y = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2(x−2)y

x(x−1) − a
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2(x−2)y

x(x−1) = − a
x(x−1)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − 2(x−2)y

x(x−1)

)
= − µ(x)a

x(x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2(x−2)y

x(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)(x−2)

x(x−1)

• Solve to find the integrating factor

µ(x) = (x−1)2
x4

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)a

x(x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− µ(x)a

x(x−1)dx+ c1

• Solve for y

y =
∫
− µ(x)a

x(x−1)dx+c1

µ(x)
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• Substitute µ(x) = (x−1)2
x4

y =
x4
(∫

− (x−1)a
x5 dx+c1

)
(x−1)2

• Evaluate the integrals on the rhs

y =
x4
(
−a
(
− 1

3x3+
1

4x4

)
+c1

)
(x−1)2

• Simplify
y = 12c1x4+4ax−3a

12(x−1)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(x*(1-x)*diff(y(x),x) = a+2*(2-x)*y(x),y(x), singsol=all)� �

y(x) = 12c1x4 + 4ax− 3a
12 (x− 1)2

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 29� �
DSolve[x(1-x)y'[x]==a+2(2-x)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a(4x− 3) + 12c1x4

12(x− 1)2
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11.25 problem 316
11.25.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3031
11.25.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3033
11.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3037
11.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3042

Internal problem ID [3572]
Internal file name [OUTPUT/3065_Sunday_June_05_2022_08_51_06_AM_31735240/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 316.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(1− x) y′ − 3yx+ y = −2

11.25.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 3x
x (x− 1)

q(x) = 2
x (x− 1)

Hence the ode is

y′ − (1− 3x) y
x (x− 1) = 2

x (x− 1)
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The integrating factor µ is

µ = e
∫
− 1−3x

x(x−1)dx

= e2 ln(x−1)+ln(x)

Which simplifies to
µ = x(x− 1)2

The ode becomes

d
dx(µy) = (µ)

(
2

x (x− 1)

)
d
dx
(
x(x− 1)2 y

)
=
(
x(x− 1)2

)( 2
x (x− 1)

)
d
(
x(x− 1)2 y

)
= (2x− 2) dx

Integrating gives

x(x− 1)2 y =
∫

2x− 2 dx

x(x− 1)2 y = x2 − 2x+ c1

Dividing both sides by the integrating factor µ = x(x− 1)2 results in

y = x2 − 2x
x (x− 1)2

+ c1

x (x− 1)2

which simplifies to

y = x2 + c1 − 2x
x (x− 1)2

Summary
The solution(s) found are the following

(1)y = x2 + c1 − 2x
x (x− 1)2
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Figure 462: Slope field plot

Verification of solutions

y = x2 + c1 − 2x
x (x− 1)2

Verified OK.

11.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3xy − y − 2
x (x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 551: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−2 ln(x−1)−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−2 ln(x−1)−ln(x)dy

Which results in

S = x(x− 1)2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3xy − y − 2
x (x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

(
3x2 − 4x+ 1

)
Sy = x(x− 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x− 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R− 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 − 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x(x− 1)2 y = x2 + c1 − 2x

Which simplifies to

x(x− 1)2 y = x2 + c1 − 2x

Which gives

y = x2 + c1 − 2x
x (x− 1)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3xy−y−2
x(x−1)

dS
dR

= 2R− 2

R = x

S = x(x− 1)2 y

Summary
The solution(s) found are the following

(1)y = x2 + c1 − 2x
x (x− 1)2
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Figure 463: Slope field plot

Verification of solutions

y = x2 + c1 − 2x
x (x− 1)2

Verified OK.

11.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(1− x)) dy = (3xy − y − 2) dx
(−3xy + y + 2) dx+(x(1− x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3xy + y + 2
N(x, y) = x(1− x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−3xy + y + 2)

= 1− 3x

And
∂N

∂x
= ∂

∂x
(x(1− x))

= 1− 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x− 1)((1− 3x)− (1− 2x))

= 1
x− 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1

x−1 dx

The result of integrating gives

µ = eln(x−1)

= x− 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 1(−3xy + y + 2)
= (−3xy + y + 2) (x− 1)

And

N = µN

= x− 1(x(1− x))
= −x(x− 1)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

((−3xy + y + 2) (x− 1)) +
(
−x(x− 1)2

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−3xy + y + 2) (x− 1) dx

(3)φ = −
(
x2y + (−2y − 1)x+ y + 2

)
x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

(
x2 − 2x+ 1

)
x+ f ′(y)

= −x(x− 1)2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x(x− 1)2. Therefore equation (4) becomes

(5)−x(x− 1)2 = −x(x− 1)2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
(
x2y + (−2y − 1)x+ y + 2

)
x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
x2y + (−2y − 1)x+ y + 2

)
x
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The solution becomes

y = − −x2 + c1 + 2x
(x2 − 2x+ 1)x

Summary
The solution(s) found are the following

(1)y = − −x2 + c1 + 2x
(x2 − 2x+ 1)x

Figure 464: Slope field plot

Verification of solutions

y = − −x2 + c1 + 2x
(x2 − 2x+ 1)x

Verified OK.
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11.25.4 Maple step by step solution

Let’s solve
x(1− x) y′ − 3yx+ y = −2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (3x−1)y

x(x−1) + 2
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (3x−1)y

x(x−1) = 2
x(x−1)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (3x−1)y

x(x−1)

)
= 2µ(x)

x(x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (3x−1)y

x(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(3x−1)

x(x−1)

• Solve to find the integrating factor
µ(x) = x(x− 1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)
x(x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)
x(x−1)dx+ c1

• Solve for y

y =
∫ 2µ(x)

x(x−1)dx+c1

µ(x)

• Substitute µ(x) = x(x− 1)2

y =
∫
(2x−2)dx+c1
x(x−1)2

• Evaluate the integrals on the rhs
y = x2+c1−2x

x(x−1)2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x*(1-x)*diff(y(x),x)+2-3*x*y(x)+y(x) = 0,y(x), singsol=all)� �

y(x) = x2 + c1 − 2x
x (x− 1)2

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 23� �
DSolve[x(1-x)y'[x]+(2-3 x y[x]+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − 2x+ c1
(x− 1)2x
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11.26 problem 317
11.26.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3044
11.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3046
11.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3050
11.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3055

Internal problem ID [3573]
Internal file name [OUTPUT/3066_Sunday_June_05_2022_08_51_08_AM_5802787/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 317.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(x+ 1) y′ −
(
x2 + x− 1

)
y = (x+ 1)

(
x2 − 1

)
11.26.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −x2 + x− 1
x (x+ 1)

q(x) = x2 − 1
x

Hence the ode is

y′ − (x2 + x− 1) y
x (x+ 1) = x2 − 1

x
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The integrating factor µ is

µ = e
∫
−x2+x−1

x(x+1) dx

= e−x−ln(x+1)+ln(x)

Which simplifies to

µ = x e−x

x+ 1

The ode becomes

d
dx(µy) = (µ)

(
x2 − 1

x

)
d
dx

(
x e−xy

x+ 1

)
=
(
x e−x

x+ 1

)(
x2 − 1

x

)
d
(
x e−xy

x+ 1

)
=
(
e−x(x− 1)

)
dx

Integrating gives

x e−xy

x+ 1 =
∫

e−x(x− 1) dx

x e−xy

x+ 1 = −x e−x + c1

Dividing both sides by the integrating factor µ = x e−x

x+1 results in

y = −(x+ 1) exe−x + c1(x+ 1) ex
x

which simplifies to

y = −(x+ 1) (−c1ex + x)
x

Summary
The solution(s) found are the following

(1)y = −(x+ 1) (−c1ex + x)
x
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Figure 465: Slope field plot

Verification of solutions

y = −(x+ 1) (−c1ex + x)
x

Verified OK.

11.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + x2y + x2 + xy − x− y − 1
x (x+ 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 554: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex+ln(x+1)−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex+ln(x+1)−ln(x)dy

Which results in

S = x e−xy

x+ 1
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + x2y + x2 + xy − x− y − 1
x (x+ 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −e−xy(x2 + x− 1)
(x+ 1)2

Sy =
x e−x

x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−x(x− 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R(R− 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−RR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x e−xy

x+ 1 = −x e−x + c1

Which simplifies to

x e−xy

x+ 1 = −x e−x + c1

Which gives

y = −(e−xx2 + x e−x − c1x− c1) ex
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+x2y+x2+xy−x−y−1
x(x+1)

dS
dR

= e−R(R− 1)

R = x

S = x e−xy

x+ 1
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Summary
The solution(s) found are the following

(1)y = −(e−xx2 + x e−x − c1x− c1) ex
x

Figure 466: Slope field plot

Verification of solutions

y = −(e−xx2 + x e−x − c1x− c1) ex
x

Verified OK.

11.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(x+ 1)) dy =
(
(x+ 1)

(
x2 − 1

)
+
(
x2 + x− 1

)
y
)
dx(

−(x+ 1)
(
x2 − 1

)
−
(
x2 + x− 1

)
y
)
dx+(x(x+ 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −(x+ 1)
(
x2 − 1

)
−
(
x2 + x− 1

)
y

N(x, y) = x(x+ 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−(x+ 1)

(
x2 − 1

)
−
(
x2 + x− 1

)
y
)

= −x2 − x+ 1
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And
∂N

∂x
= ∂

∂x
(x(x+ 1))

= 1 + 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x+ 1)
((
−x2 − x+ 1

)
− (1 + 2x)

)
= −x− 3

x+ 1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −x−3

x+1 dx

The result of integrating gives

µ = e−x−2 ln(x+1)

= e−x

(x+ 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x

(x+ 1)2
(
−(x+ 1)

(
x2 − 1

)
−
(
x2 + x− 1

)
y
)

= −e−x(x3 + (y + 1)x2 + (y − 1)x− y − 1)
(x+ 1)2

And

N = µN

= e−x

(x+ 1)2
(x(x+ 1))

= x e−x

x+ 1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x(x3 + (y + 1)x2 + (y − 1)x− y − 1)
(x+ 1)2

)
+
(
x e−x

x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x(x3 + (y + 1)x2 + (y − 1)x− y − 1)

(x+ 1)2
dx

(3)φ = x(x+ y + 1) e−x

x+ 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x e−x

x+ 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= x e−x

x+1 . Therefore equation (4) becomes

(5)x e−x

x+ 1 = x e−x

x+ 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x(x+ y + 1) e−x

x+ 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(x+ y + 1) e−x

x+ 1

The solution becomes

y = −(e−xx2 + x e−x − c1x− c1) ex
x

Summary
The solution(s) found are the following

(1)y = −(e−xx2 + x e−x − c1x− c1) ex
x

Figure 467: Slope field plot
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Verification of solutions

y = −(e−xx2 + x e−x − c1x− c1) ex
x

Verified OK.

11.26.4 Maple step by step solution

Let’s solve
x(x+ 1) y′ − (x2 + x− 1) y = (x+ 1) (x2 − 1)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ =
(
x2+x−1

)
y

x(x+1) + x2−1
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ −
(
x2+x−1

)
y

x(x+1) = x2−1
x

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ −

(
x2+x−1

)
y

x(x+1)

)
= µ(x)

(
x2−1

)
x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ −

(
x2+x−1

)
y

x(x+1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)
(
x2+x−1

)
x(x+1)

• Solve to find the integrating factor
µ(x) = x e−x

x+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
x2−1

)
x

dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
x2−1

)
x

dx+ c1

• Solve for y

y =
∫ µ(x)

(
x2−1

)
x

dx+c1
µ(x)
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• Substitute µ(x) = xe−x

x+1

y =
(x+1)

(∫ (x2−1
)
e−x

x+1 dx+c1

)
x e−x

• Evaluate the integrals on the rhs

y = (x+1)
(
−x e−x+c1

)
x e−x

• Simplify
y = − (x+1)(−c1ex+x)

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*(1+x)*diff(y(x),x) = (1+x)*(x^2-1)+(x^2+x-1)*y(x),y(x), singsol=all)� �

y(x) = −(x+ 1) (−exc1 + x)
x

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 22� �
DSolve[x(1+x)y'[x]==(x+1)(x^2-1)+(x^2+x-1)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −(x+ 1) (x− c1e
x)

x
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11.27 problem 318
11.27.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3057
11.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3059
11.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3063
11.27.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3068

Internal problem ID [3574]
Internal file name [OUTPUT/3067_Sunday_June_05_2022_08_51_09_AM_84147044/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 318.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x− 2) (x− 3) y′ − 8y + 3yx = −x2

11.27.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − −3x+ 8
(x− 2) (x− 3)

q(x) = − x2

(x− 2) (x− 3)

Hence the ode is

y′ − (−3x+ 8) y
(x− 2) (x− 3) = − x2

(x− 2) (x− 3)
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The integrating factor µ is

µ = e
∫
− −3x+8

(x−2)(x−3)dx

= eln(x−3)+2 ln(x−2)

Which simplifies to
µ = (x− 2)2 (x− 3)

The ode becomes

d
dx(µy) = (µ)

(
− x2

(x− 2) (x− 3)

)
d
dx
(
(x− 2)2 (x− 3) y

)
=
(
(x− 2)2 (x− 3)

)(
− x2

(x− 2) (x− 3)

)
d
(
(x− 2)2 (x− 3) y

)
=
(
−(x− 2)x2) dx

Integrating gives

(x− 2)2 (x− 3) y =
∫

−(x− 2)x2 dx

(x− 2)2 (x− 3) y = −1
4x

4 + 2
3x

3 + c1

Dividing both sides by the integrating factor µ = (x− 2)2 (x− 3) results in

y =
−1

4x
4 + 2

3x
3

(x− 2)2 (x− 3)
+ c1

(x− 2)2 (x− 3)

which simplifies to

y = −3x4 + 8x3 + 12c1
12 (x− 2)2 (x− 3)

Summary
The solution(s) found are the following

(1)y = −3x4 + 8x3 + 12c1
12 (x− 2)2 (x− 3)
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Figure 468: Slope field plot

Verification of solutions

y = −3x4 + 8x3 + 12c1
12 (x− 2)2 (x− 3)

Verified OK.

11.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − x2 + 3xy − 8y
(x− 2) (x− 3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 557: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(x−3)−2 ln(x−2) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x−3)−2 ln(x−2)dy

Which results in

S = (x− 2)2 (x− 3) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x2 + 3xy − 8y
(x− 2) (x− 3)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

(
3x2 − 14x+ 16

)
Sy = (x− 2)2 (x− 3)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x3 + 2x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R3 + 2R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
4R

4 + 2
3R

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 2)2 (x− 3) y = −1
4x

4 + 2
3x

3 + c1

Which simplifies to

(x− 2)2 (x− 3) y = −1
4x

4 + 2
3x

3 + c1

Which gives

y = −3x4 + 8x3 + 12c1
12 (x− 2)2 (x− 3)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+3xy−8y
(x−2)(x−3)

dS
dR

= −R3 + 2R2

R = x

S = (x− 2)2 (x− 3) y

Summary
The solution(s) found are the following

(1)y = −3x4 + 8x3 + 12c1
12 (x− 2)2 (x− 3)
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Figure 469: Slope field plot

Verification of solutions

y = −3x4 + 8x3 + 12c1
12 (x− 2)2 (x− 3)

Verified OK.

11.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

((x− 2) (x− 3)) dy =
(
−x2 − 3xy + 8y

)
dx(

x2 + 3xy − 8y
)
dx+((x− 2) (x− 3)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + 3xy − 8y
N(x, y) = (x− 2) (x− 3)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 + 3xy − 8y

)
= 3x− 8

And
∂N

∂x
= ∂

∂x
((x− 2) (x− 3))

= 2x− 5
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(x− 2) (x− 3)((3x− 8)− (2x− 5))

= 1
x− 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1

x−2 dx

The result of integrating gives

µ = eln(x−2)

= x− 2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 2
(
x2 + 3xy − 8y

)
=
(
x2 + 3xy − 8y

)
(x− 2)

And

N = µN

= x− 2((x− 2) (x− 3))
= (x− 2)2 (x− 3)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

x2 + 3xy − 8y
)
(x− 2)

)
+
(
(x− 2)2 (x− 3)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
x2 + 3xy − 8y

)
(x− 2) dx

(3)φ =
(
x3 +

(
4y − 8

3

)
x2 − 28xy + 64y

)
x

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (4x2 − 28x+ 64)x

4 + f ′(y)

=
(
x2 − 7x+ 16

)
x+ f ′(y)

But equation (2) says that ∂φ
∂y

= (x− 2)2 (x− 3). Therefore equation (4) becomes

(5)(x− 2)2 (x− 3) =
(
x2 − 7x+ 16

)
x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −12

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−12) dy

f(y) = −12y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
(
x3 +

(
4y − 8

3

)
x2 − 28xy + 64y

)
x

4 − 12y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x3 +

(
4y − 8

3

)
x2 − 28xy + 64y

)
x

4 − 12y

The solution becomes

y = −3x4 + 8x3 + 12c1
12x3 − 84x2 + 192x− 144

Summary
The solution(s) found are the following

(1)y = −3x4 + 8x3 + 12c1
12x3 − 84x2 + 192x− 144

Figure 470: Slope field plot
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Verification of solutions

y = −3x4 + 8x3 + 12c1
12x3 − 84x2 + 192x− 144

Verified OK.

11.27.4 Maple step by step solution

Let’s solve
(x− 2) (x− 3) y′ − 8y + 3yx = −x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (3x−8)y

(x−2)(x−3) −
x2

(x−2)(x−3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (3x−8)y

(x−2)(x−3) = − x2

(x−2)(x−3)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (3x−8)y

(x−2)(x−3)

)
= − µ(x)x2

(x−2)(x−3)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (3x−8)y

(x−2)(x−3)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(3x−8)

(x−2)(x−3)

• Solve to find the integrating factor
µ(x) = (x− 2)2 (x− 3)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)x2

(x−2)(x−3)dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
− µ(x)x2

(x−2)(x−3)dx+ c1

• Solve for y

y =
∫
− µ(x)x2

(x−2)(x−3)dx+c1

µ(x)
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• Substitute µ(x) = (x− 2)2 (x− 3)

y =
∫
−(x−2)x2dx+c1
(x−2)2(x−3)

• Evaluate the integrals on the rhs

y = − 1
4x

4+ 2
3x

3+c1

(x−2)2(x−3)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve((x-2)*(x-3)*diff(y(x),x)+x^2-8*y(x)+3*x*y(x) = 0,y(x), singsol=all)� �

y(x) =
−1

4x
4 + 2

3x
3 + c1

(x− 3) (−2 + x)2

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 34� �
DSolve[(x-2)(x-3)y'[x]+x^2-8 y[x]+3 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3x4 + 8x3 − 12c1
12(x− 3)(x− 2)2
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11.28 problem 319
11.28.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3070
11.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3072
11.28.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3075
11.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3078
11.28.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3081
11.28.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3083

Internal problem ID [3575]
Internal file name [OUTPUT/3068_Sunday_June_05_2022_08_51_11_AM_12404813/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 11
Problem number: 319.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(x+ a) y′ − (b+ cy) y = 0

11.28.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (cy + b) y
x (x+ a)

Where f(x) = 1
x(x+a) and g(y) = y(cy + b). Integrating both sides gives

1
y (cy + b) dy = 1

x (x+ a) dx
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∫ 1
y (cy + b) dy =

∫ 1
x (x+ a) dx

− ln (cy + b)
b

+ ln (y)
b

= − ln (x+ a)
a

+ ln (x)
a

+ c1

The above can be written as(
−1
b

)
(ln (cy + b)− ln (y)) = − ln (x+ a)

a
+ ln (x)

a
+ 2c1

ln (cy + b)− ln (y) = (−b)
(
− ln (x+ a)

a
+ ln (x)

a
+ 2c1

)
= −b

(
− ln (x+ a)

a
+ ln (x)

a
+ 2c1

)
Raising both side to exponential gives

eln(cy+b)−ln(y) = e−b
(
− ln(x+a)

a
+ ln(x)

a
+c1

)

Which simplifies to

cy + b

y
= −c1b e−b

(
− ln(x+a)

a
+ ln(x)

a

)

= c2e−b
(
− ln(x+a)

a
+ ln(x)

a

)

Which simplifies to

y = b

c2 (x+ a)
b
a x− b

a − c

Summary
The solution(s) found are the following

(1)y = b

c2 (x+ a)
b
a x− b

a − c

Verification of solutions

y = b

c2 (x+ a)
b
a x− b

a − c

Verified OK.
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11.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (cy + b) y
x (x+ a)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 560: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x(x+ a)
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x (x+ a)dx

Which results in

S = − ln (x+ a)
a

+ ln (x)
a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (cy + b) y
x (x+ a)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x (x+ a)

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

(cy + b) y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(Rc+ b)R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (Rc+ b)
b

+ ln (R)
b

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ a) + ln (x)
a

= − ln (b+ cy)
b

+ ln (y)
b

+ c1

Which simplifies to
− ln (x+ a) + ln (x)

a
= − ln (b+ cy)

b
+ ln (y)

b
+ c1

Which gives

y = e−
c1ab+b ln

(
x+a
x

)
−ln

− b

−1+e−
b
(
c1a+ln

(
x+a
x

))
a c

a

a

Summary
The solution(s) found are the following

(1)y = e−
c1ab+b ln

(
x+a
x

)
−ln

− b

−1+e−
b
(
c1a+ln

(
x+a
x

))
a c

a

a
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Verification of solutions

y = e−
c1ab+b ln

(
x+a
x

)
−ln

− b

−1+e−
b
(
c1a+ln

(
x+a
x

))
a c

a

a

Verified OK.

11.28.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (cy + b) y
x (x+ a)

This is a Bernoulli ODE.

y′ = b

x (x+ a)y +
c

x (x+ a)y
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
b

x (x+ a)
f1(x) =

c

x (x+ a)
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= b

x (x+ a) y + c

x (x+ a) (4)

3075



Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = bw(x)
x (x+ a) +

c

x (x+ a)

w′ = − bw

x (x+ a) −
c

x (x+ a) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = b

x (x+ a)
q(x) = − c

x (x+ a)

Hence the ode is

w′(x) + bw(x)
x (x+ a) = − c

x (x+ a)

The integrating factor µ is

µ = e
∫

b
x(x+a)dx

= e−
b ln(x+a)

a
+ b ln(x)

a

Which simplifies to

µ = (x+ a)−
b
a x

b
a
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The ode becomes

d
dx(µw) = (µ)

(
− c

x (x+ a)

)
d
dx

(
(x+ a)−

b
a x

b
aw
)
=
(
(x+ a)−

b
a x

b
a

)(
− c

x (x+ a)

)
d
(
(x+ a)−

b
a x

b
aw
)
=
(
−c x

b−a
a (x+ a)

−a−b
a

)
dx

Integrating gives

(x+ a)−
b
a x

b
aw =

∫
−c x

b−a
a (x+ a)

−a−b
a dx

(x+ a)−
b
a x

b
aw = −c x1−−b+a

a (x+ a)1−
a+b
a

b
+ c1

Dividing both sides by the integrating factor µ = (x+ a)−
b
a x

b
a results in

w(x) = −(x+ a)
b
a x− b

a c x1−−b+a
a (x+ a)1−

a+b
a

b
+ c1(x+ a)

b
a x− b

a

which simplifies to

w(x) = −c

b
+ c1(x+ a)

b
a x− b

a

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −c

b
+ c1(x+ a)

b
a x− b

a

Or

y = 1
− c

b
+ c1 (x+ a)

b
a x− b

a

Summary
The solution(s) found are the following

(1)y = 1
− c

b
+ c1 (x+ a)

b
a x− b

a

Verification of solutions

y = 1
− c

b
+ c1 (x+ a)

b
a x− b

a

Verified OK.
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11.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

(cy + b) y

)
dy =

(
1

x (x+ a)

)
dx(

− 1
x (x+ a)

)
dx+

(
1

(cy + b) y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (x+ a)

N(x, y) = 1
(cy + b) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x (x+ a)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

(cy + b) y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (x+ a) dx

(3)φ = ln (x+ a)− ln (x)
a

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
(cy+b)y . Therefore equation (4) becomes

(5)1
(cy + b) y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
(cy + b) y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
(cy + b) y

)
dy

f(y) = − ln (cy + b)
b

+ ln (y)
b

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x+ a)− ln (x)
a

− ln (cy + b)
b

+ ln (y)
b

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x+ a)− ln (x)

a
− ln (cy + b)

b
+ ln (y)

b

The solution becomes

y = e−
−c1ab−ln

− b

−1+e−
b
(
−c1a+ln

(
x+a
x

))
a c

a+b ln
(
x+a
x

)

a

Summary
The solution(s) found are the following

(1)y = e−
−c1ab−ln

− b

−1+e−
b
(
−c1a+ln

(
x+a
x

))
a c

a+b ln
(
x+a
x

)

a
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Verification of solutions

y = e−
−c1ab−ln

− b

−1+e−
b
(
−c1a+ln

(
x+a
x

))
a c

a+b ln
(
x+a
x

)

a

Verified OK.

11.28.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (cy + b) y
x (x+ a)

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2c

x (x+ a) +
yb

x (x+ a)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = b
x(x+a) and f2(x) = c

x(x+a) . Let

y = −u′

f2u

= −u′

cu
x(x+a)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − c

x2 (x+ a) −
c

x (x+ a)2

f1f2 =
bc

x2 (x+ a)2

f 2
2 f0 = 0
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Substituting the above terms back in equation (2) gives

cu′′(x)
x (x+ a) −

(
− c

x2 (x+ a) −
c

x (x+ a)2
+ bc

x2 (x+ a)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + (x+ a)−
b
a x

b
a c2

The above shows that

u′(x) = −
c2b
(
x

b
a (x+ a)

−a−b
a − x

b−a
a (x+ a)−

b
a

)
a

Using the above in (1) gives the solution

y =
c2b
(
x

b
a (x+ a)

−a−b
a − x

b−a
a (x+ a)−

b
a

)
x(x+ a)

ac
(
c1 + (x+ a)−

b
a x

b
a c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − b x
b
a

c
(
c3 (x+ a)

b
a + x

b
a

)
Summary
The solution(s) found are the following

(1)y = − b x
b
a

c
(
c3 (x+ a)

b
a + x

b
a

)
Verification of solutions

y = − b x
b
a

c
(
c3 (x+ a)

b
a + x

b
a

)
Verified OK.
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11.28.6 Maple step by step solution

Let’s solve
x(x+ a) y′ − (b+ cy) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(b+cy)y = 1
x(x+a)

• Integrate both sides with respect to x∫
y′

(b+cy)ydx =
∫ 1

x(x+a)dx+ c1

• Evaluate integral
− ln(b+cy)

b
+ ln(y)

b
= − ln(x+a)

a
+ ln(x)

a
+ c1

• Solve for y

y = e−
−c1ab−ln

− b

−1+e−
b
(
−c1a+ln

(
x+a
x

))
a c

a+b ln
(
x+a
x

)

a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(x*(a+x)*diff(y(x),x) = (b+c*y(x))*y(x),y(x), singsol=all)� �

y(x) = b

(x+ a)
b
a x− b

a c1b− c
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3 Solution by Mathematica
Time used: 0.973 (sec). Leaf size: 65� �
DSolve[x(a+x)y'[x]==(b+c y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − bebc1x
b
a

−(a+ x) b
a + cebc1x

b
a

y(x) → 0

y(x) → −b

c
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12.1 problem 320
12.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3086
12.1.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3087
12.1.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 3088
12.1.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3091
12.1.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3094

Internal problem ID [3576]
Internal file name [OUTPUT/3069_Sunday_June_05_2022_08_51_13_AM_60841462/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 320.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ a)2 y′ − 2(x+ a) (b+ y) = 0

12.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2b+ 2y
x+ a

Where f(x) = 1
x+a

and g(y) = 2b+ 2y. Integrating both sides gives

1
2b+ 2y dy = 1

x+ a
dx∫ 1

2b+ 2y dy =
∫ 1

x+ a
dx

ln (b+ y)
2 = ln (x+ a) + c1
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Raising both side to exponential gives√
b+ y = eln(x+a)+c1

Which simplifies to √
b+ y = c2(x+ a)

Summary
The solution(s) found are the following

(1)y = e2c1c22a2 + 2 e2c1c22ax+ e2c1c22x2 − b

Verification of solutions

y = e2c1c22a2 + 2 e2c1c22ax+ e2c1c22x2 − b

Verified OK.

12.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 2
x+ a

q(x) = 2b
x+ a

Hence the ode is

y′ − 2y
x+ a

= 2b
x+ a

The integrating factor µ is

µ = e
∫
− 2

x+a
dx

= 1
(x+ a)2

The ode becomes
d
dx(µy) = (µ)

(
2b

x+ a

)
d
dx

(
y

(x+ a)2
)

=
(

1
(x+ a)2

)(
2b

x+ a

)
d
(

y

(x+ a)2
)

=
(

2b
(x+ a)3

)
dx
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Integrating gives

y

(x+ a)2
=
∫ 2b

(x+ a)3
dx

y

(x+ a)2
= − b

(x+ a)2
+ c1

Dividing both sides by the integrating factor µ = 1
(x+a)2 results in

y = −b+ c1(x+ a)2

Summary
The solution(s) found are the following

(1)y = −b+ c1(x+ a)2

Verification of solutions

y = −b+ c1(x+ a)2

Verified OK.

12.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2b+ 2y
x+ a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 563: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = (x+ a)2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

3089



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

(x+ a)2
dy

Which results in

S = y

(x+ a)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2b+ 2y
x+ a

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2y
(x+ a)3

Sy =
1

(x+ a)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2b

(x+ a)3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2b

(R + a)3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − b

(R + a)2
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(x+ a)2
= − b

(x+ a)2
+ c1

Which simplifies to

y

(x+ a)2
= − b

(x+ a)2
+ c1

Which gives

y = a2c1 + 2ac1x+ c1x
2 − b

Summary
The solution(s) found are the following

(1)y = a2c1 + 2ac1x+ c1x
2 − b

Verification of solutions

y = a2c1 + 2ac1x+ c1x
2 − b

Verified OK.

12.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
2b+ 2y

)
dy =

(
1

x+ a

)
dx(

− 1
x+ a

)
dx+

(
1

2b+ 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x+ a

N(x, y) = 1
2b+ 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x+ a

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

2b+ 2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x+ a

dx

(3)φ = − ln (x+ a) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2b+2y . Therefore equation (4) becomes

(5)1
2b+ 2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2b+ 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
2b+ 2y

)
dy

f(y) = ln (b+ y)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x+ a) + ln (b+ y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ a) + ln (b+ y)
2

The solution becomes
y = e2c1a2 + 2 e2c1ax+ e2c1x2 − b

Summary
The solution(s) found are the following

(1)y = e2c1a2 + 2 e2c1ax+ e2c1x2 − b

Verification of solutions

y = e2c1a2 + 2 e2c1ax+ e2c1x2 − b

Verified OK.

12.1.5 Maple step by step solution

Let’s solve
(x+ a)2 y′ − 2(x+ a) (b+ y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

b+y
= 2

x+a

• Integrate both sides with respect to x∫
y′

b+y
dx =

∫ 2
x+a

dx+ c1

• Evaluate integral
ln (b+ y) = 2 ln (x+ a) + c1

• Solve for y
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y = a2ec1 + 2ax ec1 + ec1x2 − b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((a+x)^2*diff(y(x),x) = 2*(a+x)*(b+y(x)),y(x), singsol=all)� �

y(x) = −b+ (x+ a)2 c1

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 24� �
DSolve[(a+x)^2 y'[x]==2(a+x)(b+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −b+ c1(a+ x)2
y(x) → −b
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12.2 problem 321
12.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3096
12.2.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3102

Internal problem ID [3577]
Internal file name [OUTPUT/3070_Sunday_June_05_2022_08_51_14_AM_34092868/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 321.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , _Riccati]

(x− a)2 y′ + k(x+ y − a)2 + y2 = 0

12.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −a2k − 2akx− 2aky + k x2 + 2kxy + k y2 + y2

(−x+ a)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(a2k − 2akx− 2aky + k x2 + 2kxy + k y2 + y2) (b3 − a2)

(−x+ a)2

− (a2k − 2akx− 2aky + k x2 + 2kxy + k y2 + y2)2 a3
(−x+ a)4

−
(
−−2ak + 2kx+ 2ky

(−x+ a)2

− 2(a2k − 2akx− 2aky + k x2 + 2kxy + k y2 + y2)
(−x+ a)3

)
(xa2 + ya3 + a1)

+ (−2ak + 2kx+ 2ky + 2y) (xb2 + yb3 + b1)
(−x+ a)2

= 0

Putting the above in normal form gives

−a4k2a3 − 4a3k2xa3 − 4a3k2ya3 + 6a2k2x2a3 + 12a2k2xya3 + 6a2k2y2a3 − 4a k2x3a3 − 12a k2x2ya3 − 12a k2x y2a3 − 4a k2y3a3 + k2x4a3 + 4k2x3ya3 + 6k2x2y2a3 + 4k2x y3a3 + k2y4a3 − a4ka2 + a4kb3 + 4a3kxa2 + 2a3kxb2 − 4a3kxb3 + 2a3kya2 − 6a2k x2a2 − 6a2k x2b2 + 6a2k x2b3 − 4a2kxya2 − 2a2kxyb2 − a2k y2a2 + 4a2k y2a3 − a2k y2b3 + 4ak x3a2 + 6ak x3b2 − 4ak x3b3 + 2ak x2ya2 + 4ak x2yb2 − 8akx y2a3 + 2akx y2b3 − 6ak y3a3 − k x4a2 − 2k x4b2 + k x4b3 − 2k x3yb2 + k x2y2a2 + 4k x2y2a3 − k x2y2b3 + 6kx y3a3 + 2k y4a3 − a4b2 + 2a3kb1 + 4a3xb2 − 6a2kxb1 + 2a2kya1 − 2a2kyb1 − 6a2x2b2 − 2a2xyb2 − a2y2a2 − a2y2b3 + 6ak x2b1 − 4akxya1 + 4akxyb1 − 2ak y2a1 + 4a x3b2 + 4a x2yb2 + 2ax y2b3 − 2a y3a3 − 2k x3b1 + 2k x2ya1 − 2k x2yb1 + 2kx y2a1 − x4b2 − 2x3yb2 + x2y2a2 − x2y2b3 + 2x y3a3 + y4a3 − 2a2yb1 + 4axyb1 − 2a y2a1 − 2x2yb1 + 2x y2a1
(−x+ a)4

= 0

Setting the numerator to zero gives

(6E)

−a4k2a3 + 4a3k2xa3 + 4a3k2ya3 − 6a2k2x2a3 − 12a2k2xya3
− 6a2k2y2a3 + 4a k2x3a3 + 12a k2x2ya3 + 12a k2x y2a3
+ 4a k2y3a3 − k2x4a3 − 4k2x3ya3 − 6k2x2y2a3 − 4k2x y3a3
− k2y4a3 + a4ka2 − a4kb3 − 4a3kxa2 − 2a3kxb2 + 4a3kxb3
− 2a3kya2 + 6a2k x2a2 + 6a2k x2b2 − 6a2k x2b3 + 4a2kxya2
+ 2a2kxyb2 + a2k y2a2 − 4a2k y2a3 + a2k y2b3 − 4ak x3a2
− 6ak x3b2 + 4ak x3b3 − 2ak x2ya2 − 4ak x2yb2 + 8akx y2a3
− 2akx y2b3 + 6ak y3a3 + k x4a2 + 2k x4b2 − k x4b3
+ 2k x3yb2 − k x2y2a2 − 4k x2y2a3 + k x2y2b3 − 6kx y3a3
− 2k y4a3 + a4b2 − 2a3kb1 − 4a3xb2 + 6a2kxb1 − 2a2kya1
+ 2a2kyb1 + 6a2x2b2 + 2a2xyb2 + a2y2a2 + a2y2b3 − 6ak x2b1
+ 4akxya1 − 4akxyb1 + 2ak y2a1 − 4a x3b2 − 4a x2yb2
− 2ax y2b3 + 2a y3a3 + 2k x3b1 − 2k x2ya1 + 2k x2yb1
− 2kx y2a1 + x4b2 + 2x3yb2 − x2y2a2 + x2y2b3 − 2x y3a3
− y4a3 + 2a2yb1 − 4axyb1 + 2a y2a1 + 2x2yb1 − 2x y2a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−a4k2a3 + 4a3k2a3v1 + 4a3k2a3v2 − 6a2k2a3v
2
1 − 12a2k2a3v1v2

− 6a2k2a3v
2
2 + 4a k2a3v

3
1 + 12a k2a3v

2
1v2 + 12a k2a3v1v

2
2

+ 4a k2a3v
3
2 − k2a3v

4
1 − 4k2a3v

3
1v2 − 6k2a3v

2
1v

2
2 − 4k2a3v1v

3
2

− k2a3v
4
2 + a4ka2 − a4kb3 − 4a3ka2v1 − 2a3ka2v2 − 2a3kb2v1

+ 4a3kb3v1 + 6a2ka2v21 + 4a2ka2v1v2 + a2ka2v
2
2 − 4a2ka3v22

+ 6a2kb2v21 + 2a2kb2v1v2 − 6a2kb3v21 + a2kb3v
2
2 − 4aka2v31

− 2aka2v21v2 + 8aka3v1v22 + 6aka3v32 − 6akb2v31 − 4akb2v21v2
+ 4akb3v31 − 2akb3v1v22 + ka2v

4
1 − ka2v

2
1v

2
2 − 4ka3v21v22

− 6ka3v1v32 − 2ka3v42 + 2kb2v41 + 2kb2v31v2 − kb3v
4
1 + kb3v

2
1v

2
2

+ a4b2 − 2a3kb1 − 4a3b2v1 − 2a2ka1v2 + 6a2kb1v1 + 2a2kb1v2
+ a2a2v

2
2 +6a2b2v21 +2a2b2v1v2+ a2b3v

2
2 +4aka1v1v2+2aka1v22

− 6akb1v21 − 4akb1v1v2 + 2aa3v32 − 4ab2v31 − 4ab2v21v2
− 2ab3v1v22 − 2ka1v21v2 − 2ka1v1v22 + 2kb1v31 + 2kb1v21v2
− a2v

2
1v

2
2 − 2a3v1v32 − a3v

4
2 + b2v

4
1 + 2b2v31v2 + b3v

2
1v

2
2

+ 2a2b1v2 + 2aa1v22 − 4ab1v1v2 − 2a1v1v22 + 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(
−k2a3 + ka2 + 2kb2 − kb3 + b2

)
v41 +

(
−4k2a3 + 2kb2 + 2b2

)
v31v2

+
(
4a k2a3 − 4aka2 − 6akb2 + 4akb3 − 4ab2 + 2kb1

)
v31

+
(
−6k2a3 − ka2 − 4ka3 + kb3 − a2 + b3

)
v21v

2
2

+
(
12a k2a3 − 2aka2 − 4akb2 − 4ab2 − 2ka1 + 2kb1 + 2b1

)
v21v2

+
(
−6a2k2a3 + 6a2ka2 + 6a2kb2 − 6a2kb3 + 6a2b2 − 6akb1

)
v21

+
(
−4k2a3 − 6ka3 − 2a3

)
v1v

3
2 +

(
12a k2a3 + 8aka3 − 2akb3 − 2ab3 − 2ka1 − 2a1

)
v1v

2
2

+
(
−12a2k2a3 + 4a2ka2 + 2a2kb2 + 2a2b2 + 4aka1 − 4akb1 − 4ab1

)
v1v2

+
(
4a3k2a3 − 4a3ka2 − 2a3kb2 + 4a3kb3 − 4a3b2 + 6a2kb1

)
v1

+
(
−k2a3 − 2ka3 − a3

)
v42 +

(
4a k2a3 + 6aka3 + 2aa3

)
v32

+
(
−6a2k2a3 + a2ka2 − 4a2ka3 + a2kb3 + a2a2 + a2b3 + 2aka1 + 2aa1

)
v22

+
(
4a3k2a3−2a3ka2−2a2ka1+2a2kb1+2a2b1

)
v2−a4k2a3+a4ka2−a4kb3+a4b2−2a3kb1

= 0
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

−4k2a3 − 6ka3 − 2a3 = 0
−k2a3 − 2ka3 − a3 = 0

4a k2a3 + 6aka3 + 2aa3 = 0
−4k2a3 + 2kb2 + 2b2 = 0

−k2a3 + ka2 + 2kb2 − kb3 + b2 = 0
4a3k2a3 − 2a3ka2 − 2a2ka1 + 2a2kb1 + 2a2b1 = 0

−a4k2a3 + a4ka2 − a4kb3 + a4b2 − 2a3kb1 = 0
−6k2a3 − ka2 − 4ka3 + kb3 − a2 + b3 = 0

12a k2a3 + 8aka3 − 2akb3 − 2ab3 − 2ka1 − 2a1 = 0
4a k2a3 − 4aka2 − 6akb2 + 4akb3 − 4ab2 + 2kb1 = 0

−6a2k2a3 + 6a2ka2 + 6a2kb2 − 6a2kb3 + 6a2b2 − 6akb1 = 0
4a3k2a3 − 4a3ka2 − 2a3kb2 + 4a3kb3 − 4a3b2 + 6a2kb1 = 0
12a k2a3 − 2aka2 − 4akb2 − 4ab2 − 2ka1 + 2kb1 + 2b1 = 0

−12a2k2a3 + 4a2ka2 + 2a2kb2 + 2a2b2 + 4aka1 − 4akb1 − 4ab1 = 0
−6a2k2a3 + a2ka2 − 4a2ka3 + a2kb3 + a2a2 + a2b3 + 2aka1 + 2aa1 = 0
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Solving the above equations for the unknowns gives

a1 = −ab3

a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− a

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−a2k − 2akx− 2aky + k x2 + 2kxy + k y2 + y2

(−x+ a)2
)
(x− a)

= −a3k + 3a2kx+ 2a2ky − 3x2ak − 4akxy − ak y2 + k x3 + 2k x2y + kx y2 + a2y − 2axy − a y2 + x2y + x y2

a2 − 2ax+ x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a3k+3a2kx+2a2ky−3x2ak−4akxy−ak y2+k x3+2k x2y+kx y2+a2y−2axy−a y2+x2y+x y2

a2−2ax+x2

dy
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Which results in

S =
(a2 − 2ax+ x2)

(
− ln(x+y−a)

−x+a
+ ln(−ak+kx+ky+y)

−x+a

)
−x+ a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −a2k − 2akx− 2aky + k x2 + 2kxy + k y2 + y2

(−x+ a)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(a− x− y) (k (a− x− y)− y)

Sy =
x− a

(a− x− y) (k (a− x− y)− y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

−x+ a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

−R + a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R− a) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ y − a) + ln (k(x+ y − a) + y) = − ln (x− a) + c1
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Which simplifies to

− ln (x+ y − a) + ln (k(x+ y − a) + y) = − ln (x− a) + c1

Which gives

y = a2k − 2akx+ k x2 + ec1a− ec1x
ak − kx+ ec1 + a− x

Summary
The solution(s) found are the following

(1)y = a2k − 2akx+ k x2 + ec1a− ec1x
ak − kx+ ec1 + a− x

Verification of solutions

y = a2k − 2akx+ k x2 + ec1a− ec1x
ak − kx+ ec1 + a− x

Verified OK.

12.2.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −a2k − 2akx− 2aky + k x2 + 2kxy + k y2 + y2

(−x+ a)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = − a2k

(−x+ a)2
+ 2akx
(−x+ a)2

+ 2aky
(−x+ a)2

− k x2

(−x+ a)2
− 2kxy
(−x+ a)2

− k y2

(−x+ a)2
− y2

(−x+ a)2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −a2k−2akx+k x2

(−x+a)2 , f1(x) = −−2ak+2kx
(−x+a)2 and f2(x) = − 1+k

(−x+a)2 . Let

y = −u′

f2u

= −u′

− (1+k)u
(−x+a)2

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2(1 + k)

(−x+ a)3

f1f2 =
(−2ak + 2kx) (1 + k)

(−x+ a)4

f 2
2 f0 = −(1 + k)2 (a2k − 2akx+ k x2)

(−x+ a)6

Substituting the above terms back in equation (2) gives

−(1 + k)u′′(x)
(−x+ a)2

−
(
− 2(1 + k)
(−x+ a)3

+ (−2ak + 2kx) (1 + k)
(−x+ a)4

)
u′(x)− (1 + k)2 (a2k − 2akx+ k x2)u(x)

(−x+ a)6
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = −(x− a)−k−1 (−c1 + c2(−x+ a))

The above shows that

u′(x) = (x− a)−k−2 ((−c1 + c2(−x+ a)) k − c1)

Using the above in (1) gives the solution

y = −(x− a)−k−2 ((−c1 + c2(−x+ a)) k − c1) (−x+ a)2 (x− a)1+k

(1 + k) (−c1 + c2 (−x+ a))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = ((−c3 − x+ a) k − c3) (−x+ a)
(1 + k) (−c3 − x+ a)

Summary
The solution(s) found are the following

(1)y = ((−c3 − x+ a) k − c3) (−x+ a)
(1 + k) (−c3 − x+ a)
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Verification of solutions

y = ((−c3 − x+ a) k − c3) (−x+ a)
(1 + k) (−c3 − x+ a)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 34� �
dsolve((x-a)^2*diff(y(x),x)+k*(x+y(x)-a)^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = (c1k(a− x)− 1) (a− x)
−1 + (k + 1) (a− x) c1

3 Solution by Mathematica
Time used: 0.209 (sec). Leaf size: 50� �
DSolve[(x-a)^2 y'[x]+k(x+y[x]-a)^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → k(a− x)
k + 1 + 1

k+1
a−x

+ c1

y(x) → k(a− x)
k + 1
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12.3 problem 322
12.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3105
12.3.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3106
12.3.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3107
12.3.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 3108
12.3.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3111
12.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3114

Internal problem ID [3578]
Internal file name [OUTPUT/3071_Sunday_June_05_2022_08_51_16_AM_56347163/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 322.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x− a) (x− b) y′ + ky = 0

12.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − ky

(−x+ a) (−x+ b)
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Where f(x) = − k
(−x+a)(−x+b) and g(y) = y. Integrating both sides gives

1
y
dy = − k

(−x+ a) (−x+ b) dx∫ 1
y
dy =

∫
− k

(−x+ a) (−x+ b) dx

ln (y) = k ln (x− b)
−b+ a

− k ln (x− a)
−b+ a

+ c1

y = e
k ln(x−b)
−b+a

− k ln(x−a)
−b+a

+c1

= c1e
k ln(x−b)
−b+a

− k ln(x−a)
−b+a

Which simplifies to

y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Summary
The solution(s) found are the following

(1)y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Verification of solutions

y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Verified OK.

12.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = k

(−x+ a) (−x+ b)
q(x) = 0

Hence the ode is

y′ + ky

(−x+ a) (−x+ b) = 0
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The integrating factor µ is

µ = e
∫

k
(−x+a)(−x+b)dx

= e−
k ln(x−b)
−b+a

+ k ln(x−a)
−b+a

Which simplifies to

µ = (x− b)−
k

−b+a (x− a)
k

−b+a

The ode becomes
d
dxµy = 0

d
dx

(
(x− b)−

k
−b+a (x− a)

k
−b+a y

)
= 0

Integrating gives

(x− b)−
k

−b+a (x− a)
k

−b+a y = c1

Dividing both sides by the integrating factor µ = (x− b)−
k

−b+a (x− a)
k

−b+a results in

y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Summary
The solution(s) found are the following

(1)y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Verification of solutions

y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Verified OK.

12.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(x− a) (x− b) (u′(x)x+ u(x)) + ku(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(ab− ax− bx+ kx+ x2)
(−x+ a) (−x+ b)x
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Where f(x) = −ab−ax−bx+kx+x2

(−x+a)(−x+b)x and g(u) = u. Integrating both sides gives

1
u
du = −ab− ax− bx+ kx+ x2

(−x+ a) (−x+ b)x dx∫ 1
u
du =

∫
−ab− ax− bx+ kx+ x2

(−x+ a) (−x+ b)x dx

ln (u) = k ln (x− b)
−b+ a

− k ln (x− a)
−b+ a

− ln (x) + c2

u = e
k ln(x−b)
−b+a

− k ln(x−a)
−b+a

−ln(x)+c2

= c2e
k ln(x−b)
−b+a

− k ln(x−a)
−b+a

−ln(x)

Which simplifies to

u(x) = c2(x− b)
k

−b+a (x− a)−
k

−b+a

x

Therefore the solution y is

y = ux

= c2(x− b)
k

−b+a (x− a)−
k

−b+a

Summary
The solution(s) found are the following

(1)y = c2(x− b)
k

−b+a (x− a)−
k

−b+a

Verification of solutions

y = c2(x− b)
k

−b+a (x− a)−
k

−b+a

Verified OK.

12.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − ky

(−x+ a) (−x+ b)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 566: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
k ln(x−b)
−b+a

− k ln(x−a)
−b+a (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
k ln(x−b)
−b+a

− k ln(x−a)
−b+a

dy

Which results in

S = e−
k(ln(x−b)−ln(x−a))

−b+a y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − ky

(−x+ a) (−x+ b)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
ky
(
(x− a)

k
−b+a (x− b)

b−a−k
−b+a − (x− a)

b−a+k
−b+a (x− b)−

k
−b+a

)
−b+ a

Sy = (x− b)−
k

−b+a (x− a)
k

−b+a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

k
((

(−b+ a) (x− a)
b−a+k
−b+a + (x− a)

k
−b+a

)
(x− b)

b−a−k
−b+a − (x− a)

b−a+k
−b+a (x− b)−

k
−b+a

)
y

−b+ a
(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− b)−
k

−b+a (x− a)
k

−b+a y = c1

Which simplifies to

(x− b)−
k

−b+a (x− a)
k

−b+a y = c1

Which gives

y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Summary
The solution(s) found are the following

(1)y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Verification of solutions

y = c1(x− b)
k

−b+a (x− a)−
k

−b+a

Verified OK.

12.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
ky

)
dy =

(
1

(−x+ a) (−x+ b)

)
dx(

− 1
(−x+ a) (−x+ b)

)
dx+

(
− 1
ky

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(−x+ a) (−x+ b)

N(x, y) = − 1
ky

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(−x+ a) (−x+ b)

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 1
ky

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(−x+ a) (−x+ b) dx

(3)φ = ln (x− b)− ln (x− a)
−b+ a

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
ky
. Therefore equation (4) becomes

(5)− 1
ky

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
ky
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
ky

)
dy

f(y) = − ln (y)
k

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x− b)− ln (x− a)
−b+ a

− ln (y)
k

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x− b)− ln (x− a)

−b+ a
− ln (y)

k

The solution becomes

y = e−
k(c1a−c1b+ln(x−a)−ln(x−b))

−b+a

Summary
The solution(s) found are the following

(1)y = e−
k(c1a−c1b+ln(x−a)−ln(x−b))

−b+a

Verification of solutions

y = e−
k(c1a−c1b+ln(x−a)−ln(x−b))

−b+a

Verified OK.

12.3.6 Maple step by step solution

Let’s solve
(x− a) (x− b) y′ + ky = 0

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

y
= − k

(x−a)(x−b)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− k

(x−a)(x−b)dx+ c1

• Evaluate integral
ln (y) = k ln(x−b)

−b+a
− k ln(x−a)

−b+a
+ c1

• Solve for y

y = e−
k ln(x−a)−k ln(x−b)−c1a+c1b

−b+a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve((x-a)*(x-b)*diff(y(x),x)+k*y(x) = 0,y(x), singsol=all)� �

y(x) = c1(x− a)−
k

a−b (x− b)
k

a−b

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 39� �
DSolve[(x-a)(x-b)y'[x]+k y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
k(log(x−b)−log(x−a))

a−b

y(x) → 0
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12.4 problem 323
12.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3116
12.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3118
12.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3121
12.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3125

Internal problem ID [3579]
Internal file name [OUTPUT/3072_Sunday_June_05_2022_08_51_17_AM_68231593/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 323.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x− a) (x− b) y′ − (−a− b+ 2x) y = (x− a) (x− b)

12.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − −a− b+ 2x
(−x+ a) (−x+ b)

q(x) = 1

Hence the ode is

y′ − (−a− b+ 2x) y
(−x+ a) (−x+ b) = 1
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The integrating factor µ is

µ = e
∫
− −a−b+2x

(−x+a)(−x+b)dx

= 1
(x− a) (x− b)

The ode becomes

d
dx(µy) = µ

d
dx

(
y

(x− a) (x− b)

)
= 1

(x− a) (x− b)

d
(

y

(x− a) (x− b)

)
= 1

(x− a) (x− b)dx

Integrating gives

y

(x− a) (x− b) =
∫ 1

(−x+ a) (−x+ b) dx

y

(x− a) (x− b) = − ln (x− b)
−b+ a

+ ln (x− a)
−b+ a

+ c1

Dividing both sides by the integrating factor µ = 1
(x−a)(x−b) results in

y = (−x+ a) (−x+ b)
(
− ln (x− b)

−b+ a
+ ln (x− a)

−b+ a

)
+ c1(−x+ a) (−x+ b)

which simplifies to

y = ((−b+ a) c1 − ln (x− b) + ln (x− a)) (−x+ b) (−x+ a)
−b+ a

Summary
The solution(s) found are the following

(1)y = ((−b+ a) c1 − ln (x− b) + ln (x− a)) (−x+ b) (−x+ a)
−b+ a

Verification of solutions

y = ((−b+ a) c1 − ln (x− b) + ln (x− a)) (−x+ b) (−x+ a)
−b+ a

Verified OK.
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12.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−ab+ ax+ ya+ bx+ by − x2 − 2xy
(−x+ a) (−x+ b)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 569: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = (x− a) (x− b) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

(x− a) (x− b)dy

Which results in

S = y

(x− a) (x− b)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−ab+ ax+ ya+ bx+ by − x2 − 2xy
(−x+ a) (−x+ b)

3119



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(a+ b− 2x)
(−x+ a)2 (−x+ b)2

Sy =
1

(−x+ a) (−x+ b)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(−x+ a) (−x+ b) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(−R + a) (−R + b)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R− b)
−b+ a

+ ln (R− a)
−b+ a

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(−x+ a) (−x+ b) = − ln (x− b)
−b+ a

+ ln (x− a)
−b+ a

+ c1

Which simplifies to

y

(−x+ a) (−x+ b) = − ln (x− b)
−b+ a

+ ln (x− a)
−b+ a

+ c1

Which gives

y = −(−x+ a) (−x+ b) (−c1a+ c1b+ ln (x− b)− ln (x− a))
−b+ a

Summary
The solution(s) found are the following

(1)y = −(−x+ a) (−x+ b) (−c1a+ c1b+ ln (x− b)− ln (x− a))
−b+ a
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Verification of solutions

y = −(−x+ a) (−x+ b) (−c1a+ c1b+ ln (x− b)− ln (x− a))
−b+ a

Verified OK.

12.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

((x− a) (x− b)) dy = ((x− a) (x− b) + (−a− b+ 2x) y) dx
(−(x− a) (x− b)− (−a− b+ 2x) y) dx+((x− a) (x− b)) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −(x− a) (x− b)− (−a− b+ 2x) y
N(x, y) = (x− a) (x− b)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−(x− a) (x− b)− (−a− b+ 2x) y)

= a+ b− 2x

And
∂N

∂x
= ∂

∂x
((x− a) (x− b))

= −a− b+ 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(−x+ a) (−x+ b)((a+ b− 2x)− (−a− b+ 2x))

= 2a+ 2b− 4x
(−x+ a) (−x+ b)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 2a+2b−4x

(−x+a)(−x+b) dx

The result of integrating gives

µ = e−2 ln((x−a)(x−b))

= 1
(−x+ a)2 (−x+ b)2
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(−x+ a)2 (−x+ b)2

(−(x− a) (x− b)− (−a− b+ 2x) y)

= −x2 + (a+ b− 2y)x+ (−b+ y) a+ by

(−x+ b)2 (−x+ a)2

And

N = µN

= 1
(−x+ a)2 (−x+ b)2

((x− a) (x− b))

= 1
(−x+ a) (−x+ b)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x2 + (a+ b− 2y)x+ (−b+ y) a+ by

(−x+ b)2 (−x+ a)2
)
+
(

1
(−x+ a) (−x+ b)

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + (a+ b− 2y)x+ (−b+ y) a+ by

(−x+ b)2 (−x+ a)2
dx

(3)φ = ln (x− b)
−b+ a

+ y

(−b+ a) (−x+ b) −
ln (x− a)
−b+ a

− y

(−b+ a) (−x+ a) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

(−b+ a) (−x+ b) −
1

(−b+ a) (−x+ a) + f ′(y)

= 1
(−x+ a) (−x+ b) + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
(−x+a)(−x+b) . Therefore equation (4) becomes

(5)1
(−x+ a) (−x+ b) = 1

(−x+ a) (−x+ b) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x− b)
−b+ a

+ y

(−b+ a) (−x+ b) −
ln (x− a)
−b+ a

− y

(−b+ a) (−x+ a) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x− b)
−b+ a

+ y

(−b+ a) (−x+ b) −
ln (x− a)
−b+ a

− y

(−b+ a) (−x+ a)

The solution becomes

y = −(−x+ a) (−x+ b) (−c1a+ c1b+ ln (x− b)− ln (x− a))
−b+ a

Summary
The solution(s) found are the following

(1)y = −(−x+ a) (−x+ b) (−c1a+ c1b+ ln (x− b)− ln (x− a))
−b+ a
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Verification of solutions

y = −(−x+ a) (−x+ b) (−c1a+ c1b+ ln (x− b)− ln (x− a))
−b+ a

Verified OK.

12.4.4 Maple step by step solution

Let’s solve
(x− a) (x− b) y′ − (−a− b+ 2x) y = (x− a) (x− b)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1− (a+b−2x)y

(−x+a)(−x+b)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (a+b−2x)y

(−x+a)(−x+b) = 1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (a+b−2x)y

(−x+a)(−x+b)

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (a+b−2x)y

(−x+a)(−x+b)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(a+b−2x)

(−x+a)(−x+b)

• Solve to find the integrating factor

µ(x) = (x−b)
b

−b+a (x−a)
b

−b+a

(x−b)
a

−b+a (x−a)
a

−b+a

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)
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• Substitute µ(x) = (x−b)
b

−b+a (x−a)
b

−b+a

(x−b)
a

−b+a (x−a)
a

−b+a

y =
(x−b)

a
−b+a (x−a)

a
−b+a

(∫ (x−b)
b

−b+a (x−a)
b

−b+a

(x−b)
a

−b+a (x−a)
a

−b+a
dx+c1

)
(x−b)

b
−b+a (x−a)

b
−b+a

• Evaluate the integrals on the rhs

y =
(x−b)

a
−b+a (x−a)

a
−b+a

(
ln(−x+a)

−b+a
− ln(−x+b)

−b+a
+c1

)
(x−b)

b
−b+a (x−a)

b
−b+a

• Simplify
y = (ln(−x+a)−ln(−x+b)+(−b+a)c1)(−x+b)(−x+a)

−b+a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 44� �
dsolve((x-a)*(x-b)*diff(y(x),x) = (x-a)*(x-b)+(2*x-a-b)*y(x),y(x), singsol=all)� �

y(x) = (ln (x− a)− ln (x− b) + (a− b) c1) (−x+ b) (a− x)
a− b

3 Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 42� �
DSolve[(x-a)(x-b)y'[x]==(x-a)(x-b)+(2 x-a-b)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x− a)(x− b)
(
log(x− a)− log(x− b)

a− b
+ c1

)
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12.5 problem 324
12.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3127
12.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3128
12.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3131
12.5.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3135
12.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3136

Internal problem ID [3580]
Internal file name [OUTPUT/3073_Sunday_June_05_2022_08_51_19_AM_39104682/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 324.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x− a) (x− b) y′ − cy2 = 0

12.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= c y2

(−x+ a) (−x+ b)

Where f(x) = c
(−x+a)(−x+b) and g(y) = y2. Integrating both sides gives

1
y2

dy = c

(−x+ a) (−x+ b) dx∫ 1
y2

dy =
∫

c

(−x+ a) (−x+ b) dx
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−1
y
= −c ln (x− b)

−b+ a
+ c ln (x− a)

−b+ a
+ c1

Which results in

y = −b+ a

c ln (x− b)− c ln (x− a)− c1a+ c1b

Summary
The solution(s) found are the following

(1)y = −b+ a

c ln (x− b)− c ln (x− a)− c1a+ c1b

Verification of solutions

y = −b+ a

c ln (x− b)− c ln (x− a)− c1a+ c1b

Verified OK.

12.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = c y2

(−x+ a) (−x+ b)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 572: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = (−x+ a) (−x+ b)
c

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

(−x+a)(−x+b)
c

dx

Which results in

S = −c ln (x− b)
−b+ a

+ c ln (x− a)
−b+ a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = c y2

(−x+ a) (−x+ b)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = c

(−x+ a) (−x+ b)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

3130



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

c(− ln (x− b) + ln (x− a))
−b+ a

= −1
y
+ c1

Which simplifies to

c(− ln (x− b) + ln (x− a))
−b+ a

= −1
y
+ c1

Which gives

y = −b+ a

c ln (x− b)− c ln (x− a) + c1a− c1b

Summary
The solution(s) found are the following

(1)y = −b+ a

c ln (x− b)− c ln (x− a) + c1a− c1b

Verification of solutions

y = −b+ a

c ln (x− b)− c ln (x− a) + c1a− c1b

Verified OK.

12.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
c y2

)
dy =

(
1

(−x+ a) (−x+ b)

)
dx(

− 1
(−x+ a) (−x+ b)

)
dx+

(
1

c y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(−x+ a) (−x+ b)

N(x, y) = 1
c y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
(−x+ a) (−x+ b)

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

c y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(−x+ a) (−x+ b) dx

(3)φ = ln (x− b)− ln (x− a)
−b+ a

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
c y2

. Therefore equation (4) becomes

(5)1
c y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
c y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
c y2

)
dy

f(y) = − 1
cy

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x− b)− ln (x− a)
−b+ a

− 1
cy

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x− b)− ln (x− a)

−b+ a
− 1

cy

The solution becomes

y = −b+ a

c (−c1a+ c1b+ ln (x− b)− ln (x− a))

Summary
The solution(s) found are the following

(1)y = −b+ a

c (−c1a+ c1b+ ln (x− b)− ln (x− a))
Verification of solutions

y = −b+ a

c (−c1a+ c1b+ ln (x− b)− ln (x− a))

Verified OK.
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12.5.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= c y2

(−x+ a) (−x+ b)

This is a Riccati ODE. Comparing the ODE to solve

y′ = c y2

(−x+ a) (−x+ b)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 0 and f2(x) = c
(−x+a)(−x+b) . Let

y = −u′

f2u

= −u′

cu
(−x+a)(−x+b)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

c

(−x+ a)2 (−x+ b)
+ c

(−x+ a) (−x+ b)2

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

cu′′(x)
(−x+ a) (−x+ b) −

(
c

(−x+ a)2 (−x+ b)
+ c

(−x+ a) (−x+ b)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2 ln (x− a)− c2 ln (x− b) + (−b+ a) c1
−b+ a
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The above shows that
u′(x) = c2

(−x+ a) (−x+ b)

Using the above in (1) gives the solution

y = − c2(−b+ a)
c (c2 ln (x− a)− c2 ln (x− b) + (−b+ a) c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = b− a

c (ln (x− a)− ln (x− b) + (−b+ a) c3)

Summary
The solution(s) found are the following

(1)y = b− a

c (ln (x− a)− ln (x− b) + (−b+ a) c3)
Verification of solutions

y = b− a

c (ln (x− a)− ln (x− b) + (−b+ a) c3)

Verified OK.

12.5.5 Maple step by step solution

Let’s solve
(x− a) (x− b) y′ − cy2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2
= c

(x−a)(x−b)

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
c

(x−a)(x−b)dx+ c1
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• Evaluate integral
− 1

y
= − c ln(x−b)

−b+a
+ c ln(x−a)

−b+a
+ c1

• Solve for y
y = −b+a

c ln(x−b)−c ln(x−a)−c1a+c1b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve((x-a)*(x-b)*diff(y(x),x) = c*y(x)^2,y(x), singsol=all)� �

y(x) = a− b

−c ln (x− a) + c ln (x− b) + (a− b) c1

3 Solution by Mathematica
Time used: 0.428 (sec). Leaf size: 44� �
DSolve[(x-a)(x-b)y'[x]==c y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → b− a

c1(a− b) + c log(x− a)− c log(x− b)
y(x) → 0
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12.6 problem 325
12.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3138
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12.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3143
12.6.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3146
12.6.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3148

Internal problem ID [3581]
Internal file name [OUTPUT/3074_Sunday_June_05_2022_08_51_21_AM_21164469/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 325.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x− a) (x− b) y′ + k(y − a) (y − b) = 0

12.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − k(a− y) (−y + b)
(−x+ a) (−x+ b)

Where f(x) = − k
(−x+a)(−x+b) and g(y) = (a− y) (−y + b). Integrating both sides gives

1
(a− y) (−y + b) dy = − k

(−x+ a) (−x+ b) dx∫ 1
(a− y) (−y + b) dy =

∫
− k

(−x+ a) (−x+ b) dx
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− ln (−b+ y)
−b+ a

+ ln (−a+ y)
−b+ a

= k ln (x− b)
−b+ a

− k ln (x− a)
−b+ a

+ c1

The above can be written as(
− 1
−b+ a

)
(ln (−b+ y)− ln (−a+ y)) = k ln (x− b)

−b+ a
− k ln (x− a)

−b+ a
+ 2c1

ln (−b+ y)− ln (−a+ y) = (b− a)
(
k ln (x− b)
−b+ a

− k ln (x− a)
−b+ a

+ 2c1
)

= −(−b+ a)
(
k ln (x− b)
−b+ a

− k ln (x− a)
−b+ a

+ 2c1
)

Raising both side to exponential gives

eln(−b+y)−ln(−a+y) = e−(−b+a)
(

k ln(x−b)
−b+a

− k ln(x−a)
−b+a

+c1
)

Which simplifies to

−y + b

a− y
= −c1(−b+ a) e−(−b+a)

(
k ln(x−b)
−b+a

− k ln(x−a)
−b+a

)

= c2e−(−b+a)
(

k ln(x−b)
−b+a

− k ln(x−a)
−b+a

)

Which simplifies to

y = c2(x− b)−k (x− a)k a− b

c2 (x− b)−k (x− a)k − 1

Summary
The solution(s) found are the following

(1)y = c2(x− b)−k (x− a)k a− b

c2 (x− b)−k (x− a)k − 1
Verification of solutions

y = c2(x− b)−k (x− a)k a− b

c2 (x− b)−k (x− a)k − 1

Verified OK.
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12.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −k(−a+ y) (−b+ y)
(−x+ a) (−x+ b)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 575: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −(−x+ a) (−x+ b)
k

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− (−x+a)(−x+b)
k

dx

Which results in

S = k ln (x− b)
−b+ a

− k ln (x− a)
−b+ a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −k(−a+ y) (−b+ y)
(−x+ a) (−x+ b)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − k

(−x+ a) (−x+ b)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

(a− y) (−y + b) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(a−R) (−R + b)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R− b)
−b+ a

+ ln (−a+R)
−b+ a

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

k(ln (x− b)− ln (x− a))
−b+ a

= − ln (y − b)
−b+ a

+ ln (y − a)
−b+ a

+ c1

Which simplifies to
− ln (y − a) + ln (y − b)− k ln (x− a) + k ln (x− b) + (b− a) c1

−b+ a
= 0

Which gives

y = a ec1a−c1b−k ln(x−b)+k ln(x−a) − ec1a−c1b−k ln(x−b)+k ln(x−a)b+ b ec1a−c1b−k ln
(

−x+b
−x+a

)
− b

−1 + ec1a−c1b−k ln
(

−x+b
−x+a

)
Summary
The solution(s) found are the following

y = a ec1a−c1b−k ln(x−b)+k ln(x−a) − ec1a−c1b−k ln(x−b)+k ln(x−a)b+ b ec1a−c1b−k ln
(

−x+b
−x+a

)
− b

−1 + ec1a−c1b−k ln
(

−x+b
−x+a

)
(1)
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Verification of solutions

y = a ec1a−c1b−k ln(x−b)+k ln(x−a) − ec1a−c1b−k ln(x−b)+k ln(x−a)b+ b ec1a−c1b−k ln
(

−x+b
−x+a

)
− b

−1 + ec1a−c1b−k ln
(

−x+b
−x+a

)

Verified OK.

12.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
− 1
k (−a+ y) (−b+ y)

)
dy =

(
1

(−x+ a) (−x+ b)

)
dx(

− 1
(−x+ a) (−x+ b)

)
dx+

(
− 1
k (−a+ y) (−b+ y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(−x+ a) (−x+ b)

N(x, y) = − 1
k (−a+ y) (−b+ y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
(−x+ a) (−x+ b)

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 1
k (−a+ y) (−b+ y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(−x+ a) (−x+ b) dx

(3)φ = ln (x− b)− ln (x− a)
−b+ a

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
k(−a+y)(−b+y) . Therefore equation (4) becomes

(5)− 1
k (−a+ y) (−b+ y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
k (a− y) (−y + b)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
k (a− y) (−y + b)

)
dy

f(y) = ln (−b+ y)
k (−b+ a) − ln (−a+ y)

k (−b+ a) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x− b)− ln (x− a)
−b+ a

+ ln (−b+ y)
k (−b+ a) − ln (−a+ y)

k (−b+ a) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x− b)− ln (x− a)

−b+ a
+ ln (−b+ y)

k (−b+ a) − ln (−a+ y)
k (−b+ a)

The solution becomes

y= a ec1ka−c1kb−k ln(x−b)+k ln(x−a) − ec1ka−c1kb−k ln(x−b)+k ln(x−a)b+ b ec1ka−c1kb−k ln
(

−x+b
−x+a

)
− b

−1 + ec1ka−c1kb−k ln
(

−x+b
−x+a

)
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Summary
The solution(s) found are the following
y

= a ec1ka−c1kb−k ln(x−b)+k ln(x−a) − ec1ka−c1kb−k ln(x−b)+k ln(x−a)b+ b ec1ka−c1kb−k ln
(

−x+b
−x+a

)
− b

−1 + ec1ka−c1kb−k ln
(

−x+b
−x+a

)
(1)

Verification of solutions

y= a ec1ka−c1kb−k ln(x−b)+k ln(x−a) − ec1ka−c1kb−k ln(x−b)+k ln(x−a)b+ b ec1ka−c1kb−k ln
(

−x+b
−x+a

)
− b

−1 + ec1ka−c1kb−k ln
(

−x+b
−x+a

)

Verified OK.

12.6.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −k(−a+ y) (−b+ y)
(−x+ a) (−x+ b)

This is a Riccati ODE. Comparing the ODE to solve

y′ = − kab

(−x+ a) (−x+ b)+
kya

(−x+ a) (−x+ b)+
kby

(−x+ a) (−x+ b)−
k y2

(−x+ a) (−x+ b)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − kab
(−x+a)(−x+b) , f1(x) = − −ak−kb

(−x+a)(−x+b) and f2(x) = − k
(−x+a)(−x+b) .

Let

y = −u′

f2u

= −u′

− ku
(−x+a)(−x+b)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 = − k

(−x+ a)2 (−x+ b)
− k

(−x+ a) (−x+ b)2

f1f2 =
(−ak − kb) k

(−x+ a)2 (−x+ b)2

f 2
2 f0 = − k3ab

(−x+ a)3 (−x+ b)3

Substituting the above terms back in equation (2) gives

− ku′′(x)
(−x+ a) (−x+ b) −

(
− k

(−x+ a)2 (−x+ b)
− k

(−x+ a) (−x+ b)2
+ (−ak − kb) k

(−x+ a)2 (−x+ b)2
)
u′(x)− k3abu(x)

(−x+ a)3 (−x+ b)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1

(
−x+ a

−x+ b

) ak
−b+a

+ c2

(
−x+ a

−x+ b

) kb
−b+a

The above shows that

u′(x) =
k
(
c1
(−x+a
−x+b

) ak
−b+a a+ c2

(−x+a
−x+b

) kb
−b+a b

)
(−x+ a) (−x+ b)

Using the above in (1) gives the solution

y =
c1
(−x+a
−x+b

) ak
−b+a a+ c2

(−x+a
−x+b

) kb
−b+a b

c1
(−x+a
−x+b

) ak
−b+a + c2

(−x+a
−x+b

) kb
−b+a

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
c3
(−x+a
−x+b

) ak
−b+a a+

(−x+a
−x+b

) kb
−b+a b

c3
(−x+a
−x+b

) ak
−b+a +

(−x+a
−x+b

) kb
−b+a

Summary
The solution(s) found are the following

(1)y =
c3
(−x+a
−x+b

) ak
−b+a a+

(−x+a
−x+b

) kb
−b+a b

c3
(−x+a
−x+b

) ak
−b+a +

(−x+a
−x+b

) kb
−b+a
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Verification of solutions

y =
c3
(−x+a
−x+b

) ak
−b+a a+

(−x+a
−x+b

) kb
−b+a b

c3
(−x+a
−x+b

) ak
−b+a +

(−x+a
−x+b

) kb
−b+a

Verified OK.

12.6.5 Maple step by step solution

Let’s solve
(x− a) (x− b) y′ + k(y − a) (y − b) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(y−a)(y−b) = − k
(x−a)(x−b)

• Integrate both sides with respect to x∫
y′

(y−a)(y−b)dx =
∫
− k

(x−a)(x−b)dx+ c1

• Evaluate integral
− ln(y−b)

−b+a
+ ln(y−a)

−b+a
= k ln(x−b)

−b+a
− k ln(x−a)

−b+a
+ c1

• Solve for y

y = − e−k ln(x−b)+k ln(x−a)+k ln
(−x+b
−x+a

)
a−e−k ln(x−b)+k ln(x−a)+k ln

(−x+b
−x+a

)
b−b ec1a−c1b+k ln

(−x+b
−x+a

)
+b

ec1a−c1b+k ln
(−x+b
−x+a

)
−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 113� �
dsolve((x-a)*(x-b)*diff(y(x),x)+k*(y(x)-a)*(y(x)-b) = 0,y(x), singsol=all)� �

y(x) = −

(
b
(−x+b

a−x

)−k ec1k(a−b) + (x− a)k (x− b)−k (a− b) ec1k(a−b) − b
) (−x+b

a−x

)k(−x+b
a−x

)k − ec1k(a−b)

3 Solution by Mathematica
Time used: 2.369 (sec). Leaf size: 80� �
DSolve[(x-a)(x-b)y'[x]+k(y[x]-a)(y[x]-b)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → aebc1(x− a)k − beac1(x− b)k
ebc1(x− a)k − eac1(x− b)k

y(x) → a
y(x) → b
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12.7 problem 326
12.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3150
12.7.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3155

Internal problem ID [3582]
Internal file name [OUTPUT/3075_Sunday_June_05_2022_08_51_23_AM_38202193/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 326.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

_Riccati]

(x− a) (x− b) y′ + k(x+ y − a) (x+ y − b) + y2 = 0

12.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −abk − akx− aky − bkx− bky + k x2 + 2kxy + k y2 + y2

(−x+ a) (−x+ b)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)2xb4 + yb5 + b2

− (abk − akx− aky − bkx− bky + k x2 + 2kxy + k y2 + y2) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
(−x+ a) (−x+ b)

− (abk − akx− aky − bkx− bky + k x2 + 2kxy + k y2 + y2)2 (xa5 + 2ya6 + a3)
(−x+ a)2 (−x+ b)2

−
(
−−ak − kb+ 2kx+ 2ky

(−x+ a) (−x+ b)

− abk − akx− aky − bkx− bky + k x2 + 2kxy + k y2 + y2

(−x+ a)2 (−x+ b)

− abk − akx− aky − bkx− bky + k x2 + 2kxy + k y2 + y2

(−x+ a) (−x+ b)2
)(

x2a4

+ xya5 + y2a6 + xa2 + ya3 + a1
)

+ (−ak − kb+ 2kx+ 2ky + 2y) (x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)
(−x+ a) (−x+ b) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

−2k2a6 − 4ka6 − 2a6 = 0
−4k2a5 − 12k2a6 − 5ka5 − 6ka6 − a5 = 0

−k2a5 + 2ka4 + 2kb4 − kb5 + 2b4 = 0
−k2a5 − 8k2a6 − 2ka5 − 10ka6 − a5 − 2a6 = 0
−6k2a5 − 8k2a6 − 2ka5 + kb5 − 2kb6 + b5 = 0

−a2b2k2a3 + a2b2ka2 − a2b2kb3 + a2b2b2 − a2bkb1 − a b2kb1 = 0
−4k2a5 − 2k2a6 + 2ka4 + ka5 + 2kb4 − 2kb6 + 2b4 + b5 = 0

4a k2a6 + 4b k2a6 + 5aka6 + 5bka6 − k2a3 + aa6 + ba6 − 2ka3 − a3 = 0
2a k2a5 + 12a k2a6 + 2b k2a5 + 12b k2a6 + 2aka5 + 6aka6 + 2bka5 + 6bka6 − 4k2a3 − 6ka3 − 2a3 = 0

−2a2b2k2a6 + a2b2ka5 − 2a2b2kb6 + 2a2b k2a3 + 2a b2k2a3 + a2b2b5 − a2bka2 − a b2ka2 − a2ka1 + 2abkb1 − b2ka1 + 2abb1 = 0
−2a2k2a6 − 8ab k2a6 − 2b2k2a6 − a2ka6 + abka5 − 4abka6 + 2a k2a3 − b2ka6 + 2b k2a3 + aba5 + 3aka3 + 3bka3 + aa3 + ba3 = 0

2a k2a5 + 2b k2a5 − 4aka4 − 3akb4 + 2akb5 − 4bka4 − 3bkb4 + 2bkb5 − k2a3 − 4ab4 − 4bb4 + ka2 + 2kb2 − kb3 + b2 = 0
−a2b2k2a5 + 2a2b2ka4 − a2b2kb5 + 2a2b k2a3 + 2a b2k2a3 + 2a2b2b4 − 2a2bka2 − a2bkb2 + 2a2bkb3 − 2a b2ka2 − a b2kb2 + 2a b2kb3 − 2a2bb2 + a2kb1 − 2a b2b2 + 4abkb1 + b2kb1 = 0

6a k2a5 + 4a k2a6 + 6b k2a5 + 4b k2a6 − 4aka4 − 2aka5 − 2akb4 + 4akb6 − 4bka4 − 2bka5 − 2bkb4 + 4bkb6 − 4k2a3 − 2ab4 − 2ab5 − 2bb4 − 2bb5 + 2kb2 + 2b2 = 0
4a2b k2a6 + 4a b2k2a6 − a2bka5 + a2bkb6 − a2k2a3 − a b2ka5 + a b2kb6 − 4ab k2a3 − b2k2a3 − a2ka3 + abka2 − 2abka3 + abkb3 − b2ka3 + aba2 + abb3 + aka1 + bka1 + aa1 + ba1 = 0

6a k2a5 + 12a k2a6 + 6b k2a5 + 12b k2a6 − aka4 + aka5 − akb5 + 3akb6 − bka4 + bka5 − bkb5 + 3bkb6 − 6k2a3 − aa4 − ab5 − ba4 − bb5 − ka2 − 4ka3 + kb3 − a2 + b3 = 0
−a2k2a5 − 4a2k2a6 − 4ab k2a5 − 16ab k2a6 − b2k2a5 − 4b2k2a6 − a2kb6 + 2abka4 + 2abka5 + abkb5 − 4abkb6 + 6a k2a3 − b2kb6 + 6b k2a3 + 2aba4 + abb5 + 4aka3 − akb3 + 4bka3 − bkb3 − ab3 − bb3 − 2ka1 − 2a1 = 0

2a2b k2a5 + 4a2b k2a6 + 2a b2k2a5 + 4a b2k2a6 − 2a2bka4 − 2a2bka5 + 4a2bkb6 − 2a2k2a3 − 2a b2ka4 − 2a b2ka5 + 4a b2kb6 − 8ab k2a3 − 2b2k2a3 − 2a2bb5 − 2a b2b5 + 4abka2 + 2abkb2 + 2abb2 + 2aka1 − 2akb1 + 2bka1 − 2bkb1 − 2ab1 − 2bb1 = 0
−a2k2a5 − 4ab k2a5 − b2k2a5 + 2a2ka4 + a2kb4 − a2kb5 + 8abka4 + 4abkb4 − 4abkb5 + 2a k2a3 + 2b2ka4 + b2kb4 − b2kb5 + 2b k2a3 + 2a2b4 + 8abb4 − 2aka2 − 3akb2 + 2akb3 + 2b2b4 − 2bka2 − 3bkb2 + 2bkb3 − 2ab2 − 2bb2 + 2kb1 = 0

2a2b k2a5 + 2a b2k2a5 − 4a2bka4 − a2bkb4 + 2a2bkb5 − a2k2a3 − 4a b2ka4 − a b2kb4 + 2a b2kb5 − 4ab k2a3 − b2k2a3 − 4a2bb4 + a2ka2 + a2kb2 − a2kb3 − 4a b2b4 + 4abka2 + 4abkb2 − 4abkb3 + b2ka2 + b2kb2 − b2kb3 + a2b2 + 4abb2 − 3akb1 + b2b2 − 3bkb1 = 0
−2a2k2a5 − 2a2k2a6 − 8ab k2a5 − 8ab k2a6 − 2b2k2a5 − 2b2k2a6 + a2ka4 + a2ka5 − 2a2kb6 + 8abka4 + 4abka5 + 2abkb4 − 8abkb6 + 6a k2a3 + b2ka4 + b2ka5 − 2b2kb6 + 6b k2a3 + a2b5 + 2abb4 + 4abb5 − aka2 − 2akb2 + b2b5 − bka2 − 2bkb2 − 2ab2 − 2bb2 − 2ka1 + 2kb1 + 2b1 = 0
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Solving the above equations for the unknowns gives

a1 = aba4

a2 = −(a+ b) a4
a3 = 0
a4 = a4

a5 = 0
a6 = 0
b1 = abb4

b2 = −(a+ b) b4

b3 = −aka4 + akb4 + bka4 + bkb4 + ab4 + bb4
k

b4 = b4

b5 =
2ka4 + 2kb4 + 2b4

k

b6 =
(1 + k) (ka4 + kb4 + b4)

k2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 0
η

= k2ab− a k2x− a k2y − b k2x− b k2y + x2k2 + 2yx k2 + y2k2 − aky − bky + 2kxy + 2k y2 + y2

k2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

k2ab−a k2x−a k2y−b k2x−b k2y+x2k2+2yx k2+y2k2−aky−bky+2kxy+2k y2+y2

k2

dy

Which results in

S = k ln (−ak + kx+ ky + y)
(−b+ a) (1 + k) − k ln (−kb+ kx+ ky + y)

(−b+ a) (1 + k)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −abk − akx− aky − bkx− bky + k x2 + 2kxy + k y2 + y2

(−x+ a) (−x+ b)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = k3

(k (a− x− y)− y) (1 + k) (k (b− x− y)− y)

Sy =
k2

(k (a− x− y)− y) (k (b− x− y)− y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − k2

(−x+ a) (−x+ b) (1 + k) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − k2

(−R + a) (−R + b) (1 + k)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
k2
(
− ln(R−b)

−b+a
+ ln(R−a)

−b+a

)
1 + k

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

k(ln (k(x+ y − a) + y)− ln (k(x+ y − b) + y))
(−b+ a) (1 + k) = −

k2
(
− ln(x−b)

−b+a
+ ln(x−a)

−b+a

)
1 + k

+ c1

Which simplifies to

k ln (k(x+ y − a) + y)− k ln (k(x+ y − b) + y) + k2 ln (x− a)− k2 ln (x− b)− c1(−b+ a) (1 + k)
(−b+ a) (1 + k) = 0

Summary
The solution(s) found are the following

(1)k ln (k(x+ y − a) + y)− k ln (k(x+ y − b) + y) + k2 ln (x− a)− k2 ln (x− b)− c1(−b+ a) (1 + k)
(−b+ a) (1 + k)

= 0
Verification of solutions

k ln (k(x+ y − a) + y)− k ln (k(x+ y − b) + y) + k2 ln (x− a)− k2 ln (x− b)− c1(−b+ a) (1 + k)
(−b+ a) (1 + k)

= 0

Verified OK.

12.7.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −abk − akx− aky − bkx− bky + k x2 + 2kxy + k y2 + y2

(−x+ a) (−x+ b)

This is a Riccati ODE. Comparing the ODE to solve

y′ = − kab

(−x+ a) (−x+ b)+
akx

(−x+ a) (−x+ b)+
kya

(−x+ a) (−x+ b)+
bkx

(−x+ a) (−x+ b)+
kby

(−x+ a) (−x+ b)−
k x2

(−x+ a) (−x+ b)−
2kxy

(−x+ a) (−x+ b)−
k y2

(−x+ a) (−x+ b)−
y2

(−x+ a) (−x+ b)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −abk−akx−bkx+k x2

(−x+a)(−x+b) , f1(x) = − −ak−kb+2kx
(−x+a)(−x+b) and f2(x) = − 1+k

(−x+a)(−x+b) .
Let

y = −u′

f2u

= −u′

− (1+k)u
(−x+a)(−x+b)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1 + k

(−x+ a)2 (−x+ b)
− 1 + k

(−x+ a) (−x+ b)2

f1f2 =
(−ak − kb+ 2kx) (1 + k)

(−x+ a)2 (−x+ b)2

f 2
2 f0 = −(1 + k)2 (abk − akx− bkx+ k x2)

(−x+ a)3 (−x+ b)3

Substituting the above terms back in equation (2) gives

− (1 + k)u′′(x)
(−x+ a) (−x+ b) −

(
− 1 + k

(−x+ a)2 (−x+ b)
− 1 + k

(−x+ a) (−x+ b)2
+ (−ak − kb+ 2kx) (1 + k)

(−x+ a)2 (−x+ b)2
)
u′(x)− (1 + k)2 (abk − akx− bkx+ k x2)u(x)

(−x+ a)3 (−x+ b)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1(−x+ a)−k + c2(−x+ b)−k

The above shows that

u′(x) = k
(
c1(−x+ a)−k−1 + c2(−x+ b)−k−1

)
Using the above in (1) gives the solution

y =
k
(
c1(−x+ a)−k−1 + c2(−x+ b)−k−1

)
(−x+ a) (−x+ b)

(1 + k)
(
c1 (−x+ a)−k + c2 (−x+ b)−k

)

3156



Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
k(−x+ a)1+k (−x+ b)1+k

(
c3(−x+ a)−k−1 + (−x+ b)−k−1

)
(1 + k)

(
c3 (−x+ b)k + (−x+ a)k

)
Summary
The solution(s) found are the following

(1)y =
k(−x+ a)1+k (−x+ b)1+k

(
c3(−x+ a)−k−1 + (−x+ b)−k−1

)
(1 + k)

(
c3 (−x+ b)k + (−x+ a)k

)
Verification of solutions

y =
k(−x+ a)1+k (−x+ b)1+k

(
c3(−x+ a)−k−1 + (−x+ b)−k−1

)
(1 + k)

(
c3 (−x+ b)k + (−x+ a)k

)
Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (a*k+b*k-2*k*x+a+b-2*x)*(diff(y(x), x))/(a*b-a*x-b*x+x^2)-(k+1)*k*y(x)

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- Riccati to 2nd Order successful`� �

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
dsolve((x-a)*(x-b)*diff(y(x),x)+k*(x+y(x)-a)*(x+y(x)-b)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =

(
(−x+ b)k+1 + c1(a− x)k (a− x)

)
k

(k + 1)
(
c1 (a− x)k + (−x+ b)k

)
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3 Solution by Mathematica
Time used: 60.297 (sec). Leaf size: 99� �
DSolve[(x-a)(x-b)y'[x]+k(x+y[x]-a)(x+y[x]-b)+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

2

k(a+ b− 2x)
k + 1

+

√
−k2(a− b)2

(k + 1)2 tan

(k + 1)
√
−k2(a−b)2

(k+1)2 (log(x− b)− log(x− a))
2(a− b) + c1
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12.8 problem 327
12.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3160
12.8.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3162
12.8.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3163
12.8.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 3165
12.8.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3169
12.8.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3173

Internal problem ID [3583]
Internal file name [OUTPUT/3076_Sunday_June_05_2022_08_51_25_AM_15967323/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 327.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2y′x2 − y = 0

12.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

2x2
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Where f(x) = 1
2x2 and g(y) = y. Integrating both sides gives

1
y
dy = 1

2x2 dx∫ 1
y
dy =

∫ 1
2x2 dx

ln (y) = − 1
2x + c1

y = e− 1
2x+c1

= c1e−
1
2x

Summary
The solution(s) found are the following

(1)y = c1e−
1
2x

Figure 471: Slope field plot

Verification of solutions

y = c1e−
1
2x

Verified OK.
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12.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
2x2

q(x) = 0

Hence the ode is

y′ − y

2x2 = 0

The integrating factor µ is

µ = e
∫
− 1

2x2 dx

= e 1
2x

The ode becomes

d
dxµy = 0

d
dx

(
e 1

2xy
)
= 0

Integrating gives

e 1
2xy = c1

Dividing both sides by the integrating factor µ = e 1
2x results in

y = c1e−
1
2x

Summary
The solution(s) found are the following

(1)y = c1e−
1
2x
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Figure 472: Slope field plot

Verification of solutions

y = c1e−
1
2x

Verified OK.

12.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2(u′(x)x+ u(x))x2 − u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(2x− 1)
2x2
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Where f(x) = −2x−1
2x2 and g(u) = u. Integrating both sides gives

1
u
du = −2x− 1

2x2 dx∫ 1
u
du =

∫
−2x− 1

2x2 dx

ln (u) = − 1
2x − ln (x) + c2

u = e− 1
2x−ln(x)+c2

= c2e−
1
2x−ln(x)

Which simplifies to

u(x) = c2e−
1
2x

x

Therefore the solution y is

y = ux

= c2e−
1
2x

Summary
The solution(s) found are the following

(1)y = c2e−
1
2x

3164



Figure 473: Slope field plot

Verification of solutions

y = c2e−
1
2x

Verified OK.

12.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 578: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− 1

2x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− 1
2x
dy

Which results in

S = e 1
2xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −e 1
2xy

2x2

Sy = e 1
2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e 1
2xy = c1

Which simplifies to

e 1
2xy = c1

Which gives

y = c1e−
1
2x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
2x2

dS
dR

= 0

R = x

S = e 1
2xy

Summary
The solution(s) found are the following

(1)y = c1e−
1
2x
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Figure 474: Slope field plot

Verification of solutions

y = c1e−
1
2x

Verified OK.

12.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2
y

)
dy =

(
1
x2

)
dx(

− 1
x2

)
dx+

(
2
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = 2
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
2
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2
y
. Therefore equation (4) becomes

(5)2
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (2
y

)
dy

f(y) = 2 ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
+ 2 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
+ 2 ln (y)

The solution becomes
y = e

c1x−1
2x

Summary
The solution(s) found are the following

(1)y = e
c1x−1

2x

Figure 475: Slope field plot
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Verification of solutions

y = e
c1x−1

2x

Verified OK.

12.8.6 Maple step by step solution

Let’s solve
2y′x2 − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

2x2

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
2x2dx+ c1

• Evaluate integral
ln (y) = − 1

2x + c1

• Solve for y

y = e
2c1x−1

2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(2*x^2*diff(y(x),x) = y(x),y(x), singsol=all)� �

y(x) = c1e−
1
2x
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3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 22� �
DSolve[2 x^2 y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
− 1

2
/
x

y(x) → 0
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12.9 problem 328
12.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3175
12.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3177
12.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3181
12.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3186

Internal problem ID [3584]
Internal file name [OUTPUT/3077_Sunday_June_05_2022_08_51_26_AM_22942619/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 328.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2y′x2 + 2x2y cot (x) = − cot (x)x+ 1

12.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)

q(x) = − cot (x)x+ 1
2x2

Hence the ode is

y′ + y cot (x) = − cot (x)x+ 1
2x2

3175



The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)

The ode becomes

d
dx(µy) = (µ)

(
− cot (x)x+ 1

2x2

)
d
dx(sin (x) y) = (sin (x))

(
− cot (x)x+ 1

2x2

)
d(sin (x) y) =

(
sin (x)− cos (x)x

2x2

)
dx

Integrating gives

sin (x) y =
∫ sin (x)− cos (x)x

2x2 dx

sin (x) y = −sin (x)
2x + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = −csc (x) sin (x)
2x + c1 csc (x)

which simplifies to

y = − 1
2x + c1 csc (x)

Summary
The solution(s) found are the following

(1)y = − 1
2x + c1 csc (x)
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Figure 476: Slope field plot

Verification of solutions

y = − 1
2x + c1 csc (x)

Verified OK.

12.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x2y cot (x) + cot (x)x− 1
2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 581: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x2y cot (x) + cot (x)x− 1
2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (x)− cos (x)x

2x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)− cos (R)R

2R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −sin (R)
2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = −sin (x)
2x + c1

Which simplifies to

y sin (x) = −sin (x)
2x + c1

Which gives

y = −−2c1x+ sin (x)
2 sin (x)x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x2y cot(x)+cot(x)x−1
2x2

dS
dR

= sin(R)−cos(R)R
2R2

R = x

S = sin (x) y
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Summary
The solution(s) found are the following

(1)y = −−2c1x+ sin (x)
2 sin (x)x

Figure 477: Slope field plot

Verification of solutions

y = −−2c1x+ sin (x)
2 sin (x)x

Verified OK.

12.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x2) dy =

(
− cot (x)x+ 1− 2x2y cot (x)

)
dx(

2x2y cot (x) + cot (x)x− 1
)
dx+

(
2x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x2y cot (x) + cot (x)x− 1
N(x, y) = 2x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
2x2y cot (x) + cot (x)x− 1

)
= 2x2 cot (x)

And

∂N

∂x
= ∂

∂x

(
2x2)

= 4x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x2

((
2x2 cot (x)

)
− (4x)

)
= cot (x)x− 2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ cot(x)x−2

x
dx

The result of integrating gives

µ = eln(sin(x))−2 ln(x)

= sin (x)
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x)
x2

(
2x2y cot (x) + cot (x)x− 1

)
= (2x2y + x) cos (x)− sin (x)

x2
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And

N = µN

= sin (x)
x2

(
2x2)

= 2 sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(2x2y + x) cos (x)− sin (x)
x2

)
+ (2 sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (2x2y + x) cos (x)− sin (x)
x2 dx

(3)φ = sin (x)
(
2y + 1

x

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 sin (x). Therefore equation (4) becomes

(5)2 sin (x) = 2 sin (x) + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x)
(
2y + 1

x

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x)
(
2y + 1

x

)

The solution becomes

y = −−c1x+ sin (x)
2x sin (x)

Summary
The solution(s) found are the following

(1)y = −−c1x+ sin (x)
2x sin (x)
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Figure 478: Slope field plot

Verification of solutions

y = −−c1x+ sin (x)
2x sin (x)

Verified OK.

12.9.4 Maple step by step solution

Let’s solve
2y′x2 + 2x2y cot (x) = − cot (x)x+ 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y cot (x)− cot(x)x−1

2x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y cot (x) = − cot(x)x−1

2x2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x) (y′ + y cot (x)) = −µ(x)(cot(x)x−1)
2x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)(cot(x)x−1)

2x2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)(cot(x)x−1)

2x2 dx+ c1

• Solve for y

y =
∫
−µ(x)(cot(x)x−1)

2x2 dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
− sin(x)(cot(x)x−1)

2x2 dx+c1

sin(x)

• Evaluate the integrals on the rhs

y = − sin(x)
2x +c1
sin(x)

• Simplify
y = − 1

2x + c1 csc (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(2*x^2*diff(y(x),x)+x*cot(x)-1+2*x^2*y(x)*cot(x) = 0,y(x), singsol=all)� �

y(x) = − 1
2x + csc (x) c1

3 Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 18� �
DSolve[2 x^2 y'[x]+x Cot[x]-1+2 x^2 y[x] Cot[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
2x + c1 csc(x)
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12.10 problem 329
12.10.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3189
12.10.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3195
12.10.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3201

Internal problem ID [3585]
Internal file name [OUTPUT/3078_Sunday_June_05_2022_08_51_28_AM_4990476/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 329.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

2y′x2 + 2yx− y2x2 = −1

12.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2x2 − 2xy − 1
2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(y2x2 − 2xy − 1) (b3 − a2)
2x2 − (y2x2 − 2xy − 1)2 a3

4x4

−
(
2x y2 − 2y

2x2 − y2x2 − 2xy − 1
x3

)
(xa2 + ya3 + a1)

− (2x2y − 2x) (xb2 + yb3 + b1)
2x2 = 0

Putting the above in normal form gives

−x4y4a3 + 4x5yb2 + 2x4y2a2 + 2x4y2b3 − 4x3y3a3 + 4x4yb1 − 8b2x4 + 6x2y2a3 − 4x3b1 + 4x2ya1 + 2x2a2 + 2x2b3 + 8xya3 + 4xa1 + a3
4x4

= 0

Setting the numerator to zero gives

(6E)−x4y4a3 − 4x5yb2 − 2x4y2a2 − 2x4y2b3 + 4x3y3a3 − 4x4yb1 + 8b2x4

− 6x2y2a3 + 4x3b1 − 4x2ya1 − 2x2a2 − 2x2b3 − 8xya3 − 4xa1 − a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
4
1v

4
2 − 2a2v41v22 + 4a3v31v32 − 4b2v51v2 − 2b3v41v22 − 4b1v41v2 − 6a3v21v22

+ 8b2v41 − 4a1v21v2 + 4b1v31 − 2a2v21 − 8a3v1v2 − 2b3v21 − 4a1v1 − a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4b2v51v2 − a3v
4
1v

4
2 + (−2a2 − 2b3) v41v22 − 4b1v41v2 + 8b2v41 + 4a3v31v32 + 4b1v31

− 6a3v21v22 − 4a1v21v2 + (−2a2 − 2b3) v21 − 8a3v1v2 − 4a1v1 − a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−8a3 = 0
−6a3 = 0
−a3 = 0
4a3 = 0

−4b1 = 0
4b1 = 0

−4b2 = 0
8b2 = 0

−2a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y2x2 − 2xy − 1

2x2

)
(−x)

= y2x2 − 1
2x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2x2−1
2x

dy

Which results in

S = − ln (xy + 1) + ln (xy − 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2x2 − 2xy − 1
2x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y
y2x2 − 1

Sy =
2x

y2x2 − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (1 + yx) + ln (yx− 1) = ln (x) + c1

Which simplifies to

− ln (1 + yx) + ln (yx− 1) = ln (x) + c1

Which gives

y = − ec1x+ 1
x (ec1x− 1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2x2−2xy−1
2x2

dS
dR

= 1
R

R = x

S = − ln (xy + 1) + ln (xy − 1)

Summary
The solution(s) found are the following

(1)y = − ec1x+ 1
x (ec1x− 1)
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Figure 479: Slope field plot

Verification of solutions

y = − ec1x+ 1
x (ec1x− 1)

Verified OK.

12.10.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x2) dy =

(
y2x2 − 2xy − 1

)
dx(

−y2x2 + 2xy + 1
)
dx+

(
2x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2x2 + 2xy + 1
N(x, y) = 2x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y2x2 + 2xy + 1

)
= −2x2y + 2x

And
∂N

∂x
= ∂

∂x

(
2x2)

= 4x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x2

((
−2x2y + 2x

)
− (4x)

)
= −xy − 1

x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

−y2x2 + 2xy + 1
(
(4x)−

(
−2x2y + 2x

))
= − 2x(xy + 1)

y2x2 − 2xy − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (4x)− (−2x2y + 2x)
x (−y2x2 + 2xy + 1)− y (2x2)

= − 2
xy − 1

Replacing all powers of terms xy by t gives

R = − 2
t− 1

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t−1

)
dt
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The result of integrating gives

µ = e−2 ln(t−1)

= 1
(t− 1)2

Now t is replaced back with xy giving

µ = 1
(xy − 1)2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy − 1)2

(
−y2x2 + 2xy + 1

)
= −y2x2 + 2xy + 1

(xy − 1)2

And

N = µN

= 1
(xy − 1)2

(
2x2)

= 2x2

(xy − 1)2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−y2x2 + 2xy + 1
(xy − 1)2

)
+
(

2x2

(xy − 1)2
)

dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y2x2 + 2xy + 1

(xy − 1)2
dx

(3)φ = −x− 2
y (xy − 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

y2 (xy − 1) +
2x

y (xy − 1)2
+ f ′(y)

= 4xy − 2
y2 (xy − 1)2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x2

(xy−1)2 . Therefore equation (4) becomes

(5)2x2

(xy − 1)2
= 4xy − 2

y2 (xy − 1)2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2
y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 2
y2

)
dy

f(y) = −2
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− 2
y (xy − 1) −

2
y
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− 2
y (xy − 1) −

2
y

The solution becomes

y = −x+ c1
x (x+ c1)

Summary
The solution(s) found are the following

(1)y = −x+ c1
x (x+ c1)

Figure 480: Slope field plot

Verification of solutions

y = −x+ c1
x (x+ c1)

Verified OK.
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12.10.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2x2 − 2xy − 1
2x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

2 − y

x
− 1

2x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 1
2x2 , f1(x) = − 1

x
and f2(x) = 1

2 . Let

y = −u′

f2u

= −u′

u
2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = − 1
2x

f 2
2 f0 = − 1

8x2

Substituting the above terms back in equation (2) gives

u′′(x)
2 + u′(x)

2x − u(x)
8x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x+ c1√
x
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The above shows that

u′(x) = c2x− c1

2x 3
2

Using the above in (1) gives the solution

y = − c2x− c1
x (c2x+ c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3 − x

x (x+ c3)

Summary
The solution(s) found are the following

(1)y = c3 − x

x (x+ c3)

Figure 481: Slope field plot
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Verification of solutions

y = c3 − x

x (x+ c3)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(2*x^2*diff(y(x),x)+1+2*x*y(x)-x^2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
tanh

(
− ln(x)

2 + c1
2

)
x

3 Solution by Mathematica
Time used: 1.03 (sec). Leaf size: 61� �
DSolve[2 x^2 y'[x]+1+2 x y[x]- x^2 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
i tan

(1
2i log(x) + c1

)
x

y(x) → −x+ e2iInterval[{0,π}]

x2 + xe2iInterval[{0,π}]
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12.11 problem 330
12.11.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3204
12.11.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3206

Internal problem ID [3586]
Internal file name [OUTPUT/3079_Sunday_June_05_2022_08_51_30_AM_62796987/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 330.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _Riccati]

2y′x2 − 2yx− (− cot (x)x+ 1)
(
x2 − y2

)
= 0

12.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2(u′(x)x+ u(x))x2 − 2u(x)x2 − (− cot (x)x+ 1)
(
x2 − u(x)2 x2) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
(cot (x)x− 1)

(
u2

2 − 1
2

)
x

Where f(x) = cot(x)x−1
x

and g(u) = u2

2 − 1
2 . Integrating both sides gives

1
u2

2 − 1
2
du = cot (x)x− 1

x
dx

∫ 1
u2

2 − 1
2
du =

∫ cot (x)x− 1
x

dx

−2 arctanh (u) = − ln (x) + ln (sin (x)) + c2
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The solution is

−2 arctanh (u(x)) + ln (x)− ln (sin (x))− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−2 arctanh
(y
x

)
+ ln (x)− ln (sin (x))− c2 = 0

−2 arctanh
(y
x

)
+ ln (x)− ln (sin (x))− c2 = 0

Summary
The solution(s) found are the following

(1)−2 arctanh
(y
x

)
+ ln (x)− ln (sin (x))− c2 = 0

Figure 482: Slope field plot

Verification of solutions

−2 arctanh
(y
x

)
+ ln (x)− ln (sin (x))− c2 = 0

Verified OK.
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12.11.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= − cot (x)x3 + cot (x)x y2 + x2 + 2xy − y2

2x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −cot (x)x
2 + cot (x) y2

2x + 1
2 + y

x
− y2

2x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − cot(x)x3+x2

2x2 , f1(x) = 1
x
and f2(x) = cot(x)x−1

2x2 . Let

y = −u′

f2u

= −u′

(cot(x)x−1)u
2x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

(
−1− cot (x)2

)
x+ cot (x)

2x2 − cot (x)x− 1
x3

f1f2 =
cot (x)x− 1

2x3

f 2
2 f0 =

(cot (x)x− 1)2 (− cot (x)x3 + x2)
8x6

Substituting the above terms back in equation (2) gives

(cot (x)x− 1)u′′(x)
2x2 −

((
−1− cot (x)2

)
x+ cot (x)

2x2 − cot (x)x− 1
2x3

)
u′(x) + (cot (x)x− 1)2 (− cot (x)x3 + x2)u(x)

8x6 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1 sinh
(
− ln (sin (x))

2 + ln (x)
2

)
+ c2 cosh

(
− ln (sin (x))

2 + ln (x)
2

)

The above shows that

u′(x) =

c1 cosh
(
− ln(sin(x))

2 + ln(x)
2

)
2 +

c2 sinh
(
− ln(sin(x))

2 + ln(x)
2

)
2

(− cot (x) + 1
x

)

Using the above in (1) gives the solution

y = −
2
(

c1 cosh
(
− ln(sin(x))

2 + ln(x)
2

)
2 +

c2 sinh
(
− ln(sin(x))

2 + ln(x)
2

)
2

)(
− cot (x) + 1

x

)
x2

(cot (x)x− 1)
(
c1 sinh

(
− ln(sin(x))

2 + ln(x)
2

)
+ c2 cosh

(
− ln(sin(x))

2 + ln(x)
2

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
c3 cosh

(
− ln(sin(x))

2 + ln(x)
2

)
+ sinh

(
− ln(sin(x))

2 + ln(x)
2

))
x

c3 sinh
(
− ln(sin(x))

2 + ln(x)
2

)
+ cosh

(
− ln(sin(x))

2 + ln(x)
2

)
Summary
The solution(s) found are the following

(1)y =

(
c3 cosh

(
− ln(sin(x))

2 + ln(x)
2

)
+ sinh

(
− ln(sin(x))

2 + ln(x)
2

))
x

c3 sinh
(
− ln(sin(x))

2 + ln(x)
2

)
+ cosh

(
− ln(sin(x))

2 + ln(x)
2

)
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Figure 483: Slope field plot

Verification of solutions

y =

(
c3 cosh

(
− ln(sin(x))

2 + ln(x)
2

)
+ sinh

(
− ln(sin(x))

2 + ln(x)
2

))
x

c3 sinh
(
− ln(sin(x))

2 + ln(x)
2

)
+ cosh

(
− ln(sin(x))

2 + ln(x)
2

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(2*x^2*diff(y(x),x) = 2*x*y(x)+(1-x*cot(x))*(x^2-y(x)^2),y(x), singsol=all)� �

y(x) = − tanh
(
ln (sin (x))

2 − ln (x)
2 + c1

2

)
x

3 Solution by Mathematica
Time used: 1.1 (sec). Leaf size: 44� �
DSolve[2 x^2 y'[x]==2 x y[x]+(1-x Cot[x])(x^2-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x− e2c1 sin(x))
x+ e2c1 sin(x)

y(x) → −x
y(x) → x
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12.12 problem 331
12.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3210
12.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3212
12.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3216
12.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3221

Internal problem ID [3587]
Internal file name [OUTPUT/3080_Sunday_June_05_2022_08_51_31_AM_20186354/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 331.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2
(
−x2 + 1

)
y′ − y(x+ 1) =

√
−x2 + 1

12.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
2x− 2

q(x) = 1
2
√
−x2 + 1

Hence the ode is

y′ + y

2x− 2 = 1
2
√
−x2 + 1
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The integrating factor µ is

µ = e
∫ 1

2x−2dx

=
√
x− 1

The ode becomes

d
dx(µy) = (µ)

(
1

2
√
−x2 + 1

)
d
dx
(√

x− 1 y
)
=
(√

x− 1
)( 1

2
√
−x2 + 1

)
d
(√

x− 1 y
)
=
( √

x− 1
2
√
−x2 + 1

)
dx

Integrating gives

√
x− 1 y =

∫ √
x− 1

2
√
−x2 + 1

dx

√
x− 1 y = (x+ 1)

√
x− 1√

−x2 + 1
+ c1

Dividing both sides by the integrating factor µ =
√
x− 1 results in

y = x+ 1√
−x2 + 1

+ c1√
x− 1

Summary
The solution(s) found are the following

(1)y = x+ 1√
−x2 + 1

+ c1√
x− 1
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Figure 484: Slope field plot

Verification of solutions

y = x+ 1√
−x2 + 1

+ c1√
x− 1

Verified OK.

12.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy + y +
√
−x2 + 1

2 (x2 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 584: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x− 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x−1

dy

Which results in

S =
√
x− 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy + y +
√
−x2 + 1

2 (x2 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

2
√
x− 1

Sy =
√
x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

√
−x2 + 1√

x− 1 (2 + 2x)
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

√
−R2 + 1√

R− 1 (2 + 2R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
√
−R2 + 1√
R− 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x− 1 y = −

√
−x2 + 1√
x− 1

+ c1

Which simplifies to

√
x− 1 y = −

√
−x2 + 1√
x− 1

+ c1

Which gives

y = −−c1
√
x− 1 +

√
−x2 + 1

x− 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −xy+y+
√
−x2+1

2(x2−1)
dS
dR

= −
√
−R2+1√

R−1 (2+2R)

R = x

S =
√
x− 1 y
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Summary
The solution(s) found are the following

(1)y = −−c1
√
x− 1 +

√
−x2 + 1

x− 1

Figure 485: Slope field plot

Verification of solutions

y = −−c1
√
x− 1 +

√
−x2 + 1

x− 1

Verified OK.

12.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−2x2 + 2

)
dy =

(√
−x2 + 1 + y(x+ 1)

)
dx(

−
√
−x2 + 1− y(x+ 1)

)
dx+

(
−2x2 + 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
√
−x2 + 1− y(x+ 1)

N(x, y) = −2x2 + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−
√
−x2 + 1− y(x+ 1)

)
= −x− 1

And

∂N

∂x
= ∂

∂x

(
−2x2 + 2

)
= −4x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2x2 + 2((−x− 1)− (−4x))

= 1− 3x
2x2 − 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1−3x

2x2−2 dx

The result of integrating gives

µ = e−
ln(x−1)

2 −ln(x+1)

= 1√
x− 1 (x+ 1)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x− 1 (x+ 1)

(
−
√
−x2 + 1− y(x+ 1)

)
= −

√
−x2 + 1 + y(x+ 1)√

x− 1 (x+ 1)
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And

N = µN

= 1√
x− 1 (x+ 1)

(
−2x2 + 2

)
= −2

√
x− 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
√
−x2 + 1 + y(x+ 1)√

x− 1 (x+ 1)

)
+
(
−2

√
x− 1

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−
√
−x2 + 1 + y(x+ 1)√

x− 1 (x+ 1)
dx

(3)φ = −
2
(
(x− 1) y +

√
−x2 + 1

)
√
x− 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2

√
x− 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= −2
√
x− 1. Therefore equation (4) becomes

(5)−2
√
x− 1 = −2

√
x− 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
2
(
(x− 1) y +

√
−x2 + 1

)
√
x− 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
2
(
(x− 1) y +

√
−x2 + 1

)
√
x− 1

The solution becomes

y = −c1
√
x− 1 + 2

√
−x2 + 1

2 (x− 1)

Summary
The solution(s) found are the following

(1)y = −c1
√
x− 1 + 2

√
−x2 + 1

2 (x− 1)
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Figure 486: Slope field plot

Verification of solutions

y = −c1
√
x− 1 + 2

√
−x2 + 1

2 (x− 1)

Verified OK.

12.12.4 Maple step by step solution

Let’s solve
2(−x2 + 1) y′ − y(x+ 1) =

√
−x2 + 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

2(x−1) +
1

2
√
−x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

2(x−1) =
1

2
√
−x2+1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + y

2(x−1)

)
= µ(x)

2
√
−x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

2(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

2(x−1)

• Solve to find the integrating factor
µ(x) =

√
x− 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
2
√
−x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
2
√
−x2+1dx+ c1

• Solve for y

y =
∫ µ(x)

2
√

−x2+1
dx+c1

µ(x)

• Substitute µ(x) =
√
x− 1

y =
∫ √

x−1
2
√

−x2+1
dx+c1

√
x−1

• Evaluate the integrals on the rhs

y =
(x+1)

√
x−1√

−x2+1
+c1

√
x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(2*(-x^2+1)*diff(y(x),x) = sqrt(-x^2+1)+(1+x)*y(x),y(x), singsol=all)� �

y(x) = c1√
x− 1

+ x+ 1√
−x2 + 1

3 Solution by Mathematica
Time used: 0.34 (sec). Leaf size: 40� �
DSolve[2(1-x^2)y'[x]==Sqrt[1-x^2]+(1+x)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
√
1− x2 + c1

√
2− 2x

2(x− 1)
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12.13 problem 332
12.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3224
12.13.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 3226
12.13.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 3228
12.13.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3232
12.13.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3236

Internal problem ID [3588]
Internal file name [OUTPUT/3081_Sunday_June_05_2022_08_51_33_AM_58434979/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 332.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x(1− 2x) y′ + (1− 4x) y = −1

12.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 4x
x (2x− 1)

q(x) = 1
x (2x− 1)

Hence the ode is

y′ − (1− 4x) y
x (2x− 1) = 1

x (2x− 1)
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The integrating factor µ is

µ = e
∫
− 1−4x

x(2x−1)dx

= x(2x− 1)

Which simplifies to
µ = 2x2 − x

The ode becomes

d
dx(µy) = (µ)

(
1

x (2x− 1)

)
d
dx
((
2x2 − x

)
y
)
=
(
2x2 − x

)( 1
x (2x− 1)

)
d
((
2x2 − x

)
y
)
= dx

Integrating gives (
2x2 − x

)
y =

∫
dx(

2x2 − x
)
y = x+ c1

Dividing both sides by the integrating factor µ = 2x2 − x results in

y = 1
2x− 1 + c1

x (2x− 1)

which simplifies to

y = x+ c1
x (2x− 1)

Summary
The solution(s) found are the following

(1)y = x+ c1
x (2x− 1)
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Figure 487: Slope field plot

Verification of solutions

y = x+ c1
x (2x− 1)

Verified OK.

12.13.2 Solving as differentialType ode

Writing the ode as

y′ = −1− (1− 4x) y
x (1− 2x) (1)

Which becomes

0 =
(
−2x2 + x

)
dy + (−4xy + y + 1) dx (2)

But the RHS is complete differential because(
−2x2 + x

)
dy + (−4xy + y + 1) dx = d

(
−2x2y + xy + x

)
Hence (2) becomes

0 = d
(
−2x2y + xy + x

)
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Integrating both sides gives gives these solutions

y = x+ c1
x (2x− 1) + c1

Summary
The solution(s) found are the following

(1)y = x+ c1
x (2x− 1) + c1

Figure 488: Slope field plot

Verification of solutions

y = x+ c1
x (2x− 1) + c1

Verified OK.
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12.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4xy − y − 1
x (2x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 587: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x (2x− 1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x(2x−1)

dy

Which results in

S = yx(2x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4xy − y − 1
x (2x− 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = (−1 + 4x) y
Sy = 2x2 − x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx(2x− 1) = x+ c1

Which simplifies to

yx(2x− 1) = x+ c1

Which gives

y = x+ c1
x (2x− 1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4xy−y−1
x(2x−1)

dS
dR

= 1

R = x

S = yx(2x− 1)

Summary
The solution(s) found are the following

(1)y = x+ c1
x (2x− 1)
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Figure 489: Slope field plot

Verification of solutions

y = x+ c1
x (2x− 1)

Verified OK.

12.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(1− 2x)) dy = (−1− (1− 4x) y) dx
(1 + (1− 4x) y) dx+(x(1− 2x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1 + (1− 4x) y
N(x, y) = x(1− 2x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(1 + (1− 4x) y)

= 1− 4x

And
∂N

∂x
= ∂

∂x
(x(1− 2x))

= 1− 4x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
1 + (1− 4x) y dx

(3)φ = −2x2y + xy + x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2x2 + x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(1− 2x). Therefore equation (4) becomes

(5)x(1− 2x) = −2x2 + x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −2x2y + xy + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2x2y + xy + x
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The solution becomes

y = − −x+ c1
x (2x− 1)

Summary
The solution(s) found are the following

(1)y = − −x+ c1
x (2x− 1)

Figure 490: Slope field plot

Verification of solutions

y = − −x+ c1
x (2x− 1)

Verified OK.
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12.13.5 Maple step by step solution

Let’s solve
x(1− 2x) y′ + (1− 4x) y = −1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (−1+4x)y

x(2x−1) + 1
x(2x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (−1+4x)y

x(2x−1) = 1
x(2x−1)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (−1+4x)y

x(2x−1)

)
= µ(x)

x(2x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (−1+4x)y

x(2x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(−1+4x)

x(2x−1)

• Solve to find the integrating factor
µ(x) = x(2x− 1)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x(2x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x(2x−1)dx+ c1

• Solve for y

y =
∫ µ(x)

x(2x−1)dx+c1

µ(x)

• Substitute µ(x) = x(2x− 1)

y =
∫
1dx+c1

x(2x−1)

• Evaluate the integrals on the rhs
y = x+c1

x(2x−1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*(1-2*x)*diff(y(x),x)+1+(1-4*x)*y(x) = 0,y(x), singsol=all)� �

y(x) = c1 + x

(2x− 1)x

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 22� �
DSolve[x(1-2 x)y'[x]+1+(1-4 x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x− c1
x− 2x2
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12.14 problem 333
12.14.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3238
12.14.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3246
12.14.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3251

Internal problem ID [3589]
Internal file name [OUTPUT/3082_Sunday_June_05_2022_08_51_35_AM_14890759/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 333.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

_Riccati]

x(1− 2x) y′ + (4x+ 1) y − y2 = 4x

12.14.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−4xy + y2 + 4x− y

x (2x− 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

− (−4xy + y2 + 4x− y) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (2x− 1)

− (−4xy + y2 + 4x− y)2 (xa5 + 2ya6 + a3)
x2 (2x− 1)2

−
(
− −4y + 4
x (2x− 1) +

−4xy + y2 + 4x− y

x2 (2x− 1)

+ −8xy + 2y2 + 8x− 2y
x (2x− 1)2

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
+ (−4x+ 2y − 1) (x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

x (2x− 1) = 0

Putting the above in normal form gives

−8x4ya4 − 4x4yb4 − 4x4yb5 + 16x3y2a5 − 2x3y2b5 − 8x3y2b6 − 6x2y3a5 + 24x2y3a6 + x y4a5 − 12x y4a6 + 2y5a6 − 8x4a4 + 4x4b2 + 6x4b4 + 8x4b5 − 8x3ya4 − 32x3ya5 − 4x3yb2 + 2x3yb4 + 4x3yb5 + 16x3yb6 + 2x2y2a2 + 8x2y2a3 + x2y2a4 + 10x2y2a5 − 56x2y2a6 − 2x2y2b3 + x2y2b5 + 2x2y2b6 − 4x y3a3 − 2x y3a5 + 28x y3a6 + y4a3 − 5y4a6 + 8x3a4 + 16x3a5 + 8x3b1 + 2x3b2 + 8x3b3 − 3x3b4 − 4x3b5 − 8x2ya1 − 6x2ya2 − 24x2ya3 − x2ya4 − 4x2ya5 + 32x2ya6 − 4x2yb1 + 2x2yb2 − yb5x
2 − 8x2yb6 + 4x y2a1 + 12x y2a3 + x y2a5 − 16x y2a6 + x y2b3 + x y2b6 − 3y3a3 + 3y3a6 + 8x2a1 + 4x2a2 + 16x2a3 − 2x2b1 − 2b2x2 − 4x2b3 − 4xya1 − 8xya3 + 2xyb1 − y2a1 + 2y2a3 − xb1 + ya1

x2 (2x− 1)2
= 0

Setting the numerator to zero gives

(6E)

−8x4ya4 + 4x4yb4 + 4x4yb5 − 16x3y2a5 + 2x3y2b5 + 8x3y2b6
+ 6x2y3a5 − 24x2y3a6 − x y4a5 + 12x y4a6 − 2y5a6 + 8x4a4
− 4x4b2 − 6x4b4 − 8x4b5 + 8x3ya4 + 32x3ya5 + 4x3yb2 − 2x3yb4
− 4x3yb5 − 16x3yb6 − 2x2y2a2 − 8x2y2a3 − x2y2a4 − 10x2y2a5
+ 56x2y2a6 + 2x2y2b3 − x2y2b5 − 2x2y2b6 + 4x y3a3 + 2x y3a5
− 28x y3a6 − y4a3 + 5y4a6 − 8x3a4 − 16x3a5 − 8x3b1 − 2x3b2
− 8x3b3 + 3x3b4 + 4x3b5 + 8x2ya1 + 6x2ya2 + 24x2ya3 + x2ya4
+ 4x2ya5 − 32x2ya6 + 4x2yb1 − 2x2yb2 + yb5x

2 + 8x2yb6
− 4x y2a1 − 12x y2a3 − x y2a5 + 16x y2a6 − x y2b3 − x y2b6
+ 3y3a3 − 3y3a6 − 8x2a1 − 4x2a2 − 16x2a3 + 2x2b1 + 2b2x2

+ 4x2b3 + 4xya1 + 8xya3 − 2xyb1 + y2a1 − 2y2a3 + xb1 − ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−8a4v41v2 − 16a5v31v22 + 6a5v21v32 − a5v1v
4
2 − 24a6v21v32 + 12a6v1v42

− 2a6v52 + 4b4v41v2 + 4b5v41v2 + 2b5v31v22 + 8b6v31v22 − 2a2v21v22
− 8a3v21v22 +4a3v1v32 −a3v

4
2 +8a4v41 +8a4v31v2−a4v

2
1v

2
2 +32a5v31v2

− 10a5v21v22 + 2a5v1v32 + 56a6v21v22 − 28a6v1v32 + 5a6v42 − 4b2v41
+ 4b2v31v2 + 2b3v21v22 − 6b4v41 − 2b4v31v2 − 8b5v41 − 4b5v31v2 − b5v

2
1v

2
2

− 16b6v31v2 − 2b6v21v22 + 8a1v21v2 − 4a1v1v22 + 6a2v21v2 + 24a3v21v2
− 12a3v1v22 +3a3v32 − 8a4v31 + a4v

2
1v2 − 16a5v31 +4a5v21v2 − a5v1v

2
2

− 32a6v21v2 + 16a6v1v22 − 3a6v32 − 8b1v31 + 4b1v21v2 − 2b2v31
− 2b2v21v2 − 8b3v31 − b3v1v

2
2 + 3b4v31 + 4b5v31 + b5v

2
1v2 + 8b6v21v2

− b6v1v
2
2 − 8a1v21 + 4a1v1v2 + a1v

2
2 − 4a2v21 − 16a3v21 + 8a3v1v2

− 2a3v22 + 2b1v21 − 2b1v1v2 + 2b2v21 + 4b3v21 − a1v2 + b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(−8a4 + 4b4 + 4b5) v41v2 + (8a4 − 4b2 − 6b4 − 8b5) v41
+(−16a5+2b5+8b6) v31v22 +(8a4+32a5+4b2−2b4−4b5−16b6) v31v2
+ (−8a4 − 16a5 − 8b1 − 2b2 − 8b3 + 3b4 + 4b5) v31 + (6a5 − 24a6) v21v32
+ (−2a2 − 8a3 − a4 − 10a5 + 56a6 + 2b3 − b5 − 2b6) v21v22
+ (8a1 + 6a2 + 24a3 + a4 + 4a5 − 32a6 + 4b1 − 2b2 + b5 + 8b6) v21v2
+ (−8a1 − 4a2 − 16a3 + 2b1 + 2b2 + 4b3) v21 + (−a5 + 12a6) v1v42
+ (4a3 + 2a5 − 28a6) v1v32 + (−4a1 − 12a3 − a5 + 16a6 − b3 − b6) v1v22
+ (4a1 + 8a3 − 2b1) v1v2 + b1v1 − 2a6v52 + (−a3 + 5a6) v42
+ (3a3 − 3a6) v32 + (a1 − 2a3) v22 − a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
−2a6 = 0

a1 − 2a3 = 0
−a3 + 5a6 = 0
3a3 − 3a6 = 0

−a5 + 12a6 = 0
6a5 − 24a6 = 0

4a1 + 8a3 − 2b1 = 0
4a3 + 2a5 − 28a6 = 0
−8a4 + 4b4 + 4b5 = 0
−16a5 + 2b5 + 8b6 = 0

8a4 − 4b2 − 6b4 − 8b5 = 0
−8a1 − 4a2 − 16a3 + 2b1 + 2b2 + 4b3 = 0
−4a1 − 12a3 − a5 + 16a6 − b3 − b6 = 0
8a4 + 32a5 + 4b2 − 2b4 − 4b5 − 16b6 = 0

−8a4 − 16a5 − 8b1 − 2b2 − 8b3 + 3b4 + 4b5 = 0
−2a2 − 8a3 − a4 − 10a5 + 56a6 + 2b3 − b5 − 2b6 = 0

8a1 + 6a2 + 24a3 + a4 + 4a5 − 32a6 + 4b1 − 2b2 + b5 + 8b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −b4
4 + b6

a3 = 0

a4 =
b4
2 − 2b6

a5 = 0
a6 = 0
b1 = 0

b2 = −b4
2 + 4b6

b3 = −b6

b4 = b4

b5 = −4b6
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
2x

2 − 1
4x

η = x2 − 1
2x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x2 − 1
2x−

(
−−4xy + y2 + 4x− y

x (2x− 1)

)(
1
2x

2 − 1
4x
)

= 8x4 − 8x3y + 2y2x2 + 2x2y − x y2 − 2x2 + xy

8x2 − 4x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

8x4−8x3y+2y2x2+2x2y−x y2−2x2+xy
8x2−4x

dy

Which results in

S = (8x2 − 4x) (ln (y − 1− 2x)− ln (−2x+ y))
x (2x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−4xy + y2 + 4x− y

x (2x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 8
(−y + 1 + 2x) (2x− y)

Sy =
4

(−y + 1 + 2x) (2x− y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 4

x (2x− 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 4

R (2R− 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −4 ln (2R− 1) + 4 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

4 ln (−1− 2x+ y)− 4 ln (y − 2x) = −4 ln (2x− 1) + 4 ln (x) + c1

Which simplifies to

4 ln (−1− 2x+ y)− 4 ln (y − 2x) = −4 ln (2x− 1) + 4 ln (x) + c1

Which gives

y = 4 e−
c1
4 x2 − 2x2 − e−

c1
4

2 e−
c1
4 x− e−

c1
4 − x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−4xy+y2+4x−y
x(2x−1)

dS
dR

= − 4
R(2R−1)

R = x

S = 4 ln (y − 1− 2x)− 4 ln (−2x+ y)

Summary
The solution(s) found are the following

(1)y = 4 e−
c1
4 x2 − 2x2 − e−

c1
4

2 e−
c1
4 x− e−

c1
4 − x
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Figure 491: Slope field plot

Verification of solutions

y = 4 e−
c1
4 x2 − 2x2 − e−

c1
4

2 e−
c1
4 x− e−

c1
4 − x

Verified OK.

12.14.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

3246



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(1− 2x)) dy =
(
4x− (4x+ 1) y + y2

)
dx(

−y2 + (4x+ 1) y − 4x
)
dx+(x(1− 2x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2 + (4x+ 1) y − 4x
N(x, y) = x(1− 2x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y2 + (4x+ 1) y − 4x

)
= −2y + 4x+ 1

And
∂N

∂x
= ∂

∂x
(x(1− 2x))

= 1− 4x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (1− 2x)((−2y + 4x+ 1)− (1− 4x))

= −8x+ 2y
x (2x− 1)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

4 (y − 1)
(
x− y

4

)((1− 4x)− (−2y + 4x+ 1))

= − 2
y − 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y−1 dy

The result of integrating gives

µ = e−2 ln(y−1)

= 1
(y − 1)2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
(y − 1)2

(
−y2 + (4x+ 1) y − 4x

)
= 4x− y

y − 1
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And

N = µN

= 1
(y − 1)2

(x(1− 2x))

= −2x2 + x

(y − 1)2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

4x− y

y − 1

)
+
(
−2x2 + x

(y − 1)2
)

dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 4x− y

y − 1 dx

(3)φ = (2x− y)x
y − 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

y − 1 − (2x− y)x
(y − 1)2

+ f ′(y)

= −2x2 + x

(y − 1)2
+ f ′(y)
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But equation (2) says that ∂φ
∂y

= −2x2+x
(y−1)2 . Therefore equation (4) becomes

(5)−2x2 + x

(y − 1)2
= −2x2 + x

(y − 1)2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2x− y)x
y − 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2x− y)x

y − 1

The solution becomes

y = 2x2 + c1
x+ c1

Summary
The solution(s) found are the following

(1)y = 2x2 + c1
x+ c1
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Figure 492: Slope field plot

Verification of solutions

y = 2x2 + c1
x+ c1

Verified OK.

12.14.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −−4xy + y2 + 4x− y

x (2x− 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = 4y
2x− 1 − y2

x (2x− 1) −
4

2x− 1 + y

x (2x− 1)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = − 4
2x−1 , f1(x) = − −1−4x

x(2x−1) and f2(x) = − 1
x(2x−1) . Let

y = −u′

f2u

= −u′

− u
x(2x−1)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2 (2x− 1) +

2
x (2x− 1)2

f1f2 =
−1− 4x

x2 (2x− 1)2

f 2
2 f0 = − 4

x2 (2x− 1)3

Substituting the above terms back in equation (2) gives

− u′′(x)
x (2x− 1) −

(
1

x2 (2x− 1) +
2

x (2x− 1)2
+ −1− 4x

x2 (2x− 1)2
)
u′(x)− 4u(x)

x2 (2x− 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = (2x− 1) (c1x+ c2)
x

The above shows that

u′(x) = 2c1x2 + c2
x2

Using the above in (1) gives the solution

y = 2c1x2 + c2
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = 2c3x2 + 1
c3x+ 1

Summary
The solution(s) found are the following

(1)y = 2c3x2 + 1
c3x+ 1

Figure 493: Slope field plot

Verification of solutions

y = 2c3x2 + 1
c3x+ 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*(1-2*x)*diff(y(x),x) = 4*x-(1+4*x)*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) = −2x2 + c1
c1 − x

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 27� �
DSolve[x(1-2 x)y'[x]==4 x -(1+4 x)y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 + x(2x− 1)
x− c1

y(x) → 1
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12.15 problem 334
12.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3255
12.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3257
12.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3261
12.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3266

Internal problem ID [3590]
Internal file name [OUTPUT/3083_Sunday_June_05_2022_08_51_36_AM_48072267/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 334.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2x(1− x) y′ + (1− 2x) y = −x

12.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 2x
2x (x− 1)

q(x) = 1
2x− 2

Hence the ode is

y′ − (1− 2x) y
2x (x− 1) = 1

2x− 2
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The integrating factor µ is

µ = e
∫
− 1−2x

2x(x−1)dx

=
√
x (x− 1)

The ode becomes

d
dx(µy) = (µ)

(
1

2x− 2

)
d
dx

(√
x (x− 1) y

)
=
(√

x (x− 1)
)( 1

2x− 2

)
d
(√

x (x− 1) y
)
=
(√

x (x− 1)
2x− 2

)
dx

Integrating gives

√
x (x− 1) y =

∫ √
x (x− 1)
2x− 2 dx

√
x (x− 1) y =

√
(x− 1)2 − 1 + x

2 +
ln
(
−1

2 + x+
√

(x− 1)2 − 1 + x

)
4 + c1

Dividing both sides by the integrating factor µ =
√

x (x− 1) results in

y =

√
(x−1)2−1+x

2 +
ln
(
− 1

2+x+
√

(x−1)2−1+x

)
4√

x (x− 1)
+ c1√

x (x− 1)

which simplifies to

y =
2
√

x (x− 1)− ln (2) + ln
(
−1 + 2x+ 2

√
x (x− 1)

)
+ 4c1

4
√

x (x− 1)

Summary
The solution(s) found are the following

(1)y =
2
√
x (x− 1)− ln (2) + ln

(
−1 + 2x+ 2

√
x (x− 1)

)
+ 4c1

4
√

x (x− 1)
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Figure 494: Slope field plot

Verification of solutions

y =
2
√
x (x− 1)− ln (2) + ln

(
−1 + 2x+ 2

√
x (x− 1)

)
+ 4c1

4
√

x (x− 1)

Verified OK.

12.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy − x− y

2x (x− 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 590: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x (x− 1)

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x(x−1)

dy

Which results in

S =
√
x (x− 1) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy − x− y

2x (x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(2x− 1)
2
√
x
√
x− 1

Sy =
√
x
√
x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

√
x

2
√
x− 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

√
R

2
√
R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
R
√
R− 1
2 +

√
(R− 1)R ln

(
R− 1

2 +
√
R2 −R

)
4
√
R
√
R− 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x
√
x− 1 y =

√
x
√
x− 1
2 +

√
x (x− 1) ln

(
−1

2 + x+
√
x2 − x

)
4
√
x
√
x− 1

+ c1

Which simplifies to

√
x
√
x− 1 y =

√
x
√
x− 1
2 +

√
x (x− 1) ln

(
−1

2 + x+
√
x2 − x

)
4
√
x
√
x− 1

+ c1

Which gives

y =
4c1

√
x
√
x− 1 +

√
x (x− 1) ln

(
−1

2 + x+
√
x2 − x

)
+ 2x2 − 2x

4x (x− 1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2xy−x−y
2x(x−1)

dS
dR

=
√
R

2
√
R−1

R = x

S =
√
x
√
x− 1 y
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Summary
The solution(s) found are the following

(1)y =
4c1

√
x
√
x− 1 +

√
x (x− 1) ln

(
−1

2 + x+
√
x2 − x

)
+ 2x2 − 2x

4x (x− 1)

Figure 495: Slope field plot

Verification of solutions

y =
4c1

√
x
√
x− 1 +

√
x (x− 1) ln

(
−1

2 + x+
√
x2 − x

)
+ 2x2 − 2x

4x (x− 1)

Verified OK.

12.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x(1− x)) dy = (−x− (1− 2x) y) dx
(x+ (1− 2x) y) dx+(2x(1− x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ (1− 2x) y
N(x, y) = 2x(1− x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(x+ (1− 2x) y)

= 1− 2x

And

∂N

∂x
= ∂

∂x
(2x(1− x))

= −4x+ 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

2x (x− 1)((1− 2x)− (−4x+ 2))

= 1− 2x
2x (x− 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1−2x

2x(x−1) dx

The result of integrating gives

µ = e−
ln(x(x−1))

2

= 1√
x (x− 1)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x (x− 1)

(x+ (1− 2x) y)

= −2xy + x+ y√
x (x− 1)
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And

N = µN

= 1√
x (x− 1)

(2x(1− x))

= − 2x(x− 1)√
x (x− 1)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2xy + x+ y√
x (x− 1)

)
+
(
− 2x(x− 1)√

x (x− 1)

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2xy + x+ y√

x (x− 1)
dx

(3)φ=−2
√

x (x− 1) y+
√

x (x− 1)− ln (2)
2 +

ln
(
−1 + 2x+ 2

√
x (x− 1)

)
2 +f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2

√
x (x− 1) + f ′(y)

But equation (2) says that ∂φ
∂y

= − 2x(x−1)√
x(x−1) . Therefore equation (4) becomes

(5)− 2x(x− 1)√
x (x− 1)

= −2
√
x (x− 1) + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −2
√

x (x− 1) y +
√

x (x− 1)− ln (2)
2 +

ln
(
−1 + 2x+ 2

√
x (x− 1)

)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2
√

x (x− 1) y +
√

x (x− 1)− ln (2)
2 +

ln
(
−1 + 2x+ 2

√
x (x− 1)

)
2

The solution becomes

y =
2
√
x (x− 1) + ln

(
−1 + 2x+ 2

√
x (x− 1)

)
− ln (2)− 2c1

4
√

x (x− 1)

Summary
The solution(s) found are the following

(1)y =
2
√
x (x− 1) + ln

(
−1 + 2x+ 2

√
x (x− 1)

)
− ln (2)− 2c1

4
√

x (x− 1)
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Figure 496: Slope field plot

Verification of solutions

y =
2
√
x (x− 1) + ln

(
−1 + 2x+ 2

√
x (x− 1)

)
− ln (2)− 2c1

4
√

x (x− 1)

Verified OK.

12.15.4 Maple step by step solution

Let’s solve
2x(1− x) y′ + (1− 2x) y = −x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (2x−1)y

2x(x−1) +
1

2(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (2x−1)y

2x(x−1) =
1

2(x−1)
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• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (2x−1)y

2x(x−1)

)
= µ(x)

2(x−1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (2x−1)y

2x(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(2x−1)

2x(x−1)

• Solve to find the integrating factor
µ(x) =

√
x
√
x− 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
2(x−1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
2(x−1)dx+ c1

• Solve for y

y =
∫ µ(x)

2(x−1)dx+c1

µ(x)

• Substitute µ(x) =
√
x
√
x− 1

y =
∫ √

x
2
√

x−1dx+c1
√
x
√
x−1

• Evaluate the integrals on the rhs

y =
√
x
√
x−1

2 +
√

x(x−1) ln
(
− 1

2+x+
√

x2−x
)

4
√
x
√
x−1 +c1

√
x
√
x−1

• Simplify

y =
4c1

√
x
√
x−1+

√
x(x−1) ln

(
−1+2x+2

√
x(x−1)

)
−
√

x(x−1) ln(2)+2x2−2x
4x(x−1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(2*x*(1-x)*diff(y(x),x)+x+(1-2*x)*y(x) = 0,y(x), singsol=all)� �

y(x) =
2
√

x (x− 1)− ln (2) + ln
(
−1 + 2x+ 2

√
x (x− 1)

)
+ 4c1

4
√

x (x− 1)

3 Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 67� �
DSolve[2 x(1-x)y'[x]+x+(1-2 x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−x2 + x+

√
x− 1

√
x log

(√
x− 1−

√
x
)
+ 2c1

√
−((x− 1)x)

2x− 2x2
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12.16 problem 335
12.16.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3269

Internal problem ID [3591]
Internal file name [OUTPUT/3084_Sunday_June_05_2022_08_51_38_AM_45270183/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 335.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

2x(1− x) y′ + (1− x) y2 = −x

12.16.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x y2 − y2 − x

2x (x− 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = − y2

2 (x− 1) +
y2

2x (x− 1) +
1

2x− 2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
2x−2 , f1(x) = 0 and f2(x) = − 1

2x . Let

y = −u′

f2u

= −u′

− u
2x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
2x2

f1f2 = 0

f 2
2 f0 =

1
8x2 (x− 1)

Substituting the above terms back in equation (2) gives

−u′′(x)
2x − u′(x)

2x2 + u(x)
8x2 (x− 1) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
√
x− 1

(
LegendreP

(
−1

2 , 1,
x−2
x

)
c1 + LegendreQ

(
−1

2 , 1,
x−2
x

)
c2
)

√
x

The above shows that

u′(x)

=
(
LegendreP

(
−1

2 , 1,
x−2
x

)
+ LegendreP

(1
2 , 1,

x−2
x

))
c1 + c2

(
LegendreQ

(
−1

2 , 1,
x−2
x

)
+ LegendreQ

(1
2 , 1,

x−2
x

))
4
√
x
√
x− 1

Using the above in (1) gives the solution

y

=
((
LegendreP

(
−1

2 , 1,
x−2
x

)
+ LegendreP

(1
2 , 1,

x−2
x

))
c1 + c2

(
LegendreQ

(
−1

2 , 1,
x−2
x

)
+ LegendreQ

(1
2 , 1,

x−2
x

)))
x

2 (x− 1)
(
LegendreP

(
−1

2 , 1,
x−2
x

)
c1 + LegendreQ

(
−1

2 , 1,
x−2
x

)
c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
((
LegendreP

(
−1

2 , 1,
x−2
x

)
+ LegendreP

(1
2 , 1,

x−2
x

))
c3 + LegendreQ

(
−1

2 , 1,
x−2
x

)
+ LegendreQ

(1
2 , 1,

x−2
x

))
x

2 (x− 1)
(
LegendreP

(
−1

2 , 1,
x−2
x

)
c3 + LegendreQ

(
−1

2 , 1,
x−2
x

))
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Summary
The solution(s) found are the following

(1)y

=
((
LegendreP

(
−1

2 , 1,
x−2
x

)
+ LegendreP

(1
2 , 1,

x−2
x

))
c3 + LegendreQ

(
−1

2 , 1,
x−2
x

)
+ LegendreQ

(1
2 , 1,

x−2
x

))
x

2 (x− 1)
(
LegendreP

(
−1

2 , 1,
x−2
x

)
c3 + LegendreQ

(
−1

2 , 1,
x−2
x

))

Figure 497: Slope field plot

Verification of solutions
y

=
((
LegendreP

(
−1

2 , 1,
x−2
x

)
+ LegendreP

(1
2 , 1,

x−2
x

))
c3 + LegendreQ

(
−1

2 , 1,
x−2
x

)
+ LegendreQ

(1
2 , 1,

x−2
x

))
x

2 (x− 1)
(
LegendreP

(
−1

2 , 1,
x−2
x

)
c3 + LegendreQ

(
−1

2 , 1,
x−2
x

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- Abel AIR successful: ODE belongs to the 2F1 2-parameter class`� �
3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 97� �
dsolve(2*x*(1-x)*diff(y(x),x)+x+(1-x)*y(x)^2 = 0,y(x), singsol=all)� �
y(x)

=
x
(
LegendreQ

(
−1

2 , 1,
2−x
x

)
c1 − LegendreQ

(1
2 , 1,

2−x
x

)
c1 + LegendreP

(
−1

2 , 1,
2−x
x

)
− LegendreP

(1
2 , 1,

2−x
x

))
2
(
LegendreQ

(
−1

2 , 1,
2−x
x

)
c1 + LegendreP

(
−1

2 , 1,
2−x
x

))
(x− 1)
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3 Solution by Mathematica
Time used: 0.806 (sec). Leaf size: 77� �
DSolve[2 x(1-x)y'[x]+x+(1-x)y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

2

πG2,0
2,2

x

∣∣∣∣∣∣
1
2 ,

3
2

0, 1

+ c1(EllipticK(x)− EllipticE(x))


πG2,0

2,2

x

∣∣∣∣∣∣
1
2 ,

3
2

0, 0

+ 2c1 EllipticE(x)

y(x) → 1− EllipticK(x)
EllipticE(x)
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12.17 problem 336
12.17.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3274
12.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3276
12.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3280
12.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3285

Internal problem ID [3592]
Internal file name [OUTPUT/3085_Sunday_June_05_2022_08_51_40_AM_61142034/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 336.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2
(
x2 + x+ 1

)
y′ + (1 + 2x) y = 8x2 + 1

12.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − −1− 2x
2x2 + 2x+ 2

q(x) = 8x2 + 1
2x2 + 2x+ 2

Hence the ode is

y′ − (−1− 2x) y
2x2 + 2x+ 2 = 8x2 + 1

2x2 + 2x+ 2
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The integrating factor µ is

µ = e
∫
− −1−2x

2x2+2x+2dx

=
√
x2 + x+ 1

The ode becomes

d
dx(µy) = (µ)

(
8x2 + 1

2x2 + 2x+ 2

)
d
dx

(√
x2 + x+ 1 y

)
=
(√

x2 + x+ 1
)( 8x2 + 1

2x2 + 2x+ 2

)
d
(√

x2 + x+ 1 y
)
=
(

8x2 + 1
2
√
x2 + x+ 1

)
dx

Integrating gives

√
x2 + x+ 1 y =

∫ 8x2 + 1
2
√
x2 + x+ 1

dx
√
x2 + x+ 1 y =

√
x2 + x+ 1 (−3 + 2x) + c1

Dividing both sides by the integrating factor µ =
√
x2 + x+ 1 results in

y = −3 + 2x+ c1√
x2 + x+ 1

Summary
The solution(s) found are the following

(1)y = −3 + 2x+ c1√
x2 + x+ 1
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Figure 498: Slope field plot

Verification of solutions

y = −3 + 2x+ c1√
x2 + x+ 1

Verified OK.

12.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−8x2 + 2xy + y − 1
2 (x2 + x+ 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

3276



Table 593: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + x+ 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+x+1

dy

Which results in

S =
√
x2 + x+ 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−8x2 + 2xy + y − 1
2 (x2 + x+ 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(1 + 2x)
2
√
x2 + x+ 1

Sy =
√
x2 + x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 8x2 + 1

2
√
x2 + x+ 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 8R2 + 1

2
√
R2 +R + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
R2 +R + 1 (2R− 3) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + x+ 1 y =

√
x2 + x+ 1 (−3 + 2x) + c1

Which simplifies to

(−2x+ y + 3)
√
x2 + x+ 1− c1 = 0

Which gives

y = 2x
√
x2 + x+ 1− 3

√
x2 + x+ 1 + c1√

x2 + x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−8x2+2xy+y−1
2(x2+x+1)

dS
dR

= 8R2+1
2
√
R2+R+1

R = x

S =
√
x2 + x+ 1 y
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Summary
The solution(s) found are the following

(1)y = 2x
√
x2 + x+ 1− 3

√
x2 + x+ 1 + c1√

x2 + x+ 1

Figure 499: Slope field plot

Verification of solutions

y = 2x
√
x2 + x+ 1− 3

√
x2 + x+ 1 + c1√

x2 + x+ 1

Verified OK.

12.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x2 + 2x+ 2

)
dy =

(
1 + 8x2 − (1 + 2x) y

)
dx(

−1− 8x2 + (1 + 2x) y
)
dx+

(
2x2 + 2x+ 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1− 8x2 + (1 + 2x) y
N(x, y) = 2x2 + 2x+ 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

3281



Using result found above gives

∂M

∂y
= ∂

∂y

(
−1− 8x2 + (1 + 2x) y

)
= 1 + 2x

And

∂N

∂x
= ∂

∂x

(
2x2 + 2x+ 2

)
= 4x+ 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x2 + 2x+ 2((1 + 2x)− (4x+ 2))

= −1− 2x
2x2 + 2x+ 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ −1−2x

2x2+2x+2 dx

The result of integrating gives

µ = e−
ln
(
x2+x+1

)
2

= 1√
x2 + x+ 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + x+ 1

(
−1− 8x2 + (1 + 2x) y

)
= −8x2 + 2xy + y − 1√

x2 + x+ 1
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And

N = µN

= 1√
x2 + x+ 1

(
2x2 + 2x+ 2

)
= 2

√
x2 + x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−8x2 + 2xy + y − 1√
x2 + x+ 1

)
+
(
2
√
x2 + x+ 1

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−8x2 + 2xy + y − 1√

x2 + x+ 1
dx

(3)φ = (−4x+ 2y + 6)
√
x2 + x+ 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

√
x2 + x+ 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2
√
x2 + x+ 1. Therefore equation (4) becomes

(5)2
√
x2 + x+ 1 = 2

√
x2 + x+ 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (−4x+ 2y + 6)
√
x2 + x+ 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (−4x+ 2y + 6)
√
x2 + x+ 1

The solution becomes

y = 4x
√
x2 + x+ 1− 6

√
x2 + x+ 1 + c1

2
√
x2 + x+ 1

Summary
The solution(s) found are the following

(1)y = 4x
√
x2 + x+ 1− 6

√
x2 + x+ 1 + c1

2
√
x2 + x+ 1
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Figure 500: Slope field plot

Verification of solutions

y = 4x
√
x2 + x+ 1− 6

√
x2 + x+ 1 + c1

2
√
x2 + x+ 1

Verified OK.

12.17.4 Maple step by step solution

Let’s solve
2(x2 + x+ 1) y′ + (1 + 2x) y = 8x2 + 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (1+2x)y

2(x2+x+1) +
8x2+1

2(x2+x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (1+2x)y

2(x2+x+1) =
8x2+1

2(x2+x+1)

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + (1+2x)y

2(x2+x+1)

)
= µ(x)

(
8x2+1

)
2(x2+x+1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (1+2x)y

2(x2+x+1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(1+2x)

2(x2+x+1)

• Solve to find the integrating factor
µ(x) =

√
x2 + x+ 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
8x2+1

)
2(x2+x+1) dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
8x2+1

)
2(x2+x+1) dx+ c1

• Solve for y

y =
∫ µ(x)

(
8x2+1

)
2
(
x2+x+1

) dx+c1

µ(x)

• Substitute µ(x) =
√
x2 + x+ 1

y =
∫ 8x2+1

2
√

x2+x+1
dx+c1

√
x2+x+1

• Evaluate the integrals on the rhs

y =
√
x2+x+1 (−3+2x)+c1√

x2+x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(2*(x^2+x+1)*diff(y(x),x) = 1+8*x^2-(1+2*x)*y(x),y(x), singsol=all)� �

y(x) = 2x− 3 + c1√
x2 + x+ 1

3 Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 23� �
DSolve[2(1+x+x^2)y'[x]==1+8 x^2-(1+2 x)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1√
x2 + x+ 1

+ 2x− 3
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12.18 problem 337
12.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3288
12.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3290
12.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3294
12.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3299

Internal problem ID [3593]
Internal file name [OUTPUT/3086_Sunday_June_05_2022_08_51_42_AM_46862402/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 337.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

4
(
x2 + 1

)
y′ − 4yx = x2

12.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 + 1

q(x) = x2

4x2 + 4

Hence the ode is

y′ − xy

x2 + 1 = x2

4x2 + 4
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The integrating factor µ is

µ = e
∫
− x

x2+1dx

= 1√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
x2

4x2 + 4

)
d
dx

(
y√

x2 + 1

)
=
(

1√
x2 + 1

)(
x2

4x2 + 4

)
d
(

y√
x2 + 1

)
=
(

x2

4 (x2 + 1)
3
2

)
dx

Integrating gives

y√
x2 + 1

=
∫

x2

4 (x2 + 1)
3
2
dx

y√
x2 + 1

= − x

4
√
x2 + 1

+ arcsinh (x)
4 + c1

Dividing both sides by the integrating factor µ = 1√
x2+1 results in

y =
√
x2 + 1

(
− x

4
√
x2 + 1

+ arcsinh (x)
4

)
+ c1

√
x2 + 1

which simplifies to

y = (4c1 + arcsinh (x))
√
x2 + 1

4 − x

4

Summary
The solution(s) found are the following

(1)y = (4c1 + arcsinh (x))
√
x2 + 1

4 − x

4
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Figure 501: Slope field plot

Verification of solutions

y = (4c1 + arcsinh (x))
√
x2 + 1

4 − x

4

Verified OK.

12.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(x+ 4y)
4x2 + 4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 596: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) =

√
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2 + 1
dy

Which results in

S = y√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(x+ 4y)
4x2 + 4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x2 + 1)
3
2

Sy =
1√

x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2

4 (x2 + 1)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

4 (R2 + 1)
3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − R

4
√
R2 + 1

+ arcsinh (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x2 + 1

= − x

4
√
x2 + 1

+ arcsinh (x)
4 + c1

Which simplifies to

y√
x2 + 1

= − x

4
√
x2 + 1

+ arcsinh (x)
4 + c1

Which gives

y = arcsinh (x)
√
x2 + 1

4 + c1
√
x2 + 1− x

4
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(x+4y)
4x2+4

dS
dR

= R2

4(R2+1)
3
2

R = x

S = y√
x2 + 1
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Summary
The solution(s) found are the following

(1)y = arcsinh (x)
√
x2 + 1

4 + c1
√
x2 + 1− x

4

Figure 502: Slope field plot

Verification of solutions

y = arcsinh (x)
√
x2 + 1

4 + c1
√
x2 + 1− x

4

Verified OK.

12.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
4x2 + 4

)
dy =

(
x2 + 4xy

)
dx(

−x2 − 4xy
)
dx+

(
4x2 + 4

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − 4xy
N(x, y) = 4x2 + 4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − 4xy

)
= −4x
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And
∂N

∂x
= ∂

∂x

(
4x2 + 4

)
= 8x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

4x2 + 4((−4x)− (8x))

= − 3x
x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

x2+1 dx

The result of integrating gives

µ = e−
3 ln

(
x2+1

)
2

= 1
(x2 + 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x2 + 1)

3
2

(
−x2 − 4xy

)
= (−x− 4y)x

(x2 + 1)
3
2

And

N = µN

= 1
(x2 + 1)

3
2

(
4x2 + 4

)
= 4√

x2 + 1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−x− 4y)x
(x2 + 1)

3
2

)
+
(

4√
x2 + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (−x− 4y)x
(x2 + 1)

3
2

dx

(3)φ = − arcsinh (x)
√
x2 + 1 + x+ 4y√

x2 + 1
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4√

x2 + 1
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 4√
x2+1 . Therefore equation (4) becomes

(5)4√
x2 + 1

= 4√
x2 + 1

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − arcsinh (x)
√
x2 + 1 + x+ 4y√

x2 + 1
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
− arcsinh (x)

√
x2 + 1 + x+ 4y√

x2 + 1

The solution becomes

y = arcsinh (x)
√
x2 + 1

4 + c1
√
x2 + 1
4 − x

4

Summary
The solution(s) found are the following

(1)y = arcsinh (x)
√
x2 + 1

4 + c1
√
x2 + 1
4 − x

4

Figure 503: Slope field plot
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Verification of solutions

y = arcsinh (x)
√
x2 + 1

4 + c1
√
x2 + 1
4 − x

4

Verified OK.

12.18.4 Maple step by step solution

Let’s solve
4(x2 + 1) y′ − 4yx = x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xy

x2+1 +
x2

4(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − xy

x2+1 = x2

4(x2+1)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − xy

x2+1

)
= µ(x)x2

4(x2+1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = 1√

x2+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)x2

4(x2+1)dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)x2

4(x2+1)dx+ c1

• Solve for y

y =
∫ µ(x)x2

4
(
x2+1

)dx+c1

µ(x)
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• Substitute µ(x) = 1√
x2+1

y =
√
x2 + 1

(∫
x2

4(x2+1)
3
2
dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x2 + 1

(
− x

4
√
x2+1 +

arcsinh(x)
4 + c1

)
• Simplify

y = (4c1+arcsinh(x))
√
x2+1

4 − x
4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(4*(x^2+1)*diff(y(x),x)-4*x*y(x)-x^2 = 0,y(x), singsol=all)� �

y(x) = (4c1 + arcsinh (x))
√
x2 + 1

4 − x

4

3 Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 50� �
DSolve[4(1+x^2)y'[x]-4 x y[x]-x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
4
√
x2 + 1 log

(√
x2 + 1− x

)
+ c1

√
x2 + 1− x

4
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12.19 problem 338
12.19.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3301
12.19.2 Solving as first order ode lie symmetry calculated ode . . . . . . 3302
12.19.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3307

Internal problem ID [3594]
Internal file name [OUTPUT/3087_Sunday_June_05_2022_08_51_43_AM_20300368/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 338.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

a x2y′ − axy − b2y2 = x2

12.19.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

a x2(u′(x)x+ u(x))− a x2u(x)− b2u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= b2u2 + 1
xa

Where f(x) = 1
xa

and g(u) = b2u2 + 1. Integrating both sides gives

1
b2u2 + 1 du = 1

xa
dx
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∫ 1
b2u2 + 1 du =

∫ 1
xa

dx

arctan (bu)
b

= ln (x)
a

+ c2

The solution is
arctan (bu(x))

b
− ln (x)

a
− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

arctan
(
by
x

)
b

− ln (x)
a

− c2 = 0

arctan
(
by
x

)
b

− ln (x)
a

− c2 = 0

Summary
The solution(s) found are the following

(1)
arctan

(
by
x

)
b

− ln (x)
a

− c2 = 0

Verification of solutions

arctan
(
by
x

)
b

− ln (x)
a

− c2 = 0

Verified OK.

12.19.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = b2y2 + axy + x2

a x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(b2y2 + axy + x2) (b3 − a2)
a x2 − (b2y2 + axy + x2)2 a3

a2x4

−
(
ya+ 2x
a x2 − 2(b2y2 + axy + x2)

a x3

)
(xa2 + ya3 + a1)

− (2y b2 + ax) (xb2 + yb3 + b1)
a x2 = 0

Putting the above in normal form gives

−b4y4a3 + 2a b2x3yb2 − a b2x2y2a2 + a b2x2y2b3 + 2a b2x2yb1 − 2a b2x y2a1 + 2b2x2y2a3 + a2x3b1 − a2x2ya1 + a x4a2 − a x4b3 + 2a x3ya3 + x4a3
x4a2

= 0

Setting the numerator to zero gives

(6E)−b4y4a3 − 2a b2x3yb2 + a b2x2y2a2 − a b2x2y2b3 − 2a b2x2yb1 + 2a b2x y2a1
− 2b2x2y2a3 − a2x3b1 + a2x2ya1 − a x4a2 + a x4b3 − 2a x3ya3 − x4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−b4a3v
4
2 + a b2a2v

2
1v

2
2 − 2a b2b2v31v2 − a b2b3v

2
1v

2
2 + 2a b2a1v1v22 − 2a b2b1v21v2

− 2b2a3v21v22 + a2a1v
2
1v2 − a2b1v

3
1 − aa2v

4
1 − 2aa3v31v2 + ab3v

4
1 − a3v

4
1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−aa2 + ab3 − a3) v41 +
(
−2a b2b2 − 2aa3

)
v31v2

− a2b1v
3
1 +

(
a b2a2 − a b2b3 − 2b2a3

)
v21v

2
2

+
(
−2a b2b1 + a2a1

)
v21v2 + 2a b2a1v1v22 − b4a3v

4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a2b1 = 0
−b4a3 = 0
2a b2a1 = 0

−2a b2b1 + a2a1 = 0
−2a b2b2 − 2aa3 = 0
−aa2 + ab3 − a3 = 0

a b2a2 − a b2b3 − 2b2a3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
b2y2 + axy + x2

a x2

)
(x)

= −b2y2 − x2

ax
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−b2y2−x2

ax

dy

Which results in

S = −
a arctan

(
by
x

)
b

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b2y2 + axy + x2

a x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ay

b2y2 + x2

Sy = − ax

b2y2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
a arctan

(
by
x

)
b

= − ln (x) + c1

Which simplifies to

−
a arctan

(
by
x

)
b

= − ln (x) + c1

Which gives

y =
tan

(
b(ln(x)−c1)

a

)
x

b

Summary
The solution(s) found are the following

(1)y =
tan

(
b(ln(x)−c1)

a

)
x

b
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Verification of solutions

y =
tan

(
b(ln(x)−c1)

a

)
x

b

Verified OK.

12.19.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= b2y2 + axy + x2

a x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = b2y2

a x2 + y

x
+ 1

a

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
a
, f1(x) = 1

x
and f2(x) = b2

a x2 . Let

y = −u′

f2u

= −u′

b2u
ax2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2b2

a x3

f1f2 =
b2

a x3

f 2
2 f0 =

b4

a3x4
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Substituting the above terms back in equation (2) gives

b2u′′(x)
a x2 + b2u′(x)

a x3 + b4u(x)
a3x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
b ln (x)

a

)
+ c2 cos

(
b ln (x)

a

)
The above shows that

u′(x) =
b
(
c1 cos

(
b ln(x)

a

)
− c2 sin

(
b ln(x)

a

))
ax

Using the above in (1) gives the solution

y = −
x
(
c1 cos

(
b ln(x)

a

)
− c2 sin

(
b ln(x)

a

))
b
(
c1 sin

(
b ln(x)

a

)
+ c2 cos

(
b ln(x)

a

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
−c3 cos

(
b ln(x)

a

)
+ sin

(
b ln(x)

a

))
x(

c3 sin
(

b ln(x)
a

)
+ cos

(
b ln(x)

a

))
b

Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(
b ln(x)

a

)
+ sin

(
b ln(x)

a

))
x(

c3 sin
(

b ln(x)
a

)
+ cos

(
b ln(x)

a

))
b

Verification of solutions

y =

(
−c3 cos

(
b ln(x)

a

)
+ sin

(
b ln(x)

a

))
x(

c3 sin
(

b ln(x)
a

)
+ cos

(
b ln(x)

a

))
b

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 19� �
dsolve(a*x^2*diff(y(x),x) = x^2+a*x*y(x)+b^2*y(x)^2,y(x), singsol=all)� �

y(x) =
tan

(
b(ln(x)+c1)

a

)
x

b

3 Solution by Mathematica
Time used: 0.231 (sec). Leaf size: 23� �
DSolve[a x^2 y'[x]==x^2+a x y[x]+b^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x tan

(
b(log(x)+ac1)

a

)
b
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12.20 problem 339
12.20.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3310
12.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3311
12.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3315
12.20.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3318
12.20.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3320

Internal problem ID [3595]
Internal file name [OUTPUT/3088_Sunday_June_05_2022_08_51_45_AM_55704366/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 339.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
b x2 + a

)
y′ −By2 = A

12.20.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= B y2 + A

bx2 + a

Where f(x) = 1
b x2+a

and g(y) = B y2 + A. Integrating both sides gives

1
B y2 + A

dy = 1
b x2 + a

dx∫ 1
B y2 + A

dy =
∫ 1

b x2 + a
dx
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arctan
(

By√
AB

)
√
AB

=
arctan

(
xb√
ab

)
√
ab

+ c1

Which results in

y =
tan

(√
AB

(
c1
√
ab+arctan

(
xb√
ab

))
√
ab

)√
AB

B

Summary
The solution(s) found are the following

(1)y =
tan

(√
AB

(
c1
√
ab+arctan

(
xb√
ab

))
√
ab

)√
AB

B

Verification of solutions

y =
tan

(√
AB

(
c1
√
ab+arctan

(
xb√
ab

))
√
ab

)√
AB

B

Verified OK.

12.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = B y2 + A

bx2 + a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 599: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = b x2 + a

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

b x2 + a
dx

Which results in

S =
arctan

(
xb√
ab

)
√
ab

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = B y2 + A

bx2 + a

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
b x2 + a

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

B y2 + A
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

BR2 + A
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
arctan

(
BR√
AB

)
√
AB

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan
(

x
√
b√
a

)
√
a
√
b

=
arctan

(
By√
AB

)
√
AB

+ c1

Which simplifies to

arctan
(

x
√
b√
a

)
√
a
√
b

=
arctan

(
By√
AB

)
√
AB

+ c1

Which gives

y = −
tan

(√
AB

(√
a
√
b c1−arctan

(
x
√
b√
a

))
√
a
√
b

)√
AB

B

Summary
The solution(s) found are the following

(1)y = −
tan

(√
AB

(√
a
√
b c1−arctan

(
x
√
b√
a

))
√
a
√
b

)√
AB

B

Verification of solutions

y = −
tan

(√
AB

(√
a
√
b c1−arctan

(
x
√
b√
a

))
√
a
√
b

)√
AB

B

Verified OK.
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12.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

B y2 + A

)
dy =

(
1

b x2 + a

)
dx(

− 1
b x2 + a

)
dx+

(
1

B y2 + A

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1
b x2 + a

N(x, y) = 1
B y2 + A

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
b x2 + a

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

B y2 + A

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
b x2 + a

dx

(3)φ = −
arctan

(
xb√
ab

)
√
ab

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
B y2+A

. Therefore equation (4) becomes

(5)1
B y2 + A

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
B y2 + A

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
B y2 + A

)
dy

f(y) =
arctan

(
By√
AB

)
√
AB

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −
arctan

(
xb√
ab

)
√
ab

+
arctan

(
By√
AB

)
√
AB

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
arctan

(
xb√
ab

)
√
ab

+
arctan

(
By√
AB

)
√
AB

Summary
The solution(s) found are the following

(1)−
arctan

(
xb√
ab

)
√
ab

+
arctan

(
By√
AB

)
√
AB

= c1
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Verification of solutions

−
arctan

(
xb√
ab

)
√
ab

+
arctan

(
By√
AB

)
√
AB

= c1

Verified OK.

12.20.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= B y2 + A

bx2 + a

This is a Riccati ODE. Comparing the ODE to solve

y′ = B y2

b x2 + a
+ A

bx2 + a

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = A
bx2+a

, f1(x) = 0 and f2(x) = B
bx2+a

. Let

y = −u′

f2u

= −u′

Bu
b x2+a

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2Bbx

(b x2 + a)2

f1f2 = 0

f 2
2 f0 =

B2A

(b x2 + a)3
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Substituting the above terms back in equation (2) gives

Bu′′(x)
b x2 + a

+ 2Bbxu′(x)
(b x2 + a)2

+ B2Au(x)
(b x2 + a)3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin

√
A
√
B arctan

(
xb√
ab

)
√
ab

+ c2 cos

√
A
√
B arctan

(
xb√
ab

)
√
ab


The above shows that

u′(x) =

√
A
√
B

(
c1 cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

)
− c2 sin

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))
b x2 + a

Using the above in (1) gives the solution

y = −

√
A

(
c1 cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

)
− c2 sin

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))
√
B

(
c1 sin

(√
A
√
B arctan

(
xb√
ab

)
√
ab

)
+ c2 cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
−c3 cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

)
+ sin

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))√
A(

c3 sin
(√

A
√
B arctan

(
xb√
ab

)
√
ab

)
+ cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))√
B

Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

)
+ sin

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))√
A(

c3 sin
(√

A
√
B arctan

(
xb√
ab

)
√
ab

)
+ cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))√
B
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Verification of solutions

y =

(
−c3 cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

)
+ sin

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))√
A(

c3 sin
(√

A
√
B arctan

(
xb√
ab

)
√
ab

)
+ cos

(√
A
√
B arctan

(
xb√
ab

)
√
ab

))√
B

Verified OK.

12.20.5 Maple step by step solution

Let’s solve
(b x2 + a) y′ −By2 = A

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

A+By2
= 1

b x2+a

• Integrate both sides with respect to x∫
y′

A+By2
dx =

∫ 1
b x2+a

dx+ c1

• Evaluate integral
arctan

(
By√
AB

)
√
AB

=
arctan

(
xb√
ab

)
√
ab

+ c1

• Solve for y

y =
tan

√
AB

(
c1

√
ab+arctan

(
xb√
ab

))
√
ab

√
AB

B

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 42� �
dsolve((b*x^2+a)*diff(y(x),x) = A+B*y(x)^2,y(x), singsol=all)� �

y(x) =
tan

(√
AB

(
c1
√
ab+arctan

(
xb√
ab

))
√
ab

)√
AB

B

3 Solution by Mathematica
Time used: 26.769 (sec). Leaf size: 91� �
DSolve[(a+b x^2)y'[x]==(A+B y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
A tan

(√
A
√
B

(
arctan

(√
bx√
a

)
√
a
√
b

+ c1

))
√
B

y(x) → − i
√
A√
B

y(x) → i
√
A√
B
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12.21.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3322
12.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3323
12.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3326
12.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3330

Internal problem ID [3596]
Internal file name [OUTPUT/3089_Sunday_June_05_2022_08_51_47_AM_29042789/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 340.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
b x2 + a

)
y′ − cxy ln (y) = 0

12.21.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= cxy ln (y)
b x2 + a

Where f(x) = cx
b x2+a

and g(y) = ln (y) y. Integrating both sides gives

1
ln (y) y dy = cx

b x2 + a
dx∫ 1

ln (y) y dy =
∫

cx

b x2 + a
dx

ln (ln (y)) = c ln (b x2 + a)
2b + c1
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Raising both side to exponential gives

ln (y) = e
c ln
(
b x2+a

)
2b +c1

Which simplifies to

ln (y) = c2e
c ln
(
b x2+a

)
2b

Which simplifies to

y = ec2
(
b x2+a

) c
2b ec1

Summary
The solution(s) found are the following

(1)y = ec2
(
b x2+a

) c
2b ec1

Verification of solutions

y = ec2
(
b x2+a

) c
2b ec1

Verified OK.

12.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cxy ln (y)
b x2 + a

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 602: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = b x2 + a

cx
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

b x2+a
cx

dx

Which results in

S = c ln (b x2 + a)
2b

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cxy ln (y)
b x2 + a

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = cx

b x2 + a

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y ln (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R ln (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (ln (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

c ln (b x2 + a)
2b = ln (ln (y)) + c1

Which simplifies to

c ln (b x2 + a)
2b = ln (ln (y)) + c1

Which gives

y = ee
c ln
(
b x2+a

)
−2c1b

2b

Summary
The solution(s) found are the following

(1)y = ee
c ln
(
b x2+a

)
−2c1b

2b

Verification of solutions

y = ee
c ln
(
b x2+a

)
−2c1b

2b

Verified OK.

12.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
cy ln (y)

)
dy =

(
x

b x2 + a

)
dx(

− x

b x2 + a

)
dx+

(
1

cy ln (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

b x2 + a

N(x, y) = 1
cy ln (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− x

b x2 + a

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

cy ln (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

b x2 + a
dx

(3)φ = − ln (b x2 + a)
2b + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
cy ln(y) . Therefore equation (4) becomes

(5)1
cy ln (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
cy ln (y)
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
cy ln (y)

)
dy

f(y) = ln (ln (y))
c

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (b x2 + a)
2b + ln (ln (y))

c
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (b x2 + a)
2b + ln (ln (y))

c

The solution becomes

y = ee
c
(
2c1b+ln

(
b x2+a

))
2b

Summary
The solution(s) found are the following

(1)y = ee
c
(
2c1b+ln

(
b x2+a

))
2b

Verification of solutions

y = ee
c
(
2c1b+ln

(
b x2+a

))
2b

Verified OK.
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12.21.4 Maple step by step solution

Let’s solve
(b x2 + a) y′ − cxy ln (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y ln(y) =
cx

b x2+a

• Integrate both sides with respect to x∫
y′

y ln(y)dx =
∫

cx
b x2+a

dx+ c1

• Evaluate integral

ln (ln (y)) = c ln
(
b x2+a

)
2b + c1

• Solve for y

y = ee
c ln
(
b x2+a

)
+2c1b

2b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 24� �
dsolve((b*x^2+a)*diff(y(x),x) = c*x*y(x)*ln(y(x)),y(x), singsol=all)� �

y(x) = eecc1
(
b x2+a

) c
2b

3330



3 Solution by Mathematica
Time used: 0.374 (sec). Leaf size: 33� �
DSolve[(a+b x^2)y'[x]==c x y[x] Log[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ee
c1
(
a+bx2) c

2b

y(x) → 1
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12.22 problem 341
12.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3332
12.22.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3333
12.22.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 3335
12.22.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3338
12.22.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3341

Internal problem ID [3597]
Internal file name [OUTPUT/3090_Sunday_June_05_2022_08_51_49_AM_18665595/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 341.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(ax+ 1) y′ − y = −a

12.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −a+ y

x (ax+ 1)
Where f(x) = 1

x(ax+1) and g(y) = −a+ y. Integrating both sides gives

1
−a+ y

dy = 1
x (ax+ 1) dx∫ 1

−a+ y
dy =

∫ 1
x (ax+ 1) dx

ln (−a+ y) = − ln (ax+ 1) + ln (x) + c1
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Raising both side to exponential gives

−a+ y = e− ln(ax+1)+ln(x)+c1

Which simplifies to

−a+ y = c2e− ln(ax+1)+ln(x)

Which simplifies to

y = c2x ec1
ax+ 1 + a

Summary
The solution(s) found are the following

(1)y = c2x ec1
ax+ 1 + a

Verification of solutions

y = c2x ec1
ax+ 1 + a

Verified OK.

12.22.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x (ax+ 1)

q(x) = − a

x (ax+ 1)

Hence the ode is

y′ − y

x (ax+ 1) = − a

x (ax+ 1)

The integrating factor µ is

µ = e
∫
− 1

x(ax+1)dx

= eln(ax+1)−ln(x)
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Which simplifies to

µ = ax+ 1
x

The ode becomes

d
dx(µy) = (µ)

(
− a

x (ax+ 1)

)
d
dx

(
(ax+ 1) y

x

)
=
(
ax+ 1

x

)(
− a

x (ax+ 1)

)
d
(
(ax+ 1) y

x

)
=
(
− a

x2

)
dx

Integrating gives

(ax+ 1) y
x

=
∫

− a

x2 dx

(ax+ 1) y
x

= a

x
+ c1

Dividing both sides by the integrating factor µ = ax+1
x

results in

y = a

ax+ 1 + c1x

ax+ 1

which simplifies to

y = c1x+ a

ax+ 1

Summary
The solution(s) found are the following

(1)y = c1x+ a

ax+ 1
Verification of solutions

y = c1x+ a

ax+ 1

Verified OK.
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12.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −a+ y

x (ax+ 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 605: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(ax+1)+ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(ax+1)+ln(x)dy

Which results in

S = (ax+ 1) y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −a+ y

x (ax+ 1)

3336



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
ax+ 1

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − a

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − a

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a

R
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(ax+ 1) y
x

= a

x
+ c1

Which simplifies to
(ax+ 1) y

x
= a

x
+ c1

Which gives

y = c1x+ a

ax+ 1
Summary
The solution(s) found are the following

(1)y = c1x+ a

ax+ 1
Verification of solutions

y = c1x+ a

ax+ 1

Verified OK.
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12.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−a+ y

)
dy =

(
1

x (ax+ 1)

)
dx(

− 1
x (ax+ 1)

)
dx+

(
1

−a+ y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (ax+ 1)

N(x, y) = 1
−a+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (ax+ 1)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

−a+ y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (ax+ 1) dx

(3)φ = ln (ax+ 1)− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
−a+y

. Therefore equation (4) becomes

(5)1
−a+ y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
a− y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
a− y

)
dy

f(y) = ln (a− y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (ax+ 1)− ln (x) + ln (a− y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (ax+ 1)− ln (x) + ln (a− y)

The solution becomes

y = −−x a2 + ec1x− a

ax+ 1

Summary
The solution(s) found are the following

(1)y = −−x a2 + ec1x− a

ax+ 1
Verification of solutions

y = −−x a2 + ec1x− a

ax+ 1

Verified OK.
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12.22.5 Maple step by step solution

Let’s solve
x(ax+ 1) y′ − y = −a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y−a
= 1

x(ax+1)

• Integrate both sides with respect to x∫
y′

y−a
dx =

∫ 1
x(ax+1)dx+ c1

• Evaluate integral
ln (y − a) = − ln (ax+ 1) + ln (x) + c1

• Solve for y
y = x a2+ec1x+a

ax+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*(a*x+1)*diff(y(x),x)+a-y(x) = 0,y(x), singsol=all)� �

y(x) = c1x+ a

ax+ 1
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3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 24� �
DSolve[x(1+a x)y'[x]+a-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a+ c1x

ax+ 1
y(x) → a

3342



12.23 problem 342
12.23.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 3343

Internal problem ID [3598]
Internal file name [OUTPUT/3091_Sunday_June_05_2022_08_51_50_AM_97358758/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 342.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_rational , _Abel]

Unable to solve or complete the solution.

(bx+ a)2 y′ + cy2 + (bx+ a) y3 = 0

12.23.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = − y3

bx+ a
− cy2

(bx+ a)2
(1)

Therefore

f0(x) = 0
f1(x) = 0

f2(x) = − c

(bx+ a)2

f3(x) = − 1
bx+ a
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Since f2(x) = − c
(bx+a)2 is not zero, then the first step is to apply the following transfor-

mation to remove f2. Let y = u(x)− f2
3f3 or

y = u(x)−
(
− c

(bx+a)2

− 3
bx+a

)
= u(x)− c

3bx+ 3a
The above transformation applied to (1) gives a new ODE as

u′(x) = −u(x)3 b3x3

(bx+ a)4
− 3u(x)3 a b2x2

(bx+ a)4
− 3u(x)3 a2bx

(bx+ a)4
− u(x)3 a3

(bx+ a)4
− b3c x2

3 (bx+ a)4
+ u(x) b c2x

3 (bx+ a)4
− 2a b2cx

3 (bx+ a)4
+ u(x) a c2

3 (bx+ a)4
− a2bc

3 (bx+ a)4
− 2c3

27 (bx+ a)4

(2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = −(27b3x3 + 81a b2x2 + 81a2bx+ 27a3)u(x)3

27 (bx+ a)4
− (−9b c2x− 9c2a)u(x)

27 (bx+ a)4
− 9b3c x2 + 18a b2cx+ 9a2bc+ 2c3

27 (bx+ a)4

(1)

Therefore

f0(x) = − b3c x2

3 (bx+ a)4
− 2a b2cx

3 (bx+ a)4
− a2bc

3 (bx+ a)4
− 2c3

27 (bx+ a)4

f1(x) =
bx c2

3 (bx+ a)4
+ a c2

3 (bx+ a)4

f2(x) = 0

f3(x) = − b3x3

(bx+ a)4
− 3a b2x2

(bx+ a)4
− 3a2bx

(bx+ a)4
− a3

(bx+ a)4

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
−
(

4b4c x2

3(bx+a)5 −
2x b3c

3(bx+a)4 +
8a b3cx

3(bx+a)5 −
2a b2c

3(bx+a)4 +
4a2b2c

3(bx+a)5 +
8c3b

27(bx+a)5

)(
− b3x3

(bx+a)4 −
3a b2x2

(bx+a)4 −
3a2bx

(bx+a)4 −
a3

(bx+a)4

)
+
(
− b3c x2

3(bx+a)4 −
2a b2cx

3(bx+a)4 −
a2bc

3(bx+a)4 −
2c3

27(bx+a)4

)(
4b4x3

(bx+a)5 −
3b3x2

(bx+a)4 +
12a b3x2

(bx+a)5 − 6a b2x
(bx+a)4 +

12a2b2x
(bx+a)5 −

3a2b
(bx+a)4 +

4a3b
(bx+a)5

)
+ 3
(
− b3c x2

3(bx+a)4 −
2a b2cx

3(bx+a)4 −
a2bc

3(bx+a)4 −
2c3

27(bx+a)4

)(
− b3x3

(bx+a)4 −
3a b2x2

(bx+a)4 −
3a2bx

(bx+a)4 −
a3

(bx+a)4

)(
bx c2

3(bx+a)4 +
a c2

3(bx+a)4

))3
27
(
− b3x3

(bx+a)4 −
3a b2x2

(bx+a)4 −
3a2bx

(bx+a)4 −
a3

(bx+a)4

)4 (
− b3c x2

3(bx+a)4 −
2a b2cx

3(bx+a)4 −
a2bc

3(bx+a)4 −
2c3

27(bx+a)4

)5
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Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 126� �
dsolve((b*x+a)^2*diff(y(x),x)+c*y(x)^2+(b*x+a)*y(x)^3 = 0,y(x), singsol=all)� �
(√

b a+ b
3
2x
)
e−

((bx+a+c)y(x)+b(bx+a))((−bx−a+c)y(x)+b(bx+a))
2y(x)2(bx+a)2b +

c
√
2
√
π e

1
2b erf

(√
2 (cy(x)+b(bx+a))
2
√
b y(x)(bx+a)

)
2 + b

3
2 c1

b
3
2

= 0
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3 Solution by Mathematica
Time used: 1.435 (sec). Leaf size: 149� �
DSolve[(a+b x)^2 y'[x]+c y[x]^2+(a+b x)y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


− c√

−b(a+ bx)2
=

2 exp
(

1
2

(
− c√

−b(a+bx)2 −
(
−b(a+bx)2

)3/2
by(x)(a+bx)3

)2
)

√
2πerfi

− c√
−b(a+bx)2

−
(
−b(a+bx)2

)3/2
by(x)(a+bx)3

√
2

+ 2c1

, y(x)
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12.24 problem 343
12.24.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3347
12.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3349
12.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3352
12.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3356

Internal problem ID [3599]
Internal file name [OUTPUT/3092_Sunday_June_05_2022_08_51_53_AM_94982928/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 343.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x3 − yb x2 = a

12.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − b

x

q(x) = a

x3

Hence the ode is

y′ − by

x
= a

x3
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The integrating factor µ is

µ = e
∫
− b

x
dx

= e− ln(x)b

Which simplifies to
µ = x−b

The ode becomes

d
dx(µy) = (µ)

( a

x3

)
d
dx
(
x−by

)
=
(
x−b
) ( a

x3

)
d
(
x−by

)
=
(
a x−b−3) dx

Integrating gives

x−by =
∫

a x−b−3 dx

x−by = −a x−b−2

b+ 2 + c1

Dividing both sides by the integrating factor µ = x−b results in

y = −xba x−b−2

b+ 2 + c1x
b

which simplifies to

y = − a

x2 (b+ 2) + c1x
b

Summary
The solution(s) found are the following

(1)y = − a

x2 (b+ 2) + c1x
b

Verification of solutions

y = − a

x2 (b+ 2) + c1x
b

Verified OK.
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12.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = yb x2 + a

x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 608: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = eln(x)b (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x)bdy

Which results in

S = e− ln(x)by

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = yb x2 + a

x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −by x−b−1

Sy = x−b
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a x−b−3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR−b−3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R−b−2a

b+ 2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−by = −a x−b−2

b+ 2 + c1

Which simplifies to

x−by = −a x−b−2

b+ 2 + c1

Which gives

y = −
(
a x−b−2 − c1b− 2c1

)
xb

b+ 2

Summary
The solution(s) found are the following

(1)y = −
(
a x−b−2 − c1b− 2c1

)
xb

b+ 2
Verification of solutions

y = −
(
a x−b−2 − c1b− 2c1

)
xb

b+ 2

Verified OK.
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12.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3) dy =

(
yb x2 + a

)
dx(

−yb x2 − a
)
dx+

(
x3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −yb x2 − a

N(x, y) = x3
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−yb x2 − a

)
= −b x2

And
∂N

∂x
= ∂

∂x

(
x3)

= 3x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x3

((
−b x2)− (3x2))

= −b− 3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −b−3

x
dx

The result of integrating gives

µ = e(−b−3) ln(x)

= x−b−3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−b−3(−yb x2 − a
)

=
(
−yb x2 − a

)
x−b−3
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And

N = µN

= x−b−3(x3)
= x−b

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

−yb x2 − a
)
x−b−3)+ (x−b

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
−yb x2 − a

)
x−b−3 dx

(3)φ = x−b−2(x2y(b+ 2) + a)
b+ 2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x−b−2x2 + f ′(y)

= x−b + f ′(y)

But equation (2) says that ∂φ
∂y

= x−b. Therefore equation (4) becomes

(5)x−b = x−b + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x−b−2(x2y(b+ 2) + a)
b+ 2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x−b−2(x2y(b+ 2) + a)

b+ 2

The solution becomes

y = −
(
a x−b−2 − c1b− 2c1

)
xb+2

x2 (b+ 2)

Summary
The solution(s) found are the following

(1)y = −
(
a x−b−2 − c1b− 2c1

)
xb+2

x2 (b+ 2)
Verification of solutions

y = −
(
a x−b−2 − c1b− 2c1

)
xb+2

x2 (b+ 2)

Verified OK.
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12.24.4 Maple step by step solution

Let’s solve
y′x3 − yb x2 = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = by

x
+ a

x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − by

x
= a

x3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − by

x

)
= µ(x)a

x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − by

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)b

x

• Solve to find the integrating factor
µ(x) = 1

xb

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)a
x3 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)a
x3 dx+ c1

• Solve for y

y =
∫ µ(x)a

x3 dx+c1

µ(x)

• Substitute µ(x) = 1
xb

y = xb
(∫

a
xbx3dx+ c1

)
• Evaluate the integrals on the rhs

y = xb
(
− a

x2(b+2)xb + c1
)

• Simplify
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y = − a
x2(b+2) + c1x

b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x^3*diff(y(x),x) = a+b*x^2*y(x),y(x), singsol=all)� �

y(x) = − a

x2 (2 + b) + xbc1

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 23� �
DSolve[x^3 y'[x]==a + b x^2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − a

(b+ 2)x2 + c1x
b

3357



12.25 problem 344
12.25.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3358
12.25.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3360
12.25.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 3361
12.25.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3365
12.25.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3370

Internal problem ID [3600]
Internal file name [OUTPUT/3093_Sunday_June_05_2022_08_51_55_AM_89416263/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 344.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x3 − x2y = −x2 + 3

12.25.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = −x2 + 3
x3

Hence the ode is

y′ − y

x
= −x2 + 3

x3
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
−x2 + 3

x3

)
d
dx

(y
x

)
=
(
1
x

)(
−x2 + 3

x3

)
d
(y
x

)
=
(
−x2 + 3

x4

)
dx

Integrating gives

y

x
=
∫

−x2 + 3
x4 dx

y

x
= − 1

x3 + 1
x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
− 1
x3 + 1

x

)
+ c1x

which simplifies to

y = c1x
3 + x2 − 1
x2

Summary
The solution(s) found are the following

(1)y = c1x
3 + x2 − 1
x2
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Figure 504: Slope field plot

Verification of solutions

y = c1x
3 + x2 − 1
x2

Verified OK.

12.25.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x3 − x3u(x) = −x2 + 3

Integrating both sides gives

u(x) =
∫

−x2 − 3
x4 dx

= − 1
x3 + 1

x
+ c2

Therefore the solution y is

y = xu

= x

(
− 1
x3 + 1

x
+ c2

)
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Summary
The solution(s) found are the following

(1)y = x

(
− 1
x3 + 1

x
+ c2

)

Figure 505: Slope field plot

Verification of solutions

y = x

(
− 1
x3 + 1

x
+ c2

)
Verified OK.

12.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2y − x2 + 3
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 611: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2y − x2 + 3
x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x2 + 3

x4 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R2 + 3

R4
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R3 + 1

R
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= − 1

x3 + 1
x
+ c1

Which simplifies to

y

x
= − 1

x3 + 1
x
+ c1

Which gives

y = c1x
3 + x2 − 1
x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2y−x2+3
x3

dS
dR

= −R2+3
R4

R = x

S = y

x
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Summary
The solution(s) found are the following

(1)y = c1x
3 + x2 − 1
x2

Figure 506: Slope field plot

Verification of solutions

y = c1x
3 + x2 − 1
x2

Verified OK.

12.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3) dy =

(
x2y − x2 + 3

)
dx(

−x2y + x2 − 3
)
dx+

(
x3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2y + x2 − 3
N(x, y) = x3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2y + x2 − 3

)
= −x2
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And

∂N

∂x
= ∂

∂x

(
x3)

= 3x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x3

((
−x2)− (3x2))

= −4
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4

x
dx

The result of integrating gives

µ = e−4 ln(x)

= 1
x4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x4

(
−x2y + x2 − 3

)
= −3 + (1− y)x2

x4

And

N = µN

= 1
x4

(
x3)

= 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−3 + (1− y)x2

x4

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3 + (1− y)x2

x4 dx

(3)φ = 1 + x2(y − 1)
x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1 + x2(y − 1)
x3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1 + x2(y − 1)

x3

The solution becomes

y = c1x
3 + x2 − 1
x2

Summary
The solution(s) found are the following

(1)y = c1x
3 + x2 − 1
x2

Figure 507: Slope field plot
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Verification of solutions

y = c1x
3 + x2 − 1
x2

Verified OK.

12.25.5 Maple step by step solution

Let’s solve
y′x3 − x2y = −x2 + 3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
− x2−3

x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= −x2−3

x3

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − y

x

)
= −µ(x)

(
x2−3

)
x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)

(
x2−3

)
x3 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
−µ(x)

(
x2−3

)
x3 dx+ c1

• Solve for y

y =
∫
−

µ(x)
(
x2−3

)
x3 dx+c1

µ(x)

• Substitute µ(x) = 1
x
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y = x
(∫

−x2−3
x4 dx+ c1

)
• Evaluate the integrals on the rhs

y = x
(
− 1

x3 + 1
x
+ c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(x^3*diff(y(x),x) = 3-x^2+x^2*y(x),y(x), singsol=all)� �

y(x) = − 1
x2 + 1 + c1x

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 16� �
DSolve[x^3 y'[x]==3 -x^2+x^2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
x2 + c1x+ 1
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12.26 problem 345
12.26.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3372
12.26.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3378

Internal problem ID [3601]
Internal file name [OUTPUT/3094_Sunday_June_05_2022_08_51_56_AM_71874909/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 345.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

y′x3 − y2 = x4

12.26.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x4 + y2

x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(x4 + y2) (b3 − a2)

x3 − (x4 + y2)2 a3
x6

−
(
4− 3(x4 + y2)

x4

)
(xa2 + ya3 + a1)−

2y(xb2 + yb3 + b1)
x3 = 0

Putting the above in normal form gives

−x8a3 + 2x7a2 − x7b3 + x6ya3 + x6a1 − b2x
6 + 2x4y2a3 + 2x4yb2 − 2x3y2a2 + x3y2b3 − 3x2y3a3 + 2x3yb1 − 3x2y2a1 + y4a3

x6

= 0

Setting the numerator to zero gives

(6E)−x8a3 − 2x7a2 + x7b3 − x6ya3 − x6a1 + b2x
6 − 2x4y2a3 − 2x4yb2

+ 2x3y2a2 − x3y2b3 + 3x2y3a3 − 2x3yb1 + 3x2y2a1 − y4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
8
1 − 2a2v71 − a3v

6
1v2 + b3v

7
1 − a1v

6
1 − 2a3v41v22 + b2v

6
1 + 2a2v31v22

+ 3a3v21v32 − 2b2v41v2 − b3v
3
1v

2
2 + 3a1v21v22 − a3v

4
2 − 2b1v31v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−a3v
8
1 + (−2a2 + b3) v71 − a3v

6
1v2 + (−a1 + b2) v61 − 2a3v41v22 − 2b2v41v2

+ (2a2 − b3) v31v22 − 2b1v31v2 + 3a3v21v32 + 3a1v21v22 − a3v
4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a1 = 0
−2a3 = 0
−a3 = 0
3a3 = 0

−2b1 = 0
−2b2 = 0

−a1 + b2 = 0
−2a2 + b3 = 0
2a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
x4 + y2

x3

)
(x)

= −x4 + 2x2y − y2

x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4+2x2y−y2

x2

dy

Which results in

S = x2

−x2 + y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x4 + y2

x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2xy
(x2 − y)2

Sy = − x2

(x2 − y)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x2

x2 − y
= − ln (x) + c1

Which simplifies to

− x2

x2 − y
= − ln (x) + c1

Which gives

y = x2(ln (x)− c1 − 1)
ln (x)− c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x4+y2

x3
dS
dR

= − 1
R

R = x

S = − x2

x2 − y

Summary
The solution(s) found are the following

(1)y = x2(ln (x)− c1 − 1)
ln (x)− c1
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Figure 508: Slope field plot

Verification of solutions

y = x2(ln (x)− c1 − 1)
ln (x)− c1

Verified OK.

12.26.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x4 + y2

x3

This is a Riccati ODE. Comparing the ODE to solve

y′ = x+ y2

x3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x, f1(x) = 0 and f2(x) = 1
x3 . Let

y = −u′

f2u

= −u′

u
x3

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 3

x4

f1f2 = 0

f 2
2 f0 =

1
x5

Substituting the above terms back in equation (2) gives

u′′(x)
x3 + 3u′(x)

x4 + u(x)
x5 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 ln (x)
x

The above shows that

u′(x) = c2 − c1 − c2 ln (x)
x2

Using the above in (1) gives the solution

y = −x2(c2 − c1 − c2 ln (x))
c1 + c2 ln (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x2(−1 + c3 + ln (x))
c3 + ln (x)
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Summary
The solution(s) found are the following

(1)y = x2(−1 + c3 + ln (x))
c3 + ln (x)

Figure 509: Slope field plot

Verification of solutions

y = x2(−1 + c3 + ln (x))
c3 + ln (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x^3*diff(y(x),x) = x^4+y(x)^2,y(x), singsol=all)� �

y(x) = x2(ln (x)− c1 − 1)
ln (x)− c1

3 Solution by Mathematica
Time used: 0.168 (sec). Leaf size: 29� �
DSolve[x^3 y'[x]==x^4+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(log(x)− 1 + c1)
log(x) + c1

y(x) → x2
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12.27 problem 346
12.27.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3382
12.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3384
12.27.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3388
12.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3392
12.27.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3397

Internal problem ID [3602]
Internal file name [OUTPUT/3095_Sunday_June_05_2022_08_51_58_AM_52824739/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 346.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

y′x3 − y
(
x2 + y

)
= 0

12.27.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x3 − u(x)x
(
x2 + u(x)x

)
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2

x2
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Where f(x) = 1
x2 and g(u) = u2. Integrating both sides gives

1
u2 du = 1

x2 dx∫ 1
u2 du =

∫ 1
x2 dx

−1
u
= −1

x
+ c2

The solution is

− 1
u (x) +

1
x
− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
+ 1

x
− c2 = 0

−x

y
+ 1

x
− c2 = 0

Summary
The solution(s) found are the following

(1)−x

y
+ 1

x
− c2 = 0

3383



Figure 510: Slope field plot

Verification of solutions

−x

y
+ 1

x
− c2 = 0

Verified OK.

12.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(x2 + y)
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 614: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(x2 + y)
x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= −1

x
+ c1

Which simplifies to

−x

y
= −1

x
+ c1

Which gives

y = − x2

c1x− 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
x2+y

)
x3

dS
dR

= 1
R2

R = x

S = −x

y

3387



Summary
The solution(s) found are the following

(1)y = − x2

c1x− 1

Figure 511: Slope field plot

Verification of solutions

y = − x2

c1x− 1

Verified OK.

12.27.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(x2 + y)
x3

This is a Bernoulli ODE.
y′ = 1

x
y + 1

x3y
2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) =
1
x3

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
xy

+ 1
x3 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

+ 1
x3

w′ = −w

x
− 1

x3 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = − 1
x3

Hence the ode is

w′(x) + w(x)
x

= − 1
x3

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µw) = (µ)

(
− 1
x3

)
d
dx(xw) = (x)

(
− 1
x3

)
d(xw) =

(
− 1
x2

)
dx

Integrating gives

xw =
∫

− 1
x2 dx

xw = 1
x
+ c1

Dividing both sides by the integrating factor µ = x results in

w(x) = 1
x2 + c1

x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 1

x2 + c1
x
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Or

y = 1
1
x2 + c1

x

Summary
The solution(s) found are the following

(1)y = 1
1
x2 + c1

x

Figure 512: Slope field plot

Verification of solutions

y = 1
1
x2 + c1

x

Verified OK.
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12.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3) dy =

(
y
(
x2 + y

))
dx(

−y
(
x2 + y

))
dx+

(
x3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
x2 + y

)
N(x, y) = x3
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y
(
x2 + y

))
= −x2 − 2y

And

∂N

∂x
= ∂

∂x

(
x3)

= 3x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x3

((
−x2 − 2y

)
−
(
3x2))

= −4x2 − 2y
x3

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (x2 + y)
((
3x2)− (−x2 − 2y

))
= −4x2 − 2y

y (x2 + y)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (3x2)− (−x2 − 2y)
x (−y (x2 + y))− y (x3)

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
−y
(
x2 + y

))
= −x2 − y

x2y

And

N = µN

= 1
y2x2

(
x3)

= x

y2
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−x2 − y

x2y

)
+
(

x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − y

x2y
dx

(3)φ = −x2 + y

xy
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

xy
− −x2 + y

x y2
+ f ′(y)

= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y2
. Therefore equation (4) becomes

(5)x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2 + y

xy
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x2 + y

xy

The solution becomes

y = − x2

c1x− 1

Summary
The solution(s) found are the following

(1)y = − x2

c1x− 1

Figure 513: Slope field plot
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Verification of solutions

y = − x2

c1x− 1

Verified OK.

12.27.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(x2 + y)
x3

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x
+ y2

x3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = 1

x3 . Let

y = −u′

f2u

= −u′

u
x3

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 3

x4

f1f2 =
1
x4

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x3 + 2u′(x)

x4 = 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x

The above shows that
u′(x) = − c2

x2

Using the above in (1) gives the solution

y = c2x

c1 + c2
x

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x

c3 + 1
x

Summary
The solution(s) found are the following

(1)y = x

c3 + 1
x
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Figure 514: Slope field plot

Verification of solutions

y = x

c3 + 1
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x^3*diff(y(x),x) = y(x)*(x^2+y(x)),y(x), singsol=all)� �

y(x) = x2

c1x+ 1

3 Solution by Mathematica
Time used: 0.141 (sec). Leaf size: 22� �
DSolve[x^3 y'[x]==y[x](x^2+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

1 + c1x
y(x) → 0

3400



12.28 problem 347
12.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3401
12.28.2 Solving as first order ode lie symmetry calculated ode . . . . . . 3403
12.28.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3409

Internal problem ID [3603]
Internal file name [OUTPUT/3096_Sunday_June_05_2022_08_51_59_AM_42402930/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 347.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

y′x3 − (y − 1)x2 − y2 = 0

12.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x3 − (u(x)x− 1)x2 − u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 − 1
x2

Where f(x) = 1
x2 and g(u) = u2 − 1. Integrating both sides gives

1
u2 − 1 du = 1

x2 dx
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∫ 1
u2 − 1 du =

∫ 1
x2 dx

− arctanh (u) = −1
x
+ c2

The solution is

− arctanh (u(x)) + 1
x
− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− arctanh
(y
x

)
+ 1

x
− c2 = 0

− arctanh
(y
x

)
+ 1

x
− c2 = 0

Summary
The solution(s) found are the following

(1)− arctanh
(y
x

)
+ 1

x
− c2 = 0

Figure 515: Slope field plot
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Verification of solutions

− arctanh
(y
x

)
+ 1

x
− c2 = 0

Verified OK.

12.28.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2y − x2 + y2

x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2 +
(x2y − x2 + y2) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x3

− (x2y − x2 + y2)2 (xa5 + 2ya6 + a3)
x6

−
(
2xy − 2x

x3 − 3(x2y − x2 + y2)
x4

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
− (x2 + 2y) (x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

x3 = 0

Putting the above in normal form gives

x7b4 − x6ya4 + yb5x
6 − x5y2a5 + x5y2b6 − x4y3a6 + x6a4 − x6b5 + 2x5ya5 − 2x5yb4 − 2x5yb6 + x4y2a4 + 3x4y2a6 − x4y2b5 − x2y4a6 − x5a5 − x5b1 − x5b3 + x4ya1 + x4ya3 − 2x4ya6 − 2x4yb2 + 2x3y2a2 + 2x3y2a5 − x3y2b3 + x2y3a3 + 4x2y3a6 − x y4a5 − 2y5a6 − x4a1 − x4a3 − 2x3yb1 + 3x2y2a1 + 2x2y2a3 − y4a3

x6

= 0
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Setting the numerator to zero gives

(6E)
x7b4 − x6ya4 + yb5x

6 − x5y2a5 + x5y2b6 − x4y3a6 + x6a4 − x6b5
+ 2x5ya5 − 2x5yb4 − 2x5yb6 + x4y2a4 + 3x4y2a6 − x4y2b5 − x2y4a6
− x5a5 − x5b1 − x5b3 + x4ya1 + x4ya3 − 2x4ya6 − 2x4yb2
+ 2x3y2a2 + 2x3y2a5 − x3y2b3 + x2y3a3 + 4x2y3a6 − x y4a5
− 2y5a6 − x4a1 − x4a3 − 2x3yb1 + 3x2y2a1 + 2x2y2a3 − y4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−a4v
6
1v2 − a5v

5
1v

2
2 − a6v

4
1v

3
2 + b4v

7
1 + b5v

6
1v2 + b6v

5
1v

2
2 + a4v

6
1

+ a4v
4
1v

2
2 + 2a5v51v2 + 3a6v41v22 − a6v

2
1v

4
2 − 2b4v51v2 − b5v

6
1 − b5v

4
1v

2
2

− 2b6v51v2 + a1v
4
1v2 + 2a2v31v22 + a3v

4
1v2 + a3v

2
1v

3
2 − a5v

5
1 + 2a5v31v22

− a5v1v
4
2 − 2a6v41v2 + 4a6v21v32 − 2a6v52 − b1v

5
1 − 2b2v41v2 − b3v

5
1

− b3v
3
1v

2
2 − a1v

4
1 + 3a1v21v22 − a3v

4
1 + 2a3v21v22 − a3v

4
2 − 2b1v31v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
b4v

7
1 + (−a4 + b5) v61v2 + (a4 − b5) v61 + (−a5 + b6) v51v22

+(2a5− 2b4− 2b6) v51v2+(−a5− b1− b3) v51 −a6v
4
1v

3
2 +(a4+3a6− b5) v41v22

+(a1+a3−2a6−2b2) v41v2+(−a1−a3) v41+(2a2+2a5−b3) v31v22−2b1v31v2
− a6v

2
1v

4
2 + (a3 +4a6) v21v32 + (3a1 +2a3) v21v22 − a5v1v

4
2 − 2a6v52 − a3v

4
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b4 = 0
−a3 = 0
−a5 = 0
−2a6 = 0
−a6 = 0
−2b1 = 0

−a1 − a3 = 0
3a1 + 2a3 = 0
a3 + 4a6 = 0
−a4 + b5 = 0
a4 − b5 = 0

−a5 + b6 = 0
2a2 + 2a5 − b3 = 0
a4 + 3a6 − b5 = 0
−a5 − b1 − b3 = 0

2a5 − 2b4 − 2b6 = 0
a1 + a3 − 2a6 − 2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = b5

a5 = 0
a6 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = b5

b6 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x2

η = xy

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= xy −
(
x2y − x2 + y2

x3

)(
x2)

= x2 − y2

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−y2

x

dy

Which results in

S = ln (y + x)
2 − ln (y − x)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2y − x2 + y2

x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2 − y2

Sy =
x

x2 − y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x)
2 − ln (y − x)

2 = 1
x
+ c1

Which simplifies to

ln (y + x)
2 − ln (y − x)

2 = 1
x
+ c1

Which gives

y = e
−2c1x+ln

− 2x

−1+e−
2(c1x+1)

x

x−2

x + x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2y−x2+y2

x3
dS
dR

= − 1
R2

R = x

S = ln (y + x)
2 − ln (y − x)

2

Summary
The solution(s) found are the following

(1)y = e
−2c1x+ln

− 2x

−1+e−
2(c1x+1)

x

x−2

x + x
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Figure 516: Slope field plot

Verification of solutions

y = e
−2c1x+ln

− 2x

−1+e−
2(c1x+1)

x

x−2

x + x

Verified OK.

12.28.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2y − x2 + y2

x3

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x
− 1

x
+ y2

x3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = − 1
x
, f1(x) = 1

x
and f2(x) = 1

x3 . Let

y = −u′

f2u

= −u′

u
x3

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 3

x4

f1f2 =
1
x4

f 2
2 f0 = − 1

x7

Substituting the above terms back in equation (2) gives

u′′(x)
x3 + 2u′(x)

x4 − u(x)
x7 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sinh
(
1
x

)
+ c2 cosh

(
1
x

)

The above shows that

u′(x) =
−c1 cosh

( 1
x

)
− c2 sinh

( 1
x

)
x2

Using the above in (1) gives the solution

y = −
x
(
−c1 cosh

( 1
x

)
− c2 sinh

( 1
x

))
c1 sinh

( 1
x

)
+ c2 cosh

( 1
x

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y =
(
c3 cosh

( 1
x

)
+ sinh

( 1
x

))
x

c3 sinh
( 1
x

)
+ cosh

( 1
x

)
Summary
The solution(s) found are the following

(1)y =
(
c3 cosh

( 1
x

)
+ sinh

( 1
x

))
x

c3 sinh
( 1
x

)
+ cosh

( 1
x

)

Figure 517: Slope field plot

Verification of solutions

y =
(
c3 cosh

( 1
x

)
+ sinh

( 1
x

))
x

c3 sinh
( 1
x

)
+ cosh

( 1
x

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^3*diff(y(x),x) = x^2*(y(x)-1)+y(x)^2,y(x), singsol=all)� �

y(x) = − tanh
(
c1x− 1

x

)
x

3 Solution by Mathematica
Time used: 0.713 (sec). Leaf size: 51� �
DSolve[x^3 y'[x]==x^2(y[x]-1)+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x
(
e2/x − e2c1

)
e2/x + e2c1

y(x) → −x
y(x) → x
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12.29 problem 348
12.29.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3413
12.29.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3415
12.29.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3419
12.29.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3423
12.29.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3425

Internal problem ID [3604]
Internal file name [OUTPUT/3097_Sunday_June_05_2022_08_52_01_AM_28525820/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 348.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x3 − (x+ 1) y2 = 0

12.29.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x+ 1) y2
x3

Where f(x) = x+1
x3 and g(y) = y2. Integrating both sides gives

1
y2

dy = x+ 1
x3 dx∫ 1

y2
dy =

∫
x+ 1
x3 dx

−1
y
= −1

x
− 1

2x2 + c1
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Which results in

y = − 2x2

2c1x2 − 2x− 1

Summary
The solution(s) found are the following

(1)y = − 2x2

2c1x2 − 2x− 1

Figure 518: Slope field plot

Verification of solutions

y = − 2x2

2c1x2 − 2x− 1

Verified OK.
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12.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x+ 1) y2
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 616: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x3

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x3

x+1
dx

Which results in

S = −1
x
− 1

2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ 1) y2
x3
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x+ 1
x3

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1− 2x
2x2 = −1

y
+ c1

Which simplifies to

−1− 2x
2x2 = −1

y
+ c1

Which gives

y = 2x2

2c1x2 + 2x+ 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+1)y2
x3

dS
dR

= 1
R2

R = y

S = −1− 2x
2x2

Summary
The solution(s) found are the following

(1)y = 2x2

2c1x2 + 2x+ 1
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Figure 519: Slope field plot

Verification of solutions

y = 2x2

2c1x2 + 2x+ 1

Verified OK.

12.29.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2

)
dy =

(
x+ 1
x3

)
dx(

−x+ 1
x3

)
dx+

(
1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x3

N(x, y) = 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x3

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x3 dx

(3)φ = 1 + 2x
2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2
. Therefore equation (4) becomes

(5)1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1 + 2x
2x2 − 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1 + 2x
2x2 − 1

y

The solution becomes

y = − 2x2

2c1x2 − 2x− 1

Summary
The solution(s) found are the following

(1)y = − 2x2

2c1x2 − 2x− 1
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Figure 520: Slope field plot

Verification of solutions

y = − 2x2

2c1x2 − 2x− 1

Verified OK.

12.29.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (x+ 1) y2
x3

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 + y2

x3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 0 and f2(x) = x+1
x3 . Let

y = −u′

f2u

= −u′

(x+1)u
x3

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x3 − 3(x+ 1)

x4

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

(x+ 1)u′′(x)
x3 −

(
1
x3 − 3(x+ 1)

x4

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
(1 + 2x) c2

x2

The above shows that

u′(x) = −2c2(x+ 1)
x3

Using the above in (1) gives the solution

y = 2c2
c1 + (1+2x)c2

x2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2x2

c3x2 + 2x+ 1
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Summary
The solution(s) found are the following

(1)y = 2x2

c3x2 + 2x+ 1

Figure 521: Slope field plot

Verification of solutions

y = 2x2

c3x2 + 2x+ 1

Verified OK.

12.29.5 Maple step by step solution

Let’s solve
y′x3 − (x+ 1) y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y2
= x+1

x3

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
x+1
x3 dx+ c1

• Evaluate integral
− 1

y
= − 1

x
− 1

2x2 + c1

• Solve for y
y = − 2x2

2c1x2−2x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x^3*diff(y(x),x) = (1+x)*y(x)^2,y(x), singsol=all)� �

y(x) = 2x2

2c1x2 + 2x+ 1

3 Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 29� �
DSolve[x^3 y'[x]==(1+x)y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x2

−2c1x2 + 2x+ 1
y(x) → 0
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12.30 problem 349
12.30.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3427
12.30.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3433

Internal problem ID [3605]
Internal file name [OUTPUT/3098_Sunday_June_05_2022_08_52_03_AM_70241126/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 349.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

y′x3 + x2y
(
1− x2y

)
= −20

12.30.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x4y2 − x2y − 20
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x4y2 − x2y − 20) (b3 − a2)
x3 − (x4y2 − x2y − 20)2 a3

x6

−
(
4x3y2 − 2xy

x3 − 3(x4y2 − x2y − 20)
x4

)
(xa2 + ya3 + a1)

− (2x4y − x2) (xb2 + yb3 + b1)
x3 = 0

Putting the above in normal form gives

−x8y4a3 + 2x8yb2 + 2x7y2a2 + x7y2b3 − x6y3a3 + 2x7yb1 + x6y2a1 − 2b2x6 − 38x4y2a3 − x5b1 + x4ya1 + 40x3a2 + 20x3b3 + 100x2ya3 + 60x2a1 + 400a3
x6

= 0

Setting the numerator to zero gives

(6E)−x8y4a3 − 2x8yb2 − 2x7y2a2 − x7y2b3 + x6y3a3 − 2x7yb1 − x6y2a1 + 2b2x6

+38x4y2a3+x5b1−x4ya1−40x3a2−20x3b3−100x2ya3−60x2a1−400a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
8
1v

4
2 −2a2v71v22 +a3v

6
1v

3
2 −2b2v81v2− b3v

7
1v

2
2 −a1v

6
1v

2
2 −2b1v71v2+38a3v41v22

+ 2b2v61 − a1v
4
1v2 + b1v

5
1 − 40a2v31 − 100a3v21v2 − 20b3v31 − 60a1v21 − 400a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
8
1v

4
2−2b2v81v2+(−2a2−b3) v71v22−2b1v71v2+a3v

6
1v

3
2−a1v

6
1v

2
2+2b2v61+b1v

5
1

+ 38a3v41v22 − a1v
4
1v2 + (−40a2 − 20b3) v31 − 100a3v21v2 − 60a1v21 − 400a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b1 = 0

−60a1 = 0
−a1 = 0

−400a3 = 0
−100a3 = 0

−a3 = 0
38a3 = 0
−2b1 = 0
−2b2 = 0
2b2 = 0

−40a2 − 20b3 = 0
−2a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
x4y2 − x2y − 20

x3

)
(x)

= −x4y2 − x2y + 20
x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4y2−x2y+20
x2

dy

Which results in

S = − ln (x2y − 4)
9 + ln (x2y + 5)

9
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x4y2 − x2y − 20
x3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2xy
(x2y + 5) (x2y − 4)

Sy = − x2

(x2y + 5) (x2y − 4)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x2y − 4)
9 + ln (x2y + 5)

9 = − ln (x) + c1

Which simplifies to

− ln (x2y − 4)
9 + ln (x2y + 5)

9 = − ln (x) + c1

Which gives

y = 5x9 + 4 e9c1
x2 (e9c1 − x9)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x4y2−x2y−20
x3

dS
dR

= − 1
R

R = x

S = − ln (x2y − 4)
9 + ln (x2y + 5)

9

Summary
The solution(s) found are the following

(1)y = 5x9 + 4 e9c1
x2 (e9c1 − x9)
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Figure 522: Slope field plot

Verification of solutions

y = 5x9 + 4 e9c1
x2 (e9c1 − x9)

Verified OK.

12.30.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x4y2 − x2y − 20
x3

This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2 − y

x
− 20

x3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = − 20
x3 , f1(x) = − 1

x
and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = −1

f 2
2 f0 = −20

x

Substituting the above terms back in equation (2) gives

xu′′(x)− 20u(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
9 + c1
x4

The above shows that

u′(x) = 5c2x9 − 4c1
x5

Using the above in (1) gives the solution

y = − 5c2x9 − 4c1
x2 (c2x9 + c1)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −5x9 + 4c3
x2 (x9 + c3)
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Summary
The solution(s) found are the following

(1)y = −5x9 + 4c3
x2 (x9 + c3)

Figure 523: Slope field plot

Verification of solutions

y = −5x9 + 4c3
x2 (x9 + c3)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.532 (sec). Leaf size: 26� �
dsolve(x^3*diff(y(x),x)+20+x^2*y(x)*(1-x^2*y(x)) = 0,y(x), singsol=all)� �

y(x) = 5x9 + 4c1
(−x9 + c1)x2

3 Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 36� �
DSolve[x^3 y'[x]+20+x^2 y[x](1-x^2 y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −5x9 + 4c1
x2 (x9 + c1)

y(x) → 4
x2
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12.31 problem 350
12.31.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3437

Internal problem ID [3606]
Internal file name [OUTPUT/3099_Sunday_June_05_2022_08_52_05_AM_97534647/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 350.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′x3 + (3− 2x)x2y − x6y2 = −3

12.31.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x6y2 + 2x3y − 3x2y − 3
x3

This is a Riccati ODE. Comparing the ODE to solve

y′ = x3y2 + 2y − 3y
x

− 3
x3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 3
x3 , f1(x) = 2x3−3x2

x3 and f2(x) = x3. Let

y = −u′

f2u

= −u′

x3u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 3x2

f1f2 = 2x3 − 3x2

f 2
2 f0 = −3x3

Substituting the above terms back in equation (2) gives

x3u′′(x)− 2x3u′(x)− 3x3u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e−x + c2e3x

The above shows that
u′(x) = −c1e−x + 3c2e3x

Using the above in (1) gives the solution

y = − −c1e−x + 3c2e3x
x3 (c1e−x + c2e3x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −3 e4x + c3
x3 (e4x + c3)

Summary
The solution(s) found are the following

(1)y = −3 e4x + c3
x3 (e4x + c3)
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Figure 524: Slope field plot

Verification of solutions

y = −3 e4x + c3
x3 (e4x + c3)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x^3*diff(y(x),x)+3+(3-2*x)*x^2*y(x)-x^6*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −3 e4xc1 − 3
x3 (e4xc1 − 3)

3 Solution by Mathematica
Time used: 0.173 (sec). Leaf size: 34� �
DSolve[x^3 y'[x]+3+(3-2 x)x^2 y[x]-x^6 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−3 + 1

1
4+c1e4x

x3

y(x) → − 3
x3
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12.32 problem 351
12.32.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3441
12.32.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3443
12.32.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3447

Internal problem ID [3607]
Internal file name [OUTPUT/3100_Sunday_June_05_2022_08_52_07_AM_26102424/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 351.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′x3 −
(
y2 + 2x2) y = 0

12.32.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x3 −
(
u(x)2 x2 + 2x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(u2 + 1)
x

Where f(x) = 1
x
and g(u) = u(u2 + 1). Integrating both sides gives

1
u (u2 + 1) du = 1

x
dx
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∫ 1
u (u2 + 1) du =

∫ 1
x
dx

− ln (u2 + 1)
2 + ln (u) = ln (x) + c2

Raising both side to exponential gives

e−
ln
(
u2+1

)
2 +ln(u) = eln(x)+c2

Which simplifies to
u√

u2 + 1
= c3x

Therefore the solution y is

y = xu

= x2c3

√
− 1
c23x

2 − 1

Summary
The solution(s) found are the following

(1)y = x2c3

√
− 1
c23x

2 − 1
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Figure 525: Slope field plot

Verification of solutions

y = x2c3

√
− 1
c23x

2 − 1

Verified OK.

12.32.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (2x2 + y2) y
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 619: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y3

x4 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3

x4

dy

Which results in

S = − x4

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (2x2 + y2) y
x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x3

y2

Sy =
x4

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x4

2y2 = x2

2 + c1

Which simplifies to

− x4

2y2 = x2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
2x2+y2

)
y

x3
dS
dR

= R

R = x

S = − x4

2y2

Summary
The solution(s) found are the following

(1)− x4

2y2 = x2

2 + c1
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Figure 526: Slope field plot

Verification of solutions

− x4

2y2 = x2

2 + c1

Verified OK.

12.32.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (2x2 + y2) y
x3

This is a Bernoulli ODE.
y′ = 2

x
y + 1

x3y
3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
x

f1(x) =
1
x3

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 2
x y2

+ 1
x3 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = 2w(x)

x
+ 1

x3

w′ = −4w
x

− 2
x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4
x

q(x) = − 2
x3
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Hence the ode is

w′(x) + 4w(x)
x

= − 2
x3

The integrating factor µ is

µ = e
∫ 4

x
dx

= x4

The ode becomes
d
dx(µw) = (µ)

(
− 2
x3

)
d
dx
(
x4w

)
=
(
x4)(− 2

x3

)
d
(
x4w

)
= (−2x) dx

Integrating gives

x4w =
∫

−2x dx

x4w = −x2 + c1

Dividing both sides by the integrating factor µ = x4 results in

w(x) = − 1
x2 + c1

x4

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= − 1
x2 + c1

x4

Solving for y gives

y(x) = x2
√
−x2 + c1

y(x) = − x2
√
−x2 + c1

Summary
The solution(s) found are the following

(1)y = x2
√
−x2 + c1

(2)y = − x2
√
−x2 + c1
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Figure 527: Slope field plot

Verification of solutions

y = x2
√
−x2 + c1

Verified OK.

y = − x2
√
−x2 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �

3450



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(x^3*diff(y(x),x) = (2*x^2+y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = x2
√
−x2 + c1

y(x) = − x2
√
−x2 + c1

3 Solution by Mathematica
Time used: 0.168 (sec). Leaf size: 47� �
DSolve[x^3 y'[x]==(2 x^2+y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x2
√
−x2 + c1

y(x) → x2
√
−x2 + c1

y(x) → 0
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12.33 problem 352
Internal problem ID [3608]
Internal file name [OUTPUT/3101_Sunday_June_05_2022_08_52_09_AM_11956308/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 352.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′x3 − cos (y)
(
cos (y)− 2x2 sin (y)

)
= 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, 1/x^2*(1+cos(2*y))]� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(x^3*diff(y(x),x) = cos(y(x))*(cos(y(x))-2*x^2*sin(y(x))),y(x), singsol=all)� �

y(x) = arctan
(
ln (x)− c1

x2

)
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3 Solution by Mathematica
Time used: 5.952 (sec). Leaf size: 55� �
DSolve[x^3 y'[x]==Cos[y[x]](Cos[y[x]]-2 x^2 Sin[y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctan
(
log(x) + 4c1

x2

)
y(x) → −1

2π
√

1
x4x

2

y(x) → 1
2π
√

1
x4x

2
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12.34 problem 353
12.34.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3455
12.34.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3457
12.34.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3460
12.34.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3464

Internal problem ID [3609]
Internal file name [OUTPUT/3102_Sunday_June_05_2022_08_52_12_AM_38560748/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 353.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
x2 + 1

)
y′ − y = x2a

12.34.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x (x2 + 1)

q(x) = xa

x2 + 1

Hence the ode is

y′ − y

x (x2 + 1) = xa

x2 + 1
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The integrating factor µ is

µ = e
∫
− 1

x
(
x2+1

)dx

= e
ln
(
x2+1

)
2 −ln(x)

Which simplifies to

µ =
√
x2 + 1
x

The ode becomes
d
dx(µy) = (µ)

(
xa

x2 + 1

)
d
dx

(√
x2 + 1 y
x

)
=
(√

x2 + 1
x

)(
xa

x2 + 1

)

d
(√

x2 + 1 y
x

)
=
(

a√
x2 + 1

)
dx

Integrating gives
√
x2 + 1 y
x

=
∫

a√
x2 + 1

dx
√
x2 + 1 y
x

= a arcsinh (x) + c1

Dividing both sides by the integrating factor µ =
√
x2+1
x

results in

y = xa arcsinh (x)√
x2 + 1

+ c1x√
x2 + 1

which simplifies to

y = x(a arcsinh (x) + c1)√
x2 + 1

Summary
The solution(s) found are the following

(1)y = x(a arcsinh (x) + c1)√
x2 + 1

Verification of solutions

y = x(a arcsinh (x) + c1)√
x2 + 1

Verified OK.
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12.34.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2a+ y

x (x2 + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 621: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln
(
x2+1

)
2 +ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln
(
x2+1

)
2 +ln(x)

dy

Which results in

S =
√
x2 + 1 y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2a+ y

x (x2 + 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y√
x2 + 1x2

Sy =
√
x2 + 1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a√

x2 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a√

R2 + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a arcsinh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y
x

= a arcsinh (x) + c1

Which simplifies to
√
x2 + 1 y
x

= a arcsinh (x) + c1

Which gives

y = x(a arcsinh (x) + c1)√
x2 + 1

Summary
The solution(s) found are the following

(1)y = x(a arcsinh (x) + c1)√
x2 + 1
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Verification of solutions

y = x(a arcsinh (x) + c1)√
x2 + 1

Verified OK.

12.34.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x
(
x2 + 1

))
dy =

(
x2a+ y

)
dx(

−x2a− y
)
dx+

(
x
(
x2 + 1

))
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x2a− y

N(x, y) = x
(
x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2a− y

)
= −1

And
∂N

∂x
= ∂

∂x

(
x
(
x2 + 1

))
= 3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + 1)
(
(−1)−

(
3x2 + 1

))
= −3x2 − 2

x (x2 + 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e

∫ −3x2−2
x
(
x2+1

) dx

The result of integrating gives

µ = e−
ln
(
x2+1

)
2 −2 ln(x)

= 1√
x2 + 1x2
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + 1x2

(
−x2a− y

)
= − x2a+ y√

x2 + 1x2

And

N = µN

= 1√
x2 + 1x2

(
x
(
x2 + 1

))
=

√
x2 + 1
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− x2a+ y√
x2 + 1x2

)
+
(√

x2 + 1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x2a+ y√

x2 + 1x2
dx

(3)φ = −xa arcsinh (x) +
√
x2 + 1 y

x
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1
x

+ f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2+1
x

. Therefore equation (4) becomes

(5)
√
x2 + 1
x

=
√
x2 + 1
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −xa arcsinh (x) +
√
x2 + 1 y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−xa arcsinh (x) +

√
x2 + 1 y

x

The solution becomes

y = x(a arcsinh (x) + c1)√
x2 + 1

Summary
The solution(s) found are the following

(1)y = x(a arcsinh (x) + c1)√
x2 + 1

Verification of solutions

y = x(a arcsinh (x) + c1)√
x2 + 1

Verified OK.
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12.34.4 Maple step by step solution

Let’s solve
x(x2 + 1) y′ − y = x2a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x(x2+1) +
xa

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x(x2+1) =
xa

x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − y

x(x2+1)

)
= µ(x)xa

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x(x2+1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = − µ(x)

x(x2+1)

• Solve to find the integrating factor

µ(x) =
√
x2+1
x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)xa
x2+1 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)xa
x2+1 dx+ c1

• Solve for y

y =
∫ µ(x)xa

x2+1 dx+c1

µ(x)

• Substitute µ(x) =
√
x2+1
x

y =
x

(∫
a√

x2+1
dx+c1

)
√
x2+1

• Evaluate the integrals on the rhs
y = x(a arcsinh(x)+c1)√

x2+1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*(x^2+1)*diff(y(x),x) = a*x^2+y(x),y(x), singsol=all)� �

y(x) = (a arcsinh (x) + c1)x√
x2 + 1

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 36� �
DSolve[x(1+x^2)y'[x]==a x^2+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x
(
−a log

(√
x2 + 1− x

)
+ c1

)
√
x2 + 1
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12.35 problem 354
12.35.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3466
12.35.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3468
12.35.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3471
12.35.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3475

Internal problem ID [3610]
Internal file name [OUTPUT/3103_Sunday_June_05_2022_08_52_13_AM_90941174/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 12
Problem number: 354.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
−x2 + 1

)
y′ − y = x2a

12.35.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x3 − x

q(x) = − ax

x2 − 1

Hence the ode is

y′ + y

x3 − x
= − ax

x2 − 1
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The integrating factor µ is

µ = e
∫ 1

x3−x
dx

= e
ln(x+1)

2 + ln(x−1)
2 −ln(x)

Which simplifies to

µ =
√
x+ 1

√
x− 1

x

The ode becomes

d
dx(µy) = (µ)

(
− ax

x2 − 1

)
d
dx

(√
x+ 1

√
x− 1 y

x

)
=
(√

x+ 1
√
x− 1

x

)(
− ax

x2 − 1

)
d
(√

x+ 1
√
x− 1 y

x

)
=
(
−
√
x− 1

√
x+ 1 a

x2 − 1

)
dx

Integrating gives
√
x+ 1

√
x− 1 y

x
=
∫

−
√
x− 1

√
x+ 1 a

x2 − 1 dx
√
x+ 1

√
x− 1 y

x
= −

a
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1

Dividing both sides by the integrating factor µ =
√
x+1

√
x−1

x
results in

y = −
xa ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1x√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = −
xa ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1x√
x− 1

√
x+ 1

Verification of solutions

y = −
xa ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1x√
x− 1

√
x+ 1

Verified OK.
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12.35.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − x2a+ y

x (x2 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 624: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln(x+1)

2 − ln(x−1)
2 +ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln(x+1)

2 − ln(x−1)
2 +ln(x)

dy

Which results in

S = eln
(√

x−1
)
+ln

(√
x+1

)
y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x2a+ y

x (x2 − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y√
x+ 1x2

√
x− 1

Sy =
√
x+ 1

√
x− 1

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − a√

x− 1
√
x+ 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − a√

R− 1
√
R + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
a
√
(R− 1) (R + 1) ln

(
R +

√
R2 − 1

)
√
R− 1

√
R + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x+ 1

√
x− 1 y

x
= −

a
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

Which simplifies to
√
x+ 1

√
x− 1 y

x
= −

a
√

(x− 1) (x+ 1) ln
(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

Which gives

y =
x
(
c1
√
x− 1

√
x+ 1− a

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

))
x2 − 1
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Summary
The solution(s) found are the following

(1)y =
x
(
c1
√
x− 1

√
x+ 1− a

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

))
x2 − 1

Verification of solutions

y =
x
(
c1
√
x− 1

√
x+ 1− a

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

))
x2 − 1

Verified OK.

12.35.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x
(
−x2 + 1

))
dy =

(
x2a+ y

)
dx(

−x2a− y
)
dx+

(
x
(
−x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2a− y

N(x, y) = x
(
−x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2a− y

)
= −1

And
∂N

∂x
= ∂

∂x

(
x
(
−x2 + 1

))
= −3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x3 − x

(
(−1)−

(
−3x2 + 1

))
= −3x2 + 2

x3 − x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −3x2+2

x3−x
dx
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The result of integrating gives

µ = e−
ln(x+1)

2 − ln(x−1)
2 −2 ln(x)

= 1√
x+ 1

√
x− 1x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x+ 1

√
x− 1x2

(
−x2a− y

)
= − x2a+ y√

x+ 1x2
√
x− 1

And

N = µN

= 1√
x+ 1

√
x− 1x2

(
x
(
−x2 + 1

))
= − x2 − 1

x
√
x+ 1

√
x− 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− x2a+ y√
x+ 1x2

√
x− 1

)
+
(
− x2 − 1
x
√
x+ 1

√
x− 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x2a+ y√

x+ 1x2
√
x− 1

dx

(3)φ = −
√
x− 1

√
x+ 1

(
xa ln

(
x+

√
x2 − 1

)
+ y

√
x2 − 1

)
x
√
x2 − 1

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

√
x+ 1

√
x− 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= − x2−1
x
√
x+1

√
x−1 . Therefore equation (4) becomes

(5)− x2 − 1
x
√
x+ 1

√
x− 1

= −
√
x+ 1

√
x− 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
√
x− 1

√
x+ 1

(
xa ln

(
x+

√
x2 − 1

)
+ y

√
x2 − 1

)
x
√
x2 − 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
√
x− 1

√
x+ 1

(
xa ln

(
x+

√
x2 − 1

)
+ y

√
x2 − 1

)
x
√
x2 − 1

The solution becomes

y = −
x
(
a
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

)
√
x2 − 1

√
x+ 1

√
x− 1

Summary
The solution(s) found are the following

(1)y = −
x
(
a
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

)
√
x2 − 1

√
x+ 1

√
x− 1

Verification of solutions

y = −
x
(
a
√
x− 1

√
x+ 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

)
√
x2 − 1

√
x+ 1

√
x− 1

Verified OK.
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12.35.4 Maple step by step solution

Let’s solve
x(−x2 + 1) y′ − y = x2a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x(x2−1) −
ax

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x(x2−1) = − ax
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

x(x2−1)

)
= −µ(x)ax

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x(x2−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x(x2−1)

• Solve to find the integrating factor

µ(x) =
√
x+1

√
x−1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)ax

x2−1 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)ax

x2−1 dx+ c1

• Solve for y

y =
∫
−µ(x)ax

x2−1 dx+c1

µ(x)

• Substitute µ(x) =
√
x+1

√
x−1

x

y =
x
(∫

−
√
x−1

√
x+1 a

x2−1 dx+c1
)

√
x+1

√
x−1

• Evaluate the integrals on the rhs
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y =
x

(
−

a
√
x−1

√
x+1 ln

(
x+
√

x2−1
)

√
x2−1

+c1

)
√
x+1

√
x−1

• Simplify

y =
(
−a

√
x−1

√
x+1 ln

(
x+

√
x2−1

)
+c1

√
x2−1

)
x

√
x2−1

√
x+1

√
x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
dsolve(x*(-x^2+1)*diff(y(x),x) = a*x^2+y(x),y(x), singsol=all)� �

y(x) = x

(
−
a
√
x2 − 1 ln

(
x+

√
x2 − 1

)
(x− 1) (x+ 1) + c1√

x− 1
√
x+ 1

)

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 42� �
DSolve[x(1-x^2)y'[x]==a x^2+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x
(
−2a arctan

(√
1−x2

x+1

)
+ c1

)
√
1− x2
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Internal problem ID [3611]
Internal file name [OUTPUT/3104_Sunday_June_05_2022_08_52_15_AM_47187355/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 355.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
x2 + 1

)
y′ − y = a x3

13.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x (x2 + 1)

q(x) = x2a

x2 + 1

Hence the ode is

y′ − y

x (x2 + 1) = x2a

x2 + 1
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The integrating factor µ is

µ = e
∫
− 1

x
(
x2+1

)dx

= e
ln
(
x2+1

)
2 −ln(x)

Which simplifies to

µ =
√
x2 + 1
x

The ode becomes
d
dx(µy) = (µ)

(
x2a

x2 + 1

)
d
dx

(√
x2 + 1 y
x

)
=
(√

x2 + 1
x

)(
x2a

x2 + 1

)

d
(√

x2 + 1 y
x

)
=
(

xa√
x2 + 1

)
dx

Integrating gives
√
x2 + 1 y
x

=
∫

xa√
x2 + 1

dx
√
x2 + 1 y
x

=
√
x2 + 1 a+ c1

Dividing both sides by the integrating factor µ =
√
x2+1
x

results in

y = ax+ c1x√
x2 + 1

which simplifies to

y = x

(
a+ c1√

x2 + 1

)
Summary
The solution(s) found are the following

(1)y = x

(
a+ c1√

x2 + 1

)
Verification of solutions

y = x

(
a+ c1√

x2 + 1

)
Verified OK.

3479



13.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 + 1

)
(u′(x)x+ u(x))− u(x)x = a x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= x(a− u)
x2 + 1

Where f(x) = x
x2+1 and g(u) = a− u. Integrating both sides gives

1
a− u

du = x

x2 + 1 dx∫ 1
a− u

du =
∫

x

x2 + 1 dx

− ln (a− u) = ln (x2 + 1)
2 + c2

Raising both side to exponential gives

1
a− u

= e
ln
(
x2+1

)
2 +c2

Which simplifies to

1
a− u

= c3
√
x2 + 1

Which simplifies to

u(x) =
(
c3ec2

√
x2 + 1 a− 1

)
e−c2

c3
√
x2 + 1

Therefore the solution y is

y = xu

=
x
(
c3ec2

√
x2 + 1 a− 1

)
e−c2

c3
√
x2 + 1
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Summary
The solution(s) found are the following

(1)y =
x
(
c3ec2

√
x2 + 1 a− 1

)
e−c2

c3
√
x2 + 1

Verification of solutions

y =
x
(
c3ec2

√
x2 + 1 a− 1

)
e−c2

c3
√
x2 + 1

Verified OK.

13.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a x3 + y

x (x2 + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 627: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln
(
x2+1

)
2 +ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln
(
x2+1

)
2 +ln(x)

dy

Which results in

S =
√
x2 + 1 y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a x3 + y

x (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y√
x2 + 1x2

Sy =
√
x2 + 1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= xa√

x2 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Ra√

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
R2 + 1 a+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y
x

=
√
x2 + 1 a+ c1

Which simplifies to
√
x2 + 1 y
x

=
√
x2 + 1 a+ c1

Which gives

y =
x
(√

x2 + 1 a+ c1
)

√
x2 + 1

Summary
The solution(s) found are the following

(1)y =
x
(√

x2 + 1 a+ c1
)

√
x2 + 1

Verification of solutions

y =
x
(√

x2 + 1 a+ c1
)

√
x2 + 1

Verified OK.

13.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 + 1

))
dy =

(
a x3 + y

)
dx(

−a x3 − y
)
dx+

(
x
(
x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a x3 − y

N(x, y) = x
(
x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−a x3 − y

)
= −1
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And
∂N

∂x
= ∂

∂x

(
x
(
x2 + 1

))
= 3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + 1)
(
(−1)−

(
3x2 + 1

))
= −3x2 − 2

x (x2 + 1)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e

∫ −3x2−2
x
(
x2+1

) dx

The result of integrating gives

µ = e−
ln
(
x2+1

)
2 −2 ln(x)

= 1√
x2 + 1x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + 1x2

(
−a x3 − y

)
= − a x3 + y√

x2 + 1x2

And

N = µN

= 1√
x2 + 1x2

(
x
(
x2 + 1

))
=

√
x2 + 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− a x3 + y√
x2 + 1x2

)
+
(√

x2 + 1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− a x3 + y√

x2 + 1 x2
dx

(3)φ = −
√
x2 + 1 (ax− y)

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1
x

+ f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2+1
x

. Therefore equation (4) becomes

(5)
√
x2 + 1
x

=
√
x2 + 1
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
√
x2 + 1 (ax− y)

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
√
x2 + 1 (ax− y)

x

The solution becomes

y =
x
(√

x2 + 1 a+ c1
)

√
x2 + 1

Summary
The solution(s) found are the following

(1)y =
x
(√

x2 + 1 a+ c1
)

√
x2 + 1

Verification of solutions

y =
x
(√

x2 + 1 a+ c1
)

√
x2 + 1

Verified OK.

13.1.5 Maple step by step solution

Let’s solve
x(x2 + 1) y′ − y = a x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x(x2+1) +
x2a
x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x(x2+1) =
x2a
x2+1
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• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − y

x(x2+1)

)
= µ(x)x2a

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x(x2+1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = − µ(x)

x(x2+1)

• Solve to find the integrating factor

µ(x) =
√
x2+1
x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)x2a
x2+1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)x2a

x2+1 dx+ c1

• Solve for y

y =
∫ µ(x)x2a

x2+1 dx+c1

µ(x)

• Substitute µ(x) =
√
x2+1
x

y =
x

(∫
xa√
x2+1

dx+c1

)
√
x2+1

• Evaluate the integrals on the rhs

y =
x
(√

x2+1 a+c1
)

√
x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*(x^2+1)*diff(y(x),x) = a*x^3+y(x),y(x), singsol=all)� �

y(x) = x

(
a+ c1√

x2 + 1

)
3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 21� �
DSolve[x(1+x^2)y'[x]==a x^3+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
a+ c1√

x2 + 1

)
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13.2 problem 356
13.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3491
13.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3493
13.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3496
13.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3500

Internal problem ID [3612]
Internal file name [OUTPUT/3105_Sunday_June_05_2022_08_52_16_AM_88596426/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 356.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
x2 + 1

)
y′ + x2y = a

13.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 + 1
q(x) = a

x (x2 + 1)

Hence the ode is

y′ + xy

x2 + 1 = a

x (x2 + 1)
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The integrating factor µ is

µ = e
∫

x
x2+1dx

=
√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
a

x (x2 + 1)

)
d
dx

(√
x2 + 1 y

)
=
(√

x2 + 1
)( a

x (x2 + 1)

)
d
(√

x2 + 1 y
)
=
(

a

x
√
x2 + 1

)
dx

Integrating gives

√
x2 + 1 y =

∫
a

x
√
x2 + 1

dx

√
x2 + 1 y = −a arctanh

(
1√

x2 + 1

)
+ c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 results in

y = −
a arctanh

(
1√

x2+1

)
√
x2 + 1

+ c1√
x2 + 1

which simplifies to

y =
−a arctanh

(
1√

x2+1

)
+ c1

√
x2 + 1

Summary
The solution(s) found are the following

(1)y =
−a arctanh

(
1√

x2+1

)
+ c1

√
x2 + 1

Verification of solutions

y =
−a arctanh

(
1√

x2+1

)
+ c1

√
x2 + 1

Verified OK.
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13.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − x2y − a

x (x2 + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 630: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1

dy

Which results in

S =
√
x2 + 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x2y − a

x (x2 + 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x2 + 1

Sy =
√
x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= a

x
√
x2 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a

R
√
R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −a arctanh
(

1√
R2 + 1

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y = −a arctanh

(
1√

x2 + 1

)
+ c1

Which simplifies to
√
x2 + 1 y = −a arctanh

(
1√

x2 + 1

)
+ c1

Which gives

y = −
a arctanh

(
1√

x2+1

)
− c1

√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −
a arctanh

(
1√

x2+1

)
− c1

√
x2 + 1
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Verification of solutions

y = −
a arctanh

(
1√

x2+1

)
− c1

√
x2 + 1

Verified OK.

13.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
x
(
x2 + 1

))
dy =

(
−x2y + a

)
dx(

x2y − a
)
dx+

(
x
(
x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2y − a

N(x, y) = x
(
x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2y − a

)
= x2

And
∂N

∂x
= ∂

∂x

(
x
(
x2 + 1

))
= 3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + 1)
((
x2)− (3x2 + 1

))
= −2x2 − 1

x (x2 + 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e

∫ −2x2−1
x
(
x2+1

) dx
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The result of integrating gives

µ = e−
ln
(
x2+1

)
2 −ln(x)

= 1√
x2 + 1x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + 1x

(
x2y − a

)
= −−x2y + a

x
√
x2 + 1

And

N = µN

= 1√
x2 + 1x

(
x
(
x2 + 1

))
=

√
x2 + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−−x2y + a

x
√
x2 + 1

)
+
(√

x2 + 1
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−−x2y + a

x
√
x2 + 1

dx

(3)φ =
√
x2 + 1 y + a arctanh

(
1√

x2 + 1

)
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1. Therefore equation (4) becomes

(5)
√
x2 + 1 =

√
x2 + 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
√
x2 + 1 y + a arctanh

(
1√

x2 + 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
√
x2 + 1 y + a arctanh

(
1√

x2 + 1

)
The solution becomes

y = −
a arctanh

(
1√

x2+1

)
− c1

√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −
a arctanh

(
1√

x2+1

)
− c1

√
x2 + 1

Verification of solutions

y = −
a arctanh

(
1√

x2+1

)
− c1

√
x2 + 1

Verified OK.
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13.2.4 Maple step by step solution

Let’s solve
x(x2 + 1) y′ + x2y = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2+1 +
a

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2+1 = a
x(x2+1)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + xy

x2+1

)
= µ(x)a

x(x2+1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)a
x(x2+1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)a
x(x2+1)dx+ c1

• Solve for y

y =
∫ µ(x)a

x
(
x2+1

)dx+c1

µ(x)

• Substitute µ(x) =
√
x2 + 1

y =
∫

a

x
√

x2+1
dx+c1

√
x2+1

• Evaluate the integrals on the rhs

y =
−a arctanh

(
1√

x2+1

)
+c1

√
x2+1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(x*(x^2+1)*diff(y(x),x) = a-x^2*y(x),y(x), singsol=all)� �

y(x) =
−a arctanh

(
1√

x2+1

)
+ c1

√
x2 + 1

3 Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 31� �
DSolve[x(1+x^2)y'[x]==a-x^2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−aarctanh

(√
x2 + 1

)
+ c1√

x2 + 1
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13.3 problem 357
13.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3502
13.3.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3504
13.3.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3506
13.3.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 3507
13.3.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3511
13.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3515

Internal problem ID [3613]
Internal file name [OUTPUT/3106_Sunday_June_05_2022_08_52_18_AM_59427653/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 357.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x
(
x2 + 1

)
y′ −

(
−x2 + 1

)
y = 0

13.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y(x2 − 1)
x (x2 + 1)
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Where f(x) = − x2−1
x(x2+1) and g(y) = y. Integrating both sides gives

1
y
dy = − x2 − 1

x (x2 + 1) dx∫ 1
y
dy =

∫
− x2 − 1
x (x2 + 1) dx

ln (y) = − ln
(
x2 + 1

)
+ ln (x) + c1

y = e− ln
(
x2+1

)
+ln(x)+c1

= c1e− ln
(
x2+1

)
+ln(x)

Which simplifies to

y = c1x

x2 + 1

Summary
The solution(s) found are the following

(1)y = c1x

x2 + 1

Figure 528: Slope field plot
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Verification of solutions

y = c1x

x2 + 1

Verified OK.

13.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − −x2 + 1
x (x2 + 1)

q(x) = 0

Hence the ode is

y′ − (−x2 + 1) y
x (x2 + 1) = 0

The integrating factor µ is

µ = e
∫
− −x2+1

x
(
x2+1

)dx

= eln
(
x2+1

)
−ln(x)

Which simplifies to

µ = x2 + 1
x

The ode becomes

d
dxµy = 0

d
dx

(
(x2 + 1) y

x

)
= 0

Integrating gives

(x2 + 1) y
x

= c1
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Dividing both sides by the integrating factor µ = x2+1
x

results in

y = c1x

x2 + 1

Summary
The solution(s) found are the following

(1)y = c1x

x2 + 1

Figure 529: Slope field plot

Verification of solutions

y = c1x

x2 + 1

Verified OK.

3505



13.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 + 1

)
(u′(x)x+ u(x))−

(
−x2 + 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2ux
x2 + 1

Where f(x) = − 2x
x2+1 and g(u) = u. Integrating both sides gives

1
u
du = − 2x

x2 + 1 dx∫ 1
u
du =

∫
− 2x
x2 + 1 dx

ln (u) = − ln
(
x2 + 1

)
+ c2

u = e− ln
(
x2+1

)
+c2

= c2
x2 + 1

Therefore the solution y is

y = ux

= xc2
x2 + 1

Summary
The solution(s) found are the following

(1)y = xc2
x2 + 1
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Figure 530: Slope field plot

Verification of solutions

y = xc2
x2 + 1

Verified OK.

13.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y(x2 − 1)
x (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 633: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln

(
x2+1

)
+ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x2+1)+ln(x)dy

Which results in

S = (x2 + 1) y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(x2 − 1)
x (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(x2 − 1)
x2

Sy =
x2 + 1

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x2 + 1) y
x

= c1

Which simplifies to

(x2 + 1) y
x

= c1

Which gives

y = c1x

x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x2−1

)
x(x2+1)

dS
dR

= 0

R = x

S = (x2 + 1) y
x
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Summary
The solution(s) found are the following

(1)y = c1x

x2 + 1

Figure 531: Slope field plot

Verification of solutions

y = c1x

x2 + 1

Verified OK.

13.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−1
y

)
dy =

(
x2 − 1

x (x2 + 1)

)
dx(

− x2 − 1
x (x2 + 1)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x2 − 1
x (x2 + 1)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− x2 − 1
x (x2 + 1)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x2 − 1
x (x2 + 1) dx

(3)φ = − ln
(
x2 + 1

)
+ ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln
(
x2 + 1

)
+ ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln
(
x2 + 1

)
+ ln (x)− ln (y)

The solution becomes

y = x e−c1

x2 + 1

Summary
The solution(s) found are the following

(1)y = x e−c1

x2 + 1

Figure 532: Slope field plot

3514



Verification of solutions

y = x e−c1

x2 + 1

Verified OK.

13.3.6 Maple step by step solution

Let’s solve
x(x2 + 1) y′ − (−x2 + 1) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −x2+1

x(x2+1)

• Integrate both sides with respect to x∫
y′

y
dx =

∫ −x2+1
x(x2+1)dx+ c1

• Evaluate integral
ln (y) = − ln (x2 + 1) + ln (x) + c1

• Solve for y
y = ec1x

x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(x*(x^2+1)*diff(y(x),x) = (-x^2+1)*y(x),y(x), singsol=all)� �

y(x) = c1x

x2 + 1
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3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 21� �
DSolve[x(1+x^2)y'[x]==(1-x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x

x2 + 1
y(x) → 0
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13.4 problem 358
13.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3517
13.4.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3519
13.4.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3521
13.4.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 3522
13.4.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3526
13.4.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3530

Internal problem ID [3614]
Internal file name [OUTPUT/3107_Sunday_June_05_2022_08_52_20_AM_34753477/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 358.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x
(
−x2 + 1

)
y′ −

(
x2 − x+ 1

)
y = 0

13.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(x2 − x+ 1)
x (x2 − 1)
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Where f(x) = −x2−x+1
x(x2−1) and g(y) = y. Integrating both sides gives

1
y
dy = −x2 − x+ 1

x (x2 − 1) dx∫ 1
y
dy =

∫
−x2 − x+ 1

x (x2 − 1) dx

ln (y) = −3 ln (x+ 1)
2 − ln (x− 1)

2 + ln (x) + c1

y = e−
3 ln(x+1)

2 − ln(x−1)
2 +ln(x)+c1

= c1e−
3 ln(x+1)

2 − ln(x−1)
2 +ln(x)

Which simplifies to

y = c1x

(x+ 1)
3
2
√
x− 1

Summary
The solution(s) found are the following

(1)y = c1x

(x+ 1)
3
2
√
x− 1

Figure 533: Slope field plot
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Verification of solutions

y = c1x

(x+ 1)
3
2
√
x− 1

Verified OK.

13.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−x2 + x− 1
x3 − x

q(x) = 0

Hence the ode is

y′ − (−x2 + x− 1) y
x3 − x

= 0

The integrating factor µ is

µ = e
∫
−−x2+x−1

x3−x
dx

= e
3 ln(x+1)

2 + ln(x−1)
2 −ln(x)

Which simplifies to

µ = (x+ 1)
3
2
√
x− 1

x

The ode becomes

d
dxµy = 0

d
dx

(
(x+ 1)

3
2
√
x− 1 y

x

)
= 0

Integrating gives

(x+ 1)
3
2
√
x− 1 y

x
= c1
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Dividing both sides by the integrating factor µ = (x+1)
3
2
√
x−1

x
results in

y = c1x

(x+ 1)
3
2
√
x− 1

Summary
The solution(s) found are the following

(1)y = c1x

(x+ 1)
3
2
√
x− 1

Figure 534: Slope field plot

Verification of solutions

y = c1x

(x+ 1)
3
2
√
x− 1

Verified OK.
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13.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
−x2 + 1

)
(u′(x)x+ u(x))−

(
x2 − x+ 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(2x− 1)
x2 − 1

Where f(x) = −2x−1
x2−1 and g(u) = u. Integrating both sides gives

1
u
du = −2x− 1

x2 − 1 dx∫ 1
u
du =

∫
−2x− 1
x2 − 1 dx

ln (u) = − ln (x− 1)
2 − 3 ln (x+ 1)

2 + c2

u = e−
ln(x−1)

2 − 3 ln(x+1)
2 +c2

= c2e−
ln(x−1)

2 − 3 ln(x+1)
2

Which simplifies to

u(x) = c2
√
x− 1 (x+ 1)

3
2

Therefore the solution y is

y = ux

= xc2
√
x− 1 (x+ 1)

3
2

Summary
The solution(s) found are the following

(1)y = xc2
√
x− 1 (x+ 1)

3
2
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Figure 535: Slope field plot

Verification of solutions

y = xc2
√
x− 1 (x+ 1)

3
2

Verified OK.

13.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(x2 − x+ 1)
x (x2 − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 636: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
3 ln(x+1)

2 − ln(x−1)
2 +ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
3 ln(x+1)

2 − ln(x−1)
2 +ln(x)

dy

Which results in

S = eln
(√

x−1
)
+ 3 ln(x+1)

2 y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(x2 − x+ 1)
x (x2 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
x+ 1 y(x2 − x+ 1)

x2
√
x− 1

Sy =
(x+ 1)

3
2
√
x− 1

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 1)
3
2
√
x− 1 y

x
= c1

Which simplifies to

(x+ 1)
3
2
√
x− 1 y

x
= c1

Which gives

y = c1x

(x+ 1)
3
2
√
x− 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x2−x+1

)
x(x2−1)

dS
dR

= 0

R = x

S = (x+ 1)
3
2
√
x− 1 y

x
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Summary
The solution(s) found are the following

(1)y = c1x

(x+ 1)
3
2
√
x− 1

Figure 536: Slope field plot

Verification of solutions

y = c1x

(x+ 1)
3
2
√
x− 1

Verified OK.

13.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
x2 − x+ 1
x (x2 − 1)

)
dx(

−x2 − x+ 1
x (x2 − 1)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − x+ 1
x (x2 − 1)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − x+ 1

x (x2 − 1)

)
= 0

And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − x+ 1

x (x2 − 1) dx

(3)φ = −3 ln (x+ 1)
2 − ln (x− 1)

2 + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −3 ln (x+ 1)
2 − ln (x− 1)

2 + ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3 ln (x+ 1)
2 − ln (x− 1)

2 + ln (x)− ln (y)

The solution becomes
y = e−

3 ln(x+1)
2 − ln(x−1)

2 −c1x

Summary
The solution(s) found are the following

(1)y = e−
3 ln(x+1)

2 − ln(x−1)
2 −c1x
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Figure 537: Slope field plot

Verification of solutions

y = e−
3 ln(x+1)

2 − ln(x−1)
2 −c1x

Verified OK.

13.4.6 Maple step by step solution

Let’s solve
x(−x2 + 1) y′ − (x2 − x+ 1) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x2−x+1

x(−x2+1)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x2−x+1
x(−x2+1)dx+ c1

• Evaluate integral
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ln (y) = −3 ln(x+1)
2 − ln(x−1)

2 + ln (x) + c1

• Solve for y
y = x

e
3 ln(x+1)

2 + ln(x−1)
2 −c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*(-x^2+1)*diff(y(x),x) = (x^2-x+1)*y(x),y(x), singsol=all)� �

y(x) = c1x

(x+ 1)
3
2
√
x− 1

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 30� �
DSolve[x(1-x^2)y'[x]==(1-x+x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x

(x+ 1)
√
1− x2

y(x) → 0
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13.5 problem 359
13.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3532
13.5.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3534
13.5.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 3535
13.5.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3538
13.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3542

Internal problem ID [3615]
Internal file name [OUTPUT/3108_Sunday_June_05_2022_08_52_21_AM_66217407/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 359.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
−x2 + 1

)
y′ −

(
−2x2 + 1

)
y = a x3

13.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x2 − 1
x3 − x

q(x) = − x2a

x2 − 1

Hence the ode is

y′ − (2x2 − 1) y
x3 − x

= − x2a

x2 − 1
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The integrating factor µ is

µ = e
∫
− 2x2−1

x3−x
dx

= e−
ln(x+1)

2 − ln(x−1)
2 −ln(x)

Which simplifies to

µ = 1√
x+ 1

√
x− 1x

The ode becomes

d
dx(µy) = (µ)

(
− x2a

x2 − 1

)
d
dx

(
y√

x+ 1
√
x− 1x

)
=
(

1√
x+ 1

√
x− 1x

)(
− x2a

x2 − 1

)
d
(

y√
x+ 1

√
x− 1x

)
=
(
− ax

(x2 − 1)
√
x− 1

√
x+ 1

)
dx

Integrating gives

y√
x+ 1

√
x− 1x

=
∫

− ax

(x2 − 1)
√
x− 1

√
x+ 1

dx

y√
x+ 1

√
x− 1x

=
√
x− 1

√
x+ 1 a

x2 − 1 + c1

Dividing both sides by the integrating factor µ = 1√
x+1

√
x−1x results in

y = (x− 1) (x+ 1)xa
x2 − 1 + c1

√
x− 1

√
x+ 1x

which simplifies to

y = x
(
a+ c1

√
x− 1

√
x+ 1

)
Summary
The solution(s) found are the following

(1)y = x
(
a+ c1

√
x− 1

√
x+ 1

)
Verification of solutions

y = x
(
a+ c1

√
x− 1

√
x+ 1

)
Verified OK.
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13.5.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
−x2 + 1

)
(u′(x)x+ u(x))−

(
−2x2 + 1

)
u(x)x = a x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= x(u− a)
x2 − 1

Where f(x) = x
x2−1 and g(u) = u− a. Integrating both sides gives

1
u− a

du = x

x2 − 1 dx∫ 1
u− a

du =
∫

x

x2 − 1 dx

ln (u− a) = ln (x− 1)
2 + ln (x+ 1)

2 + c2

Raising both side to exponential gives

u− a = e
ln(x−1)

2 + ln(x+1)
2 +c2

Which simplifies to

u− a = c3e
ln(x−1)

2 + ln(x+1)
2

Which simplifies to
u(x) = c3

√
x+ 1

√
x− 1 ec2 + a

Therefore the solution y is

y = xu

= x
(
c3
√
x+ 1

√
x− 1 ec2 + a

)
Summary
The solution(s) found are the following

(1)y = x
(
c3
√
x+ 1

√
x− 1 ec2 + a

)
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Verification of solutions

y = x
(
c3
√
x+ 1

√
x− 1 ec2 + a

)
Verified OK.

13.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −a x3 + 2x2y − y

x (x2 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 639: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x+1)

2 + ln(x−1)
2 +ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

3536



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x+1)

2 + ln(x−1)
2 +ln(x)

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −a x3 + 2x2y − y

x (x2 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
2
(
x2 − 1

2

)
y

(x− 1)
3
2 (x+ 1)

3
2 x2

Sy =
1√

x+ 1
√
x− 1x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − ax

(x+ 1)
3
2 (x− 1)

3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − aR

(R + 1)
3
2 (R− 1)

3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a√
R + 1

√
R− 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x+ 1

√
x− 1x

= a√
x− 1

√
x+ 1

+ c1

Which simplifies to
y√

x+ 1
√
x− 1x

= a√
x− 1

√
x+ 1

+ c1

Which gives

y = ax+ c1
√
x− 1

√
x+ 1 x

Summary
The solution(s) found are the following

(1)y = ax+ c1
√
x− 1

√
x+ 1x

Verification of solutions

y = ax+ c1
√
x− 1

√
x+ 1x

Verified OK.

13.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−x2 + 1

))
dy =

(
a x3 +

(
−2x2 + 1

)
y
)
dx(

−a x3 −
(
−2x2 + 1

)
y
)
dx+

(
x
(
−x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a x3 −
(
−2x2 + 1

)
y

N(x, y) = x
(
−x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−a x3 −

(
−2x2 + 1

)
y
)

= 2x2 − 1
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And
∂N

∂x
= ∂

∂x

(
x
(
−x2 + 1

))
= −3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x3 − x

((
2x2 − 1

)
−
(
−3x2 + 1

))
= −5x2 + 2

x3 − x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −5x2+2

x3−x
dx

The result of integrating gives

µ = e−
3 ln(x+1)

2 − 3 ln(x−1)
2 −2 ln(x)

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

(
−a x3 −

(
−2x2 + 1

)
y
)

= − a x3 − 2x2y + y

(x+ 1)
3
2 (x− 1)

3
2 x2

And

N = µN

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

(
x
(
−x2 + 1

))
= − 1√

x+ 1
√
x− 1x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− a x3 − 2x2y + y

(x+ 1)
3
2 (x− 1)

3
2 x2

)
+
(
− 1√

x+ 1
√
x− 1x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− a x3 − 2x2y + y

(x+ 1)
3
2 (x− 1)

3
2 x2

dx

(3)φ = ax− y√
x+ 1

√
x− 1x

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1√

x+ 1
√
x− 1x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
x+1

√
x−1x . Therefore equation (4) becomes

(5)− 1√
x+ 1

√
x− 1x

= − 1√
x+ 1

√
x− 1x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ax− y√
x+ 1

√
x− 1x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ax− y√

x+ 1
√
x− 1x

The solution becomes
y = −c1

√
x− 1

√
x+ 1x+ ax

Summary
The solution(s) found are the following

(1)y = −c1
√
x− 1

√
x+ 1x+ ax

Verification of solutions

y = −c1
√
x− 1

√
x+ 1x+ ax

Verified OK.

13.5.5 Maple step by step solution

Let’s solve
x(−x2 + 1) y′ − (−2x2 + 1) y = a x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ =
(
2x2−1

)
y

x(x2−1) − x2a
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ −
(
2x2−1

)
y

x(x2−1) = − x2a
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ −

(
2x2−1

)
y

x(x2−1)

)
= −µ(x)x2a

x2−1
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ −

(
2x2−1

)
y

x(x2−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)
(
2x2−1

)
x(x2−1)

• Solve to find the integrating factor
µ(x) = 1√

x+1
√
x−1x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)x2a

x2−1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
−µ(x)x2a

x2−1 dx+ c1

• Solve for y

y =
∫
−µ(x)x2a

x2−1 dx+c1

µ(x)

• Substitute µ(x) = 1√
x+1

√
x−1x

y =
√
x+ 1

√
x− 1x

(∫
− ax

(x2−1)
√
x−1

√
x+1dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x+ 1

√
x− 1x

(√
x−1

√
x+1 a

x2−1 + c1
)

• Simplify

y =
(√

x−1
√
x+1 a+c1

(
x2−1

))√
x−1x

√
x+1

x2−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(x*(-x^2+1)*diff(y(x),x) = a*x^3+(-2*x^2+1)*y(x),y(x), singsol=all)� �

y(x) = x
(√

x− 1
√
x+ 1 c1 + a

)
3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 23� �
DSolve[x(1-x^2)y'[x]==a x^3+(1-2 x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
(
a+ c1

√
1− x2

)
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13.6 problem 360
13.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3545
13.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3547
13.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3551
13.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3556

Internal problem ID [3616]
Internal file name [OUTPUT/3109_Sunday_June_05_2022_08_52_23_AM_39983400/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 360.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
−x2 + 1

)
y′ −

(
−2x2 + 1

)
y = x3(−x2 + 1

)
13.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x2 − 1
x3 − x

q(x) = x2

Hence the ode is

y′ − (2x2 − 1) y
x3 − x

= x2

3545



The integrating factor µ is

µ = e
∫
− 2x2−1

x3−x
dx

= e−
ln(x+1)

2 − ln(x−1)
2 −ln(x)

Which simplifies to

µ = 1√
x+ 1

√
x− 1x

The ode becomes

d
dx(µy) = (µ)

(
x2)

d
dx

(
y√

x+ 1
√
x− 1x

)
=
(

1√
x+ 1

√
x− 1x

)(
x2)

d
(

y√
x+ 1

√
x− 1x

)
=
(

x√
x− 1

√
x+ 1

)
dx

Integrating gives

y√
x+ 1

√
x− 1x

=
∫

x√
x− 1

√
x+ 1

dx
y√

x+ 1
√
x− 1x

=
√
x− 1

√
x+ 1 + c1

Dividing both sides by the integrating factor µ = 1√
x+1

√
x−1x results in

y = x(x− 1) (x+ 1) + c1
√
x− 1

√
x+ 1x

which simplifies to

y = c1
√
x− 1

√
x+ 1x+ x3 − x

Summary
The solution(s) found are the following

(1)y = c1
√
x− 1

√
x+ 1x+ x3 − x

3546



Figure 538: Slope field plot

Verification of solutions

y = c1
√
x− 1

√
x+ 1x+ x3 − x

Verified OK.

13.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x5 − x3 + 2x2y − y

x (x2 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 642: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x+1)

2 + ln(x−1)
2 +ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x+1)

2 + ln(x−1)
2 +ln(x)

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x5 − x3 + 2x2y − y

x (x2 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
2
(
x2 − 1

2

)
y

(x− 1)
3
2 (x+ 1)

3
2 x2

Sy =
1√

x+ 1
√
x− 1x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x√

x− 1
√
x+ 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R√

R− 1
√
R + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
R− 1

√
R + 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x+ 1

√
x− 1x

=
√
x− 1

√
x+ 1 + c1

Which simplifies to
y√

x+ 1
√
x− 1x

=
√
x− 1

√
x+ 1 + c1

Which gives

y = c1
√
x− 1

√
x+ 1x+ x3 − x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x5−x3+2x2y−y
x(x2−1)

dS
dR

= R√
R−1

√
R+1

R = x

S = y√
x+ 1

√
x− 1x

Summary
The solution(s) found are the following

(1)y = c1
√
x− 1

√
x+ 1x+ x3 − x
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Figure 539: Slope field plot

Verification of solutions

y = c1
√
x− 1

√
x+ 1x+ x3 − x

Verified OK.

13.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−x2 + 1

))
dy =

(
x3(−x2 + 1

)
+
(
−2x2 + 1

)
y
)
dx(

−x3(−x2 + 1
)
−
(
−2x2 + 1

)
y
)
dx+

(
x
(
−x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3(−x2 + 1
)
−
(
−2x2 + 1

)
y

N(x, y) = x
(
−x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3(−x2 + 1

)
−
(
−2x2 + 1

)
y
)

= 2x2 − 1

And
∂N

∂x
= ∂

∂x

(
x
(
−x2 + 1

))
= −3x2 + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x3 − x

((
2x2 − 1

)
−
(
−3x2 + 1

))
= −5x2 + 2

x3 − x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −5x2+2

x3−x
dx

The result of integrating gives

µ = e−
3 ln(x+1)

2 − 3 ln(x−1)
2 −2 ln(x)

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

(
−x3(−x2 + 1

)
−
(
−2x2 + 1

)
y
)

= x5 − x3 + 2x2y − y

(x+ 1)
3
2 (x− 1)

3
2 x2

And

N = µN

= 1
(x+ 1)

3
2 (x− 1)

3
2 x2

(
x
(
−x2 + 1

))
= − 1√

x+ 1
√
x− 1x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x5 − x3 + 2x2y − y

(x+ 1)
3
2 (x− 1)

3
2 x2

)
+
(
− 1√

x+ 1
√
x− 1x

)
dy
dx = 0

3553



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x5 − x3 + 2x2y − y

(x+ 1)
3
2 (x− 1)

3
2 x2

dx

(3)φ = x3 − x− y

x
√
x− 1

√
x+ 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1√

x+ 1
√
x− 1x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
x+1

√
x−1x . Therefore equation (4) becomes

(5)− 1√
x+ 1

√
x− 1x

= − 1√
x+ 1

√
x− 1x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x3 − x− y

x
√
x− 1

√
x+ 1

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x3 − x− y

x
√
x− 1

√
x+ 1

The solution becomes

y = −c1
√
x− 1

√
x+ 1x+ x3 − x

Summary
The solution(s) found are the following

(1)y = −c1
√
x− 1

√
x+ 1x+ x3 − x

Figure 540: Slope field plot

Verification of solutions

y = −c1
√
x− 1

√
x+ 1x+ x3 − x

Verified OK.
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13.6.4 Maple step by step solution

Let’s solve
x(−x2 + 1) y′ − (−2x2 + 1) y = x3(−x2 + 1)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ =
(
2x2−1

)
y

x(x2−1) + x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ −
(
2x2−1

)
y

x(x2−1) = x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ −

(
2x2−1

)
y

x(x2−1)

)
= µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ −

(
2x2−1

)
y

x(x2−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)
(
2x2−1

)
x(x2−1)

• Solve to find the integrating factor
µ(x) = 1√

x+1
√
x−1x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = 1√
x+1

√
x−1x

y =
√
x+ 1

√
x− 1x

(∫
x√

x−1
√
x+1dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x+ 1

√
x− 1x

(√
x− 1

√
x+ 1 + c1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(x*(-x^2+1)*diff(y(x),x) = x^3*(-x^2+1)+(-2*x^2+1)*y(x),y(x), singsol=all)� �

y(x) =
√
x+ 1x

√
x− 1 c1 + x3 − x

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 26� �
DSolve[x(1-x^2)y'[x]==x^3(1-x^2)+(1-2 x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
(
x2 + c1

√
1− x2 − 1

)
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13.7 problem 361
13.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3558
13.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3560
13.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3564
13.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3569

Internal problem ID [3617]
Internal file name [OUTPUT/3110_Sunday_June_05_2022_08_52_25_AM_47700535/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 361.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
x2 + 1

)
y′ + 4x2y = 2

13.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 4x
x2 + 1

q(x) = 2
x (x2 + 1)

Hence the ode is

y′ + 4xy
x2 + 1 = 2

x (x2 + 1)
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The integrating factor µ is

µ = e
∫ 4x

x2+1dx

=
(
x2 + 1

)2
The ode becomes

d
dx(µy) = (µ)

(
2

x (x2 + 1)

)
d
dx

((
x2 + 1

)2
y
)
=
((

x2 + 1
)2)( 2

x (x2 + 1)

)
d
((

x2 + 1
)2

y
)
=
(
2x2 + 2

x

)
dx

Integrating gives

(
x2 + 1

)2
y =

∫ 2x2 + 2
x

dx(
x2 + 1

)2
y = x2 + 2 ln (x) + c1

Dividing both sides by the integrating factor µ = (x2 + 1)2 results in

y = x2 + 2 ln (x)
(x2 + 1)2

+ c1

(x2 + 1)2

which simplifies to

y = x2 + 2 ln (x) + c1

(x2 + 1)2

Summary
The solution(s) found are the following

(1)y = x2 + 2 ln (x) + c1

(x2 + 1)2
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Figure 541: Slope field plot

Verification of solutions

y = x2 + 2 ln (x) + c1

(x2 + 1)2

Verified OK.

13.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2(2x2y − 1)
x (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

3560



Table 645: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x2 + 1)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x2+1)2

dy

Which results in

S =
(
x2 + 1

)2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(2x2y − 1)
x (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 4

(
x2 + 1

)
yx

Sy =
(
x2 + 1

)2
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x2 + 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R2 + 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)2

y = x2 + 2 ln (x) + c1

Which simplifies to (
x2 + 1

)2
y = x2 + 2 ln (x) + c1

Which gives

y = x2 + 2 ln (x) + c1

(x2 + 1)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2
(
2x2y−1

)
x(x2+1)

dS
dR

= 2R2+2
R

R = x

S =
(
x2 + 1

)2
y
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Summary
The solution(s) found are the following

(1)y = x2 + 2 ln (x) + c1

(x2 + 1)2

Figure 542: Slope field plot

Verification of solutions

y = x2 + 2 ln (x) + c1

(x2 + 1)2

Verified OK.

13.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 + 1

))
dy =

(
−4x2y + 2

)
dx(

4x2y − 2
)
dx+

(
x
(
x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4x2y − 2
N(x, y) = x

(
x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
4x2y − 2

)
= 4x2

And

∂N

∂x
= ∂

∂x

(
x
(
x2 + 1

))
= 3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + 1)
((
4x2)− (3x2 + 1

))
= x2 − 1

x (x2 + 1)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e

∫
x2−1

x
(
x2+1

) dx

The result of integrating gives

µ = eln
(
x2+1

)
−ln(x)

= x2 + 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2 + 1
x

(
4x2y − 2

)
= (4x2y − 2) (x2 + 1)

x
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And

N = µN

= x2 + 1
x

(
x
(
x2 + 1

))
=
(
x2 + 1

)2
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(4x2y − 2) (x2 + 1)
x

)
+
((

x2 + 1
)2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (4x2y − 2) (x2 + 1)
x

dx

(3)φ = −2 ln (x) + x4y + (2y − 1)x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4 + 2x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= (x2 + 1)2. Therefore equation (4) becomes

(5)
(
x2 + 1

)2 = x4 + 2x2 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2 ln (x) + x4y + (2y − 1)x2 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2 ln (x) + x4y + (2y − 1)x2 + y

The solution becomes

y = x2 + 2 ln (x) + c1
x4 + 2x2 + 1

Summary
The solution(s) found are the following

(1)y = x2 + 2 ln (x) + c1
x4 + 2x2 + 1
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Figure 543: Slope field plot

Verification of solutions

y = x2 + 2 ln (x) + c1
x4 + 2x2 + 1

Verified OK.

13.7.4 Maple step by step solution

Let’s solve
x(x2 + 1) y′ + 4x2y = 2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 4xy

x2+1 +
2

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 4xy

x2+1 = 2
x(x2+1)

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + 4xy

x2+1

)
= 2µ(x)

x(x2+1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 4xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 4µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = (x2 + 1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)
x(x2+1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)
x(x2+1)dx+ c1

• Solve for y

y =
∫ 2µ(x)

x
(
x2+1

)dx+c1

µ(x)

• Substitute µ(x) = (x2 + 1)2

y =
∫ 2

(
x2+1

)
x

dx+c1

(x2+1)2

• Evaluate the integrals on the rhs

y = x2+2 ln(x)+c1
(x2+1)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x*(x^2+1)*diff(y(x),x) = 2-4*x^2*y(x),y(x), singsol=all)� �

y(x) = x2 + 2 ln (x) + c1

(x2 + 1)2

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 23� �
DSolve[x(1+x^2)y'[x]==2(1-2 x^2 y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 2 log(x) + c1

(x2 + 1)2
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13.8 problem 362
13.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3572
13.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3574
13.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3578
13.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3583

Internal problem ID [3618]
Internal file name [OUTPUT/3111_Sunday_June_05_2022_08_52_26_AM_86611507/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 362.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
x2 + 1

)
y′ +

(
5x2 + 3

)
y = x

13.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−5x2 − 3
x (x2 + 1)

q(x) = 1
x2 + 1

Hence the ode is

y′ − (−5x2 − 3) y
x (x2 + 1) = 1

x2 + 1
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The integrating factor µ is

µ = e
∫
− −5x2−3

x
(
x2+1

)dx

= eln
(
x2+1

)
+3 ln(x)

Which simplifies to
µ =

(
x2 + 1

)
x3

The ode becomes

d
dx(µy) = (µ)

(
1

x2 + 1

)
d
dx
((
x2 + 1

)
x3y
)
=
((
x2 + 1

)
x3)( 1

x2 + 1

)
d
((
x2 + 1

)
x3y
)
= x3 dx

Integrating gives (
x2 + 1

)
x3y =

∫
x3 dx(

x2 + 1
)
x3y = x4

4 + c1

Dividing both sides by the integrating factor µ = (x2 + 1)x3 results in

y = x

4x2 + 4 + c1
(x2 + 1)x3

which simplifies to

y = x4 + 4c1
4 (x2 + 1)x3

Summary
The solution(s) found are the following

(1)y = x4 + 4c1
4 (x2 + 1)x3
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Figure 544: Slope field plot

Verification of solutions

y = x4 + 4c1
4 (x2 + 1)x3

Verified OK.

13.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −5x2y − x+ 3y
x (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 648: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln

(
x2+1

)
−3 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x2+1)−3 ln(x)dy

Which results in

S =
(
x2 + 1

)
x3y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −5x2y − x+ 3y
x (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = x2y

(
5x2 + 3

)
Sy =

(
x2 + 1

)
x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R4

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)
x3y = x4

4 + c1

Which simplifies to (
x2 + 1

)
x3y = x4

4 + c1

Which gives

y = x4 + 4c1
4 (x2 + 1)x3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −5x2y−x+3y
x(x2+1)

dS
dR

= R3

R = x

S =
(
x2 + 1

)
x3y

Summary
The solution(s) found are the following

(1)y = x4 + 4c1
4 (x2 + 1)x3
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Figure 545: Slope field plot

Verification of solutions

y = x4 + 4c1
4 (x2 + 1)x3

Verified OK.

13.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 + 1

))
dy =

(
x−

(
5x2 + 3

)
y
)
dx((

5x2 + 3
)
y − x

)
dx+

(
x
(
x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
5x2 + 3

)
y − x

N(x, y) = x
(
x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

((
5x2 + 3

)
y − x

)
= 5x2 + 3

And
∂N

∂x
= ∂

∂x

(
x
(
x2 + 1

))
= 3x2 + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + 1)
((
5x2 + 3

)
−
(
3x2 + 1

))
= 2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2

x
dx

The result of integrating gives

µ = e2 ln(x)

= x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2((5x2 + 3
)
y − x

)
=
(
5x2y − x+ 3y

)
x2

And

N = µN

= x2(x(x2 + 1
))

=
(
x2 + 1

)
x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

5x2y − x+ 3y
)
x2)+ ((x2 + 1

)
x3) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
5x2y − x+ 3y

)
x2 dx

(3)φ = x3(4x2y − x+ 4y)
4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3(4x2 + 4)

4 + f ′(y)

=
(
x2 + 1

)
x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= (x2 + 1)x3. Therefore equation (4) becomes

(5)
(
x2 + 1

)
x3 =

(
x2 + 1

)
x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x3(4x2y − x+ 4y)
4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x3(4x2y − x+ 4y)

4

The solution becomes

y = x4 + 4c1
4 (x2 + 1)x3

Summary
The solution(s) found are the following

(1)y = x4 + 4c1
4 (x2 + 1)x3

Figure 546: Slope field plot

Verification of solutions

y = x4 + 4c1
4 (x2 + 1)x3

Verified OK.
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13.8.4 Maple step by step solution

Let’s solve
x(x2 + 1) y′ + (5x2 + 3) y = x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −
(
5x2+3

)
y

x(x2+1) + 1
x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ +
(
5x2+3

)
y

x(x2+1) = 1
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ +

(
5x2+3

)
y

x(x2+1)

)
= µ(x)

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ +

(
5x2+3

)
y

x(x2+1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = µ(x)
(
5x2+3

)
x(x2+1)

• Solve to find the integrating factor
µ(x) = (x2 + 1)x3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x2+1dx+ c1

• Solve for y

y =
∫ µ(x)

x2+1dx+c1

µ(x)

• Substitute µ(x) = (x2 + 1)x3

y =
∫
x3dx+c1

(x2+1)x3

• Evaluate the integrals on the rhs

y =
x4
4 +c1

(x2+1)x3
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• Simplify
y = x4+4c1

4(x2+1)x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(x*(x^2+1)*diff(y(x),x) = x-(5*x^2+3)*y(x),y(x), singsol=all)� �

y(x) = x4 + 4c1
4x3 (x2 + 1)

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 26� �
DSolve[x(1+x^2)y'[x]==x-(3+5 x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4 + 4c1
4 (x5 + x3)
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13.9 problem 363
13.9.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3585

Internal problem ID [3619]
Internal file name [OUTPUT/3112_Sunday_June_05_2022_08_52_28_AM_80988955/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 363.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

x
(
−x2 + 1

)
y′ +

(
−x2 + 1

)
y2 = −x2

13.9.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2x2 − x2 − y2

x (x2 − 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = − x y2

x2 − 1 + x

x2 − 1 + y2

x (x2 − 1)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x
x2−1 , f1(x) = 0 and f2(x) = − 1

x
. Let

y = −u′

f2u

= −u′

−u
x

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 = 0

f 2
2 f0 =

1
x (x2 − 1)

Substituting the above terms back in equation (2) gives

−u′′(x)
x

− u′(x)
x2 + u(x)

x (x2 − 1) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 EllipticE (x) + c2(EllipticCE (x)− EllipticCK (x))

The above shows that

u′(x) = c2 EllipticCE (x) + c1(EllipticE (x)− EllipticK (x))
x

Using the above in (1) gives the solution

y = c2 EllipticCE (x) + c1(EllipticE (x)− EllipticK (x))
c1 EllipticE (x) + c2 (EllipticCE (x)− EllipticCK (x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = EllipticCE (x) + c3(EllipticE (x)− EllipticK (x))
c3 EllipticE (x) + EllipticCE (x)− EllipticCK (x)

Summary
The solution(s) found are the following

(1)y = EllipticCE (x) + c3(EllipticE (x)− EllipticK (x))
c3 EllipticE (x) + EllipticCE (x)− EllipticCK (x)
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Figure 547: Slope field plot

Verification of solutions

y = EllipticCE (x) + c3(EllipticE (x)− EllipticK (x))
c3 EllipticE (x) + EllipticCE (x)− EllipticCK (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x+y(x)/(x^2-1), y(x)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
<- elliptic successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve(x*(-x^2+1)*diff(y(x),x)+x^2+(-x^2+1)*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1 EllipticCE (x) + EllipticE (x)− EllipticK (x)
c1 EllipticCE (x)− c1 EllipticCK (x) + EllipticE (x)

3 Solution by Mathematica
Time used: 0.971 (sec). Leaf size: 91� �
DSolve[x(1-x^2)y'[x]+x^2+(1-x^2)y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

2

πG2,0
2,2

x2|
1
2 ,

3
2

0, 1

+ c1(EllipticK (x2)− EllipticE (x2))


πG2,0

2,2

x2|
1
2 ,

3
2

0, 0

+ 2c1 EllipticE (x2)

y(x) → 1− EllipticK (x2)
EllipticE (x2)
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13.10 problem 364
13.10.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3590
13.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3592
13.10.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3596
13.10.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3600

Internal problem ID [3620]
Internal file name [OUTPUT/3113_Sunday_June_05_2022_08_52_30_AM_11201599/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 364.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

x2(1− x) y′ − (−x+ 2)xy + y2 = 0

13.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2(1− x) (u′(x)x+ u(x))− (−x+ 2)x2u(x) + u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(u− 1)
x (x− 1)
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Where f(x) = 1
x(x−1) and g(u) = u(u− 1). Integrating both sides gives

1
u (u− 1) du = 1

x (x− 1) dx∫ 1
u (u− 1) du =

∫ 1
x (x− 1) dx

ln (u− 1)− ln (u) = ln (x− 1)− ln (x) + c2

Raising both side to exponential gives

eln(u−1)−ln(u) = eln(x−1)−ln(x)+c2

Which simplifies to

u− 1
u

= c3eln(x−1)−ln(x)

Which simplifies to

u(x) = − 1
−1 + c3

(
1− 1

x

)
Therefore the solution y is

y = xu

= − x

−1 + c3
(
1− 1

x

)
Summary
The solution(s) found are the following

(1)y = − x

−1 + c3
(
1− 1

x

)

3591



Figure 548: Slope field plot

Verification of solutions

y = − x

−1 + c3
(
1− 1

x

)
Verified OK.

13.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(x2 − 2x+ y)
x2 (x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 651: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2eln(x−1)−2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

3593



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2eln(x−1)−2 ln(x)dy

Which results in

S = − x2

(x− 1) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(x2 − 2x+ y)
x2 (x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x(x− 2)
(x− 1)2 y

Sy =
x2

(x− 1) y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(x− 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R− 1)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R− 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x2

(x− 1) y = − 1
x− 1 + c1

Which simplifies to

− x2

(x− 1) y = − 1
x− 1 + c1

Which gives

y = − x2

c1x− c1 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
x2−2x+y

)
x2(x−1)

dS
dR

= 1
(R−1)2

R = x

S = − x2

(x− 1) y
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Summary
The solution(s) found are the following

(1)y = − x2

c1x− c1 − 1

Figure 549: Slope field plot

Verification of solutions

y = − x2

c1x− c1 − 1

Verified OK.

13.10.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(x2 − 2x+ y)
x2 (x− 1)

This is a Bernoulli ODE.

y′ = x2 − 2x
x2 (x− 1)y +

1
x2 (x− 1)y

2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
x2 − 2x
x2 (x− 1)

f1(x) =
1

x2 (x− 1)
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= x2 − 2x
x2 (x− 1) y + 1

x2 (x− 1) (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = (x2 − 2x)w(x)
x2 (x− 1) + 1

x2 (x− 1)

w′ = −(x2 − 2x)w
x2 (x− 1) − 1

x2 (x− 1) (7)

The above now is a linear ODE in w(x) which is now solved.

3597



Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − −x+ 2
x (x− 1)

q(x) = − 1
x2 (x− 1)

Hence the ode is

w′(x)− (−x+ 2)w(x)
x (x− 1) = − 1

x2 (x− 1)

The integrating factor µ is

µ = e
∫
− −x+2

x(x−1)dx

= e− ln(x−1)+2 ln(x)

Which simplifies to

µ = x2

x− 1

The ode becomes

d
dx(µw) = (µ)

(
− 1
x2 (x− 1)

)
d
dx

(
x2w

x− 1

)
=
(

x2

x− 1

)(
− 1
x2 (x− 1)

)
d
(

x2w

x− 1

)
=
(
− 1
(x− 1)2

)
dx

Integrating gives

x2w

x− 1 =
∫

− 1
(x− 1)2

dx

x2w

x− 1 = 1
x− 1 + c1

Dividing both sides by the integrating factor µ = x2

x−1 results in

w(x) = 1
x2 + c1(x− 1)

x2
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which simplifies to

w(x) = 1 + (x− 1) c1
x2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 1 + (x− 1) c1

x2

Or

y = x2

1 + (x− 1) c1
Summary
The solution(s) found are the following

(1)y = x2

1 + (x− 1) c1

Figure 550: Slope field plot

Verification of solutions

y = x2

1 + (x− 1) c1

Verified OK.

3599



13.10.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(x2 − 2x+ y)
x2 (x− 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x− 1 − 2y
x (x− 1) +

y2

x2 (x− 1)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = x2−2x
x2(x−1) and f2(x) = 1

x2(x−1) . Let

y = −u′

f2u

= −u′

u
x2(x−1)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3 (x− 1) −
1

x2 (x− 1)2

f1f2 =
x2 − 2x

x4 (x− 1)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x2 (x− 1) −

(
− 2
x3 (x− 1) −

1
x2 (x− 1)2

+ x2 − 2x
x4 (x− 1)2

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2

x− 1
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The above shows that
u′(x) = − c2

(x− 1)2

Using the above in (1) gives the solution

y = c2x
2

(x− 1)
(
c1 + c2

x−1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x2

c3 (x− 1) + 1

Summary
The solution(s) found are the following

(1)y = x2

c3 (x− 1) + 1

Figure 551: Slope field plot
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Verification of solutions

y = x2

c3 (x− 1) + 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*(1-x)*diff(y(x),x) = (2-x)*x*y(x)-y(x)^2,y(x), singsol=all)� �

y(x) = x2

1 + c1 (x− 1)

3 Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 25� �
DSolve[x^2(1-x)y'[x]==(2-x)x y[x]-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

c1(−x) + 1 + c1
y(x) → 0
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13.11 problem 365
13.11.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3603
13.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3605
13.11.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3609

Internal problem ID [3621]
Internal file name [OUTPUT/3114_Sunday_June_05_2022_08_52_32_AM_26847780/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 365.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

2y′x3 −
(
x2 − y2

)
y = 0

13.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2(u′(x)x+ u(x))x3 −
(
x2 − u(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(u2 + 1)
2x

Where f(x) = − 1
2x and g(u) = u(u2 + 1). Integrating both sides gives

1
u (u2 + 1) du = − 1

2x dx
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∫ 1
u (u2 + 1) du =

∫
− 1
2x dx

− ln (u2 + 1)
2 + ln (u) = − ln (x)

2 + c2

Raising both side to exponential gives

e−
ln
(
u2+1

)
2 +ln(u) = e−

ln(x)
2 +c2

Which simplifies to
u√

u2 + 1
= c3√

x

The solution is
u(x)√

u (x)2 + 1
= c3√

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y√
y2

x2 + 1x
= c3√

x

y√
y2+x2

x2 x
= c3√

x

Which simplifies to
y√

y2+x2

x2

√
x
= c3

Summary
The solution(s) found are the following

(1)y√
y2+x2

x2

√
x
= c3
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Figure 552: Slope field plot

Verification of solutions
y√

y2+x2

x2

√
x
= c3

Verified OK.

13.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(−x2 + y2) y
2x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 653: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y3

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3

x

dy

Which results in

S = − x

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(−x2 + y2) y
2x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
2y2

Sy =
x

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R2

3607



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x

2y2 = 1
2x + c1

Which simplifies to

− x

2y2 = 1
2x + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
−x2+y2

)
y

2x3
dS
dR

= − 1
2R2

R = x

S = − x

2y2

Summary
The solution(s) found are the following

(1)− x

2y2 = 1
2x + c1
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Figure 553: Slope field plot

Verification of solutions

− x

2y2 = 1
2x + c1

Verified OK.

13.11.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −(−x2 + y2) y
2x3

This is a Bernoulli ODE.
y′ = 1

2xy −
1
2x3y

3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) = − 1
2x3

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 1
2x y2 − 1

2x3 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = w(x)

2x − 1
2x3

w′ = −w

x
+ 1

x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = 1
x3
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Hence the ode is

w′(x) + w(x)
x

= 1
x3

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µw) = (µ)

(
1
x3

)
d
dx(xw) = (x)

(
1
x3

)
d(xw) = 1

x2 dx

Integrating gives

xw =
∫ 1

x2 dx

xw = −1
x
+ c1

Dividing both sides by the integrating factor µ = x results in

w(x) = − 1
x2 + c1

x

which simplifies to

w(x) = c1x− 1
x2

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= c1x− 1
x2

Solving for y gives

y(x) = x√
c1x− 1

y(x) = − x√
c1x− 1
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Summary
The solution(s) found are the following

(1)y = x√
c1x− 1

(2)y = − x√
c1x− 1

Figure 554: Slope field plot

Verification of solutions

y = x√
c1x− 1

Verified OK.

y = − x√
c1x− 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(2*x^3*diff(y(x),x) = (x^2-y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = x√
c1x− 1

y(x) = − x√
c1x− 1

3 Solution by Mathematica
Time used: 0.307 (sec). Leaf size: 39� �
DSolve[2 x^3 y'[x]==(x^2-y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x√
−1 + c1x

y(x) → x√
−1 + c1x

y(x) → 0
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13.12 problem 366
13.12.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3614
13.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3616
13.12.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3619
13.12.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3621

Internal problem ID [3622]
Internal file name [OUTPUT/3115_Sunday_June_05_2022_08_52_34_AM_48243731/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 366.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

2y′x3 −
(
3x2 + ay2

)
y = 0

13.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2(u′(x)x+ u(x))x3 −
(
3x2 + au(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(u2a+ 1)
2x

3614



Where f(x) = 1
2x and g(u) = u(u2a+ 1). Integrating both sides gives

1
u (u2a+ 1) du = 1

2x dx∫ 1
u (u2a+ 1) du =

∫ 1
2x dx

− ln (u2a+ 1)
2 + ln (u) = ln (x)

2 + c2

Raising both side to exponential gives

e−
ln
(
u2a+1

)
2 +ln(u) = e

ln(x)
2 +c2

Which simplifies to
u√

u2a+ 1
= c3

√
x

Therefore the solution y is

y = xu

= x
3
2 c3

√
− 1
a c23x− 1

Summary
The solution(s) found are the following

(1)y = x
3
2 c3

√
− 1
a c23x− 1

Verification of solutions

y = x
3
2 c3

√
− 1
a c23x− 1

Verified OK.
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13.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (a y2 + 3x2) y
2x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 655: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = y3

x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3

x3

dy

Which results in

S = − x3

2y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (a y2 + 3x2) y
2x3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −3x2

2y2

Sy =
x3

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= a

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a

2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = aR

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x3

2y2 = ax

2 + c1

Which simplifies to

− x3

2y2 = ax

2 + c1

Summary
The solution(s) found are the following

(1)− x3

2y2 = ax

2 + c1

Verification of solutions

− x3

2y2 = ax

2 + c1

Verified OK.
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13.12.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (a y2 + 3x2) y
2x3

This is a Bernoulli ODE.
y′ = 3

2xy +
a

2x3y
3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
3
2x

f1(x) =
a

2x3

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 3
2x y2 + a

2x3 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)
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Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = 3w(x)

2x + a

2x3

w′ = −3w
x

− a

x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 3
x

q(x) = − a

x3

Hence the ode is

w′(x) + 3w(x)
x

= − a

x3

The integrating factor µ is

µ = e
∫ 3

x
dx

= x3

The ode becomes
d
dx(µw) = (µ)

(
− a

x3

)
d
dx
(
x3w

)
=
(
x3) (− a

x3

)
d
(
x3w

)
= (−a) dx

Integrating gives

x3w =
∫

−a dx

x3w = −ax+ c1

Dividing both sides by the integrating factor µ = x3 results in

w(x) = − a

x2 + c1
x3
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which simplifies to

w(x) = −ax+ c1
x3

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −ax+ c1
x3

Solving for y gives

y(x) =
√

(−ax+ c1)xx
−ax+ c1

y(x) =
√

(−ax+ c1)xx
ax− c1

Summary
The solution(s) found are the following

(1)y =
√

(−ax+ c1)xx
−ax+ c1

(2)y =
√

(−ax+ c1)xx
ax− c1

Verification of solutions

y =
√

(−ax+ c1)xx
−ax+ c1

Verified OK.

y =
√

(−ax+ c1)xx
ax− c1

Verified OK.

13.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x3) dy =

(
y
(
a y2 + 3x2)) dx(

−y
(
a y2 + 3x2)) dx+(2x3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
a y2 + 3x2)

N(x, y) = 2x3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−y
(
a y2 + 3x2))

= −3a y2 − 3x2

And

∂N

∂x
= ∂

∂x

(
2x3)

= 6x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x3

((
−3a y2 − 3x2)− (6x2))

= −3a y2 − 9x2

2x3

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (a y2 + 3x2)
((
6x2)− (−3a y2 − 3x2))

= −3
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy

The result of integrating gives

µ = e−3 ln(y)

= 1
y3
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M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3
(
−y
(
a y2 + 3x2))

= −a y2 − 3x2

y2

And

N = µN

= 1
y3
(
2x3)

= 2x3

y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−a y2 − 3x2

y2

)
+
(
2x3

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−a y2 − 3x2

y2
dx

(3)φ = −x(a y2 + x2)
y2

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2xa

y
+ 2x(a y2 + x2)

y3
+ f ′(y)

= 2x3

y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x3

y3
. Therefore equation (4) becomes

(5)2x3

y3
= 2x3

y3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x(a y2 + x2)
y2

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(a y2 + x2)
y2

Summary
The solution(s) found are the following

(1)−x(ay2 + x2)
y2

= c1

Verification of solutions

−x(ay2 + x2)
y2

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 48� �
dsolve(2*x^3*diff(y(x),x) = (3*x^2+a*y(x)^2)*y(x),y(x), singsol=all)� �

y(x) =
√
(−ax+ c1)xx
−ax+ c1

y(x) =
√
(−ax+ c1)xx
ax− c1

3 Solution by Mathematica
Time used: 0.216 (sec). Leaf size: 49� �
DSolve[2 x^3 y'[x]==(3 x^2+a y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x3/2
√
−ax+ c1

y(x) → x3/2
√
−ax+ c1

y(x) → 0
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13.13 problem 367
13.13.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 3627
13.13.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3631

Internal problem ID [3623]
Internal file name [OUTPUT/3116_Sunday_June_05_2022_08_52_37_AM_42686019/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 367.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

6y′x3 − 4x2y − (1− 3x) y4 = 0

13.13.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(3x y3 − y3 − 4x2)
6x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 657: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y4

x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4

x2

dy

Which results in

S = − x2

3y3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(3x y3 − y3 − 4x2)
6x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
3y3

Sy =
x2

y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1− 3x

6x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1− 3R

6R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + ln (R)
6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x2

3y3 = −x

2 + ln (x)
6 + c1

Which simplifies to

− x2

3y3 = −x

2 + ln (x)
6 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
3x y3−y3−4x2)

6x3
dS
dR

= 1−3R
6R

R = x

S = − x2

3y3

Summary
The solution(s) found are the following

(1)− x2

3y3 = −x

2 + ln (x)
6 + c1
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Figure 555: Slope field plot

Verification of solutions

− x2

3y3 = −x

2 + ln (x)
6 + c1

Verified OK.

13.13.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(3x y3 − y3 − 4x2)
6x3

This is a Bernoulli ODE.
y′ = 2

3xy −
3x− 1
6x3 y4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
3x

f1(x) = −3x− 1
6x3

n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= 2
3x y3 − 3x− 1

6x3 (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = 2w(x)

3x − 3x− 1
6x3

w′ = −2w
x

+ 3x− 1
2x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = 3x− 1
2x3
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Hence the ode is

w′(x) + 2w(x)
x

= 3x− 1
2x3

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ)

(
3x− 1
2x3

)
d
dx
(
w x2) = (x2)(3x− 1

2x3

)
d
(
w x2) = (3x− 1

2x

)
dx

Integrating gives

w x2 =
∫ 3x− 1

2x dx

w x2 = 3x
2 − ln (x)

2 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) =
3x
2 − ln(x)

2
x2 + c1

x2

which simplifies to

w(x) = 3x− ln (x) + 2c1
2x2

Replacing w in the above by 1
y3

using equation (5) gives the final solution.
1
y3

= 3x− ln (x) + 2c1
2x2

Solving for y gives

y(x) =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3

−3x+ ln (x)− 2c1

y(x) =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
1 + i

√
3
)

6x− 2 ln (x) + 4c1

y(x) =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
−1 + i

√
3
)

−6x+ 2 ln (x)− 4c1
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Summary
The solution(s) found are the following

(1)y =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3

−3x+ ln (x)− 2c1

(2)y =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
1 + i

√
3
)

6x− 2 ln (x) + 4c1

(3)y =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
−1 + i

√
3
)

−6x+ 2 ln (x)− 4c1

Figure 556: Slope field plot
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Verification of solutions

y =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3

−3x+ ln (x)− 2c1

Verified OK.

y =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
1 + i

√
3
)

6x− 2 ln (x) + 4c1

Verified OK.

y =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
−1 + i

√
3
)

−6x+ 2 ln (x)− 4c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 129� �
dsolve(6*x^3*diff(y(x),x) = 4*x^2*y(x)+(1-3*x)*y(x)^4,y(x), singsol=all)� �

y(x) =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3

−3x+ ln (x)− 2c1

y(x) =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
1 + i

√
3
)

6x− 2 ln (x) + 4c1

y(x) =
2 1

3
(
−x2(−3x+ ln (x)− 2c1)2

) 1
3
(
i
√
3− 1

)
−6x+ 2 ln (x)− 4c1
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3 Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 99� �
DSolve[6 x^3 y'[x]==4 x^2 y[x]+(1-3 x)y[x]^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3
√
−2x2/3

3
√
3x− log(x) + 2c1

y(x) → x2/3

3

√
3x
2 − log(x)

2 + c1

y(x) → (−1)2/3x2/3

3

√
3x
2 − log(x)

2 + c1

y(x) → 0
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13.14 problem 368
13.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3637
13.14.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3638

Internal problem ID [3624]
Internal file name [OUTPUT/3117_Sunday_June_05_2022_08_52_40_AM_94394201/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 368.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

x
(
c x2 + bx+ a

)
y′ −

(
c x2 + bx+ a

)
y − y2 = −x2

13.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
c x2 + bx+ a

)
(u′(x)x+ u(x))−

(
c x2 + bx+ a

)
u(x)x− u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 − 1
c x2 + bx+ a

Where f(x) = 1
c x2+bx+a

and g(u) = u2 − 1. Integrating both sides gives

1
u2 − 1 du = 1

c x2 + bx+ a
dx∫ 1

u2 − 1 du =
∫ 1

c x2 + bx+ a
dx

− arctanh (u) =
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca− b2

+ c2
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The solution is

− arctanh (u(x))−
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca− b2

− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− arctanh
(y
x

)
−

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca− b2

− c2 = 0

− arctanh
(y
x

)
−

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca− b2

− c2 = 0

Summary
The solution(s) found are the following

(1)− arctanh
(y
x

)
−

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca− b2

− c2 = 0

Verification of solutions

− arctanh
(y
x

)
−

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca− b2

− c2 = 0

Verified OK.

13.14.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= c x2y + bxy + ya− x2 + y2

x (c x2 + bx+ a)

This is a Riccati ODE. Comparing the ODE to solve

y′ = xcy

c x2 + bx+ a
+ by

c x2 + bx+ a
+ ya

x (c x2 + bx+ a)−
x

c x2 + bx+ a
+ y2

x (c x2 + bx+ a)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = − x
c x2+bx+a

, f1(x) = 1
x
and f2(x) = 1

x(c x2+bx+a) . Let

y = −u′

f2u

= −u′

u
x(c x2+bx+a)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2 (c x2 + bx+ a) −
2cx+ b

x (c x2 + bx+ a)2

f1f2 =
1

x2 (c x2 + bx+ a)

f 2
2 f0 = − 1

x (c x2 + bx+ a)3

Substituting the above terms back in equation (2) gives
u′′(x)

x (c x2 + bx+ a) +
(2cx+ b)u′(x)

x (c x2 + bx+ a)2
− u(x)

x (c x2 + bx+ a)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sinh

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca− b2

+ c2 cosh

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca− b2


The above shows that

u′(x) =
c1 cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
+ c2 sinh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
c x2 + bx+ a

Using the above in (1) gives the solution

y = −

(
c1 cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
+ c2 sinh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

))
x

c1 sinh
(

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca−b2

)
+ c2 cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −

(
c3 cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
+ sinh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

))
x

c3 sinh
(

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca−b2

)
+ cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)

Summary
The solution(s) found are the following

(1)y = −

(
c3 cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
+ sinh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

))
x

c3 sinh
(

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca−b2

)
+ cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
Verification of solutions

y = −

(
c3 cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)
+ sinh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

))
x

c3 sinh
(

2 arctan
(

2cx+b√
4ca−b2

)
√
4ca−b2

)
+ cosh

(
2 arctan

(
2cx+b√
4ca−b2

)
√
4ca−b2

)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �

3640



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
dsolve(x*(c*x^2+b*x+a)*diff(y(x),x)+x^2-(c*x^2+b*x+a)*y(x) = y(x)^2,y(x), singsol=all)� �

y(x) = − tanh

c1
√
4ac− b2 + 2arctan

(
2cx+b√
4ac−b2

)
√
4ac− b2

x

3 Solution by Mathematica
Time used: 1.182 (sec). Leaf size: 116� �
DSolve[x(a+b x +c x^2)y'[x]+x^2-(a+b x+c x^2)y[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
x

(
−1 + exp

(
4 arctan

(
b+2cx√
4ac−b2

)
√
4ac−b2

+ 2c1

))

1 + exp
(

4 arctan
(

b+2cx√
4ac−b2

)
√
4ac−b2

+ 2c1

)
y(x) → −x
y(x) → x
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13.15 problem 369
13.15.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3642
13.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3644
13.15.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3648
13.15.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3652

Internal problem ID [3625]
Internal file name [OUTPUT/3118_Sunday_June_05_2022_08_52_42_AM_37212909/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 369.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

y′x4 −
(
y + x3) y = 0

13.15.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x4 −
(
u(x)x+ x3)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2

x3
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Where f(x) = 1
x3 and g(u) = u2. Integrating both sides gives

1
u2 du = 1

x3 dx∫ 1
u2 du =

∫ 1
x3 dx

−1
u
= − 1

2x2 + c2

The solution is

− 1
u (x) +

1
2x2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
+ 1

2x2 − c2 = 0

−x

y
+ 1

2x2 − c2 = 0

Summary
The solution(s) found are the following

(1)−x

y
+ 1

2x2 − c2 = 0
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Figure 557: Slope field plot

Verification of solutions

−x

y
+ 1

2x2 − c2 = 0

Verified OK.

13.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x3 + y) y
x4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 659: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x3 + y) y
x4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= − 1

2x2 + c1

Which simplifies to

−x

y
= − 1

2x2 + c1

Which gives

y = − 2x3

2c1x2 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
x3+y

)
y

x4
dS
dR

= 1
R3

R = x

S = −x

y
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Summary
The solution(s) found are the following

(1)y = − 2x3

2c1x2 − 1

Figure 558: Slope field plot

Verification of solutions

y = − 2x3

2c1x2 − 1

Verified OK.

13.15.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (x3 + y) y
x4

This is a Bernoulli ODE.
y′ = 1

x
y + 1

x4y
2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) =
1
x4

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
xy

+ 1
x4 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

+ 1
x4

w′ = −w

x
− 1

x4 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = − 1
x4

Hence the ode is

w′(x) + w(x)
x

= − 1
x4

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µw) = (µ)

(
− 1
x4

)
d
dx(xw) = (x)

(
− 1
x4

)
d(xw) =

(
− 1
x3

)
dx

Integrating gives

xw =
∫

− 1
x3 dx

xw = 1
2x2 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = 1
2x3 + c1

x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 1

2x3 + c1
x
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Or

y = 1
1

2x3 + c1
x

Summary
The solution(s) found are the following

(1)y = 1
1

2x3 + c1
x

Figure 559: Slope field plot

Verification of solutions

y = 1
1

2x3 + c1
x

Verified OK.
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13.15.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (x3 + y) y
x4

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x
+ y2

x4

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = 1

x4 . Let

y = −u′

f2u

= −u′

u
x4

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 4

x5

f1f2 =
1
x5

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x4 + 3u′(x)

x5 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x2
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The above shows that

u′(x) = −2c2
x3

Using the above in (1) gives the solution

y = 2c2x
c1 + c2

x2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2x
c3 + 1

x2

Summary
The solution(s) found are the following

(1)y = 2x
c3 + 1

x2

Figure 560: Slope field plot
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Verification of solutions

y = 2x
c3 + 1

x2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x^4*diff(y(x),x) = (x^3+y(x))*y(x),y(x), singsol=all)� �

y(x) = 2x3

2c1x2 + 1

3 Solution by Mathematica
Time used: 0.141 (sec). Leaf size: 26� �
DSolve[x^4 y'[x]==(x^3+y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3

1 + 2c1x2

y(x) → 0
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13.16 problem 370
13.16.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3655
13.16.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3661

Internal problem ID [3626]
Internal file name [OUTPUT/3119_Sunday_June_05_2022_08_52_44_AM_89447527/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 370.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , [_Riccati , _special ]]

y′x4 + y2x4 = −a2

13.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x4y2 + a2

x4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2 −
(x4y2 + a2) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x4

− (x4y2 + a2)2 (xa5 + 2ya6 + a3)
x8

−
(
−4y2

x
+ 4x4y2 + 4a2

x5

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
+ 2y

(
x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

−x9y4a5 + 2x8y5a6 + x8y4a3 − 2x10yb4 − 2x9y2a4 − x9y2b5 − x8y3a5 − 2x9yb2 − x8y2a2 − x8y2b3 + 2a2x5y2a5 + 4a2x4y3a6 − 2x9b4 − 2x8yb1 − yb5x
8 + 2a2x4y2a3 − b2x

8 + 2a2x5a4 + a2x5b5 + 3a2x4ya5 + 2a2x4yb6 + 4a2x3y2a6 + 3a2x4a2 + a2x4b3 + 4a2x3ya3 + a4xa5 + 2a4ya6 + 4a2x3a1 + a4a3
x8

= 0

Setting the numerator to zero gives

(6E)
−x9y4a5−2x8y5a6−x8y4a3+2x10yb4+2x9y2a4+x9y2b5+x8y3a5+2x9yb2
+ x8y2a2 + x8y2b3 − 2a2x5y2a5 − 4a2x4y3a6 + 2x9b4 + 2x8yb1 + yb5x

8

−2a2x4y2a3+ b2x
8−2a2x5a4−a2x5b5−3a2x4ya5−2a2x4yb6−4a2x3y2a6

− 3a2x4a2 − a2x4b3 − 4a2x3ya3 − a4xa5 − 2a4ya6 − 4a2x3a1 − a4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a5v

9
1v

4
2−2a6v81v52−a3v

8
1v

4
2+2a4v91v22+a5v

8
1v

3
2+2b4v101 v2+b5v

9
1v

2
2+a2v

8
1v

2
2

+ 2b2v91v2 + b3v
8
1v

2
2 − 2a2a5v51v22 − 4a2a6v41v32 + 2b1v81v2 + 2b4v91 + b5v

8
1v2

−2a2a3v41v22+b2v
8
1−2a2a4v51−3a2a5v41v2−4a2a6v31v22−a2b5v

5
1−2a2b6v41v2

− 3a2a2v41 − 4a2a3v31v2 − a2b3v
4
1 − a4a5v1 − 2a4a6v2 − 4a2a1v31 − a4a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

2b4v101 v2 − a5v
9
1v

4
2 + (2a4 + b5) v91v22 + 2b2v91v2 + 2b4v91 − 2a6v81v52

− a3v
8
1v

4
2 + a5v

8
1v

3
2 + (a2 + b3) v81v22 + (2b1 + b5) v81v2 + b2v

8
1

− 2a2a5v51v22 +
(
−2a2a4 − a2b5

)
v51 − 4a2a6v41v32 − 2a2a3v41v22

+
(
−3a2a5 − 2a2b6

)
v41v2 +

(
−3a2a2 − a2b3

)
v41 − 4a2a6v31v22

− 4a2a3v31v2 − 4a2a1v31 − a4a5v1 − 2a4a6v2 − a4a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a5 = 0
b2 = 0

−a3 = 0
−a5 = 0
−2a6 = 0
2b2 = 0
2b4 = 0

−4a2a1 = 0
−4a2a3 = 0
−2a2a3 = 0
−2a2a5 = 0
−4a2a6 = 0
−a4a3 = 0
−a4a5 = 0
−2a4a6 = 0
a2 + b3 = 0
2a4 + b5 = 0
2b1 + b5 = 0

−3a2a2 − a2b3 = 0
−2a2a4 − a2b5 = 0
−3a2a5 − 2a2b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = b1

a5 = 0
a6 = 0
b1 = b1

b2 = 0
b3 = 0
b4 = 0
b5 = −2b1
b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x2

η = −2xy + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2xy + 1−
(
−x4y2 + a2

x4

)(
x2)

= x4y2 − 2x3y + a2 + x2

x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4y2−2x3y+a2+x2

x2

dy

Which results in

S =
arctan

(
2x4y−2x3

2x2a

)
a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x4y2 + a2

x4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2xy − 1
x4y2 − 2x3y + a2 + x2

Sy =
x2

x4y2 − 2x3y + a2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

x2 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan
(

x(yx−1)
a

)
a

= 1
x
+ c1

Which simplifies to

arctan
(

x(yx−1)
a

)
a

= 1
x
+ c1

Which gives

y =
tan

(
a(c1x+1)

x

)
a+ x

x2

Summary
The solution(s) found are the following

(1)y =
tan

(
a(c1x+1)

x

)
a+ x

x2

Verification of solutions

y =
tan

(
a(c1x+1)

x

)
a+ x

x2

Verified OK.
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13.16.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x4y2 + a2

x4

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 − a2

x4

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −a2

x4 , f1(x) = 0 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 = −a2

x4

Substituting the above terms back in equation (2) gives

−u′′(x)− a2u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x
(
c1 sin

(a
x

)
+ c2 cos

(a
x

))
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The above shows that

u′(x) = c1 sin
(a
x

)
+ c2 cos

(a
x

)
+

a
(
−c1 cos

(
a
x

)
+ c2 sin

(
a
x

))
x

Using the above in (1) gives the solution

y =
c1 sin

(
a
x

)
+ c2 cos

(
a
x

)
+ a

(
−c1 cos

(
a
x

)
+c2 sin

(
a
x

))
x

x
(
c1 sin

(
a
x

)
+ c2 cos

(
a
x

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(−ac3 + x) cos

(
a
x

)
+ sin

(
a
x

)
(c3x+ a)

x2
(
c3 sin

(
a
x

)
+ cos

(
a
x

))
Summary
The solution(s) found are the following

(1)y =
(−ac3 + x) cos

(
a
x

)
+ sin

(
a
x

)
(c3x+ a)

x2
(
c3 sin

(
a
x

)
+ cos

(
a
x

))
Verification of solutions

y =
(−ac3 + x) cos

(
a
x

)
+ sin

(
a
x

)
(c3x+ a)

x2
(
c3 sin

(
a
x

)
+ cos

(
a
x

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve(x^4*diff(y(x),x)+a^2+x^4*y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
−a tan

(
a(c1x−1)

x

)
+ x

x2

3 Solution by Mathematica
Time used: 0.693 (sec). Leaf size: 87� �
DSolve[x^4 y'[x]+a^2+x^4 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2ia2c1e
2ia
x + 2ac1xe

2ia
x + a− ix

x2
(
2ac1e

2ia
x − i

)
y(x) → x− ia

x2
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13.17 problem 371
13.17.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3664

Internal problem ID [3627]
Internal file name [OUTPUT/3120_Sunday_June_05_2022_08_52_46_AM_90838527/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 371.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′x4 + yx3 + csc (yx) = 0

13.17.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x3y + csc (xy)
x4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− (x3y + csc (xy)) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x4

− (x3y + csc (xy))2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x8

−
(
−3x2y − y csc (xy) cot (xy)

x4 + 4x3y + 4 csc (xy)
x5

)(
x3a7 + x2ya8

+ x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

+(x3 − x csc (xy) cot (xy)) (x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)
x4

= 0

Putting the above in normal form gives

−csc (xy) cot (xy)x6b2 + csc (xy) cot (xy)x5b1 + 6 csc (xy)x3ya3 + csc (xy) cot (xy)x6ya4 + csc (xy) cot (xy)x5y2a5 + csc (xy) cot (xy)x4y3a6 + csc (xy) cot (xy)x6yb5 + csc (xy) cot (xy)x5y2b6 − 2x9yb8 − yb5x
8 − x8ya4 + x7y2a5 + x7y2b6 + 3x6y3a6 + 2 csc (xy)x5a4 + csc (xy)x5b5 + csc (xy)2 xa5 + 2 csc (xy)2 ya6 − 2x9ya7 + 2x7y3a9 + 2x7y3b10 + 4x6y4a10 + x6 csc (xy) a7 + x6 csc (xy) b8 + csc (xy)2 x2a8 + 3 csc (xy)2 y2a10 + 4x5 csc (xy) ya8 + 2x5 csc (xy) yb9 + 7x4 csc (xy) y2a9 + 3x4 csc (xy) y2b10 + 10 csc (xy)x3y3a10 + 2 csc (xy)2 xya9 + csc (xy) cot (xy)x8b7 + csc (xy) cot (xy)x7ya7 + csc (xy) cot (xy)x6y2a8 + csc (xy) cot (xy)x5y3a9 + csc (xy) cot (xy)x4y4a10 + csc (xy) cot (xy)x7yb8 + csc (xy) cot (xy)x6y2b9 + csc (xy) cot (xy)x5y3b10 + csc (xy) cot (xy)x5ya2 + csc (xy) cot (xy)x5yb3 + csc (xy) cot (xy)x4y2a3 + csc (xy) cot (xy)x4ya1 − 2b2x8 − x7b1 + csc (xy)2 a3 − 4x10b7 + 5 csc (xy)x4ya5 + 2 csc (xy)x4yb6 + 8 csc (xy)x3y2a6 + csc (xy) cot (xy)x7b4 − 3x9b4 + 2x6y2a3 + x6ya1 + 3 csc (xy)x4a2 + csc (xy)x4b3 + 4 csc (xy)x3a1

x8

= 0
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Setting the numerator to zero gives

(6E)

− csc (xy) cot (xy)x6b2 − csc (xy) cot (xy)x5b1
− 6 csc (xy)x3ya3 − csc (xy) cot (xy)x6ya4
− csc (xy) cot (xy)x5y2a5 − csc (xy) cot (xy)x4y3a6
− csc (xy) cot (xy)x6yb5 − csc (xy) cot (xy)x5y2b6 +2x9yb8
+yb5x

8+x8ya4−x7y2a5−x7y2b6−3x6y3a6−2 csc (xy)x5a4
− csc (xy)x5b5 − csc (xy)2 xa5 − 2 csc (xy)2 ya6 + 2x9ya7
− 2x7y3a9 − 2x7y3b10 − 4x6y4a10 − x6 csc (xy) a7
− x6 csc (xy) b8 − csc (xy)2 x2a8 − 3 csc (xy)2 y2a10
− 4x5 csc (xy) ya8 − 2x5 csc (xy) yb9 − 7x4 csc (xy) y2a9
− 3x4 csc (xy) y2b10 − 10 csc (xy)x3y3a10 − 2 csc (xy)2 xya9
− csc (xy) cot (xy)x8b7 − csc (xy) cot (xy)x7ya7
− csc (xy) cot (xy)x6y2a8 − csc (xy) cot (xy)x5y3a9
− csc (xy) cot (xy)x4y4a10 − csc (xy) cot (xy)x7yb8
− csc (xy) cot (xy)x6y2b9 − csc (xy) cot (xy)x5y3b10
− csc (xy) cot (xy)x5ya2 − csc (xy) cot (xy)x5yb3
− csc (xy) cot (xy)x4y2a3 − csc (xy) cot (xy)x4ya1
+ 2b2x8 + x7b1 − csc (xy)2 a3 + 4x10b7
− 5 csc (xy)x4ya5 − 2 csc (xy)x4yb6 − 8 csc (xy)x3y2a6
− csc (xy) cot (xy)x7b4 + 3x9b4 − 2x6y2a3 − x6ya1
− 3 csc (xy)x4a2 − csc (xy)x4b3 − 4 csc (xy)x3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cot (xy) , csc (xy)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cot (xy) = v3, csc (xy) = v4}
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The above PDE (6E) now becomes

(7E)

2b2v81 + v71b1 − v24a3 + 4v101 b7 + 3v91b4 − v4v3v
5
1b1 − 6v4v31v2a3

− 4v51v4v2a8 − 2v51v4v2b9 − 7v41v4v22a9 − 3v41v4v22b10 − 10v4v31v32a10
− 2v24v1v2a9 − v4v3v

8
1b7 − 5v4v41v2a5 − 2v4v41v2b6 − 8v4v31v22a6

− v4v3v
7
1b4 − v4v3v

6
1b2 − v4v3v

6
1v2a4 − v4v3v

5
1v

2
2a5 − v4v3v

4
1v

3
2a6

− v4v3v
6
1v2b5 − v4v3v

5
1v

2
2b6 − v4v3v

7
1v2a7 − v4v3v

6
1v

2
2a8 − v4v3v

5
1v

3
2a9

− v4v3v
4
1v

4
2a10− v4v3v

7
1v2b8− v4v3v

6
1v

2
2b9− v4v3v

5
1v

3
2b10− v4v3v

5
1v2a2

−v4v3v
5
1v2b3−v4v3v

4
1v

2
2a3−v4v3v

4
1v2a1−3v24v22a10−2v61v22a3−v61v2a1

− 3v4v41a2 − v4v
4
1b3 − 4v4v31a1 + 2v91v2b8 + v2b5v

8
1 + v81v2a4 − v71v

2
2a5

− v71v
2
2b6− 3v61v32a6− 2v4v51a4− v4v

5
1b5− v24v1a5− 2v24v2a6+2v91v2a7

− 2v71v32a9 − 2v71v32b10 − 4v61v42a10 − v61v4a7 − v61v4b8 − v24v
2
1a8 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

(−3a2− b3) v41v4+(2b8+2a7) v2v91 +(b5+a4) v81v2+(−a5− b6) v22v71
+ (−2a4 − b5) v51v4 + (−2a9 − 2b10) v32v71 + (−a7 − b8) v4v61
+ 2b2v81 + v71b1 − v24a3 + 4v101 b7 + 3v91b4 − v4v3v

5
1b1 − 6v4v31v2a3

− 10v4v31v32a10 − 2v24v1v2a9 − v4v3v
8
1b7 − 8v4v31v22a6 − v4v3v

7
1b4

− v4v3v
6
1b2 − v4v3v

4
1v

3
2a6 − v4v3v

4
1v

4
2a10 − v4v3v

4
1v

2
2a3

− v4v3v
4
1v2a1 + (−4a8 − 2b9) v2v4v51 + (−7a9 − 3b10) v22v4v41

+ (−5a5 − 2b6) v2v41v4 − 3v24v22a10 − 2v61v22a3 − v61v2a1
− 4v4v31a1 − 3v61v32a6 − v24v1a5 − 2v24v2a6 − 4v61v42a10 − v24v

2
1a8

+ (−b5 − a4) v2v61v3v4 + (−a5 − b6) v22v51v3v4 + (−a7 − b8) v2v71v3v4
+(−a8−b9) v22v61v3v4+(−a9−b10) v32v51v3v4+(−a2−b3) v2v51v3v4 =0
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Setting each coefficients in (8E) to zero gives the following equations to solve
b1 = 0

−4a1 = 0
−a1 = 0
−6a3 = 0
−2a3 = 0
−a3 = 0
−a5 = 0
−8a6 = 0
−3a6 = 0
−2a6 = 0
−a6 = 0
−a8 = 0
−2a9 = 0

−10a10 = 0
−4a10 = 0
−3a10 = 0
−a10 = 0
−b1 = 0
−b2 = 0
2b2 = 0
−b4 = 0
3b4 = 0
−b7 = 0
4b7 = 0

−3a2 − b3 = 0
−a2 − b3 = 0
−2a4 − b5 = 0
−5a5 − 2b6 = 0
−a5 − b6 = 0
−a7 − b8 = 0

−4a8 − 2b9 = 0
−a8 − b9 = 0

−7a9 − 3b10 = 0
−2a9 − 2b10 = 0
−a9 − b10 = 0
−b5 − a4 = 0
b5 + a4 = 0

2b8 + 2a7 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = −b8

a8 = 0
a9 = 0
a10 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b8

b9 = 0
b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x3

η = x2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x2y −
(
−x3y + csc (xy)

x4

)(
−x3)

= −csc (xy)
x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− csc(xy)
x

dy

Which results in

S = cos (xy)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3y + csc (xy)
x4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y sin (xy)
Sy = −x sin (xy)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (yx) = − 1
2x2 + c1

Which simplifies to

cos (yx) = − 1
2x2 + c1

Which gives

y =
arccos

(
2c1x2−1

2x2

)
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x3y+csc(xy)
x4

dS
dR

= 1
R3

R = x

S = cos (xy)

Summary
The solution(s) found are the following

(1)y =
arccos

(
2c1x2−1

2x2

)
x
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Figure 561: Slope field plot

Verification of solutions

y =
arccos

(
2c1x2−1

2x2

)
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
<- symmetry pattern of the form [F(x),G(x)*y+H(x)] successful
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
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3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 26� �
dsolve(x^4*diff(y(x),x)+x^3*y(x)+csc(x*y(x)) = 0,y(x), singsol=all)� �

y(x) =
π
2 + arcsin

(
2c1x2+1

2x2

)
x

3 Solution by Mathematica
Time used: 5.347 (sec). Leaf size: 40� �
DSolve[x^4 y'[x]+x^3 y[x]+ Csc[x y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
arccos

(
− 1

2x2 + c1
)

x

y(x) →
arccos

(
− 1

2x2 + c1
)

x
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13.18 problem 372
13.18.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3676
13.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3678
13.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3682
13.18.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3686
13.18.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3689

Internal problem ID [3628]
Internal file name [OUTPUT/3121_Sunday_June_05_2022_08_52_48_AM_19890800/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 372.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−x4 + 1

)
y′ − 2x

(
1− y2

)
= 0

13.18.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(2y2 − 2)
x4 − 1

Where f(x) = x
x4−1 and g(y) = 2y2 − 2. Integrating both sides gives

1
2y2 − 2 dy = x

x4 − 1 dx∫ 1
2y2 − 2 dy =

∫
x

x4 − 1 dx
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−arctanh (y)
2 = ln (x− 1)

4 + ln (x+ 1)
4 − ln (x2 + 1)

4 + c1

Which results in

y = − tanh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2 + 2c1
)

Summary
The solution(s) found are the following

(1)y = − tanh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2 + 2c1
)

Figure 562: Slope field plot

Verification of solutions

y = − tanh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2 + 2c1
)

Verified OK.
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13.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2(y2 − 1)x
x4 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 661: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x4 − 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x4−1
x

dx

Which results in

S = ln (x− 1)
4 + ln (x+ 1)

4 − ln (x2 + 1)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2(y2 − 1)x
x4 − 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

x4 − 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2y2 − 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R2 − 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −arctanh (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x− 1)
4 + ln (x+ 1)

4 − ln (x2 + 1)
4 = −arctanh (y)

2 + c1

Which simplifies to

ln (x− 1)
4 + ln (x+ 1)

4 − ln (x2 + 1)
4 = −arctanh (y)

2 + c1

Which gives

y = tanh
(
− ln (x− 1)

2 − ln (x+ 1)
2 + ln (x2 + 1)

2 + 2c1
)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2
(
y2−1

)
x

x4−1
dS
dR

= 1
2R2−2

R = y

S = ln (x− 1)
4 + ln (x+ 1)

4 − ln (x2 + 1)
4

Summary
The solution(s) found are the following

(1)y = tanh
(
− ln (x− 1)

2 − ln (x+ 1)
2 + ln (x2 + 1)

2 + 2c1
)
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Figure 563: Slope field plot

Verification of solutions

y = tanh
(
− ln (x− 1)

2 − ln (x+ 1)
2 + ln (x2 + 1)

2 + 2c1
)

Verified OK.

13.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

2y2 − 2

)
dy =

(
x

x4 − 1

)
dx(

− x

x4 − 1

)
dx+

(
1

2y2 − 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x4 − 1
N(x, y) = 1

2y2 − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x4 − 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

2y2 − 2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x4 − 1 dx

(3)φ = − ln (x− 1)
4 − ln (x+ 1)

4 + ln (x2 + 1)
4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y2−2 . Therefore equation (4) becomes

(5)1
2y2 − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y2 − 2

3684



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2y2 − 2

)
dy

f(y) = −arctanh (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1)
4 − ln (x+ 1)

4 + ln (x2 + 1)
4 − arctanh (y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)
4 − ln (x+ 1)

4 + ln (x2 + 1)
4 − arctanh (y)

2

The solution becomes

y = − tanh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2 + 2c1
)

Summary
The solution(s) found are the following

(1)y = − tanh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2 + 2c1
)
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Figure 564: Slope field plot

Verification of solutions

y = − tanh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2 + 2c1
)

Verified OK.

13.18.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 2(y2 − 1)x
x4 − 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2x y2
x4 − 1 − 2x

x4 − 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = − 2x
x4−1 , f1(x) = 0 and f2(x) = 2x

x4−1 . Let

y = −u′

f2u

= −u′

2xu
x4−1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2
x4 − 1 − 8x4

(x4 − 1)2

f1f2 = 0

f 2
2 f0 = − 8x3

(x4 − 1)3

Substituting the above terms back in equation (2) gives

2xu′′(x)
x4 − 1 −

(
2

x4 − 1 − 8x4

(x4 − 1)2
)
u′(x)− 8x3u(x)

(x4 − 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sinh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2

)
+ c2 cosh

(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2

)
The above shows that

u′(x)=
2x
(
c1 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
+ c2 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

))
x4 − 1

Using the above in (1) gives the solution

y = −
c1 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
+ c2 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
c1 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
+ c2 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−c3 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
− sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
c3 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
+ cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
Summary
The solution(s) found are the following

(1)y =
−c3 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
− sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
c3 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
+ cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)

Figure 565: Slope field plot

Verification of solutions

y =
−c3 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
− sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
c3 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
+ cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
Verified OK.
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13.18.5 Maple step by step solution

Let’s solve
(−x4 + 1) y′ − 2x(1− y2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1−y2
= 2x

−x4+1

• Integrate both sides with respect to x∫
y′

1−y2
dx =

∫ 2x
−x4+1dx+ c1

• Evaluate integral

arctanh(y) = − ln(x−1)
2 − ln(x+1)

2 + ln
(
x2+1

)
2 + c1

• Solve for y

y = tanh
(
− ln(x−1)

2 − ln(x+1)
2 + ln

(
x2+1

)
2 + c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve((-x^4+1)*diff(y(x),x) = 2*x*(1-y(x)^2),y(x), singsol=all)� �

y(x) = − tanh
(
ln (x+ 1)

2 − ln (x2 + 1)
2 + ln (x− 1)

2 + 2c1
)
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3 Solution by Mathematica
Time used: 0.818 (sec). Leaf size: 55� �
DSolve[(1-x^4)y'[x]==2 x(1-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x2 + e2c1(x2 − 1) + 1
−x2 + e2c1 (x2 − 1)− 1

y(x) → −1
y(x) → 1
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13.19 problem 373
13.19.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3691
13.19.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 3693
13.19.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 3695
13.19.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3699
13.19.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3703

Internal problem ID [3629]
Internal file name [OUTPUT/3122_Sunday_June_05_2022_08_52_49_AM_1801192/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 373.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x
(
−x3 + 1

)
y′ +

(
−4x3 + 1

)
y = 2x

13.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−4x3 + 1
x4 − x

q(x) = − 2
x3 − 1

Hence the ode is

y′ − (−4x3 + 1) y
x4 − x

= − 2
x3 − 1
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The integrating factor µ is

µ = e
∫
−−4x3+1

x4−x
dx

= x
(
x3 − 1

)
Which simplifies to

µ = x4 − x

The ode becomes

d
dx(µy) = (µ)

(
− 2
x3 − 1

)
d
dx
((
x4 − x

)
y
)
=
(
x4 − x

)(
− 2
x3 − 1

)
d
((
x4 − x

)
y
)
= (−2x) dx

Integrating gives (
x4 − x

)
y =

∫
−2x dx(

x4 − x
)
y = −x2 + c1

Dividing both sides by the integrating factor µ = x4 − x results in

y = − x2

x4 − x
+ c1

x4 − x

which simplifies to

y = −x2 + c1
x4 − x

Summary
The solution(s) found are the following

(1)y = −x2 + c1
x4 − x
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Figure 566: Slope field plot

Verification of solutions

y = −x2 + c1
x4 − x

Verified OK.

13.19.2 Solving as differentialType ode

Writing the ode as

y′ = 2x− (−4x3 + 1) y
x (−x3 + 1) (1)

Which becomes

0 =
(
−x4 + x

)
dy +

(
−4x3y − 2x+ y

)
dx (2)

But the RHS is complete differential because(
−x4 + x

)
dy +

(
−4x3y − 2x+ y

)
dx = d

(
−x4y − x2 + xy

)
Hence (2) becomes

0 = d
(
−x4y − x2 + xy

)
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Integrating both sides gives gives these solutions

y = −x2 + c1
x (x3 − 1) + c1

Summary
The solution(s) found are the following

(1)y = −x2 + c1
x (x3 − 1) + c1

Figure 567: Slope field plot

Verification of solutions

y = −x2 + c1
x (x3 − 1) + c1

Verified OK.
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13.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4x3y + 2x− y

x (x3 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 664: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x (x3 − 1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x(x3−1)

dy

Which results in

S = x
(
x3 − 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x3y + 2x− y

x (x3 − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 4x3y − y

Sy = x4 − x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x4 − x
)
y = −x2 + c1

Which simplifies to (
x4 − x

)
y = −x2 + c1

Which gives

y = −x2 + c1
x (x3 − 1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x3y+2x−y
x(x3−1)

dS
dR

= −2R

R = x

S =
(
x4 − x

)
y

Summary
The solution(s) found are the following

(1)y = −x2 + c1
x (x3 − 1)
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Figure 568: Slope field plot

Verification of solutions

y = −x2 + c1
x (x3 − 1)

Verified OK.

13.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−x3 + 1

))
dy =

(
2x−

(
−4x3 + 1

)
y
)
dx(

−2x+
(
−4x3 + 1

)
y
)
dx+

(
x
(
−x3 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x+
(
−4x3 + 1

)
y

N(x, y) = x
(
−x3 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2x+

(
−4x3 + 1

)
y
)

= −4x3 + 1

And
∂N

∂x
= ∂

∂x

(
x
(
−x3 + 1

))
= −4x3 + 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x+

(
−4x3 + 1

)
y dx

(3)φ = −x
(
x3y + x− y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x

(
x3 − 1

)
+ f ′(y)

= −x4 + x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(−x3 + 1). Therefore equation (4) becomes

(5)x
(
−x3 + 1

)
= −x4 + x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x
(
x3y + x− y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x
(
x3y + x− y

)
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The solution becomes

y = − x2 + c1
x (x3 − 1)

Summary
The solution(s) found are the following

(1)y = − x2 + c1
x (x3 − 1)

Figure 569: Slope field plot

Verification of solutions

y = − x2 + c1
x (x3 − 1)

Verified OK.
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13.19.5 Maple step by step solution

Let’s solve
x(−x3 + 1) y′ + (−4x3 + 1) y = 2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −
(
4x3−1

)
y

x(x3−1) − 2
x3−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ +
(
4x3−1

)
y

x(x3−1) = − 2
x3−1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ +

(
4x3−1

)
y

x(x3−1)

)
= −2µ(x)

x3−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ +

(
4x3−1

)
y

x(x3−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = µ(x)
(
4x3−1

)
x(x3−1)

• Solve to find the integrating factor

µ(x) = x
(
(x−1)

(
x2+x+1

)) 4
3

(x2+x+1)
1
3 (x−1)

1
3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−2µ(x)

x3−1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−2µ(x)

x3−1dx+ c1

• Solve for y

y =
∫
− 2µ(x)

x3−1 dx+c1

µ(x)

• Substitute µ(x) = x
(
(x−1)

(
x2+x+1

)) 4
3

(x2+x+1)
1
3 (x−1)

1
3

y =

(
x2+x+1

) 1
3 (x−1)

1
3

∫ −
2x
(
(x−1)

(
x2+x+1

)) 4
3(

x2+x+1
) 1
3 (x−1)

1
3
(
x3−1

)dx+c1


x((x−1)(x2+x+1))

4
3
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• Evaluate the integrals on the rhs

y =

(
x2+x+1

) 1
3 (x−1)

1
3

−
x2
(
(x−1)

(
x2+x+1

)) 4
3(

x2+x+1
) 1
3 (x−1)

1
3
(
x3−1

)+c1


x((x−1)(x2+x+1))

4
3

• Simplify

y = c1
(
x2+x+1

) 1
3 (x−1)

1
3−x2((x−1)

(
x2+x+1

)) 1
3

(x3−1)((x−1)(x2+x+1))
1
3 x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x*(-x^3+1)*diff(y(x),x) = 2*x-(-4*x^3+1)*y(x),y(x), singsol=all)� �

y(x) = −x2 + c1
x4 − x

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 21� �
DSolve[x(1-x^3)y'[x]==2 x-(1-4 x^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + c1
x− x4
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13.20 problem 374
13.20.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3705

Internal problem ID [3630]
Internal file name [OUTPUT/3123_Sunday_June_05_2022_08_52_51_AM_31138763/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 374.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

x
(
−x3 + 1

)
y′ − (1− 2yx) y = x2

13.20.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 2x y2 − x2 − y

x (x3 − 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2y2
x3 − 1 − x

x3 − 1 − y

x (x3 − 1)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − x
x3−1 , f1(x) = − 1

x(x3−1) and f2(x) = 2
x3−1 . Let

y = −u′

f2u

= −u′

2u
x3−1

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 6x2

(x3 − 1)2

f1f2 = − 2
x (x3 − 1)2

f 2
2 f0 = − 4x

(x3 − 1)3

Substituting the above terms back in equation (2) gives

2u′′(x)
x3 − 1 −

(
− 6x2

(x3 − 1)2
− 2

x (x3 − 1)2
)
u′(x)− 4xu(x)

(x3 − 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1

(x3 − 1)
2
3

The above shows that

u′(x) = −2x(c1x+ c2)
(x3 − 1)

5
3

Using the above in (1) gives the solution

y = x(c1x+ c2)
c2x2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (c3x+ 1)x
x2 + c3

Summary
The solution(s) found are the following

(1)y = (c3x+ 1)x
x2 + c3
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Figure 570: Slope field plot

Verification of solutions

y = (c3x+ 1)x
x2 + c3

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(3*x^3+1)*(diff(y(x), x))/(x*(x^3-1))+2*x*y(x)/(x^3-1)^2, y(x)`

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- Riccati to 2nd Order successful`� �

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(x*(-x^3+1)*diff(y(x),x) = x^2+(1-2*x*y(x))*y(x),y(x), singsol=all)� �

y(x) = (c1 + x)x
c1x2 + 1
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3 Solution by Mathematica
Time used: 0.363 (sec). Leaf size: 31� �
DSolve[x(1-x^3)y'[x]==x^2+(1-2 x y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(1 + 2c1x)
x2 + 2c1

y(x) → x2
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13.21 problem 375
13.21.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 3710
13.21.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3715
13.21.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3718

Internal problem ID [3631]
Internal file name [OUTPUT/3124_Sunday_June_05_2022_08_52_53_AM_60981253/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 375.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

x2(−x2 + 1
)
y′ −

(
x− 3yx3) y = 0

13.21.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(3x2y − 1)
x (x2 − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 667: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2e
ln(x+1)

2 + ln(x−1)
2 −ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2e
ln(x+1)

2 + ln(x−1)
2 −ln(x)

dy

Which results in

S = −x eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(3x2y − 1)
x (x2 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
(x− 1)

3
2 (x+ 1)

3
2 y

Sy =
x√

x− 1
√
x+ 1 y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3x2

(x− 1)
3
2 (x+ 1)

3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3R2

(R− 1)
3
2 (R + 1)

3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
3 ln

(
R +

√
R2 − 1

)
R2 − 3R

√
R2 − 1− 3 ln

(
R +

√
R2 − 1

)
√
R− 1

√
R + 1

√
R2 − 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x√
x− 1

√
x+ 1 y

=
3 ln

(
x+

√
x2 − 1

)
x2 − 3x

√
x2 − 1− 3 ln

(
x+

√
x2 − 1

)
√
x2 − 1

√
x− 1

√
x+ 1

+ c1

Which simplifies to

−
3
(
y(x2 − 1) ln

(
x+

√
x2 − 1

)
−

√
x2 − 1

(
−

√
x−1

√
x+1 c1y
3 + x

(
y − 1

3

)))
√
x+ 1

√
x− 1

√
x2 − 1 y

= 0

Which gives

y = − x
√
x2 − 1

c1
√
x− 1

√
x+ 1

√
x2 − 1 + 3 ln

(
x+

√
x2 − 1

)
x2 − 3x

√
x2 − 1− 3 ln

(
x+

√
x2 − 1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
3x2y−1

)
x(x2−1)

dS
dR

= 3R2

(R−1)
3
2 (R+1)

3
2

R = x

S = − x√
x− 1

√
x+ 1 y
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Summary
The solution(s) found are the following

(1)y =

− x
√
x2 − 1

c1
√
x− 1

√
x+ 1

√
x2 − 1 + 3 ln

(
x+

√
x2 − 1

)
x2 − 3x

√
x2 − 1− 3 ln

(
x+

√
x2 − 1

)

Figure 571: Slope field plot

Verification of solutions

y=− x
√
x2 − 1

c1
√
x− 1

√
x+ 1

√
x2 − 1 + 3 ln

(
x+

√
x2 − 1

)
x2 − 3x

√
x2 − 1− 3 ln

(
x+

√
x2 − 1

)
Verified OK.
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13.21.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(3x2y − 1)
x (x2 − 1)

This is a Bernoulli ODE.

y′ = − 1
x (x2 − 1)y +

3x
x2 − 1y

2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
x (x2 − 1)

f1(x) =
3x

x2 − 1
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
x (x2 − 1) y + 3x

x2 − 1 (4)

Let

w = y1−n

= 1
y

(5)
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Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = − w(x)
x (x2 − 1) +

3x
x2 − 1

w′ = w

x (x2 − 1) −
3x

x2 − 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − 1
x3 − x

q(x) = − 3x
x2 − 1

Hence the ode is

w′(x)− w(x)
x3 − x

= − 3x
x2 − 1

The integrating factor µ is

µ = e
∫
− 1

x3−x
dx

= e−
ln(x+1)

2 − ln(x−1)
2 +ln(x)

Which simplifies to

µ = x√
x− 1

√
x+ 1

The ode becomes

d
dx(µw) = (µ)

(
− 3x
x2 − 1

)
d
dx

(
xw√

x− 1
√
x+ 1

)
=
(

x√
x− 1

√
x+ 1

)(
− 3x
x2 − 1

)
d
(

xw√
x− 1

√
x+ 1

)
=
(
− 3x2

(x2 − 1)
√
x− 1

√
x+ 1

)
dx
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Integrating gives

xw√
x− 1

√
x+ 1

=
∫

− 3x2

(x2 − 1)
√
x− 1

√
x+ 1

dx

xw√
x− 1

√
x+ 1

= −
3
(
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

))
√
x− 1

√
x+ 1

√
x2 − 1

+ c1

Dividing both sides by the integrating factor µ = x√
x−1

√
x+1 results in

w(x) = −
3
(
ln
(
x+

√
x2 − 1

)
x2 − x

√
x2 − 1− ln

(
x+

√
x2 − 1

))
x
√
x2 − 1

+ c1
√
x+ 1

√
x− 1

x

which simplifies to

w(x) = −
3
(
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
(

c1
√
x−1

√
x+1

3 + x
)√

x2 − 1
)

√
x2 − 1x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −

3
(
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
(

c1
√
x−1

√
x+1

3 + x
)√

x2 − 1
)

√
x2 − 1x

Or

y = −
√
x2 − 1x

3
(
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
(

c1
√
x−1

√
x+1

3 + x
)√

x2 − 1
)

Summary
The solution(s) found are the following

(1)y = −
√
x2 − 1x

3
(
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
(

c1
√
x−1

√
x+1

3 + x
)√

x2 − 1
)
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Figure 572: Slope field plot

Verification of solutions

y = −
√
x2 − 1x

3
(
(x2 − 1) ln

(
x+

√
x2 − 1

)
−
(

c1
√
x−1

√
x+1

3 + x
)√

x2 − 1
)

Verified OK.

13.21.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(3x2y − 1)
x (x2 − 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = 3y2x
x2 − 1 − y

x (x2 − 1)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = − 1
x(x2−1) and f2(x) = 3x

x2−1 . Let

y = −u′

f2u

= −u′

3xu
x2−1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

3
x2 − 1 − 6x2

(x2 − 1)2

f1f2 = − 3
(x2 − 1)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

3xu′′(x)
x2 − 1 −

(
3

x2 − 1 − 6x2

(x2 − 1)2
− 3

(x2 − 1)2
)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(x2 − 1) c2 ln

(
x+

√
x2 − 1

)
+ c1x

2 −
√
x2 − 1 c2x− c1

x2 − 1

The above shows that

u′(x) = c2x
2

(x2 − 1)
3
2

Using the above in (1) gives the solution

y = − c2x
√
x2 − 1

3
(
(x2 − 1) c2 ln

(
x+

√
x2 − 1

)
+ c1x2 −

√
x2 − 1 c2x− c1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = −
√
x2 − 1x

(3x2 − 3) ln
(
x+

√
x2 − 1

)
+ 3c3x2 − 3x

√
x2 − 1− 3c3

Summary
The solution(s) found are the following

(1)y = −
√
x2 − 1x

(3x2 − 3) ln
(
x+

√
x2 − 1

)
+ 3c3x2 − 3x

√
x2 − 1− 3c3

Figure 573: Slope field plot

Verification of solutions

y = −
√
x2 − 1x

(3x2 − 3) ln
(
x+

√
x2 − 1

)
+ 3c3x2 − 3x

√
x2 − 1− 3c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 72� �
dsolve(x^2*(-x^2+1)*diff(y(x),x) = (x-3*x^3*y(x))*y(x),y(x), singsol=all)� �
y(x)

=
√
x2 − 1x

√
x− 1

√
x+ 1 c1

√
x2 − 1− 3 ln

(
x+

√
x2 − 1

)
x2 + 3

√
x2 − 1x+ 3 ln

(
x+

√
x2 − 1

)
3 Solution by Mathematica
Time used: 0.302 (sec). Leaf size: 63� �
DSolve[x^2(1-x^2)y'[x]==(x-3 x^3 y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

−6
√
1− x2 arctan

(
x√

1−x2−1

)
+ c1

√
1− x2 + 3x

y(x) → 0
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13.22 problem 376
13.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3722
13.22.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3724
13.22.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3726
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13.22.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3731
13.22.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3735

Internal problem ID [3632]
Internal file name [OUTPUT/3125_Sunday_June_05_2022_08_52_55_AM_60340299/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 376.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x
(
−2x3 + 1

)
y′ − 2

(
−x3 + 1

)
y = 0

13.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y(x3 − 1)
x (2x3 − 1)
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Where f(x) = 2x3−2
x(2x3−1) and g(y) = y. Integrating both sides gives

1
y
dy = 2x3 − 2

x (2x3 − 1) dx∫ 1
y
dy =

∫ 2x3 − 2
x (2x3 − 1) dx

ln (y) = − ln (2x3 − 1)
3 + 2 ln (x) + c1

y = e−
ln
(
2x3−1

)
3 +2 ln(x)+c1

= c1e−
ln
(
2x3−1

)
3 +2 ln(x)

Which simplifies to

y = c1x
2

(2x3 − 1)
1
3

Summary
The solution(s) found are the following

(1)y = c1x
2

(2x3 − 1)
1
3

Figure 574: Slope field plot
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Verification of solutions

y = c1x
2

(2x3 − 1)
1
3

Verified OK.

13.22.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x3 − 2
2x4 − x

q(x) = 0

Hence the ode is

y′ − (2x3 − 2) y
2x4 − x

= 0

The integrating factor µ is

µ = e
∫
− 2x3−2

2x4−x
dx

= e
ln
(
2x3−1

)
3 −2 ln(x)

Which simplifies to

µ = (2x3 − 1)
1
3

x2

The ode becomes
d
dxµy = 0

d
dx

(
(2x3 − 1)

1
3 y

x2

)
= 0

Integrating gives

(2x3 − 1)
1
3 y

x2 = c1
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Dividing both sides by the integrating factor µ =
(
2x3−1

) 1
3

x2 results in

y = c1x
2

(2x3 − 1)
1
3

Summary
The solution(s) found are the following

(1)y = c1x
2

(2x3 − 1)
1
3

Figure 575: Slope field plot

Verification of solutions

y = c1x
2

(2x3 − 1)
1
3

Verified OK.
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13.22.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
−2x3 + 1

)
(u′(x)x+ u(x))− 2

(
−x3 + 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u

x (2x3 − 1)

Where f(x) = − 1
x(2x3−1) and g(u) = u. Integrating both sides gives

1
u
du = − 1

x (2x3 − 1) dx∫ 1
u
du =

∫
− 1
x (2x3 − 1) dx

ln (u) = − ln (2x3 − 1)
3 + ln (x) + c2

u = e−
ln
(
2x3−1

)
3 +ln(x)+c2

= c2e−
ln
(
2x3−1

)
3 +ln(x)

Which simplifies to

u(x) = c2x

(2x3 − 1)
1
3

Therefore the solution y is

y = xu

= x2c2

(2x3 − 1)
1
3

Summary
The solution(s) found are the following

(1)y = x2c2

(2x3 − 1)
1
3
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Figure 576: Slope field plot

Verification of solutions

y = x2c2

(2x3 − 1)
1
3

Verified OK.

13.22.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y(x3 − 1)
x (2x3 − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 669: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln
(
2x3−1

)
3 +2 ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln
(
2x3−1

)
3 +2 ln(x)

dy

Which results in

S = (2x3 − 1)
1
3 y

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y(x3 − 1)
x (2x3 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x3y + 2y
(2x3 − 1)

2
3 x3

Sy =
(2x3 − 1)

1
3

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(2x3 − 1)
1
3 y

x2 = c1

Which simplifies to

(2x3 − 1)
1
3 y

x2 = c1

Which gives

y = c1x
2

(2x3 − 1)
1
3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y
(
x3−1

)
x(2x3−1)

dS
dR

= 0

R = x

S = (2x3 − 1)
1
3 y

x2
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Summary
The solution(s) found are the following

(1)y = c1x
2

(2x3 − 1)
1
3

Figure 577: Slope field plot

Verification of solutions

y = c1x
2

(2x3 − 1)
1
3

Verified OK.

13.22.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
2y

)
dy =

(
x3 − 1

x (2x3 − 1)

)
dx(

− x3 − 1
x (2x3 − 1)

)
dx+

(
1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x3 − 1
x (2x3 − 1)

N(x, y) = 1
2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
− x3 − 1
x (2x3 − 1)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x3 − 1
x (2x3 − 1) dx

(3)φ = ln (2x3 − 1)
6 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y . Therefore equation (4) becomes

(5)1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2y

)
dy

f(y) = ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (2x3 − 1)
6 − ln (x) + ln (y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (2x3 − 1)

6 − ln (x) + ln (y)
2

The solution becomes

y = e−
ln
(
2x3−1

)
3 +2c1x2

Summary
The solution(s) found are the following

(1)y = e−
ln
(
2x3−1

)
3 +2c1x2
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Figure 578: Slope field plot

Verification of solutions

y = e−
ln
(
2x3−1

)
3 +2c1x2

Verified OK.

13.22.6 Maple step by step solution

Let’s solve
x(−2x3 + 1) y′ − 2(−x3 + 1) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2

(
−x3+1

)
x(−2x3+1)

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 2
(
−x3+1

)
x(−2x3+1)dx+ c1

• Evaluate integral
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ln (y) = − ln
(
2x3−1

)
3 + 2 ln (x) + c1

• Solve for y

y = e−
ln
(
2x3−1

)
3 +c1x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*(-2*x^3+1)*diff(y(x),x) = 2*(-x^3+1)*y(x),y(x), singsol=all)� �

y(x) = c1x
2

(2x3 − 1)
1
3

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 27� �
DSolve[x(1-2 x^3) y'[x]==2(1-x^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
2

3
√
1− 2x3

y(x) → 0
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13.23 problem 377
13.23.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3737
13.23.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3744

Internal problem ID [3633]
Internal file name [OUTPUT/3126_Sunday_June_05_2022_08_52_56_AM_47639338/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 377.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , _Riccati]

(
c x2 + bx+ a

)2 (
y′ + y2

)
= −A

13.23.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y2c2x4 + 2y2bc x3 + 2y2ac x2 + y2b2x2 + 2y2abx+ y2a2 + A

(c x2 + bx+ a)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)2xb4 + yb5 + b2

− (y2c2x4 + 2y2bc x3 + 2y2ac x2 + y2b2x2 + 2y2abx+ y2a2 + A) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
(c x2 + bx+ a)2

− (y2c2x4 + 2y2bc x3 + 2y2ac x2 + y2b2x2 + 2y2abx+ y2a2 + A)2 (xa5 + 2ya6 + a3)
(c x2 + bx+ a)4

−
(
−4c2x3y2 + 6bc x2y2 + 4acx y2 + 2b2x y2 + 2ab y2

(c x2 + bx+ a)2

+2(y2c2x4 + 2y2bc x3 + 2y2ac x2 + y2b2x2 + 2y2abx+ y2a2 + A) (2cx+ b)
(c x2 + bx+ a)3

)(
x2a4

+ xya5 + y2a6 + xa2 + ya3 + a1
)

+(2c2x4y + 4bc x3y + 4ac x2y + 2b2x2y + 4abxy + 2a2y) (x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)
(c x2 + bx+ a)2

= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
c4a5 = 0

−a4a3 = 0
−2a4a6 = 0
−c4a5 = 0
−2c4a6 = 0
2c4b4 = 0

−8a3ba6 = 0
4b c3a5 = 0

−8b c3a6 = 0
2c4a4 + c4b5 = 0

a4a5 − 4Aa2a6 = 0
4a c3a5 + 6b2c2a5 = 0

12ab c2a5 + 4b3ca5 = 0
−8a c3a6 − 12b2c2a6 = 0
−24ab c2a6 − 8b3ca6 = 0
−24a2bca6 − 8a b3a6 = 0
−8a3ca6 − 12a2b2a6 = 0

−a4a5 − 4a3ba3 = 0
−4b c3a5 − c4a3 = 0
8b c3b4 + c4b2 = 0
8b c3b4 + 2c4b2 = 0

4a3ba5 − 8Aaba6 = 0
−12a2c2a6 − 24a b2ca6 − 2b4a6 = 0
−4a c3a5 − 6b2c2a5 − 4b c3a3 = 0
−4a3ba5 − 4a3ca3 − 6a2b2a3 = 0
8a c3b4 + 12b2c2b4 + 4b c3b2 = 0

12a2bca5 + 4a b3a5 − 8Abca6 = 0
−12ab c2a5 − 4a c3a3 − 4b3ca5 − 6b2c2a3 = 0
−4a3ca5 − 6a2b2a5 − 12a2bca3 − 4a b3a3 = 0

24ab c2b4 + 4a c3b2 + 8b3cb4 + 6b2c2b2 = 0
6a2c2a5 + 12a b2ca5 + b4a5 − 4Ac2a6 = 0
4a3ca5 + 6a2b2a5 − 8Aaca6 − 4Ab2a6 = 0

8b c3a4 + 4b c3b5 + c4a2 + c4b3 = 0
a4a2 + a4b3 − 2Aa2a3 − 2Aaba6 = 0

−6a2c2a5 − 12a b2ca5 − 12ab c2a3 − b4a5 − 4b3ca3 = 0
−12a2bca5 − 6a2c2a3 − 4a b3a5 − 12a b2ca3 − b4a3 = 0

8a c3b4 + 12b2c2b4 + 8b c3b2 + 2c4b1 + c4b5 = 0
a4b2 + Aa2a2 − Aa2b3 − 2Aaba1 − A2a3 = 0

8a c3a4 + 4a c3b5 + 12b2c2a4 + 6b2c2b5 + 4b c3a2 + 4b c3b3 = 0
24ab c2b4 + 8a c3b2 + 8b3cb4 + 12b2c2b2 + 8b c3b1 + 4b c3b5 = 0

2a4b2 + 8a3bb1 + 4a3bb5 − 4Aabb6 − 4Aaca3 − 2Ab2a3 = 0
2a4b1 + a4b5 + Aa2a5 − 2Aa2b6 − 2Aaba3 − 2A2a6 = 0

12a2c2b4 + 24a b2cb4 + 12ab c2b2 + 2b4b4 + 4b3cb2 − 2Ac2a4 − Ac2b5 = 0
24ab c2a4 + 12ab c2b5 + 4a c3a2 + 4a c3b3 + 8b3ca4 + 4b3cb5 + 6b2c2a2 + 6b2c2b3 = 0

2a4b4 + 4a3bb2 + 2Aa2a4 − Aa2b5 − 2Aabb3 − 4Aaca1 − 2Ab2a1 − A2a5 = 0
2a4a4 + a4b5 + 4a3ba2 + 4a3bb3 − 2Aa2a5 − 4Aaba3 − 4Aaca6 − 2Ab2a6 = 0

12a2c2b4 + 24a b2cb4 + 24ab c2b2 + 8a c3b1 + 4a c3b5 + 2b4b4 + 8b3cb2 + 12b2c2b1 + 6b2c2b5 = 0
24a2bcb4 + 12a2c2b2 + 8a b3b4 + 24a b2cb2 + 24ab c2b1 + 12ab c2b5 + 2b4b2 + 8b3cb1 + 4b3cb5 = 0

8a3cb4 + 12a2b2b4 + 12a2bcb2 + 4a b3b2 − 2Aacb5 − Ab2b5 − 4Abca2 − 2Abcb3 − 4Ac2a1 = 0
24a2bcb4 + 6a2c2b2 + 8a b3b4 + 12a b2cb2 + b4b2 − 2Abca4 − 2Abcb5 − 3Ac2a2 − Ac2b3 = 0

8a3bb4 + 4a3cb2 + 6a2b2b2 + 2Aaba4 − 2Aabb5 − 2Aaca2 − 2Aacb3 − Ab2a2 − Ab2b3 − 6Abca1 = 0
8a3ba4 + 4a3bb5 + 4a3ca2 + 4a3cb3 + 6a2b2a2 + 6a2b2b3 − 4Aaba5 − 4Aaca3 − 2Ab2a3 − 6Abca6 = 0

8a3bb4 + 8a3cb2 + 12a2b2b2 + 24a2bcb1 + 12a2bcb5 + 8a b3b1 + 4a b3b5 − 4Abca5 − 4Abcb6 − 4Ac2a3 = 0
12a2c2a4 + 6a2c2b5 + 24a b2ca4 + 12a b2cb5 + 12ab c2a2 + 12ab c2b3 + 2b4a4 + b4b5 + 4b3ca2 + 4b3cb3 − 2Ac2a5 = 0

2a4b4 + 8a3bb2 + 8a3cb1 + 4a3cb5 + 12a2b2b1 + 6a2b2b5 − 2Aaca5 − 4Aacb6 − Ab2a5 − 2Ab2b6 − 6Abca3 = 0
24a2bca4 + 12a2bcb5 + 6a2c2a2 + 6a2c2b3 + 8a b3a4 + 4a b3b5 + 12a b2ca2 + 12a b2cb3 + b4a2 + b4b3 − 4Abca5 − 2Ac2a3 = 0
8a3cb4 + 12a2b2b4 + 24a2bcb2 + 12a2c2b1 + 6a2c2b5 + 8a b3b2 + 24a b2cb1 + 12a b2cb5 + 2b4b1 + b4b5 − 3Ac2a5 − 2Ac2b6 = 0

8a3ca4 + 4a3cb5 + 12a2b2a4 + 6a2b2b5 + 12a2bca2 + 12a2bcb3 + 4a b3a2 + 4a b3b3 − 4Aaca5 − 2Ab2a5 − 4Abca3 − 4Ac2a6 = 0
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Solving the above equations for the unknowns gives

a1 = −ab3
b

a2 = −b3

a3 = 0

a4 = −cb3
b

a5 = 0
a6 = 0

b1 = −cb3
b

b2 = 0
b3 = b3

b4 = 0

b5 =
2cb3
b

b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −c x2 + bx+ a

b

η = 2cxy + by − c

b

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2cxy + by − c

b
−
(
−y2c2x4 + 2y2bc x3 + 2y2ac x2 + y2b2x2 + 2y2abx+ y2a2 + A

(c x2 + bx+ a)2
)(

−c x2 + bx+ a

b

)
= −y2c2x4 − 2y2bc x3 − 2y2ac x2 − y2b2x2 + 2c2x3y − 2y2abx+ 3bc x2y − y2a2 + 2acxy + b2xy − c2x2 + aby − bcx− ca− A

bc x2 + b2x+ ab

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y2c2x4−2y2bc x3−2y2ac x2−y2b2x2+2c2x3y−2y2abx+3bc x2y−y2a2+2acxy+b2xy−c2x2+aby−bcx−ca−A
bc x2+b2x+ab

dy

Which results in

S = −
2(bc x2 + b2x+ ab) arctan

(
2y
(
c2x4+2bc x3+2a x2c+b2x2+2abx+a2

)
−2c2x3−3bc x2−2acx−b2x−ab√

4a c3x4−b2c2x4+4Ac2x4+8ab c2x3−2b3c x3+8Abc x3+8a2c2x2+2a b2c x2−b4x2+8Aac x2+4Ab2x2+8a2bcx−2a b3x+8Aabx+4a3c−a2b2+4Aa2

)
√
4a c3x4 − b2c2x4 + 4Ac2x4 + 8ab c2x3 − 2b3c x3 + 8Abc x3 + 8a2c2x2 + 2a b2c x2 − b4x2 + 8Aac x2 + 4Ab2x2 + 8a2bcx− 2a b3x+ 8Aabx+ 4a3c− a2b2 + 4Aa2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2c2x4 + 2y2bc x3 + 2y2ac x2 + y2b2x2 + 2y2abx+ y2a2 + A

(c x2 + bx+ a)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − ((2cx+ b) y − c) b
y2 (c x2 + bx+ a)2 − (c x2 + bx+ a) (2cx+ b) y + c2x2 + bcx+ ca+ A

Sy = − 2(2c x2 + 2bx+ 2a) b
(4ca− b2 + 4A)

(
(2c x2y+2bxy+2ya−2cx−b)2

4ca−b2+4A + 1
)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b

c x2 + bx+ a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b

R2c+Rb+ a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
2b arctan

(
2Rc+b√
4ca−b2

)
√
4ca− b2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
2 arctan

(
2yc x2+2bxy+2ya−2cx−b√

4ca−b2+4A

)
b

√
4ca− b2 + 4A

=
2b arctan

(
2cx+b√
4ca−b2

)
√
4ca− b2

+ c1

Which simplifies to

−
2 arctan

(
2yc x2+2bxy+2ya−2cx−b√

4ca−b2+4A

)
b

√
4ca− b2 + 4A

=
2b arctan

(
2cx+b√
4ca−b2

)
√
4ca− b2

+ c1

Which gives

y = −
tan

(√
4ca−b2+4A

(
c1
√
4ca−b2+2b arctan

(
2cx+b√
4ca−b2

))
2
√
4ca−b2 b

)
√
4ca− b2 + 4A− 2cx− b

2 (c x2 + bx+ a)

Summary
The solution(s) found are the following

(1)y = −
tan

(√
4ca−b2+4A

(
c1
√
4ca−b2+2b arctan

(
2cx+b√
4ca−b2

))
2
√
4ca−b2 b

)
√
4ca− b2 + 4A− 2cx− b

2 (c x2 + bx+ a)
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Verification of solutions

y = −
tan

(√
4ca−b2+4A

(
c1
√
4ca−b2+2b arctan

(
2cx+b√
4ca−b2

))
2
√
4ca−b2 b

)
√
4ca− b2 + 4A− 2cx− b

2 (c x2 + bx+ a)

Verified OK.

13.23.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2c2x4 + 2y2bc x3 + 2y2ac x2 + y2b2x2 + 2y2abx+ y2a2 + A

(c x2 + bx+ a)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = − y2c2x4

(c x2 + bx+ a)2
− 2y2bc x3

(c x2 + bx+ a)2
− 2y2ac x2

(c x2 + bx+ a)2
− y2b2x2

(c x2 + bx+ a)2
− 2y2abx
(c x2 + bx+ a)2

− y2a2

(c x2 + bx+ a)2
− A

(c x2 + bx+ a)2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − A
(c x2+bx+a)2 , f1(x) = 0 and f2(x) = − c2x4+2bc x3+2a x2c+b2x2+2abx+a2

(c x2+bx+a)2 .
Let

y = −u′

f2u

= −u′

− (c2x4+2bc x3+2a x2c+b2x2+2abx+a2)u
(c x2+bx+a)2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −4c2x3 + 6bc x2 + 4acx+ 2b2x+ 2ab

(c x2 + bx+ a)2
+ 2(c2x4 + 2bc x3 + 2a x2c+ b2x2 + 2abx+ a2) (2cx+ b)

(c x2 + bx+ a)3

f1f2 = 0

f 2
2 f0 = −(c2x4 + 2bc x3 + 2a x2c+ b2x2 + 2abx+ a2)2A

(c x2 + bx+ a)6
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Substituting the above terms back in equation (2) gives

−(c2x4 + 2bc x3 + 2a x2c+ b2x2 + 2abx+ a2)u′′(x)
(c x2 + bx+ a)2

−
(
−4c2x3 + 6bc x2 + 4acx+ 2b2x+ 2ab

(c x2 + bx+ a)2
+ 2(c2x4 + 2bc x3 + 2a x2c+ b2x2 + 2abx+ a2) (2cx+ b)

(c x2 + bx+ a)3
)
u′(x)− (c2x4 + 2bc x3 + 2a x2c+ b2x2 + 2abx+ a2)2Au(x)

(c x2 + bx+ a)6
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =


(
i
√
4ca− b2 − 2cx− b

2cx+ b+ i
√
4ca− b2

)−
c

√
−4ca+b2−4A

c2
2
√

−4ca+b2

c2

+
(
i
√
4ca− b2 − 2cx− b

2cx+ b+ i
√
4ca− b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2

c1

√
c x2 + bx+ a

The above shows that

u′(x)

=

2

c2

(
i
√
4ca− b2

√
−4ca+b2−4A

c2
c−

√
−4ca+ b2 (2cx+ b)

)(
i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 −
(
i
√
4ca− b2

√
−4ca+b2−4A

c2
c+

√
−4ca+ b2 (2cx+ b)

)
c1
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2

√
c x2 + bx+ a c

√
−4ca+ b2

(
i
√
4ca− b2 − 2cx− b

) (
2cx+ b+ i

√
4ca− b2

)
Using the above in (1) gives the solution

y

=

2

c2

(
i
√
4ca− b2

√
−4ca+b2−4A

c2
c−

√
−4ca+ b2 (2cx+ b)

)(
i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 −
(
i
√
4ca− b2

√
−4ca+b2−4A

c2
c+

√
−4ca+ b2 (2cx+ b)

)
c1
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2

 (c x2 + bx+ a)2 c

√
−4ca+ b2

(
i
√
4ca− b2 − 2cx− b

) (
2cx+ b+ i

√
4ca− b2

)
(c2x4 + 2bc x3 + 2a x2c+ b2x2 + 2abx+ a2)

( i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 c2 +
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 c1


Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y

=

2

(i√4ca− b2
√

−4ca+b2−4A
c2

c−
√
−4ca+ b2 (2cx+ b)

)(
i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 −
(
i
√
4ca− b2

√
−4ca+b2−4A

c2
c+

√
−4ca+ b2 (2cx+ b)

)
c3
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2

 c

√
−4ca+ b2

( i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 +
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 c3

(i√4ca− b2 − 2cx− b
) (

2cx+ b+ i
√
4ca− b2

)

Summary
The solution(s) found are the following

(1)y

=

2

(i√4ca− b2
√

−4ca+b2−4A
c2

c−
√
−4ca+ b2 (2cx+ b)

)(
i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 −
(
i
√
4ca− b2

√
−4ca+b2−4A

c2
c+

√
−4ca+ b2 (2cx+ b)

)
c3
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2

 c

√
−4ca+ b2

( i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 +
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 c3

(i√4ca− b2 − 2cx− b
) (

2cx+ b+ i
√
4ca− b2

)
Verification of solutions
y

=

2

(i√4ca− b2
√

−4ca+b2−4A
c2

c−
√
−4ca+ b2 (2cx+ b)

)(
i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 −
(
i
√
4ca− b2

√
−4ca+b2−4A

c2
c+

√
−4ca+ b2 (2cx+ b)

)
c3
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2

 c

√
−4ca+ b2

( i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

)− c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 +
(

i
√
4ca−b2−2cx−b

2cx+b+i
√
4ca−b2

) c

√
−4ca+b2−4A

c2
2
√

−4ca+b2 c3

(i√4ca− b2 − 2cx− b
) (

2cx+ b+ i
√
4ca− b2

)
Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -A*y(x)/(c^2*x^4+2*b*c*x^3+2*a*c*x^2+b^2*x^2+2*a*b*x+a^2), y(x)`

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 490� �
dsolve((c*x^2+b*x+a)^2*(diff(y(x),x)+y(x)^2)+A = 0,y(x), singsol=all)� �
y(x)

=

2c

c1

(
i
√

−4ac+b2−4A
c2

c
√
4ac− b2 −

√
−4ac+ b2 (2cx+ b)

)(
−b+i

√
4ac−b2−2cx

i
√
4ac−b2+2cx+b

)− c

√
−4ac+b2−4A

c2
2
√

−4ac+b2 −
(
i
√

−4ac+b2−4A
c2

c
√
4ac− b2 +

√
−4ac+ b2 (2cx+ b)

)(
−b+i

√
4ac−b2−2cx

i
√
4ac−b2+2cx+b

) c

√
−4ac+b2−4A

c2
2
√

−4ac+b2


√
−4ac+ b2

(
i
√
4ac− b2 + 2cx+ b

) (
−b+ i

√
4ac− b2 − 2cx

)c1
(

−b+i
√
4ac−b2−2cx

i
√
4ac−b2+2cx+b

)− c

√
−4ac+b2−4A

c2
2
√

−4ac+b2 +
(

−b+i
√
4ac−b2−2cx

i
√
4ac−b2+2cx+b

) c

√
−4ac+b2−4A

c2
2
√

−4ac+b2


3 Solution by Mathematica
Time used: 3.457 (sec). Leaf size: 743� �
DSolve[(a+b x+c x^2)^2 (y'[x]+y[x]^2)+A==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
b2c1

(
− exp

(
2
√
4ac−b2

√
1− 4A

b2−4ac arctan
(

b+2cx√
4ac−b2

)
√
b2−4ac

))
+ bc1

√
b2 − 4ac

√
1− 4A

b2−4ac exp
(

2
√
4ac−b2

√
1− 4A

b2−4ac arctan
(

b+2cx√
4ac−b2

)
√
b2−4ac

)
+ 4Ac1 exp

(
2
√
4ac−b2

√
1− 4A

b2−4ac arctan
(

b+2cx√
4ac−b2

)
√
b2−4ac

)
+ 4acc1 exp

(
2
√
4ac−b2

√
1− 4A

b2−4ac arctan
(

b+2cx√
4ac−b2

)
√
b2−4ac

)
+ 2cc1x

√
b2 − 4ac

√
1− 4A

b2−4ac exp
(

2
√
4ac−b2

√
1− 4A

b2−4ac arctan
(

b+2cx√
4ac−b2

)
√
b2−4ac

)
+
√
b2 − 4ac

√
1− 4A

b2−4ac + b+ 2cx

2(a+ x(b+ cx))
(
1 + c1

√
b2 − 4ac

√
1− 4A

b2−4ac exp
(

2
√
4ac−b2

√
1− 4A

b2−4ac arctan
(

b+2cx√
4ac−b2

)
√
b2−4ac

))

y(x) →
2cx

√
b2 − 4ac

√
1− 4A

b2−4ac + b
√
b2 − 4ac

√
1− 4A

b2−4ac + 4ac+ 4A− b2

2
√
b2 − 4ac

√
1− 4A

b2−4ac(a+ x(b+ cx))
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13.24 problem 378
13.24.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3749
13.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3751
13.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3755
13.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3760

Internal problem ID [3634]
Internal file name [OUTPUT/3127_Sunday_June_05_2022_08_52_59_AM_91004802/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 378.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x5y′ + 3yx4 = 1

13.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 3
x

q(x) = 1
x5

Hence the ode is

y′ + 3y
x

= 1
x5
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The integrating factor µ is

µ = e
∫ 3

x
dx

= x3

The ode becomes

d
dx(µy) = (µ)

(
1
x5

)
d
dx
(
x3y
)
=
(
x3)( 1

x5

)
d
(
x3y
)
= 1

x2 dx

Integrating gives

x3y =
∫ 1

x2 dx

x3y = −1
x
+ c1

Dividing both sides by the integrating factor µ = x3 results in

y = − 1
x4 + c1

x3

which simplifies to

y = c1x− 1
x4

Summary
The solution(s) found are the following

(1)y = c1x− 1
x4
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Figure 579: Slope field plot

Verification of solutions

y = c1x− 1
x4

Verified OK.

13.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3x4y − 1
x5

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 672: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x3

dy

Which results in

S = x3y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3x4y − 1
x5

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3x2y

Sy = x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx3 = −1
x
+ c1

Which simplifies to

yx3 = −1
x
+ c1

Which gives

y = c1x− 1
x4

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3x4y−1
x5

dS
dR

= 1
R2

R = x

S = x3y

Summary
The solution(s) found are the following

(1)y = c1x− 1
x4
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Figure 580: Slope field plot

Verification of solutions

y = c1x− 1
x4

Verified OK.

13.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x5) dy =

(
−3x4y + 1

)
dx(

3x4y − 1
)
dx+

(
x5) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x4y − 1
N(x, y) = x5

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3x4y − 1

)
= 3x4

And
∂N

∂x
= ∂

∂x

(
x5)

= 5x4
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x5

((
3x4)− (5x4))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
3x4y − 1

)
= 3x4y − 1

x2

And

N = µN

= 1
x2

(
x5)

= x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3x4y − 1
x2

)
+
(
x3) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3x4y − 1
x2 dx

(3)φ = x3y + 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3. Therefore equation (4) becomes

(5)x3 = x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x3y + 1
x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x3y + 1
x
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The solution becomes

y = c1x− 1
x4

Summary
The solution(s) found are the following

(1)y = c1x− 1
x4

Figure 581: Slope field plot

Verification of solutions

y = c1x− 1
x4

Verified OK.
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13.24.4 Maple step by step solution

Let’s solve
x5y′ + 3yx4 = 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −3y

x
+ 1

x5

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 3y

x
= 1

x5

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 3y

x

)
= µ(x)

x5

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 3y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 3µ(x)

x

• Solve to find the integrating factor
µ(x) = x3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x5 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x5 dx+ c1

• Solve for y

y =
∫ µ(x)

x5 dx+c1

µ(x)

• Substitute µ(x) = x3

y =
∫ 1

x2 dx+c1

x3

• Evaluate the integrals on the rhs

y = − 1
x
+c1
x3

• Simplify
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y = c1x−1
x4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x^5*diff(y(x),x) = 1-3*x^4*y(x),y(x), singsol=all)� �

y(x) = c1x− 1
x4

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 15� �
DSolve[x^5 y'[x]==1-3 x^4 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + c1x

x4
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13.25 problem 379
13.25.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 3762
13.25.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3764

Internal problem ID [3635]
Internal file name [OUTPUT/3128_Sunday_June_05_2022_08_53_01_AM_13705603/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 13
Problem number: 379.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

x
(
−x4 + 1

)
y′ − 2x

(
x2 − y2

)
−
(
−x4 + 1

)
y = 0

13.25.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
−x4 + 1

)
(u′(x)x+ u(x))− 2x

(
x2 − u(x)2 x2)− (−x4 + 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= x(2u2 − 2)
x4 − 1

Where f(x) = x
x4−1 and g(u) = 2u2 − 2. Integrating both sides gives

1
2u2 − 2 du = x

x4 − 1 dx∫ 1
2u2 − 2 du =

∫
x

x4 − 1 dx

−arctanh (u)
2 = ln (x− 1)

4 + ln (x+ 1)
4 − ln (x2 + 1)

4 + c2
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The solution is

−arctanh (u(x))
2 − ln (x− 1)

4 − ln (x+ 1)
4 + ln (x2 + 1)

4 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−
arctanh

(
y
x

)
2 − ln (x− 1)

4 − ln (x+ 1)
4 + ln (x2 + 1)

4 − c2 = 0

−
arctanh

(
y
x

)
2 − ln (x− 1)

4 − ln (x+ 1)
4 + ln (x2 + 1)

4 − c2 = 0

Summary
The solution(s) found are the following

(1)−
arctanh

(
y
x

)
2 − ln (x− 1)

4 − ln (x+ 1)
4 + ln (x2 + 1)

4 − c2 = 0

Figure 582: Slope field plot

Verification of solutions

−
arctanh

(
y
x

)
2 − ln (x− 1)

4 − ln (x+ 1)
4 + ln (x2 + 1)

4 − c2 = 0

Verified OK.
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13.25.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x4y − 2x3 + 2x y2 − y

(x4 − 1)x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x3y

x4 − 1 − 2x2

x4 − 1 + 2y2
x4 − 1 − y

(x4 − 1)x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 2x2

x4−1 , f1(x) =
1
x
and f2(x) = 2

x4−1 . Let

y = −u′

f2u

= −u′

2u
x4−1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 8x3

(x4 − 1)2

f1f2 =
2

(x4 − 1)x

f 2
2 f0 = − 8x2

(x4 − 1)3

Substituting the above terms back in equation (2) gives

2u′′(x)
x4 − 1 −

(
− 8x3

(x4 − 1)2
+ 2

(x4 − 1)x

)
u′(x)− 8x2u(x)

(x4 − 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1 sinh
(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2

)
+ c2 cosh

(
ln (x− 1)

2 + ln (x+ 1)
2 − ln (x2 + 1)

2

)

The above shows that

u′(x)=
2x
(
c1 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
+ c2 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

))
x4 − 1

Using the above in (1) gives the solution

y = −
x
(
c1 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
+ c2 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

))
c1 sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
+ c2 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −

(
c3 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
+ sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

))
x

c3 sinh
(

ln(x−1)
2 + ln(x+1)

2 − ln(x2+1)
2

)
+ cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
Summary
The solution(s) found are the following

y = −

(
c3 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
+ sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

))
x

c3 sinh
(

ln(x−1)
2 + ln(x+1)

2 − ln(x2+1)
2

)
+ cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
(1)
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Figure 583: Slope field plot

Verification of solutions

y = −

(
c3 cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

)
+ sinh

(
ln(x−1)

2 + ln(x+1)
2 − ln

(
x2+1

)
2

))
x

c3 sinh
(

ln(x−1)
2 + ln(x+1)

2 − ln(x2+1)
2

)
+ cosh

(
ln(x−1)

2 + ln(x+1)
2 − ln(x2+1)

2

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(x*(-x^4+1)*diff(y(x),x) = 2*x*(x^2-y(x)^2)+(-x^4+1)*y(x),y(x), singsol=all)� �

y(x) = − tanh
(
ln (x+ 1)

2 − ln (x2 + 1)
2 + ln (x− 1)

2 + 2c1
)
x

3 Solution by Mathematica
Time used: 0.329 (sec). Leaf size: 58� �
DSolve[x(1-x^4)y'[x]==2 x(x^2-y[x]^2)+(1-x^4) y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x(x2 + e2c1(x2 − 1) + 1)
−x2 + e2c1 (x2 − 1)− 1

y(x) → −x
y(x) → x
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14.1 problem 380
14.1.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 3769

Internal problem ID [3636]
Internal file name [OUTPUT/3129_Sunday_June_05_2022_08_53_02_AM_1337703/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 380.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_rational , _Abel]

Unable to solve or complete the solution.

x7y′ + 5y2x3 + 2
(
x2 + 1

)
y3 = 0

14.1.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −(2x2 + 2) y3
x7 − 5y2

x4 (1)

Therefore

f0(x) = 0
f1(x) = 0

f2(x) = − 5
x4

f3(x) = − 2
x5 − 2

x7
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Since f2(x) = − 5
x4 is not zero, then the first step is to apply the following transformation

to remove f2. Let y = u(x)− f2
3f3 or

y = u(x)−
( − 5

x4

− 6
x5 − 6

x7

)
= u(x)− 5x3

6x2 + 6
The above transformation applied to (1) gives a new ODE as

u′(x) = 5x4

6 (x2 + 1)2
− 2u(x)3

(x2 + 1)2 x
+ 25xu(x)

6 (x2 + 1)2
+ 5x2

27 (x2 + 1)2
− 6u(x)3

(x2 + 1)2 x3
+ 25u(x)

6 (x2 + 1)2 x
− 6u(x)3

(x2 + 1)2 x5
− 2u(x)3

(x2 + 1)2 x7

(2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = −(108x6 + 324x4 + 324x2 + 108)u(x)3

54x7 (x2 + 1)2
− (−225x8 − 225x6)u(x)

54x7 (x2 + 1)2
− −45x11 − 10x9

54x7 (x2 + 1)2

(1)

Therefore

f0(x) =
5x2

27 (x2 + 1)2
+ 5x4

6 (x2 + 1)2

f1(x) =
25x

6 (x2 + 1)2
+ 25

6x (x2 + 1)2

f2(x) = 0

f3(x) = − 2
x (x2 + 1)2

− 6
x3 (x2 + 1)2

− 6
x5 (x2 + 1)2

− 2
(x2 + 1)2 x7

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
−
(

10x
27(x2+1)2 −

20x3

27(x2+1)3 +
10x3

3(x2+1)2 −
10x5

3(x2+1)3

)(
− 2

x(x2+1)2 −
6

x3(x2+1)2 −
6

x5(x2+1)2 −
2

(x2+1)2x7

)
+
(

5x2

27(x2+1)2 +
5x4

6(x2+1)2

)(
2

x2(x2+1)2 +
8

(x2+1)3 +
18

x4(x2+1)2 +
24

x2(x2+1)3 +
30

x6(x2+1)2 +
24

x4(x2+1)3 +
8

(x2+1)3x6 + 14
(x2+1)2x8

)
+ 3
(

5x2

27(x2+1)2 +
5x4

6(x2+1)2

)(
− 2

x(x2+1)2 −
6

x3(x2+1)2 −
6

x5(x2+1)2 −
2

(x2+1)2x7

)(
25x

6(x2+1)2 +
25

6x(x2+1)2

))3
27
(
− 2

x(x2+1)2 −
6

x3(x2+1)2 −
6

x5(x2+1)2 −
2

(x2+1)2x7

)4 (
5x2

27(x2+1)2 +
5x4

6(x2+1)2

)5
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Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 78� �
dsolve(x^7*diff(y(x),x)+5*x^3*y(x)^2+2*(x^2+1)*y(x)^3 = 0,y(x), singsol=all)� �
c1 +

x(
x6+x2y(x)2+2x3y(x)+y(x)2

x2y(x)2

) 1
4
+

(x3 + y(x)) hypergeom
([1

2 ,
5
4

]
,
[3
2

]
,−

(
x3+y(x)

)2
x2y(x)2

)
2y (x)x = 0

3 Solution by Mathematica
Time used: 0.313 (sec). Leaf size: 123� �
DSolve[x^7 y'[x]+5 x^3 y[x]^2+2(1+x^2)y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

c1 =
1
2

4

√
1−

(
ix2

y(x) +
i

x

)2(
ix2

y(x) +
i
x

)
Hypergeometric2F1

(
1
2 ,

5
4 ,

3
2 ,
(

ix2

y(x) +
i
x

)2)
+ ix

4

√
−1 +

(
ix2

y(x) +
i

x

)2
, y(x)
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14.2 problem 381
14.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3772
14.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3774
14.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3777
14.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3781

Internal problem ID [3637]
Internal file name [OUTPUT/3130_Sunday_June_05_2022_08_53_05_AM_63518875/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 381.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′xn − b xn−1y = a

14.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − b

x
q(x) = x−na

Hence the ode is

y′ − by

x
= x−na
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The integrating factor µ is

µ = e
∫
− b

x
dx

= e− ln(x)b

Which simplifies to
µ = x−b

The ode becomes

d
dx(µy) = (µ)

(
x−na

)
d
dx
(
x−by

)
=
(
x−b
) (

x−na
)

d
(
x−by

)
=
(
a x−b−n

)
dx

Integrating gives

x−by =
∫

a x−b−n dx

x−by = −a x−b−n+1

b+ n− 1 + c1

Dividing both sides by the integrating factor µ = x−b results in

y = −xba x−b−n+1

b+ n− 1 + c1x
b

which simplifies to

y = − a x−n+1

b+ n− 1 + c1x
b

Summary
The solution(s) found are the following

(1)y = − a x−n+1

b+ n− 1 + c1x
b

Verification of solutions

y = − a x−n+1

b+ n− 1 + c1x
b

Verified OK.

3773



14.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
(
a+ b xn−1y

)
x−n

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 675: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = eln(x)b (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x)bdy

Which results in

S = e− ln(x)by

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
a+ b xn−1y

)
x−n

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −by x−b−1

Sy = x−b
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a x−b−n (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aR−b−n

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R−b−n+1a

b+ n− 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−by = −a x−b−n+1

b+ n− 1 + c1

Which simplifies to

x−by = −a x−b−n+1

b+ n− 1 + c1

Which gives

y = −
(
a x−b−n+1 − c1b− nc1 + c1

)
xb

b+ n− 1

Summary
The solution(s) found are the following

(1)y = −
(
a x−b−n+1 − c1b− nc1 + c1

)
xb

b+ n− 1
Verification of solutions

y = −
(
a x−b−n+1 − c1b− nc1 + c1

)
xb

b+ n− 1

Verified OK.
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14.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xn) dy =
(
a+ b xn−1y

)
dx(

−a− b xn−1y
)
dx+(xn) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a− b xn−1y

N(x, y) = xn
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−a− b xn−1y

)
= −b xn−1

And
∂N

∂x
= ∂

∂x
(xn)

= nxn−1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= x−n

((
−b xn−1)− (xnn

x

))
= −b− n

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −b−n

x
dx

The result of integrating gives

µ = e(−b−n) ln(x)

= x−b−n

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−b−n
(
−a− b xn−1y

)
= x−b

(
−x−na− by

x

)
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And

N = µN

= x−b−n(xn)
= x−b

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x−b

(
−x−na− by

x

))
+
(
x−b
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x−b

(
−x−na− by

x

)
dx

(3)φ = x−b

(
y + a x−n+1

b+ n− 1

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x−b + f ′(y)

But equation (2) says that ∂φ
∂y

= x−b. Therefore equation (4) becomes

(5)x−b = x−b + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x−b

(
y + a x−n+1

b+ n− 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x−b

(
y + a x−n+1

b+ n− 1

)

The solution becomes

y = −
(
x−n+1x−ba− c1b− nc1 + c1

)
xb

b+ n− 1

Summary
The solution(s) found are the following

(1)y = −
(
x−n+1x−ba− c1b− nc1 + c1

)
xb

b+ n− 1
Verification of solutions

y = −
(
x−n+1x−ba− c1b− nc1 + c1

)
xb

b+ n− 1

Verified OK.
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14.2.4 Maple step by step solution

Let’s solve
y′xn − b xn−1y = a

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = xn−1by
xn + a

xn

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − xn−1by
xn = a

xn

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − xn−1by

xn

)
= µ(x)a

xn

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xn−1by

xn

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)xn−1b
xn

• Solve to find the integrating factor
µ(x) = 1

xb

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)a
xn dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)a
xn dx+ c1

• Solve for y

y =
∫ µ(x)a

xn
dx+c1

µ(x)

• Substitute µ(x) = 1
xb

y = xb
(∫

a
xbxndx+ c1

)
• Evaluate the integrals on the rhs

y = xb
(
− ax

(b+n−1)xbxn + c1
)

• Simplify
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y = −a x−n+1

b+n−1 + c1x
b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(x^n*diff(y(x),x) = a+b*x^(n-1)*y(x),y(x), singsol=all)� �

y(x) = − x−n+1a

n+ b− 1 + xbc1

3 Solution by Mathematica
Time used: 0.107 (sec). Leaf size: 28� �
DSolve[x^n y'[x]==a+b x^(n-1) y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ax1−n

b+ n− 1 + c1x
b
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14.3 problem 382
14.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3783

Internal problem ID [3638]
Internal file name [OUTPUT/3131_Sunday_June_05_2022_08_53_07_AM_31378124/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 382.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′xn + y2 = x2n−1

14.3.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
=
(
x2n−1 − y2

)
x−n

This is a Riccati ODE. Comparing the ODE to solve

y′ = xn

x
− x−ny2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2n−1x−n, f1(x) = 0 and f2(x) = −x−n. Let

y = −u′

f2u

= −u′

−x−nu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

x−nn

x
f1f2 = 0
f 2
2 f0 = x−3nx2n−1

Substituting the above terms back in equation (2) gives

−x−nu′′(x)− x−nnu′(x)
x

+ x−3nx2n−1u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x−n
2
(
BesselI

(
n+ 1, 2

√
x
)√

x c1 +
√
x BesselK

(
n+ 1, 2

√
x
)
c2

+ n
(
c1 BesselI

(
n, 2

√
x
)
− c2 BesselK

(
n, 2

√
x
)))

The above shows that

u′(x) = x−n
2
(
c1 BesselI

(
n, 2

√
x
)
− c2 BesselK

(
n, 2

√
x
))

Using the above in (1) gives the solution

y

=
(
c1 BesselI

(
n, 2

√
x
)
− c2 BesselK

(
n, 2

√
x
))

xn

BesselI
(
n+ 1, 2

√
x
)√

x c1 +
√
x BesselK

(
n+ 1, 2

√
x
)
c2 + n

(
c1 BesselI

(
n, 2

√
x
)
− c2 BesselK

(
n, 2

√
x
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
(
c3 BesselI

(
n, 2

√
x
)
− BesselK

(
n, 2

√
x
))

xn

BesselI
(
n+ 1, 2

√
x
)√

x c3 + BesselK
(
n+ 1, 2

√
x
)√

x+ n
(
c3 BesselI

(
n, 2

√
x
)
− BesselK

(
n, 2

√
x
))
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Summary
The solution(s) found are the following

(1)y

=
(
c3 BesselI

(
n, 2

√
x
)
− BesselK

(
n, 2

√
x
))

xn

BesselI
(
n+ 1, 2

√
x
)√

x c3 + BesselK
(
n+ 1, 2

√
x
)√

x+ n
(
c3 BesselI

(
n, 2

√
x
)
− BesselK

(
n, 2

√
x
))

Verification of solutions
y

=
(
c3 BesselI

(
n, 2

√
x
)
− BesselK

(
n, 2

√
x
))

xn

BesselI
(
n+ 1, 2

√
x
)√

x c3 + BesselK
(
n+ 1, 2

√
x
)√

x+ n
(
c3 BesselI

(
n, 2

√
x
)
− BesselK

(
n, 2

√
x
))

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -n*(diff(y(x), x))/x+x^(-n)*x^(n-1)*y(x), y(x)` *** Sublevel 2 **

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 80� �
dsolve(x^n*diff(y(x),x) = x^(2*n-1)-y(x)^2,y(x), singsol=all)� �
y(x)

=
(
BesselK

(
n, 2

√
x
)
c1 − BesselI

(
n, 2

√
x
))

xn

−BesselI
(
n+ 1, 2

√
x
)√

x−
√
x BesselK

(
n+ 1, 2

√
x
)
c1 + n

(
BesselK

(
n, 2

√
x
)
c1 − BesselI

(
n, 2

√
x
))

3 Solution by Mathematica
Time used: 0.366 (sec). Leaf size: 293� �
DSolve[x^n y'[x]==x^(2 n -1)-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
xn−1(−((n− 1)Gamma(2− n) BesselI

(
1− n, 2

√
x
))

+
√
xGamma(2− n) BesselI

(
2− n, 2

√
x
)
+
√
xGamma(2− n) BesselI

(
−n, 2

√
x
)
− c1(−1)n

√
xGamma(n) BesselI

(
n− 2, 2

√
x
)
− c1(−1)nGamma(n) BesselI

(
n− 1, 2

√
x
)
+ c1(−1)nnGamma(n) BesselI

(
n− 1, 2

√
x
)
− c1(−1)n

√
xGamma(n) BesselI

(
n, 2

√
x
))

2
(
Gamma(2− n) BesselI

(
1− n, 2

√
x
)
− c1(−1)n Gamma(n) BesselI

(
n− 1, 2

√
x
))

y(x)

→
xn−1(√xBesselI

(
n− 2, 2

√
x
)
− (n− 1)BesselI

(
n− 1, 2

√
x
)
+
√
xBesselI

(
n, 2

√
x
))

2BesselI
(
n− 1, 2

√
x
)
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14.4 problem 384
14.4.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3788

Internal problem ID [3639]
Internal file name [OUTPUT/3132_Sunday_June_05_2022_08_53_09_AM_87430216/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 384.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′xn + y2 = −x−2+2n − (−n+ 1)xn−1

14.4.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
=
(
nxn−1 − y2 − xn−1 − x−2+2n)x−n

This is a Riccati ODE. Comparing the ODE to solve

y′ = n

x
− x−ny2 − 1

x
− xn

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = (nxn−1 − xn−1 − x−2+2n)x−n, f1(x) = 0 and f2(x) = −x−n. Let

y = −u′

f2u

= −u′

−x−nu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

x−nn

x
f1f2 = 0
f 2
2 f0 = x−3n(nxn−1 − xn−1 − x−2+2n)

Substituting the above terms back in equation (2) gives

−x−nu′′(x)− x−nnu′(x)
x

+ x−3n(nxn−1 − xn−1 − x−2+2n)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x−n
2
√
x

(
c1 BesselJ

(
−
√
n2 − 2n− 3
n− 1 ,

2x−n
2
√
x√

−n+ 1

)

+ c2 BesselY
(
−
√
n2 − 2n− 3
n− 1 ,

2x−n
2
√
x√

−n+ 1

))

The above shows that

u′(x)

=
x−n

2−
1
2

(
2(n− 1)

(
BesselY

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
c2 + BesselJ

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
c1
)
x−n

2+
1
2 +

(√
n2 − 2n− 3− n+ 1

)√
−n+ 1

(
BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c1 + BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c2
))

2
√
−n+ 1

Using the above in (1) gives the solution

y

=
x−n

2−
1
2

(
2(n− 1)

(
BesselY

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
c2 + BesselJ

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
c1
)
x−n

2+
1
2 +

(√
n2 − 2n− 3− n+ 1

)√
−n+ 1

(
BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c1 + BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c2
))

xnx
n
2

2
√
−n+ 1

√
x
(
c1 BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2
√
x√

−n+1

)
+ c2 BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2
√
x√

−n+1

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y

=

(
2(n− 1)

(
BesselY

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
+ BesselJ

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
c3
)
x−n

2+
1
2 +

(√
n2 − 2n− 3− n+ 1

)√
−n+ 1

(
BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c3 + BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)))
xn−1

√
−n+ 1

(
2BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c3 + 2BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

))
Summary
The solution(s) found are the following

(1)y

=

(
2(n− 1)

(
BesselY

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
+ BesselJ

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
c3
)
x−n

2+
1
2 +

(√
n2 − 2n− 3− n+ 1

)√
−n+ 1

(
BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c3 + BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)))
xn−1

√
−n+ 1

(
2BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c3 + 2BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

))
Verification of solutions
y

=

(
2(n− 1)

(
BesselY

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
+ BesselJ

(
−
√
n2−2n−3+n−1

n−1 , 2x
−n

2 +1
2√

−n+1

)
c3
)
x−n

2+
1
2 +

(√
n2 − 2n− 3− n+ 1

)√
−n+ 1

(
BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c3 + BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)))
xn−1

√
−n+ 1

(
2BesselJ

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

)
c3 + 2BesselY

(
−

√
n2−2n−3
n−1 , 2x

−n
2 +1

2√
−n+1

))
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -n*(diff(y(x), x))/x-x^(-n)*(x^(n-2)*x-n+1)*y(x)/x, y(x)` *** Sub

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 0F1 ODE

<- hypergeometric successful
<- special function solution successful

<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 1225� �
dsolve(x^n*diff(y(x),x)+x^(2*n-2)+y(x)^2+(1-n)*x^(n-1) = 0,y(x), singsol=all)� �

Expression too large to display

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x^n*y'[x]+x^(2*n-2)+y[x]^2+(1-n)*x^(n-1)==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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14.5 problem 385
14.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . 3793
14.5.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3798

Internal problem ID [3640]
Internal file name [OUTPUT/3133_Sunday_June_05_2022_08_53_15_AM_44189882/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 385.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _Riccati]

y′xn − b2y2 = a2x−2+2n

14.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
(
a2x−2+2n + b2y2

)
x−n

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(
a2x−2+2n + b2y2

)
x−n(b3 − a2)−

(
a2x−2+2n + b2y2

)2
x−2na3

−
(
a2x−2+2n(−2 + 2n)x−n

x
− (a2x−2+2n + b2y2)x−nn

x

)
(xa2 + ya3 + a1)

− 2x−ny b2(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

(−b4x y4a3 − 2x−2+2na2b2x y2a3 + xnb2nx y2a2 + xnb2n y3a3 − x4n−4a4xa3 − xnx−2+2na2nxa2 − xnx−2+2na2nya3 + xnb2n y2a1 − 2xnb2x2yb2 − xnb2x y2a2 − xnb2x y2b3 − xnx−2+2na2na1 + xnx−2+2na2xa2 + xnx−2+2na2xb3 + 2xnx−2+2na2ya3 − 2xnb2xyb1 + 2xnx−2+2na2a1 + b2x
2nx)x−2n

x
= 0

Setting the numerator to zero gives

(6E)
−b4x y4a3 − 2x−2+2na2b2x y2a3 + xnb2nx y2a2 + xnb2n y3a3
− x4n−4a4xa3 − xnx−2+2na2nxa2 − xnx−2+2na2nya3
+ xnb2n y2a1 − 2xnb2x2yb2 − xnb2x y2a2 − xnb2x y2b3
− xnx−2+2na2na1 + xnx−2+2na2xa2 + xnx−2+2na2xb3
+ 2xnx−2+2na2ya3 − 2xnb2xyb1 + 2xnx−2+2na2a1 + b2x

2nx = 0

Simplifying the above gives

(6E)−b4x4y4a3 + 2x2na2b2y2a3x
2 − xnb2nx4y2a2 − xnb2n y3a3x

3 − xnb2n y2a1x
3 + 2xnb2x5yb2 + xnb2x4y2a2 + xnb2x4y2b3 + x4na4a3 + x3na2na2x

2 + x3na2nya3x+ 2xnb2x4yb1 + x3na2na1x− x3na2a2x
2 − x3na2b3x

2 − 2x3na2ya3x− 2x3na2a1x− b2x
2nx4

x3

= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, xn}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, x
n = v3}

The above PDE (6E) now becomes

(7E)−b4v41v
4
2a3 + 2v23a2b2v22a3v21 − v3b

2nv41v
2
2a2 − v3b

2nv32a3v
3
1 − v3b

2nv22a1v
3
1 + v3b

2v41v
2
2a2 + 2v3b2v51v2b2 + v3b

2v41v
2
2b3 + v43a

4a3 + v33a
2na2v

2
1 + v33a

2nv2a3v1 + 2v3b2v41v2b1 + v33a
2na1v1 − v33a

2a2v
2
1 − 2v33a2v2a3v1 − v33a

2b3v
2
1 − 2v33a2a1v1 − b2v

2
3v

4
1

v31
= 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

−2b2b2v2v3v21−b4a3v
4
2v1+

(
b2na2−b2a2−b2b3

)
v22v3v1−2b2b1v2v3v1+b2v

2
3v1

+ b2na3v
3
2v3 + b2na1v

2
2v3 −

2a2b2a3v22v23
v1

+ (−a2na2 + a2a2 + a2b3) v33
v1

+ (−a2na3 + 2a2a3) v2v33
v21

+ (−a2na1 + 2a2a1) v33
v21

− v43a
4a3

v31
= 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
b2na1 = 0
b2na3 = 0
−a4a3 = 0
−2b2b1 = 0
−2b2b2 = 0
−b4a3 = 0

−2a2b2a3 = 0
−a2na1 + 2a2a1 = 0
−a2na3 + 2a2a3 = 0

−a2na2 + a2a2 + a2b3 = 0
b2na2 − b2a2 − b2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = (n− 1) a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y(n− 1)

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= y(n− 1)−

((
a2x−2+2n + b2y2

)
x−n
)
(x)

=
(
−b2x y2 − x2na2

x
+ nxny − xny

)
x−n

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1(

−b2x y2 − x2na2

x
+ nxny − xny

)
x−n

dy

Which results in

S = −
2xnx arctan

(
2b2x2y−nxn+1+xn+1

√
4x2na2b2x2−x2n+2n2+2x2n+2n−x2n+2

)
√
4x2na2b2x2 − x2n+2n2 + 2x2n+2n− x2n+2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
a2x−2+2n + b2y2

)
x−n

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (n− 1) y x−n

− (n− 1) y x−n+1 + x−2n+2b2y2 + a2

Sy = − x−n+1

− (n− 1) y x−n+1 + x−2n+2b2y2 + a2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (n− 1) y x−n

− (n− 1) y x−n+1 + x−2n+2b2y2 + a2
− x2n(a2 + x−2n+1b2y2x)

x (− (n− 1) y xn+1 + b2y2x2 + x2na2)
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
2 arctan

(
2x−n+1yb2−n+1√
4a2b2−n2+2n−1

)
√
4a2b2 − n2 + 2n− 1

= − ln (x) + c1

Which simplifies to

−
2 arctan

(
2x−n+1yb2−n+1√
4a2b2−n2+2n−1

)
√
4a2b2 − n2 + 2n− 1

= − ln (x) + c1
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Which gives

y = −

(
tan

(
− ln(x)

√
4a2b2−n2+2n−1

2 + c1
√
4a2b2−n2+2n−1

2

)√
4a2b2 − n2 + 2n− 1− n+ 1

)
xn−1

2b2

Summary
The solution(s) found are the following

(1)y =

−

(
tan

(
− ln(x)

√
4a2b2−n2+2n−1

2 + c1
√
4a2b2−n2+2n−1

2

)√
4a2b2 − n2 + 2n− 1− n+ 1

)
xn−1

2b2
Verification of solutions

y=−

(
tan

(
− ln(x)

√
4a2b2−n2+2n−1

2 + c1
√
4a2b2−n2+2n−1

2

)√
4a2b2 − n2 + 2n− 1− n+ 1

)
xn−1

2b2

Verified OK.

14.5.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
=
(
a2x−2+2n + b2y2

)
x−n

This is a Riccati ODE. Comparing the ODE to solve

y′ = xna2

x2 + x−nb2y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x−2+2nx−na2, f1(x) = 0 and f2(x) = b2x−n. Let

y = −u′

f2u

= −u′

b2x−nu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 = −b2x−nn

x
f1f2 = 0
f 2
2 f0 = b4x−3na2x−2+2n

Substituting the above terms back in equation (2) gives

b2x−nu′′(x) + b2x−nnu′(x)
x

+ b4x−3na2x−2+2nu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x−n
2
√
x
(
x
√

−4a2b2+n2−2n+1
2 c1 + x−

√
−4a2b2+n2−2n+1

2 c2
)

The above shows that

u′(x) =

−
x−n

2−
1
2

(
c2
(
n− 1 +

√
−4a2b2 + n2 − 2n+ 1

)
x−

√
−4a2b2+n2−2n+1

2 + x
√

−4a2b2+n2−2n+1
2 c1

(
n− 1−

√
−4a2b2 + n2 − 2n+ 1

))
2

Using the above in (1) gives the solution

y

=
x−n

2−
1
2

(
c2
(
n− 1 +

√
−4a2b2 + n2 − 2n+ 1

)
x−

√
−4a2b2+n2−2n+1

2 + x
√

−4a2b2+n2−2n+1
2 c1

(
n− 1−

√
−4a2b2 + n2 − 2n+ 1

))
xnx

n
2

2b2
√
x
(
x
√

−4a2b2+n2−2n+1
2 c1 + x−

√
−4a2b2+n2−2n+1

2 c2
)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
xn−1

((
n− 1 +

√
−4a2b2 + n2 − 2n+ 1

)
x−

√
−4a2b2+n2−2n+1

2 + x
√

−4a2b2+n2−2n+1
2 c3

(
n− 1−

√
−4a2b2 + n2 − 2n+ 1

))
2b2
(
x
√

−4a2b2+n2−2n+1
2 c3 + x−

√
−4a2b2+n2−2n+1

2

)
Summary
The solution(s) found are the following

(1)y

=
xn−1

((
n− 1 +

√
−4a2b2 + n2 − 2n+ 1

)
x−

√
−4a2b2+n2−2n+1

2 + x
√

−4a2b2+n2−2n+1
2 c3

(
n− 1−

√
−4a2b2 + n2 − 2n+ 1

))
2b2
(
x
√

−4a2b2+n2−2n+1
2 c3 + x−

√
−4a2b2+n2−2n+1

2

)
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Verification of solutions
y

=
xn−1

((
n− 1 +

√
−4a2b2 + n2 − 2n+ 1

)
x−

√
−4a2b2+n2−2n+1

2 + x
√

−4a2b2+n2−2n+1
2 c3

(
n− 1−

√
−4a2b2 + n2 − 2n+ 1

))
2b2
(
x
√

−4a2b2+n2−2n+1
2 c3 + x−

√
−4a2b2+n2−2n+1

2

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 67� �
dsolve(x^n*diff(y(x),x) = a^2*x^(2*n-2)+b^2*y(x)^2,y(x), singsol=all)� �

y(x) =
xn−1

(
n− 1 + tan

(√
4a2b2−n2+2n−1 (ln(x)−c1)

2

)√
4a2b2 − n2 + 2n− 1

)
2b2
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3 Solution by Mathematica
Time used: 0.541 (sec). Leaf size: 162� �
DSolve[x^n y'[x]==a^2 x^(2 n-2)+b^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
xn−1

((
−ab

√
(n−1)2
a2b2

− 4 + n− 1
)
x
ab

√
(n−1)2
a2b2 −4 + c1

(
ab
√

(n−1)2
a2b2

− 4 + n− 1
))

2b2
(
x
ab

√
(n−1)2
a2b2 −4 + c1

)

y(x) →
xn−1

(
ab
√

(n−1)2
a2b2

− 4 + n− 1
)

2b2
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14.6 problem 386
14.6.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3802

Internal problem ID [3641]
Internal file name [OUTPUT/3134_Sunday_June_05_2022_08_53_17_AM_48636217/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 386.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , _Riccati]

y′xn − xn−1(a x2n + ny − by2
)
= 0

14.6.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= xn−1(a x2n + ny − b y2

)
x−n

This is a Riccati ODE. Comparing the ODE to solve

y′ = −b y2

x
+ a x2n

x
+ ny

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = xn−1x−na x2n, f1(x) = xn−1nx−n and f2(x) = −xn−1b x−n. Let

y = −u′

f2u

= −u′

−xn−1b x−nu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −xn−1(n− 1) b x−n

x
+ xn−1b x−nn

x
f1f2 = −x−2+2nnx−2nb

f 2
2 f0 = x−3+3nb2x−3na x2n

Substituting the above terms back in equation (2) gives

−xn−1b x−nu′′(x)−
(
−xn−1(n− 1) b x−n

x
+ xn−1b x−nn

x
− x−2+2nnx−2nb

)
u′(x) + x−3+3nb2x−3na x2nu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
xn

√
−ab

n

)
+ c2 cos

(
xn

√
−ab

n

)

The above shows that

u′(x) =
xn

√
−ab

(
c1 cos

(
xn

√
−ab
n

)
− c2 sin

(
xn

√
−ab
n

))
x

Using the above in (1) gives the solution

y =
x2n√−ab

(
c1 cos

(
xn

√
−ab
n

)
− c2 sin

(
xn

√
−ab
n

))
x−n+1

xb
(
c1 sin

(
xn

√
−ab
n

)
+ c2 cos

(
xn

√
−ab
n

))
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
xn

√
−ab

(
c3 cos

(
xn

√
−ab
n

)
− sin

(
xn

√
−ab
n

))
b
(
c3 sin

(
xn

√
−ab
n

)
+ cos

(
xn

√
−ab
n

))
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Summary
The solution(s) found are the following

(1)y =
xn

√
−ab

(
c3 cos

(
xn

√
−ab
n

)
− sin

(
xn

√
−ab
n

))
b
(
c3 sin

(
xn

√
−ab
n

)
+ cos

(
xn

√
−ab
n

))
Verification of solutions

y =
xn

√
−ab

(
c3 cos

(
xn

√
−ab
n

)
− sin

(
xn

√
−ab
n

))
b
(
c3 sin

(
xn

√
−ab
n

)
+ cos

(
xn

√
−ab
n

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(x^n*diff(y(x),x) = x^(n-1)*(a*x^(2*n)+n*y(x)-b*y(x)^2),y(x), singsol=all)� �

y(x) =
tanh

(
xn√a

√
b+ic1n

n

)√
a xn

√
b
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3 Solution by Mathematica
Time used: 0.322 (sec). Leaf size: 153� �
DSolve[x^n y'[x]==x^(n-1)(a x^(2 n)+n y[x]-b y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
axn
(
− cos

(√
a
√
−bxn

n

)
+ c1 sin

(√
a
√
−bxn

n

))
√
−b
(
sin
(√

a
√
−bxn

n

)
+ c1 cos

(√
a
√
−bxn

n

))
y(x) →

√
axn tan

(√
a
√
−bxn

n

)
√
−b
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14.7 problem 388
Internal problem ID [3642]
Internal file name [OUTPUT/3135_Sunday_June_05_2022_08_53_19_AM_62834886/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 388.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Chini]

Unable to solve or complete the solution.

xky′ − byn = a xm

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*n/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(x^k*diff(y(x),x) = a*x^m+b*y(x)^n,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x^k y'[x]==a x^m + b y[x]^n,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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14.8 problem 389
14.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3809
14.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3811
14.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3815
14.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3820

Internal problem ID [3643]
Internal file name [OUTPUT/3136_Sunday_June_05_2022_08_53_21_AM_55746935/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 389.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′
√
x2 + 1 + y = 2x

14.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1√
x2 + 1

q(x) = 2x√
x2 + 1

Hence the ode is

y′ + y√
x2 + 1

= 2x√
x2 + 1
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The integrating factor µ is

µ = e
∫ 1√

x2+1
dx

=
√
x2 + 1 + x

The ode becomes

d
dx(µy) = (µ)

(
2x√
x2 + 1

)
d
dx

((√
x2 + 1 + x

)
y
)
=
(√

x2 + 1 + x
)( 2x√

x2 + 1

)
d
((√

x2 + 1 + x
)
y
)
=
(
2x
(√

x2 + 1 + x
)

√
x2 + 1

)
dx

Integrating gives(√
x2 + 1 + x

)
y =

∫ 2x
(√

x2 + 1 + x
)

√
x2 + 1

dx(√
x2 + 1 + x

)
y = x2 +

√
x2 + 1x− arcsinh (x) + c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 + x results in

y = x2 +
√
x2 + 1x− arcsinh (x)√

x2 + 1 + x
+ c1√

x2 + 1 + x

which simplifies to

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Summary
The solution(s) found are the following

(1)y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x
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Figure 584: Slope field plot

Verification of solutions

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Verified OK.

14.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−2x+ y√
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 678: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1 + x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1+x

dy

Which results in

S =
(√

x2 + 1 + x
)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x+ y√
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(

x√
x2 + 1

+ 1
)
y

Sy =
√
x2 + 1 + x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

2x
(√

x2 + 1 + x
)

√
x2 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

2R
(√

R2 + 1 +R
)

√
R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 +R
√
R2 + 1− arcsinh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (√

x2 + 1 + x
)
y =

√
x2 + 1x+ x2 − arcsinh (x) + c1

Which simplifies to

(y − x)
√
x2 + 1− x2 + yx− c1 + arcsinh (x) = 0

Which gives

y = −−
√
x2 + 1x− x2 + arcsinh (x)− c1√

x2 + 1 + x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x+y√
x2+1

dS
dR

=
2R
(√

R2+1+R
)

√
R2+1

R = x

S =
(√

x2 + 1 + x
)
y
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Summary
The solution(s) found are the following

(1)y = −−
√
x2 + 1 x− x2 + arcsinh (x)− c1√

x2 + 1 + x

Figure 585: Slope field plot

Verification of solutions

y = −−
√
x2 + 1 x− x2 + arcsinh (x)− c1√

x2 + 1 + x

Verified OK.

14.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (√
x2 + 1

)
dy = (2x− y) dx

(−2x+ y) dx+
(√

x2 + 1
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x+ y

N(x, y) =
√
x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(−2x+ y)

= 1

And
∂N

∂x
= ∂

∂x

(√
x2 + 1

)
= x√

x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1√

x2 + 1

(
(1)−

(
x√

x2 + 1

))
=

√
x2 + 1− x

x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ √x2+1−x

x2+1 dx

The result of integrating gives

µ = earcsinh(x)−
ln
(
x2+1

)
2

= x√
x2 + 1

+ 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x√
x2 + 1

+ 1(−2x+ y)

= (−2x+ y)
(

x√
x2 + 1

+ 1
)
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And

N = µN

= x√
x2 + 1

+ 1
(√

x2 + 1
)

=
√
x2 + 1 + x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−2x+ y)
(

x√
x2 + 1

+ 1
))

+
(√

x2 + 1 + x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−2x+ y)

(
x√

x2 + 1
+ 1
)
dx

(3)φ = (y − x)
√
x2 + 1− x2 + xy + arcsinh (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + x+ f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1 + x. Therefore equation (4) becomes

(5)
√
x2 + 1 + x =

√
x2 + 1 + x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − x)
√
x2 + 1− x2 + xy + arcsinh (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − x)
√
x2 + 1− x2 + xy + arcsinh (x)

The solution becomes

y = −−
√
x2 + 1 x− x2 + arcsinh (x)− c1√

x2 + 1 + x

Summary
The solution(s) found are the following

(1)y = −−
√
x2 + 1 x− x2 + arcsinh (x)− c1√

x2 + 1 + x

Figure 586: Slope field plot
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Verification of solutions

y = −−
√
x2 + 1 x− x2 + arcsinh (x)− c1√

x2 + 1 + x

Verified OK.

14.8.4 Maple step by step solution

Let’s solve
y′
√
x2 + 1 + y = 2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y√

x2+1 +
2x√
x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y√

x2+1 = 2x√
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y√

x2+1

)
= 2µ(x)x√

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y√

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)√

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1 + x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)x√
x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)x√
x2+1dx+ c1

• Solve for y

y =
∫ 2µ(x)x√

x2+1
dx+c1

µ(x)
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• Substitute µ(x) =
√
x2 + 1 + x

y =
∫ 2x

(√
x2+1+x

)
√

x2+1
dx+c1

√
x2+1+x

• Evaluate the integrals on the rhs

y =
√
x2+1x+x2−arcsinh(x)+c1√

x2+1+x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(diff(y(x),x)*sqrt(x^2+1) = 2*x-y(x),y(x), singsol=all)� �

y(x) = x2 + x
√
x2 + 1− arcsinh (x) + c1

x+
√
x2 + 1

3 Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 50� �
DSolve[y'[x] Sqrt[1+x^2]==2 x -y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(√

x2 + 1− x
)(

x2 +
√
x2 + 1x+ log

(√
x2 + 1− x

)
+ c1

)
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Internal problem ID [3644]
Internal file name [OUTPUT/3137_Sunday_June_05_2022_08_53_23_AM_34575457/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 390.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
−x2 + 1− y2 = 1

14.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1√
−x2 + 1

Where f(x) = 1√
−x2+1 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = 1√

−x2 + 1
dx∫ 1

y2 + 1 dy =
∫ 1√

−x2 + 1
dx
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arctan (y) = −

√
− (x− 1)2 + 2− 2x

2 + arcsin (x) +

√
− (x+ 1)2 + 2x+ 2

2 + c1

Which results in
y = tan (arcsin (x) + c1)

Summary
The solution(s) found are the following

(1)y = tan (arcsin (x) + c1)

Figure 587: Slope field plot

Verification of solutions

y = tan (arcsin (x) + c1)

Verified OK.
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14.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1√
−x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 681: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) =
√
−x2 + 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

−x2 + 1
dx

Which results in

S = arcsin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1√
−x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1√
−x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arcsin (x) = arctan (y) + c1

Which simplifies to

arcsin (x) = arctan (y) + c1

Which gives

y = − tan (− arcsin (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1√
−x2+1

dS
dR

= 1
R2+1

R = y

S = arcsin (x)

Summary
The solution(s) found are the following

(1)y = − tan (− arcsin (x) + c1)
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Figure 588: Slope field plot

Verification of solutions

y = − tan (− arcsin (x) + c1)

Verified OK.

14.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

3828



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
1√

−x2 + 1

)
dx(

− 1√
−x2 + 1

)
dx+

(
1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
−x2 + 1

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

−x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

−x2 + 1
dx

(3)φ = − arcsin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arcsin (x) + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arcsin (x) + arctan (y)

Summary
The solution(s) found are the following

(1)− arcsin (x) + arctan (y) = c1

Figure 589: Slope field plot

Verification of solutions

− arcsin (x) + arctan (y) = c1

Verified OK.
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14.9.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2 + 1√
−x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2√
−x2 + 1

+ 1√
−x2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1√
−x2+1 , f1(x) = 0 and f2(x) = 1√

−x2+1 . Let

y = −u′

f2u

= −u′

u√
−x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

x

(−x2 + 1)
3
2

f1f2 = 0

f 2
2 f0 =

1
(−x2 + 1)

3
2

Substituting the above terms back in equation (2) gives

u′′(x)√
−x2 + 1

− xu′(x)
(−x2 + 1)

3
2
+ u(x)

(−x2 + 1)
3
2
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2
√
x− 1

√
x+ 1
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The above shows that

u′(x) = c1
√
x− 1

√
x+ 1 + c2x√

x− 1
√
x+ 1

Using the above in (1) gives the solution

y = −
(
c1
√
x− 1

√
x+ 1 + c2x

)√
−x2 + 1

√
x− 1

√
x+ 1

(
c1x+ c2

√
x− 1

√
x+ 1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −
(
c3
√
x− 1

√
x+ 1 + x

)√
−x2 + 1

√
x− 1

√
x+ 1

(
c3x+

√
x− 1

√
x+ 1

)
Summary
The solution(s) found are the following

(1)y = −
(
c3
√
x− 1

√
x+ 1 + x

)√
−x2 + 1

√
x− 1

√
x+ 1

(
c3x+

√
x− 1

√
x+ 1

)

Figure 590: Slope field plot
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Verification of solutions

y = −
(
c3
√
x− 1

√
x+ 1 + x

)√
−x2 + 1

√
x− 1

√
x+ 1

(
c3x+

√
x− 1

√
x+ 1

)
Verified OK.

14.9.5 Maple step by step solution

Let’s solve
y′
√
−x2 + 1− y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2+1 = 1√
−x2+1

• Integrate both sides with respect to x∫
y′

y2+1dx =
∫ 1√

−x2+1dx+ c1

• Evaluate integral
arctan (y) = arcsin (x) + c1

• Solve for y
y = tan (arcsin (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)*sqrt(-x^2+1) = 1+y(x)^2,y(x), singsol=all)� �

y(x) = tan (arcsin (x) + c1)

3 Solution by Mathematica
Time used: 0.283 (sec). Leaf size: 47� �
DSolve[y'[x] Sqrt[1-x^2]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − tan
(
2 arctan

(√
1− x2

x+ 1

)
− c1

)
y(x) → −i
y(x) → i
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14.10 problem 391
14.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3836
14.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3838
14.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3841
14.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3845

Internal problem ID [3645]
Internal file name [OUTPUT/3138_Sunday_June_05_2022_08_53_25_AM_51378875/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 391.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−
√
x2 + 1 + x

)
y′ − y −

√
y2 + 1 = 0

14.10.1 Solving as separable ode

In canonical form the ODE is
y′ = F (x, y)

= f(x)g(y)

= −y −
√
y2 + 1√

x2 + 1− x

Where f(x) = 1√
x2+1−x

and g(y) = −y −
√
y2 + 1. Integrating both sides gives

1
−y −

√
y2 + 1

dy = 1√
x2 + 1− x

dx∫ 1
−y −

√
y2 + 1

dy =
∫ 1√

x2 + 1− x
dx

y2

2 − y
√
y2 + 1
2 − arcsinh (y)

2 = x2

2 +
√
x2 + 1x

2 + arcsinh (x)
2 + c1
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The solution is

y2

2 −
√
y2 + 1 y
2 − arcsinh (y)

2 − x2

2 −
√
x2 + 1x

2 − arcsinh (x)
2 − c1 = 0

Summary
The solution(s) found are the following

(1)y2

2 −
√
y2 + 1 y
2 − arcsinh (y)

2 − x2

2 −
√
x2 + 1x

2 − arcsinh (x)
2 − c1 = 0

Figure 591: Slope field plot

Verification of solutions

y2

2 −
√
y2 + 1 y
2 − arcsinh (y)

2 − x2

2 −
√
x2 + 1x

2 − arcsinh (x)
2 − c1 = 0

Verified OK.
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14.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y +
√
y2 + 1√

x2 + 1− x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 684: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) =
√
x2 + 1− x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

x2 + 1− x
dx

Which results in

S = x2

2 +
√
x2 + 1x

2 + arcsinh (x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y +
√
y2 + 1√

x2 + 1− x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx =
√
x2 + 1x+ x2 + 1√

x2 + 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(√

x2 + 1x+ x2 + 1
) (

−
√
x2 + 1 + x

)
√
x2 + 1

(
y +

√
y2 + 1

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Expression too large to display

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

Expression too large to display (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

Expression too large to display

Which simplifies to

Expression too large to display

This results in

Expression too large to display

Summary
The solution(s) found are the following

(1)Expression too large to display
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Figure 592: Slope field plot

Verification of solutions

Expression too large to display

Warning, solution could not be verified

14.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y −
√
y2 + 1

)
dy =

(
1√

x2 + 1− x

)
dx(

− 1√
x2 + 1− x

)
dx+

(
1

−y −
√
y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
x2 + 1− x

N(x, y) = 1
−y −

√
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

x2 + 1− x

)
= 0

3842



And

∂N

∂x
= ∂

∂x

(
1

−y −
√
y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

x2 + 1− x
dx

(3)φ = −x2

2 −
√
x2 + 1x

2 − arcsinh (x)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−y−

√
y2+1

. Therefore equation (4) becomes

(5)1
−y −

√
y2 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y +

√
y2 + 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y +

√
y2 + 1

)
dy

f(y) = y2

2 − y
√
y2 + 1
2 − arcsinh (y)

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 −
√
x2 + 1x

2 − arcsinh (x)
2 + y2

2 − y
√
y2 + 1
2 − arcsinh (y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 −
√
x2 + 1x

2 − arcsinh (x)
2 + y2

2 − y
√
y2 + 1
2 − arcsinh (y)

2

Summary
The solution(s) found are the following

(1)y2

2 −
√
y2 + 1 y
2 − arcsinh (y)

2 − x2

2 −
√
x2 + 1 x

2 − arcsinh (x)
2 = c1
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Figure 593: Slope field plot

Verification of solutions

y2

2 −
√
y2 + 1 y
2 − arcsinh (y)

2 − x2

2 −
√
x2 + 1 x

2 − arcsinh (x)
2 = c1

Verified OK.

14.10.4 Maple step by step solution

Let’s solve(
−
√
x2 + 1 + x

)
y′ − y −

√
y2 + 1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y+
√

y2+1
= 1

−
√
x2+1+x

• Integrate both sides with respect to x∫
y′

y+
√

y2+1
dx =

∫ 1
−
√
x2+1+x

dx+ c1

• Evaluate integral
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√
y2+1 y
2 + arcsinh(y)

2 − y2

2 = −x2

2 −
√
x2+1x
2 − arcsinh(x)

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve((x-sqrt(x^2+1))*diff(y(x),x) = y(x)+sqrt(1+y(x)^2),y(x), singsol=all)� �

c1 + x2 + x
√
x2 + 1 + arcsinh (x) + y(x)

√
y (x)2 + 1 + arcsinh (y(x))− y(x)2 = 0

3 Solution by Mathematica
Time used: 0.922 (sec). Leaf size: 84� �
DSolve[(x-Sqrt[1+x^2])y'[x]==y[x]+Sqrt[1+ y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

[
1
2

(
#1
(√

#12 + 1−#1
)

− log
(√

#12 + 1−#1
))

&
] [

1
2

(
log
(√

x2 + 1−x
)
−x
(√

x2 + 1+x
))

+ c1

]
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14.11 problem 392
14.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3847
14.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3849
14.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3852
14.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3856

Internal problem ID [3646]
Internal file name [OUTPUT/3139_Sunday_June_05_2022_08_53_27_AM_95600748/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 392.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′
√
a2 + x2 + y = −x+

√
a2 + x2

14.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1√
a2 + x2

q(x) = −x+
√
a2 + x2

√
a2 + x2

Hence the ode is

y′ + y√
a2 + x2

= −x+
√
a2 + x2

√
a2 + x2
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The integrating factor µ is

µ = e
∫ 1√

a2+x2
dx

= x+
√
a2 + x2

The ode becomes

d
dx(µy) = (µ)

(
−x+

√
a2 + x2

√
a2 + x2

)
d
dx

((
x+

√
a2 + x2

)
y
)
=
(
x+

√
a2 + x2

)(−x+
√
a2 + x2

√
a2 + x2

)

d
((

x+
√
a2 + x2

)
y
)
=
(

a2√
a2 + x2

)
dx

Integrating gives (
x+

√
a2 + x2

)
y =

∫
a2√

a2 + x2
dx(

x+
√
a2 + x2

)
y = a2 ln

(
x+

√
a2 + x2

)
+ c1

Dividing both sides by the integrating factor µ = x+
√
a2 + x2 results in

y =
a2 ln

(
x+

√
a2 + x2

)
x+

√
a2 + x2

+ c1

x+
√
a2 + x2

which simplifies to

y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Summary
The solution(s) found are the following

(1)y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Verification of solutions

y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Verified OK.
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14.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x− y +
√
a2 + x2

√
a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 687: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x+

√
a2 + x2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x+

√
a2+x2

dy

Which results in

S =
(
x+

√
a2 + x2

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x− y +
√
a2 + x2

√
a2 + x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(
1 + x√

a2 + x2

)
y

Sy = x+
√
a2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a2√

a2 + x2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a2√

R2 + a2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a2 ln
(√

R2 + a2 +R
)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x+
√
a2 + x2

)
y = a2 ln

(
x+

√
a2 + x2

)
+ c1

Which simplifies to (
x+

√
a2 + x2

)
y = a2 ln

(
x+

√
a2 + x2

)
+ c1

Which gives

y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Summary
The solution(s) found are the following

(1)y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2
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Verification of solutions

y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Verified OK.

14.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (√
a2 + x2

)
dy =

(
−x− y +

√
a2 + x2

)
dx(

x+ y −
√
a2 + x2

)
dx+

(√
a2 + x2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y −
√
a2 + x2

N(x, y) =
√
a2 + x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x+ y −

√
a2 + x2

)
= 1

And
∂N

∂x
= ∂

∂x

(√
a2 + x2

)
= x√

a2 + x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1√

a2 + x2

(
(1)−

(
x√

a2 + x2

))
= −x+

√
a2 + x2

a2 + x2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −x+

√
a2+x2

a2+x2 dx
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The result of integrating gives

µ = e
ln
(
x+

√
a2+x2

)
−

ln
(
a2+x2

)
2

= 1 + x√
a2 + x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1 + x√
a2 + x2

(
x+ y −

√
a2 + x2

)
=
(
x+ y −

√
a2 + x2

) (
x+

√
a2 + x2

)
√
a2 + x2

And

N = µN

= 1 + x√
a2 + x2

(√
a2 + x2

)
= x+

√
a2 + x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

x+ y −
√
a2 + x2

) (
x+

√
a2 + x2

)
√
a2 + x2

)
+
(
x+

√
a2 + x2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ (
x+ y −

√
a2 + x2

) (
x+

√
a2 + x2

)
√
a2 + x2

dx

(3)φ = −a2 ln
(
x+

√
a2 + x2

)
+
(
x+

√
a2 + x2

)
y + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+

√
a2 + x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x+
√
a2 + x2. Therefore equation (4) becomes

(5)x+
√
a2 + x2 = x+

√
a2 + x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −a2 ln
(
x+

√
a2 + x2

)
+
(
x+

√
a2 + x2

)
y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −a2 ln
(
x+

√
a2 + x2

)
+
(
x+

√
a2 + x2

)
y

The solution becomes

y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Summary
The solution(s) found are the following

(1)y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Verification of solutions

y =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

Verified OK.
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14.11.4 Maple step by step solution

Let’s solve
y′
√
a2 + x2 + y = −x+

√
a2 + x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = − y√
a2+x2 + −x+

√
a2+x2√

a2+x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y√
a2+x2 = −x+

√
a2+x2√

a2+x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y√

a2+x2

)
=

µ(x)
(
−x+

√
a2+x2

)
√
a2+x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y√

a2+x2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)√

a2+x2

• Solve to find the integrating factor
µ(x) = x+

√
a2 + x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
−x+

√
a2+x2

)
√
a2+x2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
−x+

√
a2+x2

)
√
a2+x2 dx+ c1

• Solve for y

y =
∫ µ(x)

(
−x+

√
a2+x2

)
√

a2+x2
dx+c1

µ(x)

• Substitute µ(x) = x+
√
a2 + x2

y =
∫ (−x+

√
a2+x2

)(
x+
√

a2+x2
)

√
a2+x2

dx+c1

x+
√
a2+x2

• Evaluate the integrals on the rhs
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y =
a2 ln

(
x+

√
a2+x2

)
+c1

x+
√
a2+x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(diff(y(x),x)*sqrt(a^2+x^2)+x+y(x) = sqrt(a^2+x^2),y(x), singsol=all)� �

y(x) =
a2 ln

(
x+

√
a2 + x2

)
+ c1

x+
√
a2 + x2

3 Solution by Mathematica
Time used: 8.172 (sec). Leaf size: 103� �
DSolve[y'[x] Sqrt[a^2+x^2]+x+y[x]==Sqrt[a^2 + x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x−

√
a2 + x2

)(
log
(
1− x√

a2 + x2

)
− log

(
x√

a2 + x2
+ 1
))

+
c1
√

1− x√
a2+x2√

x√
a2+x2 + 1
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Internal problem ID [3647]
Internal file name [OUTPUT/3140_Sunday_June_05_2022_08_53_29_AM_93052826/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 393.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
b2 + x2 −

√
y2 + a2 = 0

14.12.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
a2 + y2√
b2 + x2

Where f(x) = 1√
b2+x2 and g(y) =

√
a2 + y2. Integrating both sides gives

1√
a2 + y2

dy = 1√
b2 + x2

dx∫ 1√
a2 + y2

dy =
∫ 1√

b2 + x2
dx

ln
(
y +

√
a2 + y2

)
= ln

(
x+

√
b2 + x2

)
+ c1
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Raising both side to exponential gives

y +
√

a2 + y2 = eln
(
x+

√
b2+x2

)
+c1

Which simplifies to

y +
√

a2 + y2 = c2
(
x+

√
b2 + x2

)
Summary
The solution(s) found are the following

(1)y =
(
2
√
b2 + x2 e2c1c22x+ e2c1c22b2 + 2 e2c1c22x2 − a2

)
e−c1

2c2
(
x+

√
b2 + x2

)
Verification of solutions

y =
(
2
√
b2 + x2 e2c1c22x+ e2c1c22b2 + 2 e2c1c22x2 − a2

)
e−c1

2c2
(
x+

√
b2 + x2

)
Verified OK.

14.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
a2 + y2√
b2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 690: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
√
b2 + x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

b2 + x2
dx

Which results in

S = ln
(
x+

√
b2 + x2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
a2 + y2√
b2 + x2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1√
b2 + x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

a2 + y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

R2 + a2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln
(
R +

√
R2 + a2

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
x+

√
b2 + x2

)
= ln

(
y +

√
y2 + a2

)
+ c1

Which simplifies to

ln
(
x+

√
b2 + x2

)
= ln

(
y +

√
y2 + a2

)
+ c1

Which gives

y =
(
−e2c1a2 + b2 + 2x2 + 2x

√
b2 + x2

)
e−c1

2x+ 2
√
b2 + x2

Summary
The solution(s) found are the following

(1)y =
(
−e2c1a2 + b2 + 2x2 + 2x

√
b2 + x2

)
e−c1

2x+ 2
√
b2 + x2

Verification of solutions

y =
(
−e2c1a2 + b2 + 2x2 + 2x

√
b2 + x2

)
e−c1

2x+ 2
√
b2 + x2

Verified OK.

14.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

3862



Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1√
a2 + y2

)
dy =

(
1√

b2 + x2

)
dx(

− 1√
b2 + x2

)
dx+

(
1√

a2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
b2 + x2

N(x, y) = 1√
a2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1√

b2 + x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1√

a2 + y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

b2 + x2
dx

(3)φ = − ln
(
x+

√
b2 + x2

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
a2+y2

. Therefore equation (4) becomes

(5)1√
a2 + y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
a2 + y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1√
a2 + y2

)
dy

f(y) = ln
(
y +

√
a2 + y2

)
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln
(
x+

√
b2 + x2

)
+ ln

(
y +

√
a2 + y2

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln
(
x+

√
b2 + x2

)
+ ln

(
y +

√
a2 + y2

)
The solution becomes

y =
(
2
√
b2 + x2 e2c1x+ e2c1b2 + 2 e2c1x2 − a2

)
e−c1

2x+ 2
√
b2 + x2

Summary
The solution(s) found are the following

(1)y =
(
2
√
b2 + x2 e2c1x+ e2c1b2 + 2 e2c1x2 − a2

)
e−c1

2x+ 2
√
b2 + x2

Verification of solutions

y =
(
2
√
b2 + x2 e2c1x+ e2c1b2 + 2 e2c1x2 − a2

)
e−c1

2x+ 2
√
b2 + x2

Verified OK.
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14.12.4 Maple step by step solution

Let’s solve
y′
√
b2 + x2 −

√
y2 + a2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

y2+a2
= 1√

b2+x2

• Integrate both sides with respect to x∫
y′√

y2+a2
dx =

∫ 1√
b2+x2dx+ c1

• Evaluate integral
ln
(
y +

√
y2 + a2

)
= ln

(
x+

√
b2 + x2

)
+ c1

• Solve for y

y = 2
√
b2+x2 (ec1 )2x+(ec1 )2b2+2x2(ec1 )2−a2

2 ec1
(
x+

√
b2+x2

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)*sqrt(b^2+x^2) = sqrt(y(x)^2+a^2),y(x), singsol=all)� �

ln
(
x+

√
b2 + x2

)
− ln

(
y(x) +

√
y (x)2 + a2

)
+ c1 = 0
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3 Solution by Mathematica
Time used: 11.551 (sec). Leaf size: 167� �
DSolve[y'[x] Sqrt[x^2+b^2]==Sqrt[y[x]^2+a^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
e−c1

√
a2
(
2x
(
(−1 + e4c1)

√
b2 + x2 + (1 + e4c1)x

)
+ b2 (−1 + e2c1) 2

)
2b

y(x) →
e−c1

√
a2
(
2x
(
(−1 + e4c1)

√
b2 + x2 + (1 + e4c1)x

)
+ b2 (−1 + e2c1) 2

)
2b

y(x) → −ia
y(x) → ia
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14.13 problem 394
14.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3868
14.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3869
14.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3873
14.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3876

Internal problem ID [3648]
Internal file name [OUTPUT/3141_Sunday_June_05_2022_08_53_31_AM_14414440/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 394.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
b2 − x2 −

√
a2 − y2 = 0

14.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
a2 − y2√
b2 − x2

Where f(x) = 1√
b2−x2 and g(y) =

√
a2 − y2. Integrating both sides gives

1√
a2 − y2

dy = 1√
b2 − x2

dx∫ 1√
a2 − y2

dy =
∫ 1√

b2 − x2
dx

arctan
(

y√
a2 − y2

)
= arctan

(
x√

b2 − x2

)
+ c1
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The solution is

arctan
(

y√
a2 − y2

)
− arctan

(
x√

b2 − x2

)
− c1 = 0

Summary
The solution(s) found are the following

(1)arctan
(

y√
a2 − y2

)
− arctan

(
x√

b2 − x2

)
− c1 = 0

Verification of solutions

arctan
(

y√
a2 − y2

)
− arctan

(
x√

b2 − x2

)
− c1 = 0

Verified OK.

14.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
a2 − y2√
b2 − x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 693: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
√
b2 − x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

b2 − x2
dx

Which results in

S = arctan
(

x√
b2 − x2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
a2 − y2√
b2 − x2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1√
b2 − x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

a2 − y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

−R2 + a2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan
(

R√
−R2 + a2

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan
(

x√
b2 − x2

)
= arctan

(
y√

a2 − y2

)
+ c1

Which simplifies to

arctan
(

x√
b2 − x2

)
= arctan

(
y√

a2 − y2

)
+ c1

Which gives

y = − tan
(
− arctan

(
x√

b2 − x2

)
+ c1

)√√√√ a2

tan
(
− arctan

(
x√

b2−x2

)
+ c1

)2
+ 1

Summary
The solution(s) found are the following

(1)y = − tan
(
− arctan

(
x√

b2 − x2

)
+ c1

)√√√√ a2

tan
(
− arctan

(
x√

b2−x2

)
+ c1

)2
+ 1

Verification of solutions

y = − tan
(
− arctan

(
x√

b2 − x2

)
+ c1

)√√√√ a2

tan
(
− arctan

(
x√

b2−x2

)
+ c1

)2
+ 1

Verified OK.
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14.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1√

a2 − y2

)
dy =

(
1√

b2 − x2

)
dx(

− 1√
b2 − x2

)
dx+

(
1√

a2 − y2

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1√
b2 − x2

N(x, y) = 1√
a2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1√

b2 − x2

)
= 0

And
∂N

∂x
= ∂

∂x

(
1√

a2 − y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

b2 − x2
dx

(3)φ = − arctan
(

x√
b2 − x2

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1√
a2−y2

. Therefore equation (4) becomes

(5)1√
a2 − y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
a2 − y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1√
a2 − y2

)
dy

f(y) = arctan
(

y√
a2 − y2

)
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan
(

x√
b2 − x2

)
+ arctan

(
y√

a2 − y2

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan
(

x√
b2 − x2

)
+ arctan

(
y√

a2 − y2

)

Summary
The solution(s) found are the following

(1)arctan
(

y√
a2 − y2

)
− arctan

(
x√

b2 − x2

)
= c1

Verification of solutions

arctan
(

y√
a2 − y2

)
− arctan

(
x√

b2 − x2

)
= c1

Verified OK.
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14.13.4 Maple step by step solution

Let’s solve
y′
√
b2 − x2 −

√
a2 − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

a2−y2
= 1√

b2−x2

• Integrate both sides with respect to x∫
y′√

a2−y2
dx =

∫ 1√
b2−x2dx+ c1

• Evaluate integral

arctan
(

y√
a2−y2

)
= arctan

(
x√

b2−x2

)
+ c1

• Solve for y

y = tan
(
arctan

(
x√

b2−x2

)
+ c1

)√
a2

tan
(
arctan

(
x√

b2−x2

)
+c1

)2
+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(y(x),x)*sqrt(b^2-x^2) = sqrt(a^2-y(x)^2),y(x), singsol=all)� �

arctan
(

x√
b2 − x2

)
− arctan

 y(x)√
a2 − y (x)2

+ c1 = 0
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3 Solution by Mathematica
Time used: 4.959 (sec). Leaf size: 118� �
DSolve[y'[x] Sqrt[b^2-x^2]==Sqrt[a^2-y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
a tan

(
arctan

(
x√

b2−x2

)
+ c1

)
√

sec2
(
arctan

(
x√

b2−x2

)
+ c1

)
y(x) →

a tan
(
arctan

(
x√

b2−x2

)
+ c1

)
√

sec2
(
arctan

(
x√

b2−x2

)
+ c1

)
y(x) → −a
y(x) → a
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Internal problem ID [3649]
Internal file name [OUTPUT/3142_Sunday_June_05_2022_08_53_33_AM_62276291/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 395.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′
√
a2 + x2 − y

√
b2 + y2 = 0

14.14.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y
√
b2 + y2√

a2 + x2 x

Where f(x) = 1√
a2+x2 x

and g(y) = y
√
b2 + y2. Integrating both sides gives

1
y
√
b2 + y2

dy = 1√
a2 + x2 x

dx∫ 1
y
√
b2 + y2

dy =
∫ 1√

a2 + x2 x
dx
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−
ln
(

2b2+2
√
b2
√

b2+y2

y

)
√
b2

= −
ln
(

2a2+2
√
a2

√
a2+x2

x

)
√
a2

+ c1

Raising both side to exponential gives

e−
ln

 2b2+2
√

b2
√

b2+y2
y


√

b2 = e−
ln
(

2a2+2
√

a2
√

a2+x2
x

)
√

a2
+c1

Which simplifies to

2−
csgn(b)

b

(
b
(√

b2 + y2 csgn (b) + b
)

y

)− csgn(b)
b

= c2e
−

ln
(

2a2+2
√

a2
√

a2+x2
x

)
√

a2

Assuming that {b} are positive, the solution becomes

2− 1
b b−

1
b

(√
b2 + y2 + b

y

)− 1
b

= c22−
csgn(a)

a

(
a
(√

a2 + x2 csgn (a) + a
)

x

)− csgn(a)
a

ec1

The solution is

2− 1
b b−

1
b

(√
b2 + y2 + b

y

)− 1
b

= c22−
csgn(a)

a

(
a
(√

a2 + x2 csgn (a) + a
)

x

)− csgn(a)
a

ec1

Simplifying the solution 2− 1
b b−

1
b

(√
b2+y2+b

y

)− 1
b = c22−

csgn(a)
a

(
a
(√

a2+x2 csgn(a)+a
)

x

)− csgn(a)
a

ec1

to 2− 1
b b−

1
b

(√
b2+y2+b

y

)− 1
b = c22−

1
a

(
a
(√

a2+x2+a
)

x

)− 1
a

ec1

Summary
The solution(s) found are the following

(1)2− 1
b b−

1
b

(√
b2 + y2 + b

y

)− 1
b

= c22−
1
a

(
a
(√

a2 + x2 + a
)

x

)− 1
a

ec1

Verification of solutions

2− 1
b b−

1
b

(√
b2 + y2 + b

y

)− 1
b

= c22−
1
a

(
a
(√

a2 + x2 + a
)

x

)− 1
a

ec1

Verified OK. {b::positive}
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14.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y
√
b2 + y2√

a2 + x2 x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 696: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) =
√
a2 + x2 x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

a2 + x2 x
dx

Which results in

S = −
ln
(

2a2+2
√
a2

√
a2+x2

x

)
√
a2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y
√
b2 + y2√

a2 + x2 x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1√
a2 + x2 x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y
√
b2 + y2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
√
R2 + b2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
ln
(

2b2+2
√
b2

√
R2+b2

R

)
√
b2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (2)− ln (a)− ln
(√

a2 + x2 + a
)
+ ln (x)

a
= −

ln
(

2b2+2
√
b2
√

b2+y2

y

)
√
b2

+ c1

Which simplifies to(
ln (2) + ln

(
b
(√

b2+y2 csgn(b)+b
)

y

))
a csgn (b)−

(
c1a+ ln

(√
a2 + x2 + a

)
+ ln (2) + ln (a)− ln (x)

)
b

ab
= 0

Simplifying the solution

ln(2)+ln

 b

(√
b2+y2 csgn(b)+b

)
y

a csgn(b)−
(
c1a+ln

(√
a2+x2+a

)
+ln(2)+ln(a)−ln(x)

)
b

ab
=
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0 to

ln(2)+ln

 b

(√
b2+y2+b

)
y

a−
(
c1a+ln

(√
a2+x2+a

)
+ln(2)+ln(a)−ln(x)

)
b

ab
= 0

Summary
The solution(s) found are the following(

ln (2) + ln
(

b
(√

b2+y2+b
)

y

))
a−

(
c1a+ ln

(√
a2 + x2 + a

)
+ ln (2) + ln (a)− ln (x)

)
b

ab
= 0

(1)
Verification of solutions(

ln (2) + ln
(

b
(√

b2+y2+b
)

y

))
a−

(
c1a+ ln

(√
a2 + x2 + a

)
+ ln (2) + ln (a)− ln (x)

)
b

ab
= 0

Verified OK. {b::positive}

14.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
y
√
b2 + y2

)
dy =

(
1√

a2 + x2 x

)
dx(

− 1√
a2 + x2 x

)
dx+

(
1

y
√
b2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
a2 + x2 x

N(x, y) = 1
y
√
b2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

a2 + x2 x

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

y
√
b2 + y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

a2 + x2 x
dx

(3)φ =
csgn (a)

(
ln (2) + ln

(
a
(√

a2+x2 csgn(a)+a
)

x

))
a

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
√

b2+y2
. Therefore equation (4) becomes

(5)1
y
√
b2 + y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y
√
b2 + y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y
√
b2 + y2

)
dy

f(y) = −
ln
(

2b2+2
√
b2
√

b2+y2

y

)
√
b2

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
csgn (a)

(
ln (2) + ln

(
a
(√

a2+x2 csgn(a)+a
)

x

))
a

−
ln
(

2b2+2
√
b2
√

b2+y2

y

)
√
b2

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
csgn (a)

(
ln (2) + ln

(
a
(√

a2+x2 csgn(a)+a
)

x

))
a

−
ln
(

2b2+2
√
b2
√

b2+y2

y

)
√
b2

Simplifying the solution
csgn(a)

(
ln(2)+ln

(
a
(√

a2+x2 csgn(a)+a
)

x

))
a

−
ln
(

2b2+2
√

b2
√

b2+y2
y

)
√
b2

= c1 to

ln(2)+ln
(

a
(√

a2+x2+a
)

x

)
a

−
ln
(

2b2+2
√

b2
√

b2+y2
y

)
√
b2

= c1

Summary
The solution(s) found are the following

(1)
ln (2) + ln

(
a
(√

a2+x2+a
)

x

)
a

−
ln
(

2b2+2
√
b2
√

b2+y2

y

)
√
b2

= c1

Verification of solutions

ln (2) + ln
(

a
(√

a2+x2+a
)

x

)
a

−
ln
(

2b2+2
√
b2
√

b2+y2

y

)
√
b2

= c1

Verified OK. {b::positive}

14.14.4 Maple step by step solution

Let’s solve
xy′

√
a2 + x2 − y

√
b2 + y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
√

b2+y2
= 1√

a2+x2 x

• Integrate both sides with respect to x∫
y′

y
√

b2+y2
dx =

∫ 1√
a2+x2 x

dx+ c1

• Evaluate integral

−
ln
(

2b2+2
√

b2
√

b2+y2
y

)
√
b2

= −
ln
(

2a2+2
√

a2
√

a2+x2
x

)
√
a2

+ c1
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• Solve for y

y =

2b




4
√

b2 b−


e

√
b2
−c1

√
a2+ln

 2
(
a2+

√
a2
√

a2+x2
)

x


√

a2



2
√

b2


e

√
b2
−c1

√
a2+ln

 2
(
a2+

√
a2
√

a2+x2
)

x


√

a2



2

−4b2

+b



e

√
b2
−c1

√
a2+ln

 2
(
a2+

√
a2
√

a2+x2
)

x


√

a2

, y =

2b




4
√

b2 b+


e

√
b2
−c1

√
a2+ln

 2
(
a2+

√
a2
√

a2+x2
)

x


√

a2



2
√

b2


e

√
b2
−c1

√
a2+ln

 2
(
a2+

√
a2
√

a2+x2
)

x


√

a2



2

−4b2

+b



e

√
b2
−c1

√
a2+ln

 2
(
a2+

√
a2
√

a2+x2
)

x


√

a2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 79� �
dsolve(x*diff(y(x),x)*sqrt(a^2+x^2) = y(x)*sqrt(b^2+y(x)^2),y(x), singsol=all)� �
csgn (b) a ln (2)− csgn (a) b ln (2) + csgn (b) a ln

(
b

(√
b2+y(x)2 csgn(b)+b

)
y(x)

)
− csgn (a) b ln

(
a
(√

a2+x2 csgn(a)+a
)

x

)
+ c1ab

ab
= 0
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3 Solution by Mathematica
Time used: 26.26 (sec). Leaf size: 274� �
DSolve[x y'[x] Sqrt[a^2+x^2]==y[x] Sqrt[b^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2b3/2ebc1

(
a
(√

a2 + x2 − a
)) b

2a
(√

a2 + x2 + a
) b

2a√(
−b
(√

a2 + x2 + a
) b

a + e2bc1
(
a
(√

a2 + x2 − a
)) b

a

)
2

y(x) →
2b3/2ebc1

(
a
(√

a2 + x2 − a
)) b

2a
(√

a2 + x2 + a
) b

2a√(
−b
(√

a2 + x2 + a
) b

a + e2bc1
(
a
(√

a2 + x2 − a
)) b

a

)
2

y(x) → 0
y(x) → −ib
y(x) → ib
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14.15 problem 396
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Internal problem ID [3650]
Internal file name [OUTPUT/3143_Sunday_June_05_2022_08_53_35_AM_528394/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 396.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′
√
−a2 + x2 − y

√
y2 − b2 = 0

14.15.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y
√
−b2 + y2

x
√
−a2 + x2

Where f(x) = 1
x
√
−a2+x2 and g(y) =

√
−b2 + y2 y. Integrating both sides gives

1√
−b2 + y2 y

dy = 1
x
√
−a2 + x2

dx∫ 1√
−b2 + y2 y

dy =
∫ 1

x
√
−a2 + x2

dx
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−
ln
(

−2b2+2
√
−b2

√
−b2+y2

y

)
√
−b2

= −
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

+ c1

Raising both side to exponential gives

e−
ln

−2b2+2
√

−b2
√

−b2+y2
y


√

−b2 = e−
ln
(

−2a2+2
√

−a2
√

−a2+x2
x

)
√

−a2
+c1

Which simplifies to

2−
1√
−b2

(√
−b2

√
−b2 + y2 − b2

y

)− 1√
−b2

= c2e
−

ln
(

−2a2+2
√

−a2
√

−a2+x2
x

)
√

−a2

Which simplifies to

2−
1√
−b2

(√
−b2

√
y2 − b2 − b2

y

)− 1√
−b2

= c2

(
−2a2 + 2

√
−a2

√
−a2 + x2

x

)− 1√
−a2

ec1

The solution is

2−
1√
−b2

(√
−b2

√
y2 − b2 − b2

y

)− 1√
−b2

= c2

(
−2a2 + 2

√
−a2

√
−a2 + x2

x

)− 1√
−a2

ec1

Summary
The solution(s) found are the following

(1)2−
1√
−b2

(√
−b2

√
y2 − b2 − b2

y

)− 1√
−b2

= c2

(
−2a2 + 2

√
−a2

√
−a2 + x2

x

)− 1√
−a2

ec1

Verification of solutions

2−
1√
−b2

(√
−b2

√
y2 − b2 − b2

y

)− 1√
−b2

= c2

(
−2a2 + 2

√
−a2

√
−a2 + x2

x

)− 1√
−a2

ec1

Verified OK.
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14.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y
√
−b2 + y2

x
√
−a2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 699: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x
√
−a2 + x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
√
−a2 + x2

dx

Which results in

S = −
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y
√
−b2 + y2

x
√
−a2 + x2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x
√
−a2 + x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y
√
−b2 + y2

(2A)

Unable to generate ode in canonical coordinates.

14.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y
√
−b2 + y2

)
dy =

(
1

x
√
−a2 + x2

)
dx(

− 1
x
√
−a2 + x2

)
dx+

(
1

y
√
−b2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x
√
−a2 + x2

N(x, y) = 1
y
√
−b2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x
√
−a2 + x2

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

y
√
−b2 + y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x
√
−a2 + x2

dx

(3)φ =
ln (2) + ln

(
−a2+

√
−a2

√
−a2+x2

x

)
√
−a2

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
√

−b2+y2
. Therefore equation (4) becomes

(5)1
y
√
−b2 + y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y
√
−b2 + y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y
√
−b2 + y2

)
dy

f(y) = −
ln
(

−2b2+2
√
−b2

√
−b2+y2

y

)
√
−b2

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
ln (2) + ln

(
−a2+

√
−a2

√
−a2+x2

x

)
√
−a2

−
ln
(

−2b2+2
√
−b2

√
−b2+y2

y

)
√
−b2

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (2) + ln

(
−a2+

√
−a2

√
−a2+x2

x

)
√
−a2

−
ln
(

−2b2+2
√
−b2

√
−b2+y2

y

)
√
−b2

Summary
The solution(s) found are the following

(1)
ln (2) + ln

(
−a2+

√
−a2

√
−a2+x2

x

)
√
−a2

−
ln
(

−2b2+2
√
−b2

√
y2−b2

y

)
√
−b2

= c1

Verification of solutions

ln (2) + ln
(

−a2+
√
−a2

√
−a2+x2

x

)
√
−a2

−
ln
(

−2b2+2
√
−b2

√
y2−b2

y

)
√
−b2

= c1

Verified OK.

14.15.4 Maple step by step solution

Let’s solve
xy′

√
−a2 + x2 − y

√
y2 − b2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
√

y2−b2
= 1

x
√
−a2+x2

• Integrate both sides with respect to x∫
y′

y
√

y2−b2
dx =

∫ 1
x
√
−a2+x2dx+ c1

• Evaluate integral

−
ln
(

−2b2+2
√

−b2
√

y2−b2
y

)
√
−b2

= −
ln
(

−2a2+2
√

−a2
√

−a2+x2
x

)
√
−a2

+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 135� �
dsolve(x*diff(y(x),x)*sqrt(-a^2+x^2) = y(x)*sqrt(y(x)^2-b^2),y(x), singsol=all)� �
c1
√
−a2

√
−b2 +

√
−a2 ln (2)−

√
−b2 ln (2)−

√
−b2 ln

(√
−a2

√
−a2+x2−a2

x

)
+
√
−a2 ln

(√
−b2

√
y(x)2−b2−b2

y(x)

)
√
−a2

√
−b2

= 0

3 Solution by Mathematica
Time used: 18.348 (sec). Leaf size: 101� �
DSolve[x y'[x] Sqrt[x^2-a^2]==y[x] Sqrt[y[x]^2-b^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −b

√√√√√sec2
b
(
arctan

(√
x2−a2

a

)
+ ac1

)
a



y(x) → b

√√√√√sec2
b
(
arctan

(√
x2−a2

a

)
+ ac1

)
a


y(x) → 0
y(x) → −b
y(x) → b
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14.16 problem 397
14.16.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 3898
14.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3899

Internal problem ID [3651]
Internal file name [OUTPUT/3144_Sunday_June_05_2022_08_53_37_AM_68405748/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 397.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
√
X +

√
Y = 0

14.16.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

−
√
Y√
X

dx

= −x
√
Y√
X

+ c1

Summary
The solution(s) found are the following

(1)y = −x
√
Y√
X

+ c1

Verification of solutions

y = −x
√
Y√
X

+ c1

Verified OK.
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14.16.2 Maple step by step solution

Let’s solve
y′
√
X +

√
Y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′
√
X +

√
Y
)
dx =

∫
0dx+ c1

• Evaluate integral
x
√
Y + y

√
X = c1

• Solve for y

y = −x
√
Y−c1√
X

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)*sqrt(X)+sqrt(Y) = 0,y(x), singsol=all)� �

y(x) = −
√
Y x√
X

+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 21� �
DSolve[y'[x] Sqrt[X]+Sqrt[Y]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√
Y√
X

+ c1
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14.17 problem 398
14.17.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 3901
14.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3902

Internal problem ID [3652]
Internal file name [OUTPUT/3145_Sunday_June_05_2022_08_53_38_AM_24833430/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 398.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
√
X −

√
Y = 0

14.17.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ √

Y√
X

dx

= x
√
Y√
X

+ c1

Summary
The solution(s) found are the following

(1)y = x
√
Y√
X

+ c1

Verification of solutions

y = x
√
Y√
X

+ c1

Verified OK.
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14.17.2 Maple step by step solution

Let’s solve
y′
√
X −

√
Y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′
√
X −

√
Y
)
dx =

∫
0dx+ c1

• Evaluate integral
y
√
X − x

√
Y = c1

• Solve for y

y = x
√
Y+c1√
X

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)*sqrt(X) = sqrt(Y),y(x), singsol=all)� �

y(x) =
√
Y x√
X

+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 20� �
DSolve[y'[x] Sqrt[X]==Sqrt[Y],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
√
Y√
X

+ c1
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14.18 problem 399
14.18.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3904

Internal problem ID [3653]
Internal file name [OUTPUT/3146_Sunday_June_05_2022_08_53_39_AM_71950282/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 399.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , [_Riccati , _special ]]

x
3
2y′ − b x

3
2y2 = a

14.18.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= a+ b x
3
2y2

x
3
2

This is a Riccati ODE. Comparing the ODE to solve

y′ = b y2 + a

x
3
2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = a

x
3
2
, f1(x) = 0 and f2(x) = b. Let

y = −u′

f2u

= −u′

bu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0

f 2
2 f0 =

b2a

x
3
2

Substituting the above terms back in equation (2) gives

bu′′(x) + b2au(x)
x

3
2

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = −c1x
1
4 BesselJ

(
1, 4

√
a
√
b x

1
4

)
− c2x

1
4 BesselY

(
1, 4

√
a
√
b x

1
4

)
+ 2

√
a
√
b
√
x
(
BesselJ

(
0, 4

√
a
√
b x

1
4

)
c1 + BesselY

(
0, 4

√
a
√
b x

1
4

)
c2
)

The above shows that

u′(x) = −
2ab
(
BesselY

(
1, 4

√
a
√
b x

1
4

)
c2 + BesselJ

(
1, 4

√
a
√
b x

1
4

)
c1
)

x
1
4

Using the above in (1) gives the solution

y

=
2a
(
BesselY

(
1, 4

√
a
√
b x

1
4

)
c2 + BesselJ

(
1, 4

√
a
√
b x

1
4

)
c1
)

x
1
4

(
−c1x

1
4 BesselJ

(
1, 4

√
a
√
b x

1
4

)
− c2x

1
4 BesselY

(
1, 4

√
a
√
b x

1
4

)
+ 2

√
a
√
b
√
x
(
BesselJ

(
0, 4

√
a
√
b x

1
4

)
c1 + BesselY

(
0, 4

√
a
√
b x

1
4

)
c2
))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=
2a
(
BesselY

(
1, 4

√
a
√
b x

1
4

)
+ BesselJ

(
1, 4

√
a
√
b x

1
4

)
c3
)

√
x
(
2BesselJ

(
0, 4

√
a
√
b x

1
4

)
c3x

1
4
√
a
√
b+ 2BesselY

(
0, 4

√
a
√
b x

1
4

)√
a
√
b x

1
4 − BesselJ

(
1, 4

√
a
√
b x

1
4

)
c3 − BesselY

(
1, 4

√
a
√
b x

1
4

))
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Summary
The solution(s) found are the following

(1)y

=
2a
(
BesselY

(
1, 4

√
a
√
b x

1
4

)
+ BesselJ

(
1, 4

√
a
√
b x

1
4

)
c3
)

√
x
(
2BesselJ

(
0, 4

√
a
√
b x

1
4

)
c3x

1
4
√
a
√
b+ 2BesselY

(
0, 4

√
a
√
b x

1
4

)√
a
√
b x

1
4 − BesselJ

(
1, 4

√
a
√
b x

1
4

)
c3 − BesselY

(
1, 4

√
a
√
b x

1
4

))
Verification of solutions
y

=
2a
(
BesselY

(
1, 4

√
a
√
b x

1
4

)
+ BesselJ

(
1, 4

√
a
√
b x

1
4

)
c3
)

√
x
(
2BesselJ

(
0, 4

√
a
√
b x

1
4

)
c3x

1
4
√
a
√
b+ 2BesselY

(
0, 4

√
a
√
b x

1
4

)√
a
√
b x

1
4 − BesselJ

(
1, 4

√
a
√
b x

1
4

)
c3 − BesselY

(
1, 4

√
a
√
b x

1
4

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 119� �
dsolve(x^(3/2)*diff(y(x),x) = a+b*x^(3/2)*y(x)^2,y(x), singsol=all)� �
y(x) =

−
2a
(
BesselJ

(
1, 4

√
a
√
b x

1
4

)
c1 + BesselY

(
1, 4

√
a
√
b x

1
4

))
√
x
(
−2

√
a x

1
4 BesselJ

(
0, 4

√
a
√
b x

1
4

)√
b c1 − 2BesselY

(
0, 4

√
a
√
b x

1
4

)√
a
√
b x

1
4 + BesselJ

(
1, 4

√
a
√
b x

1
4

)
c1 + BesselY

(
1, 4

√
a
√
b x

1
4

))
3 Solution by Mathematica
Time used: 0.252 (sec). Leaf size: 373� �
DSolve[x^(3/2) y'[x]==a+ b x^(3/2) y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

√
a
√
b 4
√
xBesselY

(
1, 4

√
a
√
b 4
√
x
)
+ BesselY

(
2, 4

√
a
√
b 4
√
x
)
−
√
a
√
b 4
√
xBesselY

(
3, 4

√
a
√
b 4
√
x
)
−

√
a
√
bc1

4
√
xBesselJ

(
1, 4

√
a
√
b 4
√
x
)
− c1 BesselJ

(
2, 4

√
a
√
b 4
√
x
)
+
√
a
√
bc1

4
√
xBesselJ

(
3, 4

√
a
√
b 4
√
x
)

2bxBesselY
(
2, 4

√
a
√
b 4
√
x
)
− 2bc1xBesselJ

(
2, 4

√
a
√
b 4
√
x
)

y(x) →

−

√
a
√
b 4
√
xBesselJ

(
1, 4

√
a
√
b 4
√
x
)
+ BesselJ

(
2, 4

√
a
√
b 4
√
x
)
−
√
a
√
b 4
√
xBesselJ

(
3, 4

√
a
√
b 4
√
x
)

2bxBesselJ
(
2, 4

√
a
√
b 4
√
x
)
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14.19 problem 400
14.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3908
14.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3910
14.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3915

Internal problem ID [3654]
Internal file name [OUTPUT/3147_Sunday_June_05_2022_08_53_41_AM_36495641/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 400.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
x3 + 1−

√
1 + y3 = 0

14.19.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
y3 + 1√
x3 + 1

Where f(x) = 1√
x3+1 and g(y) =

√
y3 + 1. Integrating both sides gives

1√
y3 + 1

dy = 1√
x3 + 1

dx∫ 1√
y3 + 1

dy =
∫ 1√

x3 + 1
dx
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∫ y 1√
_a3 + 1

d_a

=
2
(

3
2 −

i
√
3

2

)√
x+1

3
2−

i
√

3
2

√
x− 1

2−
i
√
3

2
− 3

2−
i
√

3
2

√
x− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
x+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
x3 + 1

+ c1

Which results in∫ y 1√
_a3 + 1

d_a

=
2
(

3
2 −

i
√
3

2

)√
x+1

3
2−

i
√

3
2

√
x− 1

2−
i
√
3

2
− 3

2−
i
√

3
2

√
x− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
x+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
x3 + 1

+ c1

The solution is∫ y 1√
_a3 + 1

d_a

−
2
(

3
2 −

i
√
3

2

)√
x+1

3
2−

i
√
3

2

√
x− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
x− 1

2+
i
√

3
2

− 3
2+

i
√
3

2
EllipticF

(√
x+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
x3 + 1

− c1 = 0

Summary
The solution(s) found are the following

(1)

∫ y 1√
_a3 + 1

d_a

−
2
(

3
2 −

i
√
3

2

)√
x+1

3
2−

i
√
3

2

√
x− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
x− 1

2+
i
√

3
2

− 3
2+

i
√
3

2
EllipticF

(√
x+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
x3 + 1

− c1 = 0
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Figure 594: Slope field plot

Verification of solutions∫ y 1√
_a3 + 1

d_a

−
2
(

3
2 −

i
√
3

2

)√
x+1

3
2−

i
√
3

2

√
x− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
x− 1

2+
i
√

3
2

− 3
2+

i
√
3

2
EllipticF

(√
x+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
x3 + 1

− c1 = 0

Verified OK.

14.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
y3 + 1√
x3 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 704: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
√
x3 + 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

x3 + 1
dx

Which results in

S =
2
(

3
2 −

i
√
3

2

)√
x+1

3
2−

i
√
3

2

√
x− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
x− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
x+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
x3 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
y3 + 1√
x3 + 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = i
√
3 (x2 − x+ 1)

3
√
x3 + 1

√
i
√
3− 2x+ 1

√
i
√
3 + 2x− 1

√√
3−2ix+i√
3+3i

√
−
√
3−2ix+i(√

3+i
)2(√

3+3i
)

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= i

√
3 (x2 − x+ 1)

3
√

i
√
3− 2x+ 1

√
i
√
3 + 2x− 1

√√
3−2ix+i√
3+3i

√
−
√
3−2ix+i(√

3+i
)2(√

3+3i
) √y3 + 1

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

√
−96i

√
3 JacobiSN

(√
6+2i

√
3S(R)

4 ,
√
3
2 − i

2

)6
+
((

−36i− 36
√
3
)√

−2i
√
3− 6 + 216i

√
3 + 72

)
JacobiSN

(√
6+2i

√
3S(R)

4 ,
√
3
2 − i

2

)4
+
((

36i+ 60
√
3
)√

−2i
√
3− 6− 156i

√
3− 36

)
JacobiSN

(√
6+2i

√
3S(R)

4 ,
√
3
2 − i

2

)2
+
(
−9i− 23

√
3
)√

−2i
√
3− 6 + 42i

√
3 + 18

2
(
i
√
3− 3

)√
R + 1

√
R2 −R + 1

√
i
√
3 + 3 JacobiCN

(√
6+2i

√
3S(R)

4 ,
√
3
2 − i

2

)
JacobiDN

(√
6+2i

√
3S(R)

4 ,
√
3
2 − i

2

)
JacobiSN

(√
6+2i

√
3S(R)

4 ,
√
3
2 − i

2

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

∫ 1√
R + 1

√
R2 −R + 1

dR +
∫ S(R) 2

(
i
√
3− 3

)
JacobiCN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiDN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)√
i
√
3 + 3√

−96i
√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)6
+ 216i

√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
− 36i

√
−2i

√
3− 6 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
− 36 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4√
−6i

√
3− 18− 156i

√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+ 36i

√
−2i

√
3− 6 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+ 60 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2√
−6i

√
3− 18 + 72 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
+ 42i

√
3− 9i

√
−2i

√
3− 6− 23

√
−6i

√
3− 18− 36 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+ 18

d_a+ c1 = 0

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

∫ y 1
√
_a+ 1

√
_a2 − _a+ 1

d_a+
∫ −

√
2
√
−x−1

√
i
√
3−2x+1

√
i
√
3+2x−1 EllipticF

(√
−2−2x√
i
√
3−3

, 2√
3+i

)
√

x3+1
√

i
√
3+3

2
(
i
√
3− 3

)
JacobiCN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiDN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)√
i
√
3 + 3√

−96i
√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)6
+ 216i

√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
− 36i

√
−2i

√
3− 6 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
− 36 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4√
−6i

√
3− 18− 156i

√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+ 36i

√
−2i

√
3− 6 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+ 60 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2√
−6i

√
3− 18 + 72 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
+ 42i

√
3− 9i

√
−2i

√
3− 6− 23

√
−6i

√
3− 18− 36 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+ 18

d_a+ c1 = 0

Which simplifies to

√
6 + 2i

√
3
(
i
√
3− 3

)√
2

∫ −
2
√
−x−1

√
i
√
3−2x+1

√
i
√

3+2x−1 EllipticF
(√

−2−2x√
i
√
3−3

, 2√
3+i

)
√

x3+1
√

6+2i
√
3

JacobiCN
(√

6+2i
√
3_a

4 ,
√
3
2 − i

2

)
JacobiDN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
√

−96i
√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)6
+
((

−36i− 36
√
3
)√

−2i
√
3− 6 + 216i

√
3 + 72

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
+
((

36i+ 60
√
3
)√

−2i
√
3− 6− 156i

√
3− 36

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+
(
−9i− 23

√
3
)√

−2i
√
3− 6 + 42i

√
3 + 18

d_a

+
∫ y 1

√
_a+ 1

√
_a2 − _a+ 1

d_a+ c1 = 0

This results in

√
6 + 2i

√
3
(
i
√
3− 3

)√
2

∫ −
2
√
−x−1

√
i
√
3−2x+1

√
i
√

3+2x−1 EllipticF
(√

−2−2x√
i
√
3−3

, 2√
3+i

)
√

x3+1
√

6+2i
√
3

JacobiCN
(√

6+2i
√
3_a

4 ,
√
3
2 − i

2

)
JacobiDN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
√

−96i
√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)6
+
((

−36i− 36
√
3
)√

−2i
√
3− 6 + 216i

√
3 + 72

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
+
((

36i+ 60
√
3
)√

−2i
√
3− 6− 156i

√
3− 36

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+
(
−9i− 23

√
3
)√

−2i
√
3− 6 + 42i

√
3 + 18

d_a

+
∫ y 1

√
_a+ 1

√
_a2 − _a+ 1

d_a+ c1 = 0

3913



Summary
The solution(s) found are the following

(1)
√

6 + 2i
√
3
(
i
√
3

−3
)√

2

∫ −
2
√
−x−1

√
i
√
3−2x+1

√
i
√
3+2x−1 EllipticF

(√
−2−2x√
i
√
3−3

, 2√
3+i

)
√

x3+1
√

6+2i
√

3
JacobiCN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiDN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
√

−96i
√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)6
+
((

−36i− 36
√
3
)√

−2i
√
3− 6 + 216i

√
3 + 72

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
+
((

36i+ 60
√
3
)√

−2i
√
3− 6− 156i

√
3− 36

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+
(
−9i− 23

√
3
)√

−2i
√
3− 6 + 42i

√
3 + 18

d_a


+
∫ y 1

√
_a+ 1

√
_a2 − _a+ 1

d_a+ c1 = 0

Figure 595: Slope field plot
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Verification of solutions√
6 + 2i

√
3
(
i
√
3

−3
)√

2

∫ −
2
√
−x−1

√
i
√
3−2x+1

√
i
√
3+2x−1 EllipticF

(√
−2−2x√
i
√
3−3

, 2√
3+i

)
√

x3+1
√

6+2i
√

3
JacobiCN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiDN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)
√

−96i
√
3 JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)6
+
((

−36i− 36
√
3
)√

−2i
√
3− 6 + 216i

√
3 + 72

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)4
+
((

36i+ 60
√
3
)√

−2i
√
3− 6− 156i

√
3− 36

)
JacobiSN

(√
6+2i

√
3_a

4 ,
√
3
2 − i

2

)2
+
(
−9i− 23

√
3
)√

−2i
√
3− 6 + 42i

√
3 + 18

d_a


+
∫ y 1

√
_a+ 1

√
_a2 − _a+ 1

d_a+ c1 = 0

Verified OK.

14.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1√

y3 + 1

)
dy =

(
1√

x3 + 1

)
dx(

− 1√
x3 + 1

)
dx+

(
1√

y3 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
x3 + 1

N(x, y) = 1√
y3 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

x3 + 1

)
= 0

And

∂N

∂x
= ∂

∂x

(
1√

y3 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

x3 + 1
dx

(3)φ =
∫ x

− 1√
_a3 + 1

d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
y3+1

. Therefore equation (4) becomes

(5)1√
y3 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
y3 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1√
y3 + 1

)
dy

f(y) =
2
(

3
2 −

i
√
3

2

)√
y+1

3
2−

i
√
3

2

√
y− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
y− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
y+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
y3 + 1

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

− 1√
_a3 + 1

d_a

+
2
(

3
2 −

i
√
3

2

)√
y+1

3
2−

i
√
3

2

√
y− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
y− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
y+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
y3 + 1

+ c1

3917



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

− 1√
_a3 + 1

d_a

+
2
(

3
2 −

i
√
3

2

)√
y+1

3
2−

i
√
3

2

√
y− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
y− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
y+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
y3 + 1

Summary
The solution(s) found are the following

(1)

∫ x

− 1√
_a3 + 1

d_a

+
2
(

3
2 −

i
√
3

2

)√
y+1

3
2−

i
√
3

2

√
y− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
y− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
y+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
1 + y3

= c1

Figure 596: Slope field plot

3918



Verification of solutions∫ x

− 1√
_a3 + 1

d_a

+
2
(

3
2 −

i
√
3

2

)√
y+1

3
2−

i
√
3

2

√
y− 1

2−
i
√
3

2
− 3

2−
i
√
3

2

√
y− 1

2+
i
√
3

2
− 3

2+
i
√
3

2
EllipticF

(√
y+1

3
2−

i
√
3

2
,

√
− 3

2+
i
√
3

2
− 3

2−
i
√
3

2

)
√
1 + y3

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(diff(y(x),x)*sqrt(x^3+1) = sqrt(1+y(x)^3),y(x), singsol=all)� �

∫ 1√
x3 + 1

dx−

(∫ y(x) 1√
_a3 + 1

d_a
)

+ c1 = 0

3 Solution by Mathematica
Time used: 40.487 (sec). Leaf size: 71� �
DSolve[y'[x] Sqrt[1+x^3]==Sqrt[1+y[x]^3],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
#1Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

−#13
)
&
] [

xHypergeometric2F1
(
1
3 ,

1
2 ,

4
3 ,−x3

)
+ c1

]
y(x) → −1
y(x) → 3

√
−1

y(x) → −(−1)2/3
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14.20 problem 401
14.20.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3920
14.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3923
14.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3927
14.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3930

Internal problem ID [3655]
Internal file name [OUTPUT/3148_Sunday_June_05_2022_08_53_43_AM_44338097/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 401.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√

x (1− x) (−ax+ 1)−
√
y (1− y) (1− ya) = 0

14.20.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
y (y − 1) (ya− 1)√
x (x− 1) (ax− 1)

Where f(x) = 1√
x(x−1)(ax−1) and g(y) =

√
y (y − 1) (ya− 1). Integrating both sides

gives
1√

y (y − 1) (ya− 1)
dy = 1√

x (x− 1) (ax− 1)
dx

∫ 1√
y (y − 1) (ya− 1)

dy =
∫ 1√

x (x− 1) (ax− 1)
dx
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∫ y 1√
_a (_a− 1) (_aa− 1)

d_a = 2
√
a x3 − x2a− x2 + x

3

−
4
√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3 − x2a− x2 + x

−
2
(
−1

3 −
a
3

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1 + 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+ EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3 − x2a− x2 + x

+
2
√
a x3−x2a−x2+x

3 +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3−x2a−x2+x

−
2
(
− 1

3+
2a
3
)√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x

a− 1

−

a2

2
√
a x3−x2a−x2+x

3a +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a2
√
a x3−x2a−x2+x

−
2
(
−1− 2(−1−a)

3a

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x


a− 1

+ c1

Which results in∫ y 1√
_a (_a− 1) (_aa− 1)

d_a = 2
√
a x3 − x2a− x2 + x

3

−
4
√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3 − x2a− x2 + x

−
2
(
−1

3 −
a
3

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1 + 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+ EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3 − x2a− x2 + x

+
2
√
a x3−x2a−x2+x

3 +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3−x2a−x2+x

−
2
(
− 1

3+
2a
3
)√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x

a− 1

−

a2

2
√
a x3−x2a−x2+x

3a +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a2
√
a x3−x2a−x2+x

−
2
(
−1− 2(−1−a)

3a

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x


a− 1

+ c1
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The solution is∫ y 1√
_a (_a− 1) (_aa− 1)

d_a− 2
√
a x3 − x2a− x2 + x

3

+
4
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3 − x2a− x2 + x

+
2
(
−1

3 −
a
3

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1 + 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+ EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3 − x2a− x2 + x

−
2
√
a x3−x2a−x2+x

3 +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3−x2a−x2+x

−
2
(
− 1

3+
2a
3
)√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x

a− 1

+

a2

2
√
a x3−x2a−x2+x

3a +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a2
√
a x3−x2a−x2+x

−
2
(
−1− 2(−1−a)

3a

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x


a− 1

− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1√

_a (_a− 1) (_aa− 1)
d_a− 2

√
a x3 − x2a− x2 + x

3

+
4
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3 − x2a− x2 + x

+
2
(
−1

3 −
a
3

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1 + 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+ EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3 − x2a− x2 + x

−
2
√
a x3−x2a−x2+x

3 +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3−x2a−x2+x

−
2
(
− 1

3+
2a
3
)√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x

a− 1

+

a2

2
√
a x3−x2a−x2+x

3a +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a2
√
a x3−x2a−x2+x

−
2
(
−1− 2(−1−a)

3a

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x


a− 1

− c1 = 0
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Verification of solutions∫ y 1√
_a (_a− 1) (_aa− 1)

d_a− 2
√
a x3 − x2a− x2 + x

3

+
4
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3 − x2a− x2 + x

+
2
(
−1

3 −
a
3

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1 + 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+ EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3 − x2a− x2 + x

−
2
√
a x3−x2a−x2+x

3 +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a
√
a x3−x2a−x2+x

−
2
(
− 1

3+
2a
3
)√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x

a− 1

+

a2

2
√
a x3−x2a−x2+x

3a +
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

3a2
√
a x3−x2a−x2+x

−
2
(
−1− 2(−1−a)

3a

)√
−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax

((
−1+ 1

a

)
EllipticE

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)
+EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
))

a
√
a x3−x2a−x2+x


a− 1

− c1 = 0

Verified OK.

14.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
y (y − 1) (ya− 1)√
x (x− 1) (ax− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 706: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
√
x (x− 1) (ax− 1)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

x (x− 1) (ax− 1)
dx

Which results in

S = −
2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
ax EllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√
a x3 − x2a− x2 + x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
y (y − 1) (ya− 1)√
x (x− 1) (ax− 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = ia
√
a− 1

√
ax− 1

√
ax
√

−a(x−1)
a−1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ia

√
x (x− 1) (ax− 1)

√
a− 1

√
ax− 1

√
ax
√
−a(x−1)

a−1

√
y (y − 1) (ya− 1)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

R
√
R− 1

√
Ra− 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
2EllipticF

(√
−Ra+ 1,

√
− 1

a−1

)√
Ra
√
− (R−1)a

a−1

√
−Ra+ 1

√
R− 1

√
Ra− 1

√
Ra (R2a−Ra−R + 1)

+ c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
2i
√
−ax+ 1 EllipticF

(√
−ax+ 1, i√

a−1

)
√
a− 1

√
ax− 1

= −
2EllipticF

(√
1− ya,

√
− 1

a−1

)√
ya
√
− (y−1)a

a−1
√
1− ya

√
y − 1

√
ya− 1

√
y a (1− ya− y + ay2) + c1

Which simplifies to

2i
√
1− ya EllipticF

(√
1− ya, i√

a−1

)√
ax− 1− 2

√
ya− 1

(
i
√
−ax+ 1 EllipticF

(√
−ax+ 1, i√

a−1

)
+ c1

√
a−1

√
ax−1

2

)
√
a− 1

√
ya− 1

√
ax− 1

= 0

Summary
The solution(s) found are the following

(1)
2i
√
1− ya EllipticF

(√
1− ya, i√

a−1

)√
ax− 1− 2

√
ya− 1

(
i
√
−ax+ 1 EllipticF

(√
−ax+ 1, i√

a−1

)
+ c1

√
a−1

√
ax−1

2

)
√
a− 1

√
ya− 1

√
ax− 1

= 0
Verification of solutions

2i
√
1− ya EllipticF

(√
1− ya, i√

a−1

)√
ax− 1− 2

√
ya− 1

(
i
√
−ax+ 1 EllipticF

(√
−ax+ 1, i√

a−1

)
+ c1

√
a−1

√
ax−1

2

)
√
a− 1

√
ya− 1

√
ax− 1

= 0

Verified OK.
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14.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1√

y (y − 1) (ya− 1)

)
dy =

(
1√

x (x− 1) (ax− 1)

)
dx(

− 1√
x (x− 1) (ax− 1)

)
dx+

(
1√

y (y − 1) (ya− 1)

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1√
x (x− 1) (ax− 1)

N(x, y) = 1√
y (y − 1) (ya− 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

x (x− 1) (ax− 1)

)
= 0

And

∂N

∂x
= ∂

∂x

(
1√

y (y − 1) (ya− 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

x (x− 1) (ax− 1)
dx

(3)φ =
∫ x

− 1√
_a (_a− 1) (a_a− 1)

d_a+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
y(y−1)(ya−1) . Therefore equation (4) becomes

(5)1√
y (y − 1) (ya− 1)

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
y (y − 1) (ya− 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1√
y (y − 1) (ya− 1)

)
dy

f(y) = −
2
√

−
(
y − 1

a

)
a
√

y−1
−1+ 1

a

√
ya EllipticF

(√
−
(
y − 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√
a y3 − a y2 − y2 + y

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

− 1√
_a (_a− 1) (a_a− 1)

d_a

−
2
√

−
(
y − 1

a

)
a
√

y−1
−1+ 1

a

√
ya EllipticF

(√
−
(
y − 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√
a y3 − a y2 − y2 + y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

− 1√
_a (_a− 1) (a_a− 1)

d_a

−
2
√

−
(
y − 1

a

)
a
√

y−1
−1+ 1

a

√
ya EllipticF

(√
−
(
y − 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√
a y3 − a y2 − y2 + y
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Summary
The solution(s) found are the following

(1)

∫ x

− 1√
_a (_a− 1) (a_a− 1)

d_a

−
2
√

−
(
y − 1

a

)
a
√

y−1
−1+ 1

a

√
ya EllipticF

(√
−
(
y − 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√
y − ay2 − y2 + ay3

= c1

Verification of solutions∫ x

− 1√
_a (_a− 1) (a_a− 1)

d_a

−
2
√

−
(
y − 1

a

)
a
√

y−1
−1+ 1

a

√
ya EllipticF

(√
−
(
y − 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√
y − ay2 − y2 + ay3

= c1

Verified OK.

14.20.4 Maple step by step solution

Let’s solve
y′
√
x (1− x) (−ax+ 1)−

√
y (1− y) (1− ya) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

y(1−y)(1−ya) =
1√

x(1−x)(−ax+1)

• Integrate both sides with respect to x∫
y′√

y(1−y)(1−ya)dx =
∫ 1√

x(1−x)(−ax+1)dx+ c1

• Evaluate integral

−
2
√

−
(
y− 1

a

)
a
√

y−1
−1+ 1

a

√
yaEllipticF

(√
−
(
y− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√

y−ay2−y2+ay3
= −

2
√

−
(
x− 1

a

)
a
√

x−1
−1+ 1

a

√
axEllipticF

(√
−
(
x− 1

a

)
a,
√

1
a
(
−1+ 1

a

)
)

a
√
a x3−x2a−x2+x

+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x)*sqrt(x*(1-x)*(-a*x+1)) = sqrt(y(x)*(1-y(x))*(1-a*y(x))),y(x), singsol=all)� �

∫ 1√
x (x− 1) (ax− 1)

dx−

(∫ y(x) 1√
_a (_a− 1) (a_a− 1)

d_a
)

+ c1 = 0

3 Solution by Mathematica
Time used: 17.58 (sec). Leaf size: 117� �
DSolve[y'[x] Sqrt[x (1-x)(1-a x)]==Sqrt[y[x](1-y[x])(1-a y[x])],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ns
(
1
2i
√
ac1 − EllipticF

(
iarcsinh

(
1√
x− 1

)
,
a− 1
a

)
|a− 1

a

)
2
(
−1

+ sn
(
1
2i
√
ac1 − EllipticF

(
iarcsinh

(
1√
x− 1

)
,
a− 1
a

)
|a− 1

a

)
2
)

y(x) → 0
y(x) → 1

y(x) → 1
a
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14.21 problem 402
14.21.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3932
14.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3934
14.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3937
14.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3941

Internal problem ID [3656]
Internal file name [OUTPUT/3149_Sunday_June_05_2022_08_53_46_AM_46261945/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 402.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
−x4 + 1−

√
1− y4 = 0

14.21.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
−y4 + 1√
−x4 + 1

Where f(x) = 1√
−x4+1 and g(y) =

√
−y4 + 1. Integrating both sides gives

1√
−y4 + 1

dy = 1√
−x4 + 1

dx∫ 1√
−y4 + 1

dy =
∫ 1√

−x4 + 1
dx

√
−y2 + 1

√
y2 + 1 EllipticF (y, i)√
−y4 + 1

=
√
−x2 + 1

√
x2 + 1 EllipticF (x, i)√
−x4 + 1

+ c1
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The solution is

√
1− y2

√
y2 + 1 EllipticF (y, i)√

1− y4
−

√
−x2 + 1

√
x2 + 1 EllipticF (x, i)√
−x4 + 1

− c1 = 0

Summary
The solution(s) found are the following

(1)
√
1− y2

√
y2 + 1 EllipticF (y, i)√

1− y4
−

√
−x2 + 1

√
x2 + 1 EllipticF (x, i)√
−x4 + 1

− c1 = 0

Figure 597: Slope field plot

Verification of solutions
√
1− y2

√
y2 + 1 EllipticF (y, i)√

1− y4
−

√
−x2 + 1

√
x2 + 1 EllipticF (x, i)√
−x4 + 1

− c1 = 0

Verified OK.
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14.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
−y4 + 1√
−x4 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 709: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) =
√
−x4 + 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

−x4 + 1
dx

Which results in

S =
√
−x2 + 1

√
x2 + 1 EllipticF (x, i)√
−x4 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
−y4 + 1√
−x4 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1√
−x2 + 1

√
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

−y4 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

−R4 + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 1√

−R4 + 1
dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

EllipticF (x, i) =
∫ y 1√

−_a4 + 1
d_a+ c1

Which simplifies to

EllipticF (x, i) =
∫ y 1√

−_a4 + 1
d_a+ c1

This results in

EllipticF (x, i) =
∫ y 1√

−_a4 + 1
d_a+ c1

Summary
The solution(s) found are the following

(1)EllipticF (x, i) =
∫ y 1√

−_a4 + 1
d_a+ c1
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Figure 598: Slope field plot

Verification of solutions

EllipticF (x, i) =
∫ y 1√

−_a4 + 1
d_a+ c1

Verified OK.

14.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1√

−y4 + 1

)
dy =

(
1√

−x4 + 1

)
dx(

− 1√
−x4 + 1

)
dx+

(
1√

−y4 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
−x4 + 1

N(x, y) = 1√
−y4 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

−x4 + 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1√

−y4 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

−x4 + 1
dx

(3)φ =
∫ x

− 1√
−_a4 + 1

d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
−y4+1

. Therefore equation (4) becomes

(5)1√
−y4 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
−y4 + 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1√
−y4 + 1

)
dy

f(y) =
√
−y2 + 1

√
y2 + 1 EllipticF (y, i)√
−y4 + 1

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

− 1√
−_a4 + 1

d_a+
√
−y2 + 1

√
y2 + 1 EllipticF (y, i)√
−y4 + 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

− 1√
−_a4 + 1

d_a+
√
−y2 + 1

√
y2 + 1 EllipticF (y, i)√
−y4 + 1

Summary
The solution(s) found are the following

(1)
∫ x

− 1√
−_a4 + 1

d_a+
√
1− y2

√
y2 + 1 EllipticF (y, i)√

1− y4
= c1
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Figure 599: Slope field plot

Verification of solutions∫ x

− 1√
−_a4 + 1

d_a+
√
1− y2

√
y2 + 1 EllipticF (y, i)√

1− y4
= c1

Verified OK.

14.21.4 Maple step by step solution

Let’s solve
y′
√
−x4 + 1−

√
1− y4 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
1−y4

= 1√
−x4+1

• Integrate both sides with respect to x∫
y′√
1−y4

dx =
∫ 1√

−x4+1dx+ c1
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• Evaluate integral√
1−y2

√
y2+1EllipticF(y,I)√

1−y4
=

√
−x2+1

√
x2+1EllipticF(x,I)√
−x4+1 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)*sqrt(-x^4+1) = sqrt(1-y(x)^4),y(x), singsol=all)� �

∫ 1√
−x4 + 1

dx−

(∫ y(x) 1√
−_a4 + 1

d_a
)

+ c1 = 0

3 Solution by Mathematica
Time used: 40.393 (sec). Leaf size: 38� �
DSolve[y'[x] Sqrt[1-x^4]==Sqrt[1-y[x]^4],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sn(c1 + EllipticF(arcsin(x),−1)|−1)
y(x) → −1
y(x) → −i
y(x) → i
y(x) → 1
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14.22 problem 403
14.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3943
14.22.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3945
14.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3948
14.22.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3952

Internal problem ID [3657]
Internal file name [OUTPUT/3150_Sunday_June_05_2022_08_53_48_AM_53963852/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 403.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
x4 + x2 + 1−

√
1 + y2 + y4 = 0

14.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
y4 + y2 + 1√
x4 + x2 + 1

Where f(x) = 1√
x4+x2+1 and g(y) =

√
y4 + y2 + 1. Integrating both sides gives

1√
y4 + y2 + 1

dy = 1√
x4 + x2 + 1

dx∫ 1√
y4 + y2 + 1

dy =
∫ 1√

x4 + x2 + 1
dx
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∫ y 1√
_a4 + _a2 + 1

d_a

=
2
√

1−
(
−1

2 +
i
√
3

2

)
x2

√
1−

(
−1

2 −
i
√
3

2

)
x2 EllipticF

(√
−2+2i

√
3x

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
x4 + x2 + 1

+ c1

Which results in∫ y 1√
_a4 + _a2 + 1

d_a

=
2
√

1−
(
−1

2 +
i
√
3

2

)
x2

√
1−

(
−1

2 −
i
√
3

2

)
x2 EllipticF

(√
−2+2i

√
3x

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
x4 + x2 + 1

+ c1

The solution is∫ y 1√
_a4 + _a2 + 1

d_a

−
2
√
1−

(
−1

2 +
i
√
3

2

)
x2

√
1−

(
−1

2 −
i
√
3

2

)
x2 EllipticF

(√
−2+2i

√
3x

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
x4 + x2 + 1

− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1√

_a4 + _a2 + 1
d_a

−
2
√
1−

(
−1

2 +
i
√
3

2

)
x2

√
1−

(
−1

2 −
i
√
3

2

)
x2 EllipticF

(√
−2+2i

√
3x

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
x4 + x2 + 1

− c1 = 0
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Figure 600: Slope field plot

Verification of solutions∫ y 1√
_a4 + _a2 + 1

d_a

−
2
√
1−

(
−1

2 +
i
√
3

2

)
x2

√
1−

(
−1

2 −
i
√
3

2

)
x2 EllipticF

(√
−2+2i

√
3x

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
x4 + x2 + 1

− c1 = 0

Verified OK.

14.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
y4 + y2 + 1√
x4 + x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 712: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
√
x4 + x2 + 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

x4 + x2 + 1
dx

Which results in

S =
2
√
1−

(
−1

2 +
i
√
3

2

)
x2

√
1−

(
−1

2 −
i
√
3

2

)
x2 EllipticF

(√
−2+2i

√
3x

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
x4 + x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
y4 + y2 + 1√
x4 + x2 + 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 2 + 2i(x2 + 1)
√
3− 2x2

√
x4 + x2 + 1

√
i
√
3x2 + x2 + 2

√
1+i(x2+1)

√
3−x2(√

3+i
)2 (√

3 + i
)2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 + 2i(x2 + 1)

√
3− 2x2√

i
√
3x2 + x2 + 2

√
1+i(x2+1)

√
3−x2(√

3+i
)2 (√

3 + i
)2√

y4 + y2 + 1
(2A)

Unable to generate ode in canonical coordinates.
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14.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1√

y4 + y2 + 1

)
dy =

(
1√

x4 + x2 + 1

)
dx(

− 1√
x4 + x2 + 1

)
dx+

(
1√

y4 + y2 + 1

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1√
x4 + x2 + 1

N(x, y) = 1√
y4 + y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1√

x4 + x2 + 1

)
= 0

And
∂N

∂x
= ∂

∂x

(
1√

y4 + y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

x4 + x2 + 1
dx

(3)φ =
∫ x

− 1√
_a4 + _a2 + 1

d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1√
y4+y2+1

. Therefore equation (4) becomes

(5)1√
y4 + y2 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
y4 + y2 + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1√
y4 + y2 + 1

)
dy

f(y)

=
2
√

1−
(
−1

2 +
i
√
3

2

)
y2
√

1−
(
−1

2 −
i
√
3

2

)
y2 EllipticF

(
y
√

−2+2i
√
3

2 ,
√

−2+2i
√
3

2

)
√
−2 + 2i

√
3
√
y4 + y2 + 1

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

− 1√
_a4 + _a2 + 1

d_a

+
2
√

1−
(
−1

2 +
i
√
3

2

)
y2
√

1−
(
−1

2 −
i
√
3

2

)
y2 EllipticF

(
y
√

−2+2i
√
3

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
y4 + y2 + 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

− 1√
_a4 + _a2 + 1

d_a

+
2
√

1−
(
−1

2 +
i
√
3

2

)
y2
√

1−
(
−1

2 −
i
√
3

2

)
y2 EllipticF

(
y
√

−2+2i
√
3

2 ,
√

−2+2i
√
3

2

)
√
−2 + 2i

√
3
√
y4 + y2 + 1
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Summary
The solution(s) found are the following∫ x

− 1√
_a4 + _a2 + 1

d_a

+
2
√
1−

(
−1

2 +
i
√
3

2

)
y2
√

1−
(
−1

2 −
i
√
3

2

)
y2 EllipticF

(
y
√

−2+2i
√
3

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
1 + y2 + y4

= c1

(1)

Figure 601: Slope field plot

Verification of solutions∫ x

− 1√
_a4 + _a2 + 1

d_a

+
2
√

1−
(
−1

2 +
i
√
3

2

)
y2
√

1−
(
−1

2 −
i
√
3

2

)
y2 EllipticF

(
y
√

−2+2i
√
3

2 ,
√

−2+2i
√
3

2

)
√

−2 + 2i
√
3
√
1 + y2 + y4

= c1

Verified OK.
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14.22.4 Maple step by step solution

Let’s solve
y′
√
x4 + x2 + 1−

√
1 + y2 + y4 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

1+y2+y4
= 1√

x4+x2+1

• Integrate both sides with respect to x∫
y′√

1+y2+y4
dx =

∫ 1√
x4+x2+1dx+ c1

• Evaluate integral

2
√

1−
(
− 1

2+
I
√
3

2

)
y2
√

1−
(
− 1

2−
I
√
3

2

)
y2 EllipticF

(
y
√

−2+2 I
√
3

2 ,
√

−2+2 I
√

3
2

)
√

−2+2 I
√
3
√

1+y2+y4
=

2
√

1−
(
− 1

2+
I
√
3

2

)
x2
√

1−
(
− 1

2−
I
√

3
2

)
x2 EllipticF

(√
−2+2 I

√
3 x

2 ,
√

−2+2 I
√
3

2

)
√

−2+2 I
√
3
√
x4+x2+1

+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(diff(y(x),x)*sqrt(x^4+x^2+1) = sqrt(1+y(x)^2+y(x)^4),y(x), singsol=all)� �

∫ 1√
x4 + x2 + 1

dx−

(∫ y(x) 1√
_a4 + _a2 + 1

d_a
)

+ c1 = 0
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3 Solution by Mathematica
Time used: 41.523 (sec). Leaf size: 189� �
DSolve[y'[x]Sqrt[1+x^2+x^4]==Sqrt[1+y[x]^2+y[x]^4],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

(−1)2/3
√

3
√
−1#12 + 1

√
1− (−1)2/3#12 EllipticF

(
iarcsinh

(
(−1)5/6#1

)
, (−1)2/3

)√
#14 +#12 + 1

&

[(−1)2/3
√

3
√
−1x2 + 1

√
1− (−1)2/3x2 EllipticF

(
iarcsinh

(
(−1)5/6x

)
, (−1)2/3

)
√
x4 + x2 + 1

+c1

]

y(x) → − 3
√
−1

y(x) → 3
√
−1

y(x) → −(−1)2/3

y(x) → (−1)2/3
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14.23 problem 404
14.23.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 3954
14.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3955

Internal problem ID [3658]
Internal file name [OUTPUT/3151_Sunday_June_05_2022_08_53_50_AM_43858794/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 404.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
√
X = 0

14.23.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 602: Slope field plot

Verification of solutions
y = c1

Verified OK.

14.23.2 Maple step by step solution

Let’s solve
y′
√
X = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′
√
Xdx =

∫
0dx+ c1

• Evaluate integral
y
√
X = c1

• Solve for y
y = c1√

X
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve(diff(y(x),x)*sqrt(X) = 0,y(x), singsol=all)� �

y(x) = c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 7� �
DSolve[y'[x] Sqrt[X]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
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14.24 problem 405
14.24.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 3957
14.24.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3958

Internal problem ID [3659]
Internal file name [OUTPUT/3152_Sunday_June_05_2022_08_53_52_AM_12371859/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 405.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
√
X +

√
Y = 0

14.24.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

−
√
Y√
X

dx

= −x
√
Y√
X

+ c1

Summary
The solution(s) found are the following

(1)y = −x
√
Y√
X

+ c1

Verification of solutions

y = −x
√
Y√
X

+ c1

Verified OK.
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14.24.2 Maple step by step solution

Let’s solve
y′
√
X +

√
Y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′
√
X +

√
Y
)
dx =

∫
0dx+ c1

• Evaluate integral
x
√
Y + y

√
X = c1

• Solve for y

y = −x
√
Y−c1√
X

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)*sqrt(X)+sqrt(Y) = 0,y(x), singsol=all)� �

y(x) = −
√
Y x√
X

+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 21� �
DSolve[y'[x] Sqrt[X]+Sqrt[Y]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√
Y√
X

+ c1

3959



14.25 problem 406
14.25.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 3960
14.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3961

Internal problem ID [3660]
Internal file name [OUTPUT/3153_Sunday_June_05_2022_08_53_53_AM_86564826/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 406.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
√
X −

√
Y = 0

14.25.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ √

Y√
X

dx

= x
√
Y√
X

+ c1

Summary
The solution(s) found are the following

(1)y = x
√
Y√
X

+ c1

Verification of solutions

y = x
√
Y√
X

+ c1

Verified OK.
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14.25.2 Maple step by step solution

Let’s solve
y′
√
X −

√
Y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′
√
X −

√
Y
)
dx =

∫
0dx+ c1

• Evaluate integral
y
√
X − x

√
Y = c1

• Solve for y

y = x
√
Y+c1√
X

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)*sqrt(X) = sqrt(Y),y(x), singsol=all)� �

y(x) =
√
Y x√
X

+ c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 20� �
DSolve[y'[x] Sqrt[X]==Sqrt[Y],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
√
Y√
X

+ c1
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14.26 problem 407
14.26.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3963
14.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3965
14.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3967
14.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3971

Internal problem ID [3661]
Internal file name [OUTPUT/3154_Sunday_June_05_2022_08_53_54_AM_45003807/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 407.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
(
x3 + 1

) 2
3 +

(
1 + y3

) 2
3 = 0

14.26.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − (y3 + 1)
2
3

(x3 + 1)
2
3

Where f(x) = − 1
(x3+1)

2
3
and g(y) = (y3 + 1)

2
3 . Integrating both sides gives

1
(y3 + 1)

2
3
dy = − 1

(x3 + 1)
2
3
dx

∫ 1
(y3 + 1)

2
3
dy =

∫
− 1
(x3 + 1)

2
3
dx
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y hypergeom
([

1
3 ,

2
3

]
,

[
4
3

]
,−y3

)
=
∫

− 1
(x3 + 1)

2
3
dx+ c1

Which results in

y = RootOf
(
− hypergeom

([
1
3 ,

2
3

]
,

[
4
3

]
,−_Z3

)
_Z+ c1 −

(∫ 1
(x3 + 1)

2
3
dx

))

Summary
The solution(s) found are the following

(1)y = RootOf
(
− hypergeom

([
1
3 ,

2
3

]
,

[
4
3

]
,−_Z3

)
_Z+ c1 −

(∫ 1
(x3 + 1)

2
3
dx

))

Figure 603: Slope field plot

Verification of solutions

y = RootOf
(
− hypergeom

([
1
3 ,

2
3

]
,

[
4
3

]
,−_Z3

)
_Z+ c1 −

(∫ 1
(x3 + 1)

2
3
dx

))

Warning, solution could not be verified
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14.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − (y3 + 1)
2
3

(x3 + 1)
2
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 718: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −
(
x3 + 1

) 2
3

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− (x3 + 1)
2
3
dx

Which results in

S = −x hypergeom
([

1
3 ,

2
3

]
,

[
4
3

]
,−x3

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (y3 + 1)
2
3

(x3 + 1)
2
3
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx =

(
x3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
+ 3LegendreP

(
2
3 ,−

1
3 ,

−x3+1
x3+1

)
x3 − LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
+ 3LegendreP

(
2
3 ,−

1
3 ,

−x3+1
x3+1

))
π
√
3
(√

3 + i
)5

288Γ
(2
3

)
(x3 + 1)

4
3
√
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

(
x3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
+ 3LegendreP

(
2
3 ,−

1
3 ,

−x3+1
x3+1

)
x3 − LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
+ 3LegendreP

(
2
3 ,−

1
3 ,

−x3+1
x3+1

))
π
√
3
(√

3 + i
)5

288Γ
(2
3

)
(x3 + 1)

2
3
√
x (y3 + 1)

2
3

(2A)

Unable to generate ode in canonical coordinates.

14.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

− 1
(y3 + 1)

2
3

)
dy =

(
1

(x3 + 1)
2
3

)
dx(

− 1
(x3 + 1)

2
3

)
dx+

(
− 1
(y3 + 1)

2
3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(x3 + 1)

2
3

N(x, y) = − 1
(y3 + 1)

2
3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(x3 + 1)

2
3

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 1
(y3 + 1)

2
3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(x3 + 1)

2
3
dx

(3)φ = −
2xπ

√
3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
9 (−x3)

1
6 (x3 + 1)

1
3 Γ
(2
3

) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
(y3+1)

2
3
. Therefore equation (4) becomes

(5)− 1
(y3 + 1)

2
3
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
(y3 + 1)

2
3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
(y3 + 1)

2
3

)
dy

f(y) = −y hypergeom
([

1
3 ,

2
3

]
,

[
4
3

]
,−y3

)
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −
2xπ

√
3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
9 (−x3)

1
6 (x3 + 1)

1
3 Γ
(2
3

) − y hypergeom
([

1
3 ,

2
3

]
,

[
4
3

]
,−y3

)
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
2xπ

√
3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
9 (−x3)

1
6 (x3 + 1)

1
3 Γ
(2
3

) − y hypergeom
([

1
3 ,

2
3

]
,

[
4
3

]
,−y3

)

Summary
The solution(s) found are the following

(1)−
2xπ

√
3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
9 (−x3)

1
6 (x3 + 1)

1
3 Γ
(2
3

) − hypergeom
([

1
3 ,

2
3

]
,

[
4
3

]
,−y3

)
y = c1

Figure 604: Slope field plot

Verification of solutions

−
2xπ

√
3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

)
9 (−x3)

1
6 (x3 + 1)

1
3 Γ
(2
3

) − hypergeom
([

1
3 ,

2
3

]
,

[
4
3

]
,−y3

)
y = c1

Verified OK.
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14.26.4 Maple step by step solution

Let’s solve

y′(x3 + 1)
2
3 + (1 + y3)

2
3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(1+y3)
2
3
= − 1

(x3+1)
2
3

• Integrate both sides with respect to x∫
y′

(1+y3)
2
3
dx =

∫
− 1

(x3+1)
2
3
dx+ c1

• Cannot compute integral∫
y′

(1+y3)
2
3
dx = −xhypergeom

([1
3 ,

2
3

]
,
[4
3

]
,−x3)+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 119� �
dsolve(diff(y(x),x)*(x^3+1)^(2/3)+(1+y(x)^3)^(2/3) = 0,y(x), singsol=all)� �
c1

+
2π

√
3
(
y(x) (x3 + 1)

1
3 (−x3)

1
6 LegendreP

(
−1

3 ,−
1
3 ,

−y(x)3+1
1+y(x)3

)
+
(
1 + y(x)3

) 1
3 LegendreP

(
−1

3 ,−
1
3 ,

−x3+1
x3+1

) (
−y(x)3

) 1
6 x
)

9 (−x3)
1
6 (x3 + 1)

1
3
(
−y (x)3

) 1
6
(
1 + y (x)3

) 1
3 Γ
(2
3

)
= 0
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3 Solution by Mathematica
Time used: 3.082 (sec). Leaf size: 221� �
DSolve[y'[x](1+x^3)^(2/3)+(1+y[x]^3)^(2/3)==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction


3 3

√
3
√
−1−#1
1 + 3

√
−1

(#1+ 1)
(#1+(−1)2/3

(−1)2/3−1

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

3
√
−1(#1+1)(

−1+
3
√
−1

)
#1+1

)
(
#13 + 1

)2/3 &



−
3 3

√
3
√
−1− x

1 + 3
√
−1

(x+ 1)
(

x+(−1)2/3
(−1)2/3−1

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

3
√
−1(x+1)(

−1+
3
√
−1

)
x+1

)
(x3 + 1)2/3

+c1


y(x) → −1
y(x) → 3

√
−1

y(x) → −(−1)2/3
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14.27 problem 408
14.27.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3973
14.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 3974
14.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 3976
14.27.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3979

Internal problem ID [3662]
Internal file name [OUTPUT/3155_Sunday_June_05_2022_08_53_58_AM_40120788/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 14
Problem number: 408.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
(
4x3 + a1x+ a0

) 2
3 +

(
a0+a1 y + 4y3

) 2
3 = 0

14.27.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − (4y3 + a1 y + a0)
2
3

(4x3 + a1x+ a0)
2
3

Where f(x) = − 1
(4x3+a1x+a0)

2
3
and g(y) = (4y3 + a1 y + a0)

2
3 . Integrating both sides

gives
1

(4y3 + a1 y + a0)
2
3
dy = − 1

(4x3 + a1x+ a0)
2
3
dx

∫ 1
(4y3 + a1 y + a0)

2
3
dy =

∫
− 1
(4x3 + a1x+ a0)

2
3
dx
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∫ y 1
(4_a3 + _a a1+a0)

2
3
d_a =

∫
− 1
(4x3 + a1x+ a0)

2
3
dx+ c1

Which results in∫ y 1
(4_a3 + _a a1+a0)

2
3
d_a =

∫
− 1
(4x3 + a1x+ a0)

2
3
dx+ c1

The solution is

∫ y 1
(4_a3 + _a a1+a0)

2
3
d_a−

(∫
− 1
(4x3 + a1x+ a0)

2
3
dx

)
− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1

(4_a3 + _a a1+a0)
2
3
d_a−

(∫
− 1
(4x3 + a1x+ a0)

2
3
dx

)
− c1 = 0

Verification of solutions∫ y 1
(4_a3 + _a a1+a0)

2
3
d_a−

(∫
− 1
(4x3 + a1x+ a0)

2
3
dx

)
− c1 = 0

Verified OK.

14.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − (4y3 + a1 y + a0)
2
3

(4x3 + a1x+ a0)
2
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 721: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −
(
4x3 + a1x+ a0

) 2
3

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− (4x3 + a1x+ a0)
2
3
dx

Which results in

S =
∫

− 1
(4x3 + a1x+ a0)

2
3
dx

14.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

− 1
(4y3 + a1 y + a0)

2
3

)
dy =

(
1

(4x3 + a1x+ a0)
2
3

)
dx(

− 1
(4x3 + a1x+ a0)

2
3

)
dx+

(
− 1
(4y3 + a1 y + a0)

2
3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(4x3 + a1x+ a0)

2
3

N(x, y) = − 1
(4y3 + a1 y + a0)

2
3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(4x3 + a1x+ a0)

2
3

)
= 0

And

∂N

∂x
= ∂

∂x

(
− 1
(4y3 + a1 y + a0)

2
3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(4x3 + a1x+ a0)

2
3
dx

(3)φ =
∫ x

− 1
(4_a3 + _a a1+a0)

2
3
d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
(4y3+a1 y+a0)

2
3
. Therefore equation (4) becomes

(5)− 1
(4y3 + a1 y + a0)

2
3
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
(4y3 + a1 y + a0)

2
3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
(4y3 + a1 y + a0)

2
3

)
dy

f(y) =
∫ y

0
− 1
(4_a3 + _a a1+a0)

2
3
d_a+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

− 1
(4_a3 + _a a1+a0)

2
3
d_a+

∫ y

0
− 1
(4_a3 + _a a1+a0)

2
3
d_a+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

− 1
(4_a3 + _a a1+a0)

2
3
d_a+

∫ y

0
− 1
(4_a3 + _a a1+a0)

2
3
d_a

Summary
The solution(s) found are the following

(1)
∫ x

− 1
(4_a3 + _a a1+a0)

2
3
d_a+

∫ y

0
− 1
(4_a3 + _a a1+a0)

2
3
d_a = c1

Verification of solutions∫ x

− 1
(4_a3 + _a a1+a0)

2
3
d_a+

∫ y

0
− 1
(4_a3 + _a a1+a0)

2
3
d_a = c1

Verified OK.

14.27.4 Maple step by step solution

Let’s solve

y′(4x3 + a1x+ a0 )
2
3 + (a0 + a1y + 4y3)

2
3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(a0+a1y+4y3)
2
3
= − 1

(4x3+a1x+a0 )
2
3

• Integrate both sides with respect to x∫
y′

(a0+a1y+4y3)
2
3
dx =

∫
− 1

(4x3+a1x+a0 )
2
3
dx+ c1

• Cannot compute integral∫
y′

(a0+a1y+4y3)
2
3
dx =

∫
− 1

(4x3+a1x+a0 )
2
3
dx+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(diff(y(x),x)*(4*x^3+a1*x+a0)^(2/3)+(a0+a1*y(x)+4*y(x)^3)^(2/3) = 0,y(x), singsol=all)� �∫ 1

(4x3 + a1x+ a0)
2
3
dx+

∫ y(x) 1
(4_a3 + _a a1+a0)

2
3
d_a+ c1 = 0

3 Solution by Mathematica
Time used: 0.581 (sec). Leaf size: 558� �
DSolve[y'[x](a0+a1 x+4 x^3)^(2/3)+(a0+a1 y[x]+4 y[x]^3)^(2/3)==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


3
(
y(x)− Root

[
4#13 +#1a1+ a0&, 1

])( y(x)−Root
[
4#13

+#1a1+a0&,2
]

Root
[
4#13

+#1a1+a0&,1
]
−Root

[
4#13

+#1a1+a0&,2
]
)2/3

3

√
y(x)− Root

[
4#13 +#1a1+ a0&, 3

]
Root

[
4#13 +#1a1+ a0&, 1

]
− Root

[
4#13 +#1a1+ a0&, 3

] Hypergeometric2F1
(

1
3 ,

2
3 ,

4
3 ,

(
Root

[
4#13

+a1#1+a0&,3
]
−Root

[
4#13

+a1#1+a0&,2
])(

y(x)−Root
[
4#13

+a1#1+a0&,1
])

(
Root

[
4#13

+a1#1+a0&,1
]
−Root

[
4#13

+a1#1+a0&,2
])(

y(x)−Root
[
4#13

+a1#1+a0&,3
])
)

(a0+ a1y(x) + 4y(x)3)2/3
=

−
3
(
x− Root

[
4#13 +#1a1+ a0&, 1

])( x−Root
[
4#13

+#1a1+a0&,2
]

Root
[
4#13

+#1a1+a0&,1
]
−Root

[
4#13

+#1a1+a0&,2
]
)2/3

3

√
x− Root

[
4#13 +#1a1+ a0&, 3

]
Root

[
4#13 +#1a1+ a0&, 1

]
− Root

[
4#13 +#1a1+ a0&, 3

] Hypergeometric2F1
(

1
3 ,

2
3 ,

4
3 ,

(
x−Root

[
4#13

+a1#1+a0&,1
])(

Root
[
4#13

+a1#1+a0&,3
]
−Root

[
4#13

+a1#1+a0&,2
])

(
Root

[
4#13

+a1#1+a0&,1
]
−Root

[
4#13

+a1#1+a0&,2
])(

x−Root
[
4#13

+a1#1+a0&,3
])
)

(a0+ a1x+ 4x3)2/3

+ c1, y(x)
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15.1 problem 409
15.1.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 3982
15.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3983

Internal problem ID [3663]
Internal file name [OUTPUT/3156_Sunday_June_05_2022_08_54_00_AM_71910197/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 409.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

X
2
3y′ − Y

2
3 = 0

15.1.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

Y
2
3

X
2
3
dx

= xY
2
3

X
2
3

+ c1

Summary
The solution(s) found are the following

(1)y = xY
2
3

X
2
3

+ c1

Verification of solutions

y = xY
2
3

X
2
3

+ c1

Verified OK.
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15.1.2 Maple step by step solution

Let’s solve
X

2
3y′ − Y

2
3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
X

2
3y′ − Y

2
3

)
dx =

∫
0dx+ c1

• Evaluate integral
X

2
3y − xY

2
3 = c1

• Solve for y

y = xY
2
3+c1

X
2
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(X^(2/3)*diff(y(x),x) = Y^(2/3),y(x), singsol=all)� �

y(x) = Y
2
3x

X
2
3
+ c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 20� �
DSolve[X^(2/3) y'[x]== Y^(2/3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xY 2/3

X2/3 + c1
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15.2 problem 410
15.2.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 3985
15.2.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 3989
15.2.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 3992

Internal problem ID [3664]
Internal file name [OUTPUT/3157_Sunday_June_05_2022_08_54_02_AM_54461848/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 410.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′
(
a+ cos

(x
2

)2)
− y tan

(x
2

)(
1 + a+ cos

(x
2

)2
− y

)
= 0

15.2.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
y tan

(
x
2

) (
1 + a+ cos

(
x
2

)2 − y
)

a+ cos
(
x
2

)2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 725: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2e−
ln
(
a+cos

(
x
2
)2)

a
−

2(−1−a) ln
(
cos
(
x
2
))

a (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2e−
ln
(
a+cos

(
x
2
)2)

a
−

2(−1−a) ln
(
cos
(
x
2
))

a

dy

Which results in

S = −e−
2 ln

(
cos
(
x
2
))

a+2 ln
(
cos
(
x
2
))

−ln
(
a+1

2+cos(x)
2

)
a

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
y tan

(
x
2

) (
1 + a+ cos

(
x
2

)2 − y
)

a+ cos
(
x
2

)2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
tan

(
x
2

) (
a+ cos

(
x
2

)2)−a+1
a
(
cos
(
x
2

)2 + a+ 1
)
cos
(
x
2

)−2a−2
a

y

Sy =
cos
(
x
2

)−2a−2
a

(
a+ cos

(
x
2

)2) 1
a

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − tan

(x
2

)
cos
(x
2

)−2a−2
a

(
a+ cos

(x
2

)2)−a+1
a

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − tan

(
R

2

)
cos
(
R

2

)−2a−2
a

(
a+ cos

(
R

2

)2
)−a+1

a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− tan
(
R

2

)
cos
(
R

2

)− 2(1+a)
a

(
a+ cos

(
R

2

)2
)−a−1

a

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
cos
(
x
2

)−2a−2
a

(
a+ cos

(
x
2

)2) 1
a

y
=
∫

− tan
(x
2

)
cos
(x
2

)− 2(1+a)
a

(
a+ cos

(x
2

)2)−a−1
a

dx+ c1

Which simplifies to

−
cos
(
x
2

)−2a−2
a

(
a+ cos

(
x
2

)2) 1
a

y
=
∫

− tan
(x
2

)
cos
(x
2

)− 2(1+a)
a

(
a+ cos

(x
2

)2)−a−1
a

dx+ c1

Which gives

y = −
cos
(
x
2

)− 2(1+a)
a

(
a+ cos

(
x
2

)2) 1
a

∫
− tan

(
x
2

)
cos
(
x
2

)− 2(1+a)
a

(
a+ cos

(
x
2

)2)−a−1
a

dx+ c1

Summary
The solution(s) found are the following

(1)y = −
cos
(
x
2

)− 2(1+a)
a

(
a+ cos

(
x
2

)2) 1
a

∫
− tan

(
x
2

)
cos
(
x
2

)− 2(1+a)
a

(
a+ cos

(
x
2

)2)−a−1
a

dx+ c1

Verification of solutions

y = −
cos
(
x
2

)− 2(1+a)
a

(
a+ cos

(
x
2

)2) 1
a

∫
− tan

(
x
2

)
cos
(
x
2

)− 2(1+a)
a

(
a+ cos

(
x
2

)2)−a−1
a

dx+ c1

Verified OK.
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15.2.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

=
y tan

(
x
2

) (
1 + a+ cos

(
x
2

)2 − y
)

a+ cos
(
x
2

)2
This is a Bernoulli ODE.

y′ =
tan

(
x
2

) (
cos
(
x
2

)2 + a+ 1
)

a+ cos
(
x
2

)2 y −
tan

(
x
2

)
a+ cos

(
x
2

)2y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
tan

(
x
2

) (
cos
(
x
2

)2 + a+ 1
)

a+ cos
(
x
2

)2
f1(x) = −

tan
(
x
2

)
a+ cos

(
x
2

)2
n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

=
tan

(
x
2

) (
cos
(
x
2

)2 + a+ 1
)

(
a+ cos

(
x
2

)2)
y

−
tan

(
x
2

)
a+ cos

(
x
2

)2 (4)
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Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) =
tan

(
x
2

) (
cos
(
x
2

)2 + a+ 1
)
w(x)

a+ cos
(
x
2

)2 −
tan

(
x
2

)
a+ cos

(
x
2

)2
w′ = −

tan
(
x
2

) (
cos
(
x
2

)2 + a+ 1
)
w

a+ cos
(
x
2

)2 +
tan

(
x
2

)
a+ cos

(
x
2

)2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) =
tan

(
x
2

) (
cos
(
x
2

)2 + a+ 1
)

a+ cos
(
x
2

)2
q(x) =

tan
(
x
2

)
a+ cos

(
x
2

)2
Hence the ode is

w′(x) +
tan

(
x
2

) (
cos
(
x
2

)2 + a+ 1
)
w(x)

a+ cos
(
x
2

)2 =
tan

(
x
2

)
a+ cos

(
x
2

)2
The integrating factor µ is

µ = e
∫ tan

(
x
2
)(

cos
(
x
2
)2

+a+1
)

a+cos
(
x
2
)2 dx

= e−2 ln
(
cos
(
x
2
))
+

ln
(
a+cos

(
x
2
)2)

a
−

2 ln
(
cos
(
x
2
))

a
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Which simplifies to

µ = sec
(x
2

)2(
a+ cos

(x
2

)2) 1
a

cos
(x
2

)− 2
a

The ode becomes

d
dx(µw) = (µ)

(
tan

(
x
2

)
a+ cos

(
x
2

)2
)

d
dx

(
sec
(x
2

)2(
a+ cos

(x
2

)2) 1
a

cos
(x
2

)− 2
a
w

)
=
(
sec
(x
2

)2(
a+ cos

(x
2

)2) 1
a

cos
(x
2

)− 2
a

)(
tan

(
x
2

)
a+ cos

(
x
2

)2
)

d
(
sec
(x
2

)2(
a+ cos

(x
2

)2) 1
a

cos
(x
2

)− 2
a
w

)
=
(
tan

(x
2

)
sec
(x
2

)2
cos
(x
2

)− 2
a

(
a+ cos

(x
2

)2)−a+1
a

)
dx

Integrating gives

sec
(x
2

)2(
a+ cos

(x
2

)2) 1
a

cos
(x
2

)− 2
a
w =

∫
tan

(x
2

)
sec
(x
2

)2
cos
(x
2

)− 2
a

(
a+ cos

(x
2

)2)−a+1
a

dx

sec
(x
2

)2(
a+ cos

(x
2

)2) 1
a

cos
(x
2

)− 2
a
w =

∫
tan

(x
2

)
sec
(x
2

)2
cos
(x
2

)− 2
a

(
a+ cos

(x
2

)2)−a+1
a

dx+ c1

Dividing both sides by the integrating factor µ = sec
(
x
2

)2 (
a+ cos

(
x
2

)2) 1
a cos

(
x
2

)− 2
a

results in

w(x) = cos
(x
2

) 2a+2
a

(
a+ cos

(x
2

)2)− 1
a

(∫
tan

(x
2

)
sec
(x
2

)2
cos
(x
2

)− 2
a

(
a+ cos

(x
2

)2)−a+1
a

dx

)
+ c1 cos

(x
2

) 2a+2
a

(
a+ cos

(x
2

)2)− 1
a

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= cos

(x
2

) 2a+2
a

(
a+ cos

(x
2

)2)− 1
a

(∫
tan

(x
2

)
sec
(x
2

)2
cos
(x
2

)− 2
a

(
a+ cos

(x
2

)2)−a+1
a

dx

)
+ c1 cos

(x
2

) 2a+2
a

(
a+ cos

(x
2

)2)− 1
a

Or

y = 1

cos
(
x
2

) 2a+2
a

(
a+ cos

(
x
2

)2)− 1
a

(∫
tan

(
x
2

)
sec
(
x
2

)2 cos (x2)− 2
a

(
a+ cos

(
x
2

)2)−a+1
a

dx

)
+ c1 cos

(
x
2

) 2a+2
a

(
a+ cos

(
x
2

)2)− 1
a

Which is simplified to

y =
cos
(
x
2

)−2a−2
a

(
a+ cos

(
x
2

)2) 1
a

∫
tan

(
x
2

)
sec
(
x
2

)2 cos (x2)− 2
a

(
a+ cos

(
x
2

)2)−a+1
a

dx+ c1
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Summary
The solution(s) found are the following

(1)y =
cos
(
x
2

)−2a−2
a

(
a+ cos

(
x
2

)2) 1
a

∫
tan

(
x
2

)
sec
(
x
2

)2 cos (x2)− 2
a

(
a+ cos

(
x
2

)2)−a+1
a

dx+ c1

Verification of solutions

y =
cos
(
x
2

)−2a−2
a

(
a+ cos

(
x
2

)2) 1
a

∫
tan

(
x
2

)
sec
(
x
2

)2 cos (x2)− 2
a

(
a+ cos

(
x
2

)2)−a+1
a

dx+ c1

Verified OK.

15.2.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

=
y tan

(
x
2

) (
1 + a+ cos

(
x
2

)2 − y
)

a+ cos
(
x
2

)2
This is a Riccati ODE. Comparing the ODE to solve

y′ =
y tan

(
x
2

)
cos
(
x
2

)2
a+ cos

(
x
2

)2 +
y tan

(
x
2

)
a

a+ cos
(
x
2

)2 −
y2 tan

(
x
2

)
a+ cos

(
x
2

)2 +
y tan

(
x
2

)
a+ cos

(
x
2

)2
With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) =
tan
(
x
2
)(

cos
(
x
2
)2+a+1

)
a+cos

(
x
2
)2 and f2(x) = − tan

(
x
2
)

a+cos
(
x
2
)2 . Let

y = −u′

f2u

= −u′

− tan
(
x
2
)
u

a+cos
(
x
2
)2 (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)
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But

f ′
2 = −

tan
(
x
2

)
cos
(
x
2

)
sin
(
x
2

)(
a+ cos

(
x
2

)2)2 −
1
2 +

tan
(
x
2
)2

2

a+ cos
(
x
2

)2
f1f2 = −

tan
(
x
2

)2 (cos (x2)2 + a+ 1
)

(
a+ cos

(
x
2

)2)2
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−
tan

(
x
2

)
u′′(x)

a+ cos
(
x
2

)2 −

−
tan

(
x
2

)
cos
(
x
2

)
sin
(
x
2

)(
a+ cos

(
x
2

)2)2 −
1
2 +

tan
(
x
2
)2

2

a+ cos
(
x
2

)2 −
tan

(
x
2

)2 (cos (x2)2 + a+ 1
)

(
a+ cos

(
x
2

)2)2
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = 2
(∫

cos
(x
2

)−2−3a
a

(
a+ cos

(x
2

)2)−a+1
a

√
− sin

(x
4

)2
cos
(x
4

)
dx

)
c2 + c1

The above shows that

u′(x) = cos
(x
2

)−2−3a
a

(
a+ cos

(x
2

)2)−a+1
a
√

cos
(x
2

)
− 1

√
2 cos

(x
4

)
c2

Using the above in (1) gives the solution

y =
cos
(
x
2

)−2−3a
a

(
a+ cos

(
x
2

)2)−a+1
a
√

cos
(
x
2

)
− 1

√
2 cos

(
x
4

)
c2
(
a+ cos

(
x
2

)2)
tan

(
x
2

)(
2
(∫

cos
(
x
2

)−2−3a
a

(
a+ cos

(
x
2

)2)−a+1
a
√
− sin

(
x
4

)2 cos
(
x
4

)
dx

)
c2 + c1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
cos
(
x
4

)
cot
(
x
2

) (
a+ cos

(
x
2

)2) 1
a
√

cos
(
x
2

)
− 1

√
2 cos

(
x
2

)−2−3a
a

2
(∫

cos
(
x
2

)−2−3a
a

(
a+ cos

(
x
2

)2)−a+1
a
√

− sin
(
x
4

)2 cos
(
x
4

)
dx

)
+ c3
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Summary
The solution(s) found are the following

(1)y =
cos
(
x
4

)
cot
(
x
2

) (
a+ cos

(
x
2

)2) 1
a
√

cos
(
x
2

)
− 1

√
2 cos

(
x
2

)−2−3a
a

2
(∫

cos
(
x
2

)−2−3a
a

(
a+ cos

(
x
2

)2)−a+1
a
√

− sin
(
x
4

)2 cos
(
x
4

)
dx

)
+ c3

Verification of solutions

y =
cos
(
x
4

)
cot
(
x
2

) (
a+ cos

(
x
2

)2) 1
a
√

cos
(
x
2

)
− 1

√
2 cos

(
x
2

)−2−3a
a

2
(∫

cos
(
x
2

)−2−3a
a

(
a+ cos

(
x
2

)2)−a+1
a
√

− sin
(
x
4

)2 cos
(
x
4

)
dx

)
+ c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 78� �
dsolve(diff(y(x),x)*(a+cos(1/2*x)^2) = y(x)*tan(1/2*x)*(1+a+cos(1/2*x)^2-y(x)),y(x), singsol=all)� �

y(x) =
sec
(
x
2

)2 (
a+ cos

(
x
2

)2) 1
a cos

(
x
2

)− 2
a

∫
tan

(
x
2

)
sec
(
x
2

)2 cos (x2)− 2
a

(
a+ cos

(
x
2

)2)−a+1
a

dx+ c1
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3 Solution by Mathematica
Time used: 1.657 (sec). Leaf size: 74� �
DSolve[y'[x](a+Cos[x/2]^2)==y[x] Tan[x/2](1+a+Cos[x/2]^2-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(a+ 1)

(
a+ cos2

(
x
2

)) 1
a

sin2 (x
2

) (
a+ cos2

(
x
2

)) 1
a + (a+ 1)c1 cos

2
a
+2 (x

2

)
y(x) → 0
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15.3 problem 411
15.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 3996
15.3.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 3998
15.3.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4000
15.3.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 4001
15.3.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4005
15.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4009

Internal problem ID [3665]
Internal file name [OUTPUT/3158_Sunday_June_05_2022_08_54_09_AM_66161577/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 411.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−4 cos (x)2 + 1

)
y′ − tan (x)

(
1 + 4 cos (x)2

)
y = 0

15.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −
y tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1
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Where f(x) = −
tan(x)

(
1+4 cos(x)2

)
4 cos(x)2−1 and g(y) = y. Integrating both sides gives

1
y
dy = −

tan (x)
(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

dx∫ 1
y
dy =

∫
−
tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

dx

ln (y) = ln (2 cos (x)− 1) + ln (2 cos (x) + 1)− ln (cos (x)) + c1

y = eln(2 cos(x)−1)+ln(2 cos(x)+1)−ln(cos(x))+c1

= c1eln(2 cos(x)−1)+ln(2 cos(x)+1)−ln(cos(x))

Which simplifies to

y = c1

(
4 cos (x)− 1

cos (x)

)

Summary
The solution(s) found are the following

(1)y = c1

(
4 cos (x)− 1

cos (x)

)

Figure 605: Slope field plot
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Verification of solutions

y = c1

(
4 cos (x)− 1

cos (x)

)
Verified OK.

15.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −− tan (x)− 4 sin (x) cos (x)
4 cos (x)2 − 1

q(x) = 0

Hence the ode is

y′ − (− tan (x)− 4 sin (x) cos (x)) y
4 cos (x)2 − 1

= 0

The integrating factor µ is

µ = e
∫
−− tan(x)−4 sin(x) cos(x)

4 cos(x)2−1
dx

= e− ln(2 cos(x)−1)−ln(2 cos(x)+1)+ln(cos(x))

Which simplifies to

µ = cos (x)
4 cos (x)2 − 1

The ode becomes
d
dxµy = 0

d
dx

(
cos (x) y

4 cos (x)2 − 1

)
= 0

Integrating gives

cos (x) y
4 cos (x)2 − 1

= c1

3998



Dividing both sides by the integrating factor µ = cos(x)
4 cos(x)2−1 results in

y = (4 cos (x)− sec (x)) c1

Summary
The solution(s) found are the following

(1)y = (4 cos (x)− sec (x)) c1

Figure 606: Slope field plot

Verification of solutions

y = (4 cos (x)− sec (x)) c1

Verified OK.
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15.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
−4 cos (x)2 + 1

)
(u′(x)x+ u(x))− tan (x)

(
1 + 4 cos (x)2

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −
u
(
4 tan (x) cos (x)2 x+ tan (x)x+ 4 cos (x)2 − 1

)(
4 cos (x)2 − 1

)
x

Where f(x) = −4 tan(x) cos(x)2x+tan(x)x+4 cos(x)2−1(
4 cos(x)2−1

)
x

and g(u) = u. Integrating both sides
gives

1
u
du = −4 tan (x) cos (x)2 x+ tan (x)x+ 4 cos (x)2 − 1(

4 cos (x)2 − 1
)
x

dx∫ 1
u
du =

∫
−4 tan (x) cos (x)2 x+ tan (x)x+ 4 cos (x)2 − 1(

4 cos (x)2 − 1
)
x

dx

ln (u) = − ln (x)− ln
(
−1 + tan

(x
2

))
− ln

(
tan

(x
2

)
+ 1
)
− ln

(
1 + tan

(x
2

)2)
+ ln

(
tan

(x
2

)2
− 3
)
+ ln

(
3 tan

(x
2

)2
− 1
)
+ c2

u = e− ln(x)−ln
(
−1+tan

(
x
2
))
−ln

(
tan
(
x
2
)
+1
)
−ln

(
1+tan

(
x
2
)2)+ln

(
tan
(
x
2
)2−3

)
+ln

(
3 tan

(
x
2
)2−1

)
+c2

= c2e− ln(x)−ln
(
−1+tan

(
x
2
))
−ln

(
tan
(
x
2
)
+1
)
−ln

(
1+tan

(
x
2
)2)+ln

(
tan
(
x
2
)2−3

)
+ln

(
3 tan

(
x
2
)2−1

)

Therefore the solution y is

y = xu

= xc2e− ln(x)−ln
(
−1+tan

(
x
2
))
−ln

(
tan
(
x
2
)
+1
)
−ln

(
1+tan

(
x
2
)2)+ln

(
tan
(
x
2
)2−3

)
+ln

(
3 tan

(
x
2
)2−1

)

Summary
The solution(s) found are the following

(1)y = xc2e− ln(x)−ln
(
−1+tan

(
x
2
))
−ln

(
tan
(
x
2
)
+1
)
−ln

(
1+tan

(
x
2
)2)+ln

(
tan
(
x
2
)2−3

)
+ln

(
3 tan

(
x
2
)2−1

)
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Figure 607: Slope field plot

Verification of solutions

y = xc2e− ln(x)−ln
(
−1+tan

(
x
2
))
−ln

(
tan
(
x
2
)
+1
)
−ln

(
1+tan

(
x
2
)2)+ln

(
tan
(
x
2
)2−3

)
+ln

(
3 tan

(
x
2
)2−1

)

Verified OK.

15.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
y tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 727: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eln(2 cos(x)−1)+ln(2 cos(x)+1)−ln(cos(x)) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(2 cos(x)−1)+ln(2 cos(x)+1)−ln(cos(x))dy

Which results in

S = cos (x) y
1 + 2 cos (2x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
y tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
sin (x) y

(
1 + 4 cos (x)2

)(
4 cos (x)2 − 1

)2
Sy =

cos (x)
4 cos (x)2 − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y
4 cos (x)2 − 1

= c1

Which simplifies to

cos (x) y
4 cos (x)2 − 1

= c1

Which gives

y =
c1
(
4 cos (x)2 − 1

)
cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
y tan(x)

(
1+4 cos(x)2

)
4 cos(x)2−1

dS
dR

= 0

R = x

S = cos (x) y
4 cos (x)2 − 1
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Summary
The solution(s) found are the following

(1)y =
c1
(
4 cos (x)2 − 1

)
cos (x)

Figure 608: Slope field plot

Verification of solutions

y =
c1
(
4 cos (x)2 − 1

)
cos (x)

Verified OK.

15.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives
d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−1
y

)
dy =

(
tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

)
dx(

−
tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−
tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

)
= 0

And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−
tan (x)

(
1 + 4 cos (x)2

)
4 cos (x)2 − 1

dx

(3)φ = ln (2 cos (x)− 1) + ln (2 cos (x) + 1)− ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (2 cos (x)− 1) + ln (2 cos (x) + 1)− ln (cos (x))− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (2 cos (x)− 1) + ln (2 cos (x) + 1)− ln (cos (x))− ln (y)

The solution becomes

y = e−c1(2 cos (x) + 1) (2 cos (x)− 1)
cos (x)

Summary
The solution(s) found are the following

(1)y = e−c1(2 cos (x) + 1) (2 cos (x)− 1)
cos (x)
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Figure 609: Slope field plot

Verification of solutions

y = e−c1(2 cos (x) + 1) (2 cos (x)− 1)
cos (x)

Verified OK.

15.3.6 Maple step by step solution

Let’s solve(
−4 cos (x)2 + 1

)
y′ − tan (x)

(
1 + 4 cos (x)2

)
y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables

y′

y
=

tan(x)
(
1+4 cos(x)2

)
−4 cos(x)2+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫ tan(x)
(
1+4 cos(x)2

)
−4 cos(x)2+1 dx+ c1
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• Evaluate integral
ln (y) = ln (2 cos (x)− 1) + ln (2 cos (x) + 1)− ln (cos (x)) + c1

• Solve for y
y = ec1 (2 cos(x)+1)(2 cos(x)−1)

cos(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((1-4*cos(x)^2)*diff(y(x),x) = tan(x)*(1+4*cos(x)^2)*y(x),y(x), singsol=all)� �

y(x) = (4 cos (x)− sec (x)) c1

3 Solution by Mathematica
Time used: 0.436 (sec). Leaf size: 23� �
DSolve[(1-4 Cos[x]^2)y'[x]==Tan[x](1+4 Cos[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(2 cos(2x) + 1) sec(x)
y(x) → 0
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15.4 problem 412
15.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4011
15.4.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 4013
15.4.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4014
15.4.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 4016
15.4.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4020
15.4.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4024

Internal problem ID [3666]
Internal file name [OUTPUT/3159_Sunday_June_05_2022_08_54_11_AM_23472965/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 412.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(− sin (x) + 1) y′ + cos (x) y = 0

15.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y cos (x)
sin (x)− 1
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Where f(x) = cos(x)
sin(x)−1 and g(y) = y. Integrating both sides gives

1
y
dy = cos (x)

sin (x)− 1 dx∫ 1
y
dy =

∫ cos (x)
sin (x)− 1 dx

ln (y) = ln (sin (x)− 1) + c1

y = eln(sin(x)−1)+c1

= c1(sin (x)− 1)

Summary
The solution(s) found are the following

(1)y = c1(sin (x)− 1)

Figure 610: Slope field plot

Verification of solutions

y = c1(sin (x)− 1)

Verified OK.
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15.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cos (x)
sin (x)− 1

q(x) = 0

Hence the ode is

y′ − y cos (x)
sin (x)− 1 = 0

The integrating factor µ is

µ = e
∫
− cos(x)

sin(x)−1dx

= 1
sin (x)− 1

The ode becomes

d
dxµy = 0

d
dx

(
y

sin (x)− 1

)
= 0

Integrating gives
y

sin (x)− 1 = c1

Dividing both sides by the integrating factor µ = 1
sin(x)−1 results in

y = c1(sin (x)− 1)

Summary
The solution(s) found are the following

(1)y = c1(sin (x)− 1)
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Figure 611: Slope field plot

Verification of solutions

y = c1(sin (x)− 1)

Verified OK.

15.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(− sin (x) + 1) (u′(x)x+ u(x)) + cos (x)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(cos (x)x− sin (x) + 1)
(sin (x)− 1)x
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Where f(x) = cos(x)x−sin(x)+1
(sin(x)−1)x and g(u) = u. Integrating both sides gives

1
u
du = cos (x)x− sin (x) + 1

(sin (x)− 1)x dx∫ 1
u
du =

∫ cos (x)x− sin (x) + 1
(sin (x)− 1)x dx

ln (u) = ln (cos (x))− ln (x)− ln (sec (x) + tan (x)) + c2

u = eln(cos(x))−ln(x)−ln(sec(x)+tan(x))+c2

= c2eln(cos(x))−ln(x)−ln(sec(x)+tan(x))

Which simplifies to

u(x) = c2 cos (x)
x (sec (x) + tan (x))

Therefore the solution y is

y = xu

= c2 cos (x)
sec (x) + tan (x)

Summary
The solution(s) found are the following

(1)y = c2 cos (x)
sec (x) + tan (x)
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Figure 612: Slope field plot

Verification of solutions

y = c2 cos (x)
sec (x) + tan (x)

Verified OK.

15.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y cos (x)
sin (x)− 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 730: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = sin (x)− 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

sin (x)− 1dy

Which results in

S = y

sin (x)− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y cos (x)
sin (x)− 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y cos (x)
(sin (x)− 1)2

Sy =
1

sin (x)− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

sin (x)− 1 = c1

Which simplifies to
y

sin (x)− 1 = c1

Which gives

y = c1 sin (x)− c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y cos(x)
sin(x)−1

dS
dR

= 0

R = x

S = y

sin (x)− 1

Summary
The solution(s) found are the following

(1)y = c1 sin (x)− c1
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Figure 613: Slope field plot

Verification of solutions

y = c1 sin (x)− c1

Verified OK.

15.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
cos (x)

sin (x)− 1

)
dx(

− cos (x)
sin (x)− 1

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x)
sin (x)− 1

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− cos (x)
sin (x)− 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x)
sin (x)− 1 dx

(3)φ = − ln (sin (x)− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

4022



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x)− 1) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x)− 1) + ln (y)

The solution becomes
y = ec1(sin (x)− 1)

Summary
The solution(s) found are the following

(1)y = ec1(sin (x)− 1)

Figure 614: Slope field plot

Verification of solutions

y = ec1(sin (x)− 1)

Verified OK.
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15.4.6 Maple step by step solution

Let’s solve
(− sin (x) + 1) y′ + cos (x) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − cos(x)

− sin(x)+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− cos(x)

− sin(x)+1dx+ c1

• Evaluate integral
ln (y) = ln (− sin (x) + 1) + c1

• Solve for y
y = −ec1(sin (x)− 1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve((1-sin(x))*diff(y(x),x)+y(x)*cos(x) = 0,y(x), singsol=all)� �

y(x) = c1(sin (x)− 1)
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3 Solution by Mathematica
Time used: 0.303 (sec). Leaf size: 18� �
DSolve[(1-Sin[x])y'[x]+y[x] Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c1(sin(x)− 1)
y(x) → 0
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15.5 problem 413
15.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4026
15.5.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 4028
15.5.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4029
15.5.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 4031
15.5.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4035
15.5.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4039

Internal problem ID [3667]
Internal file name [OUTPUT/3160_Sunday_June_05_2022_08_54_13_AM_86505952/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 413.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(cos (x)− sin (x)) y′ + y(cos (x) + sin (x)) = 0

15.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(cos (x) + sin (x))
cos (x)− sin (x)
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Where f(x) = − cos(x)+sin(x)
cos(x)−sin(x) and g(y) = y. Integrating both sides gives

1
y
dy = −cos (x) + sin (x)

cos (x)− sin (x) dx∫ 1
y
dy =

∫
−cos (x) + sin (x)
cos (x)− sin (x) dx

ln (y) = ln (cos (x)− sin (x)) + c1

y = eln(cos(x)−sin(x))+c1

= c1(cos (x)− sin (x))

Summary
The solution(s) found are the following

(1)y = c1(cos (x)− sin (x))

Figure 615: Slope field plot

Verification of solutions

y = c1(cos (x)− sin (x))

Verified OK.
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15.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−1− sin (2x)
cos (2x)

q(x) = 0

Hence the ode is

y′ − (−1− sin (2x)) y
cos (2x) = 0

The integrating factor µ is

µ = e
∫
−−1−sin(2x)

cos(2x) dx

= 1√
sin (2x)− 1

The ode becomes

d
dxµy = 0

d
dx

(
y√

sin (2x)− 1

)
= 0

Integrating gives
y√

sin (2x)− 1
= c1

Dividing both sides by the integrating factor µ = 1√
sin(2x)−1 results in

y = c1
√
sin (2x)− 1

Summary
The solution(s) found are the following

(1)y = c1
√

sin (2x)− 1
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Figure 616: Slope field plot

Verification of solutions

y = c1
√

sin (2x)− 1

Verified OK.

15.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(cos (x)− sin (x)) (u′(x)x+ u(x)) + u(x)x(cos (x) + sin (x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(cos (x)x+ x sin (x) + cos (x)− sin (x))
x (cos (x)− sin (x))
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Where f(x) = − cos(x)x+x sin(x)+cos(x)−sin(x)
(cos(x)−sin(x))x and g(u) = u. Integrating both sides gives

1
u
du = −cos (x)x+ x sin (x) + cos (x)− sin (x)

(cos (x)− sin (x))x dx∫ 1
u
du =

∫
−cos (x)x+ x sin (x) + cos (x)− sin (x)

(cos (x)− sin (x))x dx

ln (u) = ln (cos (2x))
2 − ln (2x)− ln (sec (2x) + tan (2x))

2 + c2

u = e
ln(cos(2x))

2 −ln(2x)− ln(sec(2x)+tan(2x))
2 +c2

= c2e
ln(cos(2x))

2 −ln(2x)− ln(sec(2x)+tan(2x))
2

Therefore the solution y is

y = xu

= xc2e
ln(cos(2x))

2 −ln(2x)− ln(sec(2x)+tan(2x))
2

Summary
The solution(s) found are the following

(1)y = xc2e
ln(cos(2x))

2 −ln(2x)− ln(sec(2x)+tan(2x))
2

Figure 617: Slope field plot
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Verification of solutions

y = xc2e
ln(cos(2x))

2 −ln(2x)− ln(sec(2x)+tan(2x))
2

Verified OK.

15.5.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(cos (x) + sin (x))
cos (x)− sin (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

4031



Table 733: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) =

√
sin (2x)− 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

sin (2x)− 1
dy

Which results in

S = y√
sin (2x)− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(cos (x) + sin (x))
cos (x)− sin (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y cos (2x)
(sin (2x)− 1)

3
2

Sy =
1√

sin (2x)− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
sin (2x)− 1

= c1

Which simplifies to
y√

sin (2x)− 1
= c1

Which gives

y = c1
√
sin (2x)− 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(cos(x)+sin(x))
cos(x)−sin(x)

dS
dR

= 0

R = x

S = y√
sin (2x)− 1

Summary
The solution(s) found are the following

(1)y = c1
√

sin (2x)− 1
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Figure 618: Slope field plot

Verification of solutions

y = c1
√

sin (2x)− 1

Verified OK.

15.5.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
cos (x) + sin (x)
cos (x)− sin (x)

)
dx(

−cos (x) + sin (x)
cos (x)− sin (x)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −cos (x) + sin (x)
cos (x)− sin (x)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−cos (x) + sin (x)
cos (x)− sin (x)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−cos (x) + sin (x)
cos (x)− sin (x) dx

(3)φ = ln (cos (x)− sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x)− sin (x))− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x)− sin (x))− ln (y)

The solution becomes
y = e−c1(cos (x)− sin (x))

Summary
The solution(s) found are the following

(1)y = e−c1(cos (x)− sin (x))

Figure 619: Slope field plot

Verification of solutions

y = e−c1(cos (x)− sin (x))

Verified OK.
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15.5.6 Maple step by step solution

Let’s solve
(cos (x)− sin (x)) y′ + y(cos (x) + sin (x)) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − cos(x)+sin(x)

cos(x)−sin(x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− cos(x)+sin(x)

cos(x)−sin(x)dx+ c1

• Evaluate integral
ln (y) = ln (cos (x)− sin (x)) + c1

• Solve for y
y = ec1(cos (x)− sin (x))

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((cos(x)-sin(x))*diff(y(x),x)+y(x)*(cos(x)+sin(x)) = 0,y(x), singsol=all)� �

y(x) = c1(− sin (x) + cos (x))
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3 Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 20� �
DSolve[(Cos[x]-Sin[x])y'[x]+y[x](Cos[x]+Sin[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(cos(x)− sin(x))
y(x) → 0
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15.6 problem 414
15.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 4041
15.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4043
15.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4046
15.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4049

Internal problem ID [3668]
Internal file name [OUTPUT/3161_Sunday_June_05_2022_08_54_14_AM_45131796/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 414.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

(
a0+a1 sin (x)2

)
y′ + a1 y sin (2x) = − a2x

(
a3+a1 sin (x)2

)
15.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = sin (2x) a1
a0+ a1 sin (x)2

q(x) =
a2x

(
− a1 sin (x)2 − a3

)
a0+a1 sin (x)2

Hence the ode is

y′ + sin (2x) a1 y
a0+a1 sin (x)2

=
a2x

(
− a1 sin (x)2 − a3

)
a0+a1 sin (x)2
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The integrating factor µ is

µ = e
∫ sin(2x) a1

a0+ a1 sin(x)2
dx

= a0+a1 sin (x)2

The ode becomes

d
dx(µy) = (µ)

(
a2x

(
− a1 sin (x)2 − a3

)
a0+a1 sin (x)2

)
d
dx
((
a0+a1 sin (x)2

)
y
)
=
(
a0+a1 sin (x)2

)(a2x
(
− a1 sin (x)2 − a3

)
a0+a1 sin (x)2

)
d
((
a0+a1 sin (x)2

)
y
)
=
(
a2x

(
− a1 sin (x)2 − a3

))
dx

Integrating gives(
a0+a1 sin (x)2

)
y =

∫
a2x

(
− a1 sin (x)2 − a3

)
dx

(
a0+a1 sin (x)2

)
y = a2

(
− a1

(
x

(
−sin (x) cos (x)

2 + x

2

)
− x2

4 + sin (x)2

4

)
− a3 x2

2

)
+ c1

Dividing both sides by the integrating factor µ = a0+a1 sin (x)2 results in

y =
a2
(
− a1

(
x
(
− sin(x) cos(x)

2 + x
2

)
− x2

4 + sin(x)2
4

)
− a3 x2

2

)
a0+a1 sin (x)2

+ c1

a0+a1 sin (x)2

which simplifies to

y = − sin (x)2 a1 a2+2 sin (x) a1 a2x cos (x)− x2(a1+2 a3) a2+4c1
4 a1 sin (x)2 + 4a0

Summary
The solution(s) found are the following

(1)y = − sin (x)2 a1 a2+2 sin (x) a1 a2x cos (x)− x2(a1+2 a3) a2+4c1
4 a1 sin (x)2 + 4a0

Verification of solutions

y = − sin (x)2 a1 a2+2 sin (x) a1 a2x cos (x)− x2(a1+2 a3) a2+4c1
4 a1 sin (x)2 + 4a0

Verified OK.
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15.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −sin (x)2 a1 a2 x+ a1 y sin (2x) + a2 a3x
a0+a1 sin (x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 736: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
a0+a1 sin (x)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
a0+a1 sin(x)2

dy

Which results in

S =
(
a0+a1 sin (x)2

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −sin (x)2 a1 a2 x+ a1 y sin (2x) + a2 a3x
a0+a1 sin (x)2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = a1 y sin (2x)
Sy = a0+a1 sin (x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a2 x

(
− a1 sin (x)2 − a3

)
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a2R

(
− sin (R)2 a1− a3

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −a2 a1 R2

4 − a2 a3 R2

2 + c1 +
a1 a2 (2R sin (2R) + cos (2R)− 1)

8 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in(

a0+a1 sin (x)2
)
y = −a1 a2 x2

4 − a2 a3 x2

2 + c1 +
a1 a2 (2x sin (2x) + cos (2x)− 1)

8
Which simplifies to

a1
(
y + a2

4

)
sin (x)2 − sin (x) a1 a2x cos (x)

2 + a1 a2 x2

4 + a2 a3 x2

2 + a0 y − c1 = 0

Which gives

y = 2 sin (x) a1 a2x cos (x)− sin (x)2 a1 a2− a1 a2 x2 − 2 a2 a3 x2 + 4c1
4 a1 sin (x)2 + 4a0

Summary
The solution(s) found are the following

(1)y = 2 sin (x) a1 a2x cos (x)− sin (x)2 a1 a2− a1 a2 x2 − 2 a2 a3 x2 + 4c1
4 a1 sin (x)2 + 4a0
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Verification of solutions

y = 2 sin (x) a1 a2x cos (x)− sin (x)2 a1 a2− a1 a2 x2 − 2 a2 a3 x2 + 4c1
4 a1 sin (x)2 + 4a0

Verified OK.

15.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

a0+a1 sin (x)2
)
dy =

(
− a2x

(
a3+a1 sin (x)2

)
− a1 y sin (2x)

)
dx(

a2x
(
a3+a1 sin (x)2

)
+ a1 y sin (2x)

)
dx+

(
a0+a1 sin (x)2

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = a2 x
(
a3+a1 sin (x)2

)
+ a1 y sin (2x)

N(x, y) = a0+a1 sin (x)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
a2x

(
a3+a1 sin (x)2

)
+ a1 y sin (2x)

)
= a1 sin (2x)

And
∂N

∂x
= ∂

∂x

(
a0+a1 sin (x)2

)
= a1 sin (2x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
a2x

(
a3+a1 sin (x)2

)
+ a1 y sin (2x) dx

(3)φ = −
(
y + a2

4

)
a1 cos (2x)
2 +

a2
(
a1 x2 + 2a3 x2 − sin (2x) a1 x+ a1

2

)
4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −a1 cos (2x)

2 + f ′(y)
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But equation (2) says that ∂φ
∂y

= a0+a1 sin (x)2. Therefore equation (4) becomes

(5)a0+a1 sin (x)2 = −a1 cos (2x)
2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a1 cos (2x)
2 + a0+a1 sin (x)2

= a1
2 + a0

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (a1
2 + a0

)
dy

f(y) =
(
a1
2 + a0

)
y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ=−
(
y + a2

4

)
a1 cos (2x)
2 +

a2
(
a1 x2 + 2a3 x2 − sin (2x) a1 x+ a1

2

)
4 +

(
a1
2 +a0

)
y+c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
y + a2

4

)
a1 cos (2x)
2 +

a2
(
a1 x2 + 2a3 x2 − sin (2x) a1 x+ a1

2

)
4 +

(
a1
2 + a0

)
y

The solution becomes

y = −2 sin (2x) a1 a2x− 2 a1 a2 x2 − 4 a2 a3 x2 + a1 a2 cos (2x)− a1 a2+8c1
4 (a1 cos (2x)− 2 a0− a1)

Summary
The solution(s) found are the following

(1)y = −2 sin (2x) a1 a2x− 2 a1 a2 x2 − 4 a2 a3 x2 + a1 a2 cos (2x)− a1 a2+8c1
4 (a1 cos (2x)− 2 a0− a1)
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Verification of solutions

y = −2 sin (2x) a1 a2x− 2 a1 a2 x2 − 4 a2 a3 x2 + a1 a2 cos (2x)− a1 a2+8c1
4 (a1 cos (2x)− 2 a0− a1)

Verified OK.

15.6.4 Maple step by step solution

Let’s solve(
a0 + a1 sin (x)2

)
y′ + a1y sin (2x) = −a2x

(
a3 + a1 sin (x)2

)
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative

y′ = − sin(2x)a1y
a0+a1 sin(x)2 −

a2x
(
a3+a1 sin(x)2

)
a0+a1 sin(x)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + sin(2x)a1y
a0+a1 sin(x)2 = −

a2x
(
a3+a1 sin(x)2

)
a0+a1 sin(x)2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + sin(2x)a1y

a0+a1 sin(x)2

)
= −

µ(x)a2x
(
a3+a1 sin(x)2

)
a0+a1 sin(x)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + sin(2x)a1y

a0+a1 sin(x)2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin(2x)a1

a0+a1 sin(x)2

• Solve to find the integrating factor
µ(x) = a0 + a1 sin (x)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−

µ(x)a2x
(
a3+a1 sin(x)2

)
a0+a1 sin(x)2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫
−

µ(x)a2x
(
a3+a1 sin(x)2

)
a0+a1 sin(x)2 dx+ c1

• Solve for y
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y =
∫
−

µ(x)a2x
(
a3+a1 sin(x)2

)
a0+a1 sin(x)2

dx+c1

µ(x)

• Substitute µ(x) = a0 + a1 sin (x)2

y =
∫
−a2x

(
a3+a1 sin(x)2

)
dx+c1

a0+a1 sin(x)2

• Evaluate the integrals on the rhs

y =
−a2

(
a1
(
x
(
− sin(x) cos(x)

2 +x
2

)
−x2

4 + sin(x)2
4

)
+ a3 x2

2

)
+c1

a0+a1 sin(x)2

• Simplify

y = − sin(x)2a1a2+2 sin(x)a1a2x cos(x)−x2(a1+2a3 )a2+4c1
4a1 sin(x)2+4a0

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 52� �
dsolve((a0+a1*sin(x)^2)*diff(y(x),x)+a2*x*(a3+a1*sin(x)^2)+a1*y(x)*sin(2*x) = 0,y(x), singsol=all)� �

y(x) = a2 a1 cos (2x) + 2 a2x a1 sin (2x)− 2x2(a1+2 a3) a2+8c1
−4 a1 cos (2x) + 8 a0+4 a1

3 Solution by Mathematica
Time used: 0.411 (sec). Leaf size: 58� �
DSolve[(a0+a1 Sin[x]^2)y'[x]+a2 x(a3+a1 Sin[x]^2)+a1 y[x] Sin[2 x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2a1a2x2 + 2a1a2x sin(2x) + a1a2 cos(2x)− 4a2a3x2 + 4c1
4(2a0− a1 cos(2x) + a1)
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15.7 problem 415
15.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 4051
15.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4053
15.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4057
15.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4061

Internal problem ID [3669]
Internal file name [OUTPUT/3162_Sunday_June_05_2022_08_54_17_AM_30227934/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 415.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

(x− ex) y′ + (1− ex) y = −x ex

15.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−1 + ex
x− ex

q(x) = x ex
−x+ ex

Hence the ode is

y′ − (−1 + ex) y
x− ex = x ex

−x+ ex
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The integrating factor µ is

µ = e
∫
−−1+ex

x−ex dx

= −x+ ex

The ode becomes

d
dx(µy) = (µ)

(
x ex

−x+ ex

)
d
dx((−x+ ex) y) = (−x+ ex)

(
x ex

−x+ ex

)
d((−x+ ex) y) = (x ex) dx

Integrating gives

(−x+ ex) y =
∫

x ex dx

(−x+ ex) y = (x− 1) ex + c1

Dividing both sides by the integrating factor µ = −x+ ex results in

y = (x− 1) ex
−x+ ex + c1

−x+ ex

which simplifies to

y = x ex − ex + c1
−x+ ex

Summary
The solution(s) found are the following

(1)y = x ex − ex + c1
−x+ ex
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Figure 620: Slope field plot

Verification of solutions

y = x ex − ex + c1
−x+ ex

Verified OK.

15.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x ex + exy − y

−x+ ex
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 739: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x− ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x−ex

dy

Which results in

S = (x− ex) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x ex + exy − y

−x+ ex

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −(−1 + ex) y
Sy = x− ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R− 1) eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− ex) y = −(x− 1) ex + c1

Which simplifies to

(x− ex) y = −(x− 1) ex + c1

Which gives

y = x ex − ex − c1
−x+ ex

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x ex+exy−y
−x+ex

dS
dR

= −R eR

R = x

S = (x− ex) y

Summary
The solution(s) found are the following

(1)y = x ex − ex − c1
−x+ ex
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Figure 621: Slope field plot

Verification of solutions

y = x ex − ex − c1
−x+ ex

Verified OK.

15.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x− ex) dy = (−x ex − (1− ex) y) dx
(x ex + (1− ex) y) dx+(x− ex) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x ex + (1− ex) y
N(x, y) = x− ex

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(x ex + (1− ex) y)

= 1− ex

And
∂N

∂x
= ∂

∂x
(x− ex)

= 1− ex
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x ex + (1− ex) y dx

(3)φ = (x− y − 1) ex + xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x− ex + f ′(y)

But equation (2) says that ∂φ
∂y

= x− ex. Therefore equation (4) becomes

(5)x− ex = x− ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (x− y − 1) ex + xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (x− y − 1) ex + xy
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The solution becomes

y = x ex − ex − c1
−x+ ex

Summary
The solution(s) found are the following

(1)y = x ex − ex − c1
−x+ ex

Figure 622: Slope field plot

Verification of solutions

y = x ex − ex − c1
−x+ ex

Verified OK.
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15.7.4 Maple step by step solution

Let’s solve
(x− ex) y′ + (1− ex) y = −x ex

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (−1+ex)y

−x+ex + x ex
−x+ex

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (−1+ex)y

−x+ex = x ex
−x+ex

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (−1+ex)y

−x+ex

)
= µ(x)x ex

−x+ex

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (−1+ex)y

−x+ex

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(−1+ex)

−x+ex

• Solve to find the integrating factor
µ(x) = −x+ ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)x ex
−x+ex dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)x ex
−x+ex dx+ c1

• Solve for y

y =
∫ µ(x)x ex

−x+ex dx+c1

µ(x)

• Substitute µ(x) = −x+ ex

y =
∫
x exdx+c1
−x+ex

• Evaluate the integrals on the rhs
y = (x−1)ex+c1

−x+ex

• Simplify
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y = x ex−ex+c1
−x+ex

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((x-exp(x))*diff(y(x),x)+x*exp(x)+(1-exp(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = x ex − ex + c1
−x+ ex

3 Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 25� �
DSolve[(x-Exp[x])y'[x]+x Exp[x]+(1-Exp[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x− 1) + c1
ex − x
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15.8 problem 416
15.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 4063
15.8.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4064
15.8.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 4066
15.8.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4069
15.8.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4072

Internal problem ID [3670]
Internal file name [OUTPUT/3163_Sunday_June_05_2022_08_54_19_AM_55110914/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 416.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x ln (x) + y = ax(ln (x) + 1)

15.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
ln (x)x

q(x) = a(ln (x) + 1)
ln (x)

Hence the ode is

y′ + y

ln (x)x = a(ln (x) + 1)
ln (x)
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The integrating factor µ is

µ = e
∫ 1

ln(x)xdx

= ln (x)

The ode becomes
d
dx(µy) = (µ)

(
a(ln (x) + 1)

ln (x)

)
d
dx(ln (x) y) = (ln (x))

(
a(ln (x) + 1)

ln (x)

)
d(ln (x) y) = (a(ln (x) + 1)) dx

Integrating gives

ln (x) y =
∫

a(ln (x) + 1) dx

ln (x) y = ax ln (x) + c1

Dividing both sides by the integrating factor µ = ln (x) results in

y = ax+ c1
ln (x)

Summary
The solution(s) found are the following

(1)y = ax+ c1
ln (x)

Verification of solutions

y = ax+ c1
ln (x)

Verified OK.

15.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x ln (x) + u(x)x = ax(ln (x) + 1)

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= (a− u) (ln (x) + 1)
ln (x)x
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Where f(x) = ln(x)+1
ln(x)x and g(u) = a− u. Integrating both sides gives

1
a− u

du = ln (x) + 1
ln (x)x dx∫ 1

a− u
du =

∫ ln (x) + 1
ln (x)x dx

− ln (a− u) = ln (x) + ln (ln (x)) + c2

Raising both side to exponential gives

1
a− u

= eln(x)+ln(ln(x))+c2

Which simplifies to

1
a− u

= c3eln(x)+ln(ln(x))

Which simplifies to

u(x) = (c3x ln (x) ec2a− 1) e−c2

c3x ln (x)

Therefore the solution y is

y = ux

= (c3x ln (x) ec2a− 1) e−c2

c3 ln (x)

Summary
The solution(s) found are the following

(1)y = (c3x ln (x) ec2a− 1) e−c2

c3 ln (x)
Verification of solutions

y = (c3x ln (x) ec2a− 1) e−c2

c3 ln (x)

Verified OK.
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15.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ax ln (x) + ax− y

x ln (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 742: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
ln (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
ln(x)

dy

Which results in

S = ln (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax ln (x) + ax− y

x ln (x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x
Sy = ln (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= a(ln (x) + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a(ln (R) + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)Ra+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y ln (x) = ax ln (x) + c1

Which simplifies to

y ln (x) = ax ln (x) + c1

Which gives

y = ax ln (x) + c1
ln (x)

Summary
The solution(s) found are the following

(1)y = ax ln (x) + c1
ln (x)

Verification of solutions

y = ax ln (x) + c1
ln (x)

Verified OK.
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15.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(ln (x)x) dy = (ax(ln (x) + 1)− y) dx
(−ax(ln (x) + 1) + y) dx+(ln (x)x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax(ln (x) + 1) + y

N(x, y) = ln (x)x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ax(ln (x) + 1) + y)

= 1

And
∂N

∂x
= ∂

∂x
(ln (x)x)

= ln (x) + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

ln (x)x((1)− (ln (x) + 1))

= −1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x
(−ax(ln (x) + 1) + y)

= −ax(ln (x) + 1) + y

x
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And

N = µN

= 1
x
(ln (x)x)

= ln (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−ax(ln (x) + 1) + y

x

)
+ (ln (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ax(ln (x) + 1) + y

x
dx

(3)φ = − ln (x) (ax− y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ln (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= ln (x). Therefore equation (4) becomes

(5)ln (x) = ln (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) (ax− y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) (ax− y)

The solution becomes

y = ax ln (x) + c1
ln (x)

Summary
The solution(s) found are the following

(1)y = ax ln (x) + c1
ln (x)

Verification of solutions

y = ax ln (x) + c1
ln (x)

Verified OK.

15.8.5 Maple step by step solution

Let’s solve
y′x ln (x) + y = ax(ln (x) + 1)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

ln(x)x + a(ln(x)+1)
ln(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

ln(x)x = a(ln(x)+1)
ln(x)
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• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

ln(x)x

)
= µ(x)a(ln(x)+1)

ln(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

ln(x)x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

ln(x)x

• Solve to find the integrating factor
µ(x) = ln (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)a(ln(x)+1)
ln(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)a(ln(x)+1)
ln(x) dx+ c1

• Solve for y

y =
∫ µ(x)a(ln(x)+1)

ln(x) dx+c1

µ(x)

• Substitute µ(x) = ln (x)

y =
∫
a(ln(x)+1)dx+c1

ln(x)

• Evaluate the integrals on the rhs
y = ax ln(x)+c1

ln(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)*x*ln(x) = a*x*(1+ln(x))-y(x),y(x), singsol=all)� �

y(x) = ax+ c1
ln (x)

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 16� �
DSolve[y'[x] x Log[x]==a x(1+Log[x])-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ax+ c1
log(x)
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15.9 problem 417
15.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4075
15.9.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4077
15.9.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4079
15.9.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 4080
15.9.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4084
15.9.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4088

Internal problem ID [3671]
Internal file name [OUTPUT/3164_Sunday_June_05_2022_08_54_21_AM_83669638/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 417.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yy′ = −x

15.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y

Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx
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∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c1

Which results in
y =

√
−x2 + 2c1

y = −
√

−x2 + 2c1

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c1
(2)y = −

√
−x2 + 2c1

Figure 623: Slope field plot
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Verification of solutions

y =
√

−x2 + 2c1

Verified OK.

y = −
√

−x2 + 2c1

Verified OK.

15.9.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x(u′(x)x+ u(x)) = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 1
ux

Where f(x) = − 1
x
and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = −1
x
dx

∫ 1
u2+1
u

du =
∫

−1
x
dx

ln (u2 + 1)
2 = − ln (x) + c2

Raising both side to exponential gives
√
u2 + 1 = e− ln(x)+c2

Which simplifies to
√
u2 + 1 = c3

x

Which simplifies to √
u (x)2 + 1 = c3ec2

x
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The solution is √
u (x)2 + 1 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3ec2
x√

y2 + x2

x2 = c3ec2
x

Summary
The solution(s) found are the following

(1)
√

y2 + x2

x2 = c3ec2
x

Figure 624: Slope field plot

Verification of solutions √
y2 + x2

x2 = c3ec2
x

Verified OK.
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15.9.3 Solving as differentialType ode

Writing the ode as

y′ = −x

y
(1)

Which becomes

(y) dy = (−x) dx (2)

But the RHS is complete differential because

(−x) dx = d

(
−x2

2

)
Hence (2) becomes

(y) dy = d

(
−x2

2

)
Integrating both sides gives gives these solutions

y =
√

−x2 + 2c1 + c1

y = −
√
−x2 + 2c1 + c1

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c1 + c1

(2)y = −
√
−x2 + 2c1 + c1
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Figure 625: Slope field plot

Verification of solutions

y =
√

−x2 + 2c1 + c1

Verified OK.

y = −
√
−x2 + 2c1 + c1

Verified OK.

15.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 745: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x

dx

Which results in

S = −x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x

y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

2 = y2

2 + c1

Which simplifies to

−x2

2 = y2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
y

dS
dR

= R

R = y

S = −x2

2

Summary
The solution(s) found are the following

(1)−x2

2 = y2

2 + c1
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Figure 626: Slope field plot

Verification of solutions

−x2

2 = y2

2 + c1

Verified OK.

15.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

4084



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−y) dy = (x) dx
(−x) dx+(−y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = −y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x
(−y)

= 0

4085



Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y. Therefore equation (4) becomes

(5)−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1

4086



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − y2

2

Summary
The solution(s) found are the following

(1)−x2

2 − y2

2 = c1

Figure 627: Slope field plot

Verification of solutions

−x2

2 − y2

2 = c1

Verified OK.
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15.9.6 Maple step by step solution

Let’s solve
yy′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
yy′dx =

∫
−xdx+ c1

• Evaluate integral
y2

2 = −x2

2 + c1

• Solve for y{
y =

√
−x2 + 2c1, y = −

√
−x2 + 2c1

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(y(x)*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) =
√
−x2 + c1

y(x) = −
√

−x2 + c1
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3 Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 39� �
DSolve[y[x] y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1
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15.10 problem 418
15.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4090
15.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4092
15.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4096
15.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4100

Internal problem ID [3672]
Internal file name [OUTPUT/3165_Sunday_June_05_2022_08_54_23_AM_67513079/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 418.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yy′ = −x ex2

15.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x ex2

y

Where f(x) = −x ex2 and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x ex2
dx

∫ 1
1
y

dy =
∫

−x ex2
dx

y2

2 = −ex2

2 + c1
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Which results in
y =

√
−ex2 + 2c1

y = −
√

−ex2 + 2c1

Summary
The solution(s) found are the following

(1)y =
√
−ex2 + 2c1

(2)y = −
√

−ex2 + 2c1

Figure 628: Slope field plot

Verification of solutions

y =
√
−ex2 + 2c1

Verified OK.

y = −
√

−ex2 + 2c1

Verified OK.
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15.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x ex2

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 748: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −e−x2

x
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− e−x2

x

dx

Which results in

S = −ex2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x ex2

y
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x ex2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−ex2

2 = y2

2 + c1

Which simplifies to

−ex2

2 = y2

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x ex2

y
dS
dR

= R

R = y

S = −ex2

2

Summary
The solution(s) found are the following

(1)−ex2

2 = y2

2 + c1
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Figure 629: Slope field plot

Verification of solutions

−ex2

2 = y2

2 + c1

Verified OK.

15.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−y) dy =
(
x ex2

)
dx(

−x ex2
)
dx+(−y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x ex2

N(x, y) = −y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x ex2

)
= 0

And
∂N

∂x
= ∂

∂x
(−y)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x ex2 dx

(3)φ = −ex2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y. Therefore equation (4) becomes

(5)−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −ex2

2 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −ex2

2 − y2

2

Summary
The solution(s) found are the following

(1)−ex2

2 − y2

2 = c1

Figure 630: Slope field plot

Verification of solutions

−ex2

2 − y2

2 = c1

Verified OK.
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15.10.4 Maple step by step solution

Let’s solve
yy′ = −x ex2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
yy′dx =

∫
−x ex2

dx+ c1

• Evaluate integral
y2

2 = − ex2

2 + c1

• Solve for y{
y =

√
−ex2 + 2c1, y = −

√
−ex2 + 2c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(y(x)*diff(y(x),x)+x*exp(x^2) = 0,y(x), singsol=all)� �

y(x) =
√
−ex2 + c1

y(x) = −
√
−ex2 + c1

4100



3 Solution by Mathematica
Time used: 1.743 (sec). Leaf size: 43� �
DSolve[y[x] y'[x]+x Exp[x^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−ex2 + 2c1
y(x) →

√
−ex2 + 2c1
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15.11 problem 419
Internal problem ID [3673]
Internal file name [OUTPUT/3166_Sunday_June_05_2022_08_54_25_AM_14271632/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 419.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class A`]]

Unable to solve or complete the solution.

yy′ + y = −x3

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �

4103



7 Solution by Maple� �
dsolve(y(x)*diff(y(x),x)+x^3+y(x) = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y[x] y'[x]+x^3+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved

4104



15.12 problem 420
15.12.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4105
15.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4106

Internal problem ID [3674]
Internal file name [OUTPUT/3167_Sunday_June_05_2022_08_54_27_AM_59510075/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 420.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

yy′ + yb = −ax

15.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x(u′(x)x+ u(x)) + u(x)xb = −ax

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −ub+ u2 + a

ux

Where f(x) = − 1
x
and g(u) = ub+u2+a

u
. Integrating both sides gives

1
ub+u2+a

u

du = −1
x
dx
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∫ 1
ub+u2+a

u

du =
∫

−1
x
dx

ln (ub+ u2 + a)
2 +

b arctanh
(

2u+b√
b2−4a

)
√
b2 − 4a

= − ln (x) + c2

The solution is

ln
(
u(x)2 + u(x) b+ a

)
2 +

b arctanh
(

2u(x)+b√
b2−4a

)
√
b2 − 4a

+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + by
x
+ a
)

2 +
b arctanh

( 2y
x
+b√

b2−4a

)
√
b2 − 4a

+ ln (x)− c2 = 0

ln
(

y2

x2 + by
x
+ a
)

2 +
b arctanh

(
bx+2y

x
√
b2−4a

)
√
b2 − 4a

+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + by
x
+ a
)

2 +
b arctanh

(
bx+2y

x
√
b2−4a

)
√
b2 − 4a

+ ln (x)− c2 = 0

Verification of solutions

ln
(

y2

x2 + by
x
+ a
)

2 +
b arctanh

(
bx+2y

x
√
b2−4a

)
√
b2 − 4a

+ ln (x)− c2 = 0

Verified OK.

15.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −ax+ by

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(ax+ by) (b3 − a2)

y
− (ax+ by)2 a3

y2
+ a(xa2 + ya3 + a1)

y

−
(
− b

y
+ ax+ by

y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x2a3 + 2abxya3 + b2y2a3 + a x2b2 − 2axya2 + 2axyb3 − a y2a3 − b y2a2 + b y2b3 + axb1 − aya1 − b2y
2

y2

= 0

Setting the numerator to zero gives

(6E)−a2x2a3 − 2abxya3 − b2y2a3 − a x2b2 + 2axya2 − 2axyb3
+ a y2a3 + b y2a2 − b y2b3 − axb1 + aya1 + b2y

2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−a2a3v
2
1 − 2aba3v1v2 − b2a3v

2
2 + 2aa2v1v2 + aa3v

2
2 − ab2v

2
1

− 2ab3v1v2 + ba2v
2
2 − bb3v

2
2 + aa1v2 − ab1v1 + b2v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(
−a2a3 − ab2

)
v21 + (−2aba3 + 2aa2 − 2ab3) v1v2 − ab1v1

+
(
−b2a3 + aa3 + ba2 − bb3 + b2

)
v22 + aa1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

aa1 = 0
−ab1 = 0

−a2a3 − ab2 = 0
−2aba3 + 2aa2 − 2ab3 = 0

−b2a3 + aa3 + ba2 − bb3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = ba3 + b3

a3 = a3

b1 = 0
b2 = −aa3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−ax+ by

y

)
(x)

= x2a+ bxy + y2

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2a+bxy+y2

y

dy

Which results in

S = ln (x2a+ bxy + y2)
2 +

bx arctanh
(

bx+2y√
b2x2−4x2a

)
√
b2x2 − 4x2a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −ax+ by

y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ax+ by

x2a+ bxy + y2

Sy =
y

x2a+ bxy + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (bxy + x2a+ y2)
2 +

b arctanh
(

bx+2y
x
√
b2−4a

)
√
b2 − 4a

= c1

Which simplifies to

ln (bxy + x2a+ y2)
2 +

b arctanh
(

bx+2y
x
√
b2−4a

)
√
b2 − 4a

= c1

Summary
The solution(s) found are the following

(1)ln (bxy + x2a+ y2)
2 +

b arctanh
(

bx+2y
x
√
b2−4a

)
√
b2 − 4a

= c1
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Verification of solutions

ln (bxy + x2a+ y2)
2 +

b arctanh
(

bx+2y
x
√
b2−4a

)
√
b2 − 4a

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 62� �
dsolve(y(x)*diff(y(x),x)+a*x+b*y(x) = 0,y(x), singsol=all)� �

y(x) = RootOf

_Z2 − e
RootOf

−4 e_Zcosh
(√

b2−4a
(
2c1+_Z+2 ln(x)

)
2b

)2

−b2+4a

x2


+ a

+ _Zb

x
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3 Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 74� �
DSolve[y[x] y'[x]+a x+b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

12 log
(
a+ by(x)

x
+ y(x)2

x2

)
−

b arctan
(

b+ 2y(x)
x√

4a−b2

)
√
4a− b2

= − log(x) + c1, y(x)
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15.13 problem 421
15.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4113
15.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4115
15.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4119
15.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4123

Internal problem ID [3675]
Internal file name [OUTPUT/3168_Sunday_June_05_2022_08_54_29_AM_90838381/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 421.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yy′ + x e−x(y + 1) = 0

15.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x e−x(y + 1)
y

Where f(x) = −x e−x and g(y) = y+1
y
. Integrating both sides gives

1
y+1
y

dy = −x e−x dx

∫ 1
y+1
y

dy =
∫

−x e−x dx

y − ln (y + 1) = (x+ 1) e−x + c1
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Which results in

y = e−
(
LambertW

(
−e−

(
c1e

x+x+ex+1
)
e−x

)
ex+c1ex+ex+x+1

)
e−x

− 1

Summary
The solution(s) found are the following

(1)y = e−
(
LambertW

(
−e−

(
c1e

x+x+ex+1
)
e−x

)
ex+c1ex+ex+x+1

)
e−x

− 1

Figure 631: Slope field plot

Verification of solutions

y = e−
(
LambertW

(
−e−

(
c1e

x+x+ex+1
)
e−x

)
ex+c1ex+ex+x+1

)
e−x

− 1

Verified OK.
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15.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x e−x(y + 1)
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 751: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −ex
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− ex
x

dx

Which results in

S = (x+ 1) e−x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x e−x(y + 1)
y
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x e−x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 1) e−x = y − ln (y + 1) + c1

Which simplifies to

(x+ 1) e−x = y − ln (y + 1) + c1

Which gives

y = −LambertW
(
−e(c1ex−ex−x−1)e−x

)
− 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x e−x(y+1)
y

dS
dR

= R
R+1

R = y

S = (x+ 1) e−x

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e(c1ex−ex−x−1)e−x

)
− 1
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Figure 632: Slope field plot

Verification of solutions

y = −LambertW
(
−e(c1ex−ex−x−1)e−x

)
− 1

Verified OK.

15.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− y

y + 1

)
dy =

(
x e−x

)
dx

(
−x e−x

)
dx+

(
− y

y + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x e−x

N(x, y) = − y

y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x e−x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− y

y + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x e−x dx

(3)φ = (x+ 1) e−x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − y
y+1 . Therefore equation (4) becomes

(5)− y

y + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − y

y + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− y

y + 1

)
dy

f(y) = −y + ln (y + 1) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x+ 1) e−x − y + ln (y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (x+ 1) e−x − y + ln (y + 1)

The solution becomes

y = −LambertW
(
−e(c1ex−ex−x−1)e−x

)
− 1

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e(c1ex−ex−x−1)e−x

)
− 1

Figure 633: Slope field plot
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Verification of solutions

y = −LambertW
(
−e(c1ex−ex−x−1)e−x

)
− 1

Verified OK.

15.13.4 Maple step by step solution

Let’s solve
yy′ + x e−x(y + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y
y+1 = −x e−x

• Integrate both sides with respect to x∫
y′y
y+1dx =

∫
−x e−xdx+ c1

• Evaluate integral
y − ln (y + 1) = (x+ 1) e−x + c1

• Solve for y

y = e−
LambertW

−e−
c1e

x+x+ex+1
ex

ex+c1e
x+ex+x+1

ex − 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve(y(x)*diff(y(x),x)+x*exp(-x)*(1+y(x)) = 0,y(x), singsol=all)� �

y(x) = −LambertW
(
−e(−x−1)e−x+c1−1

)
− 1

3 Solution by Mathematica
Time used: 4.963 (sec). Leaf size: 63� �
DSolve[y[x] y'[x]+x Exp[-x](1+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1−W
(
−e−e−x(x+(1+c1)ex+1)

)
y(x) → −1
y(x) → −W

(
−e−e−x(x+ex+1)

)
− 1
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15.14 problem 422
Internal problem ID [3676]
Internal file name [OUTPUT/3169_Sunday_June_05_2022_08_54_31_AM_15388809/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 422.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class A`]]

Unable to solve or complete the solution.

yy′ − g(x) y = −f(x)

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)+(diff(f(x), x))*y(x)/f(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)/x, y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(y(x)*diff(y(x),x)+f(x) = g(x)*y(x),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y[x] y'[x]+f[x]==g[x] y[x],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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15.15 problem 423
15.15.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4128
15.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4130
15.15.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 4134
15.15.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4137

Internal problem ID [3677]
Internal file name [OUTPUT/3170_Sunday_June_05_2022_08_54_33_AM_86224665/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 423.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

yy′ + y2 = −4x(x+ 1)

15.15.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x(u′(x)x+ u(x)) + u(x)2 x2 = −4x(x+ 1)

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= (x+ 1) (−u2 − 4)
xu
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Where f(x) = x+1
x

and g(u) = −u2−4
u

. Integrating both sides gives

1
−u2−4

u

du = x+ 1
x

dx

∫ 1
−u2−4

u

du =
∫

x+ 1
x

dx

− ln (u2 + 4)
2 = x+ ln (x) + c2

Raising both side to exponential gives

1√
u2 + 4

= ex+ln(x)+c2

Which simplifies to

1√
u2 + 4

= c3ex+ln(x)

Which simplifies to
1√

u (x)2 + 4
= c3exx ec2

The solution is
1√

u (x)2 + 4
= c3exx ec2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

1√
y2

x2 + 4
= c3exx ec2

1√
y2+4x2

x2

= c3ex+c2x

Summary
The solution(s) found are the following

(1)1√
y2+4x2

x2

= c3ex+c2x
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Figure 634: Slope field plot

Verification of solutions

1√
y2+4x2

x2

= c3ex+c2x

Verified OK.

15.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4x2 + y2 + 4x
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 754: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−2x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−2x

y

dy

Which results in

S = y2e2x
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x2 + y2 + 4x
y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y2e2x

Sy = e2xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −4 e2xx(x+ 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −4 e2RR(R + 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 e2RR2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e2xy2
2 = −2x2e2x + c1

Which simplifies to

e2xy2
2 = −2x2e2x + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x2+y2+4x
y

dS
dR

= −4 e2RR(R + 1)

R = x

S = y2e2x
2

Summary
The solution(s) found are the following

(1)e2xy2
2 = −2x2e2x + c1
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Figure 635: Slope field plot

Verification of solutions

e2xy2
2 = −2x2e2x + c1

Verified OK.

15.15.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −4x2 + y2 + 4x
y

This is a Bernoulli ODE.
y′ = −y − 4x2 − 4x1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
f1(x) = −4x2 − 4x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2 − 4x2 − 4x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)− 4x2 − 4x

w′ = −8x2 − 2w − 8x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
q(x) = −8x2 − 8x

Hence the ode is

w′(x) + 2w(x) = −8x2 − 8x
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The integrating factor µ is

µ = e
∫
2dx

= e2x

The ode becomes

d
dx(µw) = (µ)

(
−8x2 − 8x

)
d
dx
(
e2xw

)
=
(
e2x
) (

−8x2 − 8x
)

d
(
e2xw

)
=
(
−8 e2xx(x+ 1)

)
dx

Integrating gives

e2xw =
∫

−8 e2xx(x+ 1) dx

e2xw = −4x2e2x + c1

Dividing both sides by the integrating factor µ = e2x results in

w(x) = −4 e−2xx2e2x + c1e−2x

which simplifies to

w(x) = −4x2 + c1e−2x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −4x2 + c1e−2x

Solving for y gives

y(x) =
√
−4x2 + c1e−2x

y(x) = −
√

−4x2 + c1e−2x

Summary
The solution(s) found are the following

(1)y =
√
−4x2 + c1e−2x

(2)y = −
√
−4x2 + c1e−2x
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Figure 636: Slope field plot

Verification of solutions

y =
√

−4x2 + c1e−2x

Verified OK.

y = −
√
−4x2 + c1e−2x

Verified OK.

15.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y) dy =
(
−4x(x+ 1)− y2

)
dx(

4x(x+ 1) + y2
)
dx+(y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4x(x+ 1) + y2

N(x, y) = y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
4x(x+ 1) + y2

)
= 2y
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And
∂N

∂x
= ∂

∂x
(y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y
((2y)− (0))

= 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 dx

The result of integrating gives

µ = e2x

= e2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e2x
(
4x(x+ 1) + y2

)
= e2x

(
4x2 + y2 + 4x

)
And

N = µN

= e2x(y)
= e2xy

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

e2x
(
4x2 + y2 + 4x

))
+
(
e2xy

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
e2x
(
4x2 + y2 + 4x

)
dx

(3)φ = (4x2 + y2) e2x
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= e2xy. Therefore equation (4) becomes

(5)e2xy = e2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (4x2 + y2) e2x
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(4x2 + y2) e2x

2
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Summary
The solution(s) found are the following

(1)(y2 + 4x2) e2x
2 = c1

Figure 637: Slope field plot

Verification of solutions

(y2 + 4x2) e2x
2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(y(x)*diff(y(x),x)+4*(1+x)*x+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√
e−2xc1 − 4x2

y(x) = −
√
e−2xc1 − 4x2

3 Solution by Mathematica
Time used: 6.205 (sec). Leaf size: 47� �
DSolve[y[x] y'[x]+4(1+x)x+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−4x2 + c1e−2x

y(x) →
√

−4x2 + c1e−2x
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15.16 problem 424
15.16.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 4143
15.16.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 4146
15.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4149

Internal problem ID [3678]
Internal file name [OUTPUT/3171_Sunday_June_05_2022_08_54_36_AM_74166344/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 424.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

yy′ − by2 = ax

15.16.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b y2 + ax

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 756: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e2bx
y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

4144



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2bx
y

dy

Which results in

S = y2e−2bx

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b y2 + ax

y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y2b e−2bx

Sy = y e−2bx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−2bxax (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−2bRaR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(2bR + 1) e−2bRa

4b2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2e−2bx

2 = −(2bx+ 1) e−2bxa

4b2 + c1

Which simplifies to

y2e−2bx

2 = −(2bx+ 1) e−2bxa

4b2 + c1

Summary
The solution(s) found are the following

(1)y2e−2bx

2 = −(2bx+ 1) e−2bxa

4b2 + c1

Verification of solutions

y2e−2bx

2 = −(2bx+ 1) e−2bxa

4b2 + c1

Verified OK.

15.16.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= b y2 + ax

y

This is a Bernoulli ODE.
y′ = by + ax

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = b

f1(x) = ax

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = b y2 + ax (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = bw(x) + ax

w′ = 2ax+ 2bw (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2b
q(x) = 2ax
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Hence the ode is

w′(x)− 2bw(x) = 2ax

The integrating factor µ is

µ = e
∫
−2bdx

= e−2bx

The ode becomes
d
dx(µw) = (µ) (2ax)

d
dx
(
e−2bxw

)
=
(
e−2bx) (2ax)

d
(
e−2bxw

)
=
(
2 e−2bxax

)
dx

Integrating gives

e−2bxw =
∫

2 e−2bxax dx

e−2bxw = −(2bx+ 1) e−2bxa

2b2 + c1

Dividing both sides by the integrating factor µ = e−2bx results in

w(x) = −e2bx(2bx+ 1) e−2bxa

2b2 + c1e2bx

which simplifies to

w(x) = 2c1e2bxb2 − 2abx− a

2b2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = 2c1e2bxb2 − 2abx− a

2b2

Solving for y gives

y(x) =
√
4c1e2bxb2 − 4abx− 2a

2b

y(x) = −
√
4c1e2bxb2 − 4abx− 2a

2b
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Summary
The solution(s) found are the following

(1)y =
√
4c1e2bxb2 − 4abx− 2a

2b

(2)y = −
√
4c1e2bxb2 − 4abx− 2a

2b
Verification of solutions

y =
√
4c1e2bxb2 − 4abx− 2a

2b

Verified OK.

y = −
√
4c1e2bxb2 − 4abx− 2a

2b

Verified OK.

15.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y) dy =
(
b y2 + ax

)
dx(

−b y2 − ax
)
dx+(y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −b y2 − ax

N(x, y) = y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−b y2 − ax

)
= −2by

And
∂N

∂x
= ∂

∂x
(y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y
((−2by)− (0))

= −2b
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2b dx

The result of integrating gives

µ = e−2bx

= e−2bx

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−2bx(−b y2 − ax
)

= −e−2bx(b y2 + ax
)

And

N = µN

= e−2bx(y)
= y e−2bx

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−2bx(b y2 + ax
))

+
(
y e−2bx) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−2bx(b y2 + ax

)
dx

(3)φ = (2y2b2 + 2abx+ a) e−2bx

4b2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y e−2bx + f ′(y)

But equation (2) says that ∂φ
∂y

= y e−2bx. Therefore equation (4) becomes

(5)y e−2bx = y e−2bx + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2y2b2 + 2abx+ a) e−2bx

4b2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2y2b2 + 2abx+ a) e−2bx

4b2

Summary
The solution(s) found are the following

(1)(2b2y2 + 2abx+ a) e−2bx

4b2 = c1

Verification of solutions

(2b2y2 + 2abx+ a) e−2bx

4b2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 61� �
dsolve(y(x)*diff(y(x),x) = a*x+b*y(x)^2,y(x), singsol=all)� �

y(x) = −
√
4 e2bxc1b2 − 4bxa− 2a

2b

y(x) =
√
4 e2bxc1b2 − 4bxa− 2a

2b

3 Solution by Mathematica
Time used: 11.801 (sec). Leaf size: 77� �
DSolve[y[x] y'[x]==a x+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
√
a
(
bx+ 1

2

)
− b2c1e2bx

b

y(x) →
i
√
a
(
bx+ 1

2

)
− b2c1e2bx

b
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15.17 problem 425
15.17.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 4154
15.17.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 4157
15.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4160

Internal problem ID [3679]
Internal file name [OUTPUT/3172_Sunday_June_05_2022_08_54_39_AM_59030537/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 425.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

yy′ − ay2 = b cos (x+ c)

15.17.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b cos (x+ c) + a y2

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 758: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e2ax
y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2ax
y

dy

Which results in

S = y2e−2ax

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b cos (x+ c) + a y2

y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y2a e−2ax

Sy = y e−2ax

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−2axb cos (x+ c) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−2aRb cos (R + c)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1(4a2 + 1)− e−2aRb(2 cos (R + c) a− sin (R + c))
4a2 + 1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2e−2ax

2 = c1(4a2 + 1)− e−2axb(2 cos (x+ c) a− sin (x+ c))
4a2 + 1

Which simplifies to

y2e−2ax

2 = c1(4a2 + 1)− e−2axb(2 cos (x+ c) a− sin (x+ c))
4a2 + 1

Summary
The solution(s) found are the following

(1)y2e−2ax

2 = c1(4a2 + 1)− e−2axb(2 cos (x+ c) a− sin (x+ c))
4a2 + 1

Verification of solutions

y2e−2ax

2 = c1(4a2 + 1)− e−2axb(2 cos (x+ c) a− sin (x+ c))
4a2 + 1

Verified OK.

15.17.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= b cos (x+ c) + a y2

y

This is a Bernoulli ODE.
y′ = ay + b cos (x+ c) 1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = a

f1(x) = b cos (x+ c)
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = a y2 + b cos (x+ c) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = aw(x) + b cos (x+ c)

w′ = 2aw + 2b cos (x+ c) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2a
q(x) = 2b cos (x+ c)
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Hence the ode is

w′(x)− 2aw(x) = 2b cos (x+ c)

The integrating factor µ is

µ = e
∫
−2adx

= e−2ax

The ode becomes
d
dx(µw) = (µ) (2b cos (x+ c))

d
dx
(
e−2axw

)
=
(
e−2ax) (2b cos (x+ c))

d
(
e−2axw

)
=
(
2 e−2axb cos (x+ c)

)
dx

Integrating gives

e−2axw =
∫

2 e−2axb cos (x+ c) dx

e−2axw = 2b
(
−2a e−2ax cos (x+ c)

4a2 + 1 + e−2ax sin (x+ c)
4a2 + 1

)
+ c1

Dividing both sides by the integrating factor µ = e−2ax results in

w(x) = 2 e2axb
(
−2a e−2ax cos (x+ c)

4a2 + 1 + e−2ax sin (x+ c)
4a2 + 1

)
+ c1e2ax

which simplifies to

w(x) =
c1(4a2 + 1) e2ax − 4

(
cos (x+ c) a− sin(x+c)

2

)
b

4a2 + 1

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 =
c1(4a2 + 1) e2ax − 4

(
cos (x+ c) a− sin(x+c)

2

)
b

4a2 + 1
Solving for y gives

y(x) =

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
cos (x+ c) a− sin(x+c)

2

) (
a2 + 1

4

)
b

4a2 + 1

y(x) = −

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
cos (x+ c) a− sin(x+c)

2

) (
a2 + 1

4

)
b

4a2 + 1
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Summary
The solution(s) found are the following

(1)y =

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
cos (x+ c) a− sin(x+c)

2

) (
a2 + 1

4

)
b

4a2 + 1

(2)y = −

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
cos (x+ c) a− sin(x+c)

2

) (
a2 + 1

4

)
b

4a2 + 1
Verification of solutions

y =

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
cos (x+ c) a− sin(x+c)

2

) (
a2 + 1

4

)
b

4a2 + 1

Verified OK.

y = −

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
cos (x+ c) a− sin(x+c)

2

) (
a2 + 1

4

)
b

4a2 + 1

Verified OK.

15.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(y) dy =
(
b cos (x+ c) + a y2

)
dx(

−b cos (x+ c)− a y2
)
dx+(y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −b cos (x+ c)− a y2

N(x, y) = y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−b cos (x+ c)− a y2

)
= −2ya

And
∂N

∂x
= ∂

∂x
(y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y
((−2ya)− (0))

= −2a
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2adx

The result of integrating gives

µ = e−2ax

= e−2ax

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−2ax(−b cos (x+ c)− a y2
)

= −e−2ax(b cos (x+ c) + a y2
)

And

N = µN

= e−2ax(y)
= y e−2ax

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−2ax(b cos (x+ c) + a y2
))

+
(
y e−2ax) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−2ax(b cos (x+ c) + a y2

)
dx

(3)φ = (4y2a2 + 4b cos (x+ c) a− 2b sin (x+ c) + y2) e−2ax

8a2 + 2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (8a2y + 2y) e−2ax

8a2 + 2 + f ′(y)

= y e−2ax + f ′(y)

But equation (2) says that ∂φ
∂y

= y e−2ax. Therefore equation (4) becomes

(5)y e−2ax = y e−2ax + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (4y2a2 + 4b cos (x+ c) a− 2b sin (x+ c) + y2) e−2ax

8a2 + 2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(4y2a2 + 4b cos (x+ c) a− 2b sin (x+ c) + y2) e−2ax

8a2 + 2

Summary
The solution(s) found are the following

(1)(4y2a2 + 4b cos (x+ c) a− 2b sin (x+ c) + y2) e−2ax

8a2 + 2 = c1

Verification of solutions

(4y2a2 + 4b cos (x+ c) a− 2b sin (x+ c) + y2) e−2ax

8a2 + 2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 106� �
dsolve(y(x)*diff(y(x),x) = b*cos(x+c)+a*y(x)^2,y(x), singsol=all)� �

y(x) =

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
a2 + 1

4

)
b
(
a cos (x+ c)− sin(x+c)

2

)
4a2 + 1

y(x) = −

√
16
(
a2 + 1

4

)2
c1e2ax − 16

(
a2 + 1

4

)
b
(
a cos (x+ c)− sin(x+c)

2

)
4a2 + 1

3 Solution by Mathematica
Time used: 4.692 (sec). Leaf size: 106� �
DSolve[y[x] y'[x]== b Cos[x+c]+a y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

(4a2 + 1) c1e2ax − 4ab cos(c+ x) + 2b sin(c+ x)√
4a2 + 1

y(x) →
√

(4a2 + 1) c1e2ax − 4ab cos(c+ x) + 2b sin(c+ x)√
4a2 + 1
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15.18 problem 426
15.18.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 4165
15.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4166

Internal problem ID [3680]
Internal file name [OUTPUT/3173_Sunday_June_05_2022_08_54_42_AM_28406630/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 426.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′ − a1 y − a2 y2 = a0

15.18.1 Solving as quadrature ode

Integrating both sides gives ∫
y

a2 y2 + a1 y + a0dy =
∫

dx∫ y _a
_a2 a2+_a a1+a0d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y _a

_a2 a2+_a a1+a0d_a = x+ c1

Verification of solutions ∫ y _a
_a2 a2+_a a1+a0d_a = x+ c1

Verified OK.
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15.18.2 Maple step by step solution

Let’s solve
yy′ − a1y − a2y2 = a0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′

a0+a1y+a2y2 = 1

• Integrate both sides with respect to x∫
yy′

a0+a1y+a2y2dx =
∫
1dx+ c1

• Evaluate integral

ln
(
a0+a1y+a2y2

)
2a2 −

a1 arctan
(

2ya2+a1√
4a0a2−a12

)
a2
√

4a0a2−a12 = x+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.563 (sec). Leaf size: 222� �
dsolve(y(x)*diff(y(x),x) = a0+a1*y(x)+a2*y(x)^2,y(x), singsol=all)� �
y(x)

=
4 tan

(
RootOf

(
2c1 a2

√
4 a0 a2− a12 + 2x a2

√
4 a0 a2− a12 + 2

√
4 a0 a2− a12 ln (2)−

√
4 a0 a2− a12 ln

(
sec
(
_Z

)2(
4 a0 a2− a12

)
a2

)
+ 2_Z a1

))
a0 a2− tan

(
RootOf

(
2c1 a2

√
4 a0 a2− a12 + 2x a2

√
4 a0 a2− a12 + 2

√
4 a0 a2− a12 ln (2)−

√
4 a0 a2− a12 ln

(
sec
(
_Z

)2(
4 a0 a2− a12

)
a2

)
+ 2_Z a1

))
a12−

√
4 a0 a2− a12 a1

2 a2
√
4 a0 a2− a12

3 Solution by Mathematica
Time used: 0.385 (sec). Leaf size: 123� �
DSolve[y[x] y'[x]==a0+a1 y[x]+a2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x)→ InverseFunction


log(#1(#1a2+ a1) + a0)−

2a1 arctan
(

2#1a2+a1√
4a0a2−a12

)
√

4a0a2−a12

2a2 &

 [x+c1]

y(x) →
√
a12 − 4a0a2− a1

2a2

y(x) → −
√
a12 − 4a0a2+ a1

2a2
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15.19 problem 427
15.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4168
15.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4169
15.19.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 4172
15.19.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4175
15.19.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4178

Internal problem ID [3681]
Internal file name [OUTPUT/3174_Sunday_June_05_2022_08_54_44_AM_71293895/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 427.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yy′ − bxy2 = ax

15.19.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(b y2 + a)
y

Where f(x) = x and g(y) = b y2+a
y

. Integrating both sides gives

1
b y2+a

y

dy = x dx

∫ 1
b y2+a

y

dy =
∫

x dx
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ln (b y2 + a)
2b = x2

2 + c1

Raising both side to exponential gives

e
ln
(
b y2+a

)
2b = ex2

2 +c1

Which simplifies to (
b y2 + a

) 1
2b = c2e

x2
2

Summary
The solution(s) found are the following

(1)y = RootOf
(
−
(
_Z2b+ a

) 1
2b + c2e

x2
2 +c1

)
Verification of solutions

y = RootOf
(
−
(
_Z2b+ a

) 1
2b + c2e

x2
2 +c1

)
Verified OK.

15.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(b y2 + a)
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

4169



Table 761: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(b y2 + a)
y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

b y2 + a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2b+ a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2b+ a)
2b + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = ln (a+ by2)
2b + c1

Which simplifies to

x2

2 = ln (a+ by2)
2b + c1

Summary
The solution(s) found are the following

(1)x2

2 = ln (a+ by2)
2b + c1

Verification of solutions

x2

2 = ln (a+ by2)
2b + c1

Verified OK.

15.19.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x(b y2 + a)
y

This is a Bernoulli ODE.
y′ = bxy + ax

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = bx

f1(x) = ax

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = bx y2 + ax (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = bxw(x) + ax

w′ = 2bxw + 2ax (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2bx
q(x) = 2ax

4173



Hence the ode is

w′(x)− 2bxw(x) = 2ax

The integrating factor µ is

µ = e
∫
−2bxdx

= e−b x2

The ode becomes
d
dx(µw) = (µ) (2ax)

d
dx

(
e−b x2

w
)
=
(
e−b x2

)
(2ax)

d
(
e−b x2

w
)
=
(
2ax e−b x2

)
dx

Integrating gives

e−b x2
w =

∫
2ax e−b x2 dx

e−b x2
w = −a e−b x2

b
+ c1

Dividing both sides by the integrating factor µ = e−b x2 results in

w(x) = −eb x2
a e−b x2

b
+ c1eb x

2

which simplifies to

w(x) = c1eb x
2
b− a

b

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1eb x
2
b− a

b

Solving for y gives

y(x) =
√
−b (−c1eb x2b+ a)

b

y(x) = −
√

−b (−c1eb x2b+ a)
b

4174



Summary
The solution(s) found are the following

(1)y =
√
−b (−c1eb x2b+ a)

b

(2)y = −
√
−b (−c1eb x2b+ a)

b

Verification of solutions

y =
√

−b (−c1eb x2b+ a)
b

Verified OK.

y = −
√
−b (−c1eb x2b+ a)

b

Verified OK.

15.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

b y2 + a

)
dy = (x) dx

(−x) dx+
(

y

b y2 + a

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = y

b y2 + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
y

b y2 + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
b y2+a

. Therefore equation (4) becomes

(5)y

b y2 + a
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

b y2 + a

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

b y2 + a

)
dy

f(y) = ln (b y2 + a)
2b + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (b y2 + a)
2b + c1

4177



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (b y2 + a)
2b

Summary
The solution(s) found are the following

(1)−x2

2 + ln (a+ by2)
2b = c1

Verification of solutions

−x2

2 + ln (a+ by2)
2b = c1

Verified OK.

15.19.5 Maple step by step solution

Let’s solve
yy′ − bxy2 = ax

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′

a+by2
= x

• Integrate both sides with respect to x∫
yy′

a+by2
dx =

∫
xdx+ c1

• Evaluate integral
ln
(
a+by2

)
2b = x2

2 + c1

• Solve for yy =

√
b
(
−a+eb x2+2c1b

)
b

, y = −

√
b
(
−a+eb x2+2c1b

)
b
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 50� �
dsolve(y(x)*diff(y(x),x) = a*x+b*x*y(x)^2,y(x), singsol=all)� �

y(x) =
√

−b (−eb x2c1b+ a)
b

y(x) = −
√
−b (−eb x2c1b+ a)

b

3 Solution by Mathematica
Time used: 0.972 (sec). Leaf size: 98� �
DSolve[y[x] y'[x]==a x+b x y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−a+ eb(x2+2c1)

√
b

y(x) →
√
−a+ eb(x2+2c1)

√
b

y(x) → − i
√
a√
b

y(x) → i
√
a√
b
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15.20 problem 428
15.20.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 4180
15.20.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 4184
15.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4187

Internal problem ID [3682]
Internal file name [OUTPUT/3175_Sunday_June_05_2022_08_54_46_AM_87870062/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 428.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

yy′ + y2 cot (x) = csc (x)2

15.20.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2 cot (x)− csc (x)2

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 764: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
y sin (x)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
y sin(x)2

dy

Which results in

S = y2 sin (x)2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2 cot (x)− csc (x)2

y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2 sin (2x)
2

Sy = sin (x)2 y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2 sin (x)2

2 = x+ c1

Which simplifies to

y2 sin (x)2

2 = x+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2 cot(x)−csc(x)2
y

dS
dR

= 1

R = x

S = y2 sin (x)2

2

Summary
The solution(s) found are the following

(1)y2 sin (x)2

2 = x+ c1
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Figure 638: Slope field plot

Verification of solutions

y2 sin (x)2

2 = x+ c1

Verified OK.

15.20.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y2 cot (x)− csc (x)2

y

This is a Bernoulli ODE.

y′ = − cot (x) y + csc (x)2 1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − cot (x)
f1(x) = csc (x)2

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2 cot (x) + csc (x)2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = − cot (x)w(x) + csc (x)2

w′ = −2 cot (x)w + 2 csc (x)2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2 cot (x)
q(x) = 2 csc (x)2
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Hence the ode is

w′(x) + 2 cot (x)w(x) = 2 csc (x)2

The integrating factor µ is

µ = e
∫
2 cot(x)dx

= sin (x)2

The ode becomes
d
dx(µw) = (µ)

(
2 csc (x)2

)
d
dx
(
sin (x)2w

)
=
(
sin (x)2

) (
2 csc (x)2

)
d
(
sin (x)2w

)
= 2dx

Integrating gives

sin (x)2w =
∫

2 dx

sin (x)2w = 2x+ c1

Dividing both sides by the integrating factor µ = sin (x)2 results in

w(x) = 2 csc (x)2 x+ c1 csc (x)2

which simplifies to

w(x) = csc (x)2 (2x+ c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = csc (x)2 (2x+ c1)

Solving for y gives

y(x) = csc (x)
√
2x+ c1

y(x) = − csc (x)
√
2x+ c1

Summary
The solution(s) found are the following

(1)y = csc (x)
√
2x+ c1

(2)y = − csc (x)
√
2x+ c1
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Figure 639: Slope field plot

Verification of solutions

y = csc (x)
√
2x+ c1

Verified OK.

y = − csc (x)
√
2x+ c1

Verified OK.

15.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y) dy =
(
csc (x)2 − y2 cot (x)

)
dx(

y2 cot (x)− csc (x)2
)
dx+(y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2 cot (x)− csc (x)2

N(x, y) = y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2 cot (x)− csc (x)2

)
= 2y cot (x)
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And
∂N

∂x
= ∂

∂x
(y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y
((2y cot (x))− (0))

= 2 cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
2 cot(x) dx

The result of integrating gives

µ = e2 ln(sin(x))

= sin (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x)2
(
y2 cot (x)− csc (x)2

)
= −1 + y2 sin (2x)

2
And

N = µN

= sin (x)2 (y)
= sin (x)2 y

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−1 + y2 sin (2x)
2

)
+
(
sin (x)2 y

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 + y2 sin (2x)

2 dx

(3)φ = −x− y2 cos (2x)
4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −y cos (2x)

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x)2 y. Therefore equation (4) becomes

(5)sin (x)2 y = −y cos (2x)
2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y cos (2x)
2 + sin (x)2 y

= y

2

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (y
2

)
dy

f(y) = y2

4 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− y2 cos (2x)
4 + y2

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− y2 cos (2x)
4 + y2

4

Summary
The solution(s) found are the following

(1)−x− cos (2x) y2
4 + y2

4 = c1

Figure 640: Slope field plot

Verification of solutions

−x− cos (2x) y2
4 + y2

4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 28� �
dsolve(y(x)*diff(y(x),x) = csc(x)^2-y(x)^2*cot(x),y(x), singsol=all)� �

y(x) = csc (x)
√
2x+ c1

y(x) = − csc (x)
√
2x+ c1

3 Solution by Mathematica
Time used: 0.489 (sec). Leaf size: 36� �
DSolve[y[x] y'[x]==Csc[x]^2- y[x]^2 Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2x+ c1 csc(x)

y(x) →
√
2x+ c1 csc(x)
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15.21 problem 429
15.21.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 4193
15.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4194

Internal problem ID [3683]
Internal file name [OUTPUT/3176_Sunday_June_05_2022_08_54_50_AM_25505876/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 429.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′ −
√

y2 + a2 = 0

15.21.1 Solving as quadrature ode

Integrating both sides gives ∫
y√

a2 + y2
dy =

∫
dx

√
y2 + a2 = x+ c1

Summary
The solution(s) found are the following

(1)
√
y2 + a2 = x+ c1

Verification of solutions √
y2 + a2 = x+ c1

Verified OK.
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15.21.2 Maple step by step solution

Let’s solve
yy′ −

√
y2 + a2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′√
y2+a2

= 1

• Integrate both sides with respect to x∫
yy′√
y2+a2

dx =
∫
1dx+ c1

• Evaluate integral
√
y2 + a2 = x+ c1

• Solve for y{
y =

√
c21 + 2c1x− a2 + x2, y = −

√
c21 + 2c1x− a2 + x2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(y(x)*diff(y(x),x) = sqrt(y(x)^2+a^2),y(x), singsol=all)� �

x−
√

y (x)2 + a2 + c1 = 0
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3 Solution by Mathematica
Time used: 0.223 (sec). Leaf size: 61� �
DSolve[y[x] y'[x]==Sqrt[a^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−a2 + (x+ c1)2

y(x) →
√
−a2 + (x+ c1)2

y(x) → −ia
y(x) → ia
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15.22 problem 430
15.22.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 4196
15.22.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4197

Internal problem ID [3684]
Internal file name [OUTPUT/3177_Sunday_June_05_2022_08_54_51_AM_93100744/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 430.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′ −
√
y2 − a2 = 0

15.22.1 Solving as quadrature ode

Integrating both sides gives ∫
y√

−a2 + y2
dy =

∫
dx

−(a− y) (y + a)√
y2 − a2

= x+ c1

Summary
The solution(s) found are the following

(1)−(a− y) (y + a)√
y2 − a2

= x+ c1

Verification of solutions

−(a− y) (y + a)√
y2 − a2

= x+ c1

Verified OK.
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15.22.2 Maple step by step solution

Let’s solve
yy′ −

√
y2 − a2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y√
y2−a2

= 1

• Integrate both sides with respect to x∫
y′y√
y2−a2

dx =
∫
1dx+ c1

• Evaluate integral
√
y2 − a2 = x+ c1

• Solve for y{
y =

√
c21 + 2c1x+ a2 + x2, y = −

√
c21 + 2c1x+ a2 + x2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(y(x)*diff(y(x),x) = sqrt(y(x)^2-a^2),y(x), singsol=all)� �

x+ (−y(x) + a) (y(x) + a)√
y (x)2 − a2

+ c1 = 0
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3 Solution by Mathematica
Time used: 0.24 (sec). Leaf size: 51� �
DSolve[y[x] y'[x]==Sqrt[y[x]^2-a^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
a2 + (x+ c1)2

y(x) →
√

a2 + (x+ c1)2
y(x) → −a
y(x) → a
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15.23 problem 431
Internal problem ID [3685]
Internal file name [OUTPUT/3178_Sunday_June_05_2022_08_54_53_AM_33916403/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 431.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[NONE]

Unable to solve or complete the solution.

yy′ + f
(
y2 + x2) g(x) = −x

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, f(x^2+y^2)/y]� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve(y(x)*diff(y(x),x)+x+f(x^2+y(x)^2)*g(x) = 0,y(x), singsol=all)� �∫ y(x)

_b

_a
f (_a2 + x2)d_a+

∫
g(x) dx− c1 = 0

3 Solution by Mathematica
Time used: 0.254 (sec). Leaf size: 95� �
DSolve[y[x] y'[x]+x+f[x^2+y[x]^2] g[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[∫ y(x)

1

(
K[2]

f (x2 +K[2]2) −
∫ x

1
−2K[1]K[2]f ′(K[1]2 +K[2]2)

f (K[1]2 +K[2]2)2
dK[1]

)
dK[2]

+
∫ x

1

(
g(K[1]) + K[1]

f (K[1]2 + y(x)2)

)
dK[1] = c1, y(x)

]
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15.24 problem 432
15.24.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4201
15.24.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4204

Internal problem ID [3686]
Internal file name [OUTPUT/3179_Sunday_June_05_2022_08_54_55_AM_51272560/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 432.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(y + 1) y′ − y = x

15.24.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = Y (X) + y0 +X + x0

Y (X) + y0 + 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X) +X

Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= Y +X

Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y +X and N = Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 1 + 1

u

du
dX =

1 + 1
u(X) − u(X)

X

Or
d

dX
u(X)−

1 + 1
u(X) − u(X)

X
= 0

Or (
d

dX
u(X)

)
u(X)X + u(X)2 − u(X)− 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − u− 1
uX

4202



Where f(X) = − 1
X

and g(u) = u2−u−1
u

. Integrating both sides gives

1
u2−u−1

u

du = − 1
X

dX

∫ 1
u2−u−1

u

du =
∫

− 1
X

dX

ln (u2 − u− 1)
2 −

√
5 arctanh

(
(2u−1)

√
5

5

)
5 = − ln (X) + c2

The solution is

ln
(
u(X)2 − u(X)− 1

)
2 −

√
5 arctanh

(
(2u(X)−1)

√
5

5

)
5 + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

Y (X)2
X2 − Y (X)

X
− 1
)

2 −

√
5 arctanh

(( 2Y (X)
X

−1
)√

5
5

)
5 + ln (X)− c2 = 0

Using the solution for Y (X)

ln
(

Y (X)2
X2 − Y (X)

X
− 1
)

2 +

√
5 arctanh

(
(−2Y (X)+X)

√
5

5X

)
5 + ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 1

Then the solution in y becomes

ln
(

(y+1)2

(x−1)2 −
y+1
x−1 − 1

)
2 +

√
5 arctanh

(
(−2y−3+x)

√
5

5x−5

)
5 + ln (x− 1)− c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(

(y+1)2

(x−1)2 −
y+1
x−1 − 1

)
2 +

√
5 arctanh

(
(−2y−3+x)

√
5

5x−5

)
5 + ln (x− 1)− c2 = 0

Figure 641: Slope field plot

Verification of solutions

ln
(

(y+1)2

(x−1)2 −
y+1
x−1 − 1

)
2 +

√
5 arctanh

(
(−2y−3+x)

√
5

5x−5

)
5 + ln (x− 1)− c2 = 0

Verified OK.

15.24.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y + x

y + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(y + x) (b3 − a2)

y + 1 − (y + x)2 a3
(y + 1)2

− xa2 + ya3 + a1
y + 1

−
(

1
y + 1 − y + x

(y + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a3 − x2b2 + 2xya2 + 2xya3 − 2xyb3 + y2a2 + 2y2a3 − y2b2 − y2b3 + 2xa2 − xb1 + xb2 − xb3 + ya1 + ya2 + ya3 − 2yb2 + a1 + b1 − b2

(y + 1)2
= 0

Setting the numerator to zero gives

(6E)−x2a3 + x2b2 − 2xya2 − 2xya3 + 2xyb3 − y2a2 − 2y2a3 + y2b2 + y2b3
− 2xa2 + xb1 − xb2 + xb3 − ya1 − ya2 − ya3 + 2yb2 − a1 − b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−2a2v1v2 − a2v
2
2 − a3v

2
1 − 2a3v1v2 − 2a3v22 + b2v

2
1 + b2v

2
2 + 2b3v1v2 + b3v

2
2

− a1v2 − 2a2v1 − a2v2 − a3v2 + b1v1 − b2v1 + 2b2v2 + b3v1 − a1 − b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 + b2) v21 + (−2a2 − 2a3 + 2b3) v1v2 + (−2a2 + b1 − b2 + b3) v1
+ (−a2 − 2a3 + b2 + b3) v22 + (−a1 − a2 − a3 + 2b2) v2 − a1 − b1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 + b2 = 0
−a1 − b1 + b2 = 0

−2a2 − 2a3 + 2b3 = 0
−a1 − a2 − a3 + 2b2 = 0
−2a2 + b1 − b2 + b3 = 0
−a2 − 2a3 + b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 2b2 − b3

a2 = −b2 + b3

a3 = b2

b1 = −b2 + b3

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
y + x

y + 1

)
(x− 1)

= −x2 − xy + y2 + x+ 3y + 1
y + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−xy+y2+x+3y+1
y+1

dy

Which results in

S = ln (−x2 − xy + y2 + x+ 3y + 1)
2 −

2
(
x
2 −

1
2

)√
5 arctanh

(
(2y−x+3)

√
5

5x−5

)
5 (x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + x

y + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y + x

x2 + (y − 1)x− y2 − 3y − 1

Sy =
−y − 1

−y2 + (x− 3) y + x2 − x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + (−x+ 3) y − x2 + x+ 1)
2 +

√
5 arctanh

(
(−2y−3+x)

√
5

5x−5

)
5 = c1

Which simplifies to

ln (y2 + (−x+ 3) y − x2 + x+ 1)
2 +

√
5 arctanh

(
(−2y−3+x)

√
5

5x−5

)
5 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+x
y+1

dS
dR

= 0

R = x

S = ln (y2 + (−x+ 3) y − x2 + x+ 1)
2 +

√
5 arctanh

(
(−2y+x−3)

√
5

5x−5

)
5

Summary
The solution(s) found are the following

(1)ln (y2 + (−x+ 3) y − x2 + x+ 1)
2 +

√
5 arctanh

(
(−2y−3+x)

√
5

5x−5

)
5 = c1
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Figure 642: Slope field plot

Verification of solutions

ln (y2 + (−x+ 3) y − x2 + x+ 1)
2 +

√
5 arctanh

(
(−2y−3+x)

√
5

5x−5

)
5 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 1.281 (sec). Leaf size: 66� �
dsolve((1+y(x))*diff(y(x),x) = x+y(x),y(x), singsol=all)� �
−
ln
(

y(x)2+(−x+3)y(x)−x2+x+1
(x−1)2

)
2 −

√
5 arctanh

(
(−2y(x)−3+x)

√
5

5x−5

)
5 − ln (x− 1)− c1 = 0

3 Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 71� �
DSolve[(1+y[x])y'[x]==x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve

1
2 log

(
x2 − y(x)2 + (x− 3)y(x)− x− 1

(x− 1)2

)

+ log(1− x) =
arctanh

(
y(x)+2x−1√
5(y(x)+1)

)
√
5

+ c1, y(x)



4211



15.25 problem 433
15.25.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4212
15.25.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4214
15.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4218
15.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4222

Internal problem ID [3687]
Internal file name [OUTPUT/3180_Sunday_June_05_2022_08_57_51_AM_35691822/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 433.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(y + 1) y′ − x2(1− y) = 0

15.25.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x2(y − 1)
y + 1

Where f(x) = −x2 and g(y) = y−1
y+1 . Integrating both sides gives

1
y−1
y+1

dy = −x2 dx

∫ 1
y−1
y+1

dy =
∫

−x2 dx

y + 2 ln (y − 1) = −x3

3 + c1
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Which results in

y = 2LambertW
(
e−x3

6 + c1
2 − 1

2

2

)
+ 1

Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = 2LambertW
(
e−x3

6 + c1
2 − 1

2

2

)
+ 1

gives

y = 2LambertW
(
c1e−

1
2−

x3
6

2

)
+ 1

Summary
The solution(s) found are the following

(1)y = 2LambertW
(
c1e−

1
2−

x3
6

2

)
+ 1

Figure 643: Slope field plot
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Verification of solutions

y = 2LambertW
(
c1e−

1
2−

x3
6

2

)
+ 1

Verified OK.

15.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2(y − 1)
y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 768: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = − 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x2

dx

Which results in

S = −x3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2(y − 1)
y + 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y + 1

y − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R + 1

R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + 2 ln (R− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x3

3 = y + 2 ln (y − 1) + c1

Which simplifies to

−x3

3 = y + 2 ln (y − 1) + c1

Which gives

y = 2LambertW
(
e−x3

6 − c1
2 − 1

2

2

)
+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2(y−1)
y+1

dS
dR

= R+1
R−1

R = y

S = −x3

3
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Summary
The solution(s) found are the following

(1)y = 2LambertW
(
e−x3

6 − c1
2 − 1

2

2

)
+ 1

Figure 644: Slope field plot

Verification of solutions

y = 2LambertW
(
e−x3

6 − c1
2 − 1

2

2

)
+ 1

Verified OK.

15.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y + 1
y − 1

)
dy =

(
x2) dx

(
−x2) dx+(−y + 1

y − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = −y + 1
y − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2)

= 0

And
∂N

∂x
= ∂

∂x

(
−y + 1
y − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y+1
y−1 . Therefore equation (4) becomes

(5)−y + 1
y − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y + 1
y − 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−y − 1
y − 1

)
dy

f(y) = −y − 2 ln (y − 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 − y − 2 ln (y − 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 − y − 2 ln (y − 1)

The solution becomes

y = 2LambertW
(
e−x3

6 − c1
2 − 1

2

2

)
+ 1

Summary
The solution(s) found are the following

(1)y = 2LambertW
(
e−x3

6 − c1
2 − 1

2

2

)
+ 1
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Figure 645: Slope field plot

Verification of solutions

y = 2LambertW
(
e−x3

6 − c1
2 − 1

2

2

)
+ 1

Verified OK.

15.25.4 Maple step by step solution

Let’s solve
(y + 1) y′ − x2(1− y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y+1)
1−y

= x2

• Integrate both sides with respect to x∫ y′(y+1)
1−y

dx =
∫
x2dx+ c1
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• Evaluate integral
−y − 2 ln (y − 1) = x3

3 + c1

• Solve for y

y = 2LambertW
(

e−
x3
6 − c1

2 − 1
2

2

)
+ 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve((1+y(x))*diff(y(x),x) = x^2*(1-y(x)),y(x), singsol=all)� �

y(x) = 2LambertW
(
c1e−

x3
6 − 1

2

2

)
+ 1

3 Solution by Mathematica
Time used: 30.295 (sec). Leaf size: 66� �
DSolve[(1+y[x])y'[x]==x^2(1-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 + 2W
(
−1
2

√
e−

x3
3 −1+c1

)

y(x) → 1 + 2W
(
1
2

√
e−

x3
3 −1+c1

)
y(x) → 1
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15.26 problem 434
15.26.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4224
15.26.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4226
15.26.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4228
15.26.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4233
15.26.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4237

Internal problem ID [3688]
Internal file name [OUTPUT/3181_Sunday_June_05_2022_08_57_54_AM_94395859/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 434.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(y + x) y′ + y = 0

15.26.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x+ x) (u′(x)x+ u(x)) + u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u+ 2)
x (u+ 1)
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Where f(x) = − 1
x
and g(u) = (u+2)u

u+1 . Integrating both sides gives

1
(u+2)u
u+1

du = −1
x
dx

∫ 1
(u+2)u
u+1

du =
∫

−1
x
dx

ln (u(u+ 2))
2 = − ln (x) + c2

Raising both side to exponential gives√
u (u+ 2) = e− ln(x)+c2

Which simplifies to √
u (u+ 2) = c3

x

Which simplifies to √
u (x) (u (x) + 2) = c3ec2

x

The solution is √
u (x) (u (x) + 2) = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y
(
y
x
+ 2
)

x
= c3ec2

x√
y (y + 2x)

x2 = c3ec2
x

Summary
The solution(s) found are the following

(1)
√

y (y + 2x)
x2 = c3ec2

x
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Figure 646: Slope field plot

Verification of solutions √
y (y + 2x)

x2 = c3ec2
x

Verified OK.

15.26.2 Solving as differentialType ode

Writing the ode as

y′ = − y

y + x
(1)

Which becomes

(y) dy = (−x) dy + (−y) dx (2)

But the RHS is complete differential because

(−x) dy + (−y) dx = d(−xy)

Hence (2) becomes

(y) dy = d(−xy)
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Integrating both sides gives gives these solutions

y = −x+
√

x2 + 2c1 + c1

y = −x−
√

x2 + 2c1 + c1

Summary
The solution(s) found are the following

(1)y = −x+
√

x2 + 2c1 + c1

(2)y = −x−
√

x2 + 2c1 + c1

Figure 647: Slope field plot

Verification of solutions

y = −x+
√

x2 + 2c1 + c1

Verified OK.

y = −x−
√

x2 + 2c1 + c1

Verified OK.
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15.26.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

y + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
y + x

− y2a3

(y + x)2
− y(xa2 + ya3 + a1)

(y + x)2

−
(
− 1
y + x

+ y

(y + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2b2 + 2xyb2 + y2a2 − 2y2a3 + y2b2 − y2b3 + xb1 − ya1

(y + x)2
= 0

Setting the numerator to zero gives

(6E)2x2b2 + 2xyb2 + y2a2 − 2y2a3 + y2b2 − y2b3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
2 − 2a3v22 + 2b2v21 + 2b2v1v2 + b2v

2
2 − b3v

2
2 − a1v2 + b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21 + 2b2v1v2 + b1v1 + (a2 − 2a3 + b2 − b3) v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
2b2 = 0

a2 − 2a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2a3 + b3

a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

y + x

)
(x)

= 2xy + y2

y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2xy+y2

y+x

dy

Which results in

S = ln (y(2x+ y))
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

y + x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x+ y

Sy =
y + x

y (2x+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
2 + ln (y + 2x)

2 = c1

Which simplifies to

ln (y)
2 + ln (y + 2x)

2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
y+x

dS
dR

= 0

R = x

S = ln (y)
2 + ln (2x+ y)

2

Summary
The solution(s) found are the following

(1)ln (y)
2 + ln (y + 2x)

2 = c1
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Figure 648: Slope field plot

Verification of solutions

ln (y)
2 + ln (y + 2x)

2 = c1

Verified OK.

15.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y + x) dy = (−y) dx
(y) dx+(y + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = y + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x
(y + x)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y dx

(3)φ = xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= y + x. Therefore equation (4) becomes

(5)y + x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy + 1
2y

2 + c1

4235



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy + 1
2y

2

Summary
The solution(s) found are the following

(1)yx+ y2

2 = c1

Figure 649: Slope field plot

Verification of solutions

yx+ y2

2 = c1

Verified OK.
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15.26.5 Maple step by step solution

Let’s solve
(y + x) y′ + y = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
ydx+ f1(y)

• Evaluate integral
F (x, y) = xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y + x = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y

• Solve for f1(y)

f1(y) = y2

2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = xy + 1
2y

2

• Substitute F (x, y) into the solution of the ODE
xy + 1

2y
2 = c1

• Solve for y{
y = −x−

√
x2 + 2c1, y = −x+

√
x2 + 2c1

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve((x+y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = −x−
√

x2 + 2c1
y(x) = −x+

√
x2 + 2c1

3 Solution by Mathematica
Time used: 0.463 (sec). Leaf size: 84� �
DSolve[(x+y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
x2 + e2c1

y(x) → −x+
√
x2 + e2c1

y(x) → 0
y(x) → −

√
x2 − x

y(x) →
√
x2 − x
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15.27 problem 435
15.27.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4239
15.27.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4241
15.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4246

Internal problem ID [3689]
Internal file name [OUTPUT/3182_Sunday_June_05_2022_08_57_58_AM_89037712/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 435.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(−y + x) y′ − y = 0

15.27.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(−u(x)x+ x) (u′(x)x+ u(x))− u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2

(u− 1)x
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Where f(x) = − 1
x
and g(u) = u2

u−1 . Integrating both sides gives

1
u2

u−1
du = −1

x
dx

∫ 1
u2

u−1
du =

∫
−1
x
dx

1
u
+ ln (u) = − ln (x) + c2

The solution is
1

u (x) + ln (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

x

y
+ ln

(y
x

)
+ ln (x)− c2 = 0

x

y
+ ln

(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)x

y
+ ln

(y
x

)
+ ln (x)− c2 = 0

4240



Figure 650: Slope field plot

Verification of solutions
x

y
+ ln

(y
x

)
+ ln (x)− c2 = 0

Verified OK.

15.27.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

y − x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
y − x

− y2a3

(y − x)2
+ y(xa2 + ya3 + a1)

(y − x)2

−
(
− 1
y − x

+ y

(y − x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2xyb2 − y2a2 − y2b2 + y2b3 + xb1 − ya1

(−y + x)2
= 0

Setting the numerator to zero gives

(6E)−2xyb2 + y2a2 + y2b2 − y2b3 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
2 − 2b2v1v2 + b2v

2
2 − b3v

2
2 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−2b2v1v2 − b1v1 + (a2 + b2 − b3) v22 + a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−b1 = 0
−2b2 = 0

a2 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

y − x

)
(x)

= − y2

−y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y2

−y+x

dy

Which results in

S = x

y
+ ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

y − x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y

Sy =
y − x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y ln (y) + x

y
= c1

Which simplifies to
y ln (y) + x

y
= c1

Which gives

y = eLambertW
(
−x e−c1

)
+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
y−x

dS
dR

= 0

R = x

S = ln (y) y + x

y

Summary
The solution(s) found are the following

(1)y = eLambertW
(
−x e−c1

)
+c1
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Figure 651: Slope field plot

Verification of solutions

y = eLambertW
(
−x e−c1

)
+c1

Verified OK.

15.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−y + x) dy = (y) dx
(−y) dx+(−y + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = −y + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y)

= −1

And
∂N

∂x
= ∂

∂x
(−y + x)

= 1

4247



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y + x
((−1)− (1))

= − 2
−y + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1

y
((1)− (−1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y)

= −1
y

And

N = µN

= 1
y2

(−y + x)

= −y + x

y2
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−1
y

)
+
(
−y + x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
y
dx

(3)φ = −x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y+x
y2

. Therefore equation (4) becomes

(5)−y + x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

4249



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

y
− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

y
− ln (y)

The solution becomes
y = eLambertW(−ec1x)−c1

Summary
The solution(s) found are the following

(1)y = eLambertW(−ec1x)−c1
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Figure 652: Slope field plot

Verification of solutions

y = eLambertW(−ec1x)−c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve((x-y(x))*diff(y(x),x) = y(x),y(x), singsol=all)� �

y(x) = − x

LambertW (−x e−c1)

3 Solution by Mathematica
Time used: 4.105 (sec). Leaf size: 25� �
DSolve[(x-y[x])y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W (−e−c1x)
y(x) → 0
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15.28 problem 436
15.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4253
15.28.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4255
15.28.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4260

Internal problem ID [3690]
Internal file name [OUTPUT/3183_Sunday_June_05_2022_08_58_01_AM_55577592/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 436.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(y + x) y′ − y = −x

15.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x+ x) (u′(x)x+ u(x))− u(x)x = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
x (u+ 1)
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Where f(x) = − 1
x
and g(u) = u2+1

u+1 . Integrating both sides gives

1
u2+1
u+1

du = −1
x
dx

∫ 1
u2+1
u+1

du =
∫

−1
x
dx

ln (u2 + 1)
2 + arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 + arctan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0
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Figure 653: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

15.28.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y − x

y + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
(y − x) (b3 − a2)

y + x
− (y − x)2 a3

(y + x)2
−
(
− 1
y + x

− y − x

(y + x)2
)
(xa2+ya3+a1)

−
(

1
y + x

− y − x

(y + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 − x2b2 − x2b3 + 2xya2 + 2xya3 + 2xyb2 − 2xyb3 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 + 2ya1
(y + x)2

= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 − x2b2 − x2b3 + 2xya2 + 2xya3 + 2xyb2
− 2xyb3 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 + 2a2v1v2 − a2v

2
2 − a3v

2
1 + 2a3v1v2 + a3v

2
2 − b2v

2
1

+ 2b2v1v2 + b2v
2
2 − b3v

2
1 − 2b3v1v2 + b3v

2
2 + 2a1v2 − 2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(a2 − a3 − b2 − b3) v21 + (2a2 + 2a3 + 2b2 − 2b3) v1v2
− 2b1v1 + (−a2 + a3 + b2 + b3) v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0

−a2 + a3 + b2 + b3 = 0
a2 − a3 − b2 − b3 = 0

2a2 + 2a3 + 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y − x

y + x

)
(x)

= x2 + y2

y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+y2

y+x

dy

Which results in

S = ln (x2 + y2)
2 + arctan

(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y − x

y + x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y + x

x2 + y2

Sy =
y + x

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2)
2 + arctan

(y
x

)
= c1

Which simplifies to

ln (y2 + x2)
2 + arctan

(y
x

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y−x
y+x

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 + arctan

(y
x

)
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Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 + arctan

(y
x

)
= c1

Figure 654: Slope field plot

Verification of solutions

ln (y2 + x2)
2 + arctan

(y
x

)
= c1

Verified OK.

15.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y + x) dy = (y − x) dx
(−y + x) dx+(y + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y + x

N(x, y) = y + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y + x)

= −1
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And
∂N

∂x
= ∂

∂x
(y + x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = −y + x and N = y + x by this integrating factor the
ode becomes exact. The new M,N are

M = −y + x

y2 + x2

N = y + x

y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y + x

x2 + y2

)
dy =

(
−−y + x

x2 + y2

)
dx(

−y + x

x2 + y2

)
dx+

(
y + x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y + x

x2 + y2

N(x, y) = y + x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y + x

x2 + y2

)
= −x2 − 2xy + y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
y + x

x2 + y2

)
= −x2 − 2xy + y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y + x

x2 + y2
dx

(3)φ = ln (x2 + y2)
2 − arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
+ x

y2
(

x2

y2
+ 1
) + f ′(y)

= y + x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y+x
x2+y2

. Therefore equation (4) becomes

(5)y + x

x2 + y2
= y + x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x2 + y2)
2 − arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + y2)

2 − arctan
(
x

y

)

4264



Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 − arctan

(
x

y

)
= c1

Figure 655: Slope field plot

Verification of solutions

ln (y2 + x2)
2 − arctan

(
x

y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve((x+y(x))*diff(y(x),x)+x-y(x) = 0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 34� �
DSolve[(x+y[x])y'[x]+(x-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(
y(x)
x

)
+ 1

2 log
(
y(x)2
x2 + 1

)
= − log(x) + c1, y(x)

]
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15.29 problem 437
15.29.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4267
15.29.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4269
15.29.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4271
15.29.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4276
15.29.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4280

Internal problem ID [3691]
Internal file name [OUTPUT/3184_Sunday_June_05_2022_08_58_05_AM_94236722/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 437.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(y + x) y′ + y = x

15.29.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x+ x) (u′(x)x+ u(x)) + u(x)x = x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 2u− 1
x (u+ 1)
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Where f(x) = − 1
x
and g(u) = u2+2u−1

u+1 . Integrating both sides gives

1
u2+2u−1

u+1
du = −1

x
dx

∫ 1
u2+2u−1

u+1
du =

∫
−1
x
dx

ln (u2 + 2u− 1)
2 = − ln (x) + c2

Raising both side to exponential gives
√
u2 + 2u− 1 = e− ln(x)+c2

Which simplifies to
√
u2 + 2u− 1 = c3

x

Which simplifies to √
u (x)2 + 2u (x)− 1 = c3ec2

x

The solution is √
u (x)2 + 2u (x)− 1 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 2y
x

− 1 = c3ec2
x√

y2 + 2yx− x2

x2 = c3ec2
x

Summary
The solution(s) found are the following

(1)
√

y2 + 2yx− x2

x2 = c3ec2
x
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Figure 656: Slope field plot

Verification of solutions √
y2 + 2yx− x2

x2 = c3ec2
x

Verified OK.

15.29.2 Solving as differentialType ode

Writing the ode as

y′ = −y + x

y + x
(1)

Which becomes

(y) dy = (−x) dy + (−y + x) dx (2)

But the RHS is complete differential because

(−x) dy + (−y + x) dx = d

(
1
2x

2 − xy

)
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Hence (2) becomes

(y) dy = d

(
1
2x

2 − xy

)
Integrating both sides gives gives these solutions

y = −x+
√

2x2 + 2c1 + c1

y = −x−
√

2x2 + 2c1 + c1

Summary
The solution(s) found are the following

(1)y = −x+
√

2x2 + 2c1 + c1

(2)y = −x−
√

2x2 + 2c1 + c1

Figure 657: Slope field plot

Verification of solutions

y = −x+
√

2x2 + 2c1 + c1

Verified OK.

y = −x−
√

2x2 + 2c1 + c1

Verified OK.
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15.29.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y − x

y + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(y − x) (b3 − a2)

y + x
− (y − x)2 a3

(y + x)2
−
(

1
y + x

+ y − x

(y + x)2
)
(xa2 + ya3 + a1)

−
(
− 1
y + x

+ y − x

(y + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 − 3x2b2 − x2b3 + 2xya2 − 2xya3 − 2xyb2 − 2xyb3 − y2a2 + 3y2a3 − y2b2 + y2b3 − 2xb1 + 2ya1
(y + x)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 + 3x2b2 + x2b3 − 2xya2 + 2xya3 + 2xyb2
+ 2xyb3 + y2a2 − 3y2a3 + y2b2 − y2b3 + 2xb1 − 2ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 − 2a2v1v2 + a2v

2
2 − a3v

2
1 + 2a3v1v2 − 3a3v22 + 3b2v21

+ 2b2v1v2 + b2v
2
2 + b3v

2
1 + 2b3v1v2 − b3v

2
2 − 2a1v2 + 2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + 3b2 + b3) v21 + (−2a2 + 2a3 + 2b2 + 2b3) v1v2
+ 2b1v1 + (a2 − 3a3 + b2 − b3) v22 − 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2b1 = 0

−2a2 + 2a3 + 2b2 + 2b3 = 0
−a2 − a3 + 3b2 + b3 = 0
a2 − 3a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b2 + b3

a3 = b2

b1 = 0
b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y − x

y + x

)
(x)

= −x2 + 2xy + y2

y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+2xy+y2

y+x

dy

Which results in

S = ln (−x2 + 2xy + y2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y − x

y + x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y + x

x2 − 2xy − y2

Sy =
−y − x

x2 − 2xy − y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + 2yx− x2)
2 = c1

Which simplifies to

ln (y2 + 2yx− x2)
2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y−x
y+x

dS
dR

= 0

R = x

S = ln (−x2 + 2xy + y2)
2

Summary
The solution(s) found are the following

(1)ln (y2 + 2yx− x2)
2 = c1
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Figure 658: Slope field plot

Verification of solutions

ln (y2 + 2yx− x2)
2 = c1

Verified OK.

15.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y + x) dy = (−y + x) dx
(y − x) dx+(y + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − x

N(x, y) = y + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − x)

= 1

And
∂N

∂x
= ∂

∂x
(y + x)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y − x dx

(3)φ = −x(x− 2y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= y + x. Therefore equation (4) becomes

(5)y + x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x− 2y)
2 + y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x− 2y)
2 + y2

2

Summary
The solution(s) found are the following

(1)−x(x− 2y)
2 + y2

2 = c1

Figure 659: Slope field plot

Verification of solutions

−x(x− 2y)
2 + y2

2 = c1

Verified OK.
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15.29.5 Maple step by step solution

Let’s solve
(y + x) y′ + y = x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y − x) dx+ f1(y)

• Evaluate integral
F (x, y) = xy − x2

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y + x = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y

• Solve for f1(y)

f1(y) = y2

2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = xy − 1
2x

2 + 1
2y

2

• Substitute F (x, y) into the solution of the ODE
xy − 1

2x
2 + 1

2y
2 = c1

• Solve for y{
y = −x−

√
2x2 + 2c1, y = −x+

√
2x2 + 2c1

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 51� �
dsolve((x+y(x))*diff(y(x),x) = x-y(x),y(x), singsol=all)� �

y(x) = −c1x−
√
2c21x2 + 1

c1

y(x) = −c1x+
√
2c21x2 + 1

c1
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3 Solution by Mathematica
Time used: 0.488 (sec). Leaf size: 94� �
DSolve[(x+y[x])y'[x]==x-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
2x2 + e2c1

y(x) → −x+
√
2x2 + e2c1

y(x) → −
√
2
√
x2 − x

y(x) →
√
2
√
x2 − x
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15.30 problem 438
15.30.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 4283
15.30.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4285
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15.30.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4293

Internal problem ID [3692]
Internal file name [OUTPUT/3185_Sunday_June_05_2022_08_58_09_AM_42749315/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 438.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

−y′ − y = x− 1

15.30.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = 1− x

Hence the ode is

y′ + y = 1− x

The integrating factor µ is

µ = e
∫
1dx

= ex
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The ode becomes
d
dx(µy) = (µ) (1− x)
d
dx(e

xy) = (ex) (1− x)

d(exy) = (−(x− 1) ex) dx

Integrating gives

exy =
∫

−(x− 1) ex dx

exy = −(x− 2) ex + c1

Dividing both sides by the integrating factor µ = ex results in

y = −e−x(x− 2) ex + c1e−x

which simplifies to

y = −x+ 2 + c1e−x

Summary
The solution(s) found are the following

(1)y = −x+ 2 + c1e−x

Figure 660: Slope field plot
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Verification of solutions

y = −x+ 2 + c1e−x

Verified OK.

15.30.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y − x+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 773: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x
dy

Which results in

S = exy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y − x+ 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exy
Sy = ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (1− x) ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (1−R) eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R− 2) eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy = −(x− 2) ex + c1

Which simplifies to

(x+ y − 2) ex − c1 = 0

Which gives

y = −(x ex − 2 ex − c1) e−x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y − x+ 1 dS
dR

= (1−R) eR

R = x

S = exy

Summary
The solution(s) found are the following

(1)y = −(x ex − 2 ex − c1) e−x
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Figure 661: Slope field plot

Verification of solutions

y = −(x ex − 2 ex − c1) e−x

Verified OK.

15.30.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−1) dy = (x− 1 + y) dx
(−y − x+ 1) dx+(−1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y − x+ 1
N(x, y) = −1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y − x+ 1)

= −1

And
∂N

∂x
= ∂

∂x
(−1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= −1((−1)− (0))
= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex(−y − x+ 1)
= −(x− 1 + y) ex

And

N = µN

= ex(−1)
= −ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−(x− 1 + y) ex) + (−ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−(x− 1 + y) ex dx

(3)φ = −(x+ y − 2) ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −ex + f ′(y)

But equation (2) says that ∂φ
∂y

= −ex. Therefore equation (4) becomes

(5)−ex = −ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −(x+ y − 2) ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(x+ y − 2) ex

The solution becomes
y = −(x ex − 2 ex + c1) e−x

Summary
The solution(s) found are the following

(1)y = −(x ex − 2 ex + c1) e−x
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Figure 662: Slope field plot

Verification of solutions

y = −(x ex − 2 ex + c1) e−x

Verified OK.

15.30.4 Maple step by step solution

Let’s solve
−y′ − y = x− 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y − x+ 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y = 1− x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y) = µ(x) (1− x)
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

• Solve to find the integrating factor
µ(x) = ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (1− x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (1− x) dx+ c1

• Solve for y

y =
∫
µ(x)(1−x)dx+c1

µ(x)

• Substitute µ(x) = ex

y =
∫
(1−x)exdx+c1

ex

• Evaluate the integrals on the rhs
y = −(x−2)ex+c1

ex

• Simplify
y = −x+ 2 + c1e−x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(1-diff(y(x),x) = x+y(x),y(x), singsol=all)� �

y(x) = −x+ 2 + e−xc1

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 18� �
DSolve[1-y'[x]==x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ c1e
−x + 2
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15.31 problem 439
15.31.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4296
15.31.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4298

Internal problem ID [3693]
Internal file name [OUTPUT/3186_Sunday_June_05_2022_08_58_13_AM_53124058/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 439.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , [_Abel , `2nd type `, `

class A`]]

(−y + x) y′ − (2yx+ 1) y = 0

15.31.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(−u(x)x+ x) (u′(x)x+ u(x))−
(
2u(x)x2 + 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2(2x2 + 1)
(u− 1)x

Where f(x) = −2x2+1
x

and g(u) = u2

u−1 . Integrating both sides gives

1
u2

u−1
du = −2x2 + 1

x
dx
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∫ 1
u2

u−1
du =

∫
−2x2 + 1

x
dx

1
u
+ ln (u) = −x2 − ln (x) + c2

The solution is
1

u (x) + ln (u(x)) + x2 + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

x

y
+ ln

(y
x

)
+ x2 + ln (x)− c2 = 0

x

y
+ ln

(y
x

)
+ x2 + ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)x

y
+ ln

(y
x

)
+ x2 + ln (x)− c2 = 0

Figure 663: Slope field plot
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Verification of solutions
x

y
+ ln

(y
x

)
+ x2 + ln (x)− c2 = 0

Verified OK.

15.31.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−y + x) dy = (y(2xy + 1)) dx
(−y(2xy + 1)) dx+(−y + x) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −y(2xy + 1)
N(x, y) = −y + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y(2xy + 1))

= −4xy − 1

And
∂N

∂x
= ∂

∂x
(−y + x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y + x
((−4xy − 1)− (1))

= −4xy − 2
−y + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2x y2 + y
((1)− (−4xy − 1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy
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The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y(2xy + 1))

= −2xy − 1
y

And

N = µN

= 1
y2

(−y + x)

= −y + x

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2xy − 1
y

)
+
(
−y + x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2xy − 1

y
dx

(3)φ = −x(xy + 1)
y

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2

y
+ x(xy + 1)

y2
+ f ′(y)

= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y+x
y2

. Therefore equation (4) becomes

(5)−y + x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(xy + 1)
y

− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(xy + 1)
y

− ln (y)

The solution becomes

y = e−x2+LambertW
(
−x ex2+c1

)
−c1
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Summary
The solution(s) found are the following

(1)y = e−x2+LambertW
(
−x ex2+c1

)
−c1

Figure 664: Slope field plot

Verification of solutions

y = e−x2+LambertW
(
−x ex2+c1

)
−c1

Verified OK.

4302



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 18� �
dsolve((x-y(x))*diff(y(x),x) = (1+2*x*y(x))*y(x),y(x), singsol=all)� �

y(x) = − x

LambertW (−ex2c1x)

3 Solution by Mathematica
Time used: 5.983 (sec). Leaf size: 29� �
DSolve[(x-y[x])y'[x]==(1+2 x y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W (x (−ex2−c1))
y(x) → 0
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15.32 problem 440
15.32.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4304

Internal problem ID [3694]
Internal file name [OUTPUT/3187_Sunday_June_05_2022_08_58_16_AM_14833384/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 440.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

(y + x) y′ + tan (y) = 0

15.32.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y + x) dy = (− tan (y)) dx
(tan (y)) dx+(y + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = tan (y)
N(x, y) = y + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(tan (y))

= sec (y)2

And

∂N

∂x
= ∂

∂x
(y + x)

= 1

4305



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y + x

((
1 + tan (y)2

)
− (1)

)
= tan (y)2

y + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= cot (y)

(
(1)−

(
1 + tan (y)2

))
= − tan (y)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− tan(y) dy

The result of integrating gives

µ = eln(cos(y))

= cos (y)

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= cos (y) (tan (y))
= sin (y)

And

N = µN

= cos (y) (y + x)
= (y + x) cos (y)
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(sin (y)) + ((y + x) cos (y)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sin (y) dx

(3)φ = x sin (y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x cos (y) + f ′(y)

But equation (2) says that ∂φ
∂y

= (y + x) cos (y). Therefore equation (4) becomes

(5)(y + x) cos (y) = x cos (y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y cos (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y cos (y)) dy

f(y) = cos (y) + y sin (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x sin (y) + y sin (y) + cos (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x sin (y) + y sin (y) + cos (y)

Summary
The solution(s) found are the following

(1)x sin (y) + y sin (y) + cos (y) = c1

Figure 665: Slope field plot

Verification of solutions

x sin (y) + y sin (y) + cos (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.234 (sec). Leaf size: 16� �
dsolve((x+y(x))*diff(y(x),x)+tan(y(x)) = 0,y(x), singsol=all)� �

y(x) + x+ cot (y(x))− csc (y(x)) c1 = 0

3 Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 29� �
DSolve[(x+y[x])y'[x]+Tan[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[x = csc(y(x))(−y(x) sin(y(x))− cos(y(x))) + c1 csc(y(x)), y(x)]
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15.33 problem 441
15.33.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4310
15.33.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4312

Internal problem ID [3695]
Internal file name [OUTPUT/3188_Sunday_June_05_2022_08_58_21_AM_80991990/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 441.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

(−y + x) y′ −
(
e−

x
y + 1

)
y = 0

15.33.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(−u(x)x+ x) (u′(x)x+ u(x))−
(
e−

1
u(x) + 1

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −
u
(
u+ e− 1

u

)
(u− 1)x
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Where f(x) = − 1
x
and g(u) =

u
(
u+e−

1
u

)
u−1 . Integrating both sides gives

1
u
(
u+e−

1
u

)
u−1

du = −1
x
dx

∫ 1
u
(
u+e−

1
u

)
u−1

du =
∫

−1
x
dx

1
u
+ ln

(
u+ e− 1

u

)
= − ln (x) + c2

The solution is
1

u (x) + ln
(
u(x) + e−

1
u(x)

)
+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

x

y
+ ln

(y
x
+ e−

x
y

)
+ ln (x)− c2 = 0

ln
(

e−
x
y x+y
x

)
y + (−c2 + ln (x)) y + x

y
= 0

Summary
The solution(s) found are the following

(1)
ln
(

e−
x
y x+y
x

)
y + (−c2 + ln (x)) y + x

y
= 0
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Figure 666: Slope field plot

Verification of solutions

ln
(

e−
x
y x+y
x

)
y + (−c2 + ln (x)) y + x

y
= 0

Verified OK.

15.33.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −
y
(
e−

x
y + 1

)
y − x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1
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(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y
(
e−

x
y + 1

)
(b3 − a2)

y − x
−

y2
(
e−

x
y + 1

)2
a3

(y − x)2

−

 e−
x
y

y − x
−

y
(
e−

x
y + 1

)
(y − x)2

 (xa2 + ya3 + a1)

−

−e−
x
y + 1

y − x
− x e−

x
y

y (y − x) +
y
(
e−

x
y + 1

)
(y − x)2

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−e−
2x
y y3a3 + e−

x
yx3b2 − e−

x
yx2ya2 + e−

x
yx2yb3 + e−

x
yx y2a2 − e−

x
yx y2a3 − e−

x
yx y2b3 − e−

x
y y3a2 + 2 e−

x
y y3a3 + e−

x
y y3b3 + e−

x
yx2b1 − e−

x
yxya1 + 2x y2b2 − y3a2 − y3b2 + y3b3 + xyb1 − y2a1

y (−y + x)2
= 0

Setting the numerator to zero gives

(6E)−e−
2x
y y3a3 − e−

x
yx3b2 + e−

x
yx2ya2 − e−

x
yx2yb3 − e−

x
yx y2a2 + e−

x
yx y2a3

+ e−
x
yx y2b3 + e−

x
y y3a2 − 2 e−

x
y y3a3 − e−

x
y y3b3 − e−

x
yx2b1

+ e−
x
yxya1 − 2x y2b2 + y3a2 + y3b2 − y3b3 − xyb1 + y2a1 = 0

Simplifying the above gives

(6E)−e−
2x
y y3a3 − e−

x
yx3b2 + e−

x
yx2ya2 − e−

x
yx2yb3 − e−

x
yx y2a2 + e−

x
yx y2a3

+ e−
x
yx y2b3 + e−

x
y y3a2 − 2 e−

x
y y3a3 − e−

x
y y3b3 − e−

x
yx2b1

+ e−
x
yxya1 − 2x y2b2 + y3a2 + y3b2 − y3b3 − xyb1 + y2a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, e−

2x
y , e−

x
y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, e−
2x
y = v3, e−

x
y = v4

}
The above PDE (6E) now becomes

(7E)v4v
2
1v2a2 − v4v1v

2
2a2 + v4v

3
2a2 + v4v1v

2
2a3 − v3v

3
2a3 − 2v4v32a3

− v4v
3
1b2 − v4v

2
1v2b3 + v4v1v

2
2b3 − v4v

3
2b3 + v4v1v2a1 + v32a2

− v4v
2
1b1 − 2v1v22b2 + v32b2 − v32b3 + v22a1 − v1v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v4v
3
1b2 + (−b3 + a2) v21v2v4 − v4v

2
1b1 + (−a2 + a3 + b3) v1v22v4 − 2v1v22b2

+v4v1v2a1−v1v2b1−v3v
3
2a3+(a2−2a3−b3) v32v4+(a2+b2−b3) v32+v22a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−a3 = 0
−b1 = 0
−2b2 = 0
−b2 = 0

−b3 + a2 = 0
−a2 + a3 + b3 = 0
a2 − 2a3 − b3 = 0
a2 + b2 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

−
y
(
e−

x
y + 1

)
y − x

 (x)

= −xy e−
x
y − y2

−y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−xy e−
x
y −y2

−y+x

dy

Which results in

S = ln
(
y e

x
y + x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
y
(
e−

x
y + 1

)
y − x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e
x
y + 1

y e
x
y + x

Sy = − e
x
y (−y + x)

y
(
y e

x
y + x

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
y e

x
y + x

)
= c1

Which simplifies to

ln
(
y e

x
y + x

)
= c1

Which gives

y = − x

LambertW
(
− x

ec1−x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
y
(
e−

x
y +1

)
y−x

dS
dR

= 0

R = x

S = ln
(
y e

x
y + x

)
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Summary
The solution(s) found are the following

(1)y = − x

LambertW
(
− x

ec1−x

)

Figure 667: Slope field plot

Verification of solutions

y = − x

LambertW
(
− x

ec1−x

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 20� �
dsolve((x-y(x))*diff(y(x),x) = (exp(-x/y(x))+1)*y(x),y(x), singsol=all)� �

y(x) = − x

LambertW
(

xc1
c1x−1

)
3 Solution by Mathematica
Time used: 1.348 (sec). Leaf size: 34� �
DSolve[(x-y[x])y'[x]==(Exp[-x/y[x]]+1)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

W
(

x
x−ec1

)
y(x) → − x

W (1)
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15.34 problem 442
15.34.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4320
15.34.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4323

Internal problem ID [3696]
Internal file name [OUTPUT/3189_Sunday_June_05_2022_08_58_25_AM_78972477/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 442.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(x+ y + 1) y′ + 3y = −1− 4x

15.34.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −1 + 4X + 4x0 + 3Y (X) + 3y0

X + x0 + Y (X) + y0 + 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 2
y0 = −3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −4X + 3Y (X)

X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −4X + 3Y
X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −4X − 3Y and N = X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u− 4

u+ 1
du
dX =

−3u(X)−4
u(X)+1 − u(X)

X

Or
d

dX
u(X)−

−3u(X)−4
u(X)+1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + u(X)2 + 4u(X) + 4 = 0

Or
X(u(X) + 1)

(
d

dX
u(X)

)
+ (u(X) + 2)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − (u+ 2)2

X (u+ 1)
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Where f(X) = − 1
X

and g(u) = (u+2)2
u+1 . Integrating both sides gives

1
(u+2)2
u+1

du = − 1
X

dX

∫ 1
(u+2)2
u+1

du =
∫

− 1
X

dX

ln (u+ 2) + 1
u+ 2 = − ln (X) + c2

The solution is

ln (u(X) + 2) + 1
u (X) + 2 + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(
Y (X)
X

+ 2
)
+ 1

Y (X)
X

+ 2
+ ln (X)− c2 = 0

Using the solution for Y (X)

ln
(
Y (X) + 2X

X

)
+ X

Y (X) + 2X + ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 3
X = x+ 2

Then the solution in y becomes

ln
(
2x+ y − 1

x− 2

)
+ x− 2

2x+ y − 1 + ln (x− 2)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
2x+ y − 1

x− 2

)
+ x− 2

2x+ y − 1 + ln (x− 2)− c2 = 0
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Figure 668: Slope field plot

Verification of solutions

ln
(
2x+ y − 1

x− 2

)
+ x− 2

2x+ y − 1 + ln (x− 2)− c2 = 0

Verified OK.

15.34.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −1 + 4x+ 3y
x+ y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(1 + 4x+ 3y) (b3 − a2)

x+ y + 1 − (1 + 4x+ 3y)2 a3
(x+ y + 1)2

−
(
− 4
x+ y + 1 + 1 + 4x+ 3y

(x+ y + 1)2
)
(xa2 + ya3 + a1)

−
(
− 3
x+ y + 1 + 1 + 4x+ 3y

(x+ y + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x2a2 − 16x2a3 − 4x2b3 + 8xya2 − 24xya3 + 2xyb2 − 8xyb3 + 3y2a2 − 8y2a3 + y2b2 − 3y2b3 + 8xa2 − 8xa3 − xb1 + 4xb2 − 5xb3 + ya1 + 4ya2 − 3ya3 + 2yb2 − 2yb3 + 3a1 + a2 − a3 + 2b1 + b2 − b3

(x+ y + 1)2
= 0

Setting the numerator to zero gives

(6E)4x2a2 − 16x2a3 − 4x2b3 + 8xya2 − 24xya3 + 2xyb2 − 8xyb3 + 3y2a2
− 8y2a3 + y2b2 − 3y2b3 + 8xa2 − 8xa3 − xb1 + 4xb2 − 5xb3 + ya1
+ 4ya2 − 3ya3 + 2yb2 − 2yb3 + 3a1 + a2 − a3 + 2b1 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v21 + 8a2v1v2 + 3a2v22 − 16a3v21 − 24a3v1v2 − 8a3v22 + 2b2v1v2 + b2v
2
2

− 4b3v21 − 8b3v1v2 − 3b3v22 + a1v2 + 8a2v1 + 4a2v2 − 8a3v1 − 3a3v2 − b1v1
+ 4b2v1 + 2b2v2 − 5b3v1 − 2b3v2 + 3a1 + a2 − a3 + 2b1 + b2 − b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(4a2 − 16a3 − 4b3) v21 + (8a2 − 24a3 + 2b2 − 8b3) v1v2
+ (8a2 − 8a3 − b1 + 4b2 − 5b3) v1 + (3a2 − 8a3 + b2 − 3b3) v22
+ (a1 + 4a2 − 3a3 + 2b2 − 2b3) v2 + 3a1 + a2 − a3 + 2b1 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a2 − 16a3 − 4b3 = 0
3a2 − 8a3 + b2 − 3b3 = 0

8a2 − 24a3 + 2b2 − 8b3 = 0
a1 + 4a2 − 3a3 + 2b2 − 2b3 = 0
8a2 − 8a3 − b1 + 4b2 − 5b3 = 0

3a1 + a2 − a3 + 2b1 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = −5a3 − 2b3
a2 = 4a3 + b3

a3 = a3

b1 = 8a3 + 3b3
b2 = −4a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 2
η = y + 3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 3−
(
−1 + 4x+ 3y

x+ y + 1

)
(x− 2)

= 4x2 + 4xy + y2 − 4x− 2y + 1
x+ y + 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2+4xy+y2−4x−2y+1
x+y+1

dy

Which results in

S = ln (y + 2x− 1)− −x+ 2
y + 2x− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1 + 4x+ 3y
x+ y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1 + 4x+ 3y
(y + 2x− 1)2

Sy =
x+ y + 1

(y + 2x− 1)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(2x+ y − 1) ln (2x+ y − 1) + x− 2
2x+ y − 1 = c1

Which simplifies to

(2x+ y − 1) ln (2x+ y − 1) + x− 2
2x+ y − 1 = c1

Which gives

y = eLambertW
(
−(x−2)e−c1

)
+c1 − 2x+ 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −1+4x+3y
x+y+1

dS
dR

= 0

R = x

S = (y + 2x− 1) ln (y + 2x− 1) + x− 2
y + 2x− 1

Summary
The solution(s) found are the following

(1)y = eLambertW
(
−(x−2)e−c1

)
+c1 − 2x+ 1
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Figure 669: Slope field plot

Verification of solutions

y = eLambertW
(
−(x−2)e−c1

)
+c1 − 2x+ 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.312 (sec). Leaf size: 29� �
dsolve((1+x+y(x))*diff(y(x),x)+1+4*x+3*y(x) = 0,y(x), singsol=all)� �

y(x) = −3− (−2 + x) (2 LambertW (c1(−2 + x)) + 1)
LambertW (c1 (−2 + x))

3 Solution by Mathematica
Time used: 1.292 (sec). Leaf size: 159� �
DSolve[(1+x+y[x])y'[x]+1+4 x+3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

(−2)2/3
(
−2x log

(
3(−2)2/3(y(x)+2x−1)

y(x)+x+1

)
+ (2x− 1) log

(
−3(−2)2/3(x−2)

y(x)+x+1

)
+ log

(
3(−2)2/3(y(x)+2x−1)

y(x)+x+1

)
+ y(x)

(
log
(
−3(−2)2/3(x−2)

y(x)+x+1

)
− log

(
3(−2)2/3(y(x)+2x−1)

y(x)+x+1

)
+ 1
)
+ x+ 1

)
9(y(x) + 2x− 1) = 1

9(−2)2/3 log(x−2)+c1, y(x)
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15.35 problem 443
15.35.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4331
15.35.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4333
15.35.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4338
15.35.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4342

Internal problem ID [3697]
Internal file name [OUTPUT/3190_Sunday_June_05_2022_08_58_30_AM_34052322/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 15
Problem number: 443.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(x+ y + 2) y′ + y = 1− x

15.35.1 Solving as differentialType ode

Writing the ode as

y′ = −y − x+ 1
x+ y + 2 (1)

Which becomes

(y + 2) dy = (−x) dy + (−y − x+ 1) dx (2)

But the RHS is complete differential because

(−x) dy + (−y − x+ 1) dx = d

(
−1
2x

2 − xy + x

)
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Hence (2) becomes

(y + 2) dy = d

(
−1
2x

2 − xy + x

)
Integrating both sides gives gives these solutions

y = −x− 2 +
√
2c1 + 6x+ 4 + c1

y = −x− 2−
√
2c1 + 6x+ 4 + c1

Summary
The solution(s) found are the following

(1)y = −x− 2 +
√
2c1 + 6x+ 4 + c1

(2)y = −x− 2−
√
2c1 + 6x+ 4 + c1

Figure 670: Slope field plot

Verification of solutions

y = −x− 2 +
√
2c1 + 6x+ 4 + c1

Verified OK.

y = −x− 2−
√
2c1 + 6x+ 4 + c1

Verified OK.
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15.35.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x− 1 + y

x+ y + 2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x− 1 + y) (b3 − a2)

x+ y + 2 − (x− 1 + y)2 a3
(x+ y + 2)2

−
(
− 1
x+ y + 2 + x− 1 + y

(x+ y + 2)2
)
(xa2 + ya3 + a1)

−
(
− 1
x+ y + 2 + x− 1 + y

(x+ y + 2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 + x2b2 − x2b3 + 2xya2 − 2xya3 + 2xyb2 − 2xyb3 + y2a2 − y2a3 + y2b2 − y2b3 + 4xa2 + 2xa3 + 7xb2 − xb3 + ya2 + 5ya3 + 4yb2 + 2yb3 + 3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3
(x+ y + 2)2

= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 + x2b2 − x2b3 + 2xya2 − 2xya3 + 2xyb2 − 2xyb3
+ y2a2 − y2a3 + y2b2 − y2b3 + 4xa2 + 2xa3 + 7xb2 − xb3 + ya2
+ 5ya3 + 4yb2 + 2yb3 + 3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 + 2a2v1v2 + a2v

2
2 − a3v

2
1 − 2a3v1v2 − a3v

2
2 + b2v

2
1 + 2b2v1v2 + b2v

2
2

− b3v
2
1 − 2b3v1v2 − b3v

2
2 + 4a2v1 + a2v2 + 2a3v1 + 5a3v2 + 7b2v1

+ 4b2v2 − b3v1 + 2b3v2 + 3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 + b2 − b3) v21 + (2a2 − 2a3 + 2b2 − 2b3) v1v2
+ (4a2 + 2a3 + 7b2 − b3) v1 + (a2 − a3 + b2 − b3) v22
+ (a2 + 5a3 + 4b2 + 2b3) v2 + 3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a2 − a3 + b2 − b3 = 0
a2 + 5a3 + 4b2 + 2b3 = 0

2a2 − 2a3 + 2b2 − 2b3 = 0
4a2 + 2a3 + 7b2 − b3 = 0

3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 5a3 − b1 + 2b3
a2 = 3a3 + 2b3
a3 = a3

b1 = b1

b2 = −2a3 − b3

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
−x− 1 + y

x+ y + 2

)
(−1)

= 3
x+ y + 2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3
x+y+2

dy

Which results in

S = 1
3xy +

1
6y

2 + 2
3y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x− 1 + y

x+ y + 2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

3
Sy =

x

3 + y

3 + 2
3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x

3 + 1
3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

3 + 1
3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
6R

2 + 1
3R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y(2x+ y + 4)
6 = −1

6x
2 + 1

3x+ c1

Which simplifies to

y(2x+ y + 4)
6 = −1

6x
2 + 1

3x+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x−1+y
x+y+2

dS
dR

= −R
3 + 1

3

R = x

S = y(2x+ y + 4)
6

Summary
The solution(s) found are the following

(1)y(2x+ y + 4)
6 = −1

6x
2 + 1

3x+ c1
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Figure 671: Slope field plot

Verification of solutions

y(2x+ y + 4)
6 = −1

6x
2 + 1

3x+ c1

Verified OK.

15.35.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ y + 2) dy = (−y − x+ 1) dx
(x− 1 + y) dx+(x+ y + 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x− 1 + y

N(x, y) = x+ y + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(x− 1 + y)

= 1

And
∂N

∂x
= ∂

∂x
(x+ y + 2)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x− 1 + y dx

(3)φ = x(x− 2 + 2y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x+ y + 2. Therefore equation (4) becomes

(5)x+ y + 2 = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y + 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y + 2) dy

f(y) = 1
2y

2 + 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(x− 2 + 2y)
2 + y2

2 + 2y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(x− 2 + 2y)

2 + y2

2 + 2y

Summary
The solution(s) found are the following

(1)x(x− 2 + 2y)
2 + y2

2 + 2y = c1

Figure 672: Slope field plot

Verification of solutions

x(x− 2 + 2y)
2 + y2

2 + 2y = c1

Verified OK.
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15.35.4 Maple step by step solution

Let’s solve
(x+ y + 2) y′ + y = 1− x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x− 1 + y) dx+ f1(y)

• Evaluate integral
F (x, y) = x2

2 − x+ xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x+ y + 2 = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y + 2

• Solve for f1(y)
f1(y) = 1

2y
2 + 2y

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 1
2x

2 − x+ xy + 1
2y

2 + 2y

• Substitute F (x, y) into the solution of the ODE
1
2x

2 − x+ xy + 1
2y

2 + 2y = c1

• Solve for y{
y = −x− 2−

√
2c1 + 6x+ 4, y = −x− 2 +

√
2c1 + 6x+ 4

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
dsolve((2+x+y(x))*diff(y(x),x) = 1-x-y(x),y(x), singsol=all)� �

y(x) = −x− 2−
√
−6c1 + 6x+ 4

y(x) = −x− 2 +
√
−6c1 + 6x+ 4

3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 43� �
DSolve[(2+x+y[x])y'[x]==1-x-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
6x+ 4 + c1 − 2

y(x) → −x+
√
6x+ 4 + c1 − 2
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16.1 problem 444
16.1.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4345
16.1.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4348

Internal problem ID [3698]
Internal file name [OUTPUT/3191_Sunday_June_05_2022_08_58_35_AM_37784585/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 444.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(3− x− y) y′ + 3y = x+ 1

16.1.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 3Y (X) + 3y0 −X − x0 − 1

−3 +X + x0 + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 2
y0 = 1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 3Y (X)−X

X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 3Y −X

X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 3Y − X and N = X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 3u− 1

u+ 1
du
dX =

3u(X)−1
u(X)+1 − u(X)

X

Or
d

dX
u(X)−

3u(X)−1
u(X)+1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + u(X)2 − 2u(X) + 1 = 0

Or
X(u(X) + 1)

(
d

dX
u(X)

)
+ (u(X)− 1)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − (u− 1)2

X (u+ 1)
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Where f(X) = − 1
X

and g(u) = (u−1)2
u+1 . Integrating both sides gives

1
(u−1)2
u+1

du = − 1
X

dX

∫ 1
(u−1)2
u+1

du =
∫

− 1
X

dX

ln (u− 1)− 2
u− 1 = − ln (X) + c2

The solution is

ln (u(X)− 1)− 2
u (X)− 1 + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(
Y (X)
X

− 1
)
− 2

Y (X)
X

− 1
+ ln (X)− c2 = 0

Using the solution for Y (X)

ln
(
Y (X)−X

X

)
+ 2X

−Y (X) +X
+ ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
X = x+ 2

Then the solution in y becomes

ln
(
y + 1− x

x− 2

)
+ 2x− 4

−y − 1 + x
+ ln (x− 2)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
y + 1− x

x− 2

)
+ 2x− 4

−y − 1 + x
+ ln (x− 2)− c2 = 0
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Figure 673: Slope field plot

Verification of solutions

ln
(
y + 1− x

x− 2

)
+ 2x− 4

−y − 1 + x
+ ln (x− 2)− c2 = 0

Verified OK.

16.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −1− x+ 3y
−3 + x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−1− x+ 3y) (b3 − a2)

−3 + x+ y
− (−1− x+ 3y)2 a3

(−3 + x+ y)2

−
(
− 1
−3 + x+ y

− −1− x+ 3y
(−3 + x+ y)2

)
(xa2 + ya3 + a1)

−
(

3
−3 + x+ y

− −1− x+ 3y
(−3 + x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 − 3x2b2 − x2b3 + 2xya2 + 6xya3 + 2xyb2 − 2xyb3 − 3y2a2 − 5y2a3 + y2b2 + 3y2b3 − 6xa2 − 2xa3 − 4xb1 + 2xb2 + 2xb3 + 4ya1 + 10ya2 + 2ya3 − 6yb2 − 2yb3 − 4a1 − 3a2 − a3 + 8b1 + 9b2 + 3b3
(−3 + x+ y)2

= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 − 3x2b2 − x2b3 + 2xya2 + 6xya3 + 2xyb2 − 2xyb3 − 3y2a2
− 5y2a3 + y2b2 + 3y2b3 − 6xa2 − 2xa3 − 4xb1 + 2xb2 + 2xb3 + 4ya1
+ 10ya2 + 2ya3 − 6yb2 − 2yb3 − 4a1 − 3a2 − a3 + 8b1 + 9b2 + 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 + 2a2v1v2 − 3a2v22 − a3v

2
1 + 6a3v1v2 − 5a3v22 − 3b2v21 + 2b2v1v2 + b2v

2
2

− b3v
2
1 − 2b3v1v2 + 3b3v22 + 4a1v2 − 6a2v1 + 10a2v2 − 2a3v1 + 2a3v2 − 4b1v1

+ 2b2v1 − 6b2v2 + 2b3v1 − 2b3v2 − 4a1 − 3a2 − a3 + 8b1 + 9b2 + 3b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 − 3b2 − b3) v21 + (2a2 + 6a3 + 2b2 − 2b3) v1v2
+ (−6a2 − 2a3 − 4b1 + 2b2 + 2b3) v1 + (−3a2 − 5a3 + b2 + 3b3) v22
+ (4a1 + 10a2 + 2a3 − 6b2 − 2b3) v2 − 4a1 − 3a2 − a3 + 8b1 + 9b2 + 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−3a2 − 5a3 + b2 + 3b3 = 0
a2 − a3 − 3b2 − b3 = 0

2a2 + 6a3 + 2b2 − 2b3 = 0
4a1 + 10a2 + 2a3 − 6b2 − 2b3 = 0
−6a2 − 2a3 − 4b1 + 2b2 + 2b3 = 0

−4a1 − 3a2 − a3 + 8b1 + 9b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 3a3 − 2b3
a2 = −2a3 + b3

a3 = a3

b1 = 2a3 − b3

b2 = −a3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 2
η = y − 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
−1− x+ 3y
−3 + x+ y

)
(x− 2)

= x2 − 2xy + y2 − 2x+ 2y + 1
−3 + x+ y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−2xy+y2−2x+2y+1
−3+x+y

dy

Which results in

S = ln (y + 1− x)− 2x− 4
y + 1− x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1− x+ 3y
−3 + x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1 + x− 3y
(−1 + x− y)2

Sy =
−3 + x+ y

(−1 + x− y)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(−y − 1 + x) ln (y + 1− x) + 2x− 4
−y − 1 + x

= c1

Which simplifies to

(−y − 1 + x) ln (y + 1− x) + 2x− 4
−y − 1 + x

= c1

Which gives

y = eLambertW
(
2(x−2)e−c1

)
+c1 − 1 + x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −1−x+3y
−3+x+y

dS
dR

= 0

R = x

S = (−1 + x− y) ln (y + 1− x) + 2x− 4
−1 + x− y

Summary
The solution(s) found are the following

(1)y = eLambertW
(
2(x−2)e−c1

)
+c1 − 1 + x
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Figure 674: Slope field plot

Verification of solutions

y = eLambertW
(
2(x−2)e−c1

)
+c1 − 1 + x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.313 (sec). Leaf size: 30� �
dsolve((3-x-y(x))*diff(y(x),x) = 1+x-3*y(x),y(x), singsol=all)� �

y(x) = (x− 1) LambertW (−2c1(−2 + x))− 4 + 2x
LambertW (−2c1 (−2 + x))

3 Solution by Mathematica
Time used: 1.073 (sec). Leaf size: 159� �
DSolve[(3-x-y[x])y'[x]==1+x-3 y[x],y[x],x,IncludeSingularSolutions -> True]� �
Solve

22/3
(
x
(
− log

(
−3 22/3(−y(x)+x−1)

y(x)+x−3

))
+ (x− 1) log

(
6 22/3(x−2)
y(x)+x−3

)
+ log

(
−3 22/3(−y(x)+x−1)

y(x)+x−3

)
+ y(x)

(
− log

(
6 22/3(x−2)
y(x)+x−3

)
+ log

(
−3 22/3(−y(x)+x−1)

y(x)+x−3

)
− 1
)
− x+ 3

)
9(−y(x) + x− 1) = 1

92
2/3 log(x−2)+c1, y(x)
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16.2 problem 445
16.2.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4356
16.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4359

Internal problem ID [3699]
Internal file name [OUTPUT/3192_Sunday_June_05_2022_08_58_40_AM_76322126/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 445.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(3− x+ y) y′ − 3y = 11− 4x

16.2.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 11− 4X − 4x0 + 3Y (X) + 3y0

3−X − x0 + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 2
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −4X + 3Y (X)

−X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −4X + 3Y
−X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 4X − 3Y and N = X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 3u− 4

u− 1
du
dX =

3u(X)−4
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

3u(X)−4
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 − 4u(X) + 4 = 0

Or
(u(X)− 1)X

(
d

dX
u(X)

)
+ (u(X)− 2)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − (u− 2)2

(u− 1)X
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Where f(X) = − 1
X

and g(u) = (u−2)2
u−1 . Integrating both sides gives

1
(u−2)2
u−1

du = − 1
X

dX

∫ 1
(u−2)2
u−1

du =
∫

− 1
X

dX

− 1
u− 2 + ln (u− 2) = − ln (X) + c2

The solution is

− 1
u (X)− 2 + ln (u(X)− 2) + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

− 1
Y (X)
X

− 2
+ ln

(
Y (X)
X

− 2
)
+ ln (X)− c2 = 0

Using the solution for Y (X)

X

−Y (X) + 2X + ln
(
Y (X)− 2X

X

)
+ ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 2

Then the solution in y becomes

x− 2
−y − 5 + 2x + ln

(
y + 5− 2x

x− 2

)
+ ln (x− 2)− c2 = 0

Summary
The solution(s) found are the following

(1)x− 2
−y − 5 + 2x + ln

(
y + 5− 2x

x− 2

)
+ ln (x− 2)− c2 = 0
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Figure 675: Slope field plot

Verification of solutions

x− 2
−y − 5 + 2x + ln

(
y + 5− 2x

x− 2

)
+ ln (x− 2)− c2 = 0

Verified OK.

16.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 11− 4x+ 3y
3− x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(11− 4x+ 3y) (b3 − a2)

3− x+ y
− (11− 4x+ 3y)2 a3

(3− x+ y)2

−
(
− 4
3− x+ y

+ 11− 4x+ 3y
(3− x+ y)2

)
(xa2 + ya3 + a1)

−
(

3
3− x+ y

− 11− 4x+ 3y
(3− x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x2a2 + 16x2a3 − 4x2b3 − 8xya2 − 24xya3 + 2xyb2 + 8xyb3 + 3y2a2 + 8y2a3 − y2b2 − 3y2b3 − 24xa2 − 88xa3 + xb1 + 4xb2 + 23xb3 − ya1 + 20ya2 + 65ya3 − 6yb2 − 22yb3 − a1 + 33a2 + 121a3 − 2b1 − 9b2 − 33b3
(−3 + x− y)2

= 0

Setting the numerator to zero gives

(6E)−4x2a2 − 16x2a3 + 4x2b3 + 8xya2 + 24xya3 − 2xyb2 − 8xyb3 − 3y2a2
− 8y2a3 + y2b2 + 3y2b3 + 24xa2 + 88xa3 − xb1 − 4xb2 − 23xb3 + ya1
− 20ya2 − 65ya3 +6yb2 +22yb3 + a1 − 33a2 − 121a3 +2b1 +9b2 +33b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−4a2v21 + 8a2v1v2 − 3a2v22 − 16a3v21 + 24a3v1v2 − 8a3v22 − 2b2v1v2 + b2v
2
2

+4b3v21 − 8b3v1v2 +3b3v22 + a1v2 +24a2v1− 20a2v2 +88a3v1− 65a3v2− b1v1
− 4b2v1+6b2v2− 23b3v1+22b3v2+a1− 33a2− 121a3+2b1+9b2+33b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−4a2 − 16a3 + 4b3) v21 + (8a2 + 24a3 − 2b2 − 8b3) v1v2
+ (24a2 + 88a3 − b1 − 4b2 − 23b3) v1 + (−3a2 − 8a3 + b2 + 3b3) v22
+(a1−20a2−65a3+6b2+22b3) v2+a1−33a2−121a3+2b1+9b2+33b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a2 − 16a3 + 4b3 = 0
−3a2 − 8a3 + b2 + 3b3 = 0
8a2 + 24a3 − 2b2 − 8b3 = 0

a1 − 20a2 − 65a3 + 6b2 + 22b3 = 0
24a2 + 88a3 − b1 − 4b2 − 23b3 = 0

a1 − 33a2 − 121a3 + 2b1 + 9b2 + 33b3 = 0

Solving the above equations for the unknowns gives

a1 = 9a3 − 2b3
a2 = −4a3 + b3

a3 = a3

b1 = 8a3 + b3

b2 = −4a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 2
η = y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
11− 4x+ 3y
3− x+ y

)
(x− 2)

= −4x2 + 4xy − y2 + 20x− 10y − 25
−3 + x− y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x2+4xy−y2+20x−10y−25
−3+x−y

dy

Which results in

S = ln (y + 5− 2x)− x− 2
y + 5− 2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 11− 4x+ 3y
3− x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −11 + 4x− 3y
(2x− y − 5)2

Sy =
3− x+ y

(2x− y − 5)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(−y − 5 + 2x) ln (y + 5− 2x) + x− 2
−y − 5 + 2x = c1

Which simplifies to

(−y − 5 + 2x) ln (y + 5− 2x) + x− 2
−y − 5 + 2x = c1

Which gives

y = eLambertW
(
(x−2)e−c1

)
+c1 − 5 + 2x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 11−4x+3y
3−x+y

dS
dR

= 0

R = x

S = (2x− y − 5) ln (y + 5− 2x) + x− 2
2x− y − 5

Summary
The solution(s) found are the following

(1)y = eLambertW
(
(x−2)e−c1

)
+c1 − 5 + 2x
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Figure 676: Slope field plot

Verification of solutions

y = eLambertW
(
(x−2)e−c1

)
+c1 − 5 + 2x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.312 (sec). Leaf size: 30� �
dsolve((3-x+y(x))*diff(y(x),x) = 11-4*x+3*y(x),y(x), singsol=all)� �

y(x) = (2x− 5) LambertW (−c1(−2 + x))− 2 + x

LambertW (−c1 (−2 + x))

3 Solution by Mathematica
Time used: 1.395 (sec). Leaf size: 179� �
DSolve[(3-x+y[x])y'[x]==11-4 x+3 y[x],y[x],x,IncludeSingularSolutions -> True]� �
Solve

(−2)2/3
(
−2x log

(
3(−2)2/3(−y(x)+2x−5)

−y(x)+x−3

)
+ (2x− 5) log

(
−3(−2)2/3(x−2)

−y(x)+x−3

)
+ 5 log

(
3(−2)2/3(−y(x)+2x−5)

−y(x)+x−3

)
+ y(x)

(
− log

(
−3(−2)2/3(x−2)

−y(x)+x−3

)
+ log

(
3(−2)2/3(−y(x)+2x−5)

−y(x)+x−3

)
− 1
)
+ x− 3

)
9(−y(x) + 2x− 5) = 1

9(−2)2/3 log(x−2)+c1, y(x)
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16.3 problem 446
16.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4367
16.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4369
16.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4374

Internal problem ID [3700]
Internal file name [OUTPUT/3193_Sunday_June_05_2022_08_58_45_AM_34945953/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 446.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(y + 2x) y′ − 2y = −x

16.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x+ 2x) (u′(x)x+ u(x))− 2u(x)x = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
x (u+ 2)
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Where f(x) = − 1
x
and g(u) = u2+1

u+2 . Integrating both sides gives

1
u2+1
u+2

du = −1
x
dx

∫ 1
u2+1
u+2

du =
∫

−1
x
dx

ln (u2 + 1)
2 + 2 arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 + 2 arctan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 1
)

2 + 2 arctan
(y
x

)
+ ln (x)− c2 = 0

ln
(

y2

x2 + 1
)

2 + 2 arctan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 + 2 arctan
(y
x

)
+ ln (x)− c2 = 0
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Figure 677: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 + 2 arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

16.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y − x

2x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2y − x) (b3 − a2)

2x+ y
− (2y − x)2 a3

(2x+ y)2

−
(
− 1
2x+ y

− 2(2y − x)
(2x+ y)2

)
(xa2 + ya3 + a1)

−
(

2
2x+ y

− 2y − x

(2x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2a2 − x2a3 − x2b2 − 2x2b3 + 2xya2 + 4xya3 + 4xyb2 − 2xyb3 − 2y2a2 + y2a3 + y2b2 + 2y2b3 − 5xb1 + 5ya1
(2x+ y)2

= 0

Setting the numerator to zero gives

(6E)2x2a2 − x2a3 − x2b2 − 2x2b3 + 2xya2 + 4xya3 + 4xyb2
− 2xyb3 − 2y2a2 + y2a3 + y2b2 + 2y2b3 − 5xb1 + 5ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v21 + 2a2v1v2 − 2a2v22 − a3v
2
1 + 4a3v1v2 + a3v

2
2 − b2v

2
1

+ 4b2v1v2 + b2v
2
2 − 2b3v21 − 2b3v1v2 + 2b3v22 + 5a1v2 − 5b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − a3 − b2 − 2b3) v21 + (2a2 + 4a3 + 4b2 − 2b3) v1v2
− 5b1v1 + (−2a2 + a3 + b2 + 2b3) v22 + 5a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

5a1 = 0
−5b1 = 0

−2a2 + a3 + b2 + 2b3 = 0
2a2 − a3 − b2 − 2b3 = 0

2a2 + 4a3 + 4b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
2y − x

2x+ y

)
(x)

= x2 + y2

2x+ y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+y2

2x+y

dy

Which results in

S = ln (x2 + y2)
2 + 2 arctan

(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y − x

2x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x− 2y
x2 + y2

Sy =
2x+ y

x2 + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2)
2 + 2 arctan

(y
x

)
= c1

Which simplifies to
ln (y2 + x2)

2 + 2 arctan
(y
x

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y−x
2x+y

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 + 2 arctan

(y
x

)
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Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 + 2 arctan

(y
x

)
= c1

Figure 678: Slope field plot

Verification of solutions

ln (y2 + x2)
2 + 2 arctan

(y
x

)
= c1

Verified OK.

16.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x+ y) dy = (2y − x) dx
(x− 2y) dx+(2x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x− 2y
N(x, y) = 2x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(x− 2y)

= −2
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And
∂N

∂x
= ∂

∂x
(2x+ y)

= 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = x − 2y and N = y + 2x by this integrating factor the
ode becomes exact. The new M,N are

M = x− 2y
y2 + x2

N = y + 2x
y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x+ y

x2 + y2

)
dy =

(
− x− 2y
x2 + y2

)
dx(

x− 2y
x2 + y2

)
dx+

(
2x+ y

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x− 2y
x2 + y2

N(x, y) = 2x+ y

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x− 2y
x2 + y2

)
= −2x2 − 2xy + 2y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
2x+ y

x2 + y2

)
= −2x2 − 2xy + 2y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x− 2y
x2 + y2

dx

(3)φ = ln (x2 + y2)
2 − 2 arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
+ 2x

y2
(

x2

y2
+ 1
) + f ′(y)

= 2x+ y

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x+y
x2+y2

. Therefore equation (4) becomes

(5)2x+ y

x2 + y2
= 2x+ y

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x2 + y2)
2 − 2 arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + y2)

2 − 2 arctan
(
x

y

)
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Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 − 2 arctan

(
x

y

)
= c1

Figure 679: Slope field plot

Verification of solutions

ln (y2 + x2)
2 − 2 arctan

(
x

y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve((2*x+y(x))*diff(y(x),x)+x-2*y(x) = 0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
4_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 36� �
DSolve[(2 x+y[x])y'[x]+(x-2 y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
y(x)
x

)
+ 1

2 log
(
y(x)2
x2 + 1

)
= − log(x) + c1, y(x)

]
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16.4 problem 447
16.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4381

Internal problem ID [3701]
Internal file name [OUTPUT/3194_Sunday_June_05_2022_08_58_49_AM_46099327/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 447.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(2x− y + 2) y′ − 3y = −3− 6x

16.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3(−1− 2x+ y)
−2x+ y − 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
3(−1− 2x+ y) (b3 − a2)

−2x+ y − 2 − 9(−1− 2x+ y)2 a3
(−2x+ y − 2)2

−
(

6
−2x+ y − 2 − 6(−1− 2x+ y)

(−2x+ y − 2)2
)
(xa2 + ya3 + a1)

−
(
− 3
−2x+ y − 2 + −3− 6x+ 3y

(−2x+ y − 2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

12x2a2 − 36x2a3 + 4x2b2 − 12x2b3 − 12xya2 + 36xya3 − 4xyb2 + 12xyb3 + 3y2a2 − 9y2a3 + y2b2 − 3y2b3 + 24xa2 − 36xa3 + 5xb2 − 18xb3 − 9ya2 + 24ya3 − 4yb2 + 6yb3 + 6a1 + 6a2 − 9a3 − 3b1 + 4b2 − 6b3
(2x− y + 2)2

= 0

Setting the numerator to zero gives

(6E)12x2a2 − 36x2a3 + 4x2b2 − 12x2b3 − 12xya2 + 36xya3 − 4xyb2 + 12xyb3
+ 3y2a2 − 9y2a3 + y2b2 − 3y2b3 + 24xa2 − 36xa3 + 5xb2 − 18xb3
− 9ya2 + 24ya3 − 4yb2 + 6yb3 + 6a1 + 6a2 − 9a3 − 3b1 + 4b2 − 6b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)12a2v21 − 12a2v1v2 + 3a2v22 − 36a3v21 + 36a3v1v2 − 9a3v22 + 4b2v21 − 4b2v1v2
+ b2v

2
2 − 12b3v21 + 12b3v1v2 − 3b3v22 + 24a2v1 − 9a2v2 − 36a3v1 + 24a3v2

+ 5b2v1 − 4b2v2 − 18b3v1 + 6b3v2 + 6a1 + 6a2 − 9a3 − 3b1 + 4b2 − 6b3 = 0

4382



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(12a2 − 36a3 + 4b2 − 12b3) v21 + (−12a2 + 36a3 − 4b2 + 12b3) v1v2
+ (24a2 − 36a3 + 5b2 − 18b3) v1 + (3a2 − 9a3 + b2 − 3b3) v22
+ (−9a2 + 24a3 − 4b2 + 6b3) v2 + 6a1 + 6a2 − 9a3 − 3b1 + 4b2 − 6b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−12a2 + 36a3 − 4b2 + 12b3 = 0
−9a2 + 24a3 − 4b2 + 6b3 = 0

3a2 − 9a3 + b2 − 3b3 = 0
12a2 − 36a3 + 4b2 − 12b3 = 0
24a2 − 36a3 + 5b2 − 18b3 = 0

6a1 + 6a2 − 9a3 − 3b1 + 4b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −2a3
a3 = a3

b1 = 2a1 + 7a3
b2 = 6a3
b3 = −3a3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2−
(
−3(−1− 2x+ y)

−2x+ y − 2

)
(1)

= 10x− 5y + 7
2x− y + 2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

10x−5y+7
2x−y+2

dy

Which results in

S = y

5 − 3 ln (−10x+ 5y − 7)
25

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3(−1− 2x+ y)
−2x+ y − 2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 6
50x− 25y + 35

Sy =
2x− y + 2
10x− 5y + 7
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3

5 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3

5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3R
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

5 − 3 ln (−10x+ 5y − 7)
25 = −3x

5 + c1

Which simplifies to

y

5 − 3 ln (−10x+ 5y − 7)
25 = −3x

5 + c1

Which gives

y = 2x−
3 LambertW

(
− e

25x
3 +7

3− 25c1
3

3

)
5 + 7

5
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3(−1−2x+y)
−2x+y−2

dS
dR

= −3
5

R = x

S = y

5 − 3 ln (−10x+ 5y − 7)
25

Summary
The solution(s) found are the following

(1)y = 2x−
3 LambertW

(
− e

25x
3 +7

3− 25c1
3

3

)
5 + 7

5
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Figure 680: Slope field plot

Verification of solutions

y = 2x−
3 LambertW

(
− e

25x
3 +7

3− 25c1
3

3

)
5 + 7

5

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve((2+2*x-y(x))*diff(y(x),x)+3+6*x-3*y(x) = 0,y(x), singsol=all)� �

y(x) = 2x−
3 LambertW

(
− c1e

25x
3 +7

3
3

)
5 + 7

5

3 Solution by Mathematica
Time used: 3.774 (sec). Leaf size: 41� �
DSolve[(2+2 x-y[x])y'[x]+3(1+2 x- y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3
5W

(
−e

25x
3 −1+c1

)
+ 2x+ 7

5
y(x) → 2x+ 7

5
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16.5 problem 448
16.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4389
16.5.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4395

Internal problem ID [3702]
Internal file name [OUTPUT/3195_Sunday_June_05_2022_08_58_53_AM_73829066/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 448.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], [_Abel , `2nd type `, `class C`],

_dAlembert]

(2x− y + 3) y′ = −2

16.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2
−2x+ y − 3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
2b3 − 2a2

−2x+ y − 3 −
4a3

(−2x+ y − 3)2
− 4(xa2 + ya3 + a1)

(−2x+ y − 3)2
+ 2xb2 + 2yb3 + 2b1

(−2x+ y − 3)2
= 0

Putting the above in normal form gives

4x2b2 − 4xyb2 + y2b2 + 14xb2 − 4b3x− 2a2y − 4ya3 − 6yb2 + 4yb3 − 4a1 + 6a2 − 4a3 + 2b1 + 9b2 − 6b3
(2x− y + 3)2

= 0

Setting the numerator to zero gives

(6E)4x2b2 − 4xyb2 + y2b2 + 14xb2 − 4b3x− 2a2y − 4ya3
− 6yb2 + 4yb3 − 4a1 + 6a2 − 4a3 + 2b1 + 9b2 − 6b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4b2v21 − 4b2v1v2 + b2v
2
2 − 2a2v2 − 4a3v2 + 14b2v1 − 6b2v2

− 4b3v1 + 4b3v2 − 4a1 + 6a2 − 4a3 + 2b1 + 9b2 − 6b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)4b2v21 − 4b2v1v2 + (14b2 − 4b3) v1 + b2v
2
2 + (−2a2 − 4a3 − 6b2 + 4b3) v2

− 4a1 + 6a2 − 4a3 + 2b1 + 9b2 − 6b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−4b2 = 0
4b2 = 0

14b2 − 4b3 = 0
−2a2 − 4a3 − 6b2 + 4b3 = 0

−4a1 + 6a2 − 4a3 + 2b1 + 9b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −2a3
a3 = a3

b1 = 2a1 + 8a3
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2−
(

2
−2x+ y − 3

)
(1)

= 4x− 2y + 8
2x− y + 3

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x−2y+8
2x−y+3

dy

Which results in

S = y

2 + ln (−2x+ y − 4)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2
−2x+ y − 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x− y + 4

Sy =
2x− y + 3
4x− 2y + 8
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

2 + ln (−2x+ y − 4)
2 = c1

Which simplifies to

y

2 + ln (−2x+ y − 4)
2 = c1

Which gives

y = LambertW
(
e−2x+2c1−4)+ 2x+ 4
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2
−2x+y−3

dS
dR

= 0

R = x

S = y

2 + ln (−2x+ y − 4)
2

Summary
The solution(s) found are the following

(1)y = LambertW
(
e−2x+2c1−4)+ 2x+ 4
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Figure 681: Slope field plot

Verification of solutions

y = LambertW
(
e−2x+2c1−4)+ 2x+ 4

Verified OK.

16.5.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x− y + 3) dy = (−2) dx
(2) dx+(2x− y + 3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2
N(x, y) = 2x− y + 3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2)

= 0

And
∂N

∂x
= ∂

∂x
(2x− y + 3)

= 2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x− y + 3((0)− (2))

= − 2
2x− y + 3

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2((2)− (0))

= 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
1 dy

The result of integrating gives

µ = ey

= ey

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= ey(2)
= 2 ey

And

N = µN

= ey(2x− y + 3)
= (2x− y + 3) ey
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(2 ey) + ((2x− y + 3) ey) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2 ey dx

(3)φ = 2x ey + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x ey + f ′(y)

But equation (2) says that ∂φ
∂y

= (2x− y + 3) ey. Therefore equation (4) becomes

(5)(2x− y + 3) ey = 2x ey + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y ey + 3 ey

= ey(−y + 3)

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(ey(−y + 3)) dy

f(y) = −ey(y − 4) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 2x ey − ey(y − 4) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2x ey − ey(y − 4)

The solution becomes

y = LambertW
(
−c1e−2x−4)+ 2x+ 4

Summary
The solution(s) found are the following

(1)y = LambertW
(
−c1e−2x−4)+ 2x+ 4

Figure 682: Slope field plot

Verification of solutions

y = LambertW
(
−c1e−2x−4)+ 2x+ 4

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve((3+2*x-y(x))*diff(y(x),x)+2 = 0,y(x), singsol=all)� �

y(x) = LambertW
(
−2c1e−2x−4)+ 2x+ 4

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 22� �
DSolve[(3+2 x-y[x])y'[x]+2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W
(
−2c1e−2(x+2))+ 2x+ 4
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16.6 problem 449
16.6.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4401
16.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4405

Internal problem ID [3703]
Internal file name [OUTPUT/3196_Sunday_June_05_2022_08_58_56_AM_73263855/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 449.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(4 + 2x− y) y′ − 2y = −x− 5

16.6.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −−5−X − x0 + 2Y (X) + 2y0

−2X − 2x0 + Y (X) + y0 − 4

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
y0 = 2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −−X + 2Y (X)

−2X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −−X + 2Y
−2X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X + 2Y and N = 2X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u+ 1

u− 2
du
dX =

−2u(X)+1
u(X)−2 − u(X)

X

Or
d

dX
u(X)−

−2u(X)+1
u(X)−2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)− 2

(
d

dX
u(X)

)
X + u(X)2 − 1 = 0

Or
(u(X)− 2)X

(
d

dX
u(X)

)
+ u(X)2 − 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u2 − 1
(u− 2)X
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Where f(X) = − 1
X

and g(u) = u2−1
u−2 . Integrating both sides gives

1
u2−1
u−2

du = − 1
X

dX

∫ 1
u2−1
u−2

du =
∫

− 1
X

dX

− ln (u− 1)
2 + 3 ln (u+ 1)

2 = − ln (X) + c2

The above can be written as

− ln (u− 1) + 3 ln (u+ 1)
2 = − ln (X) + c2

− ln (u− 1) + 3 ln (u+ 1) = (2) (− ln (X) + c2)
= −2 ln (X) + 2c2

Raising both side to exponential gives

e− ln(u−1)+3 ln(u+1) = e−2 ln(X)+2c2

Which simplifies to

(u+ 1)3

u− 1 = 2c2
X2

= c3
X2

Which simplifies to
(u(X) + 1)3

u (X)− 1 = c3e2c2
X2

The solution is
(u(X) + 1)3

u (X)− 1 = c3e2c2
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

+ 1
)3

Y (X)
X

− 1
= c3e2c2

X2
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Which simplifies to

−(Y (X) +X)3

−Y (X) +X
= c3e2c2

Using the solution for Y (X)

−(Y (X) +X)3

−Y (X) +X
= c3e2c2

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 2
X = x− 1

Then the solution in y becomes

−(y + x− 1)3

−y + 3 + x
= c3e2c2

Summary
The solution(s) found are the following

(1)−(y + x− 1)3

−y + 3 + x
= c3e2c2
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Figure 683: Slope field plot

Verification of solutions

−(y + x− 1)3

−y + 3 + x
= c3e2c2

Verified OK.

16.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−5− x+ 2y
−2x+ y − 4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−5− x+ 2y) (b3 − a2)

−2x+ y − 4 − (−5− x+ 2y)2 a3
(−2x+ y − 4)2

−
(

1
−2x+ y − 4 − 2(−5− x+ 2y)

(−2x+ y − 4)2
)
(xa2 + ya3 + a1)

−
(
− 2
−2x+ y − 4 + −5− x+ 2y

(−2x+ y − 4)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2a2 − x2a3 + x2b2 − 2x2b3 − 2xya2 + 4xya3 − 4xyb2 + 2xyb3 + 2y2a2 − y2a3 + y2b2 − 2y2b3 + 8xa2 − 10xa3 − 3xb1 + 13xb2 − 14xb3 + 3ya1 − 13ya2 + 14ya3 − 8yb2 + 10yb3 − 6a1 + 20a2 − 25a3 − 3b1 + 16b2 − 20b3
(2x− y + 4)2

= 0

Setting the numerator to zero gives

(6E)2x2a2 − x2a3 + x2b2 − 2x2b3 − 2xya2 + 4xya3 − 4xyb2 + 2xyb3 + 2y2a2
− y2a3 + y2b2 − 2y2b3 + 8xa2 − 10xa3 − 3xb1 + 13xb2 − 14xb3 + 3ya1
− 13ya2+14ya3− 8yb2+10yb3− 6a1+20a2− 25a3− 3b1+16b2− 20b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v21 − 2a2v1v2 + 2a2v22 − a3v
2
1 + 4a3v1v2 − a3v

2
2 + b2v

2
1 − 4b2v1v2 + b2v

2
2

−2b3v21+2b3v1v2−2b3v22+3a1v2+8a2v1−13a2v2−10a3v1+14a3v2−3b1v1
+13b2v1−8b2v2−14b3v1+10b3v2−6a1+20a2−25a3−3b1+16b2−20b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − a3 + b2 − 2b3) v21 + (−2a2 + 4a3 − 4b2 + 2b3) v1v2
+ (8a2 − 10a3 − 3b1 + 13b2 − 14b3) v1 + (2a2 − a3 + b2 − 2b3) v22
+(3a1−13a2+14a3−8b2+10b3) v2−6a1+20a2−25a3−3b1+16b2−20b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 + 4a3 − 4b2 + 2b3 = 0
2a2 − a3 + b2 − 2b3 = 0

3a1 − 13a2 + 14a3 − 8b2 + 10b3 = 0
8a2 − 10a3 − 3b1 + 13b2 − 14b3 = 0

−6a1 + 20a2 − 25a3 − 3b1 + 16b2 − 20b3 = 0

Solving the above equations for the unknowns gives

a1 = −2b2 + b3

a2 = b3

a3 = b2

b1 = b2 − 2b3
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 1
η = y − 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 2−
(
−−5− x+ 2y
−2x+ y − 4

)
(x+ 1)

= x2 − y2 + 2x+ 4y − 3
2x− y + 4

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−y2+2x+4y−3
2x−y+4

dy

Which results in

S = − ln (y − 3− x)
2 + 3 ln (x− 1 + y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−5− x+ 2y
−2x+ y − 4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 5 + x− 2y
(x− 1 + y) (x+ 3− y)

Sy =
2x− y + 4

(x− 1 + y) (x+ 3− y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y − 3− x)
2 + 3 ln (y + x− 1)

2 = c1

Which simplifies to

− ln (y − 3− x)
2 + 3 ln (y + x− 1)

2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−5−x+2y
−2x+y−4

dS
dR

= 0

R = x

S = − ln (y − 3− x)
2 + 3 ln (x− 1 + y)

2
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Summary
The solution(s) found are the following

(1)− ln (y − 3− x)
2 + 3 ln (y + x− 1)

2 = c1

Figure 684: Slope field plot

Verification of solutions

− ln (y − 3− x)
2 + 3 ln (y + x− 1)

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.734 (sec). Leaf size: 117� �
dsolve((4+2*x-y(x))*diff(y(x),x)+5+x-2*y(x) = 0,y(x), singsol=all)� �
y(x)

=
1
2 +

(
1−i

√
3
)(

27c1(x+1)+3
√
3
√

27c21(x+1)2−1
) 2

3

6 + i
√
3

2 −
(
3
√
3
√

27c21 (x+ 1)2 − 1 + 27c1x+ 27c1
) 1

3

(x− 1) c1(
27c1 (x+ 1) + 3

√
3
√

27c21 (x+ 1)2 − 1
) 1

3

c1

3 Solution by Mathematica
Time used: 60.172 (sec). Leaf size: 1601� �
DSolve[(4+2 x-y[x])y'[x]+5+x-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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16.7 problem 450
16.7.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4412
16.7.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4414
16.7.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4417
16.7.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4423
16.7.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4427

Internal problem ID [3704]
Internal file name [OUTPUT/3197_Sunday_June_05_2022_08_59_02_AM_23992805/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 450.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(5− 2x− y) y′ − 2y = x− 4

16.7.1 Solving as differentialType ode

Writing the ode as

y′ = −4 + x+ 2y
5− 2x− y

(1)

Which becomes

(−5 + y) dy = (−2x) dy + (−x− 2y + 4) dx (2)

But the RHS is complete differential because

(−2x) dy + (−x− 2y + 4) dx = d

(
−1
2x

2 − 2xy + 4x
)
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Hence (2) becomes

(−5 + y) dy = d

(
−1
2x

2 − 2xy + 4x
)

Integrating both sides gives gives these solutions

y = −2x+ 5 +
√
3x2 + 2c1 − 12x+ 25 + c1

y = −2x+ 5−
√
3x2 + 2c1 − 12x+ 25 + c1

Summary
The solution(s) found are the following

(1)y = −2x+ 5 +
√
3x2 + 2c1 − 12x+ 25 + c1

(2)y = −2x+ 5−
√
3x2 + 2c1 − 12x+ 25 + c1

Figure 685: Slope field plot

Verification of solutions

y = −2x+ 5 +
√

3x2 + 2c1 − 12x+ 25 + c1

Verified OK.

y = −2x+ 5−
√
3x2 + 2c1 − 12x+ 25 + c1

Verified OK.
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16.7.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −−4 +X + x0 + 2Y (X) + 2y0

−5 + 2X + 2x0 + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 2
y0 = 1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −X + 2Y (X)

2X + Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= −X + 2Y
2X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X − 2Y and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u− 1

u+ 2
du
dX =

−2u(X)−1
u(X)+2 − u(X)

X
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Or
d

dX
u(X)−

−2u(X)−1
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + 4u(X) + 1 = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + 4u(X) + 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 + 4u+ 1
X (u+ 2)

Where f(X) = − 1
X

and g(u) = u2+4u+1
u+2 . Integrating both sides gives

1
u2+4u+1

u+2
du = − 1

X
dX

∫ 1
u2+4u+1

u+2
du =

∫
− 1
X

dX

ln (u2 + 4u+ 1)
2 = − ln (X) + c2

Raising both side to exponential gives
√
u2 + 4u+ 1 = e− ln(X)+c2

Which simplifies to
√
u2 + 4u+ 1 = c3

X

Which simplifies to √
u (X)2 + 4u (X) + 1 = c3ec2

X

The solution is √
u (X)2 + 4u (X) + 1 = c3ec2

X

4415



Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution √

Y (X)2

X2 + 4Y (X)
X

+ 1 = c3ec2
X

Using the solution for Y (X)√
Y (X)2 + 4Y (X)X +X2

X2 = c3ec2
X

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
X = x+ 2

Then the solution in y becomes√
(y − 1)2 + 4 (y − 1) (x− 2) + (x− 2)2

(x− 2)2
= c3ec2

x− 2

Summary
The solution(s) found are the following

(1)

√
(y − 1)2 + 4 (y − 1) (x− 2) + (x− 2)2

(x− 2)2
= c3ec2

x− 2
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Figure 686: Slope field plot

Verification of solutions√
(y − 1)2 + 4 (y − 1) (x− 2) + (x− 2)2

(x− 2)2
= c3ec2

x− 2

Verified OK.

16.7.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x+ 2y − 4
−5 + 2x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ 2y − 4) (b3 − a2)

−5 + 2x+ y
− (x+ 2y − 4)2 a3

(−5 + 2x+ y)2

−
(
− 1
−5 + 2x+ y

+ 2x+ 4y − 8
(−5 + 2x+ y)2

)
(xa2 + ya3 + a1)

−
(
− 2
−5 + 2x+ y

+ x+ 2y − 4
(−5 + 2x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2a2 − x2a3 + 7x2b2 − 2x2b3 + 2xya2 − 4xya3 + 4xyb2 − 2xyb3 + 2y2a2 − 7y2a3 + y2b2 − 2y2b3 − 10xa2 + 8xa3 + 3xb1 − 26xb2 + 13xb3 − 3ya1 − 14ya2 + 19ya3 − 10yb2 + 8yb3 + 3a1 + 20a2 − 16a3 − 6b1 + 25b2 − 20b3
(−5 + 2x+ y)2

= 0

Setting the numerator to zero gives

(6E)2x2a2 − x2a3 + 7x2b2 − 2x2b3 + 2xya2 − 4xya3 + 4xyb2 − 2xyb3 + 2y2a2
− 7y2a3 + y2b2 − 2y2b3 − 10xa2 + 8xa3 + 3xb1 − 26xb2 + 13xb3 − 3ya1
− 14ya2+19ya3− 10yb2+8yb3+3a1+20a2− 16a3− 6b1+25b2− 20b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v21 + 2a2v1v2 + 2a2v22 − a3v
2
1 − 4a3v1v2 − 7a3v22 + 7b2v21 + 4b2v1v2 + b2v

2
2

−2b3v21−2b3v1v2−2b3v22−3a1v2−10a2v1−14a2v2+8a3v1+19a3v2+3b1v1
−26b2v1−10b2v2+13b3v1+8b3v2+3a1+20a2−16a3−6b1+25b2−20b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(2a2 − a3 + 7b2 − 2b3) v21 + (2a2 − 4a3 + 4b2 − 2b3) v1v2
+ (−10a2 + 8a3 + 3b1 − 26b2 + 13b3) v1 + (2a2 − 7a3 + b2 − 2b3) v22
+ (−3a1 − 14a2 + 19a3 − 10b2 + 8b3) v2 + 3a1
+ 20a2 − 16a3 − 6b1 + 25b2 − 20b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a2 − 7a3 + b2 − 2b3 = 0
2a2 − 4a3 + 4b2 − 2b3 = 0
2a2 − a3 + 7b2 − 2b3 = 0

−3a1 − 14a2 + 19a3 − 10b2 + 8b3 = 0
−10a2 + 8a3 + 3b1 − 26b2 + 13b3 = 0

3a1 + 20a2 − 16a3 − 6b1 + 25b2 − 20b3 = 0

Solving the above equations for the unknowns gives

a1 = 9b2 − 2b3
a2 = −4b2 + b3

a3 = −b2

b1 = −2b2 − b3

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 2
η = y − 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
− x+ 2y − 4
−5 + 2x+ y

)
(x− 2)

= x2 + 4xy + y2 − 8x− 10y + 13
−5 + 2x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+4xy+y2−8x−10y+13
−5+2x+y

dy

Which results in

S = ln (x2 + 4xy + y2 − 8x− 10y + 13)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x+ 2y − 4
−5 + 2x+ y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ 2y − 4
x2 + (4y − 8)x+ y2 − 10y + 13

Sy =
−5 + 2x+ y

x2 + (4y − 8)x+ y2 − 10y + 13

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + (4y − 8)x+ y2 − 10y + 13)
2 = c1

Which simplifies to

ln (x2 + (4y − 8)x+ y2 − 10y + 13)
2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x+2y−4
−5+2x+y

dS
dR

= 0

R = x

S = ln (x2 + (4y − 8)x+ y2 − 10y + 13)
2

Summary
The solution(s) found are the following

(1)ln (x2 + (4y − 8)x+ y2 − 10y + 13)
2 = c1
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Figure 687: Slope field plot

Verification of solutions

ln (x2 + (4y − 8)x+ y2 − 10y + 13)
2 = c1

Verified OK.

16.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(5− 2x− y) dy = (x+ 2y − 4) dx
(−x− 2y + 4) dx+(5− 2x− y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x− 2y + 4
N(x, y) = 5− 2x− y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x− 2y + 4)

= −2

And
∂N

∂x
= ∂

∂x
(5− 2x− y)

= −2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− 2y + 4dx

(3)φ = −x(x+ 4y − 8)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 5− 2x− y. Therefore equation (4) becomes

(5)5− 2x− y = −2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 5− y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(5− y) dy

f(y) = 5y − 1
2y

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x+ 4y − 8)
2 + 5y − y2

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x+ 4y − 8)
2 + 5y − y2

2

Summary
The solution(s) found are the following

(1)−x(x+ 4y − 8)
2 + 5y − y2

2 = c1

Figure 688: Slope field plot

Verification of solutions

−x(x+ 4y − 8)
2 + 5y − y2

2 = c1

Verified OK.
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16.7.5 Maple step by step solution

Let’s solve
(5− 2x− y) y′ − 2y = x− 4

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−2 = −2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x− 2y + 4) dx+ f1(y)

• Evaluate integral
F (x, y) = −x2

2 − 2xy + 4x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
5− 2x− y = −2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 5− y

• Solve for f1(y)
f1(y) = 5y − 1

2y
2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −1
2x

2 − 2xy + 4x+ 5y − 1
2y

2

• Substitute F (x, y) into the solution of the ODE
−1

2x
2 − 2xy + 4x+ 5y − 1

2y
2 = c1

• Solve for y{
y = −2x+ 5−

√
3x2 − 2c1 − 12x+ 25, y = −2x+ 5 +

√
3x2 − 2c1 − 12x+ 25

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.485 (sec). Leaf size: 32� �
dsolve((5-2*x-y(x))*diff(y(x),x)+4-x-2*y(x) = 0,y(x), singsol=all)� �

y(x) =
−
√

3 (−2 + x)2 c21 + 1 + (−2x+ 5) c1
c1
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3 Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 53� �
DSolve[(5-2 x-y[x])y'[x]+4-x-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

3x2 − 12x+ 25 + c1 − 2x+ 5
y(x) →

√
3x2 − 12x+ 25 + c1 − 2x+ 5
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16.8 problem 451
16.8.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4430
16.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4434

Internal problem ID [3705]
Internal file name [OUTPUT/3198_Sunday_June_05_2022_08_59_07_AM_6926323/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 451.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(1− 3x+ y) y′ + 2y = 2x

16.8.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 2(Y (X) + y0 −X − x0)

1− 3X − 3x0 + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
1
2

y0 =
1
2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 2(Y (X)−X)

−3X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −2(Y −X)
−3X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2Y − 2X and N = 3X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u+ 2

u− 3
du
dX =

−2u(X)+2
u(X)−3 − u(X)

X

Or
d

dX
u(X)−

−2u(X)+2
u(X)−3 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + u(X)2 − u(X)− 2 = 0

Or
X(u(X)− 3)

(
d

dX
u(X)

)
+ u(X)2 − u(X)− 2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − u− 2
X (u− 3)
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Where f(X) = − 1
X

and g(u) = u2−u−2
u−3 . Integrating both sides gives

1
u2−u−2
u−3

du = − 1
X

dX

∫ 1
u2−u−2
u−3

du =
∫

− 1
X

dX

4 ln (u+ 1)
3 − ln (u− 2)

3 = − ln (X) + c2

The above can be written as

4 ln (u+ 1)− ln (u− 2)
3 = − ln (X) + c2

4 ln (u+ 1)− ln (u− 2) = (3) (− ln (X) + c2)
= −3 ln (X) + 3c2

Raising both side to exponential gives

e4 ln(u+1)−ln(u−2) = e−3 ln(X)+3c2

Which simplifies to

(u+ 1)4

u− 2 = 3c2
X3

= c3
X3

Which simplifies to

u(X) = RootOf
(
_Z4 + 4_Z3 + 6_Z2 +

(
−c3e3c2

X3 + 4
)
_Z+ 2c3e3c2

X3 + 1
)

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X RootOf
(
_Z4X3 + 4_Z3X3 + 6_Z2X3 +

(
−c3e3c2 + 4X3)_Z+ 2c3e3c2 +X3)

Using the solution for Y (X)

Y (X) = X RootOf
(
_Z4X3 + 4_Z3X3 + 6_Z2X3 +

(
−c3e3c2 + 4X3)_Z+ 2c3e3c2 +X3)

4432



And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
2

X = x+ 1
2

Then the solution in y becomes

y − 1
2 =

(
x− 1

2

)
RootOf

((
8x3 − 12x2 + 6x− 1

)
_Z4 +

(
32x3 − 48x2 + 24x− 4

)
_Z3 +

(
48x3 − 72x2 + 36x− 6

)
_Z2 +

(
−8c3e3c2 + 32x3 − 48x2 + 24x− 4

)
_Z+ 16c3e3c2 + 8x3 − 12x2 + 6x− 1

)
Summary
The solution(s) found are the following

(1)
y − 1

2 =
(
x− 1

2

)
RootOf

((
8x3 − 12x2 +6x− 1

)
_Z4 +

(
32x3 − 48x2 +24x− 4

)
_Z3

+
(
48x3 − 72x2 + 36x− 6

)
_Z2 +

(
−8c3e3c2 + 32x3 − 48x2 + 24x− 4

)
_Z

+ 16c3e3c2 + 8x3 − 12x2 + 6x− 1
)

Figure 689: Slope field plot
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Verification of solutions

y − 1
2 =

(
x− 1

2

)
RootOf

((
8x3 − 12x2 + 6x− 1

)
_Z4 +

(
32x3 − 48x2 + 24x− 4

)
_Z3

+
(
48x3 − 72x2 + 36x− 6

)
_Z2 +

(
−8c3e3c2 + 32x3 − 48x2 + 24x− 4

)
_Z

+ 16c3e3c2 + 8x3 − 12x2 + 6x− 1
)

Verified OK.

16.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2(y − x)
1− 3x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2(y − x) (b3 − a2)

1− 3x+ y
− 4(y − x)2 a3

(1− 3x+ y)2

−
(

2
1− 3x+ y

− 6(y − x)
(1− 3x+ y)2

)
(xa2 + ya3 + a1)

−
(
− 2
1− 3x+ y

+ 2y − 2x
(1− 3x+ y)2

)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

6x2a2 − 4x2a3 + 5x2b2 − 6x2b3 − 4xya2 + 8xya3 − 6xyb2 + 4xyb3 + 2y2a2 + y2b2 − 2y2b3 − 4xa2 − 4xb1 − 4xb2 + 2xb3 + 4ya1 + 2ya2 − 2ya3 + 2yb2 − 2a1 + 2b1 + b2

(−1 + 3x− y)2
= 0

Setting the numerator to zero gives

(6E)6x2a2 − 4x2a3 + 5x2b2 − 6x2b3 − 4xya2 + 8xya3 − 6xyb2
+ 4xyb3 + 2y2a2 + y2b2 − 2y2b3 − 4xa2 − 4xb1 − 4xb2
+ 2xb3 + 4ya1 + 2ya2 − 2ya3 + 2yb2 − 2a1 + 2b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v21 − 4a2v1v2 + 2a2v22 − 4a3v21 + 8a3v1v2 + 5b2v21 − 6b2v1v2
+ b2v

2
2 − 6b3v21 + 4b3v1v2 − 2b3v22 + 4a1v2 − 4a2v1 + 2a2v2

− 2a3v2 − 4b1v1 − 4b2v1 + 2b2v2 + 2b3v1 − 2a1 + 2b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(6a2 − 4a3 + 5b2 − 6b3) v21 + (−4a2 + 8a3 − 6b2 + 4b3) v1v2
+ (−4a2 − 4b1 − 4b2 + 2b3) v1 + (2a2 + b2 − 2b3) v22
+ (4a1 + 2a2 − 2a3 + 2b2) v2 − 2a1 + 2b1 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 + 2b1 + b2 = 0
2a2 + b2 − 2b3 = 0

4a1 + 2a2 − 2a3 + 2b2 = 0
−4a2 + 8a3 − 6b2 + 4b3 = 0
−4a2 − 4b1 − 4b2 + 2b3 = 0
6a2 − 4a3 + 5b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −3a1 + b1

a3 = a1 − b1

b1 = b1

b2 = 2a1 − 2b1
b3 = −2a1

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y + x

η = 1− 2x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1− 2x−
(
− 2(y − x)
1− 3x+ y

)
(−y + x)

= −4x2 − 2xy + 2y2 + 5x− y − 1
−1 + 3x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x2−2xy+2y2+5x−y−1
−1+3x−y

dy

Which results in

S = ln (2y + 1− 4x)
6 − 2 ln (x− 1 + y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2(y − x)
1− 3x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y − 2x
(x− 1 + y) (−2y + 4x− 1)

Sy =
1− 3x+ y

(x− 1 + y) (−2y + 4x− 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (2y − 4x+ 1)
6 − 2 ln (y + x− 1)

3 = c1

Which simplifies to

ln (2y − 4x+ 1)
6 − 2 ln (y + x− 1)

3 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2(y−x)
1−3x+y

dS
dR

= 0

R = x

S = ln (2y + 1− 4x)
6 − 2 ln (x− 1 + y)

3

Summary
The solution(s) found are the following

(1)ln (2y − 4x+ 1)
6 − 2 ln (y + x− 1)

3 = c1
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Figure 690: Slope field plot

Verification of solutions

ln (2y − 4x+ 1)
6 − 2 ln (y + x− 1)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 1.172 (sec). Leaf size: 47� �
dsolve((1-3*x+y(x))*diff(y(x),x) = 2*x-2*y(x),y(x), singsol=all)� �
y(x) = 1

2 +
(2x− 1)

(
−1− RootOf

(
−3 + (8c1x3 − 12c1x2 + 6c1x− c1)_Z4 − _Z

))
2

3 Solution by Mathematica
Time used: 60.161 (sec). Leaf size: 4937� �
DSolve[(1-3 x+y[x])y'[x]==2(x-y[x]),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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16.9 problem 452
16.9.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4441
16.9.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4443
16.9.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4446
16.9.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4452
16.9.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4456

Internal problem ID [3706]
Internal file name [OUTPUT/3199_Sunday_June_05_2022_08_59_13_AM_42444097/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 452.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(2− 3x+ y) y′ − 3y = −5 + 2x

16.9.1 Solving as differentialType ode

Writing the ode as

y′ = −5 + 2x+ 3y
2− 3x+ y

(1)

Which becomes

(−y − 2) dy = (−3x) dy + (5− 2x− 3y) dx (2)

But the RHS is complete differential because

(−3x) dy + (5− 2x− 3y) dx = d
(
−x2 − 3xy + 5x

)
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Hence (2) becomes

(−y − 2) dy = d
(
−x2 − 3xy + 5x

)
Integrating both sides gives gives these solutions

y = 3x− 2 +
√

11x2 − 2c1 − 22x+ 4 + c1

y = 3x− 2−
√

11x2 − 2c1 − 22x+ 4 + c1

Summary
The solution(s) found are the following

(1)y = 3x− 2 +
√
11x2 − 2c1 − 22x+ 4 + c1

(2)y = 3x− 2−
√
11x2 − 2c1 − 22x+ 4 + c1

Figure 691: Slope field plot

Verification of solutions

y = 3x− 2 +
√
11x2 − 2c1 − 22x+ 4 + c1

Verified OK.

y = 3x− 2−
√
11x2 − 2c1 − 22x+ 4 + c1

Verified OK.
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16.9.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −5 + 2X + 2x0 + 3Y (X) + 3y0

2− 3X − 3x0 + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 2X + 3Y (X)

−3X + Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= 2X + 3Y
−3X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2X − 3Y and N = 3X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 3u+ 2

u− 3
du
dX =

3u(X)+2
u(X)−3 − u(X)

X

4443



Or
d

dX
u(X)−

3u(X)+2
u(X)−3 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + u(X)2 − 6u(X)− 2 = 0

Or
X(u(X)− 3)

(
d

dX
u(X)

)
+ u(X)2 − 6u(X)− 2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − 6u− 2
X (u− 3)

Where f(X) = − 1
X

and g(u) = u2−6u−2
u−3 . Integrating both sides gives

1
u2−6u−2

u−3
du = − 1

X
dX

∫ 1
u2−6u−2

u−3
du =

∫
− 1
X

dX

ln (u2 − 6u− 2)
2 = − ln (X) + c2

Raising both side to exponential gives
√
u2 − 6u− 2 = e− ln(X)+c2

Which simplifies to
√
u2 − 6u− 2 = c3

X

Which simplifies to √
u (X)2 − 6u (X)− 2 = c3ec2

X

The solution is √
u (X)2 − 6u (X)− 2 = c3ec2

X
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Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution √

Y (X)2

X2 − 6Y (X)
X

− 2 = c3ec2
X

Using the solution for Y (X)√
Y (X)2 − 6Y (X)X − 2X2

X2 = c3ec2
X

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
X = x+ 1

Then the solution in y becomes√
(y − 1)2 − 6 (y − 1) (x− 1)− 2 (x− 1)2

(x− 1)2
= c3ec2

x− 1

Summary
The solution(s) found are the following

(1)

√
(y − 1)2 − 6 (y − 1) (x− 1)− 2 (x− 1)2

(x− 1)2
= c3ec2

x− 1
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Figure 692: Slope field plot

Verification of solutions√
(y − 1)2 − 6 (y − 1) (x− 1)− 2 (x− 1)2

(x− 1)2
= c3ec2

x− 1

Verified OK.

16.9.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −5 + 2x+ 3y
2− 3x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−5 + 2x+ 3y) (b3 − a2)

2− 3x+ y
− (−5 + 2x+ 3y)2 a3

(2− 3x+ y)2

−
(

2
2− 3x+ y

+ −15 + 6x+ 9y
(2− 3x+ y)2

)
(xa2 + ya3 + a1)

−
(

3
2− 3x+ y

− −5 + 2x+ 3y
(2− 3x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

6x2a2 − 4x2a3 + 20x2b2 − 6x2b3 − 4xya2 − 12xya3 − 6xyb2 + 4xyb3 − 3y2a2 − 20y2a3 + y2b2 + 3y2b3 − 8xa2 + 20xa3 + 11xb1 − 23xb2 + 19xb3 − 11ya1 − ya2 + 41ya3 + 4yb2 − 10yb3 + 11a1 + 10a2 − 25a3 − 11b1 + 4b2 − 10b3
(−2 + 3x− y)2

= 0

Setting the numerator to zero gives

(6E)6x2a2 − 4x2a3 + 20x2b2 − 6x2b3 − 4xya2 − 12xya3 − 6xyb2 + 4xyb3 − 3y2a2
− 20y2a3 + y2b2 + 3y2b3 − 8xa2 + 20xa3 + 11xb1 − 23xb2 + 19xb3 − 11ya1
− ya2 +41ya3 +4yb2 − 10yb3 +11a1 +10a2 − 25a3 − 11b1 +4b2 − 10b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v21−4a2v1v2−3a2v22−4a3v21−12a3v1v2−20a3v22+20b2v21−6b2v1v2+b2v
2
2

−6b3v21+4b3v1v2+3b3v22−11a1v2−8a2v1−a2v2+20a3v1+41a3v2+11b1v1
−23b2v1+4b2v2+19b3v1−10b3v2+11a1+10a2−25a3−11b1+4b2−10b3 =0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(6a2 − 4a3 + 20b2 − 6b3) v21 + (−4a2 − 12a3 − 6b2 + 4b3) v1v2
+ (−8a2 + 20a3 + 11b1 − 23b2 + 19b3) v1 + (−3a2 − 20a3 + b2 + 3b3) v22
+ (−11a1 − a2 + 41a3 + 4b2 − 10b3) v2 + 11a1
+ 10a2 − 25a3 − 11b1 + 4b2 − 10b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a2 − 12a3 − 6b2 + 4b3 = 0
−3a2 − 20a3 + b2 + 3b3 = 0
6a2 − 4a3 + 20b2 − 6b3 = 0

−11a1 − a2 + 41a3 + 4b2 − 10b3 = 0
−8a2 + 20a3 + 11b1 − 23b2 + 19b3 = 0

11a1 + 10a2 − 25a3 − 11b1 + 4b2 − 10b3 = 0

Solving the above equations for the unknowns gives

a1 = 5a3 − b3

a2 = −6a3 + b3

a3 = a3

b1 = −2a3 − b3

b2 = 2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y − 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
−5 + 2x+ 3y
2− 3x+ y

)
(x− 1)

= 2x2 + 6xy − y2 − 10x− 4y + 7
−2 + 3x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2+6xy−y2−10x−4y+7
−2+3x−y

dy

Which results in

S = ln (−2x2 − 6xy + y2 + 10x+ 4y − 7)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −5 + 2x+ 3y
2− 3x+ y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −5 + 2x+ 3y
2x2 + (6y − 10)x− y2 − 4y + 7

Sy =
−2 + 3x− y

2x2 + (6y − 10)x− y2 − 4y + 7

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−2x2 + (−6y + 10)x+ y2 + 4y − 7)
2 = c1

Which simplifies to

ln (−2x2 + (−6y + 10)x+ y2 + 4y − 7)
2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −5+2x+3y
2−3x+y

dS
dR

= 0

R = x

S = ln (−2x2 + (−6y + 10)x+ y2 + 4y − 7)
2

Summary
The solution(s) found are the following

(1)ln (−2x2 + (−6y + 10)x+ y2 + 4y − 7)
2 = c1
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Figure 693: Slope field plot

Verification of solutions

ln (−2x2 + (−6y + 10)x+ y2 + 4y − 7)
2 = c1

Verified OK.

16.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2− 3x+ y) dy = (−5 + 2x+ 3y) dx
(5− 2x− 3y) dx+(2− 3x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 5− 2x− 3y
N(x, y) = 2− 3x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(5− 2x− 3y)

= −3

And
∂N

∂x
= ∂

∂x
(2− 3x+ y)

= −3
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
5− 2x− 3y dx

(3)φ = −x(x+ 3y − 5) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2− 3x+ y. Therefore equation (4) becomes

(5)2− 3x+ y = −3x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y + 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y + 2) dy

f(y) = 1
2y

2 + 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x+ 3y − 5) + y2

2 + 2y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x+ 3y − 5) + y2

2 + 2y

Summary
The solution(s) found are the following

(1)−x(x+ 3y − 5) + y2

2 + 2y = c1

Figure 694: Slope field plot

Verification of solutions

−x(x+ 3y − 5) + y2

2 + 2y = c1

Verified OK.
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16.9.5 Maple step by step solution

Let’s solve
(2− 3x+ y) y′ − 3y = −5 + 2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−3 = −3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(5− 2x− 3y) dx+ f1(y)

• Evaluate integral
F (x, y) = −x2 − 3xy + 5x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2− 3x+ y = −3x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y + 2

• Solve for f1(y)
f1(y) = 1

2y
2 + 2y

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −x2 − 3xy + 5x+ 1
2y

2 + 2y

• Substitute F (x, y) into the solution of the ODE
−x2 − 3xy + 5x+ 1

2y
2 + 2y = c1

• Solve for y{
y = 3x− 2−

√
11x2 + 2c1 − 22x+ 4, y = 3x− 2 +

√
11x2 + 2c1 − 22x+ 4

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 6.031 (sec). Leaf size: 32� �
dsolve((2-3*x+y(x))*diff(y(x),x)+5-2*x-3*y(x) = 0,y(x), singsol=all)� �

y(x) =
−
√
11 (x− 1)2 c21 + 1 + (−2 + 3x) c1

c1
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3 Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 63� �
DSolve[(2-3 x+y[x])y'[x]+5-2 x-3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√
−11x2 + 22x− 4− c1 + 3x− 2

y(x) → i
√

−11x2 + 22x− 4− c1 + 3x− 2
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16.10 problem 453
16.10.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4459
16.10.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4461

Internal problem ID [3707]
Internal file name [OUTPUT/3200_Sunday_June_05_2022_08_59_18_AM_67014581/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 453.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(4x− y) y′ − 5y = −2x

16.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(4x− u(x)x) (u′(x)x+ u(x))− 5u(x)x = −2x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + u− 2
(u− 4)x

Where f(x) = − 1
x
and g(u) = u2+u−2

u−4 . Integrating both sides gives

1
u2+u−2
u−4

du = −1
x
dx
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∫ 1
u2+u−2
u−4

du =
∫

−1
x
dx

2 ln (u+ 2)− ln (u− 1) = − ln (x) + c2

Raising both side to exponential gives

e2 ln(u+2)−ln(u−1) = e− ln(x)+c2

Which simplifies to

(u+ 2)2

u− 1 = c3
x

The solution is
(u(x) + 2)2

u (x)− 1 = c3
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y
x
+ 2
)2

y
x
− 1 = c3

x

(y + 2x)2

x (y − x) = c3
x

Which simplifies to

−(y + 2x)2

−y + x
= c3

Summary
The solution(s) found are the following

(1)−(y + 2x)2

−y + x
= c3
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Figure 695: Slope field plot

Verification of solutions

−(y + 2x)2

−y + x
= c3

Verified OK.

16.10.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−2x+ 5y
−4x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−2x+ 5y) (b3 − a2)

−4x+ y
− (−2x+ 5y)2 a3

(−4x+ y)2

−
(

2
−4x+ y

− 4(−2x+ 5y)
(−4x+ y)2

)
(xa2 + ya3 + a1)

−
(
− 5
−4x+ y

+ −2x+ 5y
(−4x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

8x2a2 − 4x2a3 − 2x2b2 − 8x2b3 − 4xya2 + 20xya3 − 8xyb2 + 4xyb3 + 5y2a2 − 7y2a3 + y2b2 − 5y2b3 − 18xb1 + 18ya1
(4x− y)2

= 0

Setting the numerator to zero gives

(6E)8x2a2 − 4x2a3 − 2x2b2 − 8x2b3 − 4xya2 + 20xya3 − 8xyb2
+ 4xyb3 + 5y2a2 − 7y2a3 + y2b2 − 5y2b3 − 18xb1 + 18ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)8a2v21 − 4a2v1v2 + 5a2v22 − 4a3v21 + 20a3v1v2 − 7a3v22 − 2b2v21
− 8b2v1v2 + b2v

2
2 − 8b3v21 + 4b3v1v2 − 5b3v22 + 18a1v2 − 18b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(8a2 − 4a3 − 2b2 − 8b3) v21 + (−4a2 + 20a3 − 8b2 + 4b3) v1v2
− 18b1v1 + (5a2 − 7a3 + b2 − 5b3) v22 + 18a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

18a1 = 0
−18b1 = 0

−4a2 + 20a3 − 8b2 + 4b3 = 0
5a2 − 7a3 + b2 − 5b3 = 0

8a2 − 4a3 − 2b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a3 + b3

a3 = a3

b1 = 0
b2 = 2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−−2x+ 5y

−4x+ y

)
(x)

= 2x2 − xy − y2

4x− y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2−xy−y2

4x−y

dy

Which results in

S = − ln (y − x) + 2 ln (2x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x+ 5y
−4x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y − x

+ 4
2x+ y

Sy =
1

−y + x
+ 2

2x+ y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y − x) + 2 ln (y + 2x) = c1

Which simplifies to

− ln (y − x) + 2 ln (y + 2x) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x+5y
−4x+y

dS
dR

= 0

R = x

S = − ln (y − x) + 2 ln (2x+ y)
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Summary
The solution(s) found are the following

(1)− ln (y − x) + 2 ln (y + 2x) = c1

Figure 696: Slope field plot

Verification of solutions

− ln (y − x) + 2 ln (y + 2x) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
dsolve((4*x-y(x))*diff(y(x),x)+2*x-5*y(x) = 0,y(x), singsol=all)� �

y(x) = −4c1x−
√
−12c1x+ 1 + 1
2c1

y(x) = −4c1x+ 1 +
√
−12c1x+ 1

2c1

3 Solution by Mathematica
Time used: 1.387 (sec). Leaf size: 80� �
DSolve[(4 x-y[x])y'[x]+2 x-5 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−4x− e

c1
2
√
12x+ ec1 − ec1

)
y(x) → 1

2

(
−4x+ e

c1
2
√
12x+ ec1 − ec1

)
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16.11 problem 454
16.11.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4468
16.11.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4472

Internal problem ID [3708]
Internal file name [OUTPUT/3201_Sunday_June_05_2022_08_59_26_AM_19210/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 454.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(6− 4x− y) y′ + y = 2x

16.11.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = Y (X) + y0 − 2X − 2x0

−6 + 4X + 4x0 + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)− 2X

4X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= Y − 2X
4X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y − 2X and N = 4X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u− 2

u+ 4
du
dX =

u(X)−2
u(X)+4 − u(X)

X

Or
d

dX
u(X)−

u(X)−2
u(X)+4 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 4

(
d

dX
u(X)

)
X + u(X)2 + 3u(X) + 2 = 0

Or
X(u(X) + 4)

(
d

dX
u(X)

)
+ u(X)2 + 3u(X) + 2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 + 3u+ 2
X (u+ 4)

4469



Where f(X) = − 1
X

and g(u) = u2+3u+2
u+4 . Integrating both sides gives

1
u2+3u+2

u+4
du = − 1

X
dX

∫ 1
u2+3u+2

u+4
du =

∫
− 1
X

dX

3 ln (u+ 1)− 2 ln (u+ 2) = − ln (X) + c2

Raising both side to exponential gives

e3 ln(u+1)−2 ln(u+2) = e− ln(X)+c2

Which simplifies to

(u+ 1)3

(u+ 2)2
= c3

X

The solution is
(u(X) + 1)3

(u (X) + 2)2
= c3

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

+ 1
)3

(
Y (X)
X

+ 2
)2 = c3

X

Which simplifies to

(Y (X) +X)3

(Y (X) + 2X)2
= c3

Using the solution for Y (X)

(Y (X) +X)3

(Y (X) + 2X)2
= c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + 2
X = x+ 1

Then the solution in y becomes

(−3 + x+ y)3

(2x+ y − 4)2
= c3

Summary
The solution(s) found are the following

(1)(−3 + x+ y)3

(2x+ y − 4)2
= c3

Figure 697: Slope field plot

Verification of solutions

(−3 + x+ y)3

(2x+ y − 4)2
= c3

Verified OK.
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16.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x+ y

−6 + 4x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−2x+ y) (b3 − a2)

−6 + 4x+ y
− (−2x+ y)2 a3

(−6 + 4x+ y)2

−
(
− 2
−6 + 4x+ y

− 4(−2x+ y)
(−6 + 4x+ y)2

)
(xa2 + ya3 + a1)

−
(

1
−6 + 4x+ y

− −2x+ y

(−6 + 4x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

8x2a2 − 4x2a3 + 10x2b2 − 8x2b3 + 4xya2 + 4xya3 + 8xyb2 − 4xyb3 − y2a2 + 5y2a3 + y2b2 + y2b3 − 24xa2 − 6xb1 − 42xb2 + 12xb3 + 6ya1 + 6ya2 − 12ya3 − 12yb2 − 12a1 + 6b1 + 36b2
(−6 + 4x+ y)2

= 0

Setting the numerator to zero gives

(6E)8x2a2 − 4x2a3 + 10x2b2 − 8x2b3 + 4xya2 + 4xya3 + 8xyb2
− 4xyb3 − y2a2 + 5y2a3 + y2b2 + y2b3 − 24xa2 − 6xb1 − 42xb2
+ 12xb3 + 6ya1 + 6ya2 − 12ya3 − 12yb2 − 12a1 + 6b1 + 36b2 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)8a2v21 + 4a2v1v2 − a2v
2
2 − 4a3v21 + 4a3v1v2 + 5a3v22 + 10b2v21 + 8b2v1v2

+ b2v
2
2 − 8b3v21 − 4b3v1v2 + b3v

2
2 + 6a1v2 − 24a2v1 + 6a2v2 − 12a3v2

− 6b1v1 − 42b2v1 − 12b2v2 + 12b3v1 − 12a1 + 6b1 + 36b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(8a2 − 4a3 + 10b2 − 8b3) v21 + (4a2 + 4a3 + 8b2 − 4b3) v1v2
+ (−24a2 − 6b1 − 42b2 + 12b3) v1 + (−a2 + 5a3 + b2 + b3) v22
+ (6a1 + 6a2 − 12a3 − 12b2) v2 − 12a1 + 6b1 + 36b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−12a1 + 6b1 + 36b2 = 0
6a1 + 6a2 − 12a3 − 12b2 = 0

−24a2 − 6b1 − 42b2 + 12b3 = 0
−a2 + 5a3 + b2 + b3 = 0

4a2 + 4a3 + 8b2 − 4b3 = 0
8a2 − 4a3 + 10b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = −5a3 − b3

a2 = 3a3 + b3

a3 = a3

b1 = 2a3 − 2b3
b2 = −2a3
b3 = b3

4473



Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y − 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 2−
(

−2x+ y

−6 + 4x+ y

)
(x− 1)

= 2x2 + 3xy + y2 − 10x− 7y + 12
−6 + 4x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2+3xy+y2−10x−7y+12
−6+4x+y

dy

Which results in

S = −2 ln (2x+ y − 4) + 3 ln (−3 + x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ y

−6 + 4x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4
2x+ y − 4 + 3

−3 + x+ y

Sy =
−6 + 4x+ y

(−3 + x+ y) (2x+ y − 4)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (2x+ y − 4) + 3 ln (−3 + x+ y) = c1

Which simplifies to

−2 ln (2x+ y − 4) + 3 ln (−3 + x+ y) = c1

4475



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+y
−6+4x+y

dS
dR

= 0

R = x

S = −2 ln (2x+ y − 4) + 3 ln (−3 + x+ y)

Summary
The solution(s) found are the following

(1)−2 ln (2x+ y − 4) + 3 ln (−3 + x+ y) = c1
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Figure 698: Slope field plot

Verification of solutions

−2 ln (2x+ y − 4) + 3 ln (−3 + x+ y) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 198� �
dsolve((6-4*x-y(x))*diff(y(x),x) = 2*x-y(x),y(x), singsol=all)� �
y(x)

=

(
1−i

√
3
)(

12
√
3 c21(x−1)

√
27(x−1)2c1−4x+4

c1
+8+108(x−1)2c21+(−72x+72)c1

) 2
3

12 −
(1
3 + (x− 3) c1

)(
12
√
3 c21(x− 1)

√
27(x−1)2c1−4x+4

c1
+ 8 + 108(x− 1)2 c21 + (−72x+ 72) c1

) 1
3

+ 2
(
−1− i

√
3
) (

−1
6 + c1(x− 1)

)
(
12
√
3 c21 (x− 1)

√
27(x−1)2c1−4x+4

c1
+ 8 + 108 (x− 1)2 c21 + (−72x+ 72) c1

) 1
3

c1

3 Solution by Mathematica
Time used: 60.097 (sec). Leaf size: 2581� �
DSolve[(6-4 x-y[x])y'[x]==2 x -y[x],y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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16.12 problem 455
16.12.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4479
16.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4483

Internal problem ID [3709]
Internal file name [OUTPUT/3202_Sunday_June_05_2022_08_59_30_AM_15690524/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 455.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(1 + 5x− y) y′ − 5y = −x− 5

16.12.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −−5−X − x0 + 5Y (X) + 5y0

−1− 5X − 5x0 + Y (X) + y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = 1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −−X + 5Y (X)

−5X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −−X + 5Y
−5X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X + 5Y and N = 5X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −5u+ 1

u− 5
du
dX =

−5u(X)+1
u(X)−5 − u(X)

X

Or
d

dX
u(X)−

−5u(X)+1
u(X)−5 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)− 5

(
d

dX
u(X)

)
X + u(X)2 − 1 = 0

Or
X(u(X)− 5)

(
d

dX
u(X)

)
+ u(X)2 − 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u2 − 1
X (u− 5)

4480



Where f(X) = − 1
X

and g(u) = u2−1
u−5 . Integrating both sides gives

1
u2−1
u−5

du = − 1
X

dX

∫ 1
u2−1
u−5

du =
∫

− 1
X

dX

−2 ln (u− 1) + 3 ln (u+ 1) = − ln (X) + c2

Raising both side to exponential gives

e−2 ln(u−1)+3 ln(u+1) = e− ln(X)+c2

Which simplifies to

(u+ 1)3

(u− 1)2
= c3

X

The solution is
(u(X) + 1)3

(u (X)− 1)2
= c3

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

+ 1
)3

(
Y (X)
X

− 1
)2 = c3

X

Which simplifies to

(Y (X) +X)3

(−Y (X) +X)2
= c3

Using the solution for Y (X)

(Y (X) +X)3

(−Y (X) +X)2
= c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + 1
X = x

Then the solution in y becomes

(y + x− 1)3

(x− y + 1)2
= c3

Summary
The solution(s) found are the following

(1)(y + x− 1)3

(x− y + 1)2
= c3

Figure 699: Slope field plot

Verification of solutions

(y + x− 1)3

(x− y + 1)2
= c3

Verified OK.
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16.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−5− x+ 5y
−1− 5x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−5− x+ 5y) (b3 − a2)

−1− 5x+ y
− (−5− x+ 5y)2 a3

(−1− 5x+ y)2

−
(

1
−1− 5x+ y

− 5(−5− x+ 5y)
(−1− 5x+ y)2

)
(xa2 + ya3 + a1)

−
(
− 5
−1− 5x+ y

+ −5− x+ 5y
(−1− 5x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

5x2a2 − x2a3 + x2b2 − 5x2b3 − 2xya2 + 10xya3 − 10xyb2 + 2xyb3 + 5y2a2 − y2a3 + y2b2 − 5y2b3 + 2xa2 − 10xa3 − 24xb1 + 10xb2 − 26xb3 + 24ya1 − 10ya2 + 26ya3 − 2yb2 + 10yb3 − 24a1 + 5a2 − 25a3 + b2 − 5b3
(1 + 5x− y)2

= 0

Setting the numerator to zero gives

(6E)5x2a2 − x2a3 + x2b2 − 5x2b3 − 2xya2 + 10xya3 − 10xyb2 + 2xyb3 + 5y2a2
− y2a3 + y2b2 − 5y2b3 + 2xa2 − 10xa3 − 24xb1 + 10xb2 − 26xb3 + 24ya1
− 10ya2 + 26ya3 − 2yb2 + 10yb3 − 24a1 + 5a2 − 25a3 + b2 − 5b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)5a2v21 − 2a2v1v2 + 5a2v22 − a3v
2
1 + 10a3v1v2 − a3v

2
2 + b2v

2
1 − 10b2v1v2 + b2v

2
2

− 5b3v21 + 2b3v1v2 − 5b3v22 + 24a1v2 + 2a2v1 − 10a2v2 − 10a3v1 + 26a3v2
−24b1v1+10b2v1−2b2v2−26b3v1+10b3v2−24a1+5a2−25a3+b2−5b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(5a2 − a3 + b2 − 5b3) v21 + (−2a2 + 10a3 − 10b2 + 2b3) v1v2
+ (2a2 − 10a3 − 24b1 + 10b2 − 26b3) v1 + (5a2 − a3 + b2 − 5b3) v22
+ (24a1 − 10a2 + 26a3 − 2b2 + 10b3) v2 − 24a1 + 5a2 − 25a3 + b2 − 5b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 + 10a3 − 10b2 + 2b3 = 0
5a2 − a3 + b2 − 5b3 = 0

−24a1 + 5a2 − 25a3 + b2 − 5b3 = 0
24a1 − 10a2 + 26a3 − 2b2 + 10b3 = 0
2a2 − 10a3 − 24b1 + 10b2 − 26b3 = 0

Solving the above equations for the unknowns gives

a1 = −b2

a2 = b3

a3 = b2

b1 = −b3

b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y − 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
−−5− x+ 5y
−1− 5x+ y

)
(x)

= x2 − y2 + 2y − 1
1 + 5x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−y2+2y−1
1+5x−y

dy

Which results in

S = −2 ln (−x+ y − 1) + 3 ln (x− 1 + y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−5− x+ 5y
−1− 5x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 5 + x− 5y
(x− 1 + y) (x− y + 1)

Sy = − 2
−x+ y − 1 + 3

x− 1 + y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (−x+ y − 1) + 3 ln (y + x− 1) = c1

Which simplifies to

−2 ln (−x+ y − 1) + 3 ln (y + x− 1) = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−5−x+5y
−1−5x+y

dS
dR

= 0

R = x

S = −2 ln (−x+ y − 1) + 3 ln (x− 1 + y)

Summary
The solution(s) found are the following

(1)−2 ln (−x+ y − 1) + 3 ln (y + x− 1) = c1
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Figure 700: Slope field plot

Verification of solutions

−2 ln (−x+ y − 1) + 3 ln (y + x− 1) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �

4488



3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 243� �
dsolve((1+5*x-y(x))*diff(y(x),x)+5+x-5*y(x) = 0,y(x), singsol=all)� �
y(x)

=
i

(
1−

(
6
√
3x
√

27c1x2+2x
c1

c21 + 54c21x2 + 18c1x+ 1
) 2

3 + 12c1x
)√

3 + 6
((

2−
(
6
√
3x
√

27c1x2+2x
c1

c21 + 54c21x2 + 18c1x+ 1
) 1

3
)
x+

(
6
√
3x
√

27c1x2+2x
c1

c21 + 54c21x2 + 18c1x+ 1
) 1

3
)
c1 +

((
6
√
3x
√

27c1x2+2x
c1

c21 + 54c21x2 + 18c1x+ 1
) 1

3
− 1
)2

6c1
(
6
√
3x
√

27c1x2+2x
c1

c21 + 54c21x2 + 18c1x+ 1
) 1

3

4489



3 Solution by Mathematica
Time used: 60.045 (sec). Leaf size: 925� �
DSolve[(1+5 x-y[x])y'[x]+5+x-5 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

− 1
Root

[
#16

(
186624x4 + 186624e

12c1
25 x6

)
+#15

(
−186624x3 − 186624e

12c1
25 x5

)
+#14

(
69984x2 + 77760e

12c1
25 x4

)
+#13

(
−11664x− 17280e

12c1
25 x3

)
+#12

(
729 + 2160e

12c1
25 x2

)
− 144#1e

12c1
25 x+ 4e

12c1
25 &, 1

]
+ 5x+ 1

y(x) →

− 1
Root

[
#16

(
186624x4 + 186624e

12c1
25 x6

)
+#15

(
−186624x3 − 186624e

12c1
25 x5

)
+#14

(
69984x2 + 77760e

12c1
25 x4

)
+#13

(
−11664x− 17280e

12c1
25 x3

)
+#12

(
729 + 2160e

12c1
25 x2

)
− 144#1e

12c1
25 x+ 4e

12c1
25 &, 2

]
+ 5x+ 1

y(x) →

− 1
Root

[
#16

(
186624x4 + 186624e

12c1
25 x6

)
+#15

(
−186624x3 − 186624e

12c1
25 x5

)
+#14

(
69984x2 + 77760e

12c1
25 x4

)
+#13

(
−11664x− 17280e

12c1
25 x3

)
+#12

(
729 + 2160e

12c1
25 x2

)
− 144#1e

12c1
25 x+ 4e

12c1
25 &, 3

]
+ 5x+ 1

y(x) →

− 1
Root

[
#16

(
186624x4 + 186624e

12c1
25 x6

)
+#15

(
−186624x3 − 186624e

12c1
25 x5

)
+#14

(
69984x2 + 77760e

12c1
25 x4

)
+#13

(
−11664x− 17280e

12c1
25 x3

)
+#12

(
729 + 2160e

12c1
25 x2

)
− 144#1e

12c1
25 x+ 4e

12c1
25 &, 4

]
+ 5x+ 1

y(x) →

− 1
Root

[
#16

(
186624x4 + 186624e

12c1
25 x6

)
+#15

(
−186624x3 − 186624e

12c1
25 x5

)
+#14

(
69984x2 + 77760e

12c1
25 x4

)
+#13

(
−11664x− 17280e

12c1
25 x3

)
+#12

(
729 + 2160e

12c1
25 x2

)
− 144#1e

12c1
25 x+ 4e

12c1
25 &, 5

]
+ 5x+ 1

y(x) →

− 1
Root

[
#16

(
186624x4 + 186624e

12c1
25 x6

)
+#15

(
−186624x3 − 186624e

12c1
25 x5

)
+#14

(
69984x2 + 77760e

12c1
25 x4

)
+#13

(
−11664x− 17280e

12c1
25 x3

)
+#12

(
729 + 2160e

12c1
25 x2

)
− 144#1e

12c1
25 x+ 4e

12c1
25 &, 6

]
+ 5x+ 1
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16.13 problem 456
16.13.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4491

Internal problem ID [3710]
Internal file name [OUTPUT/3203_Sunday_June_05_2022_08_59_35_AM_71708280/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 456.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(a+ bx+ y) y′ − y = bx− a

16.13.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = bx− a+ y

bx+ a+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(bx− a+ y) (b3 − a2)

bx+ a+ y
− (bx− a+ y)2 a3

(bx+ a+ y)2

−
(

b

bx+ a+ y
− (bx− a+ y) b

(bx+ a+ y)2
)
(xa2 + ya3 + a1)

−
(

1
bx+ a+ y

− bx− a+ y

(bx+ a+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−b2x2a2 − b2x2a3 + b2x2b2 + b2x2b3 − 2abxa2 + 2abxa3 + 2abxb2 − 2abya3 − 2bxya2 − 2bxya3 + 2bxyb2 + 2bxyb3 + a2a2 − a2a3 + a2b2 − a2b3 − 2aba1 − 2axb2 + 2aya3 + 2ayb2 − 2ayb3 − y2a2 − y2a3 + y2b2 + y2b3 − 2ab1
(bx+ a+ y)2

= 0

Setting the numerator to zero gives

(6E)−b2x2a2 − b2x2a3 + b2x2b2 + b2x2b3 − 2abxa2 + 2abxa3 + 2abxb2 − 2abya3
− 2bxya2 − 2bxya3 + 2bxyb2 + 2bxyb3 + a2a2 − a2a3 + a2b2 − a2b3 − 2aba1
− 2axb2 + 2aya3 + 2ayb2 − 2ayb3 − y2a2 − y2a3 + y2b2 + y2b3 − 2ab1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−b2a2v
2
1 − b2a3v

2
1 + b2b2v

2
1 + b2b3v

2
1 − 2aba2v1+2aba3v1− 2aba3v2+2abb2v1

−2ba2v1v2−2ba3v1v2+2bb2v1v2+2bb3v1v2+a2a2−a2a3+a2b2−a2b3−2aba1
+ 2aa3v2 − 2ab2v1 + 2ab2v2 − 2ab3v2 − a2v

2
2 − a3v

2
2 + b2v

2
2 + b3v

2
2 − 2ab1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(
−b2a2 − b2a3 + b2b2 + b2b3

)
v21 + (−2ba2 − 2ba3 + 2bb2 + 2bb3) v1v2

+ (−2aba2 + 2aba3 + 2abb2 − 2ab2) v1 + (−a2 − a3 + b2 + b3) v22
+ (−2aba3 + 2aa3 + 2ab2 − 2ab3) v2 + a2a2
− a2a3 + a2b2 − a2b3 − 2aba1 − 2ab1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a2 − a3 + b2 + b3 = 0
−2aba2 + 2aba3 + 2abb2 − 2ab2 = 0
−2aba3 + 2aa3 + 2ab2 − 2ab3 = 0
−2ba2 − 2ba3 + 2bb2 + 2bb3 = 0
−b2a2 − b2a3 + b2b2 + b2b3 = 0

a2a2 − a2a3 + a2b2 − a2b3 − 2aba1 − 2ab1 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = bb3

a3 = b3

b1 = abb3 − ab3 − ba1

b2 = bb3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −b
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −b−
(
bx− a+ y

bx+ a+ y

)
(1)

= −b2x− ab− bx− by + a− y

bx+ a+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−b2x−ab−bx−by+a−y
bx+a+y

dy

Which results in

S = − y

b+ 1 − 2a ln (b2x+ ab+ bx+ by − a+ y)
(b+ 1)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = bx− a+ y

bx+ a+ y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2ab
(b2x+ (a+ x+ y) b− a+ y) (b+ 1)

Sy =
−bx− a− y

b2x+ (a+ x+ y) b− a+ y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

b+ 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

b+ 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − R

b+ 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2a ln (b2x+ (a+ x+ y) b− a+ y)− y(b+ 1)
(b+ 1)2

= − x

b+ 1 + c1

Which simplifies to

−2a ln (b2x+ (a+ x+ y) b− a+ y)− (b+ 1) (c1b+ c1 − x+ y)
(b+ 1)2

= 0

Which gives

y =
−b2x+ 2LambertW

(
e−

b2c1−b2x−ab+2c1b−2bx+a+c1−x
2a

2a

)
a− ab− bx+ a

b+ 1
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Summary
The solution(s) found are the following

(1)y =
−b2x+ 2LambertW

(
e−

b2c1−b2x−ab+2c1b−2bx+a+c1−x
2a

2a

)
a− ab− bx+ a

b+ 1
Verification of solutions

y =
−b2x+ 2LambertW

(
e−

b2c1−b2x−ab+2c1b−2bx+a+c1−x
2a

2a

)
a− ab− bx+ a

b+ 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -b, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 63� �
dsolve((a+b*x+y(x))*diff(y(x),x)+a-b*x-y(x) = 0,y(x), singsol=all)� �

y(x) =
2LambertW

(
e
−c1(b+1)2+(b−1)a+x(b+1)2

2a
2a

)
a− b2x+ (−a− x) b+ a

b+ 1

3 Solution by Mathematica
Time used: 5.745 (sec). Leaf size: 118� �
DSolve[(a+b x+y[x])y'[x]+a-b x-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
2aW

(
−e

(b+1)2x
2a −1+c1

)
+ a(−b) + a− b(b+ 1)x

b+ 1

y(x) → a(−b) + a− b(b+ 1)x
b+ 1

y(x) →
2aW

(
−e

(b+1)2x
2a −1

)
+ a(−b) + a− b(b+ 1)x
b+ 1
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16.14 problem 457
16.14.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4498

Internal problem ID [3711]
Internal file name [OUTPUT/3204_Sunday_June_05_2022_08_59_39_AM_64301785/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 457.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`], [

_Abel , `2nd type `, `class C`]]

(
x2 − y

)
y′ = −x

16.14.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 − y
)
dy = (−x) dx

(x) dx+
(
x2 − y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x

N(x, y) = x2 − y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(x)

= 0

And
∂N

∂x
= ∂

∂x

(
x2 − y

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 − y
((0)− (2x))

= − 2x
x2 − y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

x
((2x)− (0))

= 2

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
2 dy

The result of integrating gives

µ = e2y

= e2y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= e2y(x)
= x e2y

And

N = µN

= e2y
(
x2 − y

)
=
(
x2 − y

)
e2y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

x e2y
)
+
((
x2 − y

)
e2y
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x e2y dx

(3)φ = x2e2y
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2e2y + f ′(y)

But equation (2) says that ∂φ
∂y

= (x2 − y) e2y. Therefore equation (4) becomes

(5)
(
x2 − y

)
e2y = x2e2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −e2yy

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−e2yy

)
dy

f(y) = −(2y − 1) e2y
4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2e2y
2 − (2y − 1) e2y

4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2e2y
2 − (2y − 1) e2y

4

The solution becomes

y = x2 +
LambertW

(
−4c1e−2x2−1

)
2 + 1

2

Summary
The solution(s) found are the following

(1)y = x2 +
LambertW

(
−4c1e−2x2−1

)
2 + 1

2

Figure 701: Slope field plot

Verification of solutions

y = x2 +
LambertW

(
−4c1e−2x2−1

)
2 + 1

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((x^2-y(x))*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) = x2 +
LambertW

(
4c1e−2x2−1

)
2 + 1

2

3 Solution by Mathematica
Time used: 5.024 (sec). Leaf size: 40� �
DSolve[(x^2-y[x])y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 1
2

(
1 +W

(
−e−2x2−1+c1

))
y(x) → x2 + 1

2

4503



16.15 problem 458
16.15.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4504
16.15.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4509

Internal problem ID [3712]
Internal file name [OUTPUT/3205_Sunday_June_05_2022_08_59_43_AM_3477350/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 458.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class A`]]

(
x2 − y

)
y′ − 4yx = 0

16.15.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 4yx
−x2 + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−
4yx(b3 − a2)
−x2 + y

− 16y2x2a3

(−x2 + y)2
−
(
− 4y
−x2 + y

− 8y x2

(−x2 + y)2
)
(xa2+ya3+a1)

−
(
− 4x
−x2 + y

+ 4yx
(−x2 + y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−3x4b2 + 12y2x2a3 + 4x3b1 − 4x2ya1 + 2x2yb2 − 8x y2a2 + 4x y2b3 − 4y3a3 − 4y2a1 − y2b2

(x2 − y)2
= 0

Setting the numerator to zero gives

(6E)−3x4b2 − 12y2x2a3 − 4x3b1 + 4x2ya1 − 2x2yb2
+ 8x y2a2 − 4x y2b3 + 4y3a3 + 4y2a1 + y2b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−12a3v21v22 − 3b2v41 + 4a1v21v2 + 8a2v1v22 + 4a3v32
− 4b1v31 − 2b2v21v2 − 4b3v1v22 + 4a1v22 + b2v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

4505



Equation (7E) now becomes

(8E)−3b2v41 − 4b1v31 − 12a3v21v22 + (4a1 − 2b2) v21v2
+ (8a2 − 4b3) v1v22 + 4a3v32 + (4a1 + b2) v22 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−12a3 = 0
4a3 = 0

−4b1 = 0
−3b2 = 0

4a1 − 2b2 = 0
4a1 + b2 = 0

8a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
− 4yx
−x2 + y

)
(x)

= −2x2y − 2y2
x2 − y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2y−2y2
x2−y

dy

Which results in

S = ln
(
x2 + y

)
− ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 4yx
−x2 + y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
x2 + y

Sy =
1

x2 + y
− 1

2y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
x2 + y

)
− ln (y)

2 = c1

Which simplifies to

ln
(
x2 + y

)
− ln (y)

2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 4yx
−x2+y

dS
dR

= 0

R = x

S = ln
(
x2 + y

)
− ln (y)

2
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Summary
The solution(s) found are the following

(1)ln
(
x2 + y

)
− ln (y)

2 = c1

Figure 702: Slope field plot

Verification of solutions

ln
(
x2 + y

)
− ln (y)

2 = c1

Verified OK.

16.15.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 − y

)
dy = (4xy) dx

(−4xy) dx+
(
x2 − y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4xy
N(x, y) = x2 − y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−4xy)

= −4x
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And
∂N

∂x
= ∂

∂x

(
x2 − y

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 − y
((−4x)− (2x))

= − 6x
x2 − y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

4xy ((2x)− (−4x))

= − 3
2y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

2y dy

The result of integrating gives

µ = e−
3 ln(y)

2

= 1
y

3
2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y

3
2
(−4xy)

= − 4x
√
y
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And

N = µN

= 1
y

3
2

(
x2 − y

)
= x2 − y

y
3
2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

− 4x
√
y

)
+
(
x2 − y

y
3
2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 4x
√
y
dx

(3)φ = −2x2
√
y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y
3
2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2−y

y
3
2
. Therefore equation (4) becomes

(5)x2 − y

y
3
2

= x2

y
3
2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − 1
√
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
√
y

)
dy

f(y) = −2√y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2x2
√
y
− 2√y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2x2
√
y
− 2√y

Summary
The solution(s) found are the following

(1)−2x2
√
y
− 2√y = c1
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Figure 703: Slope field plot

Verification of solutions

−2x2
√
y
− 2√y = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 57� �
dsolve((x^2-y(x))*diff(y(x),x) = 4*x*y(x),y(x), singsol=all)� �

y(x) = −c1
√

c21 − 4x2

2 + c21
2 − x2

y(x) = c1
√

c21 − 4x2

2 + c21
2 − x2

3 Solution by Mathematica
Time used: 2.966 (sec). Leaf size: 246� �
DSolve[(x^2-y[x])y'[x]==4 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

1 + 2− 2i
i
√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
−i

− (1− i)



y(x) → x2

1 + 2− 2i
(−1 + i)− i

√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
−i



y(x) → x2

1 + 2− 2i
(−1 + i)−

√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
+i



y(x) → x2

1 + 2− 2i
√
2√

x2 cosh
(

2c1
9

)
+x2 sinh

(
2c1
9

)
+i

− (1− i)


y(x) → 0
y(x) → −x2
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16.16 problem 459
16.16.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4516

Internal problem ID [3713]
Internal file name [OUTPUT/3206_Sunday_June_05_2022_08_59_47_AM_32387767/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 16
Problem number: 459.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class A`]]

(y − csc (x) cot (x)) y′ + csc (x) (1 + cos (x) y) y = 0

16.16.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(y − csc (x) cot (x)) dy = (− csc (x) (1 + cos (x) y) y) dx
(csc (x) (1 + cos (x) y) y) dx+(y − csc (x) cot (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = csc (x) (1 + cos (x) y) y
N(x, y) = y − csc (x) cot (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(csc (x) (1 + cos (x) y) y)

= 2 cot (x) y + csc (x)

And
∂N

∂x
= ∂

∂x
(y − csc (x) cot (x))

= csc (x)3
(
cos (x)2 + 1

)
Since ∂M

∂y
6= ∂N

∂x
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y − csc (x) cot (x)
(
(cos (x) csc (x) y + csc (x) (1 + cos (x) y))−

(
csc (x) cot (x)2 − csc (x)

(
−1− cot (x)2

)))
= 2 cot (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
2 cot(x) dx

The result of integrating gives

µ = e2 ln(sin(x))

= sin (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x)2 (csc (x) (1 + cos (x) y) y)
= (1 + cos (x) y) sin (x) y

And

N = µN

= sin (x)2 (y − csc (x) cot (x))
= sin (x)2 y − cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

((1 + cos (x) y) sin (x) y) +
(
sin (x)2 y − cos (x)

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(1 + cos (x) y) sin (x) y dx

(3)φ = −y cos (x) (cos (x) y + 2)
2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −cos (x) (cos (x) y + 2)

2 − y cos (x)2

2 + f ′(y)

= −(1 + cos (x) y) cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x)2 y − cos (x). Therefore equation (4) becomes

(5)sin (x)2 y − cos (x) = −(1 + cos (x) y) cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y cos (x)2 + sin (x)2 y
= y

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −y cos (x) (cos (x) y + 2)
2 + y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −y cos (x) (cos (x) y + 2)
2 + y2

2

Summary
The solution(s) found are the following

(1)−y cos (x) (cos (x) y + 2)
2 + y2

2 = c1
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Figure 704: Slope field plot

Verification of solutions

−y cos (x) (cos (x) y + 2)
2 + y2

2 = c1

Verified OK.

4520



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
dsolve((y(x)-cot(x)*csc(x))*diff(y(x),x)+csc(x)*(1+y(x)*cos(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = csc (x)
(
−
√

c1 + cot (x)2 + cot (x)
)

y(x) = csc (x)
(√

c1 + cot (x)2 + cot (x)
)

3 Solution by Mathematica
Time used: 1.639 (sec). Leaf size: 85� �
DSolve[(y[x]-Cot[x] Csc[x])y'[x]+Csc[x](1+y[x] Cos[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cot(x) csc(x)− i csc2(x)
√
(−1 + c1) cos(2x)− 1− c1√

2

y(x) → cot(x) csc(x) + i csc2(x)
√

(−1 + c1) cos(2x)− 1− c1√
2
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17.1 problem 460
17.1.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4523
17.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4525
17.1.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 4529
17.1.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4532

Internal problem ID [3714]
Internal file name [OUTPUT/3207_Sunday_June_05_2022_08_59_52_AM_79903104/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 460.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

2yy′ + y2 = −x2 − 2x

17.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2u(x)x(u′(x)x+ u(x)) + u(x)2 x2 = −x2 − 2x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= (x+ 2) (−u2 − 1)
2xu
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Where f(x) = x+2
2x and g(u) = −u2−1

u
. Integrating both sides gives

1
−u2−1

u

du = x+ 2
2x dx

∫ 1
−u2−1

u

du =
∫

x+ 2
2x dx

− ln (u2 + 1)
2 = x

2 + ln (x) + c2

Raising both side to exponential gives

1√
u2 + 1

= ex
2+ln(x)+c2

Which simplifies to

1√
u2 + 1

= c3e
x
2+ln(x)

The solution is
1√

u (x)2 + 1
= c3e

x
2+ln(x)+c2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

1√
y2

x2 + 1
= c3e

x
2+ln(x)+c2

1√
y2+x2

x2

= c3e
x
2+c2x

Summary
The solution(s) found are the following

(1)1√
y2+x2

x2

= c3e
x
2+c2x
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Figure 705: Slope field plot

Verification of solutions

1√
y2+x2

x2

= c3e
x
2+c2x

Verified OK.

17.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2 + 2x
2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 779: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x

y

dy

Which results in

S = exy2
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2 + 2x
2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = exy2
2

Sy = exy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −exx(x+ 2)

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −eRR(R + 2)

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −eRR2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy2
2 = −x2ex

2 + c1

Which simplifies to

exy2
2 = −x2ex

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y2+2x
2y

dS
dR

= − eRR(R+2)
2

R = x

S = exy2
2

Summary
The solution(s) found are the following

(1)exy2
2 = −x2ex

2 + c1
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Figure 706: Slope field plot

Verification of solutions

exy2
2 = −x2ex

2 + c1

Verified OK.

17.1.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2 + 2x
2y

This is a Bernoulli ODE.
y′ = −1

2y −
1
2x

2 − x
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
2

f1(x) = −1
2x

2 − x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

2 − 1
2x

2 − x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

2 − x2

2 − x

w′ = −x2 − w − 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
q(x) = −x2 − 2x

Hence the ode is

w′(x) + w(x) = −x2 − 2x
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The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µw) = (µ)

(
−x2 − 2x

)
d
dx(e

xw) = (ex)
(
−x2 − 2x

)
d(exw) = (−exx(x+ 2)) dx

Integrating gives

exw =
∫

−exx(x+ 2) dx

exw = −x2ex + c1

Dividing both sides by the integrating factor µ = ex results in

w(x) = −e−xx2ex + c1e−x

which simplifies to

w(x) = −x2 + c1e−x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −x2 + c1e−x

Solving for y gives

y(x) =
√

−x2 + c1e−x

y(x) = −
√

−x2 + c1e−x

Summary
The solution(s) found are the following

(1)y =
√
−x2 + c1e−x

(2)y = −
√
−x2 + c1e−x
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Figure 707: Slope field plot

Verification of solutions

y =
√

−x2 + c1e−x

Verified OK.

y = −
√
−x2 + c1e−x

Verified OK.

17.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2y) dy =
(
−x2 − y2 − 2x

)
dx(

x2 + y2 + 2x
)
dx+(2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2 + 2x
N(x, y) = 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + y2 + 2x

)
= 2y
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And
∂N

∂x
= ∂

∂x
(2y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2y ((2y)− (0))

= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
x2 + y2 + 2x

)
= ex

(
x2 + y2 + 2x

)
And

N = µN

= ex(2y)
= 2 exy

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

ex
(
x2 + y2 + 2x

))
+ (2 exy) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex
(
x2 + y2 + 2x

)
dx

(3)φ =
(
x2 + y2

)
ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 exy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 exy. Therefore equation (4) becomes

(5)2 exy = 2 exy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
x2 + y2

)
ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x2 + y2

)
ex
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Summary
The solution(s) found are the following

(1)
(
y2 + x2) ex = c1

Figure 708: Slope field plot

Verification of solutions (
y2 + x2) ex = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(2*y(x)*diff(y(x),x)+2*x+x^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√

e−xc1 − x2

y(x) = −
√
e−xc1 − x2

3 Solution by Mathematica
Time used: 6.093 (sec). Leaf size: 47� �
DSolve[2 y[x] y'[x]+2 x+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + c1e−x

y(x) →
√

−x2 + c1e−x
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17.2 problem 461
17.2.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 4538
17.2.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 4542
17.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4546

Internal problem ID [3715]
Internal file name [OUTPUT/3208_Sunday_June_05_2022_08_59_57_AM_99662960/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 461.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

2yy′ − y2x = x3

17.2.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x2 + y2)x
2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 781: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = ex2
2

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
x2
2
y

dy

Which results in

S = y2e−x2
2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x2 + y2)x
2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2x e−x2
2

2
Sy = e−x2

2 y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−x2

2 x3

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R2

2 R3

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R2 + 2) e−R2
2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2e−x2
2

2 = −(x2 + 2) e−x2
2

2 + c1

Which simplifies to

(x2 + y2 + 2) e−x2
2

2 − c1 = 0

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
x2+y2

)
x

2y
dS
dR

= e−
R2
2 R3

2

R = x

S = y2e−x2
2

2

Summary
The solution(s) found are the following

(1)(x2 + y2 + 2) e−x2
2

2 − c1 = 0
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Figure 709: Slope field plot

Verification of solutions

(x2 + y2 + 2) e−x2
2

2 − c1 = 0

Verified OK.

17.2.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (x2 + y2)x
2y

This is a Bernoulli ODE.
y′ = x

2y +
x3

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
x

2

f1(x) =
x3

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = x y2

2 + x3

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)x

2 + x3

2
w′ = x3 + xw (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −x

q(x) = x3
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Hence the ode is

w′(x)− w(x)x = x3

The integrating factor µ is

µ = e
∫
−xdx

= e−x2
2

The ode becomes

d
dx(µw) = (µ)

(
x3)

d
dx

(
e−x2

2 w
)
=
(
e−x2

2

) (
x3)

d
(
e−x2

2 w
)
=
(
e−x2

2 x3
)
dx

Integrating gives

e−x2
2 w =

∫
e−x2

2 x3 dx

e−x2
2 w = −

(
x2 + 2

)
e−x2

2 + c1

Dividing both sides by the integrating factor µ = e−x2
2 results in

w(x) = −ex2
2
(
x2 + 2

)
e−x2

2 + c1e
x2
2

which simplifies to

w(x) = −x2 − 2 + c1e
x2
2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −x2 − 2 + c1e
x2
2

Solving for y gives

y(x) =
√

−x2 − 2 + c1e
x2
2

y(x) = −
√

−x2 − 2 + c1e
x2
2
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Summary
The solution(s) found are the following

(1)y =
√

−x2 − 2 + c1e
x2
2

(2)y = −
√

−x2 − 2 + c1e
x2
2

Figure 710: Slope field plot

Verification of solutions

y =
√
−x2 − 2 + c1e

x2
2

Verified OK.

y = −
√

−x2 − 2 + c1e
x2
2

Verified OK.
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17.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2y) dy =
(
x3 + x y2

)
dx(

−x3 − x y2
)
dx+(2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − x y2

N(x, y) = 2y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 − x y2

)
= −2xy

And
∂N

∂x
= ∂

∂x
(2y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2y ((−2xy)− (0))

= −x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−xdx

The result of integrating gives

µ = e−
x2
2

= e−x2
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x2
2
(
−x3 − x y2

)
= −e−x2

2
(
x2 + y2

)
x
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And

N = µN

= e−x2
2 (2y)

= 2 e−x2
2 y

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x2
2
(
x2 + y2

)
x
)
+
(
2 e−x2

2 y
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x2

2
(
x2 + y2

)
x dx

(3)φ =
(
x2 + y2 + 2

)
e−x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 e−x2

2 y + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 e−x2
2 y. Therefore equation (4) becomes

(5)2 e−x2
2 y = 2 e−x2

2 y + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
x2 + y2 + 2

)
e−x2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x2 + y2 + 2

)
e−x2

2

Summary
The solution(s) found are the following

(1)
(
x2 + y2 + 2

)
e−x2

2 = c1

Figure 711: Slope field plot

4549



Verification of solutions (
x2 + y2 + 2

)
e−x2

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 43� �
dsolve(2*y(x)*diff(y(x),x) = x*y(x)^2+x^3,y(x), singsol=all)� �

y(x) =
√

ex2
2 c1 − x2 − 2

y(x) = −
√

ex2
2 c1 − x2 − 2

3 Solution by Mathematica
Time used: 7.301 (sec). Leaf size: 57� �
DSolve[2 y[x] y'[x]==x y[x]^2+x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x2 + c1e
x2
2 − 2

y(x) →
√
−x2 + c1e

x2
2 − 2
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17.3 problem 462
17.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4551
17.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4553
17.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4558

Internal problem ID [3716]
Internal file name [OUTPUT/3209_Sunday_June_05_2022_09_00_03_AM_10924466/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 462.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(x− 2y) y′ − y = 0

17.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(x− 2u(x)x) (u′(x)x+ u(x))− u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u2

(2u− 1)x
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Where f(x) = − 2
x
and g(u) = u2

2u−1 . Integrating both sides gives

1
u2

2u−1
du = −2

x
dx

∫ 1
u2

2u−1
du =

∫
−2
x
dx

1
u
+ 2 ln (u) = −2 ln (x) + c2

The solution is
1

u (x) + 2 ln (u(x)) + 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

x

y
+ 2 ln

(y
x

)
+ 2 ln (x)− c2 = 0

x

y
+ 2 ln

(y
x

)
+ 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)x

y
+ 2 ln

(y
x

)
+ 2 ln (x)− c2 = 0
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Figure 712: Slope field plot

Verification of solutions
x

y
+ 2 ln

(y
x

)
+ 2 ln (x)− c2 = 0

Verified OK.

17.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

−x+ 2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
−x+ 2y − y2a3

(−x+ 2y)2
+ y(xa2 + ya3 + a1)

(−x+ 2y)2

−
(
− 1
−x+ 2y + 2y

(−x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4xyb2 − 2y2a2 − 4y2b2 + 2y2b3 + xb1 − ya1

(x− 2y)2
= 0

Setting the numerator to zero gives

(6E)−4xyb2 + 2y2a2 + 4y2b2 − 2y2b3 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v22 − 4b2v1v2 + 4b2v22 − 2b3v22 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4b2v1v2 − b1v1 + (2a2 + 4b2 − 2b3) v22 + a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−b1 = 0
−4b2 = 0

2a2 + 4b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

−x+ 2y

)
(x)

= − 2y2
x− 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2y2
x−2y

dy

Which results in

S = x

2y + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

−x+ 2y
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2y

Sy =
−x+ 2y

2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2y ln (y) + x

2y = c1

Which simplifies to

2y ln (y) + x

2y = c1

Which gives

y = eLambertW
(
−x e−c1

2

)
+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
−x+2y

dS
dR

= 0

R = x

S = 2 ln (y) y + x

2y
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Summary
The solution(s) found are the following

(1)y = eLambertW
(
−x e−c1

2

)
+c1

Figure 713: Slope field plot

Verification of solutions

y = eLambertW
(
−x e−c1

2

)
+c1

Verified OK.

17.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x− 2y) dy = (y) dx
(−y) dx+(x− 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = x− 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y)

= −1
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And
∂N

∂x
= ∂

∂x
(x− 2y)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x− 2y ((−1)− (1))

= − 2
x− 2y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1

y
((1)− (−1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y)

= −1
y
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And

N = µN

= 1
y2

(x− 2y)

= x− 2y
y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−1
y

)
+
(
x− 2y
y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
y
dx

(3)φ = −x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x−2y
y2

. Therefore equation (4) becomes

(5)x− 2y
y2

= x

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −2
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−2
y

)
dy

f(y) = −2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

y
− 2 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

y
− 2 ln (y)

The solution becomes

y = e
LambertW

(
−x e

c1
2

2

)
− c1

2

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
−x e

c1
2

2

)
− c1

2
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Figure 714: Slope field plot

Verification of solutions

y = e
LambertW

(
−x e

c1
2

2

)
− c1

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve((x-2*y(x))*diff(y(x),x) = y(x),y(x), singsol=all)� �

y(x) = − x

2 LambertW
(
−x e−

c1
2

2

)
3 Solution by Mathematica
Time used: 4.87 (sec). Leaf size: 31� �
DSolve[(x-2 y[x])y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

2W
(
−1

2e
− c1

2 x
)

y(x) → 0
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17.4 problem 463
17.4.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4565
17.4.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4567
17.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4572

Internal problem ID [3717]
Internal file name [OUTPUT/3210_Sunday_June_05_2022_09_00_07_AM_27806538/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 463.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(x+ 2y) y′ − y = −2x

17.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(x+ 2u(x)x) (u′(x)x+ u(x))− u(x)x = −2x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2(u2 + 1)
x (2u+ 1)
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Where f(x) = − 2
x
and g(u) = u2+1

2u+1 . Integrating both sides gives

1
u2+1
2u+1

du = −2
x
dx

∫ 1
u2+1
2u+1

du =
∫

−2
x
dx

ln
(
u2 + 1

)
+ arctan (u) = −2 ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
+ arctan (u(x)) + 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 2 ln (x)− c2 = 0

ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 2 ln (x)− c2 = 0
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Figure 715: Slope field plot

Verification of solutions

ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 2 ln (x)− c2 = 0

Verified OK.

17.4.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x+ y

x+ 2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−2x+ y) (b3 − a2)

x+ 2y − (−2x+ y)2 a3
(x+ 2y)2

−
(
− 2
x+ 2y − −2x+ y

(x+ 2y)2
)
(xa2 + ya3 + a1)

−
(

1
x+ 2y − 2(−2x+ y)

(x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2a2 − 4x2a3 − 4x2b2 − 2x2b3 + 8xya2 + 4xya3 + 4xyb2 − 8xyb3 − 2y2a2 + 4y2a3 + 4y2b2 + 2y2b3 − 5xb1 + 5ya1
(x+ 2y)2

= 0

Setting the numerator to zero gives

(6E)2x2a2 − 4x2a3 − 4x2b2 − 2x2b3 + 8xya2 + 4xya3 + 4xyb2
− 8xyb3 − 2y2a2 + 4y2a3 + 4y2b2 + 2y2b3 − 5xb1 + 5ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v21 + 8a2v1v2 − 2a2v22 − 4a3v21 + 4a3v1v2 + 4a3v22 − 4b2v21
+ 4b2v1v2 + 4b2v22 − 2b3v21 − 8b3v1v2 + 2b3v22 + 5a1v2 − 5b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − 4a3 − 4b2 − 2b3) v21 + (8a2 + 4a3 + 4b2 − 8b3) v1v2
− 5b1v1 + (−2a2 + 4a3 + 4b2 + 2b3) v22 + 5a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

5a1 = 0
−5b1 = 0

−2a2 + 4a3 + 4b2 + 2b3 = 0
2a2 − 4a3 − 4b2 − 2b3 = 0
8a2 + 4a3 + 4b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2x+ y

x+ 2y

)
(x)

= 2x2 + 2y2
x+ 2y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2+2y2
x+2y

dy

Which results in

S = ln (x2 + y2)
2 +

arctan
(
y
x

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ y

x+ 2y
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x− y

2x2 + 2y2

Sy =
x+ 2y

2x2 + 2y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2)
2 +

arctan
(
y
x

)
2 = c1

Which simplifies to
ln (y2 + x2)

2 +
arctan

(
y
x

)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+y
x+2y

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 +

arctan
(
y
x

)
2
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Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 +

arctan
(
y
x

)
2 = c1

Figure 716: Slope field plot

Verification of solutions

ln (y2 + x2)
2 +

arctan
(
y
x

)
2 = c1

Verified OK.

17.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 2y) dy = (−2x+ y) dx
(2x− y) dx+(x+ 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x− y

N(x, y) = x+ 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(2x− y)

= −1

4573



And
∂N

∂x
= ∂

∂x
(x+ 2y)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = 2x − y and N = x + 2y by this integrating factor the
ode becomes exact. The new M,N are

M = 2x− y

y2 + x2

N = x+ 2y
y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x+ 2y
x2 + y2

)
dy =

(
− 2x− y

x2 + y2

)
dx(

2x− y

x2 + y2

)
dx+

(
x+ 2y
x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x− y

x2 + y2

N(x, y) = x+ 2y
x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2x− y

x2 + y2

)
= −x2 − 4xy + y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
x+ 2y
x2 + y2

)
= −x2 − 4xy + y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x− y

x2 + y2
dx

(3)φ = ln
(
x2 + y2

)
− arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x2 + y2
+ x

y2
(

x2

y2
+ 1
) + f ′(y)

= x+ 2y
x2 + y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x+2y
x2+y2

. Therefore equation (4) becomes

(5)x+ 2y
x2 + y2

= x+ 2y
x2 + y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln
(
x2 + y2

)
− arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln
(
x2 + y2

)
− arctan

(
x

y

)
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Summary
The solution(s) found are the following

(1)ln
(
y2 + x2)− arctan

(
x

y

)
= c1

Figure 717: Slope field plot

Verification of solutions

ln
(
y2 + x2)− arctan

(
x

y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 22� �
dsolve((x+2*y(x))*diff(y(x),x)+2*x-y(x) = 0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
ln
(
sec (_Z)2

)
+ _Z+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 30� �
DSolve[(x+2 y[x])y'[x]+2 x -y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(
y(x)
x

)
+ log

(
y(x)2
x2 + 1

)
= −2 log(x) + c1, y(x)

]
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17.5 problem 464
17.5.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4579
17.5.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4581
17.5.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4583
17.5.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4588
17.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4592

Internal problem ID [3718]
Internal file name [OUTPUT/3211_Sunday_June_05_2022_09_00_11_AM_35890676/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 464.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(x− 2y) y′ + y = −2x

17.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(x− 2u(x)x) (u′(x)x+ u(x)) + u(x)x = −2x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(u2 − u− 1)
(2u− 1)x
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Where f(x) = − 2
x
and g(u) = u2−u−1

2u−1 . Integrating both sides gives

1
u2−u−1
2u−1

du = −2
x
dx

∫ 1
u2−u−1
2u−1

du =
∫

−2
x
dx

ln
(
u2 − u− 1

)
= −2 ln (x) + c2

Raising both side to exponential gives

u2 − u− 1 = e−2 ln(x)+c2

Which simplifies to

u2 − u− 1 = c3
x2

Which simplifies to

u(x)2 − u(x)− 1 = c3ec2
x2

The solution is

u(x)2 − u(x)− 1 = c3ec2
x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − y

x
− 1 = c3ec2

x2

y2

x2 − y

x
− 1 = c3ec2

x2

Which simplifies to

y2 − yx− x2 = c3ec2

Summary
The solution(s) found are the following

(1)y2 − yx− x2 = c3ec2
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Figure 718: Slope field plot

Verification of solutions

y2 − yx− x2 = c3ec2

Verified OK.

17.5.2 Solving as differentialType ode

Writing the ode as

y′ = −2x− y

x− 2y (1)

Which becomes

(−2y) dy = (−x) dy + (−2x− y) dx (2)

But the RHS is complete differential because

(−x) dy + (−2x− y) dx = d
(
−x2 − xy

)
Hence (2) becomes

(−2y) dy = d
(
−x2 − xy

)
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Integrating both sides gives gives these solutions

y = x

2 +
√
5x2 − 4c1

2 + c1

y = x

2 −
√
5x2 − 4c1

2 + c1

Summary
The solution(s) found are the following

(1)y = x

2 +
√
5x2 − 4c1

2 + c1

(2)y = x

2 −
√
5x2 − 4c1

2 + c1

Figure 719: Slope field plot
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Verification of solutions

y = x

2 +
√
5x2 − 4c1

2 + c1

Verified OK.

y = x

2 −
√
5x2 − 4c1

2 + c1

Verified OK.

17.5.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2x+ y

−x+ 2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2x+ y) (b3 − a2)

−x+ 2y − (2x+ y)2 a3
(−x+ 2y)2

−
(

2
−x+ 2y + 2x+ y

(−x+ 2y)2
)
(xa2 + ya3 + a1)

−
(

1
−x+ 2y − 2(2x+ y)

(−x+ 2y)2
)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

2x2a2 − 4x2a3 + 6x2b2 − 2x2b3 − 8xya2 − 4xya3 − 4xyb2 + 8xyb3 − 2y2a2 − 6y2a3 + 4y2b2 + 2y2b3 + 5xb1 − 5ya1
(x− 2y)2

= 0

Setting the numerator to zero gives

(6E)2x2a2 − 4x2a3 + 6x2b2 − 2x2b3 − 8xya2 − 4xya3 − 4xyb2
+ 8xyb3 − 2y2a2 − 6y2a3 + 4y2b2 + 2y2b3 + 5xb1 − 5ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v21 − 8a2v1v2 − 2a2v22 − 4a3v21 − 4a3v1v2 − 6a3v22 + 6b2v21
− 4b2v1v2 + 4b2v22 − 2b3v21 + 8b3v1v2 + 2b3v22 − 5a1v2 + 5b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − 4a3 + 6b2 − 2b3) v21 + (−8a2 − 4a3 − 4b2 + 8b3) v1v2
+ 5b1v1 + (−2a2 − 6a3 + 4b2 + 2b3) v22 − 5a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−5a1 = 0
5b1 = 0

−8a2 − 4a3 − 4b2 + 8b3 = 0
−2a2 − 6a3 + 4b2 + 2b3 = 0
2a2 − 4a3 + 6b2 − 2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b2 + b3

a3 = b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

2x+ y

−x+ 2y

)
(x)

= 2x2 + 2xy − 2y2
x− 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2+2xy−2y2
x−2y

dy
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Which results in

S = ln (−x2 − xy + y2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x+ y

−x+ 2y
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x+ y

2x2 + 2xy − 2y2

Sy =
x− 2y

2x2 + 2xy − 2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 − yx− x2)
2 = c1
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Which simplifies to

ln (y2 − yx− x2)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x+y
−x+2y

dS
dR

= 0

R = x

S = ln (−x2 − xy + y2)
2

Summary
The solution(s) found are the following

(1)ln (y2 − yx− x2)
2 = c1
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Figure 720: Slope field plot

Verification of solutions

ln (y2 − yx− x2)
2 = c1

Verified OK.

17.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x− 2y) dy = (−2x− y) dx
(2x+ y) dx+(x− 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x+ y

N(x, y) = x− 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2x+ y)

= 1

And
∂N

∂x
= ∂

∂x
(x− 2y)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x+ y dx

(3)φ = x(y + x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x− 2y. Therefore equation (4) becomes

(5)x− 2y = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2y) dy

f(y) = −y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(y + x)− y2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x(y + x)− y2

Summary
The solution(s) found are the following

(1)x(y + x)− y2 = c1

Figure 721: Slope field plot

Verification of solutions

x(y + x)− y2 = c1

Verified OK.
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17.5.5 Maple step by step solution

Let’s solve
(x− 2y) y′ + y = −2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2x+ y) dx+ f1(y)

• Evaluate integral
F (x, y) = x2 + xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x− 2y = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −2y

• Solve for f1(y)
f1(y) = −y2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = x2 + xy − y2

• Substitute F (x, y) into the solution of the ODE
x2 + xy − y2 = c1

• Solve for y{
y = x

2 −
√

5x2−4c1
2 , y = x

2 +
√

5x2−4c1
2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 51� �
dsolve((x-2*y(x))*diff(y(x),x)+2*x+y(x) = 0,y(x), singsol=all)� �

y(x) = c1x−
√

5c21x2 + 4
2c1

y(x) = c1x+
√

5c21x2 + 4
2c1
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3 Solution by Mathematica
Time used: 0.511 (sec). Leaf size: 102� �
DSolve[(x-2 y[x])y'[x]+2 x+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x−

√
5x2 − 4ec1

)
y(x) → 1

2

(
x+

√
5x2 − 4ec1

)
y(x) → 1

2

(
x−

√
5
√
x2
)

y(x) → 1
2

(√
5
√
x2 + x

)
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17.6 problem 465
17.6.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4595
17.6.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4597
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Internal problem ID [3719]
Internal file name [OUTPUT/3212_Sunday_June_05_2022_09_00_15_AM_73371005/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 465.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(1 + x− 2y) y′ + y = 1 + 2x

17.6.1 Solving as differentialType ode

Writing the ode as

y′ = 1 + 2x− y

1 + x− 2y (1)

Which becomes

(−2y + 1) dy = (−x) dy + (1 + 2x− y) dx (2)

But the RHS is complete differential because

(−x) dy + (1 + 2x− y) dx = d
(
x2 − xy + x

)
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Hence (2) becomes

(−2y + 1) dy = d
(
x2 − xy + x

)
Integrating both sides gives gives these solutions

y = x

2 + 1
2 +

√
−3x2 − 4c1 − 2x+ 1

2 + c1

y = x

2 + 1
2 −

√
−3x2 − 4c1 − 2x+ 1

2 + c1

Summary
The solution(s) found are the following

(1)y = x

2 + 1
2 +

√
−3x2 − 4c1 − 2x+ 1

2 + c1

(2)y = x

2 + 1
2 −

√
−3x2 − 4c1 − 2x+ 1

2 + c1

Figure 722: Slope field plot
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Verification of solutions

y = x

2 + 1
2 +

√
−3x2 − 4c1 − 2x+ 1

2 + c1

Verified OK.

y = x

2 + 1
2 −

√
−3x2 − 4c1 − 2x+ 1

2 + c1

Verified OK.

17.6.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = Y (X) + y0 − 2X − 2x0 − 1

2Y (X) + 2y0 −X − x0 − 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
3

y0 =
1
3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)− 2X

2Y (X)−X

In canonical form, the ODE is

Y ′ = F (X,Y )

= Y − 2X
2Y −X

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −Y + 2X and N = −2Y + X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
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this ode is homogeneous, it is converted to separable ODE using the substitution u = Y
X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u− 2

2u− 1
du
dX =

u(X)−2
2u(X)−1 − u(X)

X

Or
d

dX
u(X)−

u(X)−2
2u(X)−1 − u(X)

X
= 0

Or
2
(

d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + 2u(X)2 − 2u(X) + 2 = 0

Or
2 +X(2u(X)− 1)

(
d

dX
u(X)

)
+ 2u(X)2 − 2u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2(u2 − u+ 1)
X (2u− 1)

Where f(X) = − 2
X

and g(u) = u2−u+1
2u−1 . Integrating both sides gives

1
u2−u+1
2u−1

du = − 2
X

dX

∫ 1
u2−u+1
2u−1

du =
∫

− 2
X

dX

ln
(
u2 − u+ 1

)
= −2 ln (X) + c2

Raising both side to exponential gives

u2 − u+ 1 = e−2 ln(X)+c2
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Which simplifies to

u2 − u+ 1 = c3
X2

Which simplifies to

u(X)2 − u(X) + 1 = c3ec2
X2

The solution is

u(X)2 − u(X) + 1 = c3ec2
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X)2

X2 − Y (X)
X

+ 1 = c3ec2
X2

Which simplifies to

Y (X)2 − Y (X)X +X2 = c3ec2

Using the solution for Y (X)

Y (X)2 − Y (X)X +X2 = c3ec2

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
3

X = x− 1
3

Then the solution in y becomes(
y − 1

3

)2

−
(
y − 1

3

)(
x+ 1

3

)
+
(
x+ 1

3

)2

= c3ec2

Summary
The solution(s) found are the following

(1)
(
y − 1

3

)2

−
(
y − 1

3

)(
x+ 1

3

)
+
(
x+ 1

3

)2

= c3ec2

4599



Figure 723: Slope field plot

Verification of solutions(
y − 1

3

)2

−
(
y − 1

3

)(
x+ 1

3

)
+
(
x+ 1

3

)2

= c3ec2

Verified OK.

17.6.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −1− 2x+ y

2y − x− 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−1− 2x+ y) (b3 − a2)

2y − x− 1 − (−1− 2x+ y)2 a3
(2y − x− 1)2

−
(
− 2
2y − x− 1 + −1− 2x+ y

(2y − x− 1)2
)
(xa2 + ya3 + a1)

−
(

1
2y − x− 1 − 2(−1− 2x+ y)

(2y − x− 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + 4x2a3 + 2x2b2 − 2x2b3 − 8xya2 − 4xya3 + 4xyb2 + 8xyb3 + 2y2a2 − 2y2a3 − 4y2b2 − 2y2b3 + 4xa2 + 4xa3 + 3xb1 − xb2 − 3xb3 − 3ya1 − 3ya2 − ya3 + 4yb2 + 4yb3 + a1 + a2 + a3 + b1 − b2 − b3

(−2y + x+ 1)2
= 0

Setting the numerator to zero gives

(6E)−2x2a2 − 4x2a3 − 2x2b2 + 2x2b3 + 8xya2 + 4xya3 − 4xyb2 − 8xyb3
− 2y2a2 + 2y2a3 + 4y2b2 + 2y2b3 − 4xa2 − 4xa3 − 3xb1 + xb2 + 3xb3
+ 3ya1 + 3ya2 + ya3 − 4yb2 − 4yb3 − a1 − a2 − a3 − b1 + b2 + b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 + 8a2v1v2 − 2a2v22 − 4a3v21 + 4a3v1v2 + 2a3v22 − 2b2v21 − 4b2v1v2
+ 4b2v22 + 2b3v21 − 8b3v1v2 + 2b3v22 + 3a1v2 − 4a2v1 + 3a2v2 − 4a3v1 + a3v2
− 3b1v1 + b2v1 − 4b2v2 + 3b3v1 − 4b3v2 − a1 − a2 − a3 − b1 + b2 + b3 = 0

4601



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − 4a3 − 2b2 + 2b3) v21 + (8a2 + 4a3 − 4b2 − 8b3) v1v2
+ (−4a2 − 4a3 − 3b1 + b2 + 3b3) v1 + (−2a2 + 2a3 + 4b2 + 2b3) v22
+ (3a1 + 3a2 + a3 − 4b2 − 4b3) v2 − a1 − a2 − a3 − b1 + b2 + b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 − 4a3 − 2b2 + 2b3 = 0
−2a2 + 2a3 + 4b2 + 2b3 = 0
8a2 + 4a3 − 4b2 − 8b3 = 0

3a1 + 3a2 + a3 − 4b2 − 4b3 = 0
−4a2 − 4a3 − 3b1 + b2 + 3b3 = 0
−a1 − a2 − a3 − b1 + b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = b2 − b1

a2 = 2b2 − 3b1
a3 = −b2

b1 = b1

b2 = b2

b3 = b2 − 3b1
Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3x− 1
η = −3y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −3y + 1−
(
−1− 2x+ y

2y − x− 1

)
(−3x− 1)

= 6x2 − 6xy + 6y2 + 6x− 6y + 2
−2y + x+ 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

6x2−6xy+6y2+6x−6y+2
−2y+x+1

dy

Which results in

S = − ln (3x2 − 3xy + 3y2 + 3x− 3y + 1)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1− 2x+ y

2y − x− 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1− 2x+ y

6x2 + (−6y + 6)x+ 6y2 − 6y + 2

Sy =
−2y + x+ 1

6x2 + (−6y + 6)x+ 6y2 − 6y + 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (3x2 + (−3y + 3)x+ 3y2 − 3y + 1)
6 = c1

Which simplifies to

− ln (3x2 + (−3y + 3)x+ 3y2 − 3y + 1)
6 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −1−2x+y
2y−x−1

dS
dR

= 0

R = x

S = − ln (3x2 + (−3y + 3)x+ 3y2 − 3y + 1)
6
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Summary
The solution(s) found are the following

(1)− ln (3x2 + (−3y + 3)x+ 3y2 − 3y + 1)
6 = c1

Figure 724: Slope field plot

Verification of solutions

− ln (3x2 + (−3y + 3)x+ 3y2 − 3y + 1)
6 = c1

Verified OK.

17.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2y + x+ 1) dy = (1 + 2x− y) dx
(−1− 2x+ y) dx+(−2y + x+ 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1− 2x+ y

N(x, y) = −2y + x+ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−1− 2x+ y)

= 1
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And
∂N

∂x
= ∂

∂x
(−2y + x+ 1)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1− 2x+ y dx

(3)φ = −x(x− y + 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2y + x+ 1. Therefore equation (4) becomes

(5)−2y + x+ 1 = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2y + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2y + 1) dy

f(y) = −y2 + y + c1

4607



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x− y + 1)− y2 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x− y + 1)− y2 + y

Summary
The solution(s) found are the following

(1)−x(x− y + 1)− y2 + y = c1

Figure 725: Slope field plot

Verification of solutions

−x(x− y + 1)− y2 + y = c1

Verified OK.
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17.6.5 Maple step by step solution

Let’s solve
(1 + x− 2y) y′ + y = 1 + 2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−1− 2x+ y) dx+ f1(y)

• Evaluate integral
F (x, y) = −x2 + xy − x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−2y + x+ 1 = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −2y + 1

• Solve for f1(y)
f1(y) = −y2 + y

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −x2 + xy − y2 − x+ y

• Substitute F (x, y) into the solution of the ODE
−x2 + xy − y2 − x+ y = c1

• Solve for y{
y = x

2 +
1
2 −

√
−3x2−4c1−2x+1

2 , y = x
2 +

1
2 +

√
−3x2−4c1−2x+1

2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.469 (sec). Leaf size: 33� �
dsolve((1+x-2*y(x))*diff(y(x),x) = 1+2*x-y(x),y(x), singsol=all)� �

y(x) =
−
√
4− 27

(
x+ 1

3

)2
c21 + (3x+ 3) c1

6c1
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3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 67� �
DSolve[(1+x-2 y[x])y'[x]==1+2 x-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−i
√

3x2 + 2x− 1− 4c1 + x+ 1
)

y(x) → 1
2

(
i
√
3x2 + 2x− 1− 4c1 + x+ 1

)
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17.7 problem 466
17.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4612

Internal problem ID [3720]
Internal file name [OUTPUT/3213_Sunday_June_05_2022_09_00_20_AM_71008615/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 466.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(x+ 2y + 1) y′ − 2y = x− 1

17.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x+ 2y − 1
x+ 2y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x+ 2y − 1) (b3 − a2)

x+ 2y + 1 − (x+ 2y − 1)2 a3
(x+ 2y + 1)2

−
(

1
x+ 2y + 1 − x+ 2y − 1

(x+ 2y + 1)2
)
(xa2 + ya3 + a1)

−
(

2
x+ 2y + 1 − 2(x+ 2y − 1)

(x+ 2y + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 − x2b2 − x2b3 + 4xya2 + 4xya3 − 4xyb2 − 4xyb3 + 4y2a2 + 4y2a3 − 4y2b2 − 4y2b3 + 2xa2 − 2xa3 + 2xb2 − 2ya3 − 4yb2 + 4yb3 + 2a1 − a2 + a3 + 4b1 − b2 + b3

(x+ 2y + 1)2
= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 + x2b2 + x2b3 − 4xya2 − 4xya3 + 4xyb2 + 4xyb3
− 4y2a2 − 4y2a3 + 4y2b2 + 4y2b3 − 2xa2 + 2xa3 − 2xb2
+ 2ya3 + 4yb2 − 4yb3 − 2a1 + a2 − a3 − 4b1 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 − 4a2v1v2 − 4a2v22 − a3v

2
1 − 4a3v1v2 − 4a3v22 + b2v

2
1 + 4b2v1v2

+ 4b2v22 + b3v
2
1 + 4b3v1v2 + 4b3v22 − 2a2v1 + 2a3v1 + 2a3v2

− 2b2v1 + 4b2v2 − 4b3v2 − 2a1 + a2 − a3 − 4b1 + b2 − b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + b2 + b3) v21 + (−4a2 − 4a3 + 4b2 + 4b3) v1v2
+ (−2a2 + 2a3 − 2b2) v1 + (−4a2 − 4a3 + 4b2 + 4b3) v22
+ (2a3 + 4b2 − 4b3) v2 − 2a1 + a2 − a3 − 4b1 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 + 2a3 − 2b2 = 0
2a3 + 4b2 − 4b3 = 0

−4a2 − 4a3 + 4b2 + 4b3 = 0
−a2 − a3 + b2 + b3 = 0

−2a1 + a2 − a3 − 4b1 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = −b2 − 2b1
a2 = b2

a3 = 2b2
b1 = b1

b2 = b2

b3 = 2b2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
x+ 2y − 1
x+ 2y + 1

)
(−2)

= 3x+ 6y − 1
x+ 2y + 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x+6y−1
x+2y+1

dy

Which results in

S = y

3 + 2 ln (3x+ 6y − 1)
9

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ 2y − 1
x+ 2y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
9x+ 18y − 3

Sy =
x+ 2y + 1
3x+ 6y − 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

3 + 2 ln (3x+ 6y − 1)
9 = x

3 + c1

Which simplifies to

y

3 + 2 ln (3x+ 6y − 1)
9 = x

3 + c1

Which gives

y = −x

2 +
2LambertW

(
e
9x
4 − 1

4+9c1
2

4

)
3 + 1

6
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+2y−1
x+2y+1

dS
dR

= 1
3

R = x

S = y

3 + 2 ln (3x+ 6y − 1)
9

Summary
The solution(s) found are the following

(1)y = −x

2 +
2LambertW

(
e
9x
4 − 1

4+9c1
2

4

)
3 + 1

6
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Figure 726: Slope field plot

Verification of solutions

y = −x

2 +
2LambertW

(
e
9x
4 − 1

4+9c1
2

4

)
3 + 1

6

Verified OK.

4618



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 21� �
dsolve((1+x+2*y(x))*diff(y(x),x)+1-x-2*y(x) = 0,y(x), singsol=all)� �

y(x) = −x

2 +
2LambertW

(
c1e

9x
4 − 1

4
4

)
3 + 1

6

3 Solution by Mathematica
Time used: 5.086 (sec). Leaf size: 43� �
DSolve[(1+x+2 y[x])y'[x]+1-x-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6

(
4W
(
−e

9x
4 −1+c1

)
− 3x+ 1

)
y(x) → 1

6(1− 3x)
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17.8 problem 467
17.8.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4620
17.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4624

Internal problem ID [3721]
Internal file name [OUTPUT/3214_Sunday_June_05_2022_09_00_24_AM_50023687/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 467.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(x+ 2y + 1) y′ − 4y = −x− 7

17.8.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −7−X − x0 + 4Y (X) + 4y0

X + x0 + 2Y (X) + 2y0 + 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −3
y0 = 1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −X + 4Y (X)

X + 2Y (X)

4620



In canonical form, the ODE is

Y ′ = F (X,Y )

= −X + 4Y
X + 2Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X + 4Y and N = X + 2Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 4u− 1

2u+ 1
du
dX =

4u(X)−1
2u(X)+1 − u(X)

X

Or
d

dX
u(X)−

4u(X)−1
2u(X)+1 − u(X)

X
= 0

Or
2
(

d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + 2u(X)2 − 3u(X) + 1 = 0

Or
1 +X(2u(X) + 1)

(
d

dX
u(X)

)
+ 2u(X)2 − 3u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2u2 − 3u+ 1
X (2u+ 1)
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Where f(X) = − 1
X

and g(u) = 2u2−3u+1
2u+1 . Integrating both sides gives

1
2u2−3u+1

2u+1
du = − 1

X
dX

∫ 1
2u2−3u+1

2u+1
du =

∫
− 1
X

dX

−2 ln (2u− 1) + 3 ln (u− 1) = − ln (X) + c2

Raising both side to exponential gives

e−2 ln(2u−1)+3 ln(u−1) = e− ln(X)+c2

Which simplifies to

(u− 1)3

(2u− 1)2
= c3

X

The solution is
(u(X)− 1)3

(2u (X)− 1)2
= c3

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

− 1
)3

(
2Y (X)

X
− 1
)2 = c3

X

Which simplifies to

− (−Y (X) +X)3

(−2Y (X) +X)2
= c3

Using the solution for Y (X)

− (−Y (X) +X)3

(−2Y (X) +X)2
= c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + 1
X = x− 3

Then the solution in y becomes

−(−y + 4 + x)3

(5 + x− 2y)2
= c3

Summary
The solution(s) found are the following

(1)−(−y + 4 + x)3

(5 + x− 2y)2
= c3

Figure 727: Slope field plot

Verification of solutions

−(−y + 4 + x)3

(5 + x− 2y)2
= c3

Verified OK.
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17.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −7− x+ 4y
x+ 2y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−7− x+ 4y) (b3 − a2)

x+ 2y + 1 − (−7− x+ 4y)2 a3
(x+ 2y + 1)2

−
(
− 1
x+ 2y + 1 − −7− x+ 4y

(x+ 2y + 1)2
)
(xa2 + ya3 + a1)

−
(

4
x+ 2y + 1 − 2(−7− x+ 4y)

(x+ 2y + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 − 5x2b2 − x2b3 + 4xya2 + 8xya3 + 4xyb2 − 4xyb3 − 8y2a2 − 10y2a3 + 4y2b2 + 8y2b3 + 2xa2 − 14xa3 − 6xb1 − 16xb2 − 8xb3 + 6ya1 + 10ya2 + 50ya3 + 4yb2 − 28yb3 − 6a1 + 7a2 − 49a3 − 18b1 + b2 − 7b3
(x+ 2y + 1)2

= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 − 5x2b2 − x2b3 + 4xya2 + 8xya3 + 4xyb2 − 4xyb3 − 8y2a2
− 10y2a3 + 4y2b2 + 8y2b3 + 2xa2 − 14xa3 − 6xb1 − 16xb2 − 8xb3 + 6ya1
+ 10ya2 + 50ya3 + 4yb2 − 28yb3 − 6a1 + 7a2 − 49a3 − 18b1 + b2 − 7b3 = 0

4624



Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 +4a2v1v2 − 8a2v22 − a3v

2
1 +8a3v1v2 − 10a3v22 − 5b2v21 +4b2v1v2 +4b2v22

− b3v
2
1 − 4b3v1v2+8b3v22 +6a1v2+2a2v1+10a2v2− 14a3v1+50a3v2− 6b1v1

− 16b2v1 + 4b2v2 − 8b3v1 − 28b3v2 − 6a1 + 7a2 − 49a3 − 18b1 + b2 − 7b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 − 5b2 − b3) v21 + (4a2 + 8a3 + 4b2 − 4b3) v1v2
+ (2a2 − 14a3 − 6b1 − 16b2 − 8b3) v1 + (−8a2 − 10a3 + 4b2 + 8b3) v22
+(6a1+10a2+50a3+4b2−28b3) v2−6a1+7a2−49a3−18b1+ b2−7b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−8a2 − 10a3 + 4b2 + 8b3 = 0
a2 − a3 − 5b2 − b3 = 0

4a2 + 8a3 + 4b2 − 4b3 = 0
6a1 + 10a2 + 50a3 + 4b2 − 28b3 = 0
2a2 − 14a3 − 6b1 − 16b2 − 8b3 = 0

−6a1 + 7a2 − 49a3 − 18b1 + b2 − 7b3 = 0
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Solving the above equations for the unknowns gives

a1 = −11a3
2 + 3b3

a2 = −3a3
2 + b3

a3 = a3

b1 = −3a3
2 − b3

b2 = −a3
2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 3
η = y − 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 1−
(
−7− x+ 4y
x+ 2y + 1

)
(x+ 3)

= x2 − 3xy + 2y2 + 9x− 13y + 20
x+ 2y + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−3xy+2y2+9x−13y+20
x+2y+1

dy

Which results in

S = −2 ln (−5− x+ 2y) + 3 ln (y − 4− x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −7− x+ 4y
x+ 2y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 7 + x− 4y
(4 + x− y) (x− 2y + 5)

Sy =
x+ 2y + 1

(4 + x− y) (x− 2y + 5)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (−5− x+ 2y) + 3 ln (y − 4− x) = c1

Which simplifies to

−2 ln (−5− x+ 2y) + 3 ln (y − 4− x) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −7−x+4y
x+2y+1

dS
dR

= 0

R = x

S = −2 ln (−5− x+ 2y) + 3 ln (y − 4− x)

Summary
The solution(s) found are the following

(1)−2 ln (−5− x+ 2y) + 3 ln (y − 4− x) = c1
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Figure 728: Slope field plot

Verification of solutions

−2 ln (−5− x+ 2y) + 3 ln (y − 4− x) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 198� �
dsolve((1+x+2*y(x))*diff(y(x),x)+7+x-4*y(x) = 0,y(x), singsol=all)� �
y(x) =

−
4
((

i
√
3

48 − 1
48

)(
12
√
3 c21(x+ 3)

√
27(x+3)2c1−32x−96

c1
+ 512 + 108(x+ 3)2 c21 + (−576x− 1728) c1

) 2
3

+
(1
3 +

(
−x

4 − 1
)
c1
)(

12
√
3 c21(x+ 3)

√
27(x+3)2c1−32x−96

c1
+ 512 + 108(x+ 3)2 c21 + (−576x− 1728) c1

) 1
3

+
(
1 + i

√
3
) (

−4
3 + (x+ 3) c1

))
(
12
√
3 c21 (x+ 3)

√
27(x+3)2c1−32x−96

c1
+ 512 + 108 (x+ 3)2 c21 + (−576x− 1728) c1

) 1
3

c1

3 Solution by Mathematica
Time used: 60.098 (sec). Leaf size: 2617� �
DSolve[(1+x+2 y[x])y'[x]+7+x-4 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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17.9 problem 468
17.9.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4631
17.9.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4633
17.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4636

Internal problem ID [3722]
Internal file name [OUTPUT/3215_Sunday_June_05_2022_09_00_29_AM_86618508/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 468.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

[_Abel , `2nd type `, `class A`]]

2(y + x) y′ + 2y = −x2

17.9.1 Solving as differentialType ode

Writing the ode as

y′ = −x2 − 2y
2y + 2x (1)

Which becomes

(2y) dy = (−2x) dy +
(
−x2 − 2y

)
dx (2)

But the RHS is complete differential because

(−2x) dy +
(
−x2 − 2y

)
dx = d

(
−1
3x

3 − 2xy
)

Hence (2) becomes

(2y) dy = d

(
−1
3x

3 − 2xy
)
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Integrating both sides gives gives these solutions

y = −x+
√
−3x3 + 9x2 + 9c1

3 + c1

y = −x−
√
−3x3 + 9x2 + 9c1

3 + c1

Summary
The solution(s) found are the following

(1)y = −x+
√
−3x3 + 9x2 + 9c1

3 + c1

(2)y = −x−
√
−3x3 + 9x2 + 9c1

3 + c1

Figure 729: Slope field plot
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Verification of solutions

y = −x+
√
−3x3 + 9x2 + 9c1

3 + c1

Verified OK.

y = −x−
√
−3x3 + 9x2 + 9c1

3 + c1

Verified OK.

17.9.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore

(2x+ 2y) dy =
(
−x2 − 2y

)
dx(

x2 + 2y
)
dx+(2x+ 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + 2y
N(x, y) = 2x+ 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + 2y

)
= 2

And
∂N

∂x
= ∂

∂x
(2x+ 2y)

= 2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + 2y dx

(3)φ = 1
3x

3 + 2xy + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x+ 2y. Therefore equation (4) becomes

(5)2x+ 2y = 2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
3x

3 + 2xy + y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
3x

3 + 2xy + y2

Summary
The solution(s) found are the following

(1)x3

3 + 2yx+ y2 = c1

4635



Figure 730: Slope field plot

Verification of solutions

x3

3 + 2yx+ y2 = c1

Verified OK.

17.9.3 Maple step by step solution

Let’s solve
2(y + x) y′ + 2y = −x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
2 = 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x2 + 2y) dx+ f1(y)

• Evaluate integral
F (x, y) = x3

3 + 2xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2x+ 2y = 2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2y

• Solve for f1(y)
f1(y) = y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 1

3x
3 + 2xy + y2

• Substitute F (x, y) into the solution of the ODE
1
3x

3 + 2xy + y2 = c1

• Solve for y{
y = −x−

√
−3x3+9x2+9c1

3 , y = −x+
√

−3x3+9x2+9c1
3

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
dsolve(2*(x+y(x))*diff(y(x),x)+x^2+2*y(x) = 0,y(x), singsol=all)� �

y(x) = −x−
√
−3x3 + 9x2 − 9c1

3

y(x) = −x+
√
−3x3 + 9x2 − 9c1

3

3 Solution by Mathematica
Time used: 0.16 (sec). Leaf size: 53� �
DSolve[2(x+y[x])y'[x]+x^2+2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
−x3

3 + x2 + c1

y(x) → −x+
√
−x3

3 + x2 + c1
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17.10 problem 469
17.10.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4639
17.10.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4641
17.10.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4644
17.10.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4650
17.10.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4654

Internal problem ID [3723]
Internal file name [OUTPUT/3216_Sunday_June_05_2022_09_00_32_AM_21764482/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 469.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(3 + 2x− 2y) y′ + 2y = 6x+ 1

17.10.1 Solving as differentialType ode

Writing the ode as

y′ = 1 + 6x− 2y
3 + 2x− 2y (1)

Which becomes

(3− 2y) dy = (−2x) dy + (1 + 6x− 2y) dx (2)

But the RHS is complete differential because

(−2x) dy + (1 + 6x− 2y) dx = d
(
3x2 − 2xy + x

)
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Hence (2) becomes

(3− 2y) dy = d
(
3x2 − 2xy + x

)
Integrating both sides gives gives these solutions

y = x+ 3
2 +

√
−8x2 − 4c1 + 8x+ 9

2 + c1

y = x+ 3
2 −

√
−8x2 − 4c1 + 8x+ 9

2 + c1

Summary
The solution(s) found are the following

(1)y = x+ 3
2 +

√
−8x2 − 4c1 + 8x+ 9

2 + c1

(2)y = x+ 3
2 −

√
−8x2 − 4c1 + 8x+ 9

2 + c1

Figure 731: Slope field plot
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Verification of solutions

y = x+ 3
2 +

√
−8x2 − 4c1 + 8x+ 9

2 + c1

Verified OK.

y = x+ 3
2 −

√
−8x2 − 4c1 + 8x+ 9

2 + c1

Verified OK.

17.10.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 2Y (X) + 2y0 − 6X − 6x0 − 1

−3− 2X − 2x0 + 2Y (X) + 2y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
1
2

y0 = 2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 2Y (X)− 6X

−2X + 2Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= Y − 3X
−X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −Y + 3X and N = X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
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this ode is homogeneous, it is converted to separable ODE using the substitution u = Y
X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u− 3

u− 1
du
dX =

u(X)−3
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

u(X)−3
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 − 2u(X) + 3 = 0

Or
(u(X)− 1)X

(
d

dX
u(X)

)
+ u(X)2 − 2u(X) + 3 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − 2u+ 3
(u− 1)X

Where f(X) = − 1
X

and g(u) = u2−2u+3
u−1 . Integrating both sides gives

1
u2−2u+3

u−1
du = − 1

X
dX

∫ 1
u2−2u+3

u−1
du =

∫
− 1
X

dX

ln (u2 − 2u+ 3)
2 = − ln (X) + c2

Raising both side to exponential gives
√
u2 − 2u+ 3 = e− ln(X)+c2
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Which simplifies to
√
u2 − 2u+ 3 = c3

X

Which simplifies to √
u (X)2 − 2u (X) + 3 = c3ec2

X

The solution is √
u (X)2 − 2u (X) + 3 = c3ec2

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution √

Y (X)2

X2 − 2Y (X)
X

+ 3 = c3ec2
X

Using the solution for Y (X)√
Y (X)2 − 2Y (X)X + 3X2

X2 = c3ec2
X

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 2

X = x+ 1
2

Then the solution in y becomes√√√√(y − 2)2 − 2 (y − 2)
(
x− 1

2

)
+ 3

(
x− 1

2

)2(
x− 1

2

)2 = c3ec2
x− 1

2

Summary
The solution(s) found are the following

(1)

√√√√(y − 2)2 − 2 (y − 2)
(
x− 1

2

)
+ 3

(
x− 1

2

)2(
x− 1

2

)2 = c3ec2
x− 1

2
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Figure 732: Slope field plot

Verification of solutions√√√√(y − 2)2 − 2 (y − 2)
(
x− 1

2

)
+ 3

(
x− 1

2

)2(
x− 1

2

)2 = c3ec2
x− 1

2

Verified OK.

17.10.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −1− 6x+ 2y
−3− 2x+ 2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1
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(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−1− 6x+ 2y) (b3 − a2)

−3− 2x+ 2y − (−1− 6x+ 2y)2 a3
(−3− 2x+ 2y)2

−
(
− 6
−3− 2x+ 2y + −2− 12x+ 4y

(−3− 2x+ 2y)2
)
(xa2 + ya3 + a1)

−
(

2
−3− 2x+ 2y − 2(−1− 6x+ 2y)

(−3− 2x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−12x2a2 + 36x2a3 + 4x2b2 − 12x2b3 − 24xya2 − 24xya3 + 8xyb2 + 24xyb3 + 4y2a2 − 4y2a3 − 4y2b2 − 4y2b3 + 36xa2 + 12xa3 + 8xb1 − 16xb2 − 20xb3 − 8ya1 − 8ya2 + 12ya3 + 12yb2 + 4yb3 + 16a1 + 3a2 + a3 − 4b1 − 9b2 − 3b3
(3 + 2x− 2y)2

= 0

Setting the numerator to zero gives

(6E)−12x2a2 − 36x2a3 − 4x2b2 + 12x2b3 + 24xya2 + 24xya3 − 8xyb2 − 24xyb3
− 4y2a2 + 4y2a3 + 4y2b2 + 4y2b3 − 36xa2 − 12xa3 − 8xb1 + 16xb2 + 20xb3
+8ya1+8ya2−12ya3−12yb2−4yb3−16a1−3a2−a3+4b1+9b2+3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−12a2v21 +24a2v1v2 − 4a2v22 − 36a3v21 +24a3v1v2 +4a3v22 − 4b2v21 − 8b2v1v2
+4b2v22+12b3v21−24b3v1v2+4b3v22+8a1v2−36a2v1+8a2v2−12a3v1−12a3v2
−8b1v1+16b2v1−12b2v2+20b3v1−4b3v2−16a1−3a2−a3+4b1+9b2+3b3
= 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−12a2 − 36a3 − 4b2 + 12b3) v21 + (24a2 + 24a3 − 8b2 − 24b3) v1v2
+ (−36a2 − 12a3 − 8b1 + 16b2 + 20b3) v1 + (−4a2 + 4a3 + 4b2 + 4b3) v22
+ (8a1 +8a2 − 12a3 − 12b2 − 4b3) v2 − 16a1 − 3a2 − a3 +4b1 +9b2 +3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−12a2 − 36a3 − 4b2 + 12b3 = 0
−4a2 + 4a3 + 4b2 + 4b3 = 0

24a2 + 24a3 − 8b2 − 24b3 = 0
8a1 + 8a2 − 12a3 − 12b2 − 4b3 = 0

−36a2 − 12a3 − 8b1 + 16b2 + 20b3 = 0
−16a1 − 3a2 − a3 + 4b1 + 9b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −4a3 − 2a1
a3 = a3

b1 = 4a1 +
11a3
2

b2 = −3a3
b3 = −2a1 − 2a3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1− 2x
η = 4− 2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4− 2y −
(
−1− 6x+ 2y
−3− 2x+ 2y

)
(1− 2x)

= 12x2 − 8xy + 4y2 + 4x− 12y + 11
3 + 2x− 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

12x2−8xy+4y2+4x−12y+11
3+2x−2y

dy

Which results in

S = − ln (12x2 − 8xy + 4y2 + 4x− 12y + 11)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1− 6x+ 2y
−3− 2x+ 2y

4647



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1− 6x+ 2y
12x2 + (−8y + 4)x+ 4y2 − 12y + 11

Sy =
3 + 2x− 2y

12x2 + (−8y + 4)x+ 4y2 − 12y + 11

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (12x2 + (−8y + 4)x+ 4y2 − 12y + 11)
4 = c1

Which simplifies to

− ln (12x2 + (−8y + 4)x+ 4y2 − 12y + 11)
4 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −1−6x+2y
−3−2x+2y

dS
dR

= 0

R = x

S = − ln (12x2 + (−8y + 4)x+ 4y2 − 12y + 11)
4

Summary
The solution(s) found are the following

(1)− ln (12x2 + (−8y + 4)x+ 4y2 − 12y + 11)
4 = c1
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Figure 733: Slope field plot

Verification of solutions

− ln (12x2 + (−8y + 4)x+ 4y2 − 12y + 11)
4 = c1

Verified OK.

17.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(3 + 2x− 2y) dy = (1 + 6x− 2y) dx
(−1− 6x+ 2y) dx+(3 + 2x− 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1− 6x+ 2y
N(x, y) = 3 + 2x− 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−1− 6x+ 2y)

= 2

And
∂N

∂x
= ∂

∂x
(3 + 2x− 2y)

= 2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1− 6x+ 2y dx

(3)φ = −x(3x− 2y + 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3 + 2x− 2y. Therefore equation (4) becomes

(5)3 + 2x− 2y = 2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3− 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(3− 2y) dy

f(y) = −y2 + 3y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(3x− 2y + 1)− y2 + 3y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(3x− 2y + 1)− y2 + 3y

Summary
The solution(s) found are the following

(1)−x(3x− 2y + 1)− y2 + 3y = c1

Figure 734: Slope field plot

Verification of solutions

−x(3x− 2y + 1)− y2 + 3y = c1

Verified OK.
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17.10.5 Maple step by step solution

Let’s solve
(3 + 2x− 2y) y′ + 2y = 6x+ 1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2 = 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−1− 6x+ 2y) dx+ f1(y)

• Evaluate integral
F (x, y) = −3x2 + 2xy − x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
3 + 2x− 2y = 2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 3− 2y

• Solve for f1(y)
f1(y) = −y2 + 3y

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −3x2 + 2xy − y2 − x+ 3y
• Substitute F (x, y) into the solution of the ODE

−3x2 + 2xy − y2 − x+ 3y = c1

• Solve for y{
y = x+ 3

2 −
√

−8x2−4c1+8x+9
2 , y = x+ 3

2 +
√

−8x2−4c1+8x+9
2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.484 (sec). Leaf size: 33� �
dsolve((3+2*x-2*y(x))*diff(y(x),x) = 1+6*x-2*y(x),y(x), singsol=all)� �

y(x) =
−
√

1− 8
(
x− 1

2

)2
c21 + (3 + 2x) c1

2c1

4655



3 Solution by Mathematica
Time used: 0.154 (sec). Leaf size: 67� �
DSolve[(3+2 x-2 y[x])y'[x]==1+6 x-2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2i
√

8x2 − 8x− 9− 4c1 + x+ 3
2

y(x) → 1
2i
√
8x2 − 8x− 9− 4c1 + x+ 3

2
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17.11 problem 470
17.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4657

Internal problem ID [3724]
Internal file name [OUTPUT/3217_Sunday_June_05_2022_09_00_37_AM_81964528/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 470.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(1− 4x− 2y) y′ + y = −2x

17.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2x+ y

−1 + 4x+ 2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2x+ y) (b3 − a2)
−1 + 4x+ 2y − (2x+ y)2 a3

(−1 + 4x+ 2y)2

−
(

2
−1 + 4x+ 2y − 4(2x+ y)

(−1 + 4x+ 2y)2
)
(xa2 + ya3 + a1)

−
(

1
−1 + 4x+ 2y − 2(2x+ y)

(−1 + 4x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−8x2a2 + 4x2a3 − 16x2b2 − 8x2b3 + 8xya2 + 4xya3 − 16xyb2 − 8xyb3 + 2y2a2 + y2a3 − 4y2b2 − 2y2b3 − 4xa2 + 7xb2 + 2xb3 − ya2 − 2ya3 + 4yb2 − 2a1 − b1 − b2

(−1 + 4x+ 2y)2
= 0

Setting the numerator to zero gives

(6E)−8x2a2 − 4x2a3 +16x2b2 +8x2b3 − 8xya2 − 4xya3 +16xyb2 +8xyb3 − 2y2a2
−y2a3+4y2b2+2y2b3+4xa2−7xb2−2xb3+ya2+2ya3−4yb2+2a1+b1+b2
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−8a2v21 − 8a2v1v2 − 2a2v22 − 4a3v21 − 4a3v1v2 − a3v
2
2 + 16b2v21

+ 16b2v1v2 + 4b2v22 + 8b3v21 + 8b3v1v2 + 2b3v22 + 4a2v1
+ a2v2 + 2a3v2 − 7b2v1 − 4b2v2 − 2b3v1 + 2a1 + b1 + b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−8a2 − 4a3 + 16b2 + 8b3) v21 + (−8a2 − 4a3 + 16b2 + 8b3) v1v2 + (4a2 − 7b2
−2b3) v1+(−2a2−a3+4b2+2b3) v22+(a2+2a3−4b2) v2+2a1+ b1+ b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 + b1 + b2 = 0
a2 + 2a3 − 4b2 = 0
4a2 − 7b2 − 2b3 = 0

−8a2 − 4a3 + 16b2 + 8b3 = 0
−2a2 − a3 + 4b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 2b2
a3 = b2

b1 = −2a1 − b2

b2 = b2

b3 =
b2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2−
(

2x+ y

−1 + 4x+ 2y

)
(1)

= −10x− 5y + 2
−1 + 4x+ 2y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−10x−5y+2
−1+4x+2y

dy

Which results in

S = −2y
5 + ln (10x+ 5y − 2)

25
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x+ y

−1 + 4x+ 2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
50x+ 25y − 10

Sy =
1− 4x− 2y
10x+ 5y − 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

5 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2y
5 + ln (10x+ 5y − 2)

25 = −x

5 + c1

Which simplifies to

−2y
5 + ln (10x+ 5y − 2)

25 = −x

5 + c1

Which gives

y = e−LambertW
(
−2 e−25x+4+25c1

)
−25x+4+25c1

5 − 2x+ 2
5
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x+y
−1+4x+2y

dS
dR

= −1
5

R = x

S = −2y
5 + ln (10x+ 5y − 2)

25

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
−2 e−25x+4+25c1

)
−25x+4+25c1

5 − 2x+ 2
5
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Figure 735: Slope field plot

Verification of solutions

y = e−LambertW
(
−2 e−25x+4+25c1

)
−25x+4+25c1

5 − 2x+ 2
5

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -2, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve((1-4*x-2*y(x))*diff(y(x),x)+2*x+y(x) = 0,y(x), singsol=all)� �

y(x) = −LambertW (−2 e4−25x+25c1)
10 + 2

5 − 2x

3 Solution by Mathematica
Time used: 3.953 (sec). Leaf size: 39� �
DSolve[(1-4 x-2 y[x])y'[x]+2 x+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
10W

(
−e−25x−1+c1

)
− 2x+ 2

5
y(x) → 2

5 − 2x
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17.12 problem 471
17.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4665

Internal problem ID [3725]
Internal file name [OUTPUT/3218_Sunday_June_05_2022_09_00_42_AM_38224010/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 471.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(6x− 2y) y′ + y = 2 + 3x

17.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2− 3x+ y

−6x+ 2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−2− 3x+ y) (b3 − a2)

−6x+ 2y − (−2− 3x+ y)2 a3
4 (−3x+ y)2

−

(
− 3
2 (−3x+ y) +

−3− 9x
2 + 3y

2

(−3x+ y)2

)
(xa2 + ya3 + a1)

−
(

1
−6x+ 2y − −2− 3x+ y

2 (−3x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−18x2a2 + 9x2a3 − 36x2b2 − 18x2b3 − 12xya2 − 6xya3 + 24xyb2 + 12xyb3 + 2y2a2 + y2a3 − 4y2b2 − 2y2b3 + 12xa3 + 4xb2 − 12xb3 − 4ya2 − 16ya3 + 8yb3 − 12a1 + 4a3 + 4b1
4 (3x− y)2

= 0

Setting the numerator to zero gives

(6E)−18x2a2 − 9x2a3 + 36x2b2 + 18x2b3 + 12xya2 + 6xya3 − 24xyb2
− 12xyb3 − 2y2a2 − y2a3 + 4y2b2 + 2y2b3 − 12xa3 − 4xb2
+ 12xb3 + 4ya2 + 16ya3 − 8yb3 + 12a1 − 4a3 − 4b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−18a2v21 + 12a2v1v2 − 2a2v22 − 9a3v21 + 6a3v1v2 − a3v
2
2 + 36b2v21

− 24b2v1v2 + 4b2v22 + 18b3v21 − 12b3v1v2 + 2b3v22 + 4a2v2 − 12a3v1
+ 16a3v2 − 4b2v1 + 12b3v1 − 8b3v2 + 12a1 − 4a3 − 4b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−18a2 − 9a3 + 36b2 + 18b3) v21 + (12a2 + 6a3 − 24b2 − 12b3) v1v2
+ (−12a3 − 4b2 + 12b3) v1 + (−2a2 − a3 + 4b2 + 2b3) v22
+ (4a2 + 16a3 − 8b3) v2 + 12a1 − 4a3 − 4b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

12a1 − 4a3 − 4b1 = 0
4a2 + 16a3 − 8b3 = 0

−12a3 − 4b2 + 12b3 = 0
−18a2 − 9a3 + 36b2 + 18b3 = 0

−2a2 − a3 + 4b2 + 2b3 = 0
12a2 + 6a3 − 24b2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −6b3
a3 = 2b3
b1 = 3a1 − 2b3
b2 = −3b3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3−
(
−2− 3x+ y

−6x+ 2y

)
(1)

= 15x− 5y − 2
6x− 2y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

15x−5y−2
6x−2y

dy

Which results in

S = 2y
5 − 4 ln (−15x+ 5y + 2)

25
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2− 3x+ y

−6x+ 2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 12
75x− 25y − 10

Sy =
6x− 2y

15x− 5y − 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

5 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2y
5 − 4 ln (−15x+ 5y + 2)

25 = x

5 + c1

Which simplifies to

2y
5 − 4 ln (−15x+ 5y + 2)

25 = x

5 + c1

Which gives

y = e
−LambertW

(
− e

25x
4 −1− 25c1

4
2

)
+ 25x

4 −1− 25c1
4

5 + 3x− 2
5
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2−3x+y
−6x+2y

dS
dR

= 1
5

R = x

S = 2y
5 − 4 ln (−15x+ 5y + 2)

25

Summary
The solution(s) found are the following

(1)y = e
−LambertW

(
− e

25x
4 −1− 25c1

4
2

)
+ 25x

4 −1− 25c1
4

5 + 3x− 2
5
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Figure 736: Slope field plot

Verification of solutions

y = e
−LambertW

(
− e

25x
4 −1− 25c1

4
2

)
+ 25x

4 −1− 25c1
4

5 + 3x− 2
5

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve((6*x-2*y(x))*diff(y(x),x) = 2+3*x-y(x),y(x), singsol=all)� �

y(x) = −
2 LambertW

(
− e

25x
4 −1− 25c1

4
2

)
5 + 3x− 2

5

3 Solution by Mathematica
Time used: 4.044 (sec). Leaf size: 40� �
DSolve[(6 x-2 y[x])y'[x]==2+3 x-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x− 2
5

(
1 +W

(
−e

25x
4 −1+c1

))
y(x) → 3x− 2

5
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17.13 problem 472
17.13.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4673
17.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4677

Internal problem ID [3726]
Internal file name [OUTPUT/3219_Sunday_June_05_2022_09_00_46_AM_91013636/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 472.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(19 + 9x+ 2y) y′ − 6y = −18 + 2x

17.13.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −18 + 2X + 2x0 + 6Y (X) + 6y0

19 + 9X + 9x0 + 2Y (X) + 2y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −3
y0 = 4

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 2X + 6Y (X)

9X + 2Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 2X + 6Y
9X + 2Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2X + 6Y and N = 9X + 2Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 6u+ 2

2u+ 9
du
dX =

6u(X)+2
2u(X)+9 − u(X)

X

Or
d

dX
u(X)−

6u(X)+2
2u(X)+9 − u(X)

X
= 0

Or
2
(

d

dX
u(X)

)
Xu(X) + 9

(
d

dX
u(X)

)
X + 2u(X)2 + 3u(X)− 2 = 0

Or
−2 +X(2u(X) + 9)

(
d

dX
u(X)

)
+ 2u(X)2 + 3u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2u2 + 3u− 2
X (2u+ 9)

4674



Where f(X) = − 1
X

and g(u) = 2u2+3u−2
2u+9 . Integrating both sides gives

1
2u2+3u−2

2u+9
du = − 1

X
dX

∫ 1
2u2+3u−2

2u+9
du =

∫
− 1
X

dX

− ln (u+ 2) + 2 ln (2u− 1) = − ln (X) + c2

Raising both side to exponential gives

e− ln(u+2)+2 ln(2u−1) = e− ln(X)+c2

Which simplifies to

(2u− 1)2

u+ 2 = c3
X

The solution is
(2u(X)− 1)2

u (X) + 2 = c3
X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

2Y (X)
X

− 1
)2

Y (X)
X

+ 2
= c3

X

Which simplifies to

(−2Y (X) +X)2

Y (X) + 2X = c3

Using the solution for Y (X)

(−2Y (X) +X)2

Y (X) + 2X = c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + 4
X = x− 3

Then the solution in y becomes

(−2y + 11 + x)2

y + 2 + 2x = c3

Summary
The solution(s) found are the following

(1)(−2y + 11 + x)2

y + 2 + 2x = c3

Figure 737: Slope field plot

Verification of solutions

(−2y + 11 + x)2

y + 2 + 2x = c3

Verified OK.
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17.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −18 + 2x+ 6y
19 + 9x+ 2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
2(−9 + x+ 3y) (b3 − a2)

19 + 9x+ 2y − 4(−9 + x+ 3y)2 a3
(19 + 9x+ 2y)2

−
(

2
19 + 9x+ 2y − 18(−9 + x+ 3y)

(19 + 9x+ 2y)2
)
(xa2 + ya3 + a1)

−
(

6
19 + 9x+ 2y − 4(−9 + x+ 3y)

(19 + 9x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−18x2a2 + 4x2a3 − 31x2b2 − 18x2b3 + 8xya2 + 24xya3 − 36xyb2 − 8xyb3 + 12y2a2 − 14y2a3 − 4y2b2 − 12y2b3 + 76xa2 − 72xa3 + 50xb1 − 192xb2 + 124xb3 − 50ya1 + 78ya2 − 16ya3 − 76yb2 + 72yb3 + 200a1 − 342a2 + 324a3 + 150b1 − 361b2 + 342b3
(19 + 9x+ 2y)2

= 0

Setting the numerator to zero gives

(6E)
−18x2a2 − 4x2a3 + 31x2b2 + 18x2b3 − 8xya2 − 24xya3 + 36xyb2
+ 8xyb3 − 12y2a2 + 14y2a3 + 4y2b2 + 12y2b3 − 76xa2 + 72xa3
− 50xb1 + 192xb2 − 124xb3 + 50ya1 − 78ya2 + 16ya3 + 76yb2
− 72yb3 − 200a1 + 342a2 − 324a3 − 150b1 + 361b2 − 342b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−18a2v21 − 8a2v1v2 − 12a2v22 − 4a3v21 − 24a3v1v2 + 14a3v22 + 31b2v21
+ 36b2v1v2 + 4b2v22 + 18b3v21 + 8b3v1v2 + 12b3v22 + 50a1v2 − 76a2v1
− 78a2v2 + 72a3v1 + 16a3v2 − 50b1v1 + 192b2v1 + 76b2v2 − 124b3v1
− 72b3v2 − 200a1 + 342a2 − 324a3 − 150b1 + 361b2 − 342b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−18a2 − 4a3 + 31b2 + 18b3) v21 + (−8a2 − 24a3 + 36b2 + 8b3) v1v2
+(−76a2+72a3− 50b1+192b2− 124b3) v1+(−12a2+14a3+4b2+12b3) v22
+ (50a1 − 78a2 + 16a3 + 76b2 − 72b3) v2 − 200a1
+ 342a2 − 324a3 − 150b1 + 361b2 − 342b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−18a2 − 4a3 + 31b2 + 18b3 = 0
−12a2 + 14a3 + 4b2 + 12b3 = 0
−8a2 − 24a3 + 36b2 + 8b3 = 0

50a1 − 78a2 + 16a3 + 76b2 − 72b3 = 0
−76a2 + 72a3 − 50b1 + 192b2 − 124b3 = 0

−200a1 + 342a2 − 324a3 − 150b1 + 361b2 − 342b3 = 0

4678



Solving the above equations for the unknowns gives

a1 = a1

a2 = 3a1 − 8b3
a3 = 2a1 − 6b3
b1 = 6a1 − 22b3
b2 = 2a1 − 6b3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −8x− 6y
η = −6x+ y − 22

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6x+ y − 22−
(
−18 + 2x+ 6y
19 + 9x+ 2y

)
(−8x− 6y)

= −38x2 + 57xy + 38y2 − 456x− 133y − 418
19 + 9x+ 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−38x2+57xy+38y2−456x−133y−418
19+9x+2y

dy

Which results in

S = 2 ln (2y − 11− x)
19 − ln (2x+ y + 2)

19

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −18 + 2x+ 6y
19 + 9x+ 2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −18 + 2x+ 6y
38 (x− 2y + 11)

(
x+ y

2 + 1
)

Sy =
−19− 9x− 2y

38 (x− 2y + 11)
(
x+ y

2 + 1
)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (2y − 11− x)
19 − ln (y + 2 + 2x)

19 = c1

Which simplifies to

2 ln (2y − 11− x)
19 − ln (y + 2 + 2x)

19 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −18+2x+6y
19+9x+2y

dS
dR

= 0

R = x

S = 2 ln (2y − 11− x)
19 − ln (2x+ y + 2)

19

Summary
The solution(s) found are the following

(1)2 ln (2y − 11− x)
19 − ln (y + 2 + 2x)

19 = c1
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Figure 738: Slope field plot

Verification of solutions

2 ln (2y − 11− x)
19 − ln (y + 2 + 2x)

19 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 3.281 (sec). Leaf size: 29� �
dsolve((19+9*x+2*y(x))*diff(y(x),x)+18-2*x-6*y(x) = 0,y(x), singsol=all)� �

y(x) =
√

1 + (−40x− 120) c1 − 1 + (4x+ 44) c1
8c1

4683



3 Solution by Mathematica
Time used: 16.36 (sec). Leaf size: 276� �
DSolve[(19+9 x+2 y[x])y'[x]+18-2 x-6 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −9x
2 + (5− 5i)(x+ 3)

i
√
2√

(x+3) cosh
(

2c1
9

)
+(x+3) sinh

(
2c1
9

)
−i

+ (1− i)
− 19

2

y(x) → −9x
2 + (5− 5i)(x+ 3)

(1− i)− i
√
2√

(x+3) cosh
(

2c1
9

)
+(x+3) sinh

(
2c1
9

)
−i

− 19
2

y(x) → −9x
2 + (5− 5i)(x+ 3)

(1− i)−
√
2√

(x+3) cosh
(

2c1
9

)
+(x+3) sinh

(
2c1
9

)
+i

− 19
2

y(x) → −9x
2 + (5− 5i)(x+ 3)

√
2√

(x+3) cosh
(

2c1
9

)
+(x+3) sinh

(
2c1
9

)
+i

+ (1− i)
− 19

2

y(x) → −2(x+ 1)

y(x) → x+ 11
2
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17.14 problem 473
17.14.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4685
17.14.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4687
17.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4690

Internal problem ID [3727]
Internal file name [OUTPUT/3220_Sunday_June_05_2022_09_00_55_AM_19350463/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 473.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

[_Abel , `2nd type `, `class A`]]

(
x3 + 2y

)
y′ − 3x(2− yx) = 0

17.14.1 Solving as differentialType ode

Writing the ode as

y′ = 3x(2− yx)
x3 + 2y (1)

Which becomes

(2y) dy =
(
−x3) dy + (−3x(xy − 2)) dx (2)

But the RHS is complete differential because(
−x3) dy + (−3x(xy − 2)) dx = d

(
−x3y + 3x2)

Hence (2) becomes

(2y) dy = d
(
−x3y + 3x2)
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Integrating both sides gives gives these solutions

y = −x3

2 +
√
x6 + 12x2 + 4c1

2 + c1

y = −x3

2 −
√
x6 + 12x2 + 4c1

2 + c1

Summary
The solution(s) found are the following

(1)y = −x3

2 +
√
x6 + 12x2 + 4c1

2 + c1

(2)y = −x3

2 −
√
x6 + 12x2 + 4c1

2 + c1

Figure 739: Slope field plot
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Verification of solutions

y = −x3

2 +
√
x6 + 12x2 + 4c1

2 + c1

Verified OK.

y = −x3

2 −
√
x6 + 12x2 + 4c1

2 + c1

Verified OK.

17.14.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
x3 + 2y

)
dy = (3x(−xy + 2)) dx

(−3x(−xy + 2)) dx+
(
x3 + 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x(−xy + 2)
N(x, y) = x3 + 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−3x(−xy + 2))

= 3x2

And

∂N

∂x
= ∂

∂x

(
x3 + 2y

)
= 3x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x(−xy + 2) dx

(3)φ = x3y − 3x2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3 + 2y. Therefore equation (4) becomes

(5)x3 + 2y = x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x3y − 3x2 + y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x3y − 3x2 + y2

Summary
The solution(s) found are the following

(1)yx3 − 3x2 + y2 = c1
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Figure 740: Slope field plot

Verification of solutions

yx3 − 3x2 + y2 = c1

Verified OK.

17.14.3 Maple step by step solution

Let’s solve
(x3 + 2y) y′ − 3x(2− yx) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
3x2 = 3x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
−3x(−xy + 2) dx+ f1(y)

• Evaluate integral
F (x, y) = x3y − 3x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x3 + 2y = x3 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2y

• Solve for f1(y)
f1(y) = y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x3y − 3x2 + y2

• Substitute F (x, y) into the solution of the ODE
x3y − 3x2 + y2 = c1

• Solve for y{
y = −x3

2 −
√

x6+12x2+4c1
2 , y = −x3

2 +
√

x6+12x2+4c1
2

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
dsolve((x^3+2*y(x))*diff(y(x),x) = 3*x*(2-x*y(x)),y(x), singsol=all)� �

y(x) = −x3

2 −
√
x6 + 12x2 − 4c1

2

y(x) = −x3

2 +
√
x6 + 12x2 − 4c1

2

3 Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 65� �
DSolve[(x^3+2 y[x])y'[x]==3 x(2 - x y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−x3 −

√
x6 + 12x2 + 4c1

)
y(x) → 1

2

(
−x3 +

√
x6 + 12x2 + 4c1

)
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17.15 problem 474
Internal problem ID [3728]
Internal file name [OUTPUT/3221_Sunday_June_05_2022_09_00_58_AM_22618388/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 474.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class A`]]

Unable to solve or complete the solution.

(sec (x) tan (x)− 2y) y′ + sec (x) (1 + 2y sin (x)) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)*(sin(x)*tan(x)+cos(x))/sin(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+2*K[1], y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(-2*K[1]*x+y(x))/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-K[1], y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-2*K[1], y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(-K[1]*x+y(x))/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(2*K[1]*x+y(x))/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x) = 0, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(sin(x)*tan(x)+cos(x))/sin(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)*sec(x)*tan(x)^2-2*tan(x)*K[1]*sin(x)*sec(x)+y(x)*sec(x)-2*K[1])/(sec(x)*tan
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(sin(x)*sec(x)*tan(x)^2-cos(x)*sec(x)*tan(x)+sec(x)*sin(x)+tan(x))/(sin(x)*s
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(sin(x)*tan(x)*y(x)+cos(x)*y(x)-sin(x)*K[1])/sin(x), y(x)` *** Sublevel 2 **
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(tan(x)^2*y(x)+K[1]*tan(x)+y(x))/tan(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)*sin(x)*sec(x)*tan(x)^2-y(x)*cos(x)*sec(x)*tan(x)+y(x)*sin(x)*sec(x)+tan(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-(1/2)/x, y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(1/2)*(2*y(x)-1)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve((tan(x)*sec(x)-2*y(x))*diff(y(x),x)+sec(x)*(1+2*y(x)*sin(x)) = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(Tan[x] Sec[x]-2 y[x])y'[x]+Sec[x](1+2 y[x] Sin[x])==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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17.16 problem 475
17.16.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4696
17.16.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4704

Internal problem ID [3729]
Internal file name [OUTPUT/3222_Sunday_June_05_2022_09_01_14_AM_77110163/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 475.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class B`]]

(
x e−x − 2y

)
y′ +

(
e−x + x e−x − 2y

)
y = 2x e−2x

17.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −e−xyx− 2x e−2x + e−xy − 2y2
x e−x − 2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

− (e−xyx− 2x e−2x + e−xy − 2y2) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x e−x − 2y

− (e−xyx− 2x e−2x + e−xy − 2y2)2 (xa5 + 2ya6 + a3)
(x e−x − 2y)2

−
(
−−e−xyx− 2 e−2x + 4x e−2x

x e−x − 2y

+ (e−xyx− 2x e−2x + e−xy − 2y2) (e−x − x e−x)
(x e−x − 2y)2

)(
x2a4

+ xya5 + y2a6 + xa2 + ya3 + a1
)

−
(
−−4y + e−x + x e−x

x e−x − 2y − 2(e−xyx− 2x e−2x + e−xy − 2y2)
(x e−x − 2y)2

)(
x2b4

+ xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)

4 e−xx y3a3 − 4 e−xx2yb2 − 2 e−xx y2a2 − 7 e−2xx2ya2
− 18 e−2xx y2a3 − 4 e−xxyb1 − 4 e−xxyb2 − 8 e−2xxya1
+ 8 e−2xxya2 − 8 e−2xxyb3 + 4 e−xx2y3a5 + 8 e−xx y4a6
− 4 e−xx3yb4 − 6 e−xx2y2a4 + 2 e−xx y3a5 + 4 e−xx y3b6
− 6 e−2xx3ya4 − 17 e−2xx2y2a5 − 28 e−2xx y3a6 − 8 e−xx2yb4
− 4 e−xx y2a4 − 2 e−xx y2b5 + 13 e−2xx2ya4 − 7 e−2xx2yb5
+ 7 e−2xx y2a5 − 13 e−2xx y2b6 + 6x2ya3e−3x + 4xya3e−3x

− 8 e−4xx2ya6 + 6x3ya5e−3x + 10x2y2a6e−3x + 2x2ya5e−3x

+ 4x2yb6e−3x + 8x y2a6e−3x − e−2xx2y2a3 − e−2xx3y2a5
− 2 e−2xx2y3a6 − e−2xx2y2b6 + 2x3a2e−3x − 4 e−4xx2a3
− 4y4a3 + 4y3a2 + 4y2b1 + 4y2b2 + e−2xx3b2 + e−2xx2b1
− 4 e−4xx3a5 − 4x y4a5 + 4x2y2b4 + 8x y3a4 + 8x y2b4
+ 10 e−xy4a6 − 2 e−xy3a5 + 4 e−xy3b6 − e−2xx3b4 + e−2xy3a6
+ e−2xx4b4 + 2x2a1e−3x − 2x2a2e−3x + 2x2b3e−3x + 4x y2b2
+ 6 e−xy3a3 + 2 e−xy2a1 − 2 e−xy2a2 + 2 e−xy2b3 − 2 e−2xx2b2
+ 2 e−2xy2a3 + 2x3b5e−3x + 2x4a4e−3x − 8y5a6 + 4y4a5
− 4y4b6 + 4y3b5 − 3 e−2xxb1 + 3 e−2xya1 − 4x3a4e−3x = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, e−4x, e−3x, e−2x, e−x}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, e−4x = v3, e−3x = v4, e−2x = v5, e−x = v6}
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The above PDE (6E) now becomes

(7E)

−v5v
3
1v

2
2a5 + 4v6v21v32a5 − 2v5v21v32a6 + 8v6v1v42a6 − v5v

2
1v

2
2a3

+ 4v6v1v32a3 + 2v41a4v4 − 6v5v31v2a4 − 6v6v21v22a4 + 6v31v2a5v4
− 17v5v21v22a5− 4v1v42a5+2v6v1v32a5+10v21v22a6v4− 28v5v1v32a6
− 8v52a6 + 10v6v42a6 + v5v

4
1b4 − 4v6v31v2b4 − v5v

2
1v

2
2b6

+ 4v6v1v32b6 + 2v31a2v4 − 7v5v21v2a2 − 2v6v1v22a2 + 6v21v2a3v4
− 18v5v1v22a3 − 4v42a3 + 6v6v32a3 − 4v31a4v4 + 13v5v21v2a4
+ 8v1v32a4 − 4v6v1v22a4 − 4v3v31a5 + 2v21v2a5v4 + 7v5v1v22a5
+ 4v42a5 − 2v6v32a5 − 8v3v21v2a6 + 8v1v22a6v4 + v5v

3
2a6 + v5v

3
1b2

−4v6v21v2b2−v5v
3
1b4+4v21v22b4−8v6v21v2b4+2v31b5v4−7v5v21v2b5

− 2v6v1v22b5 + 4v21v2b6v4 − 13v5v1v22b6 − 4v42b6 + 4v6v32b6
+2v21a1v4− 8v5v1v2a1 +2v6v22a1− 2v21a2v4 +8v5v1v2a2 +4v32a2
−2v6v22a2−4v3v21a3+4v1v2a3v4+2v5v22a3+v5v

2
1b1−4v6v1v2b1

−2v5v21b2+4v1v22b2−4v6v1v2b2+2v21b3v4−8v5v1v2b3+2v6v22b3
+ 8v1v22b4 + 4v32b5 + 3v5v2a1 − 3v5v1b1 + 4v22b1 + 4v22b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6}

Equation (7E) now becomes

(8E)

(−4a3 + 4a5 − 4b6) v42 + (4a2 + 4b5) v32 + (4b1 + 4b2) v22
+ (−a3 − 17a5 − b6) v21v22v5 + (6a3 + 2a5 + 4b6) v21v2v4
+ (2a1 − 2a2 + 2b3) v21v4 + (b1 − 2b2) v21v5 + (4b2 + 8b4) v1v22
+ (6a3 − 2a5 + 4b6) v32v6 + (2a1 − 2a2 + 2b3) v22v6
+ (2a2 − 4a4 + 2b5) v31v4 + (b2 − b4) v31v5 − 8v3v21v2a6
+ 6v31v2a5v4 + 10v21v22a6v4 + 8v1v22a6v4 − v5v

3
1v

2
2a5 − 2v5v21v32a6

+ 4v6v21v32a5 + 8v6v1v42a6 − 4v6v31v2b4 − 6v6v21v22a4 − 6v5v31v2a4
− 28v5v1v32a6 + 4v1v2a3v4 + (−18a3 + 7a5 − 13b6) v1v22v5
+ (−2a2 − 4a4 − 2b5) v1v22v6 + (−8a1 + 8a2 − 8b3) v1v2v5
+ (−4b1 − 4b2) v1v2v6 + (−7a2 + 13a4 − 7b5) v21v2v5
+ (−4b2 − 8b4) v21v2v6 + (4a3 + 2a5 + 4b6) v1v32v6 − 8v52a6 + v5v

4
1b4

+ 2v5v22a3 + 2v41a4v4 − 3v5v1b1 + 3v5v2a1 − 4v3v21a3 − 4v3v31a5
− 4v1v42a5 + 4v21v22b4 + 8v1v32a4 + 10v6v42a6 + v5v

3
2a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
a6 = 0
b4 = 0

3a1 = 0
−4a3 = 0
2a3 = 0
4a3 = 0

−6a4 = 0
2a4 = 0
8a4 = 0

−4a5 = 0
−a5 = 0
4a5 = 0
6a5 = 0

−28a6 = 0
−8a6 = 0
−2a6 = 0
8a6 = 0
10a6 = 0
−3b1 = 0
−4b4 = 0
4b4 = 0

4a2 + 4b5 = 0
−4b1 − 4b2 = 0

b1 − 2b2 = 0
4b1 + 4b2 = 0

−4b2 − 8b4 = 0
b2 − b4 = 0

4b2 + 8b4 = 0
−8a1 + 8a2 − 8b3 = 0
2a1 − 2a2 + 2b3 = 0

−7a2 + 13a4 − 7b5 = 0
−2a2 − 4a4 − 2b5 = 0
2a2 − 4a4 + 2b5 = 0

−18a3 + 7a5 − 13b6 = 0
−4a3 + 4a5 − 4b6 = 0
−a3 − 17a5 − b6 = 0
4a3 + 2a5 + 4b6 = 0
6a3 − 2a5 + 4b6 = 0
6a3 + 2a5 + 4b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b5

a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = 0
b2 = 0
b3 = −b5

b4 = 0
b5 = b5

b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = xy − y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= xy − y −
(
−e−xyx− 2x e−2x + e−xy − 2y2

x e−x − 2y

)
(−x)

= −2 e−xyx+ 2 e−2xx2 + 2y2
x e−x − 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2 e−xyx+2 e−2xx2+2y2
x e−x−2y

dy

Which results in

S = − ln (y2e2x − exxy + x2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −e−xyx− 2x e−2x + e−xy − 2y2
x e−x − 2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y2e2x + y(x+ 1) ex − 2x
−2 exxy + 2y2e2x + 2x2

Sy =
ex(−2 exy + x)

−2 exxy + 2y2e2x + 2x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (e2xy2 − yx ex + x2)
2 = c1

Which simplifies to

− ln (e2xy2 − yx ex + x2)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − e−xyx−2x e−2x+e−xy−2y2
x e−x−2y

dS
dR

= 0

R = x

S = − ln (y2e2x − exxy + x2)
2
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Summary
The solution(s) found are the following

(1)− ln (e2xy2 − yx ex + x2)
2 = c1

Figure 741: Slope field plot

Verification of solutions

− ln (e2xy2 − yx ex + x2)
2 = c1

Verified OK.

17.16.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x e−x − 2y

)
dy =

(
2x e−2x −

(
e−x + x e−x − 2y

)
y
)
dx(

−2x e−2x +
(
e−x + x e−x − 2y

)
y
)
dx+

(
x e−x − 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x e−2x +
(
e−x + x e−x − 2y

)
y

N(x, y) = x e−x − 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2x e−2x +

(
e−x + x e−x − 2y

)
y
)

= −4y + e−x + x e−x
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And
∂N

∂x
= ∂

∂x

(
x e−x − 2y

)
= e−x(1− x)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x e−x − 2y
((
−4y + e−x + x e−x

)
−
(
e−x − x e−x

))
= 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 dx

The result of integrating gives

µ = e2x

= e2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e2x
(
−2x e−2x +

(
e−x + x e−x − 2y

)
y
)

= −2y2e2x + y(x+ 1) ex − 2x

And

N = µN

= e2x
(
x e−x − 2y

)
= ex(−2 exy + x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2y2e2x + y(x+ 1) ex − 2x
)
+ (ex(−2 exy + x)) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2y2e2x + y(x+ 1) ex − 2x dx

(3)φ = −y2e2x + exxy − x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x ex − 2 e2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= ex(−2 exy + x). Therefore equation (4) becomes

(5)ex(−2 exy + x) = x ex − 2 e2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −y2e2x + exxy − x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −y2e2x + exxy − x2
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Summary
The solution(s) found are the following

(1)yx ex − e2xy2 − x2 = c1

Figure 742: Slope field plot

Verification of solutions

yx ex − e2xy2 − x2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 63� �
dsolve((x*exp(-x)-2*y(x))*diff(y(x),x) = 2*x*exp(-2*x)-(exp(-x)+x*exp(-x)-2*y(x))*y(x),y(x), singsol=all)� �

y(x) =

(
x ex −

√
e2x (−3x2 + 4c1)

)
e−2x

2

y(x) =

(
x ex +

√
e2x (−3x2 + 4c1)

)
e−2x

2

3 Solution by Mathematica
Time used: 33.003 (sec). Leaf size: 81� �
DSolve[(x Exp[-x]-2 y[x])y'[x]==2 x Exp[-2 x]-(Exp[-x]+x Exp[-x]-2 y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−2x
(
exx−

√
e2x (−3x2 + 4c1)

)
y(x) → 1

2e
−2x
(
exx+

√
e2x (−3x2 + 4c1)

)
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17.17 problem 476
17.17.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4710
17.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4712
17.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4716
17.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4720

Internal problem ID [3730]
Internal file name [OUTPUT/3223_Sunday_June_05_2022_09_01_18_AM_59367040/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 17
Problem number: 476.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

3yy′ + 5 cot (x) cot (y) cos (y)2 = 0

17.17.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −5 cot (x) cot (y) cos (y)2

3y

Where f(x) = −5 cot(x)
3 and g(y) = cot(y) cos(y)2

y
. Integrating both sides gives

1
cot(y) cos(y)2

y

dy = −5 cot (x)
3 dx

∫ 1
cot(y) cos(y)2

y

dy =
∫

−5 cot (x)
3 dx
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y

2 cos (y)2
− tan (y)

2 = −5 ln (sin (x))
3 + c1

Which results in

y = RootOf
(
3 cos (_Z) sin (_Z)− 10 cos (_Z)2 ln (sin (x)) + 6 cos (_Z)2 c1 − 3_Z

)
Summary
The solution(s) found are the following

(1)y = RootOf
(
3 cos (_Z) sin (_Z)− 10 cos (_Z)2 ln (sin (x)) + 6 cos (_Z)2 c1 − 3_Z

)

Figure 743: Slope field plot

Verification of solutions

y = RootOf
(
3 cos (_Z) sin (_Z)− 10 cos (_Z)2 ln (sin (x)) + 6 cos (_Z)2 c1 − 3_Z

)
Verified OK.

4711



17.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −5 cot (x) cot (y) cos (y)2

3y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 788: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 3
5 cot (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 3
5 cot(x)

dx

Which results in

S = −5 ln (sin (x))
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −5 cot (x) cot (y) cos (y)2

3y
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −5 cot (x)
3

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) sec (y)2 y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R) sec (R)2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 cos (R)2
− tan (R)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−5 ln (sin (x))
3 = y

2 cos (y)2
− tan (y)

2 + c1

Which simplifies to

−5 ln (sin (x))
3 = y

2 cos (y)2
− tan (y)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −5 cot(x) cot(y) cos(y)2
3y

dS
dR

= tan (R) sec (R)2R

R = y

S = −5 ln (sin (x))
3

Summary
The solution(s) found are the following

(1)−5 ln (sin (x))
3 = y

2 cos (y)2
− tan (y)

2 + c1
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Figure 744: Slope field plot

Verification of solutions

−5 ln (sin (x))
3 = y

2 cos (y)2
− tan (y)

2 + c1

Verified OK.

17.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 3y
5 cot (y) cos (y)2

)
dy = (cot (x)) dx

(− cot (x)) dx+
(
− 3y
5 cot (y) cos (y)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cot (x)

N(x, y) = − 3y
5 cot (y) cos (y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− cot (x))

= 0
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And

∂N

∂x
= ∂

∂x

(
− 3y
5 cot (y) cos (y)2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cot (x) dx

(3)φ = − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 3y
5 cot(y) cos(y)2 . Therefore equation (4) becomes

(5)− 3y
5 cot (y) cos (y)2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 3y
5 cot (y) cos (y)2

= −3 tan (y) sec (y)2 y
5
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Integrating the above w.r.t y results in

∫
f ′(y) dy =

∫ (
−3 tan (y) sec (y)2 y

5

)
dy

f(y) = − 3y
10 cos (y)2

+ 3 tan (y)
10 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x))− 3y
10 cos (y)2

+ 3 tan (y)
10 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x))− 3y
10 cos (y)2

+ 3 tan (y)
10

Summary
The solution(s) found are the following

(1)− ln (sin (x))− 3y
10 cos (y)2

+ 3 tan (y)
10 = c1
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Figure 745: Slope field plot

Verification of solutions

− ln (sin (x))− 3y
10 cos (y)2

+ 3 tan (y)
10 = c1

Verified OK.

17.17.4 Maple step by step solution

Let’s solve
3yy′ + 5 cot (x) cot (y) cos (y)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y

cot(y) cos(y)2 = −5 cot(x)
3

• Integrate both sides with respect to x∫
y′y

cot(y) cos(y)2dx =
∫
−5 cot(x)

3 dx+ c1

• Evaluate integral

4720



y

2 cos(y)2 −
tan(y)

2 = −5 ln(sin(x))
3 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.438 (sec). Leaf size: 22� �
dsolve(3*y(x)*diff(y(x),x)+5*cot(x)*cot(y(x))*cos(y(x))^2 = 0,y(x), singsol=all)� �

ln (sin (x)) + c1 −
3 tan (y(x))

10 + 3 sec (y(x))2 y(x)
10 = 0

3 Solution by Mathematica
Time used: 0.488 (sec). Leaf size: 30� �
DSolve[3 y[x] y'[x]+5 Cot[x] Cot[y[x]] Cos[y[x]]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
40 sin(x)e 3

10
(
y(x) sec2(y(x))−tan(y(x))

)
= c1, y(x)

]
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18.1 problem 477
18.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 4723
18.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 4725
18.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4729
18.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4733

Internal problem ID [3731]
Internal file name [OUTPUT/3224_Sunday_June_05_2022_09_01_24_AM_29059890/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 477.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

3(2− y) y′ + yx = 0

18.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= xy

3y − 6
Where f(x) = x

3 and g(y) = y
y−2 . Integrating both sides gives

1
y

y−2
dy = x

3 dx

∫ 1
y

y−2
dy =

∫
x

3 dx

y − 2 ln (y) = x2

6 + c1
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Which results in

y = e
−LambertW

− e−
x2
12 − c1

2
2

−x2
12−

c1
2

Summary
The solution(s) found are the following

(1)y = e
−LambertW

− e−
x2
12 − c1

2
2

−x2
12−

c1
2

Figure 746: Slope field plot

Verification of solutions

y = e
−LambertW

− e−
x2
12 − c1

2
2

−x2
12−

c1
2

Verified OK.
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18.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy

3y − 6
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 791: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 3
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

3
x

dx

Which results in

S = x2

6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy

3y − 6

4726



Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

3
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 2

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

6 = y − 2 ln (y) + c1

Which simplifies to

x2

6 = y − 2 ln (y) + c1

Which gives

y = e
−LambertW

− e−
x2
12 + c1

2
2

−x2
12+

c1
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy
3y−6

dS
dR

= R−2
R

R = y

S = x2

6

Summary
The solution(s) found are the following

(1)y = e
−LambertW

− e−
x2
12 + c1

2
2

−x2
12+

c1
2
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Figure 747: Slope field plot

Verification of solutions

y = e
−LambertW

− e−
x2
12 + c1

2
2

−x2
12+

c1
2

Verified OK.

18.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3y − 6

y

)
dy = (x) dx

(−x) dx+
(
3y − 6

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 3y − 6
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And
∂N

∂x
= ∂

∂x

(
3y − 6

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3y−6
y

. Therefore equation (4) becomes

(5)3y − 6
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y − 6
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (3y − 6
y

)
dy

f(y) = 3y − 6 ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + 3y − 6 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + 3y − 6 ln (y)

The solution becomes

y = e
−LambertW

− e−
x2
12 − c1

6
2

−x2
12−

c1
6

Summary
The solution(s) found are the following

(1)y = e
−LambertW

− e−
x2
12 − c1

6
2

−x2
12−

c1
6

Figure 748: Slope field plot
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Verification of solutions

y = e
−LambertW

− e−
x2
12 − c1

6
2

−x2
12−

c1
6

Verified OK.

18.1.4 Maple step by step solution

Let’s solve
3(2− y) y′ + yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(2−y)

y
= −x

3

• Integrate both sides with respect to x∫ y′(2−y)
y

dx =
∫
−x

3dx+ c1

• Evaluate integral
−y + 2 ln (y) = −x2

6 + c1

• Solve for y

y = e
−LambertW

− e−
x2
12 + c1

2
2

−x2
12+

c1
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(3*(2-y(x))*diff(y(x),x)+x*y(x) = 0,y(x), singsol=all)� �

y(x) = −2 LambertW
(
−e−x2

12−
c1
6

2

)

3 Solution by Mathematica
Time used: 24.428 (sec). Leaf size: 64� �
DSolve[3(2-y[x])y'[x]+x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2W
(
−1
2

√
e−

x2
6 −c1

)

y(x) → −2W
(
1
2

√
e−

x2
6 −c1

)
y(x) → 0
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18.2 problem 478
18.2.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4735
18.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4739

Internal problem ID [3732]
Internal file name [OUTPUT/3225_Sunday_June_05_2022_09_01_27_AM_59951112/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 478.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(x− 3y) y′ − y = −3x− 4

18.2.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −−4− 3X − 3x0 + Y (X) + y0

−X − x0 + 3Y (X) + 3y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −3
2

y0 = −1
2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −−3X + Y (X)

−X + 3Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −−3X + Y

−X + 3Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −3X + Y and N = X − 3Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u+ 3

3u− 1
du
dX =

−u(X)+3
3u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−u(X)+3
3u(X)−1 − u(X)

X
= 0

Or
3
(

d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + 3u(X)2 − 3 = 0

Or
−3 +X(3u(X)− 1)

(
d

dX
u(X)

)
+ 3u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 3(u2 − 1)
X (3u− 1)
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Where f(X) = − 3
X

and g(u) = u2−1
3u−1 . Integrating both sides gives

1
u2−1
3u−1

du = − 3
X

dX

∫ 1
u2−1
3u−1

du =
∫

− 3
X

dX

ln (u− 1) + 2 ln (u+ 1) = −3 ln (X) + c2

Raising both side to exponential gives

eln(u−1)+2 ln(u+1) = e−3 ln(X)+c2

Which simplifies to

(u− 1) (u+ 1)2 = c3
X3

The solution is
(u(X)− 1) (u(X) + 1)2 = c3

X3

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

− 1
)(

Y (X)
X

+ 1
)2

= c3
X3

Which simplifies to

−(−Y (X) +X) (Y (X) +X)2 = c3

Using the solution for Y (X)

−(−Y (X) +X) (Y (X) +X)2 = c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
2

X = x− 3
2
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Then the solution in y becomes

−(x− y + 1) (x+ y + 2)2 = c3

Summary
The solution(s) found are the following

(1)−(x− y + 1) (x+ y + 2)2 = c3

Figure 749: Slope field plot

Verification of solutions

−(x− y + 1) (x+ y + 2)2 = c3

Verified OK.

4738



18.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−4− 3x+ y

−x+ 3y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−4− 3x+ y) (b3 − a2)

−x+ 3y − (−4− 3x+ y)2 a3
(−x+ 3y)2

−
(

3
−x+ 3y − −4− 3x+ y

(−x+ 3y)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ 3y + −12− 9x+ 3y

(−x+ 3y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x2a2 − 9x2a3 + 9x2b2 − 3x2b3 − 18xya2 + 6xya3 − 6xyb2 + 18xyb3 + 3y2a2 − 9y2a3 + 9y2b2 − 3y2b3 − 24xa3 + 8xb1 + 12xb2 − 4xb3 − 8ya1 − 12ya2 + 4ya3 + 24yb3 − 4a1 − 16a3 + 12b1
(x− 3y)2

= 0

Setting the numerator to zero gives

(6E)3x2a2 − 9x2a3 + 9x2b2 − 3x2b3 − 18xya2 + 6xya3 − 6xyb2 + 18xyb3
+ 3y2a2 − 9y2a3 + 9y2b2 − 3y2b3 − 24xa3 + 8xb1 + 12xb2 − 4xb3
− 8ya1 − 12ya2 + 4ya3 + 24yb3 − 4a1 − 16a3 + 12b1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v21 − 18a2v1v2 + 3a2v22 − 9a3v21 + 6a3v1v2 − 9a3v22 + 9b2v21 − 6b2v1v2
+ 9b2v22 − 3b3v21 + 18b3v1v2 − 3b3v22 − 8a1v2 − 12a2v2 − 24a3v1
+ 4a3v2 + 8b1v1 + 12b2v1 − 4b3v1 + 24b3v2 − 4a1 − 16a3 + 12b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(3a2 − 9a3 + 9b2 − 3b3) v21 + (−18a2 + 6a3 − 6b2 + 18b3) v1v2
+ (−24a3 + 8b1 + 12b2 − 4b3) v1 + (3a2 − 9a3 + 9b2 − 3b3) v22
+ (−8a1 − 12a2 + 4a3 + 24b3) v2 − 4a1 − 16a3 + 12b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 − 16a3 + 12b1 = 0
−8a1 − 12a2 + 4a3 + 24b3 = 0
−18a2 + 6a3 − 6b2 + 18b3 = 0

3a2 − 9a3 + 9b2 − 3b3 = 0
−24a3 + 8b1 + 12b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = −4b2 + 3b1
a2 = −3b2 + 2b1
a3 = b2

b1 = b1

b2 = b2

b3 = −3b2 + 2b1
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x+ 3
η = 2y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y + 1−
(
−−4− 3x+ y

−x+ 3y

)
(2x+ 3)

= 6x2 − 6y2 + 18x− 6y + 12
x− 3y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

6x2−6y2+18x−6y+12
x−3y

dy

Which results in

S = ln (−x+ y − 1)
6 + ln (x+ y + 2)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−4− 3x+ y

−x+ 3y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
6x− 6y + 6 + 1

3x+ 6 + 3y

Sy =
x− 3y

6 (x+ y + 2) (x− y + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−x+ y − 1)
6 + ln (x+ y + 2)

3 = c1

Which simplifies to

ln (−x+ y − 1)
6 + ln (x+ y + 2)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−4−3x+y
−x+3y

dS
dR

= 0

R = x

S = ln (−x+ y − 1)
6 + ln (x+ y + 2)

3

Summary
The solution(s) found are the following

(1)ln (−x+ y − 1)
6 + ln (x+ y + 2)

3 = c1
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Figure 750: Slope field plot

Verification of solutions

ln (−x+ y − 1)
6 + ln (x+ y + 2)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 1.875 (sec). Leaf size: 227� �
dsolve((x-3*y(x))*diff(y(x),x)+4+3*x-y(x) = 0,y(x), singsol=all)� �
y(x)

=
i

(
−36864

(
x+ 3

2

)6
c21 +

(
864c1x3 + 3888c1x2 + 5832c1x+ 12

√
3
√
−16384c21

(
x+ 3

2

)6 (− 27
256 +

(
x+ 3

2

)3
c1
)
+ 2916c1

) 4
3
)
√
3 + 36864

(
x+ 3

2

)6
c21 − 48

(
12
√
3
√

−16384c21
(
x+ 3

2

)6 (− 27
256 +

(
x+ 3

2

)3
c1
)
+ 864

(
x+ 3

2

)3
c1

) 2
3

(x+ 3) (3 + 2x)2 c1 +
(
864c1x3 + 3888c1x2 + 5832c1x+ 12

√
3
√
−16384c21

(
x+ 3

2

)6 (− 27
256 +

(
x+ 3

2

)3
c1
)
+ 2916c1

) 4
3

144
(
12
√
3
√

−16384c21
(
x+ 3

2

)6 (− 27
256 +

(
x+ 3

2

)3
c1
)
+ 864

(
x+ 3

2

)3
c1

) 2
3

c1 (3 + 2x)2
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3 Solution by Mathematica
Time used: 60.044 (sec). Leaf size: 793� �
DSolve[(x-3 y[x])y'[x]+4+3 x-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → x

3
− 1
3Root

[
#16 (1024x6 + 9216x5 + 34560x4 + 69120x3 + 77760x2 + 46656x+ 11664 + 16e12c1) + #14 (−384x4 − 2304x3 − 5184x2 − 5184x− 1944) + #13 (64x3 + 288x2 + 432x+ 216) + #12 (36x2 + 108x+ 81) + #1(−12x− 18) + 1&, 1

]
y(x) → x

3
− 1
3Root

[
#16 (1024x6 + 9216x5 + 34560x4 + 69120x3 + 77760x2 + 46656x+ 11664 + 16e12c1) + #14 (−384x4 − 2304x3 − 5184x2 − 5184x− 1944) + #13 (64x3 + 288x2 + 432x+ 216) + #12 (36x2 + 108x+ 81) + #1(−12x− 18) + 1&, 2

]
y(x) → x

3
− 1
3Root

[
#16 (1024x6 + 9216x5 + 34560x4 + 69120x3 + 77760x2 + 46656x+ 11664 + 16e12c1) + #14 (−384x4 − 2304x3 − 5184x2 − 5184x− 1944) + #13 (64x3 + 288x2 + 432x+ 216) + #12 (36x2 + 108x+ 81) + #1(−12x− 18) + 1&, 3

]
y(x) → x

3
− 1
3Root

[
#16 (1024x6 + 9216x5 + 34560x4 + 69120x3 + 77760x2 + 46656x+ 11664 + 16e12c1) + #14 (−384x4 − 2304x3 − 5184x2 − 5184x− 1944) + #13 (64x3 + 288x2 + 432x+ 216) + #12 (36x2 + 108x+ 81) + #1(−12x− 18) + 1&, 4

]
y(x) → x

3
− 1
3Root

[
#16 (1024x6 + 9216x5 + 34560x4 + 69120x3 + 77760x2 + 46656x+ 11664 + 16e12c1) + #14 (−384x4 − 2304x3 − 5184x2 − 5184x− 1944) + #13 (64x3 + 288x2 + 432x+ 216) + #12 (36x2 + 108x+ 81) + #1(−12x− 18) + 1&, 5

]
y(x) → x

3
− 1
3Root

[
#16 (1024x6 + 9216x5 + 34560x4 + 69120x3 + 77760x2 + 46656x+ 11664 + 16e12c1) + #14 (−384x4 − 2304x3 − 5184x2 − 5184x− 1944) + #13 (64x3 + 288x2 + 432x+ 216) + #12 (36x2 + 108x+ 81) + #1(−12x− 18) + 1&, 6

]
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18.3 problem 479
18.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4747

Internal problem ID [3733]
Internal file name [OUTPUT/3226_Sunday_June_05_2022_09_01_32_AM_8800491/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 479.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(4− x− 3y) y′ − 3y = x− 3

18.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−3 + x+ 3y
−4 + x+ 3y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−3 + x+ 3y) (b3 − a2)

−4 + x+ 3y − (−3 + x+ 3y)2 a3
(−4 + x+ 3y)2

−
(
− 1
−4 + x+ 3y + −3 + x+ 3y

(−4 + x+ 3y)2
)
(xa2 + ya3 + a1)

−
(
− 3
−4 + x+ 3y + 3x+ 9y − 9

(−4 + x+ 3y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 + x2b2 − x2b3 + 6xya2 − 6xya3 + 6xyb2 − 6xyb3 + 9y2a2 − 9y2a3 + 9y2b2 − 9y2b3 − 8xa2 + 6xa3 − 11xb2 + 7xb3 − 21ya2 + 17ya3 − 24yb2 + 18yb3 − a1 + 12a2 − 9a3 − 3b1 + 16b2 − 12b3
(−4 + x+ 3y)2

= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 + x2b2 − x2b3 + 6xya2 − 6xya3 + 6xyb2 − 6xyb3 + 9y2a2
− 9y2a3 + 9y2b2 − 9y2b3 − 8xa2 + 6xa3 − 11xb2 + 7xb3 − 21ya2
+ 17ya3 − 24yb2 + 18yb3 − a1 + 12a2 − 9a3 − 3b1 + 16b2 − 12b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 + 6a2v1v2 + 9a2v22 − a3v

2
1 − 6a3v1v2 − 9a3v22 + b2v

2
1 + 6b2v1v2 + 9b2v22

− b3v
2
1 − 6b3v1v2 − 9b3v22 − 8a2v1 − 21a2v2 + 6a3v1 + 17a3v2 − 11b2v1

− 24b2v2 + 7b3v1 + 18b3v2 − a1 + 12a2 − 9a3 − 3b1 + 16b2 − 12b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 + b2 − b3) v21 + (6a2 − 6a3 + 6b2 − 6b3) v1v2
+ (−8a2 + 6a3 − 11b2 + 7b3) v1 + (9a2 − 9a3 + 9b2 − 9b3) v22
+(−21a2 +17a3 − 24b2 +18b3) v2 − a1 +12a2 − 9a3 − 3b1 +16b2 − 12b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−21a2 + 17a3 − 24b2 + 18b3 = 0
−8a2 + 6a3 − 11b2 + 7b3 = 0

a2 − a3 + b2 − b3 = 0
6a2 − 6a3 + 6b2 − 6b3 = 0
9a2 − 9a3 + 9b2 − 9b3 = 0

−a1 + 12a2 − 9a3 − 3b1 + 16b2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = −5b3
3 − 3b1

a2 = −b3
3

a3 = −b3

b1 = b1

b2 =
b3
3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3
η = 1

4749



Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
−−3 + x+ 3y
−4 + x+ 3y

)
(−3)

= 5− 2x− 6y
−4 + x+ 3y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

5−2x−6y
−4+x+3y

dy

Which results in

S = −y

2 + ln (2x+ 6y − 5)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−3 + x+ 3y
−4 + x+ 3y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
4x+ 12y − 10

Sy =
4− x− 3y
2x+ 6y − 5

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y

2 + ln (2x+ 6y − 5)
4 = x

2 + c1

Which simplifies to

−y

2 + ln (2x+ 6y − 5)
4 = x

2 + c1

Which gives

y = −
LambertW

(
− e

5
3+4x

3 +4c1

3

)
2 + 5

6 − x

3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−3+x+3y
−4+x+3y

dS
dR

= 1
2

R = x

S = −y

2 + ln (2x+ 6y − 5)
4

Summary
The solution(s) found are the following

(1)y = −
LambertW

(
− e

5
3+4x

3 +4c1

3

)
2 + 5

6 − x

3
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Figure 751: Slope field plot

Verification of solutions

y = −
LambertW

(
− e

5
3+4x

3 +4c1

3

)
2 + 5

6 − x

3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1/3, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve((4-x-3*y(x))*diff(y(x),x)+3-x-3*y(x) = 0,y(x), singsol=all)� �

y(x) = −x

3 −
LambertW

(
− c1e

4x
3 +5

3
3

)
2 + 5

6

3 Solution by Mathematica
Time used: 5.005 (sec). Leaf size: 43� �
DSolve[(4-x-3 y[x])y'[x]+3-x-3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6

(
−3W

(
−e

4x
3 −1+c1

)
− 2x+ 5

)
y(x) → 1

6(5− 2x)
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18.4 problem 480
18.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4755

Internal problem ID [3734]
Internal file name [OUTPUT/3227_Sunday_June_05_2022_09_01_36_AM_62670088/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 480.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(2 + 2x+ 3y) y′ + 3y = 1− 2x

18.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x+ 3y − 1
2 + 2x+ 3y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x+ 3y − 1) (b3 − a2)

2 + 2x+ 3y − (2x+ 3y − 1)2 a3
(2 + 2x+ 3y)2

−
(
− 2
2 + 2x+ 3y + 4x+ 6y − 2

(2 + 2x+ 3y)2
)
(xa2 + ya3 + a1)

−
(
− 3
2 + 2x+ 3y + 6x+ 9y − 3

(2 + 2x+ 3y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x2a2 − 4x2a3 + 4x2b2 − 4x2b3 + 12xya2 − 12xya3 + 12xyb2 − 12xyb3 + 9y2a2 − 9y2a3 + 9y2b2 − 9y2b3 + 8xa2 + 4xa3 + 17xb2 − 2xb3 + 3ya2 + 12ya3 + 12yb2 + 6yb3 + 6a1 − 2a2 − a3 + 9b1 + 4b2 + 2b3
(2 + 2x+ 3y)2

= 0

Setting the numerator to zero gives

(6E)4x2a2 − 4x2a3 + 4x2b2 − 4x2b3 + 12xya2 − 12xya3 + 12xyb2 − 12xyb3
+ 9y2a2 − 9y2a3 + 9y2b2 − 9y2b3 + 8xa2 + 4xa3 + 17xb2 − 2xb3 + 3ya2
+ 12ya3 + 12yb2 + 6yb3 + 6a1 − 2a2 − a3 + 9b1 + 4b2 + 2b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v21 + 12a2v1v2 + 9a2v22 − 4a3v21 − 12a3v1v2 − 9a3v22 + 4b2v21 + 12b2v1v2
+ 9b2v22 − 4b3v21 − 12b3v1v2 − 9b3v22 + 8a2v1 + 3a2v2 + 4a3v1 + 12a3v2
+ 17b2v1 + 12b2v2 − 2b3v1 + 6b3v2 + 6a1 − 2a2 − a3 + 9b1 + 4b2 + 2b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(4a2 − 4a3 + 4b2 − 4b3) v21 + (12a2 − 12a3 + 12b2 − 12b3) v1v2
+ (8a2 + 4a3 + 17b2 − 2b3) v1 + (9a2 − 9a3 + 9b2 − 9b3) v22
+ (3a2 + 12a3 + 12b2 + 6b3) v2 + 6a1 − 2a2 − a3 + 9b1 + 4b2 + 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a2 + 12a3 + 12b2 + 6b3 = 0
4a2 − 4a3 + 4b2 − 4b3 = 0
8a2 + 4a3 + 17b2 − 2b3 = 0
9a2 − 9a3 + 9b2 − 9b3 = 0

12a2 − 12a3 + 12b2 − 12b3 = 0
6a1 − 2a2 − a3 + 9b1 + 4b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = −7b3
6 − 3b1

2
a2 = −2b3

3
a3 = −b3

b1 = b1

b2 =
2b3
3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3
2

η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
−2x+ 3y − 1
2 + 2x+ 3y

)(
−3
2

)
= −2x− 3y + 7

4 + 4x+ 6y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x−3y+7
4+4x+6y

dy

Which results in

S = −2y − 6 ln (2x+ 3y − 7)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ 3y − 1
2 + 2x+ 3y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 12
2x+ 3y − 7

Sy = −2− 18
2x+ 3y − 7

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2y − 6 ln (2x+ 3y − 7) = 2x+ c1

Which simplifies to

−2y − 6 ln (2x+ 3y − 7) = 2x+ c1

Which gives

y = 3LambertW
(
e−x

9−
c1
6 − 7

9

9

)
− 2x

3 + 7
3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+3y−1
2+2x+3y

dS
dR

= 2

R = x

S = −2y − 6 ln (2x+ 3y − 7)

Summary
The solution(s) found are the following

(1)y = 3LambertW
(
e−x

9−
c1
6 − 7

9

9

)
− 2x

3 + 7
3
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Figure 752: Slope field plot

Verification of solutions

y = 3LambertW
(
e−x

9−
c1
6 − 7

9

9

)
− 2x

3 + 7
3

Verified OK.

4761



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -2/3, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve((2+2*x+3*y(x))*diff(y(x),x) = 1-2*x-3*y(x),y(x), singsol=all)� �

y(x) = −2x
3 + 3LambertW

(
c1e−

x
9−

7
9

9

)
+ 7

3

3 Solution by Mathematica
Time used: 5.023 (sec). Leaf size: 43� �
DSolve[(2+2 x+3 y[x])y'[x]==1-2 x-3 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3
(
9W
(
−e−

x
9−1+c1

)
− 2x+ 7

)
y(x) → 1

3(7− 2x)
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18.5 problem 481
18.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4763

Internal problem ID [3735]
Internal file name [OUTPUT/3228_Sunday_June_05_2022_09_01_39_AM_47957128/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 481.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(5− 2x− 3y) y′ − 3y = 2x− 1

18.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2x+ 3y − 1
−5 + 2x+ 3y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x+ 3y − 1) (b3 − a2)

−5 + 2x+ 3y − (2x+ 3y − 1)2 a3
(−5 + 2x+ 3y)2

−
(
− 2
−5 + 2x+ 3y + 4x+ 6y − 2

(−5 + 2x+ 3y)2
)
(xa2 + ya3 + a1)

−
(
− 3
−5 + 2x+ 3y + 6x+ 9y − 3

(−5 + 2x+ 3y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x2a2 − 4x2a3 + 4x2b2 − 4x2b3 + 12xya2 − 12xya3 + 12xyb2 − 12xyb3 + 9y2a2 − 9y2a3 + 9y2b2 − 9y2b3 − 20xa2 + 4xa3 − 32xb2 + 12xb3 − 18ya2 − 2ya3 − 30yb2 + 6yb3 − 8a1 + 5a2 − a3 − 12b1 + 25b2 − 5b3
(−5 + 2x+ 3y)2

= 0

Setting the numerator to zero gives

(6E)4x2a2 − 4x2a3 + 4x2b2 − 4x2b3 + 12xya2 − 12xya3 + 12xyb2 − 12xyb3
+ 9y2a2 − 9y2a3 + 9y2b2 − 9y2b3 − 20xa2 + 4xa3 − 32xb2 + 12xb3
− 18ya2 − 2ya3 − 30yb2 + 6yb3 − 8a1 + 5a2 − a3 − 12b1 + 25b2 − 5b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v21 + 12a2v1v2 + 9a2v22 − 4a3v21 − 12a3v1v2 − 9a3v22 + 4b2v21 + 12b2v1v2
+ 9b2v22 − 4b3v21 − 12b3v1v2 − 9b3v22 − 20a2v1 − 18a2v2 + 4a3v1 − 2a3v2
− 32b2v1 − 30b2v2 +12b3v1 +6b3v2 − 8a1 +5a2 − a3 − 12b1 +25b2 − 5b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(4a2 − 4a3 + 4b2 − 4b3) v21 + (12a2 − 12a3 + 12b2 − 12b3) v1v2
+ (−20a2 + 4a3 − 32b2 + 12b3) v1 + (9a2 − 9a3 + 9b2 − 9b3) v22
+ (−18a2 − 2a3 − 30b2 + 6b3) v2 − 8a1 + 5a2 − a3 − 12b1 + 25b2 − 5b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−20a2 + 4a3 − 32b2 + 12b3 = 0
−18a2 − 2a3 − 30b2 + 6b3 = 0

4a2 − 4a3 + 4b2 − 4b3 = 0
9a2 − 9a3 + 9b2 − 9b3 = 0

12a2 − 12a3 + 12b2 − 12b3 = 0
−8a1 + 5a2 − a3 − 12b1 + 25b2 − 5b3 = 0

Solving the above equations for the unknowns gives

a1 =
7b2
4 − 3b1

2
a2 = −b2

a3 = −3b2
2

b1 = b1

b2 = b2

b3 =
3b2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3
2

η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
− 2x+ 3y − 1
−5 + 2x+ 3y

)(
−3
2

)
= −2x− 3y − 7

−10 + 4x+ 6y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x−3y−7
−10+4x+6y

dy

Which results in

S = −2y + 8 ln (2x+ 3y + 7)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2x+ 3y − 1
−5 + 2x+ 3y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 16
2x+ 3y + 7

Sy = −2 + 24
2x+ 3y + 7

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2y + 8 ln (2x+ 3y + 7) = 2x+ c1

Which simplifies to

−2y + 8 ln (2x+ 3y + 7) = 2x+ c1

Which gives

y = −4 LambertW
(
−e x

12+
c1
8 − 7

12

12

)
− 2x

3 − 7
3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2x+3y−1
−5+2x+3y

dS
dR

= 2

R = x

S = −2y + 8 ln (2x+ 3y + 7)

Summary
The solution(s) found are the following

(1)y = −4 LambertW
(
−e x

12+
c1
8 − 7

12

12

)
− 2x

3 − 7
3
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Figure 753: Slope field plot

Verification of solutions

y = −4 LambertW
(
−e x

12+
c1
8 − 7

12

12

)
− 2x

3 − 7
3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve((5-2*x-3*y(x))*diff(y(x),x)+1-2*x-3*y(x) = 0,y(x), singsol=all)� �

y(x) = −2x
3 − 4 LambertW

(
−c1e

x
12−

7
12

12

)
− 7

3

3 Solution by Mathematica
Time used: 3.981 (sec). Leaf size: 43� �
DSolve[(5-2 x-3 y[x])y'[x]+1-2 x -3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4W
(
−e

x
12−1+c1

)
− 2x

3 − 7
3

y(x) → 1
3(−2x− 7)
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18.6 problem 482
18.6.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4771

Internal problem ID [3736]
Internal file name [OUTPUT/3229_Sunday_June_05_2022_09_01_43_AM_48500779/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 482.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(1 + 9x− 3y) y′ − y = −3x− 2

18.6.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − −2− 3x+ y

−1− 9x+ 3y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−2− 3x+ y) (b3 − a2)

−1− 9x+ 3y − (−2− 3x+ y)2 a3
(−1− 9x+ 3y)2

−
(

3
−1− 9x+ 3y − 9(−2− 3x+ y)

(−1− 9x+ 3y)2
)
(xa2 + ya3 + a1)

−
(
− 1
−1− 9x+ 3y + −6− 9x+ 3y

(−1− 9x+ 3y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

27x2a2 − 9x2a3 + 81x2b2 − 27x2b3 − 18xya2 + 6xya3 − 54xyb2 + 18xyb3 + 3y2a2 − y2a3 + 9y2b2 − 3y2b3 + 6xa2 − 12xa3 + 23xb2 − 21xb3 − 7ya2 − 11ya3 − 6yb2 + 12yb3 − 15a1 + 2a2 − 4a3 + 5b1 + b2 − 2b3
(1 + 9x− 3y)2

= 0

Setting the numerator to zero gives

(6E)27x2a2 − 9x2a3 + 81x2b2 − 27x2b3 − 18xya2 + 6xya3 − 54xyb2 + 18xyb3
+ 3y2a2 − y2a3 + 9y2b2 − 3y2b3 + 6xa2 − 12xa3 + 23xb2 − 21xb3 − 7ya2
− 11ya3 − 6yb2 + 12yb3 − 15a1 + 2a2 − 4a3 + 5b1 + b2 − 2b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)27a2v21 − 18a2v1v2 + 3a2v22 − 9a3v21 + 6a3v1v2 − a3v
2
2 + 81b2v21 − 54b2v1v2

+ 9b2v22 − 27b3v21 + 18b3v1v2 − 3b3v22 + 6a2v1 − 7a2v2 − 12a3v1 − 11a3v2
+ 23b2v1 − 6b2v2 − 21b3v1 + 12b3v2 − 15a1 + 2a2 − 4a3 + 5b1 + b2 − 2b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(27a2 − 9a3 + 81b2 − 27b3) v21 + (−18a2 + 6a3 − 54b2 + 18b3) v1v2
+ (6a2 − 12a3 + 23b2 − 21b3) v1 + (3a2 − a3 + 9b2 − 3b3) v22
+ (−7a2 − 11a3 − 6b2 + 12b3) v2 − 15a1 + 2a2 − 4a3 + 5b1 + b2 − 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−18a2 + 6a3 − 54b2 + 18b3 = 0
−7a2 − 11a3 − 6b2 + 12b3 = 0

3a2 − a3 + 9b2 − 3b3 = 0
6a2 − 12a3 + 23b2 − 21b3 = 0
27a2 − 9a3 + 81b2 − 27b3 = 0

−15a1 + 2a2 − 4a3 + 5b1 + b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −3b2
a3 = b2

b1 = 3a1 +
5b2
3

b2 = b2

b3 = −b2
3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 3
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3−
(
− −2− 3x+ y

−1− 9x+ 3y

)
(1)

= 5 + 30x− 10y
1 + 9x− 3y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

5+30x−10y
1+9x−3y

dy

Which results in

S = 3y
10 + ln (−1− 6x+ 2y)

20
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − −2− 3x+ y

−1− 9x+ 3y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
60x− 20y + 10

Sy =
1 + 9x− 3y
5 + 30x− 10y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

10 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

10

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

10 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3y
10 + ln (2y − 6x− 1)

20 = − x

10 + c1

Which simplifies to

3y
10 + ln (2y − 6x− 1)

20 = − x

10 + c1

Which gives

y = e−LambertW
(
3 e−20x−3+20c1

)
−20x−3+20c1

2 + 1
2 + 3x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − −2−3x+y
−1−9x+3y

dS
dR

= − 1
10

R = x

S = 3y
10 + ln (−1− 6x+ 2y)

20

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
3 e−20x−3+20c1

)
−20x−3+20c1

2 + 1
2 + 3x
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Figure 754: Slope field plot

Verification of solutions

y = e−LambertW
(
3 e−20x−3+20c1

)
−20x−3+20c1

2 + 1
2 + 3x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 23� �
dsolve((1+9*x-3*y(x))*diff(y(x),x)+2+3*x-y(x) = 0,y(x), singsol=all)� �

y(x) = LambertW (3 e−20x−3+20c1)
6 + 3x+ 1

2

3 Solution by Mathematica
Time used: 5.372 (sec). Leaf size: 37� �
DSolve[(1+9 x-3 y[x])y'[x]+2+3 x-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6
(
W
(
−e−20x−1+c1

)
+ 18x+ 3

)
y(x) → 3x+ 1

2
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18.7 problem 483
18.7.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4779
18.7.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4781
18.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4786

Internal problem ID [3737]
Internal file name [OUTPUT/3230_Sunday_June_05_2022_09_01_47_AM_18407354/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 483.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(4y + x) y′ − y = −4x

18.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(4u(x)x+ x) (u′(x)x+ u(x))− u(x)x = −4x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 4(u2 + 1)
x (4u+ 1)
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Where f(x) = − 4
x
and g(u) = u2+1

4u+1 . Integrating both sides gives

1
u2+1
4u+1

du = −4
x
dx

∫ 1
u2+1
4u+1

du =
∫

−4
x
dx

2 ln
(
u2 + 1

)
+ arctan (u) = −4 ln (x) + c2

The solution is

2 ln
(
u(x)2 + 1

)
+ arctan (u(x)) + 4 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

2 ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 4 ln (x)− c2 = 0

2 ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 4 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)2 ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 4 ln (x)− c2 = 0
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Figure 755: Slope field plot

Verification of solutions

2 ln
(
y2

x2 + 1
)
+ arctan

(y
x

)
+ 4 ln (x)− c2 = 0

Verified OK.

18.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y − 4x
x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(y − 4x) (b3 − a2)

x+ 4y − (y − 4x)2 a3
(x+ 4y)2

−
(
− 4
x+ 4y − y − 4x

(x+ 4y)2
)
(xa2 + ya3 + a1)

−
(

1
x+ 4y − 4(y − 4x)

(x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x2a2 − 16x2a3 − 16x2b2 − 4x2b3 + 32xya2 + 8xya3 + 8xyb2 − 32xyb3 − 4y2a2 + 16y2a3 + 16y2b2 + 4y2b3 − 17xb1 + 17ya1
(x+ 4y)2

= 0

Setting the numerator to zero gives

(6E)4x2a2 − 16x2a3 − 16x2b2 − 4x2b3 + 32xya2 + 8xya3 + 8xyb2
− 32xyb3 − 4y2a2 + 16y2a3 + 16y2b2 + 4y2b3 − 17xb1 + 17ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v21 + 32a2v1v2 − 4a2v22 − 16a3v21 + 8a3v1v2 + 16a3v22 − 16b2v21
+ 8b2v1v2 + 16b2v22 − 4b3v21 − 32b3v1v2 + 4b3v22 + 17a1v2 − 17b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(4a2 − 16a3 − 16b2 − 4b3) v21 + (32a2 + 8a3 + 8b2 − 32b3) v1v2
− 17b1v1 + (−4a2 + 16a3 + 16b2 + 4b3) v22 + 17a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

17a1 = 0
−17b1 = 0

−4a2 + 16a3 + 16b2 + 4b3 = 0
4a2 − 16a3 − 16b2 − 4b3 = 0
32a2 + 8a3 + 8b2 − 32b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y − 4x
x+ 4y

)
(x)

= 4x2 + 4y2
x+ 4y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2+4y2
x+4y

dy

Which results in

S = ln (x2 + y2)
2 +

arctan
(
y
x

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y − 4x
x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4x− y

4x2 + 4y2

Sy =
x+ 4y

4x2 + 4y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2)
2 +

arctan
(
y
x

)
4 = c1

Which simplifies to
ln (y2 + x2)

2 +
arctan

(
y
x

)
4 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y−4x
x+4y

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 +

arctan
(
y
x

)
4
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Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 +

arctan
(
y
x

)
4 = c1

Figure 756: Slope field plot

Verification of solutions

ln (y2 + x2)
2 +

arctan
(
y
x

)
4 = c1

Verified OK.

18.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 4y) dy = (y − 4x) dx
(4x− y) dx+(x+ 4y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4x− y

N(x, y) = x+ 4y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(4x− y)

= −1
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And
∂N

∂x
= ∂

∂x
(x+ 4y)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = 4x − y and N = 4y + x by this integrating factor the
ode becomes exact. The new M,N are

M = 4x− y

y2 + x2

N = 4y + x

y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x+ 4y
x2 + y2

)
dy =

(
− 4x− y

x2 + y2

)
dx(

4x− y

x2 + y2

)
dx+

(
x+ 4y
x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4x− y

x2 + y2

N(x, y) = x+ 4y
x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
4x− y

x2 + y2

)
= −x2 − 8xy + y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
x+ 4y
x2 + y2

)
= −x2 − 8xy + y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 4x− y

x2 + y2
dx

(3)φ = 2 ln
(
x2 + y2

)
− arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4y

x2 + y2
+ x

y2
(

x2

y2
+ 1
) + f ′(y)

= x+ 4y
x2 + y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x+4y
x2+y2

. Therefore equation (4) becomes

(5)x+ 4y
x2 + y2

= x+ 4y
x2 + y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2 ln
(
x2 + y2

)
− arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2 ln
(
x2 + y2

)
− arctan

(
x

y

)
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Summary
The solution(s) found are the following

(1)2 ln
(
y2 + x2)− arctan

(
x

y

)
= c1

Figure 757: Slope field plot

Verification of solutions

2 ln
(
y2 + x2)− arctan

(
x

y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve((x+4*y(x))*diff(y(x),x)+4*x-y(x) = 0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
2 ln

(
sec (_Z)2

)
+ _Z+ 4 ln (x) + 4c1

))
x

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 32� �
DSolve[(x+4 y[x])y'[x]+4 x-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(
y(x)
x

)
+ 2 log

(
y(x)2
x2 + 1

)
= −4 log(x) + c1, y(x)

]
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18.8 problem 484
18.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4793

Internal problem ID [3738]
Internal file name [OUTPUT/3231_Sunday_June_05_2022_09_01_51_AM_38761000/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 484.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(3 + 2x+ 4y) y′ − 2y = x+ 1

18.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x+ 2y + 1
3 + 2x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x+ 2y + 1) (b3 − a2)

3 + 2x+ 4y − (x+ 2y + 1)2 a3
(3 + 2x+ 4y)2

−
(

1
3 + 2x+ 4y − 2(x+ 2y + 1)

(3 + 2x+ 4y)2
)
(xa2 + ya3 + a1)

−
(

2
3 + 2x+ 4y − 4(x+ 2y + 1)

(3 + 2x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + x2a3 − 4x2b2 − 2x2b3 + 8xya2 + 4xya3 − 16xyb2 − 8xyb3 + 8y2a2 + 4y2a3 − 16y2b2 − 8y2b3 + 6xa2 + 2xa3 − 10xb2 − 5xb3 + 10ya2 + 5ya3 − 24yb2 − 8yb3 + a1 + 3a2 + a3 + 2b1 − 9b2 − 3b3
(3 + 2x+ 4y)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − x2a3 + 4x2b2 + 2x2b3 − 8xya2 − 4xya3 + 16xyb2 + 8xyb3
− 8y2a2 − 4y2a3 + 16y2b2 + 8y2b3 − 6xa2 − 2xa3 + 10xb2 + 5xb3
− 10ya2 − 5ya3 + 24yb2 + 8yb3 − a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 − 8a2v1v2 − 8a2v22 − a3v
2
1 − 4a3v1v2 − 4a3v22 + 4b2v21 + 16b2v1v2

+ 16b2v22 + 2b3v21 + 8b3v1v2 + 8b3v22 − 6a2v1 − 10a2v2 − 2a3v1 − 5a3v2
+ 10b2v1 + 24b2v2 + 5b3v1 + 8b3v2 − a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − a3 + 4b2 + 2b3) v21 + (−8a2 − 4a3 + 16b2 + 8b3) v1v2
+ (−6a2 − 2a3 + 10b2 + 5b3) v1 + (−8a2 − 4a3 + 16b2 + 8b3) v22
+ (−10a2 − 5a3 + 24b2 + 8b3) v2 − a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−10a2 − 5a3 + 24b2 + 8b3 = 0
−8a2 − 4a3 + 16b2 + 8b3 = 0
−6a2 − 2a3 + 10b2 + 5b3 = 0
−2a2 − a3 + 4b2 + 2b3 = 0

−a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 5b2 − 2b1
a2 = 2b2
a3 = 4b2
b1 = b1

b2 = b2

b3 = 2b2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(

x+ 2y + 1
3 + 2x+ 4y

)
(−2)

= 4x+ 8y + 5
3 + 2x+ 4y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x+8y+5
3+2x+4y

dy

Which results in

S = y

2 + ln (4x+ 8y + 5)
16

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ 2y + 1
3 + 2x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
16x+ 32y + 20

Sy =
3 + 2x+ 4y
4x+ 8y + 5
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

2 + ln (4x+ 8y + 5)
16 = x

4 + c1

Which simplifies to

y

2 + ln (4x+ 8y + 5)
16 = x

4 + c1

Which gives

y = LambertW (e8x+5+16c1)
8 − x

2 − 5
8
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+2y+1
3+2x+4y

dS
dR

= 1
4

R = x

S = y

2 + ln (4x+ 8y + 5)
16

Summary
The solution(s) found are the following

(1)y = LambertW (e8x+5+16c1)
8 − x

2 − 5
8
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Figure 758: Slope field plot

Verification of solutions

y = LambertW (e8x+5+16c1)
8 − x

2 − 5
8

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 20� �
dsolve((3+2*x+4*y(x))*diff(y(x),x) = 1+x+2*y(x),y(x), singsol=all)� �

y(x) = −x

2 + LambertW (c1e5+8x)
8 − 5

8

3 Solution by Mathematica
Time used: 4.873 (sec). Leaf size: 39� �
DSolve[(3+2 x+4 y[x])y'[x]==1+x+2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8
(
W
(
−e8x−1+c1

)
− 4x− 5

)
y(x) → 1

8(−4x− 5)
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18.9 problem 485
18.9.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4801
18.9.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4803
18.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4808
18.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4812

Internal problem ID [3739]
Internal file name [OUTPUT/3232_Sunday_June_05_2022_09_01_54_AM_92396895/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 485.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(5 + 2x− 4y) y′ + 2y = x+ 3

18.9.1 Solving as differentialType ode

Writing the ode as

y′ = 3 + x− 2y
5 + 2x− 4y (1)

Which becomes

(5− 4y) dy = (−2x) dy + (3 + x− 2y) dx (2)

But the RHS is complete differential because

(−2x) dy + (3 + x− 2y) dx = d

(
1
2x

2 − 2xy + 3x
)

4801



Hence (2) becomes

(5− 4y) dy = d

(
1
2x

2 − 2xy + 3x
)

Integrating both sides gives gives these solutions

y = 5
4 + x

2 +
√
−8c1 − 4x+ 25

4 + c1

y = 5
4 + x

2 −
√
−8c1 − 4x+ 25

4 + c1

Summary
The solution(s) found are the following

(1)y = 5
4 + x

2 +
√
−8c1 − 4x+ 25

4 + c1

(2)y = 5
4 + x

2 −
√
−8c1 − 4x+ 25

4 + c1

Figure 759: Slope field plot
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Verification of solutions

y = 5
4 + x

2 +
√
−8c1 − 4x+ 25

4 + c1

Verified OK.

y = 5
4 + x

2 −
√
−8c1 − 4x+ 25

4 + c1

Verified OK.

18.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3− x+ 2y
−5− 2x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−3− x+ 2y) (b3 − a2)

−5− 2x+ 4y − (−3− x+ 2y)2 a3
(−5− 2x+ 4y)2

−
(
− 1
−5− 2x+ 4y + −6− 2x+ 4y

(−5− 2x+ 4y)2
)
(xa2 + ya3 + a1)

−
(

2
−5− 2x+ 4y − 4(−3− x+ 2y)

(−5− 2x+ 4y)2
)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−2x2a2 + x2a3 − 4x2b2 − 2x2b3 − 8xya2 − 4xya3 + 16xyb2 + 8xyb3 + 8y2a2 + 4y2a3 − 16y2b2 − 8y2b3 + 10xa2 + 6xa3 − 18xb2 − 11xb3 − 22ya2 − 13ya3 + 40yb2 + 24yb3 − a1 + 15a2 + 9a3 + 2b1 − 25b2 − 15b3
(5 + 2x− 4y)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − x2a3 + 4x2b2 + 2x2b3 + 8xya2 + 4xya3 − 16xyb2 − 8xyb3 − 8y2a2
− 4y2a3 + 16y2b2 + 8y2b3 − 10xa2 − 6xa3 + 18xb2 + 11xb3 + 22ya2
+ 13ya3 − 40yb2 − 24yb3 + a1 − 15a2 − 9a3 − 2b1 + 25b2 + 15b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 + 8a2v1v2 − 8a2v22 − a3v
2
1 + 4a3v1v2 − 4a3v22 + 4b2v21 − 16b2v1v2

+ 16b2v22 + 2b3v21 − 8b3v1v2 + 8b3v22 − 10a2v1 + 22a2v2 − 6a3v1 + 13a3v2
+18b2v1−40b2v2+11b3v1−24b3v2+a1−15a2−9a3−2b1+25b2+15b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − a3 + 4b2 + 2b3) v21 + (8a2 + 4a3 − 16b2 − 8b3) v1v2
+ (−10a2 − 6a3 + 18b2 + 11b3) v1 + (−8a2 − 4a3 + 16b2 + 8b3) v22
+ (22a2 + 13a3 − 40b2 − 24b3) v2 + a1 − 15a2 − 9a3 − 2b1 + 25b2 + 15b3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−10a2 − 6a3 + 18b2 + 11b3 = 0
−8a2 − 4a3 + 16b2 + 8b3 = 0
−2a2 − a3 + 4b2 + 2b3 = 0
8a2 + 4a3 − 16b2 − 8b3 = 0

22a2 + 13a3 − 40b2 − 24b3 = 0
a1 − 15a2 − 9a3 − 2b1 + 25b2 + 15b3 = 0

Solving the above equations for the unknowns gives

a1 = 3a2 − 7b2 + 2b1
a2 = a2

a3 = 2a2 − 8b2
b1 = b1

b2 = b2

b3 = 2a2 − 6b2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(

−3− x+ 2y
−5− 2x+ 4y

)
(2)

= − 1
5 + 2x− 4y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 1
5+2x−4y

dy

Which results in

S = −2xy + 2y2 − 5y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3− x+ 2y
−5− 2x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2y
Sy = −5− 2x+ 4y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x− 3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R− 3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
2R

2 − 3R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y(2x− 2y + 5) = −1
2x

2 − 3x+ c1

Which simplifies to

−y(2x− 2y + 5) = −1
2x

2 − 3x+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3−x+2y
−5−2x+4y

dS
dR

= −R− 3

R = x

S = −y(2x− 2y + 5)

Summary
The solution(s) found are the following

(1)−y(2x− 2y + 5) = −1
2x

2 − 3x+ c1
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Figure 760: Slope field plot

Verification of solutions

−y(2x− 2y + 5) = −1
2x

2 − 3x+ c1

Verified OK.

18.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(5 + 2x− 4y) dy = (3 + x− 2y) dx
(−3− x+ 2y) dx+(5 + 2x− 4y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3− x+ 2y
N(x, y) = 5 + 2x− 4y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−3− x+ 2y)

= 2

And
∂N

∂x
= ∂

∂x
(5 + 2x− 4y)

= 2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3− x+ 2y dx

(3)φ = −x(6 + x− 4y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 5 + 2x− 4y. Therefore equation (4) becomes

(5)5 + 2x− 4y = 2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 5− 4y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(5− 4y) dy

f(y) = −2y2 + 5y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(6 + x− 4y)
2 − 2y2 + 5y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(6 + x− 4y)
2 − 2y2 + 5y

Summary
The solution(s) found are the following

(1)−x(6 + x− 4y)
2 − 2y2 + 5y = c1

Figure 761: Slope field plot

Verification of solutions

−x(6 + x− 4y)
2 − 2y2 + 5y = c1

Verified OK.
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18.9.4 Maple step by step solution

Let’s solve
(5 + 2x− 4y) y′ + 2y = x+ 3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2 = 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−3− x+ 2y) dx+ f1(y)

• Evaluate integral
F (x, y) = −3x− x2

2 + 2xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
5 + 2x− 4y = 2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 5− 4y

• Solve for f1(y)
f1(y) = −2y2 + 5y

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −3x− 1
2x

2 + 2xy − 2y2 + 5y

• Substitute F (x, y) into the solution of the ODE
−3x− 1

2x
2 + 2xy − 2y2 + 5y = c1

• Solve for y{
y = 5

4 +
x
2 −

√
−8c1−4x+25

4 , y = 5
4 +

x
2 +

√
−8c1−4x+25

4

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 1/2, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
dsolve((5+2*x-4*y(x))*diff(y(x),x) = 3+x-2*y(x),y(x), singsol=all)� �

y(x) = x

2 + 5
4 −

√
4c1 − 4x+ 25

4

y(x) = x

2 + 5
4 +

√
4c1 − 4x+ 25

4
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3 Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 61� �
DSolve[(5+2 x-4 y[x])y'[x]==3+x-2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
2x− i

√
4x− 25− 16c1 + 5

)
y(x) → 1

4
(
2x+ i

√
4x− 25− 16c1 + 5

)
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18.10.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4817
18.10.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4820
18.10.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4826
18.10.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4830

Internal problem ID [3740]
Internal file name [OUTPUT/3233_Sunday_June_05_2022_09_01_59_AM_6540756/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 486.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(5 + 3x− 4y) y′ + 3y = 7x+ 2

18.10.1 Solving as differentialType ode

Writing the ode as

y′ = 2 + 7x− 3y
5 + 3x− 4y (1)

Which becomes

(5− 4y) dy = (−3x) dy + (2 + 7x− 3y) dx (2)

But the RHS is complete differential because

(−3x) dy + (2 + 7x− 3y) dx = d

(
7
2x

2 − 3xy + 2x
)
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Hence (2) becomes

(5− 4y) dy = d

(
7
2x

2 − 3xy + 2x
)

Integrating both sides gives gives these solutions

y = 3x
4 + 5

4 +
√
−19x2 − 8c1 + 14x+ 25

4 + c1

y = 3x
4 + 5

4 −
√
−19x2 − 8c1 + 14x+ 25

4 + c1

Summary
The solution(s) found are the following

(1)y = 3x
4 + 5

4 +
√
−19x2 − 8c1 + 14x+ 25

4 + c1

(2)y = 3x
4 + 5

4 −
√
−19x2 − 8c1 + 14x+ 25

4 + c1

Figure 762: Slope field plot
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Verification of solutions

y = 3x
4 + 5

4 +
√
−19x2 − 8c1 + 14x+ 25

4 + c1

Verified OK.

y = 3x
4 + 5

4 −
√
−19x2 − 8c1 + 14x+ 25

4 + c1

Verified OK.

18.10.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 3Y (X) + 3y0 − 7X − 7x0 − 2

−5− 3X − 3x0 + 4Y (X) + 4y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
7
19

y0 =
29
19

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 3Y (X)− 7X

−3X + 4Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= 3Y − 7X
−3X + 4Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −3Y + 7X and N = 3X − 4Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
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this ode is homogeneous, it is converted to separable ODE using the substitution u = Y
X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 3u− 7

4u− 3
du
dX =

3u(X)−7
4u(X)−3 − u(X)

X

Or
d

dX
u(X)−

3u(X)−7
4u(X)−3 − u(X)

X
= 0

Or
4
(

d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + 4u(X)2 − 6u(X) + 7 = 0

Or
7 +X(4u(X)− 3)

(
d

dX
u(X)

)
+ 4u(X)2 − 6u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −4u2 − 6u+ 7
X (4u− 3)

Where f(X) = − 1
X

and g(u) = 4u2−6u+7
4u−3 . Integrating both sides gives

1
4u2−6u+7

4u−3
du = − 1

X
dX

∫ 1
4u2−6u+7

4u−3
du =

∫
− 1
X

dX

ln (4u2 − 6u+ 7)
2 = − ln (X) + c2

Raising both side to exponential gives
√
4u2 − 6u+ 7 = e− ln(X)+c2
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Which simplifies to
√
4u2 − 6u+ 7 = c3

X

Which simplifies to √
4u (X)2 − 6u (X) + 7 = c3ec2

X

The solution is √
4u (X)2 − 6u (X) + 7 = c3ec2

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution √

4Y (X)2

X2 − 6Y (X)
X

+ 7 = c3ec2
X

Using the solution for Y (X)√
4Y (X)2 − 6Y (X)X + 7X2

X2 = c3ec2
X

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 29
19

X = x+ 7
19

Then the solution in y becomes√√√√4
(
y − 29

19

)2 − 6
(
y − 29

19

) (
x− 7

19

)
+ 7

(
x− 7

19

)2(
x− 7

19

)2 = c3ec2
x− 7

19

Summary
The solution(s) found are the following

(1)

√√√√4
(
y − 29

19

)2 − 6
(
y − 29

19

) (
x− 7

19

)
+ 7

(
x− 7

19

)2(
x− 7

19

)2 = c3ec2
x− 7

19
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Figure 763: Slope field plot

Verification of solutions√√√√4
(
y − 29

19

)2 − 6
(
y − 29

19

) (
x− 7

19

)
+ 7

(
x− 7

19

)2(
x− 7

19

)2 = c3ec2
x− 7

19

Verified OK.

18.10.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2− 7x+ 3y
−5− 3x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1
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(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−2− 7x+ 3y) (b3 − a2)

−5− 3x+ 4y − (−2− 7x+ 3y)2 a3
(−5− 3x+ 4y)2

−
(
− 7
−5− 3x+ 4y + −6− 21x+ 9y

(−5− 3x+ 4y)2
)
(xa2 + ya3 + a1)

−
(

3
−5− 3x+ 4y − 4(−2− 7x+ 3y)

(−5− 3x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−21x2a2 + 49x2a3 + 10x2b2 − 21x2b3 − 56xya2 − 42xya3 + 24xyb2 + 56xyb3 + 12y2a2 − 10y2a3 − 16y2b2 − 12y2b3 + 70xa2 + 28xa3 + 19xb1 − 37xb2 − 41xb3 − 19ya1 − 23ya2 + 17ya3 + 40yb2 + 16yb3 + 29a1 + 10a2 + 4a3 − 7b1 − 25b2 − 10b3
(5 + 3x− 4y)2

= 0

Setting the numerator to zero gives

(6E)
−21x2a2 − 49x2a3 − 10x2b2 + 21x2b3 + 56xya2 + 42xya3 − 24xyb2
− 56xyb3 − 12y2a2 + 10y2a3 + 16y2b2 + 12y2b3 − 70xa2
− 28xa3 − 19xb1 + 37xb2 + 41xb3 + 19ya1 + 23ya2 − 17ya3
− 40yb2 − 16yb3 − 29a1 − 10a2 − 4a3 + 7b1 + 25b2 + 10b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

4821



The above PDE (6E) now becomes

(7E)
−21a2v21 + 56a2v1v2 − 12a2v22 − 49a3v21 + 42a3v1v2 + 10a3v22 − 10b2v21
− 24b2v1v2 + 16b2v22 + 21b3v21 − 56b3v1v2 + 12b3v22 + 19a1v2
− 70a2v1 + 23a2v2 − 28a3v1 − 17a3v2 − 19b1v1 + 37b2v1 − 40b2v2
+ 41b3v1 − 16b3v2 − 29a1 − 10a2 − 4a3 + 7b1 + 25b2 + 10b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−21a2 − 49a3 − 10b2 + 21b3) v21 + (56a2 + 42a3 − 24b2 − 56b3) v1v2
+ (−70a2 − 28a3 − 19b1 +37b2 +41b3) v1 + (−12a2 +10a3 +16b2 +12b3) v22
+ (19a1 + 23a2 − 17a3 − 40b2 − 16b3) v2 − 29a1
− 10a2 − 4a3 + 7b1 + 25b2 + 10b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−21a2 − 49a3 − 10b2 + 21b3 = 0
−12a2 + 10a3 + 16b2 + 12b3 = 0
56a2 + 42a3 − 24b2 − 56b3 = 0

19a1 + 23a2 − 17a3 − 40b2 − 16b3 = 0
−70a2 − 28a3 − 19b1 + 37b2 + 41b3 = 0

−29a1 − 10a2 − 4a3 + 7b1 + 25b2 + 10b3 = 0

Solving the above equations for the unknowns gives

a1 = −74b1
49 − 131b3

49
a2 = −114b1

49 − 125b3
49

a3 =
76b1
49 + 116b3

49
b1 = b1

b2 = −19b1
7 − 29b3

7
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −131
49 − 125x

49 + 116y
49

η = −29x
7 + y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −29x
7 + y −

(
−2− 7x+ 3y
−5− 3x+ 4y

)(
−131

49 − 125x
49 + 116y

49

)
= 266x2 − 228xy + 152y2 + 152x− 380y + 262

245 + 147x− 196y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

266x2−228xy+152y2+152x−380y+262
245+147x−196y

dy

Which results in

S = −49 ln (133x2 − 114xy + 76y2 + 76x− 190y + 131)
76
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2− 7x+ 3y
−5− 3x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −98− 343x+ 147y
266x2 + (−228y + 152)x+ 152y2 − 380y + 262

Sy =
245 + 147x− 196y

266x2 + (−228y + 152)x+ 152y2 − 380y + 262

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−49 ln (133x2 + (−114y + 76)x+ 76y2 − 190y + 131)
76 = c1
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Which simplifies to

−49 ln (133x2 + (−114y + 76)x+ 76y2 − 190y + 131)
76 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2−7x+3y
−5−3x+4y

dS
dR

= 0

R = x

S = −49 ln (133x2 + (−114y + 76)x+ 76y2 − 190y + 131)
76

Summary
The solution(s) found are the following

(1)−49 ln (133x2 + (−114y + 76)x+ 76y2 − 190y + 131)
76 = c1
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Figure 764: Slope field plot

Verification of solutions

−49 ln (133x2 + (−114y + 76)x+ 76y2 − 190y + 131)
76 = c1

Verified OK.

18.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(5 + 3x− 4y) dy = (2 + 7x− 3y) dx
(−2− 7x+ 3y) dx+(5 + 3x− 4y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2− 7x+ 3y
N(x, y) = 5 + 3x− 4y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2− 7x+ 3y)

= 3

And
∂N

∂x
= ∂

∂x
(5 + 3x− 4y)

= 3
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2− 7x+ 3y dx

(3)φ = −x(4 + 7x− 6y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 5 + 3x− 4y. Therefore equation (4) becomes

(5)5 + 3x− 4y = 3x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 5− 4y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(5− 4y) dy

f(y) = −2y2 + 5y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(4 + 7x− 6y)
2 − 2y2 + 5y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(4 + 7x− 6y)
2 − 2y2 + 5y

Summary
The solution(s) found are the following

(1)−x(4 + 7x− 6y)
2 − 2y2 + 5y = c1

Figure 765: Slope field plot

Verification of solutions

−x(4 + 7x− 6y)
2 − 2y2 + 5y = c1

Verified OK.
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18.10.5 Maple step by step solution

Let’s solve
(5 + 3x− 4y) y′ + 3y = 7x+ 2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
3 = 3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−2− 7x+ 3y) dx+ f1(y)

• Evaluate integral
F (x, y) = −2x− 7x2

2 + 3xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
5 + 3x− 4y = 3x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 5− 4y

• Solve for f1(y)
f1(y) = −2y2 + 5y

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −2x− 7
2x

2 + 3xy − 2y2 + 5y

• Substitute F (x, y) into the solution of the ODE
−2x− 7

2x
2 + 3xy − 2y2 + 5y = c1

• Solve for y{
y = 3x

4 + 5
4 −

√
−19x2−8c1+14x+25

4 , y = 3x
4 + 5

4 +
√

−19x2−8c1+14x+25
4

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.468 (sec). Leaf size: 33� �
dsolve((5+3*x-4*y(x))*diff(y(x),x) = 2+7*x-3*y(x),y(x), singsol=all)� �

y(x) =
−
√

4− 6859
(
x− 7

19

)2
c21 + (57x+ 95) c1

76c1
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3 Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 71� �
DSolve[(5+3 x-4 y[x])y'[x]==2+7 x-3 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4

(
−i
√

19x2 − 14x− 25− 16c1 + 3x+ 5
)

y(x) → 1
4

(
i
√

19x2 − 14x− 25− 16c1 + 3x+ 5
)
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18.11 problem 487
18.11.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4833
18.11.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4836

Internal problem ID [3741]
Internal file name [OUTPUT/3234_Sunday_June_05_2022_09_02_03_AM_14745092/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 487.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class C`], _dAlembert]

4(−y − x+ 1) y′ = x− 2

18.11.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − X + x0 − 2

4 (Y (X) + y0 +X + x0 − 1)

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 2
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − X

4 (Y (X) +X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= − X

4 (Y +X) (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X and N = 4Y +4X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = − 1

4u+ 4
du
dX =

− 1
4u(X)+4 − u(X)

X

Or
d

dX
u(X)−

− 1
4u(X)+4 − u(X)

X
= 0

Or
4
(

d

dX
u(X)

)
Xu(X) + 4

(
d

dX
u(X)

)
X + 4u(X)2 + 4u(X) + 1 = 0

Or
4X(u(X) + 1)

(
d

dX
u(X)

)
+ 4
(
u(X) + 1

2

)2

= 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − (2u+ 1)2

4X (u+ 1)
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Where f(X) = − 1
4X and g(u) = (2u+1)2

u+1 . Integrating both sides gives

1
(2u+1)2
u+1

du = − 1
4X dX

∫ 1
(2u+1)2
u+1

du =
∫

− 1
4X dX

ln (2u+ 1)
4 − 1

4 (2u+ 1) = − ln (X)
4 + c2

The solution is

ln (2u(X) + 1)
4 − 1

4 (2u (X) + 1) +
ln (X)

4 − c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

2Y (X)
X

+ 1
)

4 − 1
4
(

2Y (X)
X

+ 1
) + ln (X)

4 − c2 = 0

Using the solution for Y (X)

ln
(

2Y (X)+X
X

)
4 − X

8Y (X) + 4X + ln (X)
4 − c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 2

Then the solution in y becomes

ln
(
x+2y
x−2

)
4 − x− 2

8y + 4x + ln (x− 2)
4 − c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(
x+2y
x−2

)
4 − x− 2

8y + 4x + ln (x− 2)
4 − c2 = 0

Figure 766: Slope field plot

Verification of solutions

ln
(
x+2y
x−2

)
4 − x− 2

8y + 4x + ln (x− 2)
4 − c2 = 0

Verified OK.

18.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x− 2
4 (x− 1 + y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

4836



The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x− 2) (b3 − a2)
4 (x− 1 + y) − (x− 2)2 a3

16 (x− 1 + y)2

−
(
− 1
4 (x− 1 + y) +

x− 2
4 (x− 1 + y)2

)
(xa2 + ya3 + a1)

− (x− 2) (xb2 + yb3 + b1)
4 (x− 1 + y)2

= 0

Putting the above in normal form gives

4x2a2 − x2a3 + 12x2b2 − 4x2b3 + 8xya2 + 32xyb2 − 8xyb3 + 4y2a3 + 16y2b2 − 8xa2 + 4xa3 − 4xb1 − 24xb2 + 12xb3 + 4ya1 − 8ya2 + 4ya3 − 32yb2 + 16yb3 + 4a1 + 8a2 − 4a3 + 8b1 + 16b2 − 8b3
16 (x− 1 + y)2

= 0

Setting the numerator to zero gives

(6E)4x2a2 − x2a3 + 12x2b2 − 4x2b3 + 8xya2 + 32xyb2 − 8xyb3 + 4y2a3
+ 16y2b2 − 8xa2 + 4xa3 − 4xb1 − 24xb2 + 12xb3 + 4ya1 − 8ya2
+ 4ya3 − 32yb2 + 16yb3 + 4a1 + 8a2 − 4a3 + 8b1 + 16b2 − 8b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)4a2v21 + 8a2v1v2 − a3v
2
1 + 4a3v22 + 12b2v21 + 32b2v1v2 + 16b2v22 − 4b3v21

− 8b3v1v2 + 4a1v2 − 8a2v1 − 8a2v2 + 4a3v1 + 4a3v2 − 4b1v1 − 24b2v1
− 32b2v2 + 12b3v1 + 16b3v2 + 4a1 + 8a2 − 4a3 + 8b1 + 16b2 − 8b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(4a2 − a3 + 12b2 − 4b3) v21 + (8a2 + 32b2 − 8b3) v1v2
+ (−8a2 + 4a3 − 4b1 − 24b2 + 12b3) v1 + (4a3 + 16b2) v22
+(4a1− 8a2+4a3− 32b2+16b3) v2+4a1+8a2− 4a3+8b1+16b2− 8b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a3 + 16b2 = 0
8a2 + 32b2 − 8b3 = 0

4a2 − a3 + 12b2 − 4b3 = 0
4a1 − 8a2 + 4a3 − 32b2 + 16b3 = 0

−8a2 + 4a3 − 4b1 − 24b2 + 12b3 = 0
4a1 + 8a2 − 4a3 + 8b1 + 16b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 4b2 − 2b3
a2 = −4b2 + b3

a3 = −4b2
b1 = −2b2 + b3

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 2
η = y + 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
− x− 2
4 (x− 1 + y)

)
(x− 2)

= x2 + 4xy + 4y2
4x− 4 + 4y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+4xy+4y2
4x−4+4y

dy

Which results in

S = ln (x+ 2y)−
4
(
x
4 −

1
2

)
x+ 2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x− 2
4 (x− 1 + y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x− 2
(x+ 2y)2

Sy =
4x− 4 + 4y
(x+ 2y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 2y) ln (x+ 2y)− x+ 2
x+ 2y = c1

Which simplifies to

(x+ 2y) ln (x+ 2y)− x+ 2
x+ 2y = c1

Which gives

y = eLambertW
(
(x−2)e−c1

)
+c1

2 − x

2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x−2
4(x−1+y)

dS
dR

= 0

R = x

S = (x+ 2y) ln (x+ 2y)− x+ 2
x+ 2y

Summary
The solution(s) found are the following

(1)y = eLambertW
(
(x−2)e−c1

)
+c1

2 − x

2

4841



Figure 767: Slope field plot

Verification of solutions

y = eLambertW
(
(x−2)e−c1

)
+c1

2 − x

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 28� �
dsolve(4*(1-x-y(x))*diff(y(x),x)+2-x = 0,y(x), singsol=all)� �

y(x) = −xLambertW (−c1(−2 + x)) + x− 2
2 LambertW (−c1 (−2 + x))

3 Solution by Mathematica
Time used: 3.485 (sec). Leaf size: 109� �
DSolve[4(1-x-y[x])y'[x]+2-x==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

22/3
(
x log

(
x−2

y(x)+x−1

)
− x log

(
2y(x)+x
y(x)+x−1

)
+ 2y(x)

(
log
(

x−2
y(x)+x−1

)
− log

(
2y(x)+x
y(x)+x−1

)
+ 1
)
+ 2x− 2

)
9(2y(x) + x) = 1

92
2/3 log(x−2)+c1, y(x)
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18.12 problem 488
18.12.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4844
18.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4848

Internal problem ID [3742]
Internal file name [OUTPUT/3235_Sunday_June_05_2022_09_02_11_AM_78163000/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 488.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(11− 11x− 4y) y′ + 25y = 62− 8x

18.12.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −62 + 8X + 8x0 + 25Y (X) + 25y0

−11 + 11X + 11x0 + 4Y (X) + 4y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
1
9

y0 =
22
9

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 8X + 25Y (X)

11X + 4Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 8X + 25Y
11X + 4Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 8X + 25Y and N = 11X + 4Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 25u+ 8

4u+ 11
du
dX =

25u(X)+8
4u(X)+11 − u(X)

X

Or
d

dX
u(X)−

25u(X)+8
4u(X)+11 − u(X)

X
= 0

Or
4
(

d

dX
u(X)

)
Xu(X) + 11

(
d

dX
u(X)

)
X + 4u(X)2 − 14u(X)− 8 = 0

Or
−8 + (4u(X) + 11)X

(
d

dX
u(X)

)
+ 4u(X)2 − 14u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2(2u2 − 7u− 4)
(4u+ 11)X
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Where f(X) = − 2
X

and g(u) = 2u2−7u−4
4u+11 . Integrating both sides gives

1
2u2−7u−4
4u+11

du = − 2
X

dX

∫ 1
2u2−7u−4
4u+11

du =
∫

− 2
X

dX

− ln (2u+ 1) + 3 ln (u− 4) = −2 ln (X) + c2

Raising both side to exponential gives

e− ln(2u+1)+3 ln(u−4) = e−2 ln(X)+c2

Which simplifies to

(u− 4)3

2u+ 1 = c3
X2

The solution is
(u(X)− 4)3

2u (X) + 1 = c3
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

Y (X)
X

− 4
)3

2Y (X)
X

+ 1
= c3

X2

Which simplifies to

−(−Y (X) + 4X)3

2Y (X) +X
= c3

Using the solution for Y (X)

−(−Y (X) + 4X)3

2Y (X) +X
= c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y + 22
9

X = x+ 1
9

Then the solution in y becomes

−(−y + 2 + 4x)3

2y − 5 + x
= c3

Summary
The solution(s) found are the following

(1)−(−y + 2 + 4x)3

2y − 5 + x
= c3

Figure 768: Slope field plot

Verification of solutions

−(−y + 2 + 4x)3

2y − 5 + x
= c3

Verified OK.
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18.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −62 + 8x+ 25y
−11 + 11x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−62 + 8x+ 25y) (b3 − a2)

−11 + 11x+ 4y − (−62 + 8x+ 25y)2 a3
(−11 + 11x+ 4y)2

−
(

8
−11 + 11x+ 4y − 11(−62 + 8x+ 25y)

(−11 + 11x+ 4y)2
)
(xa2 + ya3 + a1)

−
(

25
−11 + 11x+ 4y − 4(−62 + 8x+ 25y)

(−11 + 11x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−88x2a2 + 64x2a3 + 122x2b2 − 88x2b3 + 64xya2 + 400xya3 − 88xyb2 − 64xyb3 + 100y2a2 + 382y2a3 − 16y2b2 − 100y2b3 − 176xa2 − 992xa3 + 243xb1 + 215xb2 + 770xb3 − 243ya1 − 523ya2 − 2506ya3 + 88yb2 + 496yb3 + 594a1 + 682a2 + 3844a3 − 27b1 − 121b2 − 682b3
(−11 + 11x+ 4y)2

= 0

Setting the numerator to zero gives

(6E)
−88x2a2 − 64x2a3 − 122x2b2 + 88x2b3 − 64xya2 − 400xya3 + 88xyb2
+ 64xyb3 − 100y2a2 − 382y2a3 + 16y2b2 + 100y2b3 + 176xa2 + 992xa3
− 243xb1 − 215xb2 − 770xb3 + 243ya1 + 523ya2 + 2506ya3 − 88yb2
− 496yb3 − 594a1 − 682a2 − 3844a3 + 27b1 + 121b2 + 682b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−88a2v21 − 64a2v1v2 − 100a2v22 − 64a3v21 − 400a3v1v2 − 382a3v22 − 122b2v21
+ 88b2v1v2 + 16b2v22 + 88b3v21 + 64b3v1v2 + 100b3v22 + 243a1v2 + 176a2v1
+ 523a2v2 + 992a3v1 + 2506a3v2 − 243b1v1 − 215b2v1 − 88b2v2 − 770b3v1
− 496b3v2 − 594a1 − 682a2 − 3844a3 + 27b1 + 121b2 + 682b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−88a2 − 64a3 − 122b2 + 88b3) v21 + (−64a2 − 400a3 + 88b2 + 64b3) v1v2
+ (176a2 + 992a3 − 243b1 − 215b2 − 770b3) v1
+ (−100a2 − 382a3 + 16b2 + 100b3) v22
+ (243a1 + 523a2 + 2506a3 − 88b2 − 496b3) v2 − 594a1
− 682a2 − 3844a3 + 27b1 + 121b2 + 682b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−100a2 − 382a3 + 16b2 + 100b3 = 0
−88a2 − 64a3 − 122b2 + 88b3 = 0
−64a2 − 400a3 + 88b2 + 64b3 = 0

243a1 + 523a2 + 2506a3 − 88b2 − 496b3 = 0
176a2 + 992a3 − 243b1 − 215b2 − 770b3 = 0

−594a1 − 682a2 − 3844a3 + 27b1 + 121b2 + 682b3 = 0
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Solving the above equations for the unknowns gives

a1 =
45b3
2 + 37b1

4
a2 =

63b1
4 + 79b3

2
a3 = −9b1

2 − 11b3

b1 = b1

b2 = −9b1 − 22b3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 45
2 + 79x

2 − 11y

η = −22x+ y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −22x+ y −
(
−62 + 8x+ 25y
−11 + 11x+ 4y

)(
45
2 + 79x

2 − 11y
)

= −1116x2 − 1953xy + 558y2 + 5022x− 2511y + 2790
−22 + 22x+ 8y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−1116x2−1953xy+558y2+5022x−2511y+2790
−22+22x+8y

dy

Which results in

S = 2 ln (y − 2− 4x)
93 − 2 ln (x+ 2y − 5)

279

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −62 + 8x+ 25y
−11 + 11x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 8
93 (y − 2− 4x) −

2
279 (x+ 2y − 5)

Sy =
2

93 (y − 2− 4x) −
4

279 (x+ 2y − 5)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y − 2− 4x)
93 − 2 ln (2y − 5 + x)

279 = c1

Which simplifies to

2 ln (y − 2− 4x)
93 − 2 ln (2y − 5 + x)

279 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −62+8x+25y
−11+11x+4y

dS
dR

= 0

R = x

S = 2 ln (y − 2− 4x)
93 − 2 ln (x+ 2y − 5)

279

Summary
The solution(s) found are the following

(1)2 ln (y − 2− 4x)
93 − 2 ln (2y − 5 + x)

279 = c1
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Figure 769: Slope field plot

Verification of solutions

2 ln (y − 2− 4x)
93 − 2 ln (2y − 5 + x)

279 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.75 (sec). Leaf size: 218� �
dsolve((11-11*x-4*y(x))*diff(y(x),x) = 62-8*x-25*y(x),y(x), singsol=all)� �
y(x)

=
4
(
x+ 1

2

) (
i
√
3− 1

)(
708588

√(
− 32

177147 +
(
x− 1

9

)2
c1
)
c1
(
x− 1

9

)2 + 64− 708588
(
x− 1

9

)2
c1

) 2
3

+ (−76x+ 28)
(
708588

√(
− 32

177147 +
(
x− 1

9

)2
c1
)
c1
(
x− 1

9

)2 + 64− 708588
(
x− 1

9

)2
c1

) 1
3

− 64
(
1 + i

√
3
) (

x+ 1
2

)
i
√
3
(
708588

√(
− 32

177147 +
(
x− 1

9

)2
c1
)
c1
(
x− 1

9

)2 + 64− 708588
(
x− 1

9

)2
c1

) 2
3

− 16i
√
3−

(
708588

√(
− 32

177147 +
(
x− 1

9

)2
c1
)
c1
(
x− 1

9

)2 + 64− 708588
(
x− 1

9

)2
c1

) 2
3

+ 8
(
708588

√(
− 32

177147 +
(
x− 1

9

)2
c1
)
c1
(
x− 1

9

)2 + 64− 708588
(
x− 1

9

)2
c1

) 1
3

− 16

3 Solution by Mathematica
Time used: 60.174 (sec). Leaf size: 1677� �
DSolve[(11-11 x-4 y[x])y'[x]==62-8x -25 y[x],y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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18.13 problem 489
18.13.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4855
18.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4859

Internal problem ID [3743]
Internal file name [OUTPUT/3236_Sunday_June_05_2022_09_02_16_AM_50164463/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 489.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(6 + 3x+ 5y) y′ − 7y = x+ 2

18.13.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 2 +X + x0 + 7Y (X) + 7y0

6 + 3X + 3x0 + 5Y (X) + 5y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −2
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = X + 7Y (X)

3X + 5Y (X)

4855



In canonical form, the ODE is

Y ′ = F (X,Y )

= X + 7Y
3X + 5Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = X + 7Y and N = 3X + 5Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 7u+ 1

5u+ 3
du
dX =

7u(X)+1
5u(X)+3 − u(X)

X

Or
d

dX
u(X)−

7u(X)+1
5u(X)+3 − u(X)

X
= 0

Or
5
(

d

dX
u(X)

)
Xu(X) + 3

(
d

dX
u(X)

)
X + 5u(X)2 − 4u(X)− 1 = 0

Or
−1 +X(5u(X) + 3)

(
d

dX
u(X)

)
+ 5u(X)2 − 4u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −5u2 − 4u− 1
X (5u+ 3)
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Where f(X) = − 1
X

and g(u) = 5u2−4u−1
5u+3 . Integrating both sides gives

1
5u2−4u−1

5u+3
du = − 1

X
dX

∫ 1
5u2−4u−1

5u+3
du =

∫
− 1
X

dX

− ln (5u+ 1)
3 + 4 ln (u− 1)

3 = − ln (X) + c2

The above can be written as

− ln (5u+ 1) + 4 ln (u− 1)
3 = − ln (X) + c2

− ln (5u+ 1) + 4 ln (u− 1) = (3) (− ln (X) + c2)
= −3 ln (X) + 3c2

Raising both side to exponential gives

e− ln(5u+1)+4 ln(u−1) = e−3 ln(X)+3c2

Which simplifies to

(u− 1)4

5u+ 1 = 3c2
X3

= c3
X3

Which simplifies to

u(X) = RootOf
(
_Z4 − 4_Z3 + 6_Z2 +

(
−5c3e3c2

X3 − 4
)
_Z− c3e3c2

X3 + 1
)

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X RootOf
(
_Z4X3 − 4_Z3X3 + 6_Z2X3 +

(
−5c3e3c2 − 4X3)_Z− c3e3c2 +X3)

Using the solution for Y (X)

Y (X) = X RootOf
(
_Z4X3 − 4_Z3X3 + 6_Z2X3 +

(
−5c3e3c2 − 4X3)_Z− c3e3c2 +X3)
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x− 2

Then the solution in y becomes

y = (x+ 2)RootOf
((
x3 + 6x2 + 12x+ 8

)
_Z4 +

(
−4x3 − 24x2 − 48x− 32

)
_Z3 +

(
6x3 + 36x2 + 72x+ 48

)
_Z2 +

(
−5c3e3c2 − 4x3 − 24x2 − 48x− 32

)
_Z− c3e3c2 + x3 + 6x2 + 12x+ 8

)
Summary
The solution(s) found are the following

(1)
y = (x+ 2)RootOf

((
x3 + 6x2 + 12x+ 8

)
_Z4 +

(
−4x3 − 24x2 − 48x− 32

)
_Z3

+
(
6x3 + 36x2 + 72x+ 48

)
_Z2 +

(
−5c3e3c2 − 4x3 − 24x2 − 48x− 32

)
_Z

− c3e3c2 + x3 + 6x2 + 12x+ 8
)

Figure 770: Slope field plot
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Verification of solutions

y = (x+ 2)RootOf
((
x3 + 6x2 + 12x+ 8

)
_Z4 +

(
−4x3 − 24x2 − 48x− 32

)
_Z3

+
(
6x3 + 36x2 + 72x+ 48

)
_Z2 +

(
−5c3e3c2 − 4x3 − 24x2 − 48x− 32

)
_Z− c3e3c2

+ x3 + 6x2 + 12x+ 8
)

Verified OK.

18.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2 + x+ 7y
6 + 3x+ 5y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2 + x+ 7y) (b3 − a2)

6 + 3x+ 5y − (2 + x+ 7y)2 a3
(6 + 3x+ 5y)2

−
(

1
6 + 3x+ 5y − 3(2 + x+ 7y)

(6 + 3x+ 5y)2
)
(xa2 + ya3 + a1)

−
(

7
6 + 3x+ 5y − 5(2 + x+ 7y)

(6 + 3x+ 5y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−3x2a2 + x2a3 + 7x2b2 − 3x2b3 + 10xya2 + 14xya3 − 30xyb2 − 10xyb3 + 35y2a2 + 33y2a3 − 25y2b2 − 35y2b3 + 12xa2 + 4xa3 + 16xb1 − 4xb2 − 12xb3 − 16ya1 + 52ya2 + 28ya3 − 60yb2 − 20yb3 + 12a2 + 4a3 + 32b1 − 36b2 − 12b3
(6 + 3x+ 5y)2

= 0
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Setting the numerator to zero gives

(6E)−3x2a2−x2a3−7x2b2+3x2b3−10xya2−14xya3+30xyb2+10xyb3−35y2a2
− 33y2a3 +25y2b2 +35y2b3 − 12xa2 − 4xa3 − 16xb1 +4xb2 +12xb3 +16ya1
− 52ya2 − 28ya3 + 60yb2 + 20yb3 − 12a2 − 4a3 − 32b1 + 36b2 + 12b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−3a2v21 − 10a2v1v2 − 35a2v22 − a3v

2
1 − 14a3v1v2 − 33a3v22 − 7b2v21

+ 30b2v1v2 + 25b2v22 + 3b3v21 + 10b3v1v2 + 35b3v22 + 16a1v2
− 12a2v1 − 52a2v2 − 4a3v1 − 28a3v2 − 16b1v1 + 4b2v1 + 60b2v2
+ 12b3v1 + 20b3v2 − 12a2 − 4a3 − 32b1 + 36b2 + 12b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−3a2 − a3 − 7b2 + 3b3) v21 + (−10a2 − 14a3 + 30b2 + 10b3) v1v2
+ (−12a2 − 4a3 − 16b1 + 4b2 + 12b3) v1 + (−35a2 − 33a3 + 25b2 + 35b3) v22
+(16a1−52a2−28a3+60b2+20b3) v2−12a2−4a3−32b1+36b2+12b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−35a2 − 33a3 + 25b2 + 35b3 = 0
−10a2 − 14a3 + 30b2 + 10b3 = 0

−3a2 − a3 − 7b2 + 3b3 = 0
16a1 − 52a2 − 28a3 + 60b2 + 20b3 = 0
−12a2 − 4a3 − 32b1 + 36b2 + 12b3 = 0
−12a2 − 4a3 − 16b1 + 4b2 + 12b3 = 0
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Solving the above equations for the unknowns gives

a1 = −8b2 + 2b3
a2 = −4b2 + b3

a3 = 5b2
b1 = 2b2
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 2
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

2 + x+ 7y
6 + 3x+ 5y

)
(x+ 2)

= −x2 − 4xy + 5y2 − 4x− 8y − 4
6 + 3x+ 5y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−4xy+5y2−4x−8y−4
6+3x+5y

dy
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Which results in

S = − ln (x+ 5y + 2)
3 + 4 ln (−x+ y − 2)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2 + x+ 7y
6 + 3x+ 5y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2 + x+ 7y
(x+ 5y + 2) (x− y + 2)

Sy =
−6− 3x− 5y

(x+ 5y + 2) (x− y + 2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ 5y + 2)
3 + 4 ln (−x+ y − 2)

3 = c1
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Which simplifies to

− ln (x+ 5y + 2)
3 + 4 ln (−x+ y − 2)

3 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2+x+7y
6+3x+5y

dS
dR

= 0

R = x

S = − ln (x+ 5y + 2)
3 + 4 ln (−x+ y − 2)

3

Summary
The solution(s) found are the following

(1)− ln (x+ 5y + 2)
3 + 4 ln (−x+ y − 2)

3 = c1
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Figure 771: Slope field plot

Verification of solutions

− ln (x+ 5y + 2)
3 + 4 ln (−x+ y − 2)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 1.61 (sec). Leaf size: 46� �
dsolve((6+3*x+5*y(x))*diff(y(x),x) = 2+x+7*y(x),y(x), singsol=all)� �
y(x) = (−2− x) RootOf

(
6 +

(
c1x

3 + 6c1x2 + 12c1x+ 8c1
)
_Z12 − 5_Z3)3 + 2 + x

3 Solution by Mathematica
Time used: 60.159 (sec). Leaf size: 4977� �
DSolve[(6+3 x+5 y[x])y'[x]==2 + x+7 y[x],y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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18.14 problem 490
18.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4866
18.14.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4868

Internal problem ID [3744]
Internal file name [OUTPUT/3237_Sunday_June_05_2022_09_02_21_AM_1191898/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 490.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(7x+ 5y) y′ + 8y = −10x

18.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(7x+ 5u(x)x) (u′(x)x+ u(x)) + 8u(x)x = −10x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −5(u2 + 3u+ 2)
x (5u+ 7)

Where f(x) = − 5
x
and g(u) = u2+3u+2

5u+7 . Integrating both sides gives

1
u2+3u+2
5u+7

du = −5
x
dx
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∫ 1
u2+3u+2
5u+7

du =
∫

−5
x
dx

2 ln (u+ 1) + 3 ln (u+ 2) = −5 ln (x) + c2

Raising both side to exponential gives

e2 ln(u+1)+3 ln(u+2) = e−5 ln(x)+c2

Which simplifies to

(u+ 1)2 (u+ 2)3 = c3
x5

Therefore the solution y is

y = xu

= RootOf
(
_Z5 + 8x_Z4 + 25_Z3x2 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)
Summary
The solution(s) found are the following

(1)y = RootOf
(
_Z5 + 8x_Z4 + 25_Z3x2 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)

Figure 772: Slope field plot
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Verification of solutions

y = RootOf
(
_Z5 + 8x_Z4 + 25_Z3x2 + 38x3_Z2 + 28x4_Z+ 8x5 − c3

)
Verified OK.

18.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2(5x+ 4y)
7x+ 5y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2(5x+ 4y) (b3 − a2)

7x+ 5y − 4(5x+ 4y)2 a3
(7x+ 5y)2

−
(
− 10
7x+ 5y + 70x+ 56y

(7x+ 5y)2
)
(xa2 + ya3 + a1)

−
(
− 8
7x+ 5y + 50x+ 40y

(7x+ 5y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

70x2a2 − 100x2a3 + 55x2b2 − 70x2b3 + 100xya2 − 160xya3 + 70xyb2 − 100xyb3 + 40y2a2 − 70y2a3 + 25y2b2 − 40y2b3 + 6xb1 − 6ya1
(7x+ 5y)2

= 0
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Setting the numerator to zero gives

(6E)70x2a2 − 100x2a3 + 55x2b2 − 70x2b3 + 100xya2 − 160xya3 + 70xyb2
− 100xyb3 + 40y2a2 − 70y2a3 + 25y2b2 − 40y2b3 + 6xb1 − 6ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)70a2v21 + 100a2v1v2 + 40a2v22 − 100a3v21 − 160a3v1v2 − 70a3v22 + 55b2v21
+ 70b2v1v2 + 25b2v22 − 70b3v21 − 100b3v1v2 − 40b3v22 − 6a1v2 + 6b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(70a2 − 100a3 + 55b2 − 70b3) v21 + (100a2 − 160a3 + 70b2 − 100b3) v1v2
+ 6b1v1 + (40a2 − 70a3 + 25b2 − 40b3) v22 − 6a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6b1 = 0

40a2 − 70a3 + 25b2 − 40b3 = 0
70a2 − 100a3 + 55b2 − 70b3 = 0

100a2 − 160a3 + 70b2 − 100b3 = 0

4869



Solving the above equations for the unknowns gives

a1 = 0
a2 = 3a3 + b3

a3 = a3

b1 = 0
b2 = −2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2(5x+ 4y)

7x+ 5y

)
(x)

= 10x2 + 15xy + 5y2
7x+ 5y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

10x2+15xy+5y2
7x+5y

dy
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Which results in

S = 2 ln (y + x)
5 + 3 ln (2x+ y)

5
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(5x+ 4y)
7x+ 5y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
2x+ 8y

5
(y + x) (2x+ y)

Sy =
7x+ 5y

5 (y + x) (2x+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y + x)
5 + 3 ln (y + 2x)

5 = c1
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Which simplifies to

2 ln (y + x)
5 + 3 ln (y + 2x)

5 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2(5x+4y)
7x+5y

dS
dR

= 0

R = x

S = 2 ln (y + x)
5 + 3 ln (2x+ y)

5

Summary
The solution(s) found are the following

(1)2 ln (y + x)
5 + 3 ln (y + 2x)

5 = c1
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Figure 773: Slope field plot

Verification of solutions

2 ln (y + x)
5 + 3 ln (y + 2x)

5 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 6.422 (sec). Leaf size: 38� �
dsolve((7*x+5*y(x))*diff(y(x),x)+10*x+8*y(x) = 0,y(x), singsol=all)� �

y(x) = x
(
RootOf

(
_Z25c1x

5 − 2_Z20c1x
5 + _Z15c1x

5 − 1
)5 − 2

)
3 Solution by Mathematica
Time used: 2.325 (sec). Leaf size: 276� �
DSolve[(7 x+5 y[x])y'[x]+10 x+8 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 1

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 2

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 3

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 4

]
y(x) → Root

[
#15 + 8#14x+ 25#13x2 + 38#12x3 + 28#1x4 + 8x5 − ec1&, 5

]
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18.15 problem 491
Internal problem ID [3745]
Internal file name [OUTPUT/3238_Sunday_June_05_2022_09_02_25_AM_48308778/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 491.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class A`]]

Unable to solve or complete the solution.

(
x+ 4x3 + 5y

)
y′ + 3x2y + 4y = −7x3

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 588� �
dsolve((x+4*x^3+5*y(x))*diff(y(x),x)+7*x^3+3*x^2*y(x)+4*y(x) = 0,y(x), singsol=all)� �
y(x)

=
16(−x15 + 5x13 − 10x11 + 10x9 − 5x7 + x5 + 48c1) RootOf

(
(−2x15 + 10x13 − 20x11 + 20x9 − 10x7 + 2x5 + 96c1)_Z25 + (−35x15 + 175x13 − 350x11 + 350x9 − 175x7 + 35x5 + 1680c1)_Z20 + 11760c1_Z15 + 41160c1_Z10 + 72030c1_Z5 + 50421c1

)20 + 224(−x15 + 5x13 − 10x11 + 10x9 − 5x7 + x5 + 48c1) RootOf
(
(−2x15 + 10x13 − 20x11 + 20x9 − 10x7 + 2x5 + 96c1)_Z25 + (−35x15 + 175x13 − 350x11 + 350x9 − 175x7 + 35x5 + 1680c1)_Z20 + 11760c1_Z15 + 41160c1_Z10 + 72030c1_Z5 + 50421c1

)15 + 784(x15 − 5x13 + 10x11 − 10x9 + 5x7 − x5 + 72c1) RootOf
(
(−2x15 + 10x13 − 20x11 + 20x9 − 10x7 + 2x5 + 96c1)_Z25 + (−35x15 + 175x13 − 350x11 + 350x9 − 175x7 + 35x5 + 1680c1)_Z20 + 11760c1_Z15 + 41160c1_Z10 + 72030c1_Z5 + 50421c1

)10 + 2744(−x15 + 5x13 − 10x11 + 10x9 − 5x7 + x5 + 48c1) RootOf
(
(−2x15 + 10x13 − 20x11 + 20x9 − 10x7 + 2x5 + 96c1)_Z25 + (−35x15 + 175x13 − 350x11 + 350x9 − 175x7 + 35x5 + 1680c1)_Z20 + 11760c1_Z15 + 41160c1_Z10 + 72030c1_Z5 + 50421c1

)5 − 12005x13 + 48020x11 − 72030x9 + 48020x7 − 12005x5 + 115248c1
12005x4 (x− 1)4 (x+ 1)4

3 Solution by Mathematica
Time used: 60.408 (sec). Leaf size: 3641� �
DSolve[(x+4 x^3+5 y[x])y'[x]+7 x^3+3 x^2 y[x]+4 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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18.16 problem 492
18.16.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4877
18.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4881

Internal problem ID [3746]
Internal file name [OUTPUT/3239_Sunday_June_05_2022_09_02_30_AM_20688818/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 492.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(5− x+ 6y) y′ − 4y = −x+ 3

18.16.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 3−X − x0 + 4Y (X) + 4y0

5−X − x0 + 6Y (X) + 6y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −X + 4Y (X)

−X + 6Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −X + 4Y
−X + 6Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = X − 4Y and N = X − 6Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 4u− 1

6u− 1
du
dX =

4u(X)−1
6u(X)−1 − u(X)

X

Or
d

dX
u(X)−

4u(X)−1
6u(X)−1 − u(X)

X
= 0

Or
6
(

d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + 6u(X)2 − 5u(X) + 1 = 0

Or
1 +X(6u(X)− 1)

(
d

dX
u(X)

)
+ 6u(X)2 − 5u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −6u2 − 5u+ 1
X (6u− 1)
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Where f(X) = − 1
X

and g(u) = 6u2−5u+1
6u−1 . Integrating both sides gives

1
6u2−5u+1

6u−1
du = − 1

X
dX

∫ 1
6u2−5u+1

6u−1
du =

∫
− 1
X

dX

− ln (3u− 1) + 2 ln (2u− 1) = − ln (X) + c2

Raising both side to exponential gives

e− ln(3u−1)+2 ln(2u−1) = e− ln(X)+c2

Which simplifies to

(2u− 1)2

3u− 1 = c3
X

The solution is
(2u(X)− 1)2

3u (X)− 1 = c3
X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution (

2Y (X)
X

− 1
)2

3Y (X)
X

− 1
= c3

X

Which simplifies to

−(−2Y (X) +X)2

−3Y (X) +X
= c3

Using the solution for Y (X)

−(−2Y (X) +X)2

−3Y (X) +X
= c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y − 1
X = x− 1

Then the solution in y becomes

−(−2y − 1 + x)2

−3y − 2 + x
= c3

Summary
The solution(s) found are the following

(1)−(−2y − 1 + x)2

−3y − 2 + x
= c3

Figure 774: Slope field plot

Verification of solutions

−(−2y − 1 + x)2

−3y − 2 + x
= c3

Verified OK.
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18.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 3− x+ 4y
5− x+ 6y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(3− x+ 4y) (b3 − a2)

5− x+ 6y − (3− x+ 4y)2 a3
(5− x+ 6y)2

−
(
− 1
5− x+ 6y + 3− x+ 4y

(5− x+ 6y)2
)
(xa2 + ya3 + a1)

−
(

4
5− x+ 6y − 6(3− x+ 4y)

(5− x+ 6y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 + x2b2 − x2b3 − 12xya2 − 8xya3 + 12xyb2 + 12xyb3 + 24y2a2 + 14y2a3 − 36y2b2 − 24y2b3 − 10xa2 − 6xa3 + 2xb1 + 12xb2 + 8xb3 − 2ya1 + 38ya2 + 22ya3 − 60yb2 − 36yb3 − 2a1 + 15a2 + 9a3 + 2b1 − 25b2 − 15b3
(−5 + x− 6y)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 − x2b2 + x2b3 + 12xya2 + 8xya3 − 12xyb2 − 12xyb3 − 24y2a2
− 14y2a3 + 36y2b2 + 24y2b3 + 10xa2 + 6xa3 − 2xb1 − 12xb2 − 8xb3 + 2ya1
− 38ya2− 22ya3+60yb2+36yb3+2a1− 15a2− 9a3− 2b1+25b2+15b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a2v

2
1 + 12a2v1v2 − 24a2v22 − a3v

2
1 + 8a3v1v2 − 14a3v22 − b2v

2
1

− 12b2v1v2 + 36b2v22 + b3v
2
1 − 12b3v1v2 + 24b3v22 + 2a1v2

+ 10a2v1 − 38a2v2 + 6a3v1 − 22a3v2 − 2b1v1 − 12b2v1 + 60b2v2
− 8b3v1 + 36b3v2 + 2a1 − 15a2 − 9a3 − 2b1 + 25b2 + 15b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v21 + (12a2 + 8a3 − 12b2 − 12b3) v1v2
+ (10a2 + 6a3 − 2b1 − 12b2 − 8b3) v1 + (−24a2 − 14a3 + 36b2 + 24b3) v22
+(2a1−38a2−22a3+60b2+36b3) v2+2a1−15a2−9a3−2b1+25b2+15b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

−24a2 − 14a3 + 36b2 + 24b3 = 0
−a2 − a3 − b2 + b3 = 0

12a2 + 8a3 − 12b2 − 12b3 = 0
2a1 − 38a2 − 22a3 + 60b2 + 36b3 = 0

10a2 + 6a3 − 2b1 − 12b2 − 8b3 = 0
2a1 − 15a2 − 9a3 − 2b1 + 25b2 + 15b3 = 0
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Solving the above equations for the unknowns gives

a1 = −b2 + b3

a2 = 5b2 + b3

a3 = −6b2
b1 = b2 + b3

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 1
η = y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
3− x+ 4y
5− x+ 6y

)
(x+ 1)

= −x2 + 5xy − 6y2 + 3x− 7y − 2
−5 + x− 6y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+5xy−6y2+3x−7y−2
−5+x−6y

dy
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Which results in

S = − ln (3y − x+ 2) + 2 ln (2y − x+ 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3− x+ 4y
5− x+ 6y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −3 + x− 4y
(x− 2y − 1) (x− 3y − 2)

Sy =
5− x+ 6y

(x− 2y − 1) (x− 3y − 2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (3y + 2− x) + 2 ln (2y + 1− x) = c1
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Which simplifies to

− ln (3y + 2− x) + 2 ln (2y + 1− x) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3−x+4y
5−x+6y

dS
dR

= 0

R = x

S = − ln (3y − x+ 2) + 2 ln (2y − x+ 1)

Summary
The solution(s) found are the following

(1)− ln (3y + 2− x) + 2 ln (2y + 1− x) = c1
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Figure 775: Slope field plot

Verification of solutions

− ln (3y + 2− x) + 2 ln (2y + 1− x) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 3.328 (sec). Leaf size: 31� �
dsolve((5-x+6*y(x))*diff(y(x),x) = 3-x+4*y(x),y(x), singsol=all)� �

y(x) = −
√

9 + (−8x− 8) c1 − 3 + (4x− 4) c1
8c1
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3 Solution by Mathematica
Time used: 60.101 (sec). Leaf size: 1177� �
DSolve[(5-x+6 y[x])y'[x]==3-x+4 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6

x

+ 2(x+ 1)

x

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) −

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
+

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) −

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
+ 1

− 5



y(x) → 1
6

x

− 2(x+ 1)

x

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) −

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
+

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) −

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
− 1

− 5



y(x) → 1
6

x

+ 2(x+ 1)

x

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) +

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
+

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) +

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
+ 1

− 5



y(x) → 1
6

x

− 2(x+ 1)

x

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) +

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
+

√√√√ 3
(x+1)2 −

3(x+1)2 cosh
(

4c1
9

)
+3(x+1)2 sinh

(
4c1
9

)
+2

(x+1)2
(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
) +

√
−

cosh
(

4c1
9

)
+sinh

(
4c1
9

)
(x+1)2

(
(x+1)2 cosh

(
4c1
9

)
+(x+1)2 sinh

(
4c1
9

)
+1
)
2
− 1

− 5
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18.17 problem 493
18.17.1 Solving as first order ode lie symmetry calculated ode . . . . . . 4889

Internal problem ID [3747]
Internal file name [OUTPUT/3240_Sunday_June_05_2022_09_02_39_AM_86618192/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 493.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

3(x+ 2y) y′ + 2y = 1− x

18.17.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x+ 2y − 1
3 (x+ 2y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ 2y − 1) (b3 − a2)

3 (x+ 2y) − (x+ 2y − 1)2 a3
9 (x+ 2y)2

−
(
− 1
3 (x+ 2y) +

x+ 2y − 1
3 (x+ 2y)2

)
(xa2 + ya3 + a1)

−

(
− 2
3 (x+ 2y) +

2x
3 + 4y

3 − 2
3

(x+ 2y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x2a2 − x2a3 + 9x2b2 − 3x2b3 + 12xya2 − 4xya3 + 36xyb2 − 12xyb3 + 12y2a2 − 4y2a3 + 36y2b2 − 12y2b3 + 2xa3 + 6xb2 + 3xb3 − 6ya2 + 7ya3 + 12yb3 + 3a1 − a3 + 6b1
9 (x+ 2y)2

= 0

Setting the numerator to zero gives

(6E)3x2a2 − x2a3 + 9x2b2 − 3x2b3 + 12xya2 − 4xya3 + 36xyb2
− 12xyb3 + 12y2a2 − 4y2a3 + 36y2b2 − 12y2b3 + 2xa3
+ 6xb2 + 3xb3 − 6ya2 + 7ya3 + 12yb3 + 3a1 − a3 + 6b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v21 + 12a2v1v2 + 12a2v22 − a3v
2
1 − 4a3v1v2 − 4a3v22 + 9b2v21

+ 36b2v1v2 + 36b2v22 − 3b3v21 − 12b3v1v2 − 12b3v22 − 6a2v2
+ 2a3v1 + 7a3v2 + 6b2v1 + 3b3v1 + 12b3v2 + 3a1 − a3 + 6b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(3a2−a3+9b2−3b3) v21+(12a2−4a3+36b2−12b3) v1v2+(2a3+6b2+3b3) v1
+ (12a2 − 4a3 +36b2 − 12b3) v22 + (−6a2 +7a3 +12b3) v2 +3a1 − a3 +6b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a1 − a3 + 6b1 = 0
−6a2 + 7a3 + 12b3 = 0

2a3 + 6b2 + 3b3 = 0
3a2 − a3 + 9b2 − 3b3 = 0

12a2 − 4a3 + 36b2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = −2b2 − 2b1
a2 = −3b2
a3 = −6b2
b1 = b1

b2 = b2

b3 = 2b2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
−x+ 2y − 1

3 (x+ 2y)

)
(−2)

= 2 + x+ 2y
3x+ 6y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2+x+2y
3x+6y

dy

Which results in

S = 3y − 3 ln (2 + x+ 2y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x+ 2y − 1
3 (x+ 2y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3
2 + x+ 2y

Sy = 3− 6
2 + x+ 2y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3y − 3 ln (2 + x+ 2y) = −x+ c1

Which simplifies to

3y − 3 ln (2 + x+ 2y) = −x+ c1

Which gives

y = −x

2 − LambertW
(
−e−1−x

6−
c1
3

2

)
− 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x+2y−1
3(x+2y)

dS
dR

= −1

R = x

S = 3y − 3 ln (2 + x+ 2y)

Summary
The solution(s) found are the following

(1)y = −x

2 − LambertW
(
−e−1−x

6−
c1
3

2

)
− 1
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Figure 776: Slope field plot

Verification of solutions

y = −x

2 − LambertW
(
−e−1−x

6−
c1
3

2

)
− 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve(3*(x+2*y(x))*diff(y(x),x) = 1-x-2*y(x),y(x), singsol=all)� �

y(x) = −LambertW
(
−e−1−x

6+
c1
6

)
− 1− x

2

3 Solution by Mathematica
Time used: 4.134 (sec). Leaf size: 39� �
DSolve[3(x+2 y[x])y'[x]==1-x-2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W
(
−e−

x
6−1+c1

)
− x

2 − 1

y(x) → −x

2 − 1
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18.18 problem 494
18.18.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4897
18.18.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4900

Internal problem ID [3748]
Internal file name [OUTPUT/3241_Sunday_June_05_2022_09_02_42_AM_82322416/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 494.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

3y + (7y − 3x+ 3) y′ = 7x− 7

18.18.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 3Y (X) + 3y0 − 7X − 7x0 + 7

7Y (X) + 7y0 − 3X − 3x0 + 3

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 3Y (X)− 7X

7Y (X)− 3X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −3Y − 7X
7Y − 3X (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 3Y − 7X and N = −7Y + 3X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u+ 7

7u− 3
du
dX =

−3u(X)+7
7u(X)−3 − u(X)

X

Or
d

dX
u(X)−

−3u(X)+7
7u(X)−3 − u(X)

X
= 0

Or
7
(

d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + 7u(X)2 − 7 = 0

Or
−7 +X(7u(X)− 3)

(
d

dX
u(X)

)
+ 7u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 7(u2 − 1)
X (7u− 3)
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Where f(X) = − 7
X

and g(u) = u2−1
7u−3 . Integrating both sides gives

1
u2−1
7u−3

du = − 7
X

dX

∫ 1
u2−1
7u−3

du =
∫

− 7
X

dX

2 ln (u− 1) + 5 ln (u+ 1) = −7 ln (X) + c2

Raising both side to exponential gives

e2 ln(u−1)+5 ln(u+1) = e−7 ln(X)+c2

Which simplifies to

(u− 1)2 (u+ 1)5 = c3
X7

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
Using the solution for Y (X)

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x+ 1

Then the solution in y becomes

y = RootOf
(
_Z7 + (3x− 3)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4 +

(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2 +

(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 − c3 + 7x− 1

)
Summary
The solution(s) found are the following

(1)

y = RootOf
(
_Z7 + (3x− 3)_Z6 +

(
x2 − 2x+1

)
_Z5 +

(
−5x3 +15x2 − 15x+5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)
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Figure 777: Slope field plot

Verification of solutions

y = RootOf
(
_Z7 + (3x− 3)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)

Verified OK.

18.18.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3y − 7x+ 7
7y − 3x+ 3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3y − 7x+ 7) (b3 − a2)

7y − 3x+ 3 − (3y − 7x+ 7)2 a3
(7y − 3x+ 3)2

−
(

7
7y − 3x+ 3 − 3(3y − 7x+ 7)

(7y − 3x+ 3)2
)
(xa2 + ya3 + a1)

−
(
− 3
7y − 3x+ 3 + 21y − 49x+ 49

(7y − 3x+ 3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3 + 21y2a2 − 49y2a3 + 49y2b2 − 21y2b3 − 42xa2 + 98xa3 + 40xb1 − 58xb2 + 42xb3 − 40ya1 + 58ya2 − 42ya3 + 42yb2 − 98yb3 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3
(−7y + 3x− 3)2

= 0

Setting the numerator to zero gives

(6E)21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3
+21y2a2−49y2a3+49y2b2−21y2b3−42xa2+98xa3+40xb1−58xb2+42xb3
−40ya1+58ya2−42ya3+42yb2−98yb3+21a2−49a3−40b1+9b2−21b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)
21a2v21 − 98a2v1v2 + 21a2v22 − 49a3v21 + 42a3v1v2 − 49a3v22 + 49b2v21
− 42b2v1v2 + 49b2v22 − 21b3v21 + 98b3v1v2 − 21b3v22 − 40a1v2
− 42a2v1 + 58a2v2 + 98a3v1 − 42a3v2 + 40b1v1 − 58b2v1 + 42b2v2
+ 42b3v1 − 98b3v2 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(21a2 − 49a3 + 49b2 − 21b3) v21 + (−98a2 + 42a3 − 42b2 + 98b3) v1v2
+ (−42a2 + 98a3 + 40b1 − 58b2 + 42b3) v1 + (21a2 − 49a3 + 49b2 − 21b3) v22
+(−40a1+58a2−42a3+42b2−98b3) v2+21a2−49a3−40b1+9b2−21b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−98a2 + 42a3 − 42b2 + 98b3 = 0
21a2 − 49a3 + 49b2 − 21b3 = 0

−40a1 + 58a2 − 42a3 + 42b2 − 98b3 = 0
−42a2 + 98a3 + 40b1 − 58b2 + 42b3 = 0

21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Solving the above equations for the unknowns gives

a1 = −b3

a2 = b3

a3 = b2

b1 = −b2

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = x− 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x− 1−
(
−3y − 7x+ 7
7y − 3x+ 3

)
(y)

= 3x2 − 3y2 − 6x+ 3
−7y + 3x− 3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2−3y2−6x+3
−7y+3x−3

dy

Which results in

S = 2 ln (y + 1− x)
3 + 5 ln (x− 1 + y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y − 7x+ 7
7y − 3x+ 3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
−3 + 3x− 3y + 5

3x− 3 + 3y

Sy = − 2
−3 + 3x− 3y + 5

3x− 3 + 3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y + 1− x)
3 + 5 ln (y + x− 1)

3 = c1

Which simplifies to

2 ln (y + 1− x)
3 + 5 ln (y + x− 1)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y−7x+7
7y−3x+3

dS
dR

= 0

R = x

S = 2 ln (y + 1− x)
3 + 5 ln (x− 1 + y)

3

Summary
The solution(s) found are the following

(1)2 ln (y + 1− x)
3 + 5 ln (y + x− 1)

3 = c1
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Figure 778: Slope field plot

Verification of solutions

2 ln (y + 1− x)
3 + 5 ln (y + x− 1)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.75 (sec). Leaf size: 1814� �
dsolve((3-3*x+7*y(x))*diff(y(x),x)+7-7*x+3*y(x) = 0,y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 60.781 (sec). Leaf size: 7785� �
DSolve[(3-3 x+7 y[x])y'[x]+7-7 x+3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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18.19 problem 495
18.19.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4908
18.19.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4911

Internal problem ID [3749]
Internal file name [OUTPUT/3242_Sunday_June_05_2022_09_02_47_AM_53214813/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 495.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(1 + x+ 9y) y′ + 5y = −x− 1

18.19.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 1 +X + x0 + 5Y (X) + 5y0

1 +X + x0 + 9Y (X) + 9y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −X + 5Y (X)

X + 9Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −X + 5Y
X + 9Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X − 5Y and N = X + 9Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −5u− 1

9u+ 1
du
dX =

−5u(X)−1
9u(X)+1 − u(X)

X

Or
d

dX
u(X)−

−5u(X)−1
9u(X)+1 − u(X)

X
= 0

Or
9
(

d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + 9u(X)2 + 6u(X) + 1 = 0

Or
X(9u(X) + 1)

(
d

dX
u(X)

)
+ 9
(
u(X) + 1

3

)2

= 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − (3u+ 1)2

X (9u+ 1)
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Where f(X) = − 1
X

and g(u) = (3u+1)2
9u+1 . Integrating both sides gives

1
(3u+1)2
9u+1

du = − 1
X

dX

∫ 1
(3u+1)2
9u+1

du =
∫

− 1
X

dX

ln (3u+ 1) + 2
3 (3u+ 1) = − ln (X) + c2

The solution is

ln (3u(X) + 1) + 2
3 (3u (X) + 1) + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(
3Y (X)

X
+ 1
)
+ 2

3
(

3Y (X)
X

+ 1
) + ln (X)− c2 = 0

Using the solution for Y (X)

ln
(
3Y (X) +X

X

)
+ 2X

9Y (X) + 3X + ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x− 1

Then the solution in y becomes

ln
(
3y + x+ 1

x+ 1

)
+ 2 + 2x

9y + 3x+ 3 + ln (x+ 1)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
3y + x+ 1

x+ 1

)
+ 2 + 2x

9y + 3x+ 3 + ln (x+ 1)− c2 = 0
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Figure 779: Slope field plot

Verification of solutions

ln
(
3y + x+ 1

x+ 1

)
+ 2 + 2x

9y + 3x+ 3 + ln (x+ 1)− c2 = 0

Verified OK.

18.19.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −1 + x+ 5y
1 + x+ 9y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(1 + x+ 5y) (b3 − a2)

1 + x+ 9y − (1 + x+ 5y)2 a3
(1 + x+ 9y)2

−
(
− 1
1 + x+ 9y + 1 + x+ 5y

(1 + x+ 9y)2
)
(xa2 + ya3 + a1)

−
(
− 5
1 + x+ 9y + 9 + 9x+ 45y

(1 + x+ 9y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 − 3x2b2 − x2b3 + 18xya2 − 10xya3 + 18xyb2 − 18xyb3 + 45y2a2 − 21y2a3 + 81y2b2 − 45y2b3 + 2xa2 − 2xa3 − 4xb1 − 2xb2 − 2xb3 + 4ya1 + 14ya2 − 10ya3 + 18yb2 − 18yb3 + a2 − a3 − 4b1 + b2 − b3

(1 + x+ 9y)2
= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 − 3x2b2 − x2b3 + 18xya2 − 10xya3 + 18xyb2 − 18xyb3
+ 45y2a2 − 21y2a3 + 81y2b2 − 45y2b3 + 2xa2 − 2xa3 − 4xb1 − 2xb2 − 2xb3
+ 4ya1 + 14ya2 − 10ya3 + 18yb2 − 18yb3 + a2 − a3 − 4b1 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 + 18a2v1v2 + 45a2v22 − a3v

2
1 − 10a3v1v2 − 21a3v22 − 3b2v21 + 18b2v1v2

+81b2v22−b3v
2
1−18b3v1v2−45b3v22+4a1v2+2a2v1+14a2v2−2a3v1−10a3v2

− 4b1v1 − 2b2v1 + 18b2v2 − 2b3v1 − 18b3v2 + a2 − a3 − 4b1 + b2 − b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 − 3b2 − b3) v21 + (18a2 − 10a3 + 18b2 − 18b3) v1v2
+ (2a2 − 2a3 − 4b1 − 2b2 − 2b3) v1 + (45a2 − 21a3 + 81b2 − 45b3) v22
+ (4a1 + 14a2 − 10a3 + 18b2 − 18b3) v2 + a2 − a3 − 4b1 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a2 − a3 − 3b2 − b3 = 0
18a2 − 10a3 + 18b2 − 18b3 = 0
45a2 − 21a3 + 81b2 − 45b3 = 0

4a1 + 14a2 − 10a3 + 18b2 − 18b3 = 0
a2 − a3 − 4b1 + b2 − b3 = 0

2a2 − 2a3 − 4b1 − 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = −6b2 + b3

a2 = −6b2 + b3

a3 = −9b2
b1 = b2

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 1
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−1 + x+ 5y
1 + x+ 9y

)
(x+ 1)

= x2 + 6xy + 9y2 + 2x+ 6y + 1
1 + x+ 9y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+6xy+9y2+2x+6y+1
1+x+9y

dy

Which results in

S = ln (1 + x+ 3y)−
−2

3 −
2x
3

1 + x+ 3y
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1 + x+ 5y
1 + x+ 9y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1 + x+ 5y
(1 + x+ 3y)2

Sy =
1 + x+ 9y

(1 + x+ 3y)2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(9y + 3x+ 3) ln (3y + x+ 1) + 2x+ 2
9y + 3x+ 3 = c1

Which simplifies to

(9y + 3x+ 3) ln (3y + x+ 1) + 2x+ 2
9y + 3x+ 3 = c1

Which gives

y = e
LambertW

(
− 2(x+1)e−c1

3

)
+c1

3 − 1
3 − x

3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −1+x+5y
1+x+9y

dS
dR

= 0

R = x

S = (3 + 3x+ 9y) ln (1 + x+ 3y) + 2x+ 2
3 + 3x+ 9y

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
− 2(x+1)e−c1

3

)
+c1

3 − 1
3 − x

3
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Figure 780: Slope field plot

Verification of solutions

y = e
LambertW

(
− 2(x+1)e−c1

3

)
+c1

3 − 1
3 − x

3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 29� �
dsolve((1+x+9*y(x))*diff(y(x),x)+1+x+5*y(x) = 0,y(x), singsol=all)� �

y(x) = −
(x+ 1)

(
2 + 3LambertW

(
2c1(x+1)

3

))
9 LambertW

(
2c1(x+1)

3

)
3 Solution by Mathematica
Time used: 1.908 (sec). Leaf size: 145� �
DSolve[(1+x+9 y[x])y'[x]+1+x+5 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

(−2)2/3
(
(x+ 1)

(
3 log

(
−6(−2)2/3(x+1)

9y(x)+x+1

)
− 3 log

(
9(−2)2/3(3y(x)+x+1)

9y(x)+x+1

)
+ 1
)
+ 9y(x)

(
log
(
−6(−2)2/3(x+1)

9y(x)+x+1

)
− log

(
9(−2)2/3(3y(x)+x+1)

9y(x)+x+1

)
+ 1
))

27(3y(x) + x+ 1) = 1
9(−2)2/3 log(x+1)+c1, y(x)
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18.20 problem 496
18.20.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 4919
18.20.2 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4921
18.20.3 Solving as first order ode lie symmetry calculated ode . . . . . . 4924
18.20.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4929
18.20.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4933

Internal problem ID [3750]
Internal file name [OUTPUT/3243_Sunday_June_05_2022_09_02_52_AM_54170600/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 496.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(8 + 5x− 12y) y′ + 5y = 2x+ 3

18.20.1 Solving as differentialType ode

Writing the ode as

y′ = 3 + 2x− 5y
8 + 5x− 12y (1)

Which becomes

(8− 12y) dy = (−5x) dy + (3 + 2x− 5y) dx (2)

But the RHS is complete differential because

(−5x) dy + (3 + 2x− 5y) dx = d
(
x2 − 5xy + 3x

)
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Hence (2) becomes

(8− 12y) dy = d
(
x2 − 5xy + 3x

)
Integrating both sides gives gives these solutions

y = 2
3 + 5x

12 +
√
x2 − 24c1 + 8x+ 64

12 + c1

y = 2
3 + 5x

12 −
√
x2 − 24c1 + 8x+ 64

12 + c1

Summary
The solution(s) found are the following

(1)y = 2
3 + 5x

12 +
√
x2 − 24c1 + 8x+ 64

12 + c1

(2)y = 2
3 + 5x

12 −
√
x2 − 24c1 + 8x+ 64

12 + c1

Figure 781: Slope field plot
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Verification of solutions

y = 2
3 + 5x

12 +
√
x2 − 24c1 + 8x+ 64

12 + c1

Verified OK.

y = 2
3 + 5x

12 −
√
x2 − 24c1 + 8x+ 64

12 + c1

Verified OK.

18.20.2 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 5Y (X) + 5y0 − 2X − 2x0 − 3

−8− 5X − 5x0 + 12Y (X) + 12y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −4
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 5Y (X)− 2X

−5X + 12Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= 5Y − 2X
−5X + 12Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −5Y + 2X and N = 5X − 12Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
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this ode is homogeneous, it is converted to separable ODE using the substitution u = Y
X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 5u− 2

12u− 5
du
dX =

5u(X)−2
12u(X)−5 − u(X)

X

Or
d

dX
u(X)−

5u(X)−2
12u(X)−5 − u(X)

X
= 0

Or
12
(

d

dX
u(X)

)
Xu(X)− 5

(
d

dX
u(X)

)
X + 12u(X)2 − 10u(X) + 2 = 0

Or
2 +X(12u(X)− 5)

(
d

dX
u(X)

)
+ 12u(X)2 − 10u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −2(6u2 − 5u+ 1)
X (12u− 5)

Where f(X) = − 2
X

and g(u) = 6u2−5u+1
12u−5 . Integrating both sides gives

1
6u2−5u+1
12u−5

du = − 2
X

dX

∫ 1
6u2−5u+1
12u−5

du =
∫

− 2
X

dX

ln
(
6u2 − 5u+ 1

)
= −2 ln (X) + c2

Raising both side to exponential gives

6u2 − 5u+ 1 = e−2 ln(X)+c2
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Which simplifies to

6u2 − 5u+ 1 = c3
X2

Which simplifies to

6u(X)2 − 5u(X) + 1 = c3ec2
X2

The solution is

6u(X)2 − 5u(X) + 1 = c3ec2
X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

6Y (X)2

X2 − 5Y (X)
X

+ 1 = c3ec2
X2

Which simplifies to

(X − 2Y (X)) (X − 3Y (X)) = c3ec2

Using the solution for Y (X)

(X − 2Y (X)) (X − 3Y (X)) = c3ec2

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x− 4

Then the solution in y becomes

(x+ 2− 2y) (1 + x− 3y) = c3ec2

Summary
The solution(s) found are the following

(1)(x+ 2− 2y) (1 + x− 3y) = c3ec2
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Figure 782: Slope field plot

Verification of solutions

(x+ 2− 2y) (1 + x− 3y) = c3ec2

Verified OK.

18.20.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3− 2x+ 5y
−8− 5x+ 12y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−3− 2x+ 5y) (b3 − a2)

−8− 5x+ 12y − (−3− 2x+ 5y)2 a3
(−8− 5x+ 12y)2

−
(
− 2
−8− 5x+ 12y + −15− 10x+ 25y

(−8− 5x+ 12y)2
)
(xa2 + ya3 + a1)

−
(

5
−8− 5x+ 12y − 12(−3− 2x+ 5y)

(−8− 5x+ 12y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−10x2a2 + 4x2a3 − 26x2b2 − 10x2b3 − 48xya2 − 20xya3 + 120xyb2 + 48xyb3 + 60y2a2 + 26y2a3 − 144y2b2 − 60y2b3 + 32xa2 + 12xa3 − xb1 − 84xb2 − 31xb3 + ya1 − 76ya2 − 29ya3 + 192yb2 + 72yb3 + a1 + 24a2 + 9a3 − 4b1 − 64b2 − 24b3
(8 + 5x− 12y)2

= 0

Setting the numerator to zero gives

(6E)−10x2a2 − 4x2a3 +26x2b2 +10x2b3 +48xya2 +20xya3 − 120xyb2 − 48xyb3
−60y2a2−26y2a3+144y2b2+60y2b3−32xa2−12xa3+xb1+84xb2+31xb3
−ya1+76ya2+29ya3−192yb2−72yb3−a1−24a2−9a3+4b1+64b2+24b3
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−10a2v21 + 48a2v1v2 − 60a2v22 − 4a3v21 + 20a3v1v2 − 26a3v22 + 26b2v21
− 120b2v1v2 + 144b2v22 + 10b3v21 − 48b3v1v2 + 60b3v22 − a1v2
− 32a2v1 + 76a2v2 − 12a3v1 + 29a3v2 + b1v1 + 84b2v1 − 192b2v2
+ 31b3v1 − 72b3v2 − a1 − 24a2 − 9a3 + 4b1 + 64b2 + 24b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−10a2− 4a3+26b2+10b3) v21 +(48a2+20a3− 120b2− 48b3) v1v2+(−32a2
− 12a3 + b1 + 84b2 + 31b3) v1 + (−60a2 − 26a3 + 144b2 + 60b3) v22 + (−a1
+ 76a2 + 29a3 − 192b2 − 72b3) v2 − a1 − 24a2 − 9a3 + 4b1 + 64b2 + 24b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−60a2 − 26a3 + 144b2 + 60b3 = 0
−10a2 − 4a3 + 26b2 + 10b3 = 0
48a2 + 20a3 − 120b2 − 48b3 = 0

−a1 + 76a2 + 29a3 − 192b2 − 72b3 = 0
−32a2 − 12a3 + b1 + 84b2 + 31b3 = 0

−a1 − 24a2 − 9a3 + 4b1 + 64b2 + 24b3 = 0

Solving the above equations for the unknowns gives

a1 = 14b2 + 4b3
a2 = 5b2 + b3

a3 = −6b2
b1 = 4b2 + b3

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 4
η = y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(

−3− 2x+ 5y
−8− 5x+ 12y

)
(x+ 4)

= −2x2 + 10xy − 12y2 − 6x+ 16y − 4
8 + 5x− 12y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2+10xy−12y2−6x+16y−4
8+5x−12y

dy

Which results in

S = ln (x2 − 5xy + 6y2 + 3x− 8y + 2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3− 2x+ 5y
−8− 5x+ 12y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x− 4y + 4 + 1

2x− 6y + 2

Sy = − 1
x− 2y + 2 − 3

2x− 6y + 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x+ 2− 2y)
2 + ln (1 + x− 3y)

2 = c1

Which simplifies to
ln (x+ 2− 2y)

2 + ln (1 + x− 3y)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3−2x+5y
−8−5x+12y

dS
dR

= 0

R = x

S = ln (x− 2y + 2)
2 + ln (x+ 1− 3y)

2
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Summary
The solution(s) found are the following

(1)ln (x+ 2− 2y)
2 + ln (1 + x− 3y)

2 = c1

Figure 783: Slope field plot

Verification of solutions

ln (x+ 2− 2y)
2 + ln (1 + x− 3y)

2 = c1

Verified OK.

18.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(8 + 5x− 12y) dy = (3 + 2x− 5y) dx
(−3− 2x+ 5y) dx+(8 + 5x− 12y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3− 2x+ 5y
N(x, y) = 8 + 5x− 12y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−3− 2x+ 5y)

= 5
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And
∂N

∂x
= ∂

∂x
(8 + 5x− 12y)

= 5

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3− 2x+ 5y dx

(3)φ = −x(x− 5y + 3) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 5x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 8 + 5x− 12y. Therefore equation (4) becomes

(5)8 + 5x− 12y = 5x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 8− 12y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(8− 12y) dy

f(y) = −6y2 + 8y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x− 5y + 3)− 6y2 + 8y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x− 5y + 3)− 6y2 + 8y

Summary
The solution(s) found are the following

(1)−x(x− 5y + 3)− 6y2 + 8y = c1

Figure 784: Slope field plot

Verification of solutions

−x(x− 5y + 3)− 6y2 + 8y = c1

Verified OK.
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18.20.5 Maple step by step solution

Let’s solve
(8 + 5x− 12y) y′ + 5y = 2x+ 3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
5 = 5

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−3− 2x+ 5y) dx+ f1(y)

• Evaluate integral
F (x, y) = −x2 + 5xy − 3x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
8 + 5x− 12y = 5x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 8− 12y

• Solve for f1(y)
f1(y) = −6y2 + 8y

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −x2 + 5xy − 6y2 − 3x+ 8y
• Substitute F (x, y) into the solution of the ODE

−x2 + 5xy − 6y2 − 3x+ 8y = c1

• Solve for y{
y = 2

3 +
5x
12 −

√
x2−24c1+8x+64

12 , y = 2
3 +

5x
12 +

√
x2−24c1+8x+64

12

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.453 (sec). Leaf size: 32� �
dsolve((8+5*x-12*y(x))*diff(y(x),x) = 3+2*x-5*y(x),y(x), singsol=all)� �

y(x) =
−
√

(x+ 4)2 c21 + 24 + (5x+ 8) c1
12c1
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3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 77� �
DSolve[(8+5 x-12 y[x])y'[x]==3+2 x-5 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12

(
−i
√

−x2 − 8x− 16(4 + 9c1) + 5x+ 8
)

y(x) → 1
12

(
i
√
−x2 − 8x− 16(4 + 9c1) + 5x+ 8

)
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18.21 problem 497
18.21.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4936
18.21.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4940

Internal problem ID [3751]
Internal file name [OUTPUT/3244_Sunday_June_05_2022_09_02_56_AM_10973886/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 497.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(140 + 7x− 16y) y′ + y = −25− 8x

18.21.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 25 + 8X + 8x0 + Y (X) + y0

−140− 7X − 7x0 + 16Y (X) + 16y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −4
y0 = 7

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 8X + Y (X)

−7X + 16Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 8X + Y

−7X + 16Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −8X − Y and N = 7X − 16Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u+ 8

16u− 7
du
dX =

u(X)+8
16u(X)−7 − u(X)

X

Or
d

dX
u(X)−

u(X)+8
16u(X)−7 − u(X)

X
= 0

Or
16
(

d

dX
u(X)

)
Xu(X)− 7

(
d

dX
u(X)

)
X + 16u(X)2 − 8u(X)− 8 = 0

Or
−8 +X(16u(X)− 7)

(
d

dX
u(X)

)
+ 16u(X)2 − 8u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −8(2u2 − u− 1)
X (16u− 7)
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Where f(X) = − 8
X

and g(u) = 2u2−u−1
16u−7 . Integrating both sides gives

1
2u2−u−1
16u−7

du = − 8
X

dX

∫ 1
2u2−u−1
16u−7

du =
∫

− 8
X

dX

3 ln (u− 1) + 5 ln (2u+ 1) = −8 ln (X) + c2

Raising both side to exponential gives

e3 ln(u−1)+5 ln(2u+1) = e−8 ln(X)+c2

Which simplifies to

(u− 1)3 (2u+ 1)5 = c3
X8

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = RootOf
(
−X8 − 7X7_Z− 13X6_Z2 + 11X5_Z3 + 50X4_Z4 + 8X3_Z5 − 64X2_Z6 − 16X _Z7 + 32_Z8 − c3

)
Using the solution for Y (X)

Y (X) = RootOf
(
−X8 − 7X7_Z− 13X6_Z2 + 11X5_Z3 + 50X4_Z4 + 8X3_Z5 − 64X2_Z6 − 16X _Z7 + 32_Z8 − c3

)
And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 7
X = x− 4

Then the solution in y becomes

y − 7 = RootOf
(
32_Z8 + (−16x− 64)_Z7 +

(
−64x2 − 512x− 1024

)
_Z6 +

(
8x3 + 96x2 + 384x+ 512

)
_Z5 +

(
50x4 + 800x3 + 4800x2 + 12800x+ 12800

)
_Z4 +

(
11x5 + 220x4 + 1760x3 + 7040x2 + 14080x+ 11264

)
_Z3 +

(
−13x6 − 312x5 − 3120x4 − 16640x3 − 49920x2 − 79872x− 53248

)
_Z2 +

(
−7x7 − 196x6 − 2352x5 − 15680x4 − 62720x3 − 150528x2 − 200704x− 114688

)
_Z− x8 − 32x7 − 448x6 − 3584x5 − 17920x4 − 57344x3 − 114688x2 − c3 − 131072x− 65536

)
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Summary
The solution(s) found are the following

y − 7 = RootOf
(
32_Z8 + (−16x− 64)_Z7 +

(
−64x2 − 512x− 1024

)
_Z6

+
(
8x3+96x2+384x+512

)
_Z5+

(
50x4+800x3+4800x2+12800x+12800

)
_Z4

+
(
11x5 + 220x4 + 1760x3 + 7040x2 + 14080x+ 11264

)
_Z3

+
(
−13x6 − 312x5 − 3120x4 − 16640x3 − 49920x2 − 79872x− 53248

)
_Z2

+
(
−7x7 − 196x6 − 2352x5 − 15680x4 − 62720x3 − 150528x2 − 200704x

− 114688
)
_Z− x8 − 32x7 − 448x6 − 3584x5 − 17920x4 − 57344x3 − 114688x2

− c3 − 131072x− 65536
)

(1)

Figure 785: Slope field plot
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Verification of solutions

y − 7 = RootOf
(
32_Z8 + (−16x− 64)_Z7 +

(
−64x2 − 512x− 1024

)
_Z6

+
(
8x3+96x2+384x+512

)
_Z5+

(
50x4+800x3+4800x2+12800x+12800

)
_Z4

+
(
11x5 + 220x4 + 1760x3 + 7040x2 + 14080x+ 11264

)
_Z3

+
(
−13x6 − 312x5 − 3120x4 − 16640x3 − 49920x2 − 79872x− 53248

)
_Z2

+
(
−7x7 − 196x6 − 2352x5 − 15680x4 − 62720x3 − 150528x2 − 200704x

− 114688
)
_Z− x8 − 32x7 − 448x6 − 3584x5 − 17920x4 − 57344x3 − 114688x2

− c3 − 131072x− 65536
)

Verified OK.

18.21.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 25 + 8x+ y

−140− 7x+ 16y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(25 + 8x+ y) (b3 − a2)

−140− 7x+ 16y − (25 + 8x+ y)2 a3
(−140− 7x+ 16y)2

−
(

8
−140− 7x+ 16y + 175 + 56x+ 7y

(−140− 7x+ 16y)2
)
(xa2 + ya3 + a1)

−
(

1
−140− 7x+ 16y − 16(25 + 8x+ y)

(−140− 7x+ 16y)2
)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

56x2a2 − 64x2a3 + 184x2b2 − 56x2b3 − 256xya2 − 16xya3 − 224xyb2 + 256xyb3 − 16y2a2 − 136y2a3 + 256y2b2 + 16y2b3 + 2240xa2 − 400xa3 + 135xb1 + 2500xb2 − 1295xb3 − 135ya1 − 260ya2 + 895ya3 − 4480yb2 + 800yb3 + 945a1 + 3500a2 − 625a3 + 540b1 + 19600b2 − 3500b3
(140 + 7x− 16y)2

= 0

Setting the numerator to zero gives

(6E)
56x2a2 − 64x2a3 + 184x2b2 − 56x2b3 − 256xya2 − 16xya3 − 224xyb2
+ 256xyb3 − 16y2a2 − 136y2a3 + 256y2b2 + 16y2b3 + 2240xa2 − 400xa3
+ 135xb1 + 2500xb2 − 1295xb3 − 135ya1 − 260ya2 + 895ya3 − 4480yb2
+ 800yb3 + 945a1 + 3500a2 − 625a3 + 540b1 + 19600b2 − 3500b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
56a2v21 − 256a2v1v2 − 16a2v22 − 64a3v21 − 16a3v1v2 − 136a3v22 + 184b2v21
−224b2v1v2+256b2v22 −56b3v21 +256b3v1v2+16b3v22 −135a1v2+2240a2v1
−260a2v2−400a3v1+895a3v2+135b1v1+2500b2v1−4480b2v2−1295b3v1
+ 800b3v2 + 945a1 + 3500a2 − 625a3 + 540b1 + 19600b2 − 3500b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(56a2 − 64a3 + 184b2 − 56b3) v21 + (−256a2 − 16a3 − 224b2 + 256b3) v1v2
+ (2240a2 − 400a3 + 135b1 + 2500b2 − 1295b3) v1
+ (−16a2 − 136a3 + 256b2 + 16b3) v22
+ (−135a1 − 260a2 + 895a3 − 4480b2 + 800b3) v2
+ 945a1 + 3500a2 − 625a3 + 540b1 + 19600b2 − 3500b3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−256a2 − 16a3 − 224b2 + 256b3 = 0
−16a2 − 136a3 + 256b2 + 16b3 = 0

56a2 − 64a3 + 184b2 − 56b3 = 0
−135a1 − 260a2 + 895a3 − 4480b2 + 800b3 = 0
2240a2 − 400a3 + 135b1 + 2500b2 − 1295b3 = 0

945a1 + 3500a2 − 625a3 + 540b1 + 19600b2 − 3500b3 = 0

Solving the above equations for the unknowns gives

a1 = −18b2 + 4b3
a2 = −b2 + b3

a3 = 2b2
b1 = 4b2 − 7b3
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 4
η = −7 + y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −7 + y −
(

25 + 8x+ y

−140− 7x+ 16y

)
(x+ 4)

= 8x2 + 8xy − 16y2 + 8x+ 256y − 880
140 + 7x− 16y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

8x2+8xy−16y2+8x+256y−880
140+7x−16y

dy

Which results in

S = 5 ln (x+ 2y − 10)
8 + 3 ln (−x+ y − 11)

8
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 25 + 8x+ y

−140− 7x+ 16y
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 25 + 8x+ y

8 (x+ 2y − 10) (x− y + 11)

Sy =
5

4x+ 8y − 40 − 3
8x− 8y + 88

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

5 ln (x+ 2y − 10)
8 + 3 ln (−x+ y − 11)

8 = c1

Which simplifies to

5 ln (x+ 2y − 10)
8 + 3 ln (−x+ y − 11)

8 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 25+8x+y
−140−7x+16y

dS
dR

= 0

R = x

S = 5 ln (x+ 2y − 10)
8 + 3 ln (−x+ y − 11)

8

Summary
The solution(s) found are the following

(1)5 ln (x+ 2y − 10)
8 + 3 ln (−x+ y − 11)

8 = c1
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Figure 786: Slope field plot

Verification of solutions

5 ln (x+ 2y − 10)
8 + 3 ln (−x+ y − 11)

8 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.812 (sec). Leaf size: 1151� �
dsolve((140+7*x-16*y(x))*diff(y(x),x)+25+8*x+y(x) = 0,y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 60.061 (sec). Leaf size: 1673� �
DSolve[(140+7 x-16 y[x])y'[x]+25+8 x+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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18.22 problem 498
18.22.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 4947
18.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4951

Internal problem ID [3752]
Internal file name [OUTPUT/3245_Sunday_June_05_2022_09_03_01_AM_24497102/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 498.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(3 + 9x+ 21y) y′ + 5y = 45 + 7x

18.22.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 5Y (X) + 5y0 − 7X − 7x0 − 45

3 (1 + 3X + 3x0 + 7Y (X) + 7y0)

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −5
y0 = 2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 5Y (X)− 7X

3 (3X + 7Y (X))
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In canonical form, the ODE is

Y ′ = F (X,Y )

= − 5Y − 7X
3 (3X + 7Y ) (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −5Y + 7X and N = 9X + 21Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −5u+ 7

21u+ 9
du
dX =

−5u(X)+7
21u(X)+9 − u(X)

X

Or
d

dX
u(X)−

−5u(X)+7
21u(X)+9 − u(X)

X
= 0

Or
21
(

d

dX
u(X)

)
Xu(X) + 9

(
d

dX
u(X)

)
X + 21u(X)2 + 14u(X)− 7 = 0

Or
−7 + 3X(7u(X) + 3)

(
d

dX
u(X)

)
+ 21u(X)2 + 14u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −7(3u2 + 2u− 1)
3X (7u+ 3)
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Where f(X) = − 7
3X and g(u) = 3u2+2u−1

7u+3 . Integrating both sides gives

1
3u2+2u−1

7u+3
du = − 7

3X dX

∫ 1
3u2+2u−1

7u+3
du =

∫
− 7
3X dX

4 ln (3u− 1)
3 + ln (u+ 1) = −7 ln (X)

3 + c2

Raising both side to exponential gives

e
4 ln(3u−1)

3 +ln(u+1) = e−
7 ln(X)

3 +c2

Which simplifies to

(3u− 1)
4
3 (u+ 1) = c3

X
7
3

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X

RootOf
(
_Z7X

7
3 + 4_Z4X

7
3 − 3c3

)3
3 + 1

3


Using the solution for Y (X)

Y (X) = X

RootOf
(
_Z7X

7
3 + 4_Z4X

7
3 − 3c3

)3
3 + 1

3


And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 2
X = x− 5

Then the solution in y becomes

y − 2 = (x+ 5)

RootOf
(
_Z7(x+ 5)

7
3 + 4_Z4(x+ 5)

7
3 − 3c3

)3
3 + 1

3
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Summary
The solution(s) found are the following

(1)y − 2 = (x+ 5)

RootOf
(
_Z7(x+ 5)

7
3 + 4_Z4(x+ 5)

7
3 − 3c3

)3
3 + 1

3



Figure 787: Slope field plot

Verification of solutions

y − 2 = (x+ 5)

RootOf
(
_Z7(x+ 5)

7
3 + 4_Z4(x+ 5)

7
3 − 3c3

)3
3 + 1

3


Verified OK.
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18.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−45− 7x+ 5y
3 (1 + 3x+ 7y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−45− 7x+ 5y) (b3 − a2)

3 (1 + 3x+ 7y) − (−45− 7x+ 5y)2 a3
9 (1 + 3x+ 7y)2

−
(

7
3 (1 + 3x+ 7y) +

−45− 7x+ 5y
(1 + 3x+ 7y)2

)
(xa2 + ya3 + a1)

−

(
− 5
3 (1 + 3x+ 7y) +

−105− 49x
3 + 35y

3

(1 + 3x+ 7y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−63x2a2 + 49x2a3 − 273x2b2 − 63x2b3 + 294xya2 − 70xya3 − 378xyb2 − 294xyb3 − 105y2a2 + 217y2a3 − 441y2b2 + 105y2b3 + 42xa2 + 630xa3 − 192xb1 − 1014xb2 − 426xb3 + 192ya1 + 930ya2 − 834ya3 − 126yb2 − 1890yb3 − 384a1 + 135a2 + 2025a3 − 960b1 − 9b2 − 135b3
9 (1 + 3x+ 7y)2

= 0

Setting the numerator to zero gives

(6E)
−63x2a2 − 49x2a3 + 273x2b2 + 63x2b3 − 294xya2 + 70xya3 + 378xyb2
+ 294xyb3 + 105y2a2 − 217y2a3 + 441y2b2 − 105y2b3 − 42xa2 − 630xa3
+ 192xb1 + 1014xb2 + 426xb3 − 192ya1 − 930ya2 + 834ya3 + 126yb2
+ 1890yb3 + 384a1 − 135a2 − 2025a3 + 960b1 + 9b2 + 135b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−63a2v21 − 294a2v1v2 + 105a2v22 − 49a3v21 + 70a3v1v2 − 217a3v22 + 273b2v21
+ 378b2v1v2 + 441b2v22 + 63b3v21 + 294b3v1v2 − 105b3v22 − 192a1v2
− 42a2v1 − 930a2v2 − 630a3v1 + 834a3v2 + 192b1v1 + 1014b2v1 + 126b2v2
+ 426b3v1 + 1890b3v2 + 384a1 − 135a2 − 2025a3 + 960b1 + 9b2 + 135b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−63a2 − 49a3 + 273b2 + 63b3) v21 + (−294a2 + 70a3 + 378b2 + 294b3) v1v2
+ (−42a2 − 630a3 + 192b1 + 1014b2 + 426b3) v1
+ (105a2 − 217a3 + 441b2 − 105b3) v22
+ (−192a1 − 930a2 + 834a3 + 126b2 + 1890b3) v2
+ 384a1 − 135a2 − 2025a3 + 960b1 + 9b2 + 135b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−294a2 + 70a3 + 378b2 + 294b3 = 0
−63a2 − 49a3 + 273b2 + 63b3 = 0

105a2 − 217a3 + 441b2 − 105b3 = 0
−192a1 − 930a2 + 834a3 + 126b2 + 1890b3 = 0
−42a2 − 630a3 + 192b1 + 1014b2 + 426b3 = 0

384a1 − 135a2 − 2025a3 + 960b1 + 9b2 + 135b3 = 0
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Solving the above equations for the unknowns gives

a1 = 4b2 + 5b3
a2 = 2b2 + b3

a3 = 3b2
b1 = 5b2 − 2b3
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ 5
η = y − 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 2−
(
−−45− 7x+ 5y
3 (1 + 3x+ 7y)

)
(x+ 5)

= −7x2 + 14xy + 21y2 − 98x− 14y − 231
3 + 9x+ 21y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−7x2+14xy+21y2−98x−14y−231
3+9x+21y

dy

4953



Which results in

S = 3 ln (x+ y + 3)
7 + 4 ln (3y − x− 11)

7
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−45− 7x+ 5y
3 (1 + 3x+ 7y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 45 + 7x− 5y
7 (x+ y + 3) (x− 3y + 11)

Sy =
−9x

7 − 3y − 3
7

(x+ y + 3) (x− 3y + 11)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y + 3 + x)
7 + 4 ln (3y − x− 11)

7 = c1
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Which simplifies to

3 ln (y + 3 + x)
7 + 4 ln (3y − x− 11)

7 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−45−7x+5y
3(1+3x+7y)

dS
dR

= 0

R = x

S = 3 ln (x+ y + 3)
7 + 4 ln (3y − x− 11)

7

Summary
The solution(s) found are the following

(1)3 ln (y + 3 + x)
7 + 4 ln (3y − x− 11)

7 = c1
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Figure 788: Slope field plot

Verification of solutions

3 ln (y + 3 + x)
7 + 4 ln (3y − x− 11)

7 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.687 (sec). Leaf size: 212� �
dsolve((3+9*x+21*y(x))*diff(y(x),x) = 45+7*x-5*y(x),y(x), singsol=all)� �
y(x)

=
(−x− 5)RootOf

(
−27 + (c1x7 + 35c1x6 + 525c1x5 + 4375c1x4 + 21875c1x3 + 65625c1x2 + 109375c1x+ 78125c1)_Z49 + (−12c1x7 − 420c1x6 − 6300c1x5 − 52500c1x4 − 262500c1x3 − 787500c1x2 − 1312500c1x− 937500c1)_Z42 + (48c1x7 + 1680c1x6 + 25200c1x5 + 210000c1x4 + 1050000c1x3 + 3150000c1x2 + 5250000c1x+ 3750000c1)_Z35 + (−64c1x7 − 2240c1x6 − 33600c1x5 − 280000c1x4 − 1400000c1x3 − 4200000c1x2 − 7000000c1x− 5000000c1)_Z28)7

3
+ 11

3 + x

3

3 Solution by Mathematica
Time used: 60.806 (sec). Leaf size: 7785� �
DSolve[(3+9 x+21 y[x])y'[x]==45 +7 x-5 y[x],y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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18.23 problem 499
18.23.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4958
18.23.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4959

Internal problem ID [3753]
Internal file name [OUTPUT/3246_Sunday_June_05_2022_09_03_06_AM_39754901/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 499.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class C`], _dAlembert]

(ax+ yb) y′ = −x

18.23.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(ax+ u(x)xb) (u′(x)x+ u(x)) = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2b+ ua+ 1
x (bu+ a)

Where f(x) = − 1
x
and g(u) = u2b+ua+1

bu+a
. Integrating both sides gives

1
u2b+ua+1

bu+a

du = −1
x
dx
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∫ 1
u2b+ua+1

bu+a

du =
∫

−1
x
dx

ln (u2b+ ua+ 1)
2 −

a arctanh
(

2bu+a√
a2−4b

)
√
a2 − 4b

= − ln (x) + c2

The solution is

ln
(
u(x)2 b+ u(x) a+ 1

)
2 −

a arctanh
(

2bu(x)+a√
a2−4b

)
√
a2 − 4b

+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2b
x2 + ya

x
+ 1
)

2 −
a arctanh

( 2by
x

+a√
a2−4b

)
√
a2 − 4b

+ ln (x)− c2 = 0

ln
(

y2b
x2 + ya

x
+ 1
)

2 −
a arctanh

(
2yb+ax

x
√
a2−4b

)
√
a2 − 4b

+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2b
x2 + ya

x
+ 1
)

2 −
a arctanh

(
2yb+ax

x
√
a2−4b

)
√
a2 − 4b

+ ln (x)− c2 = 0

Verification of solutions

ln
(

y2b
x2 + ya

x
+ 1
)

2 −
a arctanh

(
2yb+ax

x
√
a2−4b

)
√
a2 − 4b

+ ln (x)− c2 = 0

Verified OK.

18.23.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x

ax+ by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
x(b3 − a2)
ax+ by

− x2a3

(ax+ by)2

−
(
− 1
ax+ by

+ xa

(ax+ by)2
)
(xa2 + ya3 + a1)−

xb(xb2 + yb3 + b1)
(ax+ by)2

= 0

Putting the above in normal form gives

a2x2b2 + 2abxyb2 + b2y2b2 + a x2a2 − a x2b3 − b x2b2 + 2bxya2 − 2bxyb3 + b y2a3 − bxb1 + bya1 − x2a3

(ax+ by)2
= 0

Setting the numerator to zero gives

(6E)a2x2b2 + 2abxyb2 + b2y2b2 + a x2a2 − a x2b3 − b x2b2
+ 2bxya2 − 2bxyb3 + b y2a3 − bxb1 + bya1 − x2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)a2b2v
2
1 + 2abb2v1v2 + b2b2v

2
2 + aa2v

2
1 − ab3v

2
1 + 2ba2v1v2

+ ba3v
2
2 − bb2v

2
1 − 2bb3v1v2 + ba1v2 − bb1v1 − a3v

2
1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(
a2b2 + aa2 − ab3 − bb2 − a3

)
v21 + (2abb2 + 2ba2 − 2bb3) v1v2

− bb1v1 +
(
b2b2 + ba3

)
v22 + ba1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

ba1 = 0
−bb1 = 0

b2b2 + ba3 = 0
2abb2 + 2ba2 − 2bb3 = 0

a2b2 + aa2 − ab3 − bb2 − a3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −ab2 + b3

a3 = −bb2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

4961



Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x

ax+ by

)
(x)

= axy + b y2 + x2

ax+ by

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

axy+b y2+x2

ax+by

dy

Which results in

S = ln (axy + b y2 + x2)
2 −

ax arctanh
(

ax+2by√
a2x2−4b x2

)
√
a2x2 − 4b x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x

ax+ by
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

axy + b y2 + x2

Sy =
ax+ by

axy + b y2 + x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2a arctanh
(

2yb+ax

x
√
a2−4b

)
+ ln (by2 + axy + x2)

√
a2 − 4b

2
√
a2 − 4b

= c1

Which simplifies to

−2a arctanh
(

2yb+ax

x
√
a2−4b

)
+ ln (by2 + axy + x2)

√
a2 − 4b

2
√
a2 − 4b

= c1

Summary
The solution(s) found are the following

(1)
−2a arctanh

(
2yb+ax

x
√
a2−4b

)
+ ln (by2 + axy + x2)

√
a2 − 4b

2
√
a2 − 4b

= c1
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Verification of solutions

−2a arctanh
(

2yb+ax

x
√
a2−4b

)
+ ln (by2 + axy + x2)

√
a2 − 4b

2
√
a2 − 4b

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 63� �
dsolve((a*x+b*y(x))*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) = RootOf

_Z2b− e
RootOf

4 e_Zbcosh
(√

a2−4b
(
2c1+_Z+2 ln(x)

)
2a

)2

+a2−4b

x2


+ 1

+ a_Z

x
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3 Solution by Mathematica
Time used: 0.117 (sec). Leaf size: 75� �
DSolve[(a x+b y[x])y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

a arctan
(

a+ 2by(x)
x√

4b−a2

)
√
4b− a2

+ 1
2 log

(
ay(x)
x

+ by(x)2
x2 + 1

)
= − log(x) + c1, y(x)
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18.24 problem 500
18.24.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4966
18.24.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4968
18.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4972

Internal problem ID [3754]
Internal file name [OUTPUT/3247_Sunday_June_05_2022_09_03_10_AM_65918872/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 500.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(ax+ yb) y′ + y = 0

18.24.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(ax+ u(x)xb) (u′(x)x+ u(x)) + u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(bu+ a+ 1)
x (bu+ a)
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Where f(x) = − 1
x
and g(u) = u(bu+a+1)

bu+a
. Integrating both sides gives

1
u(bu+a+1)

bu+a

du = −1
x
dx

∫ 1
u(bu+a+1)

bu+a

du =
∫

−1
x
dx

ln (bu+ a+ 1)
1 + a

+ a ln (u)
1 + a

= − ln (x) + c2

The above can be written as
ln (bu+ a+ 1) + a ln (u)

1 + a
= − ln (x) + c2

ln (bu+ a+ 1) + a ln (u) = (1 + a) (− ln (x) + c2)
= (1 + a) (− ln (x) + c2)

Raising both side to exponential gives

eln(bu+a+1)+a ln(u) = e(1+a)(− ln(x)+c2)

Which simplifies to

(bu+ a+ 1)ua = c2(1 + a) e−(1+a) ln(x)

= c3e−(1+a) ln(x)

Which simplifies to

u(x) = RootOf
(
−_Zx_Zab− _Zaax+ c3ec2x−aeac2 − _Zax

)
Therefore the solution y is

y = xu

= xRootOf (−_Zx_Zab xa − _Zaax xa − _Zaxxa + c3ec2eac2)

Summary
The solution(s) found are the following

(1)y = xRootOf (−_Zx_Zab xa − _Zaax xa − _Zaxxa + c3ec2eac2)
Verification of solutions

y = xRootOf (−_Zx_Zab xa − _Zaax xa − _Zaxxa + c3ec2eac2)

Verified OK.
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18.24.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

ax+ by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
ax+ by

− y2a3

(ax+ by)2
− ya(xa2 + ya3 + a1)

(ax+ by)2

−
(
− 1
ax+ by

+ yb

(ax+ by)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

a2x2b2 + 2abxyb2 + b2y2b2 + a x2b2 − a y2a3 + b y2a2 − b y2b3 + axb1 − aya1 − y2a3

(ax+ by)2
= 0

Setting the numerator to zero gives

(6E)a2x2b2+2abxyb2+b2y2b2+a x2b2−a y2a3+b y2a2−b y2b3+axb1−aya1−y2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

a2b2v
2
1 + 2abb2v1v2 + b2b2v

2
2 − aa3v

2
2 + ab2v

2
1 + ba2v

2
2 − bb3v

2
2 − aa1v2 + ab1v1 − a3v

2
2 = 0
(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(
a2b2 + ab2

)
v21 + 2abb2v1v2 + ab1v1 +

(
b2b2 − aa3 + ba2 − bb3 − a3

)
v22 − aa1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

ab1 = 0
−aa1 = 0
2abb2 = 0

a2b2 + ab2 = 0
b2b2 − aa3 + ba2 − bb3 − a3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
aa3 + bb3 + a3

b
a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

ax+ by

)
(x)

= axy + b y2 + xy

ax+ by

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

axy+b y2+xy
ax+by

dy

Which results in

S = ln (ax+ by + x)
1 + a

+ a ln (y)
1 + a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

ax+ by
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
ax+ by + x

Sy =
ax+ by

y (ax+ by + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

a ln (y) + ln (ax+ yb+ x)
1 + a

= c1

Which simplifies to

a ln (y) + ln (ax+ yb+ x)
1 + a

= c1

Summary
The solution(s) found are the following

(1)a ln (y) + ln (ax+ yb+ x)
1 + a

= c1

Verification of solutions

a ln (y) + ln (ax+ yb+ x)
1 + a

= c1

Verified OK.
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18.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(ax+ by) dy = (−y) dx
(y) dx+(ax+ by) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = ax+ by
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(y)

= 1

And

∂N

∂x
= ∂

∂x
(ax+ by)

= a

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

ax+ by
((1)− (a))

= −a+ 1
ax+ by

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y
((a)− (1))

= a− 1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫

a−1
y

dy

4973



The result of integrating gives

µ = e(a−1) ln(y)

= ya−1

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= ya−1(y)
= ya

And

N = µN

= ya−1(ax+ by)
= (ax+ by) ya−1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(ya) +
(
(ax+ by) ya−1) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ya dx

(3)φ = yax+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= yaax

y
+ f ′(y)

= ax ya−1 + f ′(y)

But equation (2) says that ∂φ
∂y

= (ax+ by) ya−1. Therefore equation (4) becomes

(5)(ax+ by) ya−1 = ax ya−1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = ya−1by

= b ya

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(b ya) dy

f(y) = b y1+a

1 + a
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = yax+ b y1+a

1 + a
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = yax+ b y1+a

1 + a

Summary
The solution(s) found are the following

(1)yax+ by1+a

1 + a
= c1
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Verification of solutions

yax+ by1+a

1 + a
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 23� �
dsolve((a*x+b*y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

x+ y(x) b
a+ 1 − y(x)−a c1 = 0

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 38� �
DSolve[(a x+b y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

 log
(
a+ by(x)

x
+ 1
)
+ a log

(
y(x)
x

)
a+ 1 = − log(x) + c1, y(x)
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18.25 problem 501
18.25.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4977
18.25.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4979
18.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4983
18.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4986

Internal problem ID [3755]
Internal file name [OUTPUT/3248_Sunday_June_05_2022_09_03_14_AM_8227359/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 501.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(ax+ yb) y′ + ya = −bx

18.25.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(ax+ u(x)xb) (u′(x)x+ u(x)) + u(x)xa = −bx

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2b+ 2ua+ b

x (bu+ a)
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Where f(x) = − 1
x
and g(u) = u2b+2ua+b

bu+a
. Integrating both sides gives

1
u2b+2ua+b

bu+a

du = −1
x
dx

∫ 1
u2b+2ua+b

bu+a

du =
∫

−1
x
dx

ln (u2b+ 2ua+ b)
2 = − ln (x) + c2

Raising both side to exponential gives
√
u2b+ 2ua+ b = e− ln(x)+c2

Which simplifies to
√
u2b+ 2ua+ b = c3

x

Which simplifies to √
u (x)2 b+ 2u (x) a+ b = c3ec2

x

The solution is √
u (x)2 b+ 2u (x) a+ b = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2b

x2 + 2ya
x

+ b = c3ec2
x√

by2 + 2axy + b x2

x2 = c3ec2
x

Summary
The solution(s) found are the following

(1)
√

by2 + 2axy + b x2

x2 = c3ec2
x

Verification of solutions √
by2 + 2axy + b x2

x2 = c3ec2
x

Verified OK.
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18.25.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −ya+ bx

ax+ by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(ya+ bx) (b3 − a2)

ax+ by
− (ya+ bx)2 a3

(ax+ by)2

−
(
− b

ax+ by
+ (ya+ bx) a

(ax+ by)2
)
(xa2 + ya3 + a1)

−
(
− a

ax+ by
+ (ya+ bx) b

(ax+ by)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2a2x2b2 − 2a2y2a3 + ab x2a2 − ab x2b3 − 2abxya3 + 2abxyb2 + ab y2a2 − ab y2b3 − b2x2a3 − b2x2b2 + 2b2xya2 − 2b2xyb3 + b2y2a3 + b2y2b2 + a2xb1 − a2ya1 − b2xb1 + b2ya1

(ax+ by)2
= 0

Setting the numerator to zero gives

(6E)2a2x2b2 − 2a2y2a3 + ab x2a2 − ab x2b3 − 2abxya3 + 2abxyb2
+ ab y2a2 − ab y2b3 − b2x2a3 − b2x2b2 + 2b2xya2 − 2b2xyb3
+ b2y2a3 + b2y2b2 + a2xb1 − a2ya1 − b2xb1 + b2ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2a3v22 + 2a2b2v21 + aba2v
2
1 + aba2v

2
2 − 2aba3v1v2 + 2abb2v1v2

− abb3v
2
1 − abb3v

2
2 + 2b2a2v1v2 − b2a3v

2
1 + b2a3v

2
2 − b2b2v

2
1

+ b2b2v
2
2 − 2b2b3v1v2 − a2a1v2 + a2b1v1 + b2a1v2 − b2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(
2a2b2 + aba2 − abb3 − b2a3 − b2b2

)
v21

+
(
−2aba3 + 2abb2 + 2b2a2 − 2b2b3

)
v1v2 +

(
a2b1 − b2b1

)
v1

+
(
−2a2a3 + aba2 − abb3 + b2a3 + b2b2

)
v22 +

(
−a2a1 + b2a1

)
v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a2a1 + b2a1 = 0
a2b1 − b2b1 = 0

−2aba3 + 2abb2 + 2b2a2 − 2b2b3 = 0
2a2b2 + aba2 − abb3 − b2a3 − b2b2 = 0

−2a2a3 + aba2 − abb3 + b2a3 + b2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 = −2ab2 − bb3
b

a3 = −b2

b1 = 0
b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−ya+ bx

ax+ by

)
(x)

= 2axy + b x2 + b y2

ax+ by

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2axy+b x2+b y2

ax+by

dy

Which results in

S = ln (2axy + b x2 + b y2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −ya+ bx

ax+ by

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ya+ bx

(x2 + y2) b+ 2axy

Sy =
ax+ by

(x2 + y2) b+ 2axy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (2axy + (y2 + x2) b)
2 = c1

Which simplifies to

ln (2axy + (y2 + x2) b)
2 = c1

Summary
The solution(s) found are the following

(1)ln (2axy + (y2 + x2) b)
2 = c1
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Verification of solutions

ln (2axy + (y2 + x2) b)
2 = c1

Verified OK.

18.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(ax+ by) dy = (−ya− bx) dx
(ya+ bx) dx+(ax+ by) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = ya+ bx

N(x, y) = ax+ by

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(ya+ bx)

= a

And
∂N

∂x
= ∂

∂x
(ax+ by)

= a

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ya+ bx dx

(3)φ = axy + 1
2b x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ax+ f ′(y)
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But equation (2) says that ∂φ
∂y

= ax+ by. Therefore equation (4) becomes

(5)ax+ by = ax+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = by

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(by) dy

f(y) = b y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = axy + 1
2b x

2 + 1
2b y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = axy + 1
2b x

2 + 1
2b y

2

Summary
The solution(s) found are the following

(1)axy + b x2

2 + by2

2 = c1

Verification of solutions

axy + b x2

2 + by2

2 = c1

Verified OK.
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18.25.4 Maple step by step solution

Let’s solve
(ax+ yb) y′ + ya = −bx

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
a = a

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(ya+ bx) dx+ f1(y)

• Evaluate integral
F (x, y) = axy + b x2

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
ax+ by = ax+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = by

• Solve for f1(y)

f1(y) = b y2

2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = axy + 1
2b x

2 + 1
2b y

2

• Substitute F (x, y) into the solution of the ODE
axy + 1

2b x
2 + 1

2b y
2 = c1

• Solve for y{
y = −ax+

√
a2x2−b2x2+2c1b

b
, y = −ax+

√
a2x2−b2x2+2c1b

b

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 75� �
dsolve((a*x+b*y(x))*diff(y(x),x)+b*x+a*y(x) = 0,y(x), singsol=all)� �

y(x) = −c1ax+
√
x2 (a2 − b2) c21 + b

bc1

y(x) = −c1ax−
√
x2 (a2 − b2) c21 + b

c1b
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3 Solution by Mathematica
Time used: 15.858 (sec). Leaf size: 143� �
DSolve[(a x+b y[x])y'[x]+b x+a y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ax+
√
a2x2 − b2x2 + be2c1

b

y(x) → −ax+
√
a2x2 − b2x2 + be2c1

b

y(x) → −
√

x2 (a2 − b2) + ax

b

y(x) →
√

x2 (a2 − b2)− ax

b
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18.26 problem 502
18.26.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 4989
18.26.2 Solving as first order ode lie symmetry calculated ode . . . . . . 4991
18.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 4995

Internal problem ID [3756]
Internal file name [OUTPUT/3249_Sunday_June_05_2022_09_03_17_AM_89762448/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 502.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(ax+ yb) y′ − ya = bx

18.26.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(ax+ u(x)xb) (u′(x)x+ u(x))− u(x)xa = bx

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − b(u2 − 1)
x (bu+ a)
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Where f(x) = − b
x
and g(u) = u2−1

bu+a
. Integrating both sides gives

1
u2−1
bu+a

du = − b

x
dx

∫ 1
u2−1
bu+a

du =
∫

− b

x
dx

(a+ b) ln (u− 1)
2 − (−b+ a) ln (u+ 1)

2 = − ln (x) b+ c2

The above can be written as
(a+ b) ln (u− 1)− (−b+ a) ln (u+ 1)

2 = − ln (x) b+ c2

(a+ b) ln (u− 1)− (−b+ a) ln (u+ 1) = (2) (− ln (x) b+ c2)
= −2 ln (x) b+ 2c2

Raising both side to exponential gives

e(a+b) ln(u−1)−(−b+a) ln(u+1) = e−2 ln(x)b+2c2

Which simplifies to

(u− 1)a+b (u+ 1)b−a = 2c2e−2 ln(x)b

= c3e−2 ln(x)b

Which simplifies to

u(x) = RootOf
(
−(_Z− 1)a+b (_Z+ 1)b−a + c3x

−2be2c2
)

Therefore the solution y is

y = xu

= xRootOf
(
−(_Z− 1)a+b (_Z+ 1)b−a x2b + c3e2c2

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
−(_Z− 1)a+b (_Z+ 1)b−a x2b + c3e2c2

)
Verification of solutions

y = xRootOf
(
−(_Z− 1)a+b (_Z+ 1)b−a x2b + c3e2c2

)
Verified OK.
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18.26.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = ya+ bx

ax+ by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(ya+ bx) (b3 − a2)

ax+ by
− (ya+ bx)2 a3

(ax+ by)2

−
(

b

ax+ by
− (ya+ bx) a

(ax+ by)2
)
(xa2 + ya3 + a1)

−
(

a

ax+ by
− (ya+ bx) b

(ax+ by)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−ab x2a2 − ab x2b3 + 2abxya3 − 2abxyb2 + ab y2a2 − ab y2b3 + b2x2a3 − b2x2b2 + 2b2xya2 − 2b2xyb3 + b2y2a3 − b2y2b2 + a2xb1 − a2ya1 − b2xb1 + b2ya1

(ax+ by)2
= 0

Setting the numerator to zero gives

(6E)−ab x2a2 + ab x2b3 − 2abxya3 +2abxyb2 − ab y2a2 + ab y2b3 − b2x2a3 + b2x2b2
− 2b2xya2 + 2b2xyb3 − b2y2a3 + b2y2b2 − a2xb1 + a2ya1 + b2xb1 − b2ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−aba2v
2
1 − aba2v

2
2 − 2aba3v1v2 + 2abb2v1v2 + abb3v

2
1 + abb3v

2
2 − 2b2a2v1v2

− b2a3v
2
1 − b2a3v

2
2 + b2b2v

2
1 + b2b2v

2
2 + 2b2b3v1v2 + a2a1v2 − a2b1v1 − b2a1v2

+ b2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(
−aba2 + abb3 − b2a3 + b2b2

)
v21 +

(
−2aba3 + 2abb2 − 2b2a2 + 2b2b3

)
v1v2

+
(
−a2b1 + b2b1

)
v1 +

(
−aba2 + abb3 − b2a3 + b2b2

)
v22 +

(
a2a1 − b2a1

)
v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a2a1 − b2a1 = 0
−a2b1 + b2b1 = 0

−2aba3 + 2abb2 − 2b2a2 + 2b2b3 = 0
−aba2 + abb3 − b2a3 + b2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = a3

b1 = 0
b2 = a3

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
ya+ bx

ax+ by

)
(x)

= −b x2 + b y2

ax+ by

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−b x2+b y2

ax+by

dy

Which results in

S =
(
b
2 −

a
2

)
ln (y + x) +

(
a
2 +

b
2

)
ln (y − x)

b

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ya+ bx

ax+ by

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ya+ bx

b x2 − b y2

Sy =
−ax− by

b x2 − b y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(a+ b) ln (y − x)− ln (y + x) (−b+ a)
2b = c1

Which simplifies to

(a+ b) ln (y − x)− ln (y + x) (−b+ a)
2b = c1

Summary
The solution(s) found are the following

(1)(a+ b) ln (y − x)− ln (y + x) (−b+ a)
2b = c1
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Verification of solutions

(a+ b) ln (y − x)− ln (y + x) (−b+ a)
2b = c1

Verified OK.

18.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(ax+ by) dy = (ya+ bx) dx
(−ya− bx) dx+(ax+ by) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −ya− bx

N(x, y) = ax+ by

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−ya− bx)

= −a

And
∂N

∂x
= ∂

∂x
(ax+ by)

= a

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2−y2

is an integrating factor.
Therefore by multiplying M = −bx − ya and N = ax + yb by this integrating factor
the ode becomes exact. The new M,N are

M = −bx− ya

x2 − y2

N = ax+ yb

x2 − y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
ax+ by

x2 − y2

)
dy =

(
−−ya− bx

x2 − y2

)
dx(

−ya− bx

x2 − y2

)
dx+

(
ax+ by

x2 − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ya− bx

x2 − y2

N(x, y) = ax+ by

x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−ya− bx

x2 − y2

)
= −x2a− a y2 − 2bxy

(x2 − y2)2
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And

∂N

∂x
= ∂

∂x

(
ax+ by

x2 − y2

)
= −x2a− a y2 − 2bxy

(x2 − y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ya− bx

x2 − y2
dx

(3)φ = (−a− b) ln (−y + x)
2 + ln (y + x) (−b+ a)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − −a− b

2 (−y + x) +
−b+ a

2x+ 2y + f ′(y)

= ax+ by

x2 − y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= ax+by
x2−y2

. Therefore equation (4) becomes

(5)ax+ by

x2 − y2
= ax+ by

x2 − y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (−a− b) ln (−y + x)
2 + ln (y + x) (−b+ a)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(−a− b) ln (−y + x)

2 + ln (y + x) (−b+ a)
2

Summary
The solution(s) found are the following

(1)(−a− b) ln (−y + x)
2 + ln (y + x) (−b+ a)

2 = c1

Verification of solutions

(−a− b) ln (−y + x)
2 + ln (y + x) (−b+ a)

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 48� �
dsolve((a*x+b*y(x))*diff(y(x),x) = b*x+a*y(x),y(x), singsol=all)� �

y(x) = x

1 + e
RootOf

(
e_Z−x

2b
a−b e

a_Z+_Zb+2bc1
a−b +2

)
3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 48� �
DSolve[(a x+b y[x])y'[x]==b x+a y[x],y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
1
2(a+ b) log

(
1− y(x)

x

)
+ 1

2(b− a) log
(
y(x)
x

+ 1
)

= −b log(x) + c1, y(x)
]
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18.27 problem 505
18.27.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5001
18.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5003
18.27.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5007
18.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5010
18.27.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5014

Internal problem ID [3757]
Internal file name [OUTPUT/3250_Sunday_June_05_2022_09_03_22_AM_87463836/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 505.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xyy′ + y2 = −1

18.27.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y2 + 1
xy

Where f(x) = − 1
x
and g(y) = y2+1

y
. Integrating both sides gives

1
y2+1
y

dy = −1
x
dx

∫ 1
y2+1
y

dy =
∫

−1
x
dx
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ln (y2 + 1)
2 = − ln (x) + c1

Raising both side to exponential gives√
y2 + 1 = e− ln(x)+c1

Which simplifies to √
y2 + 1 = c2

x

Which simplifies to √
y2 + 1 = c2ec1

x

The solution is √
y2 + 1 = c2ec1

x

Summary
The solution(s) found are the following

(1)
√

y2 + 1 = c2ec1
x

Figure 789: Slope field plot

5002



Verification of solutions √
y2 + 1 = c2ec1

x

Verified OK.

18.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2 + 1
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 798: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x
dx

Which results in

S = − ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2 + 1
xy

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) = ln (y2 + 1)
2 + c1

Which simplifies to

− ln (x) = ln (y2 + 1)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2+1
xy

dS
dR

= R
R2+1

R = y

S = − ln (x)

Summary
The solution(s) found are the following

(1)− ln (x) = ln (y2 + 1)
2 + c1
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Figure 790: Slope field plot

Verification of solutions

− ln (x) = ln (y2 + 1)
2 + c1

Verified OK.

18.27.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y2 + 1
xy

This is a Bernoulli ODE.
y′ = −1

x
y − 1

x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = −1
x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

x
− 1

x
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

x
− 1

x

w′ = −2w
x

− 2
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = −2
x
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Hence the ode is

w′(x) + 2w(x)
x

= −2
x

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ)

(
−2
x

)
d
dx
(
x2w

)
=
(
x2)(−2

x

)
d
(
x2w

)
= (−2x) dx

Integrating gives

x2w =
∫

−2x dx

x2w = −x2 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = −1 + c1
x2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −1 + c1
x2

Solving for y gives

y(x) =
√
−x2 + c1

x

y(x) = −
√
−x2 + c1

x

Summary
The solution(s) found are the following

(1)y =
√
−x2 + c1

x

(2)y = −
√
−x2 + c1

x

5009



Figure 791: Slope field plot

Verification of solutions

y =
√
−x2 + c1

x

Verified OK.

y = −
√
−x2 + c1

x

Verified OK.

18.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

− y

y2 + 1

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− y

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − y

y2 + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− y

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − y
y2+1 . Therefore equation (4) becomes

(5)− y

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − y

y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− y

y2 + 1

)
dy

f(y) = − ln (y2 + 1)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y2 + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y2 + 1)
2

Summary
The solution(s) found are the following

(1)− ln (x)− ln (y2 + 1)
2 = c1

Figure 792: Slope field plot

Verification of solutions

− ln (x)− ln (y2 + 1)
2 = c1

Verified OK.
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18.27.5 Maple step by step solution

Let’s solve
xyy′ + y2 = −1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y

−y2−1 = 1
x

• Integrate both sides with respect to x∫
y′y

−y2−1dx =
∫ 1

x
dx+ c1

• Evaluate integral

− ln
(
y2+1

)
2 = ln (x) + c1

• Solve for y{
y =

√
1−x2(ec1 )2

ec1x , y = −
√

1−x2(ec1 )2

ec1x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(x*y(x)*diff(y(x),x)+1+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√
−x2 + c1

x

y(x) = −
√
−x2 + c1

x
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3 Solution by Mathematica
Time used: 0.347 (sec). Leaf size: 96� �
DSolve[x y[x] y'[x]+1+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + e2c1

x

y(x) →
√
−x2 + e2c1

x
y(x) → −i
y(x) → i

y(x) → x√
−x2

y(x) →
√
−x2

x
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18.28 problem 506
18.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5016
18.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5018
18.28.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5022
18.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5025

Internal problem ID [3758]
Internal file name [OUTPUT/3251_Sunday_June_05_2022_09_03_25_AM_62851681/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 506.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

xyy′ − y2 = x

18.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x))− u(x)2 x2 = x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
ux2
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Where f(x) = 1
x2 and g(u) = 1

u
. Integrating both sides gives

1
1
u

du = 1
x2 dx∫ 1

1
u

du =
∫ 1

x2 dx

u2

2 = −1
x
+ c2

The solution is
u(x)2

2 + 1
x
− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

2x2 + 1
x
− c2 = 0

y2

2x2 + 1
x
− c2 = 0

Summary
The solution(s) found are the following

(1)y2

2x2 + 1
x
− c2 = 0
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Figure 793: Slope field plot

Verification of solutions

y2

2x2 + 1
x
− c2 = 0

Verified OK.

18.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + x

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 801: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x2

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2

y

dy

Which results in

S = y2

2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + x

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2

x3

Sy =
y

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x2 = −1
x
+ c1

Which simplifies to

y2

2x2 = −1
x
+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+x
yx

dS
dR

= 1
R2

R = x

S = y2

2x2

Summary
The solution(s) found are the following

(1)y2

2x2 = −1
x
+ c1
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Figure 794: Slope field plot

Verification of solutions

y2

2x2 = −1
x
+ c1

Verified OK.

18.28.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y2 + x

yx

This is a Bernoulli ODE.
y′ = 1

x
y + 1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = 1
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

x
+ 1 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

x
+ 1

w′ = 2w
x

+ 2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = 2
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Hence the ode is

w′(x)− 2w(x)
x

= 2

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes
d
dx(µw) = (µ) (2)

d
dx

( w
x2

)
=
(

1
x2

)
(2)

d
( w
x2

)
=
(

2
x2

)
dx

Integrating gives

w

x2 =
∫ 2

x2 dx

w

x2 = −2
x
+ c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = c1x
2 − 2x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
2 − 2x

Solving for y gives

y(x) =
√
x (c1x− 2)

y(x) = −
√

x (c1x− 2)

Summary
The solution(s) found are the following

(1)y =
√

x (c1x− 2)
(2)y = −

√
x (c1x− 2)
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Figure 795: Slope field plot

Verification of solutions

y =
√

x (c1x− 2)

Verified OK.

y = −
√
x (c1x− 2)

Verified OK.

18.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

5025



Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
y2 + x

)
dx(

−y2 − x
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2 − x

N(x, y) = xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y2 − x

)
= −2y
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And

∂N

∂x
= ∂

∂x
(xy)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy
((−2y)− (y))

= −3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
−y2 − x

)
= −y2 − x

x3

And

N = µN

= 1
x3 (xy)

= y

x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−y2 − x

x3

)
+
( y

x2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y2 − x

x3 dx

(3)φ = y2 + 2x
2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
x2 . Therefore equation (4) becomes

(5)y

x2 = y

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y2 + 2x
2x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y2 + 2x
2x2

Summary
The solution(s) found are the following

(1)y2 + 2x
2x2 = c1

Figure 796: Slope field plot

Verification of solutions

y2 + 2x
2x2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x*y(x)*diff(y(x),x) = x+y(x)^2,y(x), singsol=all)� �

y(x) =
√

x (c1x− 2)
y(x) = −

√
x (c1x− 2)

3 Solution by Mathematica
Time used: 0.31 (sec). Leaf size: 42� �
DSolve[x y[x] y'[x]==x+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
−2 + c1x

y(x) →
√
x
√
−2 + c1x
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18.29 problem 507
18.29.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5031
18.29.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5033
18.29.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5037
18.29.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5040

Internal problem ID [3759]
Internal file name [OUTPUT/3252_Sunday_June_05_2022_09_03_30_AM_68913660/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 507.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

xyy′ + y2 = −x2

18.29.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x)) + u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u2 + 1
ux
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Where f(x) = − 1
x
and g(u) = 2u2+1

u
. Integrating both sides gives

1
2u2+1

u

du = −1
x
dx

∫ 1
2u2+1

u

du =
∫

−1
x
dx

ln (2u2 + 1)
4 = − ln (x) + c2

Raising both side to exponential gives(
2u2 + 1

) 1
4 = e− ln(x)+c2

Which simplifies to (
2u2 + 1

) 1
4 = c3

x

Which simplifies to (
2u(x)2 + 1

) 1
4 = c3ec2

x

The solution is (
2u(x)2 + 1

) 1
4 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

2y2
x2 + 1

) 1
4

= c3ec2
x(

2y2 + x2

x2

) 1
4

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
2y2 + x2

x2

) 1
4

= c3ec2
x
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Figure 797: Slope field plot

Verification of solutions (
2y2 + x2

x2

) 1
4

= c3ec2
x

Verified OK.

18.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 803: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2y

dy

Which results in

S = y2x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = x y2

Sy = x2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R4

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x2

2 = −x4

4 + c1

Which simplifies to

y2x2

2 = −x4

4 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y2

yx
dS
dR

= −R3

R = x

S = y2x2

2

Summary
The solution(s) found are the following

(1)y2x2

2 = −x4

4 + c1
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Figure 798: Slope field plot

Verification of solutions

y2x2

2 = −x4

4 + c1

Verified OK.

18.29.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2

yx

This is a Bernoulli ODE.
y′ = −1

x
y − x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = −x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

x
− x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

x
− x

w′ = −2w
x

− 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = −2x
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Hence the ode is

w′(x) + 2w(x)
x

= −2x

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ) (−2x)
d
dx
(
x2w

)
=
(
x2) (−2x)

d
(
x2w

)
=
(
−2x3) dx

Integrating gives

x2w =
∫

−2x3 dx

x2w = −x4

2 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = −x2

2 + c1
x2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −x2

2 + c1
x2

Solving for y gives

y(x) =
√
−2x4 + 4c1

2x

y(x) = −
√
−2x4 + 4c1

2x

Summary
The solution(s) found are the following

(1)y =
√
−2x4 + 4c1

2x

(2)y = −
√
−2x4 + 4c1

2x
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Figure 799: Slope field plot

Verification of solutions

y =
√
−2x4 + 4c1

2x

Verified OK.

y = −
√
−2x4 + 4c1

2x

Verified OK.

18.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
−x2 − y2

)
dx(

x2 + y2
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2

N(x, y) = xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + y2

)
= 2y
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And
∂N

∂x
= ∂

∂x
(xy)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy
((2y)− (y))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
x2 + y2

)
=
(
x2 + y2

)
x

And

N = µN

= x(xy)
= x2y

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

x2 + y2
)
x
)
+
(
x2y
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
x2 + y2

)
x dx

(3)φ = (x2 + y2)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=
(
x2 + y2

)
y + f ′(y)

But equation (2) says that ∂φ
∂y

= x2y. Therefore equation (4) becomes

(5)x2y =
(
x2 + y2

)
y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y3

)
dy

f(y) = −y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x2 + y2)2

4 − y4

4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2 + y2)2

4 − y4

4

Summary
The solution(s) found are the following

(1)(y2 + x2)2

4 − y4

4 = c1

Figure 800: Slope field plot

Verification of solutions

(y2 + x2)2

4 − y4

4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve(x*y(x)*diff(y(x),x)+x^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −
√
−2x4 + 4c1

2x

y(x) =
√
−2x4 + 4c1

2x

3 Solution by Mathematica
Time used: 0.222 (sec). Leaf size: 46� �
DSolve[x y[x] y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−x4

2 + c1

x

y(x) →

√
−x4

2 + c1

x
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18.30 problem 508
18.30.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5046
18.30.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5048
18.30.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5052
18.30.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5055

Internal problem ID [3760]
Internal file name [OUTPUT/3253_Sunday_June_05_2022_09_03_35_AM_26467814/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 508.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

xyy′ − y2 = −x4

18.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x))− u(x)2 x2 = −x4

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −x

u
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Where f(x) = −x and g(u) = 1
u
. Integrating both sides gives

1
1
u

du = −x dx

∫ 1
1
u

du =
∫

−x dx

u2

2 = −x2

2 + c2

The solution is
u(x)2

2 + x2

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

2x2 + x2

2 − c2 = 0

y2

2x2 + x2

2 − c2 = 0

Summary
The solution(s) found are the following

(1)y2

2x2 + x2

2 − c2 = 0
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Figure 801: Slope field plot

Verification of solutions

y2

2x2 + x2

2 − c2 = 0

Verified OK.

18.30.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x4 + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 805: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x2

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2

y

dy

Which results in

S = y2

2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x4 + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2

x3

Sy =
y

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x2 = −x2

2 + c1

Which simplifies to

y2

2x2 = −x2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x4+y2

yx
dS
dR

= −R

R = x

S = y2

2x2

Summary
The solution(s) found are the following

(1)y2

2x2 = −x2

2 + c1
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Figure 802: Slope field plot

Verification of solutions

y2

2x2 = −x2

2 + c1

Verified OK.

18.30.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x4 + y2

yx

This is a Bernoulli ODE.
y′ = 1

x
y − x3 1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = −x3

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

x
− x3 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

x
− x3

w′ = 2w
x

− 2x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −2x3
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Hence the ode is

w′(x)− 2w(x)
x

= −2x3

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes
d
dx(µw) = (µ)

(
−2x3)

d
dx

( w
x2

)
=
(

1
x2

)(
−2x3)

d
( w
x2

)
= (−2x) dx

Integrating gives

w

x2 =
∫

−2x dx
w

x2 = −x2 + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = −x4 + c1x
2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −x4 + c1x
2

Solving for y gives

y(x) =
√

−x2 + c1 x

y(x) = −
√
−x2 + c1 x

Summary
The solution(s) found are the following

(1)y =
√

−x2 + c1 x

(2)y = −
√
−x2 + c1 x
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Figure 803: Slope field plot

Verification of solutions

y =
√
−x2 + c1 x

Verified OK.

y = −
√
−x2 + c1 x

Verified OK.

18.30.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
−x4 + y2

)
dx(

x4 − y2
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x4 − y2

N(x, y) = xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x4 − y2

)
= −2y
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And

∂N

∂x
= ∂

∂x
(xy)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy
((−2y)− (y))

= −3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
x4 − y2

)
= x4 − y2

x3

And

N = µN

= 1
x3 (xy)

= y

x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x4 − y2

x3

)
+
( y

x2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x4 − y2

x3 dx

(3)φ = x4 + y2

2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
x2 . Therefore equation (4) becomes

(5)y

x2 = y

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x4 + y2

2x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x4 + y2

2x2

Summary
The solution(s) found are the following

(1)x4 + y2

2x2 = c1

Figure 804: Slope field plot

Verification of solutions

x4 + y2

2x2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(x*y(x)*diff(y(x),x)+x^4-y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√

−x2 + c1 x

y(x) = −
√

−x2 + c1 x

3 Solution by Mathematica
Time used: 0.425 (sec). Leaf size: 43� �
DSolve[x y[x] y'[x]+x^4-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x4 + c1x2

y(x) →
√
−x4 + c1x2
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18.31 problem 509
18.31.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5061
18.31.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5062
18.31.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5065
18.31.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5068

Internal problem ID [3761]
Internal file name [OUTPUT/3254_Sunday_June_05_2022_09_03_40_AM_5056059/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 509.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _Bernoulli]

xyy′ − y2 = a x3 cos (x)

18.31.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x))− u(x)2 x2 = a x3 cos (x)

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= cos (x) a
u
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Where f(x) = cos (x) a and g(u) = 1
u
. Integrating both sides gives

1
1
u

du = cos (x) a dx

∫ 1
1
u

du =
∫

cos (x) a dx

u2

2 = sin (x) a+ c2

The solution is
u(x)2

2 − sin (x) a− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

2x2 − sin (x) a− c2 = 0

y2

2x2 − sin (x) a− c2 = 0

Summary
The solution(s) found are the following

(1)y2

2x2 − sin (x) a− c2 = 0

Verification of solutions

y2

2x2 − sin (x) a− c2 = 0

Verified OK.

18.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a x3 cos (x) + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 807: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x2

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

5063



The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2

y

dy

Which results in

S = y2

2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a x3 cos (x) + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2

x3

Sy =
y

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x) a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R) a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R) a+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x2 = sin (x) a+ c1

Which simplifies to

y2

2x2 = sin (x) a+ c1

Summary
The solution(s) found are the following

(1)y2

2x2 = sin (x) a+ c1

Verification of solutions

y2

2x2 = sin (x) a+ c1

Verified OK.

18.31.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= a x3 cos (x) + y2

yx

This is a Bernoulli ODE.
y′ = 1

x
y + x2a cos (x) 1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = x2a cos (x)
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

x
+ x2a cos (x) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

x
+ x2a cos (x)

w′ = 2w
x

+ 2x2a cos (x) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = 2x2a cos (x)
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Hence the ode is

w′(x)− 2w(x)
x

= 2x2a cos (x)

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ)

(
2x2a cos (x)

)
d
dx

( w
x2

)
=
(

1
x2

)(
2x2a cos (x)

)
d
( w
x2

)
= (2 cos (x) a) dx

Integrating gives

w

x2 =
∫

2 cos (x) a dx
w

x2 = 2 sin (x) a+ c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = 2 sin (x) a x2 + c1x
2

which simplifies to

w(x) = x2(2 sin (x) a+ c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x2(2 sin (x) a+ c1)

Solving for y gives

y(x) =
√
2 sin (x) a+ c1 x

y(x) = −
√

2 sin (x) a+ c1 x
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Summary
The solution(s) found are the following

(1)y =
√
2 sin (x) a+ c1 x

(2)y = −
√
2 sin (x) a+ c1 x

Verification of solutions

y =
√

2 sin (x) a+ c1 x

Verified OK.

y = −
√
2 sin (x) a+ c1 x

Verified OK.

18.31.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
a x3 cos (x) + y2

)
dx(

−a x3 cos (x)− y2
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a x3 cos (x)− y2

N(x, y) = xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−a x3 cos (x)− y2

)
= −2y

And

∂N

∂x
= ∂

∂x
(xy)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy
((−2y)− (y))

= −3
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
−a x3 cos (x)− y2

)
= −a x3 cos (x)− y2

x3

And

N = µN

= 1
x3 (xy)

= y

x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−a x3 cos (x)− y2

x3

)
+
( y

x2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−a x3 cos (x)− y2

x3 dx

(3)φ = − sin (x) a+ y2

2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
x2 . Therefore equation (4) becomes

(5)y

x2 = y

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − sin (x) a+ y2

2x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x) a+ y2

2x2

Summary
The solution(s) found are the following

(1)y2

2x2 − sin (x) a = c1
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Verification of solutions

y2

2x2 − sin (x) a = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 30� �
dsolve(x*y(x)*diff(y(x),x) = a*x^3*cos(x)+y(x)^2,y(x), singsol=all)� �

y(x) =
√

2a sin (x) + c1 x

y(x) = −
√
2a sin (x) + c1 x

3 Solution by Mathematica
Time used: 0.377 (sec). Leaf size: 38� �
DSolve[x y[x] y'[x]==a x^3 Cos[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√

2a sin(x) + c1

y(x) → x
√
2a sin(x) + c1
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18.32 problem 510
18.32.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5073
18.32.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5075

Internal problem ID [3762]
Internal file name [OUTPUT/3255_Sunday_June_05_2022_09_03_46_AM_86456707/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 510.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

xyy′ + yx− y2 = x2

18.32.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x)) + u(x)x2 − u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u− 1
ux

Where f(x) = − 1
x
and g(u) = u−1

u
. Integrating both sides gives

1
u−1
u

du = −1
x
dx

∫ 1
u−1
u

du =
∫

−1
x
dx

u+ ln (u− 1) = − ln (x) + c2
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The solution is
u(x) + ln (u(x)− 1) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ ln

(y
x
− 1
)
+ ln (x)− c2 = 0

y

x
+ ln

(
y − x

x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
+ ln

(
y − x

x

)
+ ln (x)− c2 = 0

Figure 805: Slope field plot

Verification of solutions

y

x
+ ln

(
y − x

x

)
+ ln (x)− c2 = 0

Verified OK.
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18.32.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 − xy + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x2 − xy + y2) (b3 − a2)
yx

− (x2 − xy + y2)2 a3
y2x2

−
(
2x− y

yx
− x2 − xy + y2

y x2

)
(xa2 + ya3 + a1)

−
(
−x+ 2y

yx
− x2 − xy + y2

y2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a3 − x4b2 + 2x3ya2 − 2x3ya3 − 2x3yb3 − x2y2a2 + 4x2y2a3 + x2y2b3 − 2x y3a3 − x3b1 + x2ya1 + x y2b1 − y3a1
y2x2

= 0

Setting the numerator to zero gives

(6E)−x4a3 + x4b2 − 2x3ya2 + 2x3ya3 + 2x3yb3 + x2y2a2 − 4x2y2a3
− x2y2b3 + 2x y3a3 + x3b1 − x2ya1 − x y2b1 + y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v31v2 + a2v
2
1v

2
2 − a3v

4
1 + 2a3v31v2 − 4a3v21v22 + 2a3v1v32

+ b2v
4
1 + 2b3v31v2 − b3v

2
1v

2
2 − a1v

2
1v2 + a1v

3
2 + b1v

3
1 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 + b2) v41 + (−2a2 + 2a3 + 2b3) v31v2 + b1v
3
1

+ (a2 − 4a3 − b3) v21v22 − a1v
2
1v2 + 2a3v1v32 − b1v1v

2
2 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
2a3 = 0
−b1 = 0

−a3 + b2 = 0
−2a2 + 2a3 + 2b3 = 0

a2 − 4a3 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 − xy + y2

yx

)
(x)

= −x2 + xy

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+xy
y

dy
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Which results in

S = ln (y − x) + y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − xy + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 − xy + y2

x2 (−y + x)
Sy = − y

x (−y + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y − x)x+ y

x
= c1
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Which simplifies to

ln (y − x)x+ y

x
= c1

Which gives

y = xLambertW
(
ec1−1

x

)
+ x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2−xy+y2

yx
dS
dR

= 0

R = x

S = ln (y − x)x+ y

x

Summary
The solution(s) found are the following

(1)y = xLambertW
(
ec1−1

x

)
+ x

5079



Figure 806: Slope field plot

Verification of solutions

y = xLambertW
(
ec1−1

x

)
+ x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �

5080



3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 19� �
dsolve(x*y(x)*diff(y(x),x) = x^2-x*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) = x

(
1 + LambertW

(
e−c1−1

x

))
3 Solution by Mathematica
Time used: 3.803 (sec). Leaf size: 25� �
DSolve[x y[x] y'[x]==x^2-x y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
1 +W

(
e−1+c1

x

))
y(x) → x
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18.33 problem 511
18.33.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5082
18.33.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5084

Internal problem ID [3763]
Internal file name [OUTPUT/3256_Sunday_June_05_2022_09_03_50_AM_42970769/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 511.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

xyy′ − 2yx− y2 = −2x2

18.33.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x))− 2u(x)x2 − u(x)2 x2 = −2x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u− 2
ux

Where f(x) = 2
x
and g(u) = u−1

u
. Integrating both sides gives

1
u−1
u

du = 2
x
dx

∫ 1
u−1
u

du =
∫ 2

x
dx

u+ ln (u− 1) = 2 ln (x) + c2
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The solution is
u(x) + ln (u(x)− 1)− 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ ln

(y
x
− 1
)
− 2 ln (x)− c2 = 0

y

x
+ ln

(
y − x

x

)
− 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
+ ln

(
y − x

x

)
− 2 ln (x)− c2 = 0

Figure 807: Slope field plot

Verification of solutions

y

x
+ ln

(
y − x

x

)
− 2 ln (x)− c2 = 0

Verified OK.

5083



18.33.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x2 + 2xy + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(−2x2 + 2xy + y2) (b3 − a2)
yx

− (−2x2 + 2xy + y2)2 a3
y2x2

−
(
−4x+ 2y

yx
− −2x2 + 2xy + y2

y x2

)
(xa2 + ya3 + a1)

−
(
2x+ 2y

yx
− −2x2 + 2xy + y2

y2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x4a3 + 2x4b2 − 4x3ya2 − 8x3ya3 + 4x3yb3 + 2x2y2a2 − 2x2y2a3 − 2x2y2b3 + 4x y3a3 + 2x3b1 − 2x2ya1 + x y2b1 − y3a1
y2x2

= 0

Setting the numerator to zero gives

(6E)−4x4a3 − 2x4b2 + 4x3ya2 + 8x3ya3 − 4x3yb3 − 2x2y2a2 + 2x2y2a3
+ 2x2y2b3 − 4x y3a3 − 2x3b1 + 2x2ya1 − x y2b1 + y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v31v2 − 2a2v21v22 − 4a3v41 + 8a3v31v2 + 2a3v21v22 − 4a3v1v32 − 2b2v41
− 4b3v31v2 + 2b3v21v22 + 2a1v21v2 + a1v

3
2 − 2b1v31 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−4a3 − 2b2) v41 + (4a2 + 8a3 − 4b3) v31v2 − 2b1v31
+ (−2a2 + 2a3 + 2b3) v21v22 + 2a1v21v2 − 4a3v1v32 − b1v1v

2
2 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
2a1 = 0

−4a3 = 0
−2b1 = 0
−b1 = 0

−4a3 − 2b2 = 0
−2a2 + 2a3 + 2b3 = 0
4a2 + 8a3 − 4b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2x2 + 2xy + y2

yx

)
(x)

= 2x2 − 2xy
y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2−2xy
y

dy
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Which results in

S = − ln (y − x)
2 − y

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x2 + 2xy + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x2 + xy − y2

2x2 (−y + x)
Sy =

y

2x (−y + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − 3

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y − x)x− y

2x = −3 ln (x)
2 + c1
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Which simplifies to

− ln (y − x)x− y

2x = −3 ln (x)
2 + c1

Which gives

y = xLambertW
(
x2e−2c1−1)+ x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x2+2xy+y2

yx
dS
dR

= − 3
2R

R = x

S = − ln (y − x)x− y

2x

Summary
The solution(s) found are the following

(1)y = xLambertW
(
x2e−2c1−1)+ x
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Figure 808: Slope field plot

Verification of solutions

y = xLambertW
(
x2e−2c1−1)+ x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 19� �
dsolve(x*y(x)*diff(y(x),x)+2*x^2-2*x*y(x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = x
(
1 + LambertW

(
e2c1−1x2))

3 Solution by Mathematica
Time used: 3.881 (sec). Leaf size: 25� �
DSolve[x y[x] y'[x]+2 x^2-2 x y[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
(
1 +W

(
e−1+c1x2))

y(x) → x
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18.34 problem 512
18.34.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5091
18.34.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5092
18.34.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5095
18.34.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5098
18.34.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5101

Internal problem ID [3764]
Internal file name [OUTPUT/3257_Sunday_June_05_2022_09_03_53_AM_80851680/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 512.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xyy′ − by2 = a

18.34.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= b y2 + a

yx

Where f(x) = 1
x
and g(y) = b y2+a

y
. Integrating both sides gives

1
b y2+a

y

dy = 1
x
dx

∫ 1
b y2+a

y

dy =
∫ 1

x
dx
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ln (b y2 + a)
2b = ln (x) + c1

Raising both side to exponential gives

e
ln
(
b y2+a

)
2b = eln(x)+c1

Which simplifies to (
b y2 + a

) 1
2b = c2x

Which simplifies to (
a+ by2

) 1
2b = c2ec1x

The solution is (
a+ by2

) 1
2b = c2ec1x

Summary
The solution(s) found are the following

(1)
(
a+ by2

) 1
2b = c2ec1x

Verification of solutions (
a+ by2

) 1
2b = c2ec1x

Verified OK.

18.34.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b y2 + a

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 809: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b y2 + a

yx

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

b y2 + a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2b+ a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2b+ a)
2b + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = ln (a+ by2)
2b + c1

Which simplifies to

ln (x) = ln (a+ by2)
2b + c1

Summary
The solution(s) found are the following

(1)ln (x) = ln (a+ by2)
2b + c1

Verification of solutions

ln (x) = ln (a+ by2)
2b + c1

Verified OK.

18.34.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= b y2 + a

yx

This is a Bernoulli ODE.
y′ = b

x
y + a

x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
b

x

f1(x) =
a

x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = b y2

x
+ a

x
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = bw(x)

x
+ a

x

w′ = 2bw
x

+ 2a
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

5096



Where here

p(x) = −2b
x

q(x) = 2a
x

Hence the ode is

w′(x)− 2bw(x)
x

= 2a
x

The integrating factor µ is

µ = e
∫
− 2b

x
dx

= e−2 ln(x)b

Which simplifies to
µ = x−2b

The ode becomes

d
dx(µw) = (µ)

(
2a
x

)
d
dx
(
x−2bw

)
=
(
x−2b)(2a

x

)
d
(
x−2bw

)
=
(
2a x−1−2b) dx

Integrating gives

x−2bw =
∫

2a x−1−2b dx

x−2bw = −a x−2b

b
+ c1

Dividing both sides by the integrating factor µ = x−2b results in

w(x) = −x2ba x−2b

b
+ c1x

2b

which simplifies to

w(x) = −a

b
+ c1x

2b
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −a

b
+ c1x

2b

Solving for y gives

y(x) =
√
−b (a− c1x2bb)

b

y(x) = −
√

−b (a− c1x2bb)
b

Summary
The solution(s) found are the following

(1)y =
√

−b (a− c1x2bb)
b

(2)y = −
√
−b (a− c1x2bb)

b

Verification of solutions

y =
√

−b (a− c1x2bb)
b

Verified OK.

y = −
√
−b (a− c1x2bb)

b

Verified OK.

18.34.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

b y2 + a

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
y

b y2 + a

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = y

b y2 + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
y

b y2 + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
b y2+a

. Therefore equation (4) becomes

(5)y

b y2 + a
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

b y2 + a

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y

b y2 + a

)
dy

f(y) = ln (b y2 + a)
2b + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (b y2 + a)
2b + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (b y2 + a)
2b

Summary
The solution(s) found are the following

(1)− ln (x) + ln (a+ by2)
2b = c1

Verification of solutions

− ln (x) + ln (a+ by2)
2b = c1

Verified OK.

18.34.5 Maple step by step solution

Let’s solve
xyy′ − by2 = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′

a+by2
= 1

x

• Integrate both sides with respect to x∫
yy′

a+by2
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln
(
a+by2

)
2b = ln (x) + c1

• Solve for y
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{
y =

√
b
(
e2c1b+2 ln(x)b−a

)
b

, y = −
√

b
(
e2c1b+2 ln(x)b−a

)
b

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 48� �
dsolve(x*y(x)*diff(y(x),x) = a+b*y(x)^2,y(x), singsol=all)� �

y(x) =
√

−b (−x2bc1b+ a)
b

y(x) = −
√
−b (−x2bc1b+ a)

b

3 Solution by Mathematica
Time used: 1.6 (sec). Leaf size: 94� �
DSolve[x y[x] y'[x]==a+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−a+ e2b(log(x)+c1)

√
b

y(x) →
√
−a+ e2b(log(x)+c1)

√
b

y(x) → − i
√
a√
b

y(x) → i
√
a√
b
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18.35 problem 513
18.35.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5103
18.35.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5106
18.35.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5109

Internal problem ID [3765]
Internal file name [OUTPUT/3258_Sunday_June_05_2022_09_03_57_AM_85654054/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 18
Problem number: 513.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xyy′ − by2 = a xn

18.35.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a xn + b y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 812: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e2 ln(x)b
y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e2 ln(x)b

y

dy

Which results in

S = y2e−2 ln(x)b

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a xn + b y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −b x−1−2by2

Sy = y x−2b

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a xn−1−2b (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= aRn−1−2b
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − Rn−2ba

−n+ 2b + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x−2b

2 = − xn−2ba

−n+ 2b + c1

Which simplifies to

y2x−2b

2 = − xn−2ba

−n+ 2b + c1

Summary
The solution(s) found are the following

(1)y2x−2b

2 = − xn−2ba

−n+ 2b + c1

Verification of solutions

y2x−2b

2 = − xn−2ba

−n+ 2b + c1

Verified OK.

18.35.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= a xn + b y2

yx

This is a Bernoulli ODE.
y′ = b

x
y + a xn

x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
b

x

f1(x) =
a xn

x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = b y2

x
+ a xn

x
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = bw(x)

x
+ a xn

x

w′ = 2bw
x

+ 2a xn

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −2b
x

q(x) = 2a xn−1

Hence the ode is

w′(x)− 2bw(x)
x

= 2a xn−1

The integrating factor µ is

µ = e
∫
− 2b

x
dx

= e−2 ln(x)b

Which simplifies to
µ = x−2b

The ode becomes
d
dx(µw) = (µ)

(
2a xn−1)

d
dx
(
x−2bw

)
=
(
x−2b) (2a xn−1)

d
(
x−2bw

)
=
(
2a xn−1−2b) dx

Integrating gives

x−2bw =
∫

2a xn−1−2b dx

x−2bw = − 2xn−2ba

−n+ 2b + c1

Dividing both sides by the integrating factor µ = x−2b results in

w(x) = −2x2bxn−2ba

−n+ 2b + c1x
2b

which simplifies to

w(x) = − 2a xn

−n+ 2b + c1x
2b

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = − 2a xn

−n+ 2b + c1x
2b
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Solving for y gives

y(x) =

√
−4
(
−n

2 + b
) (

−
(
−n

2 + b
)
c1x2b + a xn

)
−n+ 2b

y(x) = −

√
−4
(
−n

2 + b
) (

−
(
−n

2 + b
)
c1x2b + a xn

)
−n+ 2b

Summary
The solution(s) found are the following

(1)y =

√
−4
(
−n

2 + b
) (

−
(
−n

2 + b
)
c1x2b + a xn

)
−n+ 2b

(2)y = −

√
−4
(
−n

2 + b
) (

−
(
−n

2 + b
)
c1x2b + a xn

)
−n+ 2b

Verification of solutions

y =

√
−4
(
−n

2 + b
) (

−
(
−n

2 + b
)
c1x2b + a xn

)
−n+ 2b

Verified OK.

y = −

√
−4
(
−n

2 + b
) (

−
(
−n

2 + b
)
c1x2b + a xn

)
−n+ 2b

Verified OK.

18.35.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
a xn + b y2

)
dx(

−a xn − b y2
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a xn − b y2

N(x, y) = xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−a xn − b y2

)
= −2by

And
∂N

∂x
= ∂

∂x
(xy)

= y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy
((−2by)− (y))

= −1− 2b
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ −1−2b

x
dx

The result of integrating gives

µ = e(−1−2b) ln(x)

= x−1−2b

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−1−2b(−a xn − b y2
)

=
(
−a xn − b y2

)
x−1−2b

And

N = µN

= x−1−2b(xy)
= y x−2b

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

−a xn − b y2
)
x−1−2b)+ (y x−2b) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
−a xn − b y2

)
x−1−2b dx

(3)φ = x−2b
(

a xn

−n+ 2b +
y2

2

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y x−2b + f ′(y)

But equation (2) says that ∂φ
∂y

= y x−2b. Therefore equation (4) becomes

(5)y x−2b = y x−2b + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x−2b
(

a xn

−n+ 2b +
y2

2

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x−2b
(

a xn

−n+ 2b +
y2

2

)
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Summary
The solution(s) found are the following

(1)x−2b
(

a xn

−n+ 2b +
y2

2

)
= c1

Verification of solutions

x−2b
(

a xn

−n+ 2b +
y2

2

)
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 84� �
dsolve(x*y(x)*diff(y(x),x) = a*x^n+b*y(x)^2,y(x), singsol=all)� �

y(x) =

√
−4
(
b− n

2

) (
−c1

(
b− n

2

)
x2b + a xn

)
2b− n

y(x) = −

√
−4
(
b− n

2

) (
−c1

(
b− n

2

)
x2b + a xn

)
2b− n
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3 Solution by Mathematica
Time used: 4.461 (sec). Leaf size: 86� �
DSolve[x y[x] y'[x]==a x^n+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−2axn + c1(2b− n)x2b
√
2b− n

y(x) →
√

−2axn + c1(2b− n)x2b
√
2b− n
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19.1 problem 514
19.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5116
19.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5118
19.1.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5122
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19.1.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5129

Internal problem ID [3766]
Internal file name [OUTPUT/3259_Sunday_June_05_2022_09_04_02_AM_32696526/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 514.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xyy′ −
(
x2 + 1

) (
1− y2

)
= 0

19.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x2 + 1) (−y2 + 1)
yx

Where f(x) = x2+1
x

and g(y) = −y2+1
y

. Integrating both sides gives

1
−y2+1

y

dy = x2 + 1
x

dx

∫ 1
−y2+1

y

dy =
∫

x2 + 1
x

dx
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− ln (y − 1)
2 − ln (y + 1)

2 = ln (x) + x2

2 + c1

The above can be written as(
−1
2

)
(ln (y − 1) + ln (y + 1)) = ln (x) + x2

2 + 2c1

ln (y − 1) + ln (y + 1) = (−2)
(
ln (x) + x2

2 + 2c1
)

= −2 ln (x)− x2 − 4c1

Raising both side to exponential gives

eln(y−1)+ln(y+1) = e−2 ln(x)−x2−2c1

Which simplifies to

y2 − 1 = −2c1e−x2−2 ln(x)

= c2e−x2−2 ln(x)

Which simplifies to

y2 − 1 = c2e−x2

x2

The solution is

y2 − 1 = c2e−x2

x2

Summary
The solution(s) found are the following

(1)y2 − 1 = c2e−x2

x2
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Figure 809: Slope field plot

Verification of solutions

y2 − 1 = c2e−x2

x2

Verified OK.

19.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2x2 − x2 + y2 − 1
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 814: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
x2+1

dx

Which results in

S = x2

2 + ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2x2 − x2 + y2 − 1
xy

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x+ 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − y

y2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − R

R2 − 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R− 1)
2 − ln (R + 1)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 + ln (x) = − ln (y − 1)
2 − ln (y + 1)

2 + c1

Which simplifies to

x2

2 + ln (x) = − ln (y − 1)
2 − ln (y + 1)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2x2−x2+y2−1
xy

dS
dR

= − R
R2−1

R = y

S = x2

2 + ln (x)

Summary
The solution(s) found are the following

(1)x2

2 + ln (x) = − ln (y − 1)
2 − ln (y + 1)

2 + c1
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Figure 810: Slope field plot

Verification of solutions

x2

2 + ln (x) = − ln (y − 1)
2 − ln (y + 1)

2 + c1

Verified OK.

19.1.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y2x2 − x2 + y2 − 1
xy

This is a Bernoulli ODE.

y′ = −x2 + 1
x

y − −x2 − 1
x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −x2 + 1
x

f1(x) = −−x2 − 1
x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −(x2 + 1) y2
x

− −x2 − 1
x

(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −(x2 + 1)w(x)

x
− −x2 − 1

x

w′ = −2(x2 + 1)w
x

− 2(−x2 − 1)
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −−2x2 − 2
x

q(x) = 2x2 + 2
x

Hence the ode is

w′(x)− (−2x2 − 2)w(x)
x

= 2x2 + 2
x

The integrating factor µ is

µ = e
∫
−−2x2−2

x
dx

= ex2+2 ln(x)

Which simplifies to

µ = x2ex2

The ode becomes

d
dx(µw) = (µ)

(
2x2 + 2

x

)
d
dx

(
x2ex2

w
)
=
(
x2ex2

)(2x2 + 2
x

)
d
(
x2ex2

w
)
=
(
2
(
x2 + 1

)
x ex2

)
dx

Integrating gives

x2ex2
w =

∫
2
(
x2 + 1

)
x ex2 dx

x2ex2
w = x2ex2 + c1

Dividing both sides by the integrating factor µ = x2ex2 results in

w(x) = e−x2ex2 + c1e−x2

x2

which simplifies to

w(x) = c1e−x2 + x2

x2
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1e−x2 + x2

x2

Solving for y gives

y(x) =
√

c1e−x2 + x2

x

y(x) = −
√

c1e−x2 + x2

x

Summary
The solution(s) found are the following

(1)y =
√

c1e−x2 + x2

x

(2)y = −
√

c1e−x2 + x2

x

Figure 811: Slope field plot
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Verification of solutions

y =
√
c1e−x2 + x2

x

Verified OK.

y = −
√

c1e−x2 + x2

x

Verified OK.

19.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
y

−y2 + 1

)
dy =

(
x2 + 1

x

)
dx(

−x2 + 1
x

)
dx+

(
y

−y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + 1
x

N(x, y) = y

−y2 + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 + 1

x

)
= 0

And
∂N

∂x
= ∂

∂x

(
y

−y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + 1

x
dx

(3)φ = −x2

2 − ln (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
−y2+1 . Therefore equation (4) becomes

(5)y

−y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − y

y2 − 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− y

y2 − 1

)
dy

f(y) = − ln (y − 1)
2 − ln (y + 1)

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (x)− ln (y − 1)
2 − ln (y + 1)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (x)− ln (y − 1)
2 − ln (y + 1)

2

Summary
The solution(s) found are the following

(1)−x2

2 − ln (x)− ln (y − 1)
2 − ln (y + 1)

2 = c1
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Figure 812: Slope field plot

Verification of solutions

−x2

2 − ln (x)− ln (y − 1)
2 − ln (y + 1)

2 = c1

Verified OK.

19.1.5 Maple step by step solution

Let’s solve
xyy′ − (x2 + 1) (1− y2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y
1−y2

= x2+1
x

• Integrate both sides with respect to x∫
y′y
1−y2

dx =
∫

x2+1
x

dx+ c1

• Evaluate integral
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− ln(y−1)
2 − ln(y+1)

2 = ln (x) + x2

2 + c1

• Solve for yy =
x

(
ex2+2c1x−

√(
ex2+2c1

)2
x2+ex2+2c1

)
+1

x

(
ex2+2c1x−

√(
ex2+2c1

)2
x2+ex2+2c1

) , y =
x

(
ex2+2c1x+

√(
ex2+2c1

)2
x2+ex2+2c1

)
+1

x

(
ex2+2c1x+

√(
ex2+2c1

)2
x2+ex2+2c1

)


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
dsolve(x*y(x)*diff(y(x),x) = (x^2+1)*(1-y(x)^2),y(x), singsol=all)� �

y(x) =
√
c1e−x2 + x2

x

y(x) = −
√
c1e−x2 + x2

x
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3 Solution by Mathematica
Time used: 5.562 (sec). Leaf size: 99� �
DSolve[x y[x] y'[x]==(1+x^2)(1-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x2 + e−x2+2c1

x

y(x) →
√
x2 + e−x2+2c1

x
y(x) → −1
y(x) → 1

y(x) → −
√
x2

x

y(x) →
√
x2

x
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19.2 problem 515
19.2.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5132
19.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5134

Internal problem ID [3767]
Internal file name [OUTPUT/3260_Sunday_June_05_2022_09_04_05_AM_7655087/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 515.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xyy′ + x2 arccot
(y
x

)
− y2 = 0

19.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x)) + x2 arccot (u(x))− u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −arccot (u)
ux

Where f(x) = − 1
x
and g(u) = arccot(u)

u
. Integrating both sides gives

1
arccot(u)

u

du = −1
x
dx
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∫ 1
arccot(u)

u

du =
∫

−1
x
dx

∫ u _a
arccot (_a)d_a = − ln (x) + c2

Which results in ∫ u _a
arccot (_a)d_a = − ln (x) + c2

The solution is ∫ u(x) _a
arccot (_a)d_a+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form∫ y

x _a
arccot (_a)d_a+ ln (x)− c2 = 0∫ y

x _a
arccot (_a)d_a+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
∫ y

x _a
arccot (_a)d_a+ ln (x)− c2 = 0
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Figure 813: Slope field plot

Verification of solutions ∫ y
x _a
arccot (_a)d_a+ ln (x)− c2 = 0

Verified OK.

19.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
−x2 arccot

(
y
x

)
+ y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x2 arccot

(
y
x

)
+ y2

)
(b3 − a2)

yx
−
(
−x2 arccot

(
y
x

)
+ y2

)2
a3

y2x2

−

−2x arccot
(
y
x

)
− y

y2
x2+1

yx
−

−x2 arccot
(
y
x

)
+ y2

y x2

 (xa2 + ya3 + a1)

−

 x
y2
x2+1

+ 2y

yx
−

−x2 arccot
(
y
x

)
+ y2

x y2

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−
arccot

(
y
x

)2
x6a3 + arccot

(
y
x

)2
x4y2a3 + arccot

(
y
x

)
x6b2 − 2 arccot

(
y
x

)
x5ya2 + 2 arccot

(
y
x

)
x5yb3 − 3 arccot

(
y
x

)
x4y2a3 + arccot

(
y
x

)
x4y2b2 − 2 arccot

(
y
x

)
x3y3a2 + 2 arccot

(
y
x

)
x3y3b3 − 3 arccot

(
y
x

)
x2y4a3 + arccot

(
y
x

)
x5b1 − arccot

(
y
x

)
x4ya1 + arccot

(
y
x

)
x3y2b1 − arccot

(
y
x

)
x2y3a1 + x5yb2 − x4y2a2 + x4y2b3 − x3y3a3 + x4yb1 − x3y2a1 + x3y2b1 − x2y3a1 + x y4b1 − y5a1

x2 (x2 + y2) y2
= 0

Setting the numerator to zero gives

(6E)

− arccot
(y
x

)2
x6a3 − arccot

(y
x

)2
x4y2a3 − arccot

(y
x

)
x6b2

+ 2 arccot
(y
x

)
x5ya2 − 2 arccot

(y
x

)
x5yb3 + 3 arccot

(y
x

)
x4y2a3

− arccot
(y
x

)
x4y2b2 + 2 arccot

(y
x

)
x3y3a2 − 2 arccot

(y
x

)
x3y3b3

+ 3 arccot
(y
x

)
x2y4a3 − arccot

(y
x

)
x5b1 + arccot

(y
x

)
x4ya1

− arccot
(y
x

)
x3y2b1 + arccot

(y
x

)
x2y3a1 − x5yb2 + x4y2a2 − x4y2b3

+ x3y3a3 − x4yb1 + x3y2a1 − x3y2b1 + x2y3a1 − x y4b1 + y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, arccot

(y
x

)}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, arccot
(y
x

)
= v3

}
The above PDE (6E) now becomes

(7E)
−v23v

6
1a3 − v23v

4
1v

2
2a3 + 2v3v51v2a2 + 2v3v31v32a2 + 3v3v41v22a3 + 3v3v21v42a3

− v3v
6
1b2 − v3v

4
1v

2
2b2 − 2v3v51v2b3 − 2v3v31v32b3 + v3v

4
1v2a1

+ v3v
2
1v

3
2a1 + v41v

2
2a2 + v31v

3
2a3 − v3v

5
1b1 − v3v

3
1v

2
2b1 − v51v2b2

− v41v
2
2b3 + v31v

2
2a1 + v21v

3
2a1 + v52a1 − v41v2b1 − v31v

2
2b1 − v1v

4
2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)
−v23v

6
1a3 − v3v

6
1b2 + (2a2 − 2b3) v51v2v3 − v51v2b2 − v3v

5
1b1 − v23v

4
1v

2
2a3

+ (3a3 − b2) v41v22v3 + (−b3 + a2) v41v22 + v3v
4
1v2a1 − v41v2b1

+ (2a2 − 2b3) v31v32v3 + v31v
3
2a3 − v3v

3
1v

2
2b1 + (a1 − b1) v31v22

+ 3v3v21v42a3 + v3v
2
1v

3
2a1 + v21v

3
2a1 − v1v

4
2b1 + v52a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0

−a3 = 0
3a3 = 0
−b1 = 0
−b2 = 0

a1 − b1 = 0
2a2 − 2b3 = 0
3a3 − b2 = 0
−b3 + a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

x

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
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And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−x2 arccot

(
y
x

)
+ y2

yx

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − y

x arccot
(
y
x

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − R

arccot (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− R

arccot (R)dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x

− _a
arccot (_a)d_a+ c1

Which simplifies to

ln (x) =
∫ y

x

− _a
arccot (_a)d_a+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2 arccot
( y
x

)
+y2

yx
dS
dR

= − R
arccot(R)

R = y

x
S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

x

− _a
arccot (_a)d_a+ c1
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Figure 814: Slope field plot

Verification of solutions

ln (x) =
∫ y

x

− _a
arccot (_a)d_a+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(x*y(x)*diff(y(x),x)+x^2*arccot(y(x)/x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = RootOf
(∫ _Z _a

arccot (_a)d_a+ ln (x) + c1

)
x

3 Solution by Mathematica
Time used: 0.596 (sec). Leaf size: 31� �
DSolve[x y[x] y'[x]+x^2 ArcCot[y[x]/x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[∫ y(x)

x

1

K[1]
cot−1(K[1])dK[1] = − log(x) + c1, y(x)

]
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19.3 problem 516
19.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5142
19.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5144

Internal problem ID [3768]
Internal file name [OUTPUT/3261_Sunday_June_05_2022_09_04_09_AM_88335000/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 516.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xyy′ + x2e−
2y
x − y2 = 0

19.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2u(x) (u′(x)x+ u(x)) + x2e−2u(x) − u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −e−2u

ux

Where f(x) = − 1
x
and g(u) = e−2u

u
. Integrating both sides gives

1
e−2u

u

du = −1
x
dx

∫ 1
e−2u

u

du =
∫

−1
x
dx
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(2u− 1) e2u
4 = − ln (x) + c2

The solution is
(2u(x)− 1) e2u(x)

4 + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(2y

x
− 1
)
e 2y

x

4 + ln (x)− c2 = 0

(2y − x) e 2y
x − 4x(− ln (x) + c2)

4x = 0

Summary
The solution(s) found are the following

(1)(2y − x) e 2y
x − 4x(− ln (x) + c2)

4x = 0

Figure 815: Slope field plot

5143



Verification of solutions

(2y − x) e 2y
x − 4x(− ln (x) + c2)

4x = 0

Verified OK.

19.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2e− 2y
x + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

(
−x2e− 2y

x + y2
)
(b3 − a2)

yx
−

(
−x2e− 2y

x + y2
)2

a3

y2x2

−

(
−2x e− 2y

x − 2y e− 2y
x

yx
− −x2e− 2y

x + y2

y x2

)
(xa2 + ya3 + a1)

−

(
2x e− 2y

x + 2y
yx

− −x2e− 2y
x + y2

x y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−e− 4y
x x4a3 + e− 2y

x x4b2 − 2 e− 2y
x x3ya2 + 2 e− 2y

x x3yb2 + 2 e− 2y
x x3yb3 − 2 e− 2y

x x2y2a2 − 3 e− 2y
x x2y2a3 + 2 e− 2y

x x2y2b3 − 2 e− 2y
x x y3a3 + e− 2y

x x3b1 − e− 2y
x x2ya1 + 2 e− 2y

x x2yb1 − 2 e− 2y
x x y2a1 + x y2b1 − y3a1

y2x2

= 0
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Setting the numerator to zero gives

(6E)−e−
4y
x x4a3 − e−

2y
x x4b2 + 2 e−

2y
x x3ya2 − 2 e−

2y
x x3yb2 − 2 e−

2y
x x3yb3

+ 2 e−
2y
x x2y2a2 + 3 e−

2y
x x2y2a3 − 2 e−

2y
x x2y2b3 + 2 e−

2y
x x y3a3 − e−

2y
x x3b1

+ e−
2y
x x2ya1 − 2 e−

2y
x x2yb1 + 2 e−

2y
x x y2a1 − x y2b1 + y3a1 = 0

Simplifying the above gives

(6E)−e−
4y
x x4a3 − e−

2y
x x4b2 + 2 e−

2y
x x3ya2 − 2 e−

2y
x x3yb2 − 2 e−

2y
x x3yb3

+ 2 e−
2y
x x2y2a2 + 3 e−

2y
x x2y2a3 − 2 e−

2y
x x2y2b3 + 2 e−

2y
x x y3a3 − e−

2y
x x3b1

+ e−
2y
x x2ya1 − 2 e−

2y
x x2yb1 + 2 e−

2y
x x y2a1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, e−

4y
x , e−

2y
x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, e−
4y
x = v3, e−

2y
x = v4

}
The above PDE (6E) now becomes

(7E)2v4v31v2a2 + 2v4v21v22a2 − v3v
4
1a3 + 3v4v21v22a3 + 2v4v1v32a3

− v4v
4
1b2 − 2v4v31v2b2 − 2v4v31v2b3 − 2v4v21v22b3 + v4v

2
1v2a1

+ 2v4v1v22a1 − v4v
3
1b1 − 2v4v21v2b1 + v32a1 − v1v

2
2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v3v
4
1a3−v4v

4
1b2+(2a2−2b2−2b3) v31v2v4−v4v

3
1b1+(2a2+3a3−2b3) v21v22v4

+ (a1 − 2b1) v21v2v4 + 2v4v1v32a3 + 2v4v1v22a1 − v1v
2
2b1 + v32a1 = 0

5145



Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
2a1 = 0
−a3 = 0
2a3 = 0
−b1 = 0
−b2 = 0

a1 − 2b1 = 0
2a2 + 3a3 − 2b3 = 0
2a2 − 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
−x2e− 2y

x + y2

yx

)
(x)

= x2e− 2y
x

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2e−
2y
x

y

dy

Which results in

S = −(x− 2y) e 2y
x

4x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2e− 2y
x + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −e 2y
x y2

x3

Sy =
y e 2y

x

x2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−(x− 2y) e 2y
x

4x = − ln (x) + c1

Which simplifies to

−(x− 2y) e 2y
x

4x = − ln (x) + c1

Which gives

y = x(LambertW (−4(ln (x)− c1) e−1) + 1)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2e−
2y
x +y2

yx
dS
dR

= − 1
R

R = x

S = −(x− 2y) e 2y
x

4x

Summary
The solution(s) found are the following

(1)y = x(LambertW (−4(ln (x)− c1) e−1) + 1)
2
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Figure 816: Slope field plot

Verification of solutions

y = x(LambertW (−4(ln (x)− c1) e−1) + 1)
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(x*y(x)*diff(y(x),x)+x^2*exp(-2*y(x)/x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = (LambertW (−4(ln (x) + c1) e−1) + 1) x
2

3 Solution by Mathematica
Time used: 60.225 (sec). Leaf size: 25� �
DSolve[x y[x] y'[x]+x^2 Exp[(-2 y[x])/x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x
(
1 +W

(
4(− log(x) + c1)

e

))
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19.4 problem 517
19.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5152
19.4.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5157

Internal problem ID [3769]
Internal file name [OUTPUT/3262_Sunday_June_05_2022_09_04_13_AM_87149312/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 517.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

(1 + yx) y′ + y2 = 0

19.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
xy + 1 − y4a3

(xy + 1)2
− y3(xa2 + ya3 + a1)

(xy + 1)2

−
(

y2x

(xy + 1)2
− 2y

xy + 1

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2y2b2 − 2y4a3 + x y2b1 − y3a1 + 4xyb2 + y2a2 + y2b3 + 2yb1 + b2

(xy + 1)2
= 0

Setting the numerator to zero gives

(6E)2x2y2b2 − 2y4a3 + x y2b1 − y3a1 + 4xyb2 + y2a2 + y2b3 + 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v42 + 2b2v21v22 − a1v
3
2 + b1v1v

2
2 + a2v

2
2 + 4b2v1v2 + b3v

2
2 + 2b1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21v22 + b1v1v
2
2 + 4b2v1v2 − 2a3v42 − a1v

3
2 + (a2 + b3) v22 + 2b1v2 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2a3 = 0
2b1 = 0
2b2 = 0
4b2 = 0

a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy + 1

)
(−x)

= y

xy + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
xy+1

dy

Which results in

S = xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x+ 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx+ ln (y) = c1

Which simplifies to

yx+ ln (y) = c1

Which gives

y = e−LambertW(ec1x)+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy+1
dS
dR

= 0

R = x

S = xy + ln (y)
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Summary
The solution(s) found are the following

(1)y = e−LambertW(ec1x)+c1

Figure 817: Slope field plot

Verification of solutions

y = e−LambertW(ec1x)+c1

Verified OK.

19.4.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy + 1) dy =
(
−y2

)
dx(

y2
)
dx+(xy + 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = xy + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2
)

= 2y
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And
∂N

∂x
= ∂

∂x
(xy + 1)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy + 1((2y)− (y))

= y

xy + 1
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2
((y)− (2y))

= −1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 1

y
dy

The result of integrating gives

µ = e− ln(y)

= 1
y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y

(
y2
)

= y
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And

N = µN

= 1
y
(xy + 1)

= xy + 1
y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(y) +
(
xy + 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y dx

(3)φ = xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= xy+1
y

. Therefore equation (4) becomes

(5)xy + 1
y

= x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy + ln (y)

The solution becomes
y = e−LambertW(ec1x)+c1

Summary
The solution(s) found are the following

(1)y = e−LambertW(ec1x)+c1
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Figure 818: Slope field plot

Verification of solutions

y = e−LambertW(ec1x)+c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 13� �
dsolve((1+x*y(x))*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = LambertW (x ec1)
x

3 Solution by Mathematica
Time used: 1.751 (sec). Leaf size: 21� �
DSolve[(1+x y[x])y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W (ec1x)
x

y(x) → 0

5163



19.5 problem 518
19.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5164
19.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5166
19.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5170
19.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5174

Internal problem ID [3770]
Internal file name [OUTPUT/3263_Sunday_June_05_2022_09_04_16_AM_66660964/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 518.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(y + 1) y′ − (1− x) y = 0

19.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −(x− 1) y
x (y + 1)

Where f(x) = −x−1
x

and g(y) = y
y+1 . Integrating both sides gives

1
y

y+1
dy = −x− 1

x
dx

∫ 1
y

y+1
dy =

∫
−x− 1

x
dx

y + ln (y) = −x+ ln (x) + c1
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Which results in
y = LambertW

(
x e−x+c1

)
Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = LambertW
(
x e−x+c1

)
gives

y = LambertW
(
c1x e−x

)
Summary
The solution(s) found are the following

(1)y = LambertW
(
c1x e−x

)

Figure 819: Slope field plot

Verification of solutions

y = LambertW
(
c1x e−x

)
Verified OK.
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19.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(x− 1) y
x (y + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 817: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

5166



The above table shows that

ξ(x, y) = − x

x− 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x
x−1

dx

Which results in

S = −x+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(x− 1) y
x (y + 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1 + 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y + 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R + 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x+ ln (x) = y + ln (y) + c1

Which simplifies to

−x+ ln (x) = y + ln (y) + c1

Which gives

y = LambertW
(
e−x−c1x

)

5168



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (x−1)y
x(y+1)

dS
dR

= R+1
R

R = y

S = −x+ ln (x)

Summary
The solution(s) found are the following

(1)y = LambertW
(
e−x−c1x

)
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Figure 820: Slope field plot

Verification of solutions

y = LambertW
(
e−x−c1x

)
Verified OK.

19.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y + 1

y

)
dy =

(
x− 1
x

)
dx(

−x− 1
x

)
dx+

(
−y + 1

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x− 1
x

N(x, y) = −y + 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x− 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−y + 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− 1

x
dx

(3)φ = −x+ ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y+1
y
. Therefore equation (4) becomes

(5)−y + 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y + 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y − 1

y

)
dy

f(y) = −y − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x+ ln (x)− y − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ ln (x)− y − ln (y)

The solution becomes
y = LambertW

(
e−x−c1x

)
Summary
The solution(s) found are the following

(1)y = LambertW
(
e−x−c1x

)

Figure 821: Slope field plot

Verification of solutions

y = LambertW
(
e−x−c1x

)
Verified OK.
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19.5.4 Maple step by step solution

Let’s solve
x(y + 1) y′ − (1− x) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y+1)

y
= 1−x

x

• Integrate both sides with respect to x∫ y′(y+1)
y

dx =
∫ 1−x

x
dx+ c1

• Evaluate integral
y + ln (y) = −x+ ln (x) + c1

• Solve for y
y = LambertW (x e−x+c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(x*(1+y(x))*diff(y(x),x)-(1-x)*y(x) = 0,y(x), singsol=all)� �

y(x) = LambertW
(
e−xx

c1

)
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3 Solution by Mathematica
Time used: 4.467 (sec). Leaf size: 21� �
DSolve[x(1+y[x])y'[x]-(1-x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W
(
xe−x+c1

)
y(x) → 0
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19.6 problem 519
19.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5176
19.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5178
19.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5182
19.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5186

Internal problem ID [3771]
Internal file name [OUTPUT/3264_Sunday_June_05_2022_09_04_20_AM_54155495/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 519.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(1− y) y′ + y(x+ 1) = 0

19.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(x+ 1)
x (y − 1)

Where f(x) = x+1
x

and g(y) = y
y−1 . Integrating both sides gives

1
y

y−1
dy = x+ 1

x
dx

∫ 1
y

y−1
dy =

∫
x+ 1
x

dx

y − ln (y) = x+ ln (x) + c1
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Which results in

y = −LambertW
(
−e−x−c1

x

)
Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = −LambertW
(
−e−x−c1

x

)
gives

y = −LambertW
(
−e−x

c1x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−x

c1x

)

Figure 822: Slope field plot
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Verification of solutions

y = −LambertW
(
−e−x

c1x

)
Verified OK.

19.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(x+ 1)
x (y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 820: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
x+1

dx

Which results in

S = x+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(x+ 1)
x (y − 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1 + 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x+ ln (x) = y − ln (y) + c1

Which simplifies to

x+ ln (x) = y − ln (y) + c1

Which gives

y = −LambertW
(
−e−x+c1

x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(x+1)
x(y−1)

dS
dR

= R−1
R

R = y

S = x+ ln (x)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−x+c1

x

)
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Figure 823: Slope field plot

Verification of solutions

y = −LambertW
(
−e−x+c1

x

)
Verified OK.

19.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

5182



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y − 1
y

)
dy =

(
x+ 1
x

)
dx(

−x+ 1
x

)
dx+

(
y − 1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x

N(x, y) = y − 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
y − 1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y−1
y
. Therefore equation (4) becomes

(5)y − 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y − 1
y

)
dy

f(y) = y − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x) + y − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x) + y − ln (y)

The solution becomes

y = −LambertW
(
−e−x−c1

x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e−x−c1

x

)

Figure 824: Slope field plot
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Verification of solutions

y = −LambertW
(
−e−x−c1

x

)
Verified OK.

19.6.4 Maple step by step solution

Let’s solve
x(1− y) y′ + y(x+ 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1−y)

y
= −x+1

x

• Integrate both sides with respect to x∫ y′(1−y)
y

dx =
∫
−x+1

x
dx+ c1

• Evaluate integral
−y + ln (y) = −x− ln (x) + c1

• Solve for y

y = −LambertW
(
− e−x+c1

x

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*(1-y(x))*diff(y(x),x)+(1+x)*y(x) = 0,y(x), singsol=all)� �

y(x) = −LambertW
(
−e−x

c1x

)
3 Solution by Mathematica
Time used: 3.925 (sec). Leaf size: 28� �
DSolve[x(1-y[x])y'[x]+(1+x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W

(
−e−x−c1

x

)
y(x) → 0
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19.7 problem 520
19.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5188
19.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5190
19.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5194
19.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5198

Internal problem ID [3772]
Internal file name [OUTPUT/3265_Sunday_June_05_2022_09_04_23_AM_46673582/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 520.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(1− y) y′ + (1− x) y = 0

19.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −(x− 1) y
x (y − 1)

Where f(x) = −x−1
x

and g(y) = y
y−1 . Integrating both sides gives

1
y

y−1
dy = −x− 1

x
dx

∫ 1
y

y−1
dy =

∫
−x− 1

x
dx

y − ln (y) = −x+ ln (x) + c1
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Which results in

y = −LambertW
(
−ex−c1

x

)
Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = −LambertW
(
−ex−c1

x

)
gives

y = −LambertW
(
− ex
c1x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
− ex
c1x

)

Figure 825: Slope field plot
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Verification of solutions

y = −LambertW
(
− ex
c1x

)
Verified OK.

19.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(x− 1) y
x (y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 823: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = − x

x− 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x
x−1

dx

Which results in

S = −x+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(x− 1) y
x (y − 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1 + 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x+ ln (x) = y − ln (y) + c1

Which simplifies to

−x+ ln (x) = y − ln (y) + c1

Which gives

y = −LambertW
(
−ex+c1

x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (x−1)y
x(y−1)

dS
dR

= R−1
R

R = y

S = −x+ ln (x)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−ex+c1

x

)
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Figure 826: Slope field plot

Verification of solutions

y = −LambertW
(
−ex+c1

x

)
Verified OK.

19.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y − 1

y

)
dy =

(
x− 1
x

)
dx(

−x− 1
x

)
dx+

(
−y − 1

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x− 1
x

N(x, y) = −y − 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x− 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−y − 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− 1

x
dx

(3)φ = −x+ ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y−1
y
. Therefore equation (4) becomes

(5)−y − 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y − 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1− y

y

)
dy

f(y) = −y + ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x+ ln (x)− y + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ ln (x)− y + ln (y)

The solution becomes

y = −LambertW
(
−ex+c1

x

)

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−ex+c1

x

)

Figure 827: Slope field plot
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Verification of solutions

y = −LambertW
(
−ex+c1

x

)
Verified OK.

19.7.4 Maple step by step solution

Let’s solve
x(1− y) y′ + (1− x) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1−y)

y
= −1−x

x

• Integrate both sides with respect to x∫ y′(1−y)
y

dx =
∫
−1−x

x
dx+ c1

• Evaluate integral
−y + ln (y) = x− ln (x) + c1

• Solve for y

y = −LambertW
(
− ex+c1

x

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �

5198



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(x*(1-y(x))*diff(y(x),x)+(1-x)*y(x) = 0,y(x), singsol=all)� �

y(x) = −LambertW
(
−exc1

x

)
3 Solution by Mathematica
Time used: 3.957 (sec). Leaf size: 26� �
DSolve[x(1-y[x])y'[x]+(1-x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W

(
−ex−c1

x

)
y(x) → 0
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19.8 problem 521
19.8.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 5200
19.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5201

Internal problem ID [3773]
Internal file name [OUTPUT/3266_Sunday_June_05_2022_09_04_26_AM_5486960/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 521.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

x(y + 2) y′ = −ax

19.8.1 Solving as quadrature ode

Integrating both sides gives ∫
−y + 2

a
dy = x+ c1

−
1
2y

2 + 2y
a

= x+ c1

Solving for y gives these solutions

y1 = −2−
√
−2ac1 − 2ax+ 4

y2 = −2 +
√
−2ac1 − 2ax+ 4

Summary
The solution(s) found are the following

(1)y = −2−
√
−2ac1 − 2ax+ 4

(2)y = −2 +
√
−2ac1 − 2ax+ 4
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Verification of solutions

y = −2−
√
−2ac1 − 2ax+ 4

Verified OK.

y = −2 +
√
−2ac1 − 2ax+ 4

Verified OK.

19.8.2 Maple step by step solution

Let’s solve
x(y + 2) y′ = −ax

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y + 2) = −a

• Integrate both sides with respect to x∫
y′(y + 2) dx =

∫
−adx+ c1

• Evaluate integral
y2

2 + 2y = −ax+ c1

• Solve for y{
y = −2−

√
−2ax+ 2c1 + 4, y = −2 +

√
−2ax+ 2c1 + 4

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve(x*(2+y(x))*diff(y(x),x)+a*x = 0,y(x), singsol=all)� �

y(x) = −2−
√
4 + (−2x− 2c1) a

y(x) = −2 +
√
4 + (−2x− 2c1) a

3 Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 50� �
DSolve[x(2+y[x])y'[x]+a x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2−
√
2
√
−ax+ 2 + c1

y(x) → −2 +
√
2
√
−ax+ 2 + c1
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19.9 problem 522
19.9.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5203

Internal problem ID [3774]
Internal file name [OUTPUT/3267_Sunday_June_05_2022_09_04_30_AM_98157685/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 522.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`], [

_Abel , `2nd type `, `class B`]]

(2 + 3x− yx) y′ + y = 0

19.9.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−xy + 3x+ 2) dy = (−y) dx
(y) dx+(−xy + 3x+ 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = −xy + 3x+ 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x
(−xy + 3x+ 2)

= −y + 3

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−xy + 3x+ 2((1)− (−y + 3))

= 2− y

−2 + (y − 3)x

5204



Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y
((−y + 3)− (1))

= 2− y

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 2−y

y
dy

The result of integrating gives

µ = e−y+2 ln(y)

= y2e−y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y2e−y(y)
= y3e−y

And

N = µN

= y2e−y(−xy + 3x+ 2)
= −(−2 + (y − 3)x) e−yy2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

y3e−y
)
+
(
−(−2 + (y − 3)x) e−yy2

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y3e−y dx

(3)φ = y3e−yx+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y2e−yx− y3e−yx+ f ′(y)

= −e−yx y2(y − 3) + f ′(y)

But equation (2) says that ∂φ
∂y

= −(−2 + (y − 3)x) e−yy2. Therefore equation (4) be-
comes

(5)−(−2 + (y − 3)x) e−yy2 = −e−yx y2(y − 3) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y2e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
2y2e−y

)
dy

f(y) = −2
(
y2 + 2y + 2

)
e−y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y3e−yx− 2
(
y2 + 2y + 2

)
e−y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y3e−yx− 2
(
y2 + 2y + 2

)
e−y

Summary
The solution(s) found are the following

(1)y3e−yx− 2
(
y2 + 2y + 2

)
e−y = c1

Figure 828: Slope field plot

Verification of solutions

y3e−yx− 2
(
y2 + 2y + 2

)
e−y = c1

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- Abel AIR successful: ODE belongs to the 0F1 1-parameter (Bessel type) class

<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 50� �
dsolve((2+3*x-x*y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x)3 c1x− 2y(x)2 c1 − 4c1y(x) + ey(x) − 4c1
xy (x)3 − 2y (x)2 − 4y (x)− 4

= 0

3 Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 35� �
DSolve[(2+3 x-x y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = −2(−y(x)2 − 2y(x)− 2)

y(x)3 + c1e
y(x)

y(x)3 , y(x)
]
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19.10 problem 523
19.10.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5209

Internal problem ID [3775]
Internal file name [OUTPUT/3268_Sunday_June_05_2022_09_04_34_AM_23858891/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 523.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

x(y + 4) y′ − 2y − y2 = 2x

19.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2 + 2x+ 2y
x (y + 4)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2 +
(y2 + 2x+ 2y) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x (y + 4)

− (y2 + 2x+ 2y)2 (xa5 + 2ya6 + a3)
x2 (y + 4)2

−
(

2
x (y + 4) −

y2 + 2x+ 2y
x2 (y + 4)

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
−
(

2 + 2y
x (y + 4) −

y2 + 2x+ 2y
x (y + 4)2

)(
x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

x3y2b4 − x2y3a4 + x2y3b5 − x y4a5 + x y4b6 − y5a6 + 2x4b4 − 4x3ya4 + 8x3yb4 + 4x3yb5 − 6x2y2a4 − 6x2y2a5 + 6x2y2b5 + 6x2y2b6 − 4x y3a5 − 8x y3a6 + 4x y3b6 − 2y4a6 − 16x3a4 − 4x3a5 + 2x3b2 + 24x3b4 + 8x3b5 − 2x2ya2 − 8x2ya4 − 16x2ya5 − 8x2ya6 + 4x2yb3 + 16yb5x2 + 16x2yb6 − 4x y2a3 − 4x y2a5 − 16x y2a6 − x y2b1 − 2x y2b3 + 8x y2b6 + y3a1 + 2y3a3 − 8x2a2 − 4x2a3 + 2x2b1 + 8b2x2 + 8x2b3 − 8xya3 − 8xyb1 + 6y2a1 + 4y2a3 − 8xb1 + 8ya1
x2 (y + 4)2

= 0

Setting the numerator to zero gives

(6E)

x3y2b4 − x2y3a4 + x2y3b5 − x y4a5 + x y4b6 − y5a6 + 2x4b4 − 4x3ya4
+ 8x3yb4 + 4x3yb5 − 6x2y2a4 − 6x2y2a5 + 6x2y2b5 + 6x2y2b6
− 4x y3a5 − 8x y3a6 + 4x y3b6 − 2y4a6 − 16x3a4 − 4x3a5 + 2x3b2
+ 24x3b4 + 8x3b5 − 2x2ya2 − 8x2ya4 − 16x2ya5 − 8x2ya6 + 4x2yb3
+ 16yb5x2 + 16x2yb6 − 4x y2a3 − 4x y2a5 − 16x y2a6 − x y2b1
− 2x y2b3 + 8x y2b6 + y3a1 + 2y3a3 − 8x2a2 − 4x2a3 + 2x2b1 + 8b2x2

+ 8x2b3 − 8xya3 − 8xyb1 + 6y2a1 + 4y2a3 − 8xb1 + 8ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

−a4v
2
1v

3
2 − a5v1v

4
2 − a6v

5
2 + b4v

3
1v

2
2 + b5v

2
1v

3
2 + b6v1v

4
2 − 4a4v31v2

− 6a4v21v22 − 6a5v21v22 − 4a5v1v32 − 8a6v1v32 − 2a6v42 + 2b4v41 + 8b4v31v2
+ 4b5v31v2 + 6b5v21v22 + 6b6v21v22 + 4b6v1v32 + a1v

3
2 − 2a2v21v2 − 4a3v1v22

+ 2a3v32 − 16a4v31 − 8a4v21v2 − 4a5v31 − 16a5v21v2 − 4a5v1v22 − 8a6v21v2
− 16a6v1v22 − b1v1v

2
2 + 2b2v31 + 4b3v21v2 − 2b3v1v22 + 24b4v31 + 8b5v31

+ 16b5v21v2 + 16b6v21v2 + 8b6v1v22 + 6a1v22 − 8a2v21 − 4a3v21 − 8a3v1v2
+ 4a3v22 + 2b1v21 − 8b1v1v2 + 8b2v21 + 8b3v21 + 8a1v2 − 8b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

2b4v41 + b4v
3
1v

2
2 + (−4a4 + 8b4 + 4b5) v31v2

+ (−16a4 − 4a5 + 2b2 + 24b4 + 8b5) v31
+ (−a4 + b5) v21v32 + (−6a4 − 6a5 + 6b5 + 6b6) v21v22
+ (−2a2 − 8a4 − 16a5 − 8a6 + 4b3 + 16b5 + 16b6) v21v2
+ (−8a2 − 4a3 + 2b1 + 8b2 + 8b3) v21 + (−a5 + b6) v1v42
+ (−4a5 − 8a6 + 4b6) v1v32 + (−4a3 − 4a5 − 16a6 − b1 − 2b3 + 8b6) v1v22
+ (−8a3 − 8b1) v1v2 − 8b1v1 − a6v

5
2 − 2a6v42

+ (a1 + 2a3) v32 + (6a1 + 4a3) v22 + 8a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b4 = 0
8a1 = 0

−2a6 = 0
−a6 = 0
−8b1 = 0
2b4 = 0

a1 + 2a3 = 0
6a1 + 4a3 = 0

−8a3 − 8b1 = 0
−a4 + b5 = 0
−a5 + b6 = 0

−4a4 + 8b4 + 4b5 = 0
−4a5 − 8a6 + 4b6 = 0

−6a4 − 6a5 + 6b5 + 6b6 = 0
−8a2 − 4a3 + 2b1 + 8b2 + 8b3 = 0

−16a4 − 4a5 + 2b2 + 24b4 + 8b5 = 0
−4a3 − 4a5 − 16a6 − b1 − 2b3 + 8b6 = 0

−2a2 − 8a4 − 16a5 − 8a6 + 4b3 + 16b5 + 16b6 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 4b5 + 4b6
a3 = 0
a4 = b5

a5 = b6

a6 = 0
b1 = 0
b2 = 4b5 + 2b6
b3 = 2b6
b4 = 0
b5 = b5

b6 = b6
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x2 + 4x
η = xy + 4x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= xy + 4x−
(
y2 + 2x+ 2y
x (y + 4)

)(
x2 + 4x

)
= −2x3 + 6x2y − 4x y2 + 8x2 − 8xy

xy + 4x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x3+6x2y−4x y2+8x2−8xy
xy+4x

dy

Which results in

S = ln (−x+ 2y + 4)
4 − ln (y − x)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 2x+ 2y
x (y + 4)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3y − x+ 8
4 (−y + x) (x− 2y − 4)

Sy =
−y − 4

2 (−y + x) (x− 2y − 4)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−x+ 2y + 4)
4 − ln (y − x)

2 = − ln (x)
4 + c1

Which simplifies to

ln (−x+ 2y + 4)
4 − ln (y − x)

2 = − ln (x)
4 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+2x+2y
x(y+4)

dS
dR

= − 1
4R

R = x

S = ln (−x+ 2y + 4)
4 − ln (y − x)

2

Summary
The solution(s) found are the following

(1)ln (−x+ 2y + 4)
4 − ln (y − x)

2 = − ln (x)
4 + c1
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Figure 829: Slope field plot

Verification of solutions

ln (−x+ 2y + 4)
4 − ln (y − x)

2 = − ln (x)
4 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 121� �
dsolve(x*(4+y(x))*diff(y(x),x) = 2*x+2*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) =
−
√
x+ 4

√
(x+4)c1−4

x+4 x− 4
√
x

−
√
x+ 4

√
(x+4)c1−4

x+4 +
√
x

y(x) =
√
x+ 4

√
(x+4)c1−4

x+4 x− 4
√
x

√
x+ 4

√
(x+4)c1−4

x+4 +
√
x
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3 Solution by Mathematica
Time used: 1.118 (sec). Leaf size: 89� �
DSolve[x(4+y[x])y'[x]==2 x+2 y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4 + 1
1

x+4 −
√
x

(x+4)3/2
√

− 4
x+4+c1

y(x) → −4 + 1
1

x+4 +
√
x

(x+4)3/2
√

− 4
x+4+c1

y(x) → x

5218



19.11 problem 524
Internal problem ID [3776]
Internal file name [OUTPUT/3269_Sunday_June_05_2022_09_04_37_AM_25964752/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 524.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

Unable to solve or complete the solution.

x(y + a) y′ + cy = −bx

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(x*(a+y(x))*diff(y(x),x)+b*x+c*y(x) = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x(a+y[x])y'[x]+b x+c y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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19.12 problem 525
19.12.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5222
19.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5223
19.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5226
19.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5229

Internal problem ID [3777]
Internal file name [OUTPUT/3270_Sunday_June_05_2022_09_04_42_AM_48171897/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 525.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(y + a) y′ − y(Bx+ A) = 0

19.12.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y(Bx+ A)
x (a+ y)

Where f(x) = Bx+A
x

and g(y) = y
a+y

. Integrating both sides gives

1
y

a+y

dy = Bx+ A

x
dx

∫ 1
y

a+y

dy =
∫

Bx+ A

x
dx

y + a ln (y) = Bx+ A ln (x) + c1
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Which results in

y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)+c1

a
a

+c1

a

Summary
The solution(s) found are the following

(1)y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)+c1

a
a

+c1

a

Verification of solutions

y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)+c1

a
a

+c1

a

Verified OK.

19.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(Bx+ A)
x (a+ y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 827: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

Bx+ A

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
Bx+A

dx

Which results in

S = Bx+ A ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(Bx+ A)
x (a+ y)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = B + A

x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a+ y

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a+R

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + a ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

Bx+ A ln (x) = y + a ln (y) + c1

Which simplifies to

Bx+ A ln (x) = y + a ln (y) + c1

Which gives

y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)−c1

a
a

−c1

a

Summary
The solution(s) found are the following

(1)y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)−c1

a
a

−c1

a

Verification of solutions

y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)−c1

a
a

−c1

a

Verified OK.

19.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

a+ y

y

)
dy =

(
Bx+ A

x

)
dx(

−Bx+ A

x

)
dx+

(
a+ y

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −Bx+ A

x

N(x, y) = a+ y

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−Bx+ A

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
a+ y

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−Bx+ A

x
dx

(3)φ = −Bx− A ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= a+y
y
. Therefore equation (4) becomes

(5)a+ y

y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a+ y

y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
a+ y

y

)
dy

f(y) = y + a ln (y) + c1

5228



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −Bx− A ln (x) + y + a ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −Bx− A ln (x) + y + a ln (y)

The solution becomes

y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)+c1

a
a

+c1

a

Summary
The solution(s) found are the following

(1)y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)+c1

a
a

+c1

a

Verification of solutions

y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)+c1

a
a

+c1

a

Verified OK.

19.12.4 Maple step by step solution

Let’s solve
x(y + a) y′ − y(Bx+ A) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y+a)

y
= Bx+A

x

• Integrate both sides with respect to x
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∫ y′(y+a)
y

dx =
∫

Bx+A
x

dx+ c1

• Evaluate integral
y + a ln (y) = Bx+ A ln (x) + c1

• Solve for y

y = e
A ln(x)+Bx−aLambertW

 e
Bx+A ln(x)+c1

a
a

+c1

a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve(x*(a+y(x))*diff(y(x),x) = y(x)*(B*x+A),y(x), singsol=all)� �

y(x) = x
A
a e

Bx−aLambertW

x
A
a e

Bx+c1
a

a

+c1

a

3 Solution by Mathematica
Time used: 1.06 (sec). Leaf size: 36� �
DSolve[x(a+y[x])y'[x]==y[x](A+B x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → aW

(
x

A
a e

Bx+c1
a

a

)
y(x) → 0
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19.13 problem 526
19.13.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5231
19.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5233

Internal problem ID [3778]
Internal file name [OUTPUT/3271_Sunday_June_05_2022_09_04_45_AM_91374472/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 526.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(y + x) y′ + y2 = 0

19.13.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u(x)x+ x) (u′(x)x+ u(x)) + u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u2 + u

x (u+ 1)

Where f(x) = − 1
x
and g(u) = 2u2+u

u+1 . Integrating both sides gives

1
2u2+u
u+1

du = −1
x
dx
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∫ 1
2u2+u
u+1

du =
∫

−1
x
dx

− ln (2u+ 1)
2 + ln (u) = − ln (x) + c2

Raising both side to exponential gives

e−
ln(2u+1)

2 +ln(u) = e− ln(x)+c2

Which simplifies to
u√

2u+ 1
= c3

x

The solution is
u(x)√

2u (x) + 1
= c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y√
2y
x
+ 1x

= c3
x

y√
x+2y
x

x
= c3

x

Which simplifies to
y√
x+2y
x

= c3

Summary
The solution(s) found are the following

(1)y√
x+2y
x

= c3
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Figure 830: Slope field plot

Verification of solutions
y√
x+2y
x

= c3

Verified OK.

19.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

x (y + x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
x (y + x) − y4a3

x2 (y + x)2
−
(

y2

x2 (y + x) +
y2

x (y + x)2
)
(xa2 + ya3 + a1)

−
(
− 2y
x (y + x) +

y2

x (y + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 + 4x3yb2 − x2y2a2 + 2x2y2b2 + x2y2b3 − 2x y3a3 − 2y4a3 + 2x2yb1 − 2x y2a1 + x y2b1 − y3a1

x2 (y + x)2
= 0

Setting the numerator to zero gives

(6E)x4b2 + 4x3yb2 − x2y2a2 + 2x2y2b2 + x2y2b3 − 2x y3a3
− 2y4a3 + 2x2yb1 − 2x y2a1 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1v

2
2 − 2a3v1v32 − 2a3v42 + b2v

4
1 + 4b2v31v2 + 2b2v21v22

+ b3v
2
1v

2
2 − 2a1v1v22 − a1v

3
2 + 2b1v21v2 + b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)b2v
4
1 + 4b2v31v2 + (−a2 + 2b2 + b3) v21v22 + 2b1v21v2

− 2a3v1v32 + (−2a1 + b1) v1v22 − 2a3v42 − a1v
3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−a1 = 0
−2a3 = 0
2b1 = 0
4b2 = 0

−2a1 + b1 = 0
−a2 + 2b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

x (y + x)

)
(x)

= xy + 2y2
y + x

ξ = 0

5235



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy+2y2
y+x

dy

Which results in

S = − ln (x+ 2y)
2 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

x (y + x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
2x+ 4y

Sy =
y + x

y (x+ 2y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ 2y)
2 + ln (y) = − ln (x)

2 + c1

Which simplifies to

− ln (x+ 2y)
2 + ln (y) = − ln (x)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

x(y+x)
dS
dR

= − 1
2R

R = x

S = − ln (x+ 2y)
2 + ln (y)
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Summary
The solution(s) found are the following

(1)− ln (x+ 2y)
2 + ln (y) = − ln (x)

2 + c1

Figure 831: Slope field plot

Verification of solutions

− ln (x+ 2y)
2 + ln (y) = − ln (x)

2 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 45� �
dsolve(x*(x+y(x))*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 1 +
√
c1x2 + 1
c1x

y(x) = 1−
√
c1x2 + 1
c1x

3 Solution by Mathematica
Time used: 2.81 (sec). Leaf size: 80� �
DSolve[x(x+y[x])y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2c1 −
√
e2c1 (x2 + e2c1)
x

y(x) →
√

e2c1 (x2 + e2c1) + e2c1

x
y(x) → 0
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19.14 problem 527
19.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5240
19.14.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5242
19.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5247

Internal problem ID [3779]
Internal file name [OUTPUT/3272_Sunday_June_05_2022_09_04_50_AM_53368903/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 527.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(−y + x) y′ + y2 = 0

19.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(−u(x)x+ x) (u′(x)x+ u(x)) + u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

(u− 1)x
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Where f(x) = 1
x
and g(u) = u

u−1 . Integrating both sides gives

1
u

u−1
du = 1

x
dx

∫ 1
u

u−1
du =

∫ 1
x
dx

u− ln (u) = ln (x) + c2

The solution is
u(x)− ln (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
− ln

(y
x

)
− ln (x)− c2 = 0

y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Figure 832: Slope field plot
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Verification of solutions
y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Verified OK.

19.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2

x (y − x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
y2(b3 − a2)
x (y − x) − y4a3

x2 (y − x)2
−
(
− y2

x2 (y − x) +
y2

x (y − x)2
)
(xa2+ya3+a1)

−
(

2y
x (y − x) −

y2

x (y − x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1

x2 (−y + x)2
= 0
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Setting the numerator to zero gives

(6E)x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1v

2
2 − 2a3v1v32 + b2v

4
1 + b3v

2
1v

2
2 − 2a1v1v22 + a1v

3
2 + 2b1v21v2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1 + (b3 − a2) v21v22 + 2b1v21v2 − 2a3v1v32 + (−2a1 − b1) v1v22 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−2a3 = 0
2b1 = 0

−2a1 − b1 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2

x (y − x)

)
(x)

= xy

−y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy
−y+x

dy

Which results in

S = ln (y)− y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (y − x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x2

Sy =
−y + x

xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)x− y

x
= c1

Which simplifies to

ln (y)x− y

x
= c1

Which gives

y = e−LambertW
(
− ec1

x

)
+c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(y−x)
dS
dR

= 0

R = x

S = ln (y)x− y

x

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
− ec1

x

)
+c1
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Figure 833: Slope field plot

Verification of solutions

y = e−LambertW
(
− ec1

x

)
+c1

Verified OK.

19.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(−y + x)) dy =
(
−y2

)
dx(

y2
)
dx+(x(−y + x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = x(−y + x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2
)

= 2y

And
∂N

∂x
= ∂

∂x
(x(−y + x))

= 2x− y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = y2 and N = x(−y + x) by this integrating factor the
ode becomes exact. The new M,N are

M = y

x2

N = −y + x

xy

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
−y + x

xy

)
dy =

(
− y

x2

)
dx( y

x2

)
dx+

(
−y + x

xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

x2

N(x, y) = −y + x

xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

( y

x2

)
= 1

x2

And
∂N

∂x
= ∂

∂x

(
−y + x

xy

)
= 1

x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y

x2 dx

(3)φ = −y

x
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y+x
xy

. Therefore equation (4) becomes

(5)−y + x

xy
= −1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (y)− y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (y)− y

x

The solution becomes

y = e−LambertW
(
− ec1

x

)
+c1

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
− ec1

x

)
+c1
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Figure 834: Slope field plot

Verification of solutions

y = e−LambertW
(
− ec1

x

)
+c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 17� �
dsolve(x*(x-y(x))*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −xLambertW
(
−e−c1

x

)
3 Solution by Mathematica
Time used: 2.271 (sec). Leaf size: 25� �
DSolve[x(x-y[x])y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −xW

(
−e−c1

x

)
y(x) → 0
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19.15 problem 528
19.15.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5254
19.15.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5256

Internal problem ID [3780]
Internal file name [OUTPUT/3273_Sunday_June_05_2022_09_04_54_AM_5744532/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 528.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(y + x) y′ − y2 = x2

19.15.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u(x)x+ x) (u′(x)x+ u(x))− u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u− 1
x (u+ 1)

Where f(x) = − 1
x
and g(u) = u−1

u+1 . Integrating both sides gives

1
u−1
u+1

du = −1
x
dx

5254



∫ 1
u−1
u+1

du =
∫

−1
x
dx

u+ 2 ln (u− 1) = − ln (x) + c2

The solution is
u(x) + 2 ln (u(x)− 1) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ 2 ln

(y
x
− 1
)
+ ln (x)− c2 = 0

y

x
+ 2 ln

(
y − x

x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
+ 2 ln

(
y − x

x

)
+ ln (x)− c2 = 0

Figure 835: Slope field plot
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Verification of solutions

y

x
+ 2 ln

(
y − x

x

)
+ ln (x)− c2 = 0

Verified OK.

19.15.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + y2

x (y + x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x2 + y2) (b3 − a2)

x (y + x) − (x2 + y2)2 a3
x2 (y + x)2

−
(

2
y + x

− x2 + y2

x2 (y + x) −
x2 + y2

x (y + x)2
)
(xa2 + ya3 + a1)

−
(

2y
x (y + x) −

x2 + y2

x (y + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a2 + x4a3 − 2x4b2 − x4b3 + 2x3ya2 − 2x3yb3 − x2y2a2 + 3x2y2a3 + x2y2b3 − 2x y3a3 − x3b1 + x2ya1 + 2x2yb1 − 2x y2a1 + x y2b1 − y3a1

(y + x)2 x2

= 0
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Setting the numerator to zero gives

(6E)−x4a2 − x4a3 + 2x4b2 + x4b3 − 2x3ya2 + 2x3yb3 + x2y2a2 − 3x2y2a3
− x2y2b3 + 2x y3a3 + x3b1 − x2ya1 − 2x2yb1 + 2x y2a1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
4
1 − 2a2v31v2 + a2v

2
1v

2
2 − a3v

4
1 − 3a3v21v22 + 2a3v1v32 + 2b2v41 + b3v

4
1

+ 2b3v31v2 − b3v
2
1v

2
2 − a1v

2
1v2 + 2a1v1v22 + a1v

3
2 + b1v

3
1 − 2b1v21v2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + 2b2 + b3) v41 + (−2a2 + 2b3) v31v2 + b1v
3
1 + (a2 − 3a3 − b3) v21v22

+ (−a1 − 2b1) v21v2 + 2a3v1v32 + (2a1 − b1) v1v22 + a1v
3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

2a3 = 0
−a1 − 2b1 = 0
2a1 − b1 = 0

−2a2 + 2b3 = 0
a2 − 3a3 − b3 = 0

−a2 − a3 + 2b2 + b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

x2 + y2

x (y + x)

)
(x)

= −x2 + xy

y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+xy
y+x

dy
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Which results in

S = 2 ln (y − x) + y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + y2

x (y + x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x2 − xy + y2

x2 (−y + x)

Sy =
−y − x

x (−y + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y − x)x+ y

x
= ln (x) + c1
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Which simplifies to

2 ln (y − x)x+ y

x
= ln (x) + c1

Which gives

y = 2xLambertW
(
e

ln(x)
2 + c1

2 − 1
2

2x

)
+ x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+y2

x(y+x)
dS
dR

= 1
R

R = x

S = 2 ln (y − x)x+ y

x

Summary
The solution(s) found are the following

(1)y = 2xLambertW
(
e

ln(x)
2 + c1

2 − 1
2

2x

)
+ x
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Figure 836: Slope field plot

Verification of solutions

y = 2xLambertW
(
e

ln(x)
2 + c1

2 − 1
2

2x

)
+ x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 22� �
dsolve(x*(x+y(x))*diff(y(x),x) = x^2+y(x)^2,y(x), singsol=all)� �

y(x) = x

(
2 LambertW

(
e− 1

2−
c1
2

2
√
x

)
+ 1
)

3 Solution by Mathematica
Time used: 7.26 (sec). Leaf size: 35� �
DSolve[x(x+y[x])y'[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ 2xW
(
e

−1+c1
2

2
√
x

)
y(x) → x
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19.16 problem 529
19.16.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5263
19.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5265
19.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5271

Internal problem ID [3781]
Internal file name [OUTPUT/3274_Sunday_June_05_2022_09_04_58_AM_74747694/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 529.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(−y + x) y′ + 3yx− y2 = −2x2

19.16.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(−u(x)x+ x) (u′(x)x+ u(x)) + 3u(x)x2 − u(x)2 x2 = −2x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(u2 − 2u− 1)
(u− 1)x
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Where f(x) = − 2
x
and g(u) = u2−2u−1

u−1 . Integrating both sides gives

1
u2−2u−1

u−1
du = −2

x
dx

∫ 1
u2−2u−1

u−1
du =

∫
−2
x
dx

ln (u2 − 2u− 1)
2 = −2 ln (x) + c2

Raising both side to exponential gives
√
u2 − 2u− 1 = e−2 ln(x)+c2

Which simplifies to
√
u2 − 2u− 1 = c3

x2

Which simplifies to √
u (x)2 − 2u (x)− 1 = c3ec2

x2

The solution is √
u (x)2 − 2u (x)− 1 = c3ec2

x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 − 2y
x

− 1 = c3ec2
x2√

y2 − 2yx− x2

x2 = c3ec2
x2

Summary
The solution(s) found are the following

(1)
√

y2 − 2yx− x2

x2 = c3ec2
x2
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Figure 837: Slope field plot

Verification of solutions √
y2 − 2yx− x2

x2 = c3ec2
x2

Verified OK.

19.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−2x2 − 3xy + y2

x (y − x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−2x2 − 3xy + y2) (b3 − a2)

x (y − x) − (−2x2 − 3xy + y2)2 a3
x2 (y − x)2

−
(
−−4x− 3y

x (y − x) + −2x2 − 3xy + y2

x2 (y − x) − −2x2 − 3xy + y2

x (y − x)2
)
(xa2 + ya3 + a1)

−
(
−−3x+ 2y

x (y − x) + −2x2 − 3xy + y2

x (y − x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x4a2 − 4x4a3 + 6x4b2 − 2x4b3 − 4x3ya2 − 12x3ya3 − 4x3yb2 + 4x3yb3 − 2x2y2a2 − 10x2y2a3 + 2x2y2b2 + 2x2y2b3 + 8x y3a3 − 2y4a3 + 5x3b1 − 5x2ya1 − 2x2yb1 + 2x y2a1 + x y2b1 − y3a1

x2 (−y + x)2
= 0

Setting the numerator to zero gives

(6E)2x4a2 − 4x4a3 + 6x4b2 − 2x4b3 − 4x3ya2 − 12x3ya3 − 4x3yb2
+ 4x3yb3 − 2x2y2a2 − 10x2y2a3 + 2x2y2b2 + 2x2y2b3 + 8x y3a3
− 2y4a3 + 5x3b1 − 5x2ya1 − 2x2yb1 + 2x y2a1 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v41 − 4a2v31v2 − 2a2v21v22 − 4a3v41 − 12a3v31v2 − 10a3v21v22 + 8a3v1v32
− 2a3v42 + 6b2v41 − 4b2v31v2 + 2b2v21v22 − 2b3v41 + 4b3v31v2 + 2b3v21v22
− 5a1v21v2 + 2a1v1v22 − a1v

3
2 + 5b1v31 − 2b1v21v2 + b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − 4a3 + 6b2 − 2b3) v41 + (−4a2 − 12a3 − 4b2 + 4b3) v31v2 + 5b1v31
+ (−2a2 − 10a3 + 2b2 + 2b3) v21v22 + (−5a1 − 2b1) v21v2
+ 8a3v1v32 + (2a1 + b1) v1v22 − 2a3v42 − a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1 = 0
−2a3 = 0
8a3 = 0
5b1 = 0

−5a1 − 2b1 = 0
2a1 + b1 = 0

−4a2 − 12a3 − 4b2 + 4b3 = 0
−2a2 − 10a3 + 2b2 + 2b3 = 0

2a2 − 4a3 + 6b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−−2x2 − 3xy + y2

x (y − x)

)
(x)

= 2x2 + 4xy − 2y2
−y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2+4xy−2y2
−y+x

dy

Which results in

S = ln (−x2 − 2xy + y2)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x2 − 3xy + y2

x (y − x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y + x

2x2 + 4xy − 2y2

Sy =
−y + x

2x2 + 4xy − 2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1

Which simplifies to

ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x2−3xy+y2

x(y−x)
dS
dR

= − 1
2R

R = x

S = ln (−x2 − 2xy + y2)
4

Summary
The solution(s) found are the following

(1)ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1
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Figure 838: Slope field plot

Verification of solutions

ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1

Verified OK.

19.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(−y + x)) dy =
(
−2x2 − 3xy + y2

)
dx(

2x2 + 3xy − y2
)
dx+(x(−y + x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x2 + 3xy − y2

N(x, y) = x(−y + x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x2 + 3xy − y2

)
= 3x− 2y

And
∂N

∂x
= ∂

∂x
(x(−y + x))

= 2x− y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (−y + x)((3x− 2y)− (2x− y))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
2x2 + 3xy − y2

)
= 2x3 + 3x2y − x y2

And

N = µN

= x(x(−y + x))
= x2(−y + x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x3 + 3x2y − x y2
)
+
(
x2(−y + x)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x3 + 3x2y − x y2 dx

(3)φ = 1
2x

4 + x3y − 1
2y

2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 − x2y + f ′(y)

= x2(−y + x) + f ′(y)

But equation (2) says that ∂φ
∂y

= x2(−y + x). Therefore equation (4) becomes

(5)x2(−y + x) = x2(−y + x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1
2x

4 + x3y − 1
2y

2x2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
2x

4 + x3y − 1
2y

2x2

Summary
The solution(s) found are the following

(1)x4

2 + yx3 − y2x2

2 = c1

Figure 839: Slope field plot

Verification of solutions

x4

2 + yx3 − y2x2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 59� �
dsolve(x*(x-y(x))*diff(y(x),x)+2*x^2+3*x*y(x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1x
2 −

√
2c21x4 + 1

c1x

y(x) = c1x
2 +

√
2c21x4 + 1

c1x

3 Solution by Mathematica
Time used: 0.724 (sec). Leaf size: 99� �
DSolve[x(x-y[x])y'[x]+2 x^2+3 x y[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
2x4 + e2c1

x

y(x) → x+
√
2x4 + e2c1

x

y(x) → x−
√
2
√
x4

x

y(x) →
√
2
√
x4

x
+ x
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19.17 problem 530
19.17.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5277

Internal problem ID [3782]
Internal file name [OUTPUT/3275_Sunday_June_05_2022_09_05_02_AM_58842162/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 530.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

x(y + x) y′ − y(y + x) + x
√
x2 − y2 = 0

19.17.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x
√
x2 − y2 − xy − y2

x (y + x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
x
√
x2 − y2 − xy − y2

)
(b3 − a2)

x (y + x) −
(
x
√
x2 − y2 − xy − y2

)2
a3

x2 (y + x)2

−

−

√
x2 − y2 + x2√

x2−y2
− y

x (y + x) + x
√
x2 − y2 − xy − y2

x2 (y + x)

+ x
√
x2 − y2 − xy − y2

x (y + x)2

 (xa2 + ya3 + a1)

−

(
−
−x− 2y − xy√

x2−y2

x (y + x) + x
√
x2 − y2 − xy − y2

x (y + x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(x2 − y2)
3
2 x2a3 − x5a2 + x5b2 + x5b3 − 2x4ya2 − 2x4ya3 + x4yb2 + 2x4yb3 − 3x3y2a3 + x2y3a2 + x2y3a3 − x2y3b3 + 2x y4a3 +

√
x2 − y2 x3b1 −

√
x2 − y2 x2ya1 + 2

√
x2 − y2 x2yb1 − 2

√
x2 − y2 x y2a1 +

√
x2 − y2 x y2b1 −

√
x2 − y2 y3a1 + x4b1 − x3ya1 + x3yb1 − x2y2a1√

x2 − y2 x2 (y + x)2
= 0

Setting the numerator to zero gives

(6E)
−
(
x2 − y2

) 3
2 x2a3 + x5a2 − x5b2 − x5b3 + 2x4ya2 + 2x4ya3

− x4yb2 − 2x4yb3 + 3x3y2a3 − x2y3a2 − x2y3a3 + x2y3b3 − 2x y4a3
−
√

x2 − y2 x3b1+
√

x2 − y2 x2ya1−2
√

x2 − y2 x2yb1+2
√

x2 − y2 x y2a1

−
√

x2 − y2 x y2b1 +
√

x2 − y2 y3a1 − x4b1 + x3ya1 − x3yb1 + x2y2a1 = 0

Simplifying the above gives

(6E)

(
x2− y2

)
x2ya2+

(
x2− y2

)
x2ya3− 2

(
x2− y2

)
x2yb3+2

(
x2− y2

)
x y2a3

+
√

x2 − y2 x2ya1 − 2
√

x2 − y2 x2yb1 + 2
√

x2 − y2 x y2a1

−
√

x2 − y2 x y2b1 + x5a2 + x4a1 + x4ya2 + x4ya3 − x4yb2
+ x3y2a3 − x3y2b2 − x3y2b3 − x2y3b3 + x3ya1 − x3yb1 − x2y2b1

−
(
x2 − y2

) 3
2 x2a3 −

(
x2 − y2

)
x3b2 −

(
x2 − y2

)
x3b3 −

(
x2 − y2

)
x2a1

−
(
x2 − y2

)
x2b1 −

√
x2 − y2 x3b1 +

√
x2 − y2 y3a1 = 0
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Since the PDE has radicals, simplifying gives

x5a2 − x5b2 − x5b3 − x4
√

x2 − y2 a3 + 2x4ya2 + 2x4ya3 − x4yb2 − 2x4yb3

+ 3x3y2a3 + x2
√

x2 − y2 y2a3 − x2y3a2 − x2y3a3 + x2y3b3 − 2x y4a3 − x4b1

−
√

x2 − y2 x3b1 + x3ya1 − x3yb1 +
√
x2 − y2 x2ya1 − 2

√
x2 − y2 x2yb1

+ x2y2a1 + 2
√

x2 − y2 x y2a1 −
√

x2 − y2 x y2b1 +
√
x2 − y2 y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 − y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 − y2 = v3
}

The above PDE (6E) now becomes

(7E)v51a2 + 2v41v2a2 − v21v
3
2a2 + 2v41v2a3 − v41v3a3 + 3v31v22a3 − v21v

3
2a3 + v21v3v

2
2a3

− 2v1v42a3 − v51b2 − v41v2b2 − v51b3 − 2v41v2b3 + v21v
3
2b3 + v31v2a1 + v21v

2
2a1

+v3v
2
1v2a1+2v3v1v22a1+v3v

3
2a1−v41b1−v31v2b1−v3v

3
1b1−2v3v21v2b1−v3v1v

2
2b1

= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(a2 − b2 − b3) v51 + (2a2 + 2a3 − b2 − 2b3) v41v2 − v41v3a3 − v41b1 + 3v31v22a3
+ (a1 − b1) v31v2 − v3v

3
1b1 + (−a2 − a3 + b3) v21v32 + v21v3v

2
2a3 + v21v

2
2a1

+ (a1 − 2b1) v21v2v3 − 2v1v42a3 + (2a1 − b1) v1v22v3 + v3v
3
2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0

−2a3 = 0
−a3 = 0
3a3 = 0
−b1 = 0

a1 − 2b1 = 0
a1 − b1 = 0
2a1 − b1 = 0

−a2 − a3 + b3 = 0
a2 − b2 − b3 = 0

2a2 + 2a3 − b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x

√
x2 − y2 − xy − y2

x (y + x)

)
(x)

= x
√
x2 − y2

y + x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
√

x2−y2

y+x

dy

Which results in

S = arctan
(

y√
x2 − y2

)
−

√
x2 − y2

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x
√
x2 − y2 − xy − y2

x (y + x)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (−y − x) y
x2
√
x2 − y2

Sy =
y + x

x
√
x2 − y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan
(

y√
x2−y2

)
x−

√
x2 − y2

x
= − ln (x) + c1

Which simplifies to

arctan
(

y√
x2−y2

)
x−

√
x2 − y2

x
= − ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
√

x2−y2−xy−y2

x(y+x)
dS
dR

= − 1
R

R = x

S =
arctan

(
y√

x2−y2

)
x−

√
x2 − y2

x

Summary
The solution(s) found are the following

(1)
arctan

(
y√

x2−y2

)
x−

√
x2 − y2

x
= − ln (x) + c1
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Figure 840: Slope field plot

Verification of solutions

arctan
(

y√
x2−y2

)
x−

√
x2 − y2

x
= − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 48� �
dsolve(x*(x+y(x))*diff(y(x),x)-y(x)*(x+y(x))+x*sqrt(x^2-y(x)^2) = 0,y(x), singsol=all)� �

arctan
(

y(x)√
x2−y(x)2

)
x+ x ln (x)− c1x−

√
x2 − y (x)2

x
= 0

3 Solution by Mathematica
Time used: 0.348 (sec). Leaf size: 109� �
DSolve[x(x+y[x])y'[x]-y[x](x+y[x])+x Sqrt[x^2-y[x]^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


2
√

y(x)
x

− 1arctanh

 1√
y(x)
x −1

y(x)
x +1

+
(

y(x)
x

− 1
)√

y(x)
x

+ 1

√
y(x)
x

−1
y(x)
x

+1

√
y(x)
x

+ 1
= c1 − i log(x), y(x)
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19.18 problem 531
Internal problem ID [3783]
Internal file name [OUTPUT/3276_Sunday_June_05_2022_09_05_06_AM_29741510/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 531.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

Unable to solve or complete the solution.

(a+ x(y + x)) y′ − b(y + x) y = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve((a+x*(x+y(x)))*diff(y(x),x) = b*(x+y(x))*y(x),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(a+x*(x+y[x]))*y'[x]==b*(x+y[x])*y[x],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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19.19 problem 532
19.19.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5289
19.19.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5291

Internal problem ID [3784]
Internal file name [OUTPUT/3277_Sunday_June_05_2022_09_05_13_AM_31885339/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 532.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(y + 2x) y′ − yx+ y2 = x2

19.19.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u(x)x+ 2x) (u′(x)x+ u(x))− u(x)x2 + u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u2 + u− 1
x (u+ 2)

Where f(x) = − 1
x
and g(u) = 2u2+u−1

u+2 . Integrating both sides gives

1
2u2+u−1

u+2
du = −1

x
dx
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∫ 1
2u2+u−1

u+2
du =

∫
−1
x
dx

− ln (u+ 1)
3 + 5 ln (2u− 1)

6 = − ln (x) + c2

Raising both side to exponential gives

e−
ln(u+1)

3 + 5 ln(2u−1)
6 = e− ln(x)+c2

Which simplifies to

(2u− 1)
5
6

(u+ 1)
1
3

= c3
x

Therefore the solution y is

y = xu

= x

(
RootOf

(
2x3_Z15 − _Z6c33 − 3c33

)6
2 + 1

2

)

Summary
The solution(s) found are the following

(1)y = x

(
RootOf

(
2x3_Z15 − _Z6c33 − 3c33

)6
2 + 1

2

)
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Figure 841: Slope field plot

Verification of solutions

y = x

(
RootOf

(
2x3_Z15 − _Z6c33 − 3c33

)6
2 + 1

2

)

Verified OK.

19.19.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−x2 − xy + y2

x (2x+ y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−x2 − xy + y2) (b3 − a2)

x (2x+ y) − (−x2 − xy + y2)2 a3
x2 (2x+ y)2

−
(
− −2x− y

x (2x+ y) +
−x2 − xy + y2

x2 (2x+ y) + −2x2 − 2xy + 2y2

x (2x+ y)2
)
(xa2 + ya3 + a1)

−
(
− −x+ 2y
x (2x+ y) +

−x2 − xy + y2

x (2x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x4a2 + x4a3 − 3x4b2 − 2x4b3 + 2x3ya2 + 2x3ya3 − 8x3yb2 − 2x3yb3 + 3x2y2a2 − 2x2y2a3 − 2x2y2b2 − 3x2y2b3 + 2x y3a3 + 2y4a3 + x3b1 − x2ya1 − 4x2yb1 + 4x y2a1 − x y2b1 + y3a1

x2 (2x+ y)2
= 0

Setting the numerator to zero gives

(6E)−2x4a2 − x4a3 + 3x4b2 + 2x4b3 − 2x3ya2 − 2x3ya3 + 8x3yb2
+ 2x3yb3 − 3x2y2a2 + 2x2y2a3 + 2x2y2b2 + 3x2y2b3 − 2x y3a3
− 2y4a3 − x3b1 + x2ya1 + 4x2yb1 − 4x y2a1 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v41 − 2a2v31v2 − 3a2v21v22 − a3v
4
1 − 2a3v31v2 + 2a3v21v22 − 2a3v1v32

− 2a3v42 + 3b2v41 + 8b2v31v2 + 2b2v21v22 + 2b3v41 + 2b3v31v2 + 3b3v21v22
+ a1v

2
1v2 − 4a1v1v22 − a1v

3
2 − b1v

3
1 + 4b1v21v2 + b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − a3 + 3b2 + 2b3) v41 + (−2a2 − 2a3 + 8b2 + 2b3) v31v2
− b1v

3
1 + (−3a2 + 2a3 + 2b2 + 3b3) v21v22 + (a1 + 4b1) v21v2

− 2a3v1v32 + (−4a1 + b1) v1v22 − 2a3v42 − a1v
3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1 = 0
−2a3 = 0
−b1 = 0

−4a1 + b1 = 0
a1 + 4b1 = 0

−3a2 + 2a3 + 2b2 + 3b3 = 0
−2a2 − 2a3 + 8b2 + 2b3 = 0
−2a2 − a3 + 3b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−−x2 − xy + y2

x (2x+ y)

)
(x)

= −x2 + xy + 2y2
2x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+xy+2y2
2x+y

dy

Which results in

S = − ln (y + x)
3 + 5 ln (−x+ 2y)

6
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x2 − xy + y2

x (2x+ y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ 3y
2 (y + x) (x− 2y)

Sy =
−2x− y

(y + x) (x− 2y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y + x)
3 + 5 ln (2y − x)

6 = − ln (x)
2 + c1

Which simplifies to

− ln (y + x)
3 + 5 ln (2y − x)

6 = − ln (x)
2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x2−xy+y2

x(2x+y)
dS
dR

= − 1
2R

R = x

S = − ln (y + x)
3 + 5 ln (−x+ 2y)

6

Summary
The solution(s) found are the following

(1)− ln (y + x)
3 + 5 ln (2y − x)

6 = − ln (x)
2 + c1
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Figure 842: Slope field plot

Verification of solutions

− ln (y + x)
3 + 5 ln (2y − x)

6 = − ln (x)
2 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.61 (sec). Leaf size: 59� �
dsolve(x*(2*x+y(x))*diff(y(x),x) = x^2+x*y(x)-y(x)^2,y(x), singsol=all)� �

y(x) =
x
(
RootOf

(
3_Z15 + _Z9 − 2c1x3)9 + c1x

3
)

−RootOf
(
3_Z15 + _Z9 − 2c1x3

)9 + 2c1x3

3 Solution by Mathematica
Time used: 4.814 (sec). Leaf size: 431� �
DSolve[x(2 x+y[x])y'[x]==x^2+x y[x]-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
32#15 − 80#14x+ 80#13x2 +#12

(
−40x3 + e6c1

x3

)
+#1

(
10x4 + 2e6c1

x2

)
− x5 + e6c1

x
&, 1

]
y(x) → Root

[
32#15 − 80#14x+ 80#13x2 +#12

(
−40x3 + e6c1

x3

)
+#1

(
10x4 + 2e6c1

x2

)
− x5 + e6c1

x
&, 2

]
y(x) → Root

[
32#15 − 80#14x+ 80#13x2 +#12

(
−40x3 + e6c1

x3

)
+#1

(
10x4 + 2e6c1

x2

)
− x5 + e6c1

x
&, 3

]
y(x) → Root

[
32#15 − 80#14x+ 80#13x2 +#12

(
−40x3 + e6c1

x3

)
+#1

(
10x4 + 2e6c1

x2

)
− x5 + e6c1

x
&, 4

]
y(x) → Root

[
32#15 − 80#14x+ 80#13x2 +#12

(
−40x3 + e6c1

x3

)
+#1

(
10x4 + 2e6c1

x2

)
− x5 + e6c1

x
&, 5

]
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19.20 problem 533
19.20.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5299
19.20.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5301

Internal problem ID [3785]
Internal file name [OUTPUT/3278_Sunday_June_05_2022_09_05_17_AM_59479136/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 533.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(4x− y) y′ − 6yx− y2 = −4x2

19.20.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(4x− u(x)x) (u′(x)x+ u(x))− 6u(x)x2 − u(x)2 x2 = −4x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(u2 + u− 2)
(u− 4)x

Where f(x) = − 2
x
and g(u) = u2+u−2

u−4 . Integrating both sides gives

1
u2+u−2
u−4

du = −2
x
dx
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∫ 1
u2+u−2
u−4

du =
∫

−2
x
dx

2 ln (u+ 2)− ln (u− 1) = −2 ln (x) + c2

Raising both side to exponential gives

e2 ln(u+2)−ln(u−1) = e−2 ln(x)+c2

Which simplifies to

(u+ 2)2

u− 1 = c3
x2

The solution is
(u(x) + 2)2

u (x)− 1 = c3
x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y
x
+ 2
)2

y
x
− 1 = c3

x2

(y + 2x)2

x (y − x) = c3
x2

Which simplifies to

−(y + 2x)2

−y + x
= c3

x

Summary
The solution(s) found are the following

(1)−(y + 2x)2

−y + x
= c3

x
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Figure 843: Slope field plot

Verification of solutions

−(y + 2x)2

−y + x
= c3

x

Verified OK.

19.20.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−4x2 + 6xy + y2

x (−4x+ y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−4x2 + 6xy + y2) (b3 − a2)

x (−4x+ y) − (−4x2 + 6xy + y2)2 a3
x2 (−4x+ y)2

−
(
− −8x+ 6y
x (−4x+ y) +

−4x2 + 6xy + y2

x2 (−4x+ y) − 4(−4x2 + 6xy + y2)
x (−4x+ y)2

)
(xa2

+ ya3 + a1)−
(
− 6x+ 2y
x (−4x+ y) +

−4x2 + 6xy + y2

x (−4x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

16x4a2 − 16x4a3 − 4x4b2 − 16x4b3 − 8x3ya2 + 48x3ya3 − 16x3yb2 + 8x3yb3 + 10x2y2a2 − 8x2y2a3 + 2x2y2b2 − 10x2y2b3 − 4x y3a3 − 2y4a3 − 20x3b1 + 20x2ya1 − 8x2yb1 + 8x y2a1 + x y2b1 − y3a1

x2 (4x− y)2
= 0

Setting the numerator to zero gives

(6E)16x4a2 − 16x4a3 − 4x4b2 − 16x4b3 − 8x3ya2 + 48x3ya3 − 16x3yb2
+ 8x3yb3 + 10x2y2a2 − 8x2y2a3 + 2x2y2b2 − 10x2y2b3 − 4x y3a3
− 2y4a3 − 20x3b1 + 20x2ya1 − 8x2yb1 + 8x y2a1 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)16a2v41 − 8a2v31v2 + 10a2v21v22 − 16a3v41 + 48a3v31v2 − 8a3v21v22 − 4a3v1v32
− 2a3v42 − 4b2v41 − 16b2v31v2 + 2b2v21v22 − 16b3v41 + 8b3v31v2 − 10b3v21v22
+ 20a1v21v2 + 8a1v1v22 − a1v

3
2 − 20b1v31 − 8b1v21v2 + b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(16a2 − 16a3 − 4b2 − 16b3) v41 + (−8a2 + 48a3 − 16b2 + 8b3) v31v2
− 20b1v31 + (10a2 − 8a3 + 2b2 − 10b3) v21v22 + (20a1 − 8b1) v21v2
− 4a3v1v32 + (8a1 + b1) v1v22 − 2a3v42 − a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1 = 0
−4a3 = 0
−2a3 = 0
−20b1 = 0

8a1 + b1 = 0
20a1 − 8b1 = 0

−8a2 + 48a3 − 16b2 + 8b3 = 0
10a2 − 8a3 + 2b2 − 10b3 = 0

16a2 − 16a3 − 4b2 − 16b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−−4x2 + 6xy + y2

x (−4x+ y)

)
(x)

= 4x2 − 2xy − 2y2
4x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2−2xy−2y2
4x−y

dy

Which results in

S = − ln (y − x)
2 + ln (2x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−4x2 + 6xy + y2

x (−4x+ y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
−2y + 2x + 2

2x+ y

Sy =
1

−2y + 2x + 1
2x+ y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y − x)
2 + ln (y + 2x) = − ln (x)

2 + c1

Which simplifies to

− ln (y − x)
2 + ln (y + 2x) = − ln (x)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−4x2+6xy+y2

x(−4x+y)
dS
dR

= − 1
2R

R = x

S = − ln (y − x)
2 + ln (2x+ y)

Summary
The solution(s) found are the following

(1)− ln (y − x)
2 + ln (y + 2x) = − ln (x)

2 + c1
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Figure 844: Slope field plot

Verification of solutions

− ln (y − x)
2 + ln (y + 2x) = − ln (x)

2 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 69� �
dsolve(x*(4*x-y(x))*diff(y(x),x)+4*x^2-6*x*y(x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −4c21x2 +
√

−12c21x2 + 1 + 1
2x c21

y(x) = −4c21x2 −
√
−12c21x2 + 1 + 1
2x c21

3 Solution by Mathematica
Time used: 1.469 (sec). Leaf size: 90� �
DSolve[x(4 x -y[x])y'[x]+4 x^2-6 x y[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x2 + e
c1
2
√
12x2 + ec1 + ec1

2x

y(x) → −4x2 − e
c1
2
√
12x2 + ec1 + ec1

2x
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19.21 problem 534
19.21.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5309

Internal problem ID [3786]
Internal file name [OUTPUT/3279_Sunday_June_05_2022_09_05_21_AM_45442032/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 534.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x
(
y + x3) y′ − (−y + x3) y = 0

19.21.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(−x3 + y)
x (x3 + y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(−x3 + y) (b3 − a2)

x (x3 + y) − y2(−x3 + y)2 a3
x2 (x3 + y)2

−
(

3yx
x3 + y

+ y(−x3 + y)
x2 (x3 + y) + 3y(−x3 + y)x

(x3 + y)2
)
(xa2 + ya3 + a1)

−
(
− −x3 + y

x (x3 + y) −
y

x (x3 + y) +
y(−x3 + y)
x (x3 + y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x7b1 − x6ya1 − 4x5yb2 + 6x4y2a2 − 2x4y2b3 + 4x3y3a3 − 2x4yb1 + 6x3y2a1 − 2x2y2b2 + 2y4a3 − x y2b1 + y3a1

(x3 + y)2 x2

= 0

Setting the numerator to zero gives

(6E)−x7b1 + x6ya1 + 4x5yb2 − 6x4y2a2 + 2x4y2b3 − 4x3y3a3
+ 2x4yb1 − 6x3y2a1 + 2x2y2b2 − 2y4a3 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a1v
6
1v2 − b1v

7
1 − 6a2v41v22 − 4a3v31v32 + 4b2v51v2 + 2b3v41v22

− 6a1v31v22 + 2b1v41v2 − 2a3v42 + 2b2v21v22 − a1v
3
2 + b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b1v
7
1 + a1v

6
1v2 + 4b2v51v2 + (−6a2 + 2b3) v41v22 + 2b1v41v2

− 4a3v31v32 − 6a1v31v22 + 2b2v21v22 + b1v1v
2
2 − 2a3v42 − a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−6a1 = 0
−a1 = 0
−4a3 = 0
−2a3 = 0
−b1 = 0
2b1 = 0
2b2 = 0
4b2 = 0

−6a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(
−y(−x3 + y)

x (x3 + y)

)
(x)

= 2x3y + 4y2
x3 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x3y+4y2
x3+y

dy

Which results in

S = − ln (x3 + 2y)
4 + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(−x3 + y)
x (x3 + y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3x2

4x3 + 8y

Sy = − 1
2x3 + 4y + 1

2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x3 + 2y)
4 + ln (y)

2 = − ln (x)
4 + c1

Which simplifies to

− ln (x3 + 2y)
4 + ln (y)

2 = − ln (x)
4 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
−x3+y

)
x(x3+y)

dS
dR

= − 1
4R

R = x

S = − ln (x3 + 2y)
4 + ln (y)

2

Summary
The solution(s) found are the following

(1)− ln (x3 + 2y)
4 + ln (y)

2 = − ln (x)
4 + c1
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Figure 845: Slope field plot

Verification of solutions

− ln (x3 + 2y)
4 + ln (y)

2 = − ln (x)
4 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �

5315



3 Solution by Maple
Time used: 0.594 (sec). Leaf size: 41� �
dsolve(x*(x^3+y(x))*diff(y(x),x) = (x^3-y(x))*y(x),y(x), singsol=all)� �

y(x) =
c1
(
c1 −

√
x4 + c21

)
x

y(x) =
c1
(
c1 +

√
x4 + c21

)
x

3 Solution by Mathematica
Time used: 0.778 (sec). Leaf size: 73� �
DSolve[x(x^3+y[x])y'[x]==(x^3-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4

−x+
√

1+c1x4√
1
x2

y(x) → − x4

x+
√

1+c1x4√
1
x2

y(x) → 0

5316



19.22 problem 535
19.22.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5317

Internal problem ID [3787]
Internal file name [OUTPUT/3280_Sunday_June_05_2022_09_05_26_AM_65137280/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 535.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x
(
2x3 + y

)
y′ −

(
2x3 − y

)
y = 0

19.22.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(−2x3 + y)
x (2x3 + y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(−2x3 + y) (b3 − a2)

x (2x3 + y) − y2(−2x3 + y)2 a3
x2 (2x3 + y)2

−
(

6yx
2x3 + y

+ y(−2x3 + y)
x2 (2x3 + y) + 6y(−2x3 + y)x

(2x3 + y)2
)
(xa2 + ya3 + a1)

−
(
− −2x3 + y

x (2x3 + y) −
y

x (2x3 + y) +
y(−2x3 + y)
x (2x3 + y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x7b1 − 4x6ya1 − 8x5yb2 + 12x4y2a2 − 4x4y2b3 + 8x3y3a3 − 4x4yb1 + 12x3y2a1 − 2x2y2b2 + 2y4a3 − x y2b1 + y3a1

(2x3 + y)2 x2

= 0

Setting the numerator to zero gives

(6E)−4x7b1 + 4x6ya1 + 8x5yb2 − 12x4y2a2 + 4x4y2b3 − 8x3y3a3
+ 4x4yb1 − 12x3y2a1 + 2x2y2b2 − 2y4a3 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a1v61v2 − 4b1v71 − 12a2v41v22 − 8a3v31v32 + 8b2v51v2 + 4b3v41v22
− 12a1v31v22 + 4b1v41v2 − 2a3v42 + 2b2v21v22 − a1v

3
2 + b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4b1v71 + 4a1v61v2 + 8b2v51v2 + (−12a2 + 4b3) v41v22 + 4b1v41v2
− 8a3v31v32 − 12a1v31v22 + 2b2v21v22 + b1v1v

2
2 − 2a3v42 − a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−12a1 = 0
−a1 = 0
4a1 = 0

−8a3 = 0
−2a3 = 0
−4b1 = 0
4b1 = 0
2b2 = 0
8b2 = 0

−12a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(
−y(−2x3 + y)

x (2x3 + y)

)
(x)

= 4x3y + 4y2
2x3 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x3y+4y2
2x3+y

dy

Which results in

S = ln (y)
2 − ln (x3 + y)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(−2x3 + y)
x (2x3 + y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3x2

4x3 + 4y

Sy =
1
2y − 1

4x3 + 4y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
2 − ln (y + x3)

4 = − ln (x)
4 + c1

Which simplifies to

ln (y)
2 − ln (y + x3)

4 = − ln (x)
4 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
−2x3+y

)
x(2x3+y)

dS
dR

= − 1
4R

R = x

S = ln (y)
2 − ln (x3 + y)

4

Summary
The solution(s) found are the following

(1)ln (y)
2 − ln (y + x3)

4 = − ln (x)
4 + c1
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Figure 846: Slope field plot

Verification of solutions

ln (y)
2 − ln (y + x3)

4 = − ln (x)
4 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.609 (sec). Leaf size: 47� �
dsolve(x*(2*x^3+y(x))*diff(y(x),x) = (2*x^3-y(x))*y(x),y(x), singsol=all)� �

y(x) =
c1
(√

4x4 + c21 + c1
)

2x

y(x) = −
c1
(
−c1 +

√
4x4 + c21

)
2x

3 Solution by Mathematica
Time used: 0.772 (sec). Leaf size: 76� �
DSolve[x(2 x^3+y[x])y'[x]==(2 x^3-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x4

−x+
√

1+4c1x4√
1
x2

y(x) → − 2x4

x+
√

1+4c1x4√
1
x2

y(x) → 0
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19.23 problem 536
19.23.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5325

Internal problem ID [3788]
Internal file name [OUTPUT/3281_Sunday_June_05_2022_09_05_30_AM_16549015/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 536.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x
(
2x3 + y

)
y′ − 6y2 = 0

19.23.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 6y2
x (2x3 + y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
6y2(b3 − a2)
x (2x3 + y) − 36y4a3

x2 (2x3 + y)2

−
(
− 6y2
x2 (2x3 + y) −

36y2x
(2x3 + y)2

)
(xa2 + ya3 + a1)

−
(

12y
x (2x3 + y) −

6y2

x (2x3 + y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x8b2 − 20x5yb2 + 36x4y2a2 − 12x4y2b3 + 48x3y3a3 − 24x4yb1 + 48x3y2a1 − 5x2y2b2 − 30y4a3 − 6x y2b1 + 6y3a1
x2 (2x3 + y)2

= 0

Setting the numerator to zero gives

(6E)4x8b2 − 20x5yb2 + 36x4y2a2 − 12x4y2b3 + 48x3y3a3 − 24x4yb1
+ 48x3y2a1 − 5x2y2b2 − 30y4a3 − 6x y2b1 + 6y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4b2v81 + 36a2v41v22 + 48a3v31v32 − 20b2v51v2 − 12b3v41v22 + 48a1v31v22
− 24b1v41v2 − 30a3v42 − 5b2v21v22 + 6a1v32 − 6b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)4b2v81 − 20b2v51v2 + (36a2 − 12b3) v41v22 − 24b1v41v2 + 48a3v31v32
+ 48a1v31v22 − 5b2v21v22 − 6b1v1v22 − 30a3v42 + 6a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
48a1 = 0

−30a3 = 0
48a3 = 0

−24b1 = 0
−6b1 = 0
−20b2 = 0
−5b2 = 0
4b2 = 0

36a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(

6y2
x (2x3 + y)

)
(x)

= 6x3y − 3y2
2x3 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

6x3y−3y2
2x3+y

dy

Which results in

S = −2 ln (−2x3 + y)
3 + ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 6y2
x (2x3 + y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x2

2x3 − y

Sy =
2

6x3 − 3y + 1
3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1

Which simplifies to

−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 6y2
x(2x3+y)

dS
dR

= − 2
R

R = x

S = −2 ln (−2x3 + y)
3 + ln (y)

3

Summary
The solution(s) found are the following

(1)−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1
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Figure 847: Slope field plot

Verification of solutions

−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.672 (sec). Leaf size: 193� �
dsolve(x*(2*x^3+y(x))*diff(y(x),x) = 6*y(x)^2,y(x), singsol=all)� �

y(x) = −
x3
(
−x3 +

√
x3 (x3 + 8c1)− 4c1

)
2c1

y(x) =
x3
(
x3 +

√
x3 (x3 + 8c1) + 4c1

)
2c1

y(x) = −
x3
(
−x3 +

√
x3 (x3 + 8c1)− 4c1

)
2c1

y(x) =
x3
(
x3 +

√
x3 (x3 + 8c1) + 4c1

)
2c1

y(x) = −
x3
(
−x3 +

√
x3 (x3 + 8c1)− 4c1

)
2c1

y(x) =
x3
(
x3 +

√
x3 (x3 + 8c1) + 4c1

)
2c1

3 Solution by Mathematica
Time used: 1.392 (sec). Leaf size: 123� �
DSolve[x(2 x^3+y[x])y'[x]==6 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3

−1 + 2
1− 4x3/2√

16x3+c1


y(x) → 2x3

−1 + 2
1 + 4x3/2√

16x3+c1


y(x) → 0
y(x) → 2x3

y(x) →
2
(
(x3)3/2 − x9/2

)
x3/2 +

√
x3
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19.24 problem 537
19.24.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5333
19.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5335
19.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5339
19.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5343

Internal problem ID [3789]
Internal file name [OUTPUT/3282_Sunday_June_05_2022_09_05_34_AM_48554903/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 537.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y(1− x) y′ + x(1− y) = 0

19.24.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − x(y − 1)
(x− 1) y

Where f(x) = − x
x−1 and g(y) = y−1

y
. Integrating both sides gives

1
y−1
y

dy = − x

x− 1 dx

∫ 1
y−1
y

dy =
∫

− x

x− 1 dx

y + ln (y − 1) = −x− ln (x− 1) + c1
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Which results in

y = LambertW
(
e−x−1+c1

x− 1

)
+ 1

Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = LambertW
(
e−x−1+c1

x− 1

)
+ 1

gives

y = LambertW
(
c1e−x−1

x− 1

)
+ 1

Summary
The solution(s) found are the following

(1)y = LambertW
(
c1e−x−1

x− 1

)
+ 1

Figure 848: Slope field plot
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Verification of solutions

y = LambertW
(
c1e−x−1

x− 1

)
+ 1

Verified OK.

19.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − x(y − 1)
(x− 1) y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

5335



Table 830: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x− 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x−1
x

dx

Which results in

S = −x− ln (x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x(y − 1)
(x− 1) y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − x

x− 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + ln (R− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x− ln (x− 1) = y + ln (y − 1) + c1

Which simplifies to

−x− ln (x− 1) = y + ln (y − 1) + c1

Which gives

y = LambertW
(
e−1−x−c1

x− 1

)
+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x(y−1)
(x−1)y

dS
dR

= R
R−1

R = y

S = −x− ln (x− 1)

Summary
The solution(s) found are the following

(1)y = LambertW
(
e−1−x−c1

x− 1

)
+ 1
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Figure 849: Slope field plot

Verification of solutions

y = LambertW
(
e−1−x−c1

x− 1

)
+ 1

Verified OK.

19.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− y

y − 1

)
dy =

(
x

x− 1

)
dx(

− x

x− 1

)
dx+

(
− y

y − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x− 1
N(x, y) = − y

y − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x− 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− y

y − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x− 1 dx

(3)φ = −x− ln (x− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − y
y−1 . Therefore equation (4) becomes

(5)− y

y − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − y

y − 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− y

y − 1

)
dy

f(y) = −y − ln (y − 1) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x− 1)− y − ln (y − 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x− 1)− y − ln (y − 1)

The solution becomes

y = LambertW
(
e−1−x−c1

x− 1

)
+ 1

Summary
The solution(s) found are the following

(1)y = LambertW
(
e−1−x−c1

x− 1

)
+ 1

Figure 850: Slope field plot
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Verification of solutions

y = LambertW
(
e−1−x−c1

x− 1

)
+ 1

Verified OK.

19.24.4 Maple step by step solution

Let’s solve
y(1− x) y′ + x(1− y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y
1−y

= − x
1−x

• Integrate both sides with respect to x∫
y′y
1−y

dx =
∫
− x

1−x
dx+ c1

• Evaluate integral
−y − ln (y − 1) = x+ ln (x− 1) + c1

• Solve for y

y = LambertW
(

e−1−x−c1
x−1

)
+ 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(y(x)*(1-x)*diff(y(x),x)+x*(1-y(x)) = 0,y(x), singsol=all)� �

y(x) = LambertW
(

e−x−1

c1 (x− 1)

)
+ 1

3 Solution by Mathematica
Time used: 6.836 (sec). Leaf size: 28� �
DSolve[y[x]*(1-x)*y'[x]+x*(1-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 +W

(
e−x−1+c1

x− 1

)
y(x) → 1
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19.25 problem 538
19.25.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5345
19.25.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 5346
19.25.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5347
19.25.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 5348
19.25.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5351
19.25.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5354

Internal problem ID [3790]
Internal file name [OUTPUT/3283_Sunday_June_05_2022_09_05_38_AM_23504420/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 538.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ a) (x+ b) y′ − yx = 0

19.25.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= yx

(x+ a) (x+ b)
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Where f(x) = x
(x+a)(x+b) and g(y) = y. Integrating both sides gives

1
y
dy = x

(x+ a) (x+ b) dx∫ 1
y
dy =

∫
x

(x+ a) (x+ b) dx

ln (y) = −b ln (x+ b)
−b+ a

+ a ln (x+ a)
−b+ a

+ c1

y = e−
b ln(x+b)
−b+a

+a ln(x+a)
−b+a

+c1

= c1e−
b ln(x+b)
−b+a

+a ln(x+a)
−b+a

Which simplifies to

y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Summary
The solution(s) found are the following

(1)y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verification of solutions

y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verified OK.

19.25.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

(x+ a) (x+ b)
q(x) = 0

Hence the ode is

y′ − yx

(x+ a) (x+ b) = 0

The integrating factor µ is

µ = e
∫
− x

(x+a)(x+b)dx

= e
b ln(x+b)
−b+a

−a ln(x+a)
−b+a
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Which simplifies to

µ = (x+ b)
b

−b+a (x+ a)−
a

−b+a

The ode becomes

d
dxµy = 0

d
dx

(
(x+ b)

b
−b+a (x+ a)−

a
−b+a y

)
= 0

Integrating gives

(x+ b)
b

−b+a (x+ a)−
a

−b+a y = c1

Dividing both sides by the integrating factor µ = (x+ b)
b

−b+a (x+ a)−
a

−b+a results in

y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Summary
The solution(s) found are the following

(1)y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verification of solutions

y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verified OK.

19.25.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(x+ a) (x+ b) (u′(x)x+ u(x))− u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(ab+ ax+ bx)
(x+ a) (x+ b)x
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Where f(x) = − ab+ax+bx
(x+b)(x+a)x and g(u) = u. Integrating both sides gives

1
u
du = − ab+ ax+ bx

(x+ b) (x+ a)x dx∫ 1
u
du =

∫
− ab+ ax+ bx

(x+ b) (x+ a)x dx

ln (u) = −b ln (x+ b)
−b+ a

+ a ln (x+ a)
−b+ a

− ln (x) + c2

u = e−
b ln(x+b)
−b+a

+a ln(x+a)
−b+a

−ln(x)+c2

= c2e−
b ln(x+b)
−b+a

+a ln(x+a)
−b+a

−ln(x)

Which simplifies to

u(x) = c2(x+ b)−
b

−b+a (x+ a)
a

−b+a

x

Therefore the solution y is

y = xu

= c2(x+ b)−
b

−b+a (x+ a)
a

−b+a

Summary
The solution(s) found are the following

(1)y = c2(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verification of solutions

y = c2(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verified OK.

19.25.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = yx

(x+ a) (x+ b)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 833: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
b ln(x+b)
−b+a

+a ln(x+a)
−b+a (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
b ln(x+b)
−b+a

+a ln(x+a)
−b+a

dy

Which results in

S = e
b ln(x+b)
−b+a

−a ln(x+a)
−b+a y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = yx

(x+ a) (x+ b)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
y
(
−a(x+ a)

b−2a
−b+a (x+ b)

b
−b+a + b(x+ b)

2b−a
−b+a (x+ a)−

a
−b+a

)
−b+ a

Sy = (x+ b)
b

−b+a (x+ a)−
a

−b+a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

((
(−b+ a)x(x+ a)

b−2a
−b+a + (x+ a)−

a
−b+a b

)
(x+ b)

2b−a
−b+a − a(x+ a)

b−2a
−b+a (x+ b)

b
−b+a

)
y

−b+ a
(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ b)
b

−b+a (x+ a)−
a

−b+a y = c1

Which simplifies to

(x+ b)
b

−b+a (x+ a)−
a

−b+a y = c1

Which gives

y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Summary
The solution(s) found are the following

(1)y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verification of solutions

y = c1(x+ b)−
b

−b+a (x+ a)
a

−b+a

Verified OK.

19.25.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
x

(x+ a) (x+ b)

)
dx(

− x

(x+ a) (x+ b)

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

(x+ a) (x+ b)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

(x+ a) (x+ b)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

(x+ a) (x+ b) dx

(3)φ = b ln (x+ b)− a ln (x+ a)
−b+ a

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = b ln (x+ b)− a ln (x+ a)
−b+ a

+ ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
b ln (x+ b)− a ln (x+ a)

−b+ a
+ ln (y)

The solution becomes

y = e−
b ln(x+b)−a ln(x+a)−c1a+c1b

−b+a

Summary
The solution(s) found are the following

(1)y = e−
b ln(x+b)−a ln(x+a)−c1a+c1b

−b+a

Verification of solutions

y = e−
b ln(x+b)−a ln(x+a)−c1a+c1b

−b+a

Verified OK.

19.25.6 Maple step by step solution

Let’s solve
(x+ a) (x+ b) y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y
= x

(x+a)(x+b)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x

(x+a)(x+b)dx+ c1

• Evaluate integral
ln (y) = − b ln(x+b)

−b+a
+ a ln(x+a)

−b+a
+ c1

• Solve for y

y = e−
b ln(x+b)−a ln(x+a)−c1a+c1b

−b+a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve((a+x)*(b+x)*diff(y(x),x) = x*y(x),y(x), singsol=all)� �

y(x) = c1(x+ b)−
b

a−b (x+ a)
a

a−b

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 37� �
DSolve[(a+x)(b+x)y'[x]==x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
a log(a+x)−b log(b+x)

a−b

y(x) → 0
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19.26 problem 539
19.26.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5356
19.26.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5360
19.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5364

Internal problem ID [3791]
Internal file name [OUTPUT/3284_Sunday_June_05_2022_09_05_41_AM_9075978/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 539.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

2xyy′ − y2 = 2x3 − 1

19.26.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x3 + y2 − 1
2yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 836: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x3 + y2 − 1
2yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x3 − 1

2x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R3 − 1

2R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + 1
2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = x2

2 + 1
2x + c1

Which simplifies to

y2

2x = x2

2 + 1
2x + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x3+y2−1
2yx

dS
dR

= 2R3−1
2R2

R = x

S = y2

2x

Summary
The solution(s) found are the following

(1)y2

2x = x2

2 + 1
2x + c1
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Figure 851: Slope field plot

Verification of solutions

y2

2x = x2

2 + 1
2x + c1

Verified OK.

19.26.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 2x3 + y2 − 1
2yx

This is a Bernoulli ODE.
y′ = 1

2xy +
2x3 − 1

2x
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) =
2x3 − 1

2x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x + 2x3 − 1
2x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x + 2x3 − 1
2x

w′ = w

x
+ 2x3 − 1

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = 2x3 − 1
x
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Hence the ode is

w′(x)− w(x)
x

= 2x3 − 1
x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
2x3 − 1

x

)
d
dx

(w
x

)
=
(
1
x

)(
2x3 − 1

x

)
d
(w
x

)
=
(
2x3 − 1

x2

)
dx

Integrating gives

w

x
=
∫ 2x3 − 1

x2 dx

w

x
= x2 + 1

x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = x

(
x2 + 1

x

)
+ c1x

which simplifies to

w(x) = x3 + c1x+ 1

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x3 + c1x+ 1

Solving for y gives

y(x) =
√
x3 + c1x+ 1

y(x) = −
√

x3 + c1x+ 1
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Summary
The solution(s) found are the following

(1)y =
√
x3 + c1x+ 1

(2)y = −
√
x3 + c1x+ 1

Figure 852: Slope field plot

Verification of solutions

y =
√

x3 + c1x+ 1

Verified OK.

y = −
√
x3 + c1x+ 1

Verified OK.
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19.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
2x3 + y2 − 1

)
dx(

−2x3 − y2 + 1
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x3 − y2 + 1
N(x, y) = 2xy

5364



The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2x3 − y2 + 1

)
= −2y

And
∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2xy ((−2y)− (2y))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−2x3 − y2 + 1

)
= −2x3 − y2 + 1

x2
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And

N = µN

= 1
x2 (2xy)

= 2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x3 − y2 + 1
x2

)
+
(
2y
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3 − y2 + 1

x2 dx

(3)φ = −x3 + y2 − 1
x

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
x
. Therefore equation (4) becomes

(5)2y
x

= 2y
x

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x3 + y2 − 1
x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x3 + y2 − 1

x

Summary
The solution(s) found are the following

(1)−x3 + y2 − 1
x

= c1

Figure 853: Slope field plot
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Verification of solutions

−x3 + y2 − 1
x

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(2*x*y(x)*diff(y(x),x)+1-2*x^3-y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√

x3 + c1x+ 1
y(x) = −

√
x3 + c1x+ 1

3 Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 37� �
DSolve[2 x y[x] y'[x]+1-2 x^3-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

x3 + c1x+ 1
y(x) →

√
x3 + c1x+ 1
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19.27 problem 540
19.27.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5369
19.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5370
19.27.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5373
19.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5376
19.27.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5379

Internal problem ID [3792]
Internal file name [OUTPUT/3285_Sunday_June_05_2022_09_05_47_AM_80936831/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 540.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2xyy′ + y2 = −a

19.27.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y2 + a

2yx

Where f(x) = − 1
2x and g(y) = y2+a

y
. Integrating both sides gives

1
y2+a
y

dy = − 1
2x dx

∫ 1
y2+a
y

dy =
∫

− 1
2x dx
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ln (y2 + a)
2 = − ln (x)

2 + c1

Raising both side to exponential gives√
y2 + a = e−

ln(x)
2 +c1

Which simplifies to √
y2 + a = c2√

x

Which simplifies to √
a+ y2 = c2ec1√

x

The solution is √
a+ y2 = c2ec1√

x

Summary
The solution(s) found are the following

(1)
√

a+ y2 = c2ec1√
x

Verification of solutions √
a+ y2 = c2ec1√

x

Verified OK.

19.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2 + a

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 838: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −2x
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−2xdx

Which results in

S = − ln (x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2 + a

2yx
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − 1
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y2 + a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 + a
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 + a)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x)
2 = ln (a+ y2)

2 + c1

Which simplifies to

− ln (x)
2 = ln (a+ y2)

2 + c1

Summary
The solution(s) found are the following

(1)− ln (x)
2 = ln (a+ y2)

2 + c1

Verification of solutions

− ln (x)
2 = ln (a+ y2)

2 + c1

Verified OK.

19.27.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y2 + a

2yx

This is a Bernoulli ODE.
y′ = − 1

2xy −
a

2x
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2x

f1(x) = − a

2x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = − y2

2x − a

2x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

2x − a

2x
w′ = −w

x
− a

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −a

x
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Hence the ode is

w′(x) + w(x)
x

= −a

x

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ)

(
−a

x

)
d
dx(xw) = (x)

(
−a

x

)
d(xw) = (−a) dx

Integrating gives

xw =
∫

−a dx

xw = −ax+ c1

Dividing both sides by the integrating factor µ = x results in

w(x) = −a+ c1
x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −a+ c1
x

Solving for y gives

y(x) =
√
x (−ax+ c1)

x

y(x) = −
√
x (−ax+ c1)

x

Summary
The solution(s) found are the following

(1)y =
√

x (−ax+ c1)
x

(2)y = −
√
x (−ax+ c1)

x
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Verification of solutions

y =
√
x (−ax+ c1)

x

Verified OK.

y = −
√
x (−ax+ c1)

x

Verified OK.

19.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
− 2y
y2 + a

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 2y
y2 + a

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 2y
y2 + a

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 2y
y2 + a

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 2y
y2+a

. Therefore equation (4) becomes

(5)− 2y
y2 + a

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 2y
y2 + a

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 2y
y2 + a

)
dy

f(y) = − ln
(
y2 + a

)
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln
(
y2 + a

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln
(
y2 + a

)
Summary
The solution(s) found are the following

(1)− ln (x)− ln
(
a+ y2

)
= c1

Verification of solutions

− ln (x)− ln
(
a+ y2

)
= c1

Verified OK.
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19.27.5 Maple step by step solution

Let’s solve
2xyy′ + y2 = −a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(2xyy′ + y2) dx =

∫
−adx+ c1

• Evaluate integral
y2x = −ax+ c1

• Solve for y{
y =

√
x(−ax+c1)

x
, y = −

√
x(−ax+c1)

x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve(2*x*y(x)*diff(y(x),x)+a+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√

(−ax+ c1)x
x

y(x) = −
√

(−ax+ c1)x
x
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3 Solution by Mathematica
Time used: 0.358 (sec). Leaf size: 115� �
DSolve[2 x y[x] y'[x]+a+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−ax+ e2c1√

x

y(x) →
√
−ax+ e2c1√

x

y(x) → −i
√
a

y(x) → i
√
a

y(x) → a
√
x√

−ax

y(x) →
√
−ax√
x
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19.28 problem 541
19.28.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5381
19.28.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5384
19.28.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5387

Internal problem ID [3793]
Internal file name [OUTPUT/3286_Sunday_June_05_2022_09_05_50_AM_10547563/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 541.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

2xyy′ − y2 = ax

19.28.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ax+ y2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 841: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ax+ y2

2yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= a

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= a

2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = a ln (x)
2 + c1

Which simplifies to

y2

2x = a ln (x)
2 + c1

Summary
The solution(s) found are the following

(1)y2

2x = a ln (x)
2 + c1

Verification of solutions

y2

2x = a ln (x)
2 + c1

Verified OK.

19.28.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= ax+ y2

2yx

This is a Bernoulli ODE.
y′ = 1

2xy +
a

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) =
a

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x + a

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x + a

2
w′ = w

x
+ a (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = a
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Hence the ode is

w′(x)− w(x)
x

= a

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ) (a)

d
dx

(w
x

)
=
(
1
x

)
(a)

d
(w
x

)
=
(a
x

)
dx

Integrating gives

w

x
=
∫

a

x
dx

w

x
= a ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = ax ln (x) + c1x

which simplifies to

w(x) = x(a ln (x) + c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x(a ln (x) + c1)

Solving for y gives

y(x) =
√
x (a ln (x) + c1)

y(x) = −
√
x (a ln (x) + c1)
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Summary
The solution(s) found are the following

(1)y =
√

x (a ln (x) + c1)
(2)y = −

√
x (a ln (x) + c1)

Verification of solutions

y =
√
x (a ln (x) + c1)

Verified OK.

y = −
√

x (a ln (x) + c1)

Verified OK.

19.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
ax+ y2

)
dx(

−ax− y2
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ax− y2

N(x, y) = 2xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−ax− y2

)
= −2y

And

∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2xy ((−2y)− (2y))

= −2
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−ax− y2

)
= −ax− y2

x2

And

N = µN

= 1
x2 (2xy)

= 2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−ax− y2

x2

)
+
(
2y
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ax− y2

x2 dx

(3)φ = y2

x
− a ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
x
. Therefore equation (4) becomes

(5)2y
x

= 2y
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y2

x
− a ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y2

x
− a ln (x)

Summary
The solution(s) found are the following

(1)y2

x
− a ln (x) = c1
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Verification of solutions

y2

x
− a ln (x) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve(2*x*y(x)*diff(y(x),x) = a*x+y(x)^2,y(x), singsol=all)� �

y(x) =
√
(a ln (x) + c1)x

y(x) = −
√

(a ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 44� �
DSolve[2 x y[x] y'[x]==a x +y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√

a log(x) + c1

y(x) →
√
x
√
a log(x) + c1
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19.29 problem 542
19.29.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5392
19.29.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5394
19.29.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5398
19.29.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5401
19.29.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5405

Internal problem ID [3794]
Internal file name [OUTPUT/3287_Sunday_June_05_2022_09_05_55_AM_16431551/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 542.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _Bernoulli]

2xyy′ + y2 = −x2

19.29.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x2u(x) (u′(x)x+ u(x)) + u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u2 + 1
2ux
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Where f(x) = − 1
2x and g(u) = 3u2+1

u
. Integrating both sides gives

1
3u2+1

u

du = − 1
2x dx

∫ 1
3u2+1

u

du =
∫

− 1
2x dx

ln (3u2 + 1)
6 = − ln (x)

2 + c2

Raising both side to exponential gives(
3u2 + 1

) 1
6 = e−

ln(x)
2 +c2

Which simplifies to (
3u2 + 1

) 1
6 = c3√

x

Which simplifies to (
3u(x)2 + 1

) 1
6 = c3ec2√

x

The solution is (
3u(x)2 + 1

) 1
6 = c3ec2√

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

3y2
x2 + 1

) 1
6

= c3ec2√
x(

3y2 + x2

x2

) 1
6

= c3ec2√
x

Summary
The solution(s) found are the following

(1)
(
3y2 + x2

x2

) 1
6

= c3ec2√
x
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Figure 854: Slope field plot

Verification of solutions (
3y2 + x2

x2

) 1
6

= c3ec2√
x

Verified OK.

19.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 843: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
xy

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
xy

dy

Which results in

S = x y2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2

2yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2

2
Sy = xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x2

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R2

2

5396



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R3

6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x

2 = −x3

6 + c1

Which simplifies to

y2x

2 = −x3

6 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y2

2yx
dS
dR

= −R2

2

R = x

S = x y2

2

Summary
The solution(s) found are the following

(1)y2x

2 = −x3

6 + c1
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Figure 855: Slope field plot

Verification of solutions

y2x

2 = −x3

6 + c1

Verified OK.

19.29.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2

2yx
This is a Bernoulli ODE.

y′ = − 1
2xy −

x

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2x

f1(x) = −x

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = − y2

2x − x

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

2x − x

2
w′ = −w

x
− x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −x
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Hence the ode is

w′(x) + w(x)
x

= −x

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ) (−x)
d
dx(xw) = (x) (−x)

d(xw) =
(
−x2) dx

Integrating gives

xw =
∫

−x2 dx

xw = −x3

3 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = −x2

3 + c1
x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −x2

3 + c1
x

Solving for y gives

y(x) =
√
3
√
−x (x3 − 3c1)

3x

y(x) = −
√
3
√
−x (x3 − 3c1)

3x

Summary
The solution(s) found are the following

(1)y =
√
3
√
−x (x3 − 3c1)

3x

(2)y = −
√
3
√

−x (x3 − 3c1)
3x
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Figure 856: Slope field plot

Verification of solutions

y =
√
3
√

−x (x3 − 3c1)
3x

Verified OK.

y = −
√
3
√

−x (x3 − 3c1)
3x

Verified OK.

19.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
−x2 − y2

)
dx(

x2 + y2
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2

N(x, y) = 2xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + y2

)
= 2y
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And
∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + y2 dx

(3)φ = 1
3x

3 + x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2xy. Therefore equation (4) becomes

(5)2xy = 2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1
3x

3 + x y2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
3x

3 + x y2

Summary
The solution(s) found are the following

(1)x3

3 + y2x = c1

Figure 857: Slope field plot

Verification of solutions

x3

3 + y2x = c1

Verified OK.
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19.29.5 Maple step by step solution

Let’s solve
2xyy′ + y2 = −x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2y = 2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x2 + y2) dx+ f1(y)

• Evaluate integral
F (x, y) = x3

3 + x y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2xy = 2xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 1
3x

3 + x y2

• Substitute F (x, y) into the solution of the ODE
1
3x

3 + x y2 = c1

• Solve for y{
y = −

√
3
√

x(−x3+3c1)
3x , y =

√
3
√

x(−x3+3c1)
3x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve(2*x*y(x)*diff(y(x),x)+x^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −
√
3
√
−x (x3 − 3c1)

3x

y(x) =
√
3
√

−x (x3 − 3c1)
3x

3 Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 60� �
DSolve[2 x y[x] y'[x]+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x3 + 3c1√

3
√
x

y(x) →
√
−x3 + 3c1√

3
√
x
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19.30 problem 543
19.30.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5407
19.30.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5409
19.30.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5413
19.30.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5417

Internal problem ID [3795]
Internal file name [OUTPUT/3288_Sunday_June_05_2022_09_06_01_AM_38112237/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 543.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

2xyy′ − y2 = x2

19.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x2u(x) (u′(x)x+ u(x))− u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 − 1
2ux
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Where f(x) = − 1
2x and g(u) = u2−1

u
. Integrating both sides gives

1
u2−1
u

du = − 1
2x dx

∫ 1
u2−1
u

du =
∫

− 1
2x dx

ln (u− 1)
2 + ln (u+ 1)

2 = − ln (x)
2 + c2

The above can be written as(
1
2

)
(ln (u− 1) + ln (u+ 1)) = − ln (x)

2 + 2c2

ln (u− 1) + ln (u+ 1) = (2)
(
− ln (x)

2 + 2c2
)

= − ln (x) + 4c2

Raising both side to exponential gives

eln(u−1)+ln(u+1) = e− ln(x)+2c2

Which simplifies to

u2 − 1 = 2c2
x

= c3
x

The solution is
u(x)2 − 1 = c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − 1 = c3
x

y2

x2 − 1 = c3
x

Summary
The solution(s) found are the following

(1)y2

x2 − 1 = c3
x
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Figure 858: Slope field plot

Verification of solutions

y2

x2 − 1 = c3
x

Verified OK.

19.30.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + y2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 846: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + y2

2yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = x

2 + c1

Which simplifies to

y2

2x = x

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+y2

2yx
dS
dR

= 1
2

R = x

S = y2

2x

Summary
The solution(s) found are the following

(1)y2

2x = x

2 + c1
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Figure 859: Slope field plot

Verification of solutions

y2

2x = x

2 + c1

Verified OK.

19.30.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x2 + y2

2yx
This is a Bernoulli ODE.

y′ = 1
2xy +

x

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) =
x

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x + x

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x + x

2
w′ = w

x
+ x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = x
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Hence the ode is

w′(x)− w(x)
x

= x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ) (x)

d
dx

(w
x

)
=
(
1
x

)
(x)

d
(w
x

)
= dx

Integrating gives

w

x
=
∫

dx
w

x
= x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x+ x2

which simplifies to

w(x) = x(x+ c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x(x+ c1)

Solving for y gives

y(x) =
√
x (x+ c1)

y(x) = −
√

x (x+ c1)
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Summary
The solution(s) found are the following

(1)y =
√

x (x+ c1)
(2)y = −

√
x (x+ c1)

Figure 860: Slope field plot

Verification of solutions

y =
√

x (x+ c1)

Verified OK.

y = −
√
x (x+ c1)

Verified OK.

5416



19.30.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
x2 + y2

)
dx(

−x2 − y2
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − y2

N(x, y) = 2xy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 − y2

)
= −2y

And
∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2xy ((−2y)− (2y))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−x2 − y2

)
= −x2 − y2

x2
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And

N = µN

= 1
x2 (2xy)

= 2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x2 − y2

x2

)
+
(
2y
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − y2

x2 dx

(3)φ = −x+ y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
x
. Therefore equation (4) becomes

(5)2y
x

= 2y
x

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ y2

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ y2

x

Summary
The solution(s) found are the following

(1)−x+ y2

x
= c1

Figure 861: Slope field plot
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Verification of solutions

−x+ y2

x
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 23� �
dsolve(2*x*y(x)*diff(y(x),x) = x^2+y(x)^2,y(x), singsol=all)� �

y(x) =
√
(c1 + x)x

y(x) = −
√
(c1 + x)x

3 Solution by Mathematica
Time used: 0.173 (sec). Leaf size: 38� �
DSolve[2 x y[x] y'[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x+ c1

y(x) →
√
x
√
x+ c1
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19.31 problem 544
19.31.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5422
19.31.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5426
19.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5430

Internal problem ID [3796]
Internal file name [OUTPUT/3289_Sunday_June_05_2022_09_06_06_AM_95511349/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 544.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

2xyy′ − y2 = 4x2(1 + 2x)

19.31.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 8x3 + 4x2 + y2

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 848: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y

dy

Which results in

S = y2

2x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 8x3 + 4x2 + y2

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

2x2

Sy =
y

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4x+ 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4R + 2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R2 + 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x = 2x2 + c1 + 2x

Which simplifies to

y2

2x = 2x2 + c1 + 2x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 8x3+4x2+y2

2xy
dS
dR

= 4R + 2

R = x

S = y2

2x

Summary
The solution(s) found are the following

(1)y2

2x = 2x2 + c1 + 2x
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Figure 862: Slope field plot

Verification of solutions

y2

2x = 2x2 + c1 + 2x

Verified OK.

19.31.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 8x3 + 4x2 + y2

2xy
This is a Bernoulli ODE.

y′ = 1
2xy +

8x3 + 4x2

2x
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
2x

f1(x) =
8x3 + 4x2

2x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x + 8x3 + 4x2

2x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x + 8x3 + 4x2

2x

w′ = w

x
+ 8x3 + 4x2

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = 8x2 + 4x
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Hence the ode is

w′(x)− w(x)
x

= 8x2 + 4x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
8x2 + 4x

)
d
dx

(w
x

)
=
(
1
x

)(
8x2 + 4x

)
d
(w
x

)
= (4 + 8x) dx

Integrating gives

w

x
=
∫

4 + 8x dx
w

x
= 4x2 + 4x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = x
(
4x2 + 4x

)
+ c1x

which simplifies to

w(x) = x
(
4x2 + c1 + 4x

)
Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x
(
4x2 + c1 + 4x

)
Solving for y gives

y(x) =
√
x (4x2 + c1 + 4x)

y(x) = −
√

x (4x2 + c1 + 4x)
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Summary
The solution(s) found are the following

(1)y =
√
x (4x2 + c1 + 4x)

(2)y = −
√

x (4x2 + c1 + 4x)

Figure 863: Slope field plot

Verification of solutions

y =
√

x (4x2 + c1 + 4x)

Verified OK.

y = −
√

x (4x2 + c1 + 4x)

Verified OK.
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19.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
4x2(1 + 2x) + y2

)
dx(

−4x2(1 + 2x)− y2
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x2(1 + 2x)− y2

N(x, y) = 2xy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−4x2(1 + 2x)− y2

)
= −2y

And
∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2xy ((−2y)− (2y))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−4x2(1 + 2x)− y2

)
= −8x3 − 4x2 − y2

x2
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And

N = µN

= 1
x2 (2xy)

= 2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−8x3 − 4x2 − y2

x2

)
+
(
2y
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−8x3 − 4x2 − y2

x2 dx

(3)φ = −4x2 − 4x+ y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
x
. Therefore equation (4) becomes

(5)2y
x

= 2y
x

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −4x2 − 4x+ y2

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −4x2 − 4x+ y2

x

Summary
The solution(s) found are the following

(1)−4x2 − 4x+ y2

x
= c1

Figure 864: Slope field plot
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Verification of solutions

−4x2 − 4x+ y2

x
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 37� �
dsolve(2*x*y(x)*diff(y(x),x) = 4*x^2*(1+2*x)+y(x)^2,y(x), singsol=all)� �

y(x) =
√

(4x2 + c1 + 4x)x
y(x) = −

√
(4x2 + c1 + 4x)x

3 Solution by Mathematica
Time used: 0.202 (sec). Leaf size: 52� �
DSolve[2 x y[x] y'[x]==4 x^2(1+2 x)+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
4x2 + 4x+ c1

y(x) →
√
x
√

4x2 + 4x+ c1
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19.32 problem 545
19.32.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5435
19.32.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5438
19.32.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5441

Internal problem ID [3797]
Internal file name [OUTPUT/3290_Sunday_June_05_2022_09_06_12_AM_94569700/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 19
Problem number: 545.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

2xyy′ − 6y2 = −x2(a x3 + 1
)

19.32.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −a x5 − x2 + 6y2
2xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 850: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x6

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x6

y

dy

Which results in

S = y2

2x6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −a x5 − x2 + 6y2
2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −3y2
x7

Sy =
y

x6

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −a x3 − 1

2x5 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R3a− 1

2R5
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a

2R + 1
8R4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x6 = a

2x + 1
8x4 + c1

Which simplifies to

y2

2x6 = a

2x + 1
8x4 + c1

Summary
The solution(s) found are the following

(1)y2

2x6 = a

2x + 1
8x4 + c1

Verification of solutions

y2

2x6 = a

2x + 1
8x4 + c1

Verified OK.

19.32.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −a x5 − x2 + 6y2
2xy

This is a Bernoulli ODE.
y′ = 3

x
y + −a x5 − x2

2x
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
3
x

f1(x) =
−a x5 − x2

2x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = 3y2
x

+ −a x5 − x2

2x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = 3w(x)

x
+ −a x5 − x2

2x

w′ = 6w
x

+ −a x5 − x2

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −6
x

q(x) = −x
(
a x3 + 1

)
Hence the ode is

w′(x)− 6w(x)
x

= −x
(
a x3 + 1

)
The integrating factor µ is

µ = e
∫
− 6

x
dx

= 1
x6

The ode becomes
d
dx(µw) = (µ)

(
−x
(
a x3 + 1

))
d
dx

( w
x6

)
=
(

1
x6

)(
−x
(
a x3 + 1

))
d
( w
x6

)
=
(
−a x3 − 1

x5

)
dx

Integrating gives

w

x6 =
∫

−a x3 − 1
x5 dx

w

x6 = a

x
+ 1

4x4 + c1

Dividing both sides by the integrating factor µ = 1
x6 results in

w(x) = x6
(
a

x
+ 1

4x4

)
+ c1x

6

which simplifies to

w(x) = c1x
6 + a x5 + 1

4x
2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
6 + a x5 + 1

4x
2
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Solving for y gives

y(x) =
√
4c1x4 + 4a x3 + 1x

2

y(x) = −
√
4c1x4 + 4a x3 + 1x

2

Summary
The solution(s) found are the following

(1)y =
√
4c1x4 + 4a x3 + 1x

2

(2)y = −
√
4c1x4 + 4a x3 + 1x

2
Verification of solutions

y =
√
4c1x4 + 4a x3 + 1x

2

Verified OK.

y = −
√
4c1x4 + 4a x3 + 1x

2

Verified OK.

19.32.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
−x2(a x3 + 1

)
+ 6y2

)
dx(

x2(a x3 + 1
)
− 6y2

)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2(a x3 + 1
)
− 6y2

N(x, y) = 2xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2(a x3 + 1

)
− 6y2

)
= −12y

And
∂N

∂x
= ∂

∂x
(2xy)

= 2y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2xy ((−12y)− (2y))

= −7
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 7

x
dx

The result of integrating gives

µ = e−7 ln(x)

= 1
x7

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x7

(
x2(a x3 + 1

)
− 6y2

)
= a x5 + x2 − 6y2

x7

And

N = µN

= 1
x7 (2xy)

= 2y
x6

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

a x5 + x2 − 6y2
x7

)
+
(
2y
x6

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
a x5 + x2 − 6y2

x7 dx

(3)φ = −a

x
+ y2

x6 − 1
4x4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

x6 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
x6 . Therefore equation (4) becomes

(5)2y
x6 = 2y

x6 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −a

x
+ y2

x6 − 1
4x4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −a

x
+ y2

x6 − 1
4x4
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Summary
The solution(s) found are the following

(1)−a

x
+ y2

x6 − 1
4x4 = c1

Verification of solutions

−a

x
+ y2

x6 − 1
4x4 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(2*x*y(x)*diff(y(x),x)+x^2*(a*x^3+1) = 6*y(x)^2,y(x), singsol=all)� �

y(x) = −
√
4c1x4 + 4a x3 + 1x

2

y(x) =
√
4c1x4 + 4a x3 + 1x

2

3 Solution by Mathematica
Time used: 0.775 (sec). Leaf size: 59� �
DSolve[2 x y[x] y'[x]+x^2(1+a x^3)==6 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2
√

4ax5 + 4c1x6 + x2

y(x) → 1
2
√

4ax5 + 4c1x6 + x2
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20.1 problem 546
20.1.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5447
20.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5450

Internal problem ID [3798]
Internal file name [OUTPUT/3291_Sunday_June_05_2022_09_06_17_AM_95225125/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 546.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

(3− x+ 2yx) y′ − y + y2 = −3x2

20.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(2xy − x+ 3) dy =
(
−3x2 − y2 + y

)
dx(

3x2 + y2 − y
)
dx+(2xy − x+ 3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x2 + y2 − y

N(x, y) = 2xy − x+ 3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3x2 + y2 − y

)
= 2y − 1

And
∂N

∂x
= ∂

∂x
(2xy − x+ 3)

= 2y − 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3x2 + y2 − y dx

(3)φ = x
(
x2 + y2 − y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x(2y − 1) + f ′(y)

But equation (2) says that ∂φ
∂y

= 2xy − x+ 3. Therefore equation (4) becomes

(5)2xy − x+ 3 = x(2y − 1) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(3) dy

f(y) = 3y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x
(
x2 + y2 − y

)
+ 3y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
x2 + y2 − y

)
+ 3y
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Summary
The solution(s) found are the following

(1)x
(
x2 + y2 − y

)
+ 3y = c1

Figure 865: Slope field plot

Verification of solutions

x
(
x2 + y2 − y

)
+ 3y = c1

Verified OK.

20.1.2 Maple step by step solution

Let’s solve
(3− x+ 2yx) y′ − y + y2 = −3x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2y − 1 = 2y − 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(3x2 + y2 − y) dx+ f1(y)

• Evaluate integral
F (x, y) = x3 + x y2 − xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2xy − x+ 3 = 2xy − x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 3

• Solve for f1(y)
f1(y) = 3y

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x3 + x y2 − xy + 3y

• Substitute F (x, y) into the solution of the ODE
x3 + x y2 − xy + 3y = c1

• Solve for y{
y = x−3+

√
−4x4+4c1x+x2−6x+9

2x , y = −−x+3+
√

−4x4+4c1x+x2−6x+9
2x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 63� �
dsolve((3-x+2*x*y(x))*diff(y(x),x)+3*x^2-y(x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = x− 3 +
√

9− 4x4 + x2 + (−4c1 − 6)x
2x

y(x) = x− 3−
√

9− 4x4 + x2 + (−4c1 − 6)x
2x

3 Solution by Mathematica
Time used: 0.555 (sec). Leaf size: 75� �
DSolve[(3-x+2 x y[x])y'[x]+3 x^2-y[x]+y[x]^2==0 ,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−4x4 + x2 − 6x+ 4c1x+ 9− x+ 3

2x

y(x) →
√
−4x4 + x2 + (−6 + 4c1)x+ 9 + x− 3

2x
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20.2 problem 547
20.2.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5453
20.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5455
20.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5461

Internal problem ID [3799]
Internal file name [OUTPUT/3292_Sunday_June_05_2022_09_06_21_AM_82188267/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 547.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(x− 2y) y′ + y2 = 0

20.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(x− 2u(x)x) (u′(x)x+ u(x)) + u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u− 1)
(2u− 1)x
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Where f(x) = − 1
x
and g(u) = (u−1)u

2u−1 . Integrating both sides gives

1
(u−1)u
2u−1

du = −1
x
dx

∫ 1
(u−1)u
2u−1

du =
∫

−1
x
dx

ln (u(u− 1)) = − ln (x) + c2

Raising both side to exponential gives

u(u− 1) = e− ln(x)+c2

Which simplifies to

u(u− 1) = c3
x

Which simplifies to

u(x) (u(x)− 1) = c3ec2
x

The solution is

u(x) (u(x)− 1) = c3ec2
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y
(
y
x
− 1
)

x
= c3ec2

x
y(y − x)

x2 = c3ec2
x

Which simplifies to

−y(−y + x)
x

= c3ec2

Summary
The solution(s) found are the following

(1)−y(−y + x)
x

= c3ec2
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Figure 866: Slope field plot

Verification of solutions

−y(−y + x)
x

= c3ec2

Verified OK.

20.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2

x (−x+ 2y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y2(b3 − a2)
x (−x+ 2y) −

y4a3

x2 (−x+ 2y)2

−
(
− y2

x2 (−x+ 2y) +
y2

x (−x+ 2y)2
)
(xa2 + ya3 + a1)

−
(

2y
x (−x+ 2y) −

2y2

x (−x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 − 2x3yb2 − x2y2a2 + 2x2y2b2 + x2y2b3 − 2x y3a3 + y4a3 + 2x2yb1 − 2x y2a1 − 2x y2b1 + 2y3a1
x2 (x− 2y)2

= 0

Setting the numerator to zero gives

(6E)x4b2 − 2x3yb2 − x2y2a2 + 2x2y2b2 + x2y2b3 − 2x y3a3
+ y4a3 + 2x2yb1 − 2x y2a1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1v

2
2 − 2a3v1v32 + a3v

4
2 + b2v

4
1 − 2b2v31v2 + 2b2v21v22

+ b3v
2
1v

2
2 − 2a1v1v22 + 2a1v32 + 2b1v21v2 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1 − 2b2v31v2 + (−a2 + 2b2 + b3) v21v22 + 2b1v21v2

− 2a3v1v32 + (−2a1 − 2b1) v1v22 + a3v
4
2 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b2 = 0

2a1 = 0
−2a3 = 0
2b1 = 0

−2b2 = 0
−2a1 − 2b1 = 0

−a2 + 2b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2

x (−x+ 2y)

)
(x)

= xy − y2

x− 2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy−y2

x−2y

dy

Which results in

S = ln (y(y − x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (−x+ 2y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
−y + x

Sy =
1
y
+ 1

y − x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) + ln (y − x) = ln (x) + c1

Which simplifies to

ln (y) + ln (y − x) = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(−x+2y)
dS
dR

= 1
R

R = x

S = ln (y) + ln (y − x)

Summary
The solution(s) found are the following

(1)ln (y) + ln (y − x) = ln (x) + c1
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Figure 867: Slope field plot

Verification of solutions

ln (y) + ln (y − x) = ln (x) + c1

Verified OK.

20.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(x− 2y)) dy =
(
−y2

)
dx(

y2
)
dx+(x(x− 2y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = x(x− 2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2
)

= 2y

And
∂N

∂x
= ∂

∂x
(x(x− 2y))

= −2y + 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x− 2y)((2y)− (−2y + 2x))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
y2
)

= y2

x2

And

N = µN

= 1
x2 (x(x− 2y))

= x− 2y
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y2

x2

)
+
(
x− 2y

x

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2

x2 dx

(3)φ = −y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x−2y
x

. Therefore equation (4) becomes

(5)x− 2y
x

= −2y
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −y2

x
+ y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −y2

x
+ y

Summary
The solution(s) found are the following

(1)−y2

x
+ y = c1

Figure 868: Slope field plot

Verification of solutions

−y2

x
+ y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
dsolve(x*(x-2*y(x))*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1x−
√

c1x (c1x+ 4)
2c1

y(x) = c1x+
√
c1x (c1x+ 4)
2c1

3 Solution by Mathematica
Time used: 5.122 (sec). Leaf size: 92� �
DSolve[x(x-2 y[x])y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x−

√
x (x− 4ec1)

)
y(x) → 1

2

(
x+

√
x (x− 4ec1)

)
y(x) → 0

y(x) → 1
2

(
x−

√
x2
)

y(x) → 1
2

(√
x2 + x

)
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20.3 problem 548
20.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5467
20.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5469

Internal problem ID [3800]
Internal file name [OUTPUT/3293_Sunday_June_05_2022_09_06_26_AM_83704688/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 548.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(x+ 2y) y′ + (2x− y) y = 0

20.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(x+ 2u(x)x) (u′(x)x+ u(x)) + (2x− u(x)x)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u+ 3)
x (2u+ 1)

Where f(x) = − 1
x
and g(u) = u(u+3)

2u+1 . Integrating both sides gives

1
u(u+3)
2u+1

du = −1
x
dx
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∫ 1
u(u+3)
2u+1

du =
∫

−1
x
dx

5 ln (u+ 3)
3 + ln (u)

3 = − ln (x) + c2

The above can be written as

5 ln (u+ 3) + ln (u)
3 = − ln (x) + c2

5 ln (u+ 3) + ln (u) = (3) (− ln (x) + c2)
= −3 ln (x) + 3c2

Raising both side to exponential gives

e5 ln(u+3)+ln(u) = e−3 ln(x)+3c2

Which simplifies to

(u+ 3)5 u = 3c2
x3

= c3
x3

Which simplifies to

u(x) = RootOf
(
_Z6 + 15_Z5 + 90_Z4 + 270_Z3 − c3e3c2

x3 + 405_Z2 + 243_Z
)

Therefore the solution y is

y = xu

= xRootOf
(
x3_Z6 + 15x3_Z5 + 90_Z4x3 + 270x3_Z3 + 405x3_Z2 − c3e3c2 + 243x3_Z

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
x3_Z6 + 15x3_Z5 + 90_Z4x3 + 270x3_Z3 + 405x3_Z2 − c3e3c2

+ 243x3_Z
)

5468



Figure 869: Slope field plot

Verification of solutions

y = xRootOf
(
x3_Z6+15x3_Z5+90_Z4x3+270x3_Z3+405x3_Z2−c3e3c2+243x3_Z

)
Verified OK.

20.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(−2x+ y)
x (x+ 2y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(−2x+ y) (b3 − a2)

x (x+ 2y) − y2(−2x+ y)2 a3
x2 (x+ 2y)2

−
(
− 2y
x (x+ 2y) −

y(−2x+ y)
x2 (x+ 2y) − y(−2x+ y)

x (x+ 2y)2
)
(xa2 + ya3 + a1)

−
(

−2x+ y

x (x+ 2y) +
y

x (x+ 2y) −
2y(−2x+ y)
x (x+ 2y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x4b2 + 2x3yb2 + 5x2y2a2 − 6x2y2a3 + 2x2y2b2 − 5x2y2b3 + 6x y3a3 + y4a3 + 2x3b1 − 2x2ya1 − 2x2yb1 + 2x y2a1 − 2x y2b1 + 2y3a1
x2 (x+ 2y)2

= 0

Setting the numerator to zero gives

(6E)3x4b2 + 2x3yb2 + 5x2y2a2 − 6x2y2a3 + 2x2y2b2 − 5x2y2b3 + 6x y3a3
+ y4a3 + 2x3b1 − 2x2ya1 − 2x2yb1 + 2x y2a1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)5a2v21v22 − 6a3v21v22 + 6a3v1v32 + a3v
4
2 + 3b2v41 + 2b2v31v2 + 2b2v21v22

− 5b3v21v22 − 2a1v21v2 + 2a1v1v22 + 2a1v32 + 2b1v31 − 2b1v21v2 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v41 + 2b2v31v2 + 2b1v31 + (5a2 − 6a3 + 2b2 − 5b3) v21v22
+ (−2a1 − 2b1) v21v2 + 6a3v1v32 + (2a1 − 2b1) v1v22 + a3v

4
2 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
2a1 = 0
6a3 = 0
2b1 = 0
2b2 = 0
3b2 = 0

−2a1 − 2b1 = 0
2a1 − 2b1 = 0

5a2 − 6a3 + 2b2 − 5b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(−2x+ y)
x (x+ 2y)

)
(x)

= 3xy + y2

x+ 2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3xy+y2

x+2y

dy

Which results in

S = 5 ln (3x+ y)
3 + ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(−2x+ y)
x (x+ 2y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 5
3x+ y

Sy =
x+ 2y

y (3x+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

5 ln (y + 3x)
3 + ln (y)

3 = ln (x) + c1

Which simplifies to

5 ln (y + 3x)
3 + ln (y)

3 = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(−2x+y)
x(x+2y)

dS
dR

= 1
R

R = x

S = 5 ln (3x+ y)
3 + ln (y)

3

Summary
The solution(s) found are the following

(1)5 ln (y + 3x)
3 + ln (y)

3 = ln (x) + c1
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Figure 870: Slope field plot

Verification of solutions

5 ln (y + 3x)
3 + ln (y)

3 = ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.625 (sec). Leaf size: 33� �
dsolve(x*(x+2*y(x))*diff(y(x),x)+(2*x-y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) =
RootOf

(
_Z18 + 3_Z3c1x

3 − c1x
3)15

c1x2

3 Solution by Mathematica
Time used: 3.255 (sec). Leaf size: 385� �
DSolve[x(x+2 y[x])y'[x]+(2 x-y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)→Root

[
#16+15#15x+90#14x2+270#13x3+405#12x4+243#1x5−e3c1x3&, 1

]
y(x)→Root

[
#16+15#15x+90#14x2+270#13x3+405#12x4+243#1x5−e3c1x3&, 2

]
y(x)→Root

[
#16+15#15x+90#14x2+270#13x3+405#12x4+243#1x5−e3c1x3&, 3

]
y(x)→Root

[
#16+15#15x+90#14x2+270#13x3+405#12x4+243#1x5−e3c1x3&, 4

]
y(x)→Root

[
#16+15#15x+90#14x2+270#13x3+405#12x4+243#1x5−e3c1x3&, 5

]
y(x)→Root

[
#16+15#15x+90#14x2+270#13x3+405#12x4+243#1x5−e3c1x3&, 6

]
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20.4 problem 549
20.4.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5477
20.4.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5479
20.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5485
20.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5488

Internal problem ID [3801]
Internal file name [OUTPUT/3294_Sunday_June_05_2022_09_06_30_AM_35570911/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 549.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class B`]]

x(x− 2y) y′ + (2x− y) y = 0

20.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(x− 2u(x)x) (u′(x)x+ u(x)) + (2x− u(x)x)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 3u(u− 1)
(2u− 1)x
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Where f(x) = − 3
x
and g(u) = u(u−1)

2u−1 . Integrating both sides gives

1
u(u−1)
2u−1

du = −3
x
dx

∫ 1
u(u−1)
2u−1

du =
∫

−3
x
dx

ln (u(u− 1)) = −3 ln (x) + c2

Raising both side to exponential gives

u(u− 1) = e−3 ln(x)+c2

Which simplifies to

u(u− 1) = c3
x3

Which simplifies to

u(x) (u(x)− 1) = c3ec2
x3

The solution is

u(x) (u(x)− 1) = c3ec2
x3

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y
(
y
x
− 1
)

x
= c3ec2

x3

y(y − x)
x2 = c3ec2

x3

Which simplifies to

−y(−y + x) = c3ec2
x

Summary
The solution(s) found are the following

(1)−y(−y + x) = c3ec2
x
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Figure 871: Slope field plot

Verification of solutions

−y(−y + x) = c3ec2
x

Verified OK.

20.4.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(−2x+ y)
x (−x+ 2y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(−2x+ y) (b3 − a2)

x (−x+ 2y) − y2(−2x+ y)2 a3
x2 (−x+ 2y)2

−
(

2y
x (−x+ 2y) +

y(−2x+ y)
x2 (−x+ 2y) −

y(−2x+ y)
x (−x+ 2y)2

)
(xa2 + ya3 + a1)

−
(
− −2x+ y

x (−x+ 2y) −
y

x (−x+ 2y) +
2y(−2x+ y)
x (−x+ 2y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x4b2 − 6x3yb2 − 3x2y2a2 − 6x2y2a3 + 6x2y2b2 + 3x2y2b3 + 6x y3a3 − 3y4a3 + 2x3b1 − 2x2ya1 − 2x2yb1 + 2x y2a1 + 2x y2b1 − 2y3a1
x2 (x− 2y)2

= 0

Setting the numerator to zero gives

(6E)3x4b2 − 6x3yb2 − 3x2y2a2 − 6x2y2a3 + 6x2y2b2 + 3x2y2b3 + 6x y3a3
− 3y4a3 + 2x3b1 − 2x2ya1 − 2x2yb1 + 2x y2a1 + 2x y2b1 − 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−3a2v21v22 − 6a3v21v22 + 6a3v1v32 − 3a3v42 + 3b2v41 − 6b2v31v2 + 6b2v21v22
+ 3b3v21v22 − 2a1v21v2 + 2a1v1v22 − 2a1v32 + 2b1v31 − 2b1v21v2 + 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v41 − 6b2v31v2 + 2b1v31 + (−3a2 − 6a3 + 6b2 + 3b3) v21v22
+ (−2a1 − 2b1) v21v2 + 6a3v1v32 + (2a1 + 2b1) v1v22 − 3a3v42 − 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−3a3 = 0
6a3 = 0
2b1 = 0

−6b2 = 0
3b2 = 0

−2a1 − 2b1 = 0
2a1 + 2b1 = 0

−3a2 − 6a3 + 6b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(−2x+ y)
x (−x+ 2y)

)
(x)

= 3xy − 3y2
x− 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3xy−3y2
x−2y

dy

Which results in

S = ln (y(y − x))
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(−2x+ y)
x (−x+ 2y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
3x− 3y

Sy =
x− 2y

3y (−y + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
3 + ln (y − x)

3 = − ln (x)
3 + c1

Which simplifies to

ln (y)
3 + ln (y − x)

3 = − ln (x)
3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y(−2x+y)
x(−x+2y)

dS
dR

= − 1
3R

R = x

S = ln (y)
3 + ln (y − x)

3

Summary
The solution(s) found are the following

(1)ln (y)
3 + ln (y − x)

3 = − ln (x)
3 + c1
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Figure 872: Slope field plot

Verification of solutions

ln (y)
3 + ln (y − x)

3 = − ln (x)
3 + c1

Verified OK.

20.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(x− 2y)) dy = (−y(2x− y)) dx
(y(2x− y)) dx+(x(x− 2y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(2x− y)
N(x, y) = x(x− 2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(2x− y))

= −2y + 2x

And
∂N

∂x
= ∂

∂x
(x(x− 2y))

= −2y + 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y(2x− y) dx

(3)φ = xy(−y + x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x(−y + x)− xy + f ′(y)

= x(x− 2y) + f ′(y)

But equation (2) says that ∂φ
∂y

= x(x− 2y). Therefore equation (4) becomes

(5)x(x− 2y) = x(x− 2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy(−y + x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy(−y + x)
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Summary
The solution(s) found are the following

(1)xy(−y + x) = c1

Figure 873: Slope field plot

Verification of solutions

xy(−y + x) = c1

Verified OK.

20.4.4 Maple step by step solution

Let’s solve
x(x− 2y) y′ + (2x− y) y = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−2y + 2x = −2y + 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
y(2x− y) dx+ f1(y)

• Evaluate integral
F (x, y) = y(x2 − xy) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x(x− 2y) = x2 − 2xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = x(x− 2y)− x2 + 2xy

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = y(x2 − xy)

• Substitute F (x, y) into the solution of the ODE
y(x2 − xy) = c1

• Solve for y{
y = x2+

√
x4−4c1x
2x , y = −−x2+

√
x4−4c1x
2x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 69� �
dsolve(x*(x-2*y(x))*diff(y(x),x)+(2*x-y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = c21x
2 −

√
c1x (x3c31 + 4)
2x c21

y(x) = c21x
2 +

√
c1x (x3c31 + 4)
2x c21

3 Solution by Mathematica
Time used: 0.71 (sec). Leaf size: 114� �
DSolve[x(x-2 y[x])y'[x]+(2 x - y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x−

√
x3 − 4ec1√

x

)

y(x) → 1
2

(
x+

√
x3 − 4ec1√

x

)

y(x) → x

2 −
√
x3

2
√
x

y(x) → x3/2 +
√
x3

2
√
x
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20.5 problem 550
20.5.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5491

Internal problem ID [3802]
Internal file name [OUTPUT/3295_Sunday_June_05_2022_09_06_34_AM_52582749/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 550.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

x(1 + x− 2y) y′ + (1− 2x+ y) y = 0

20.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x(−2y + x+ 1)) dy = (−(1− 2x+ y) y) dx
((1− 2x+ y) y) dx+(x(−2y + x+ 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = (1− 2x+ y) y
N(x, y) = x(−2y + x+ 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
((1− 2x+ y) y)

= 2y + 1− 2x

And
∂N

∂x
= ∂

∂x
(x(−2y + x+ 1))

= −2y + 2x+ 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (−2y + x+ 1)((2y + 1− 2x)− (−2y + 2x+ 1))

= 4y − 4x
x (−2y + x+ 1)
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

(1− 2x+ y) y ((−2y + 2x+ 1)− (2y + 1− 2x))

= 4y − 4x
y (2x− y − 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−2y + 2x+ 1)− (2y + 1− 2x)
x ((1− 2x+ y) y)− y (x (−2y + x+ 1))

= − 4
3xy

Replacing all powers of terms xy by t gives

R = − 4
3t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 4
3t
)
dt

The result of integrating gives

µ = e−
4 ln(t)

3

= 1
t
4
3

Now t is replaced back with xy giving

µ = 1
(xy)

4
3
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy)

4
3
((1− 2x+ y) y)

= 1− 2x+ y

x (xy)
1
3

And

N = µN

= 1
(xy)

4
3
(x(−2y + x+ 1))

= −2y + x+ 1
y (xy)

1
3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

1− 2x+ y

x (xy)
1
3

)
+
(
−2y + x+ 1

y (xy)
1
3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1− 2x+ y

x (xy)
1
3

dx

(3)φ = −3(x+ y + 1)
(xy)

1
3

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 3

(xy)
1
3
+ (x+ y + 1)x

(xy)
4
3

+ f ′(y)

= −2y + x+ 1
y (xy)

1
3

+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2y+x+1
y(xy)

1
3
. Therefore equation (4) becomes

(5)−2y + x+ 1
y (xy)

1
3

= −2y + x+ 1
y (xy)

1
3

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −3(x+ y + 1)
(xy)

1
3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3(x+ y + 1)
(xy)

1
3

Summary
The solution(s) found are the following

(1)−3(x+ y + 1)
(yx)

1
3

= c1
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Figure 874: Slope field plot

Verification of solutions

−3(x+ y + 1)
(yx)

1
3

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 391� �
dsolve(x*(1+x-2*y(x))*diff(y(x),x)+(1-2*x+y(x))*y(x) = 0,y(x), singsol=all)� �
y(x) =

3 5 1
3

(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3

40c1

+ 3x5 2
3

40
(
x
(√

5
√

80c1x2+160c1x+80c1−x
c1

− 20x− 20
)
c21

) 1
3
− x− 1

y(x)

=

3 5
1
3
(
−1−i

√
3
)−20

−
√
5

√
80(x+1)2c1−x

c1
20 +x+1

c21x


2
3

80 +

3c1



80(−x−1)

−20

−

√
5

√
80(x+1)2c1−x

c1
20 +x+1

c21x


1
3

3 +5
2
3
(
i
√
3−1

)
x


80−20

−
√
5
√

80(x+1)2c1−x
c1

20 + x+ 1

 c21x

 1
3

c1

y(x) =

−

3

5 1
3
(
1− i

√
3
)−20

−
√
5
√

80(x+1)2c1−x
c1

20 + x+ 1

 c21x

 2
3

+ c1


80(x+1)

−20

−
√
5

√
80(x+1)2c1−x

c1
20 +x+1

c21x


1
3

3 + 5 2
3x
(
1 + i

√
3
)



80

−20

−
√
5
√

80(x+1)2c1−x
c1

20 + x+ 1

 c21x

 1
3

c1
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3 Solution by Mathematica
Time used: 44.02 (sec). Leaf size: 471� �
DSolve[x(1+x-2 y[x])y'[x]+(1-2 x+y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

3
√
2x

3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

−
3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x
3 3
√
2c1

− x− 1

y(x) →
(
1 + i

√
3
)
x

22/3 3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

+
(
1− i

√
3
) 3
√
27c12x2 +

√
(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

6 3
√
2c1

− x− 1

y(x) →
(
1− i

√
3
)
x

22/3 3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x

+
(
1 + i

√
3
) 3
√

27c12x2 +
√

(27c12x2 + 27c12x) 2 − 108c13x3 + 27c12x
6 3
√
2c1

− x− 1

y(x) → Indeterminate
y(x) → −x− 1
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20.6 problem 551
20.6.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5500

Internal problem ID [3803]
Internal file name [OUTPUT/3296_Sunday_June_05_2022_09_06_38_AM_91525400/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 551.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

x(1− x− 2y) y′ + (2x+ y + 1) y = 0

20.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x(1− x− 2y)) dy = (−y(2x+ y + 1)) dx
(y(2x+ y + 1)) dx+(x(1− x− 2y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(2x+ y + 1)
N(x, y) = x(1− x− 2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(2x+ y + 1))

= 2x+ 2y + 1

And
∂N

∂x
= ∂

∂x
(x(1− x− 2y))

= 1− 2x− 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x+ 2y − 1)((2x+ 2y + 1)− (1− 2x− 2y))

= −4x− 4y
x (x+ 2y − 1)
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (2x+ y + 1)((1− 2x− 2y)− (2x+ 2y + 1))

= −4x− 4y
y (2x+ y + 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1− 2x− 2y)− (2x+ 2y + 1)
x (y (2x+ y + 1))− y (x (1− x− 2y))

= − 4
3xy

Replacing all powers of terms xy by t gives

R = − 4
3t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 4
3t
)
dt

The result of integrating gives

µ = e−
4 ln(t)

3

= 1
t
4
3

Now t is replaced back with xy giving

µ = 1
(xy)

4
3
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy)

4
3
(y(2x+ y + 1))

= 2x+ y + 1
x (xy)

1
3

And

N = µN

= 1
(xy)

4
3
(x(1− x− 2y))

= −x+ 2y − 1
y (xy)

1
3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

2x+ y + 1
x (xy)

1
3

)
+
(
−x+ 2y − 1

y (xy)
1
3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x+ y + 1
x (xy)

1
3

dx

(3)φ = −3 + 3x− 3y
(xy)

1
3

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 3

(xy)
1
3
− (−1 + x− y)x

(xy)
4
3

+ f ′(y)

= −x+ 2y − 1
y (xy)

1
3

+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+2y−1
y(xy)

1
3
. Therefore equation (4) becomes

(5)−x+ 2y − 1
y (xy)

1
3

= −x+ 2y − 1
y (xy)

1
3

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −3 + 3x− 3y
(xy)

1
3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−3 + 3x− 3y

(xy)
1
3

Summary
The solution(s) found are the following

(1)−3y − 3 + 3x
(yx)

1
3

= c1
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Figure 875: Slope field plot

Verification of solutions

−3y − 3 + 3x
(yx)

1
3

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 389� �
dsolve(x*(1-x-2*y(x))*diff(y(x),x)+(1+2*x+y(x))*y(x) = 0,y(x), singsol=all)� �
y(x) =

3 5 1
3

(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3

40c1

+ 3x5 2
3

40
(
x
(√

5
√

80c1x2−160c1x+80c1−x
c1

+ 20x− 20
)
c21

) 1
3
+ x− 1

y(x)

=

3 5
1
3
(
−1−i

√
3
)(

x

(
√
5
√

80(x−1)2c1−x
c1

+20x−20
)
c21

) 2
3

80 +

3c1


80(x−1)

x

√
5

√
80(x−1)2c1−x

c1
+20x−20

c21

 1
3

3 +5
2
3
(
i
√
3−1

)
x


80

c1

(
x

(√
5
√

80(x−1)2c1−x
c1

+ 20x− 20
)
c21

) 1
3

y(x) =

−

3

5 1
3
(
1− i

√
3
)(

x

(√
5
√

80(x−1)2c1−x
c1

+ 20x− 20
)
c21

) 2
3

+ c1

80(1−x)
(
x

(
√
5
√

80(x−1)2c1−x
c1

+20x−20
)
c21

) 1
3

3 + 5 2
3x
(
1 + i

√
3
)


80
(
x

(√
5
√

80(x−1)2c1−x
c1

+ 20x− 20
)
c21

) 1
3

c1
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3 Solution by Mathematica
Time used: 39.917 (sec). Leaf size: 463� �
DSolve[x(1-x-2 y[x])y'[x]+(1+2 x+y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

3
√
2x

3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

+
3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x
3 3
√
2c1

+ x− 1

y(x) →
(
1 + i

√
3
)
x

22/3 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

−
(
1− i

√
3
) 3
√

−27c12x2 +
√

108c13x3 + (27c12x− 27c12x2) 2 + 27c12x
6 3
√
2c1

+ x− 1

y(x) →
(
1− i

√
3
)
x

22/3 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

−
(
1 + i

√
3
) 3
√

−27c12x2 +
√
108c13x3 + (27c12x− 27c12x2) 2 + 27c12x

6 3
√
2c1

+ x− 1

y(x) → Indeterminate
y(x) → x− 1
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20.7 problem 552
20.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5509
20.7.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5515
20.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5518

Internal problem ID [3804]
Internal file name [OUTPUT/3297_Sunday_June_05_2022_09_06_41_AM_33939365/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 552.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _exact , _rational , [_Abel , `2nd

type `, `class B`]]

2x
(
2x2 + y

)
y′ +

(
12x2 + y

)
y = 0

20.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (12x2 + y) y
2x (2x2 + y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(12x2 + y) y(b3 − a2)

2x (2x2 + y) − (12x2 + y)2 y2a3
4x2 (2x2 + y)2

−
(
− 12y
2x2 + y

+ (12x2 + y) y
2x2 (2x2 + y) +

2(12x2 + y) y
(2x2 + y)2

)
(xa2 + ya3 + a1)

−
(
− y

2x (2x2 + y) −
12x2 + y

2x (2x2 + y) +
(12x2 + y) y
2x (2x2 + y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

64x6b2 − 192x4y2a3 + 48x5b1 − 48x4ya1 + 24x4yb2 + 40x3y2a2 − 20x3y2b3 − 12x2y3a3 + 8x3yb1 + 12x2y2a1 + 6x2y2b2 − 3y4a3 + 2x y2b1 − 2y3a1
4 (2x2 + y)2 x2

= 0

Setting the numerator to zero gives

(6E)64x6b2 − 192x4y2a3 + 48x5b1 − 48x4ya1 + 24x4yb2 + 40x3y2a2 − 20x3y2b3
− 12x2y3a3 + 8x3yb1 + 12x2y2a1 + 6x2y2b2 − 3y4a3 + 2x y2b1 − 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−192a3v41v22 + 64b2v61 − 48a1v41v2 + 40a2v31v22 − 12a3v21v32 + 48b1v51 + 24b2v41v2
− 20b3v31v22 + 12a1v21v22 − 3a3v42 + 8b1v31v2 + 6b2v21v22 − 2a1v32 + 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)64b2v61 + 48b1v51 − 192a3v41v22 + (−48a1 + 24b2) v41v2 + (40a2 − 20b3) v31v22
+ 8b1v31v2 − 12a3v21v32 + (12a1 + 6b2) v21v22 + 2b1v1v22 − 3a3v42 − 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−192a3 = 0
−12a3 = 0
−3a3 = 0
2b1 = 0
8b1 = 0
48b1 = 0
64b2 = 0

−48a1 + 24b2 = 0
12a1 + 6b2 = 0

40a2 − 20b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
− (12x2 + y) y
2x (2x2 + y)

)
(x)

= 20x2y + 5y2
4x2 + 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

20x2y+5y2
4x2+2y

dy

Which results in

S = ln (y(4x2 + y))
5

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (12x2 + y) y
2x (2x2 + y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 8x
20x2 + 5y

Sy =
1
5y + 1

20x2 + 5y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

5x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

5R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
5 + ln (4x2 + y)

5 = − ln (x)
5 + c1

Which simplifies to

ln (y)
5 + ln (4x2 + y)

5 = − ln (x)
5 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
12x2+y

)
y

2x(2x2+y)
dS
dR

= − 1
5R

R = x

S = ln (y)
5 + ln (4x2 + y)

5

Summary
The solution(s) found are the following

(1)ln (y)
5 + ln (4x2 + y)

5 = − ln (x)
5 + c1
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Figure 876: Slope field plot

Verification of solutions

ln (y)
5 + ln (4x2 + y)

5 = − ln (x)
5 + c1

Verified OK.

20.7.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x
(
2x2 + y

))
dy =

(
−y
(
12x2 + y

))
dx(

y
(
12x2 + y

))
dx+

(
2x
(
2x2 + y

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
12x2 + y

)
N(x, y) = 2x

(
2x2 + y

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
12x2 + y

))
= 12x2 + 2y

And
∂N

∂x
= ∂

∂x

(
2x
(
2x2 + y

))
= 12x2 + 2y
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y
(
12x2 + y

)
dx

(3)φ = 4x3y + x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4x3 + 2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x(2x2 + y). Therefore equation (4) becomes

(5)2x
(
2x2 + y

)
= 4x3 + 2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 4x3y + x y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 4x3y + x y2
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Summary
The solution(s) found are the following

(1)4yx3 + y2x = c1

Figure 877: Slope field plot

Verification of solutions

4yx3 + y2x = c1

Verified OK.

20.7.3 Maple step by step solution

Let’s solve
2x(2x2 + y) y′ + (12x2 + y) y = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
12x2 + 2y = 12x2 + 2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
y(12x2 + y) dx+ f1(y)

• Evaluate integral
F (x, y) = y(4x3 + xy) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2x(2x2 + y) = 4x3 + 2xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −4x3 − 2xy + 2x(2x2 + y)

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = y(4x3 + xy)

• Substitute F (x, y) into the solution of the ODE
y(4x3 + xy) = c1

• Solve for y{
y = −2x3+

√
4x6+c1x
x

, y = −2x3+
√

4x6+c1x
x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 51� �
dsolve(2*x*(2*x^2+y(x))*diff(y(x),x)+(12*x^2+y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = −2x3 +
√
4x6 + c1x

x

y(x) = −2x3 −
√
4x6 + c1x

x

3 Solution by Mathematica
Time used: 0.472 (sec). Leaf size: 58� �
DSolve[2 x(2 x^2+y[x])y'[x]+(12 x^2+y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2x3 +

√
x (4x5 + c1)
x

y(x) → −2x3 +
√
x (4x5 + c1)
x
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20.8 problem 553
20.8.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5521
20.8.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5525
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20.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5532

Internal problem ID [3805]
Internal file name [OUTPUT/3298_Sunday_June_05_2022_09_06_45_AM_99751908/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 553.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_exact , _rational , _Bernoulli]

2(x+ 1) yy′ + y2 = 3x2 − 2x

20.8.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−3x2 + y2 + 2x
2y (x+ 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 855: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x+ 1) y (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x+1)y

dy

Which results in

S = (x+ 1) y2
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−3x2 + y2 + 2x
2y (x+ 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2

2
Sy = (x+ 1) y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

2x
2 − x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

2R
2 −R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R

3 − 1
2R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 1) y2
2 = 1

2x
3 − 1

2x
2 + c1

Which simplifies to

(x+ 1) y2
2 = 1

2x
3 − 1

2x
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−3x2+y2+2x
2y(x+1)

dS
dR

= 3
2R

2 −R

R = x

S = (x+ 1) y2
2

Summary
The solution(s) found are the following

(1)(x+ 1) y2
2 = 1

2x
3 − 1

2x
2 + c1
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Figure 878: Slope field plot

Verification of solutions

(x+ 1) y2
2 = 1

2x
3 − 1

2x
2 + c1

Verified OK.

20.8.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −−3x2 + y2 + 2x
2y (x+ 1)

This is a Bernoulli ODE.

y′ = − 1
2 (x+ 1)y −

−3x2 + 2x
2 (x+ 1)

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2 (x+ 1)

f1(x) = −−3x2 + 2x
2 (x+ 1)

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = − y2

2 (x+ 1) −
−3x2 + 2x
2 (x+ 1) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = − w(x)

2 (x+ 1) −
−3x2 + 2x
2 (x+ 1)

w′ = − w

x+ 1 − −3x2 + 2x
x+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 1
x+ 1

q(x) = x(3x− 2)
x+ 1

Hence the ode is

w′(x) + w(x)
x+ 1 = x(3x− 2)

x+ 1

The integrating factor µ is

µ = e
∫ 1

x+1dx

= x+ 1

The ode becomes

d
dx(µw) = (µ)

(
x(3x− 2)
x+ 1

)
d
dx((x+ 1)w) = (x+ 1)

(
x(3x− 2)
x+ 1

)
d((x+ 1)w) =

(
3x2 − 2x

)
dx

Integrating gives

(x+ 1)w =
∫

3x2 − 2x dx

(x+ 1)w = x3 − x2 + c1

Dividing both sides by the integrating factor µ = x+ 1 results in

w(x) = x3 − x2

x+ 1 + c1
x+ 1

which simplifies to

w(x) = x3 − x2 + c1
x+ 1

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x3 − x2 + c1
x+ 1
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Solving for y gives

y(x) =
√
(x+ 1) (x3 − x2 + c1)

x+ 1

y(x) = −
√

(x+ 1) (x3 − x2 + c1)
x+ 1

Summary
The solution(s) found are the following

(1)y =
√

(x+ 1) (x3 − x2 + c1)
x+ 1

(2)y = −
√
(x+ 1) (x3 − x2 + c1)

x+ 1

Figure 879: Slope field plot
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Verification of solutions

y =
√

(x+ 1) (x3 − x2 + c1)
x+ 1

Verified OK.

y = −
√
(x+ 1) (x3 − x2 + c1)

x+ 1

Verified OK.

20.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(2(x+ 1) y) dy =
(
3x2 − y2 − 2x

)
dx(

−3x2 + y2 + 2x
)
dx+(2(x+ 1) y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x2 + y2 + 2x
N(x, y) = 2(x+ 1) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3x2 + y2 + 2x

)
= 2y

And
∂N

∂x
= ∂

∂x
(2(x+ 1) y)

= 2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x2 + y2 + 2x dx

(3)φ = −x3 + x y2 + x2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2(x+ 1) y. Therefore equation (4) becomes

(5)2(x+ 1) y = 2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3 + x y2 + x2 + y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3 + x y2 + x2 + y2

Summary
The solution(s) found are the following

(1)y2x− x3 + y2 + x2 = c1
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Figure 880: Slope field plot

Verification of solutions

y2x− x3 + y2 + x2 = c1

Verified OK.

20.8.4 Maple step by step solution

Let’s solve
2(x+ 1) yy′ + y2 = 3x2 − 2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
2y = 2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−3x2 + y2 + 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = −x3 + x y2 + x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2(x+ 1) y = 2xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −2xy + 2(x+ 1) y

• Solve for f1(y)
f1(y) = y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −x3 + x y2 + x2 + y2

• Substitute F (x, y) into the solution of the ODE
−x3 + x y2 + x2 + y2 = c1

• Solve for y{
y =

√
(x+1)(x3−x2+c1)

x+1 , y = −
√

(x+1)(x3−x2+c1)
x+1

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 52� �
dsolve(2*(1+x)*y(x)*diff(y(x),x)+2*x-3*x^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√
(x+ 1) (x3 − x2 + c1)

x+ 1

y(x) = −
√
(x+ 1) (x3 − x2 + c1)

x+ 1

3 Solution by Mathematica
Time used: 0.363 (sec). Leaf size: 56� �
DSolve[2(1+x)y[x] y'[x]+2 x-3 x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x3 − x2 + c1√

x+ 1

y(x) →
√
x3 − x2 + c1√

x+ 1
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20.9 problem 554
20.9.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5535
20.9.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5537

Internal problem ID [3806]
Internal file name [OUTPUT/3299_Sunday_June_05_2022_09_06_50_AM_52961003/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 554.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(2x+ 3y) y′ − y2 = 0

20.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(2x+ 3u(x)x) (u′(x)x+ u(x))− u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u(u+ 1)
x (3u+ 2)

Where f(x) = − 2
x
and g(u) = u(u+1)

3u+2 . Integrating both sides gives

1
u(u+1)
3u+2

du = −2
x
dx
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∫ 1
u(u+1)
3u+2

du =
∫

−2
x
dx

ln (u+ 1) + 2 ln (u) = −2 ln (x) + c2

Raising both side to exponential gives

eln(u+1)+2 ln(u) = e−2 ln(x)+c2

Which simplifies to

(u+ 1)u2 = c3
x2

The solution is
(u(x) + 1)u(x)2 = c3

x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y
x
+ 1
)
y2

x2 = c3
x2

(y + x) y2
x3 = c3

x2

Which simplifies to

(y + x) y2
x

= c3

Summary
The solution(s) found are the following

(1)(y + x) y2
x

= c3
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Figure 881: Slope field plot

Verification of solutions

(y + x) y2
x

= c3

Verified OK.

20.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2

x (2x+ 3y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y2(b3 − a2)
x (2x+ 3y) −

y4a3

x2 (2x+ 3y)2

−
(
− y2

x2 (2x+ 3y) −
2y2

x (2x+ 3y)2
)
(xa2 + ya3 + a1)

−
(

2y
x (2x+ 3y) −

3y2

x (2x+ 3y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x4b2 + 8x3yb2 + 2x2y2a2 + 6x2y2b2 − 2x2y2b3 + 4x y3a3 + 2y4a3 − 4x2yb1 + 4x y2a1 − 3x y2b1 + 3y3a1
x2 (2x+ 3y)2

= 0

Setting the numerator to zero gives

(6E)4x4b2 + 8x3yb2 + 2x2y2a2 + 6x2y2b2 − 2x2y2b3 + 4x y3a3
+ 2y4a3 − 4x2yb1 + 4x y2a1 − 3x y2b1 + 3y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v21v22 + 4a3v1v32 + 2a3v42 + 4b2v41 + 8b2v31v2 + 6b2v21v22
− 2b3v21v22 + 4a1v1v22 + 3a1v32 − 4b1v21v2 − 3b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)4b2v41 + 8b2v31v2 + (2a2 + 6b2 − 2b3) v21v22 − 4b1v21v2
+ 4a3v1v32 + (4a1 − 3b1) v1v22 + 2a3v42 + 3a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a1 = 0
2a3 = 0
4a3 = 0

−4b1 = 0
4b2 = 0
8b2 = 0

4a1 − 3b1 = 0
2a2 + 6b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2

x (2x+ 3y)

)
(x)

= 2xy + 2y2
2x+ 3y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2xy+2y2
2x+3y

dy

Which results in

S = ln (y + x)
2 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (2x+ 3y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x+ 2y

Sy =
1

2x+ 2y + 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x)
2 + ln (y) = ln (x)

2 + c1

Which simplifies to

ln (y + x)
2 + ln (y) = ln (x)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(2x+3y)
dS
dR

= 1
2R

R = x

S = ln (y + x)
2 + ln (y)

Summary
The solution(s) found are the following

(1)ln (y + x)
2 + ln (y) = ln (x)

2 + c1
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Figure 882: Slope field plot

Verification of solutions

ln (y + x)
2 + ln (y) = ln (x)

2 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 451� �
dsolve(x*(2*x+3*y(x))*diff(y(x),x) = y(x)^2,y(x), singsol=all)� �

y(x) =

(
108c1x−8x3c31+12

√
3
√

−c21x
2
(
4c21x2−27

)) 1
3

2 + 2x2c21(
108c1x−8x3c31+12

√
3
√

−c21x
2
(
4c21x2−27

)) 1
3
− c1x

3c1
y(x)

=
4i
√
3 c21x2 − i

(
108c1x− 8x3c31 + 12

√
3
√

−4
(
c21x

2 − 27
4

)
c21x

2
) 2

3 √
3− 4c21x2 − 4

(
108c1x− 8x3c31 + 12

√
3
√

−4
(
c21x

2 − 27
4

)
c21x

2
) 1

3
c1x−

(
108c1x− 8x3c31 + 12

√
3
√
−4
(
c21x

2 − 27
4

)
c21x

2
) 2

3

12
(
108c1x− 8x3c31 + 12

√
3
√

−4
(
c21x

2 − 27
4

)
c21x

2
) 1

3
c1

y(x)

=
i

(
−4c21x2 +

(
108c1x− 8x3c31 + 12

√
3
√
−4
(
c21x

2 − 27
4

)
c21x

2
) 2

3
)√

3−
(
2c1x+

(
108c1x− 8x3c31 + 12

√
3
√

−4
(
c21x

2 − 27
4

)
c21x

2
) 1

3
)2

12
(
108c1x− 8x3c31 + 12

√
3
√

−4
(
c21x

2 − 27
4

)
c21x

2
) 1

3
c1
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3 Solution by Mathematica
Time used: 60.159 (sec). Leaf size: 413� �
DSolve[x(2 x+3 y[x])y'[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3

 x2

3

√
−x3 + 3

2
√
3
√
ec1x2 (−4x2 + 27ec1) + 27ec1x

2

+ 3

√
−x3 + 3

2
√
3
√
ec1x2 (−4x2 + 27ec1) + 27ec1x

2 − x


y(x) → 1

12

−
2
(
1 + i

√
3
)
x2

3

√
−x3 + 3

2
√
3
√

ec1x2 (−4x2 + 27ec1) + 27ec1x
2

+ i22/3
(√

3 + i
)

3
√

−2x3 + 3
√
3
√
ec1x2 (−4x2 + 27ec1) + 27ec1x− 4x


y(x) → 1

12

 2i
(√

3 + i
)
x2

3

√
−x3 + 3

2
√
3
√

ec1x2 (−4x2 + 27ec1) + 27ec1x
2

− 22/3
(
1 + i

√
3
)

3
√

−2x3 + 3
√
3
√
ec1x2 (−4x2 + 27ec1) + 27ec1x− 4x
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20.10 problem 555
20.10.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5546
20.10.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5548
20.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5554

Internal problem ID [3807]
Internal file name [OUTPUT/3300_Sunday_June_05_2022_09_06_55_AM_42552853/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 555.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(2x+ 3y) y′ + 3(y + x)2 = 0

20.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(2x+ 3u(x)x) (u′(x)x+ u(x)) + 3(u(x)x+ x)2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −6u2 + 8u+ 3
x (3u+ 2)
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Where f(x) = − 1
x
and g(u) = 6u2+8u+3

3u+2 . Integrating both sides gives

1
6u2+8u+3

3u+2
du = −1

x
dx

∫ 1
6u2+8u+3

3u+2
du =

∫
−1
x
dx

ln (6u2 + 8u+ 3)
4 = − ln (x) + c2

Raising both side to exponential gives(
6u2 + 8u+ 3

) 1
4 = e− ln(x)+c2

Which simplifies to (
6u2 + 8u+ 3

) 1
4 = c3

x

Which simplifies to (
6u(x)2 + 8u(x) + 3

) 1
4 = c3ec2

x

The solution is (
6u(x)2 + 8u(x) + 3

) 1
4 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

6y2
x2 + 8y

x
+ 3
) 1

4

= c3ec2
x(

6y2 + 8yx+ 3x2

x2

) 1
4

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
6y2 + 8yx+ 3x2

x2

) 1
4

= c3ec2
x
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Figure 883: Slope field plot

Verification of solutions (
6y2 + 8yx+ 3x2

x2

) 1
4

= c3ec2
x

Verified OK.

20.10.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3(x2 + 2xy + y2)
x (2x+ 3y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
3(x2 + 2xy + y2) (b3 − a2)

x (2x+ 3y) − 9(x2 + 2xy + y2)2 a3
x2 (2x+ 3y)2

−
(
− 3(2x+ 2y)
x (2x+ 3y) +

3x2 + 6xy + 3y2
x2 (2x+ 3y) + 6x2 + 12xy + 6y2

x (2x+ 3y)2
)
(xa2+ya3+a1)

−
(
− 3(2x+ 2y)
x (2x+ 3y) +

9x2 + 18xy + 9y2

x (2x+ 3y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

6x4a2 − 9x4a3 + 7x4b2 − 6x4b3 + 18x3ya2 − 36x3ya3 + 24x3yb2 − 18x3yb3 + 12x2y2a2 − 57x2y2a3 + 18x2y2b2 − 12x2y2b3 − 48x y3a3 − 18y4a3 + 3x3b1 − 3x2ya1 + 12x2yb1 − 12x y2a1 + 9x y2b1 − 9y3a1
x2 (2x+ 3y)2

= 0

Setting the numerator to zero gives

(6E)6x4a2 − 9x4a3 + 7x4b2 − 6x4b3 + 18x3ya2 − 36x3ya3 + 24x3yb2 − 18x3yb3
+ 12x2y2a2 − 57x2y2a3 + 18x2y2b2 − 12x2y2b3 − 48x y3a3 − 18y4a3
+ 3x3b1 − 3x2ya1 + 12x2yb1 − 12x y2a1 + 9x y2b1 − 9y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v41 + 18a2v31v2 + 12a2v21v22 − 9a3v41 − 36a3v31v2 − 57a3v21v22 − 48a3v1v32
− 18a3v42 + 7b2v41 + 24b2v31v2 + 18b2v21v22 − 6b3v41 − 18b3v31v2 − 12b3v21v22
− 3a1v21v2 − 12a1v1v22 − 9a1v32 + 3b1v31 + 12b1v21v2 + 9b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(6a2 − 9a3 + 7b2 − 6b3) v41 + (18a2 − 36a3 + 24b2 − 18b3) v31v2
+ 3b1v31 + (12a2 − 57a3 + 18b2 − 12b3) v21v22 + (−3a1 + 12b1) v21v2
− 48a3v1v32 + (−12a1 + 9b1) v1v22 − 18a3v42 − 9a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−9a1 = 0
−48a3 = 0
−18a3 = 0

3b1 = 0
−12a1 + 9b1 = 0
−3a1 + 12b1 = 0

6a2 − 9a3 + 7b2 − 6b3 = 0
12a2 − 57a3 + 18b2 − 12b3 = 0
18a2 − 36a3 + 24b2 − 18b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−3(x2 + 2xy + y2)

x (2x+ 3y)

)
(x)

= 3x2 + 8xy + 6y2
2x+ 3y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2+8xy+6y2
2x+3y

dy

Which results in

S = ln (3x2 + 8xy + 6y2)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3(x2 + 2xy + y2)
x (2x+ 3y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3x+ 4y
6x2 + 16xy + 12y2

Sy =
2x+ 3y

3x2 + 8xy + 6y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (6y2 + 8yx+ 3x2)
4 = − ln (x)

2 + c1

Which simplifies to

ln (6y2 + 8yx+ 3x2)
4 = − ln (x)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3
(
x2+2xy+y2

)
x(2x+3y)

dS
dR

= − 1
2R

R = x

S = ln (3x2 + 8xy + 6y2)
4

Summary
The solution(s) found are the following

(1)ln (6y2 + 8yx+ 3x2)
4 = − ln (x)

2 + c1
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Figure 884: Slope field plot

Verification of solutions

ln (6y2 + 8yx+ 3x2)
4 = − ln (x)

2 + c1

Verified OK.

20.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(2x+ 3y)) dy =
(
−3(y + x)2

)
dx(

3(y + x)2
)
dx+(x(2x+ 3y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3(y + x)2

N(x, y) = x(2x+ 3y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3(y + x)2

)
= 6x+ 6y

And
∂N

∂x
= ∂

∂x
(x(2x+ 3y))

= 4x+ 3y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (2x+ 3y)((6x+ 6y)− (4x+ 3y))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
3(y + x)2

)
= 3(y + x)2 x

And

N = µN

= x(x(2x+ 3y))
= x2(2x+ 3y)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3(y + x)2 x
)
+
(
x2(2x+ 3y)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3(y + x)2 x dx

(3)φ = 3
4x

4 + 2x3y + 3
2y

2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x3 + 3x2y + f ′(y)

= x2(2x+ 3y) + f ′(y)

But equation (2) says that ∂φ
∂y

= x2(2x+ 3y). Therefore equation (4) becomes

(5)x2(2x+ 3y) = x2(2x+ 3y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 3
4x

4 + 2x3y + 3
2y

2x2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
3
4x

4 + 2x3y + 3
2y

2x2

Summary
The solution(s) found are the following

(1)3x4

4 + 2yx3 + 3y2x2

2 = c1

Figure 885: Slope field plot

Verification of solutions

3x4

4 + 2yx3 + 3y2x2

2 = c1

Verified OK.

5558



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 63� �
dsolve(x*(2*x+3*y(x))*diff(y(x),x)+3*(x+y(x))^2 = 0,y(x), singsol=all)� �

y(x) = −4c1x2 −
√
−2c21x4 + 6

6c1x

y(x) = −4c1x2 +
√

−2c21x4 + 6
6c1x

3 Solution by Mathematica
Time used: 1.82 (sec). Leaf size: 135� �
DSolve[x(2 x+3 y[x])y'[x]+3(x+y[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x2 +
√
−2x4 + 6e4c1
6x

y(x) → −4x2 +
√
−2x4 + 6e4c1
6x

y(x) → −
√
2
√
−x4 + 4x2

6x

y(x) →
√
2
√
−x4 − 4x2

6x
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20.11 problem 556
20.11.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5560
20.11.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5563

Internal problem ID [3808]
Internal file name [OUTPUT/3301_Sunday_June_05_2022_09_06_59_AM_37728349/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 556.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

(
3 + 6yx+ x2) y′ + 2yx+ 3y2 = −2x

20.11.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 + 6xy + 3
)
dy =

(
−2xy − 3y2 − 2x

)
dx(

2xy + 3y2 + 2x
)
dx+

(
x2 + 6xy + 3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy + 3y2 + 2x
N(x, y) = x2 + 6xy + 3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2xy + 3y2 + 2x

)
= 2x+ 6y

And
∂N

∂x
= ∂

∂x

(
x2 + 6xy + 3

)
= 2x+ 6y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2xy + 3y2 + 2x dx

(3)φ = x
(
xy + 3y2 + x

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x(x+ 6y) + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 6xy + 3. Therefore equation (4) becomes

(5)x2 + 6xy + 3 = x(x+ 6y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(3) dy

f(y) = 3y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x
(
xy + 3y2 + x

)
+ 3y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
xy + 3y2 + x

)
+ 3y
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Summary
The solution(s) found are the following

(1)x
(
yx+ 3y2 + x

)
+ 3y = c1

Figure 886: Slope field plot

Verification of solutions

x
(
yx+ 3y2 + x

)
+ 3y = c1

Verified OK.

20.11.2 Maple step by step solution

Let’s solve
(3 + 6yx+ x2) y′ + 2yx+ 3y2 = −2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2x+ 6y = 2x+ 6y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2xy + 3y2 + 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = x2y + 3x y2 + x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2 + 6xy + 3 = x2 + 6xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 3

• Solve for f1(y)
f1(y) = 3y

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x2y + 3x y2 + x2 + 3y

• Substitute F (x, y) into the solution of the ODE
x2y + 3x y2 + x2 + 3y = c1

• Solve for y{
y = −x2−3+

√
x4−12x3+12c1x+6x2+9

6x , y = −x2+
√

x4−12x3+12c1x+6x2+9+3
6x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 75� �
dsolve((3+6*x*y(x)+x^2)*diff(y(x),x)+2*x+2*x*y(x)+3*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −x2 − 3 +
√
x4 − 12x3 − 12c1x+ 6x2 + 9

6x

y(x) = −x2 − 3−
√
x4 − 12x3 − 12c1x+ 6x2 + 9

6x

3 Solution by Mathematica
Time used: 0.531 (sec). Leaf size: 83� �
DSolve[(3+6 x y[x]+x^2)y'[x]+2 x+2 x y[x]+3 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2 +
√
x4 − 12x3 + 6x2 + 36c1x+ 9 + 3

6x

y(x) → −x2 −
√
x4 − 12x3 + 6x2 + 36c1x+ 9 + 3

6x
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20.12 problem 557
20.12.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5566
20.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5569

Internal problem ID [3809]
Internal file name [OUTPUT/3302_Sunday_June_05_2022_09_07_02_AM_99518296/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 557.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

3x(x+ 2y) y′ + 3y(y + 2x) = −x3

20.12.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(3x(x+ 2y)) dy =
(
−x3 − 3y(2x+ y)

)
dx(

x3 + 3y(2x+ y)
)
dx+(3x(x+ 2y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x3 + 3y(2x+ y)
N(x, y) = 3x(x+ 2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x3 + 3y(2x+ y)

)
= 6x+ 6y

And
∂N

∂x
= ∂

∂x
(3x(x+ 2y))

= 6x+ 6y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3 + 3y(2x+ y) dx

(3)φ = 1
4x

4 + 3x2y + 3x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x2 + 6xy + f ′(y)

= 3x(x+ 2y) + f ′(y)

But equation (2) says that ∂φ
∂y

= 3x(x+ 2y). Therefore equation (4) becomes

(5)3x(x+ 2y) = 3x(x+ 2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1
4x

4 + 3x2y + 3x y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
4x

4 + 3x2y + 3x y2

Summary
The solution(s) found are the following

(1)x4

4 + 3x2y + 3y2x = c1
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Figure 887: Slope field plot

Verification of solutions

x4

4 + 3x2y + 3y2x = c1

Verified OK.

20.12.2 Maple step by step solution

Let’s solve
3x(x+ 2y) y′ + 3y(y + 2x) = −x3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
6x+ 6y = 6x+ 6y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x3 + 3y(2x+ y)) dx+ f1(y)

• Evaluate integral
F (x, y) = x4

4 + 3x2y + 3x y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
3x(x+ 2y) = 3x2 + 6xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 3x(x+ 2y)− 3x2 − 6xy

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 1

4x
4 + 3x2y + 3x y2

• Substitute F (x, y) into the solution of the ODE
1
4x

4 + 3x2y + 3x y2 = c1

• Solve for y{
y = −3x2+

√
−3x5+9x4+12c1x

6x , y = −3x2+
√

−3x5+9x4+12c1x
6x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 72� �
dsolve(3*x*(x+2*y(x))*diff(y(x),x)+x^3+3*y(x)*(2*x+y(x)) = 0,y(x), singsol=all)� �

y(x) = −3x2 +
√
3
√

−x (x4 − 3x3 + 4c1)
6x

y(x) = −
√
3
√
−x (x4 − 3x3 + 4c1)− 3x2

6x

3 Solution by Mathematica
Time used: 0.481 (sec). Leaf size: 75� �
DSolve[3 x(x+2 y[x])y'[x]+x^3+3 y[x](2 x+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3x2 +
√
−3x5 + 9x4 + 36c1x

6x

y(x) → −3x2 +
√
−3x5 + 9x4 + 36c1x

6x
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20.13 problem 558
20.13.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5572
20.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5574
20.13.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5577
20.13.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5580

Internal problem ID [3810]
Internal file name [OUTPUT/3303_Sunday_June_05_2022_09_07_06_AM_74923078/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 558.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

axyy′ − y2 = x2

20.13.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

a x2u(x) (u′(x)x+ u(x))− u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −−1 + (a− 1)u2

axu
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Where f(x) = − 1
ax

and g(u) = −1+(a−1)u2

u
. Integrating both sides gives

1
−1+(a−1)u2

u

du = − 1
ax

dx

∫ 1
−1+(a−1)u2

u

du =
∫

− 1
ax

dx

ln (u2a− u2 − 1)
2a− 2 = − ln (x)

a
+ c2

Raising both side to exponential gives

e
ln
(
u2a−u2−1

)
2a−2 = e−

ln(x)
a

+c2

Which simplifies to (
u2a− u2 − 1

) 1
2a−2 = c3e−

ln(x)
a

Which simplifies to

u(x) = RootOf
(
−
(
_Z2a− _Z2 − 1

) 1
2a−2 + c3x

− 1
a ec2

)
Therefore the solution y is

y = xu

= xRootOf
(
−
(
_Z2a− _Z2 − 1

) 1
2a−2 x

1
a + c3ec2

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
−
(
_Z2a− _Z2 − 1

) 1
2a−2 x

1
a + c3ec2

)
Verification of solutions

y = xRootOf
(
−
(
_Z2a− _Z2 − 1

) 1
2a−2 x

1
a + c3ec2

)
Verified OK.
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20.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + y2

yxa

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 860: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e
2 ln(x)

a

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
2 ln(x)

a

y

dy

Which results in

S = y2e−
2 ln(x)

a

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + y2

yxa
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x
−2−a

a y2

a

Sy = y x− 2
a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

a−2
a

a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

a−2
a

a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R
2a−2

a

2a− 2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x− 2
a

2 = x
2a−2

a

2a− 2 + c1

Which simplifies to

y2x− 2
a

2 = x
2a−2

a

2a− 2 + c1

Summary
The solution(s) found are the following

(1)y2x− 2
a

2 = x
2a−2

a

2a− 2 + c1

Verification of solutions

y2x− 2
a

2 = x
2a−2

a

2a− 2 + c1

Verified OK.
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20.13.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x2 + y2

yxa

This is a Bernoulli ODE.
y′ = 1

ax
y + x

a

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
ax

f1(x) =
x

a
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

ax
+ x

a
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)
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Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

ax
+ x

a

w′ = 2w
ax

+ 2x
a

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − 2
ax

q(x) = 2x
a

Hence the ode is

w′(x)− 2w(x)
ax

= 2x
a

The integrating factor µ is

µ = e
∫
− 2

ax
dx

= e−
2 ln(x)

a

Which simplifies to

µ = x− 2
a

The ode becomes
d
dx(µw) = (µ)

(
2x
a

)
d
dx

(
x− 2

aw
)
=
(
x− 2

a

)(2x
a

)
d
(
x− 2

aw
)
=
(
2xa−2

a

a

)
dx

Integrating gives

x− 2
aw =

∫ 2xa−2
a

a
dx

x− 2
aw = x1+a−2

a

a− 1 + c1
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Dividing both sides by the integrating factor µ = x− 2
a results in

w(x) = x
2
ax1+a−2

a

a− 1 + c1x
2
a

which simplifies to

w(x) = x2

a− 1 + c1x
2
a

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x2

a− 1 + c1x
2
a

Solving for y gives

y(x) =

√
(a− 1)

(
x2 + c1x

2
a (a− 1)

)
a− 1

y(x) = −

√
(a− 1)

(
x2 + c1x

2
a (a− 1)

)
a− 1

Summary
The solution(s) found are the following

(1)y =

√
(a− 1)

(
x2 + c1x

2
a (a− 1)

)
a− 1

(2)y = −

√
(a− 1)

(
x2 + c1x

2
a (a− 1)

)
a− 1

Verification of solutions

y =

√
(a− 1)

(
x2 + c1x

2
a (a− 1)

)
a− 1

Verified OK.

y = −

√
(a− 1)

(
x2 + c1x

2
a (a− 1)

)
a− 1

Verified OK.
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20.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(axy) dy =
(
x2 + y2

)
dx(

−x2 − y2
)
dx+(axy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − y2

N(x, y) = axy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 − y2

)
= −2y

And
∂N

∂x
= ∂

∂x
(axy)

= ya

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yxa
((−2y)− (ya))

= −2− a

ax

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −2−a

ax
dx

The result of integrating gives

µ = e
(−2−a) ln(x)

a

= x− 2+a
a

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 2+a
a

(
−x2 − y2

)
= −

(
x2 + y2

)
x

−2−a
a
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And

N = µN

= x− 2+a
a (axy)

= a x− 2
ay

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
(
x2 + y2

)
x

−2−a
a

)
+
(
a x− 2

ay
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
(
x2 + y2

)
x

−2−a
a dx

(3)φ = a x− 2
a (a y2 − x2 − y2)

2a− 2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= a x− 2

a (2ya− 2y)
2a− 2 + f ′(y)

= a x− 2
ay + f ′(y)

But equation (2) says that ∂φ
∂y

= a x− 2
ay. Therefore equation (4) becomes

(5)a x− 2
ay = a x− 2

ay + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = a x− 2
a (a y2 − x2 − y2)

2a− 2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
a x− 2

a (a y2 − x2 − y2)
2a− 2

Summary
The solution(s) found are the following

(1)a x− 2
a (ay2 − y2 − x2)

2a− 2 = c1

Verification of solutions

a x− 2
a (ay2 − y2 − x2)

2a− 2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 64� �
dsolve(a*x*y(x)*diff(y(x),x) = x^2+y(x)^2,y(x), singsol=all)� �

y(x) =

√(
c1 (a− 1)x 2

a + x2
)
(a− 1)

a− 1

y(x) = −

√(
c1 (a− 1)x 2

a + x2
)
(a− 1)

a− 1

3 Solution by Mathematica
Time used: 4.315 (sec). Leaf size: 68� �
DSolve[a x y[x] y'[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

x2 + (a− 1)c1x2/a
√
a− 1

y(x) →
√
x2 + (a− 1)c1x2/a

√
a− 1
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20.14 problem 559
20.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5585
20.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5587
20.14.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5590
20.14.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5593

Internal problem ID [3811]
Internal file name [OUTPUT/3304_Sunday_June_05_2022_09_07_12_AM_1602717/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 559.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

axyy′ − y2 = −x2

20.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

a x2u(x) (u′(x)x+ u(x))− u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −1 + (a− 1)u2

axu
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Where f(x) = − 1
ax

and g(u) = 1+(a−1)u2

u
. Integrating both sides gives

1
1+(a−1)u2

u

du = − 1
ax

dx

∫ 1
1+(a−1)u2

u

du =
∫

− 1
ax

dx

ln (u2a− u2 + 1)
2a− 2 = − ln (x)

a
+ c2

Raising both side to exponential gives

e
ln
(
u2a−u2+1

)
2a−2 = e−

ln(x)
a

+c2

Which simplifies to (
u2a− u2 + 1

) 1
2a−2 = c3e−

ln(x)
a

Which simplifies to

u(x) = RootOf
(
−
(
_Z2a− _Z2 + 1

) 1
2a−2 + c3x

− 1
a ec2

)
Therefore the solution y is

y = xu

= xRootOf
(
−
(
_Z2a− _Z2 + 1

) 1
2a−2 x

1
a + c3ec2

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
−
(
_Z2a− _Z2 + 1

) 1
2a−2 x

1
a + c3ec2

)
Verification of solutions

y = xRootOf
(
−
(
_Z2a− _Z2 + 1

) 1
2a−2 x

1
a + c3ec2

)
Verified OK.
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20.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2

yxa

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 862: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e
2 ln(x)

a

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
2 ln(x)

a

y

dy

Which results in

S = y2e−
2 ln(x)

a

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2

yxa
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x
−2−a

a y2

a

Sy = y x− 2
a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x

a−2
a

a
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

a−2
a

a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − R
2a−2

a

2 (a− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x− 2
a

2 = − x
2a−2

a

2 (a− 1) + c1

Which simplifies to

y2x− 2
a

2 = − x
2a−2

a

2 (a− 1) + c1

Summary
The solution(s) found are the following

(1)y2x− 2
a

2 = − x
2a−2

a

2 (a− 1) + c1

Verification of solutions

y2x− 2
a

2 = − x
2a−2

a

2 (a− 1) + c1

Verified OK.
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20.14.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2

yxa

This is a Bernoulli ODE.
y′ = 1

ax
y − x

a

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
ax

f1(x) = −x

a
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

ax
− x

a
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)
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Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

ax
− x

a

w′ = 2w
ax

− 2x
a

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − 2
ax

q(x) = −2x
a

Hence the ode is

w′(x)− 2w(x)
ax

= −2x
a

The integrating factor µ is

µ = e
∫
− 2

ax
dx

= e−
2 ln(x)

a

Which simplifies to

µ = x− 2
a

The ode becomes
d
dx(µw) = (µ)

(
−2x

a

)
d
dx

(
x− 2

aw
)
=
(
x− 2

a

)(
−2x

a

)
d
(
x− 2

aw
)
=
(
−2xa−2

a

a

)
dx

Integrating gives

x− 2
aw =

∫
−2xa−2

a

a
dx

x− 2
aw = −x1+a−2

a

a− 1 + c1
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Dividing both sides by the integrating factor µ = x− 2
a results in

w(x) = −x
2
ax1+a−2

a

a− 1 + c1x
2
a

which simplifies to

w(x) = − x2

a− 1 + c1x
2
a

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = − x2

a− 1 + c1x
2
a

Solving for y gives

y(x) =

√
(a− 1)

(
−x2 + c1x

2
a (a− 1)

)
a− 1

y(x) = −

√
(a− 1)

(
−x2 + c1x

2
a (a− 1)

)
a− 1

Summary
The solution(s) found are the following

(1)y =

√
(a− 1)

(
−x2 + c1x

2
a (a− 1)

)
a− 1

(2)y = −

√
(a− 1)

(
−x2 + c1x

2
a (a− 1)

)
a− 1

Verification of solutions

y =

√
(a− 1)

(
−x2 + c1x

2
a (a− 1)

)
a− 1

Verified OK.

y = −

√
(a− 1)

(
−x2 + c1x

2
a (a− 1)

)
a− 1

Verified OK.
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20.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(axy) dy =
(
−x2 + y2

)
dx(

x2 − y2
)
dx+(axy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 − y2

N(x, y) = axy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 − y2

)
= −2y

And
∂N

∂x
= ∂

∂x
(axy)

= ya

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yxa
((−2y)− (ya))

= −2− a

ax

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −2−a

ax
dx

The result of integrating gives

µ = e
(−2−a) ln(x)

a

= x− 2+a
a

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x− 2+a
a

(
x2 − y2

)
=
(
x2 − y2

)
x

−2−a
a
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And

N = µN

= x− 2+a
a (axy)

= a x− 2
ay

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

x2 − y2
)
x

−2−a
a

)
+
(
a x− 2

ay
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
x2 − y2

)
x

−2−a
a dx

(3)φ = a x− 2
a (a y2 + x2 − y2)

2a− 2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= a x− 2

a (2ya− 2y)
2a− 2 + f ′(y)

= a x− 2
ay + f ′(y)

But equation (2) says that ∂φ
∂y

= a x− 2
ay. Therefore equation (4) becomes

(5)a x− 2
ay = a x− 2

ay + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = a x− 2
a (a y2 + x2 − y2)

2a− 2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
a x− 2

a (a y2 + x2 − y2)
2a− 2

Summary
The solution(s) found are the following

(1)a x− 2
a (ay2 − y2 + x2)

2a− 2 = c1

Verification of solutions

a x− 2
a (ay2 − y2 + x2)

2a− 2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �

5596



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 68� �
dsolve(a*x*y(x)*diff(y(x),x)+x^2-y(x)^2 = 0,y(x), singsol=all)� �

y(x) =

√(
c1 (a− 1)x 2

a − x2
)
(a− 1)

a− 1

y(x) = −

√(
c1 (a− 1)x 2

a − x2
)
(a− 1)

a− 1

3 Solution by Mathematica
Time used: 4.177 (sec). Leaf size: 72� �
DSolve[a x y[x] y'[x]+x^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x2 + (a− 1)c1x2/a
√
a− 1

y(x) →
√

−x2 + (a− 1)c1x2/a
√
a− 1

5597



20.15 problem 560
20.15.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5598
20.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5599
20.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5602
20.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5605

Internal problem ID [3812]
Internal file name [OUTPUT/3305_Sunday_June_05_2022_09_07_17_AM_70837004/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 560.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(yb+ a) y′ − cy = 0

20.15.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= cy

x (by + a)

Where f(x) = c
x
and g(y) = y

by+a
. Integrating both sides gives

1
y

by+a

dy = c

x
dx

∫ 1
y

by+a

dy =
∫

c

x
dx

by + a ln (y) = c ln (x) + c1
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Which results in

y = e
−aLambertW

 b e
c ln(x)+c1

a
a

+c ln(x)+c1

a

Which simplifies to

y = e
−LambertW

(
b x

c
a e

c1
a

a

)
x

c
a e

c1
a

Summary
The solution(s) found are the following

(1)y = e
−LambertW

(
b x

c
a e

c1
a

a

)
x

c
a e

c1
a

Verification of solutions

y = e
−LambertW

(
b x

c
a e

c1
a

a

)
x

c
a e

c1
a

Verified OK.

20.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cy

x (by + a)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 864: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

c
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
c

dx

Which results in

S = c ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cy

x (by + a)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = c

x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= by + a

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Rb+ a

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = Rb+ a ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

c ln (x) = yb+ a ln (y) + c1

Which simplifies to

c ln (x) = yb+ a ln (y) + c1

Which gives

y = e−
aLambertW

 b e
c ln(x)−c1

a
a

−c ln(x)+c1

a

Summary
The solution(s) found are the following

(1)y = e−
aLambertW

 b e
c ln(x)−c1

a
a

−c ln(x)+c1

a

Verification of solutions

y = e−
aLambertW

 b e
c ln(x)−c1

a
a

−c ln(x)+c1

a

Verified OK.

20.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

by + a

cy

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
by + a

cy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = by + a

cy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
by + a

cy

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= by+a
cy

. Therefore equation (4) becomes

(5)by + a

cy
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = by + a

cy

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
by + a

cy

)
dy

f(y) = a ln (y)
c

+ yb

c
+ c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + a ln (y)
c

+ yb

c
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + a ln (y)
c

+ yb

c

The solution becomes

y = e
c1c−aLambertW

 b e
c(ln(x)+c1)

a
a

+c ln(x)

a

Summary
The solution(s) found are the following

(1)y = e
c1c−aLambertW

 b e
c(ln(x)+c1)

a
a

+c ln(x)

a

Verification of solutions

y = e
c1c−aLambertW

 b e
c(ln(x)+c1)

a
a

+c ln(x)

a

Verified OK.

20.15.4 Maple step by step solution

Let’s solve
x(yb+ a) y′ − cy = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(yb+a)

y
= c

x

• Integrate both sides with respect to x
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∫ y′(yb+a)
y

dx =
∫

c
x
dx+ c1

• Evaluate integral
yb+ a ln (y) = c ln (x) + c1

• Solve for y

y = e
−aLambertW

 b e
c ln(x)+c1

a
a

+c ln(x)+c1

a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 44� �
dsolve(x*(a+b*y(x))*diff(y(x),x) = c*y(x),y(x), singsol=all)� �

y(x) = x
c
a e

−aLambertW

 b x
c
a e

cc1
a

a

+cc1

a

3 Solution by Mathematica
Time used: 0.954 (sec). Leaf size: 36� �
DSolve[x(a+b y[x])y'[x]==c y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
aW
(

be
c1
a x

c
a

a

)
b

y(x) → 0
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20.16 problem 561
20.16.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5607
20.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5608
20.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5613

Internal problem ID [3813]
Internal file name [OUTPUT/3306_Sunday_June_05_2022_09_07_21_AM_22279562/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 561.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x(x− ya) y′ − y(y − ax) = 0

20.16.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(x− u(x)xa) (u′(x)x+ u(x))− u(x)x(u(x)x− ax) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(u− 1) (1 + a)
x (ua− 1)
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Where f(x) = − 1
x
and g(u) = u(u−1)(1+a)

ua−1 . Integrating both sides gives

1
u(u−1)(1+a)

ua−1

du = −1
x
dx

∫ 1
u(u−1)(1+a)

ua−1

du =
∫

−1
x
dx

(a− 1) ln (u− 1) + ln (u)
1 + a

= − ln (x) + c2

Raising both side to exponential gives

e
(a−1) ln(u−1)+ln(u)

1+a = e− ln(x)+c2

Which simplifies to

u
1

1+a (u− 1)
a−1
1+a = c3

x

Therefore the solution y is

y = xu

= xRootOf
(
−_Z

1
1+a (_Z− 1)

a−1
1+a x+ c3ec2

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
−_Z

1
1+a (_Z− 1)

a−1
1+a x+ c3ec2

)
Verification of solutions

y = xRootOf
(
−_Z

1
1+a (_Z− 1)

a−1
1+a x+ c3ec2

)
Verified OK.

20.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(−ax+ y)
x (ya− x)

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(−ax+ y) (b3 − a2)

x (ya− x) − y2(−ax+ y)2 a3
x2 (ya− x)2

−
(

ya

x (ya− x) +
y(−ax+ y)
x2 (ya− x) − y(−ax+ y)

x (ya− x)2
)
(xa2 + ya3 + a1)

−
(
− −ax+ y

x (ya− x) −
y

(ya− x)x + y(−ax+ y) a
x (ya− x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x2y2a2 + a2x2y2a3 − a2x2y2b2 − a2x2y2b3 − a x4b2 + 2a x3yb2 + a x2y2a3 − a x2y2b2 − 2ax y3a3 + a y4a3 − a x3b1 + a x2ya1 − ax y2b1 + a y3a1 − x4b2 + 2x3yb2 − x2y2a2 + x2y2b3 − 2x y3a3 + y4a3 + 2x2yb1 − 2x y2a1
x2 (ya− x)2

= 0

Setting the numerator to zero gives

(6E)−a2x2y2a2 − a2x2y2a3 + a2x2y2b2 + a2x2y2b3 + a x4b2 − 2a x3yb2 − a x2y2a3
+ a x2y2b2 + 2ax y3a3 − a y4a3 + a x3b1 − a x2ya1 + ax y2b1 − a y3a1 + x4b2
− 2x3yb2 + x2y2a2 − x2y2b3 + 2x y3a3 − y4a3 − 2x2yb1 + 2x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2a2v
2
1v

2
2 − a2a3v

2
1v

2
2 + a2b2v

2
1v

2
2 + a2b3v

2
1v

2
2 − aa3v

2
1v

2
2 + 2aa3v1v32 − aa3v

4
2

+ ab2v
4
1 − 2ab2v31v2 + ab2v

2
1v

2
2 − aa1v

2
1v2 − aa1v

3
2 + ab1v

3
1 + ab1v1v

2
2 + a2v

2
1v

2
2

+ 2a3v1v32 − a3v
4
2 + b2v

4
1 − 2b2v31v2 − b3v

2
1v

2
2 + 2a1v1v22 − 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(ab2 + b2) v41 + (−2ab2 − 2b2) v31v2 + ab1v
3
1

+
(
−a2a2−a2a3+a2b2+a2b3−aa3+ab2+a2− b3

)
v21v

2
2 +(−aa1−2b1) v21v2

+ (2aa3 + 2a3) v1v32 + (ab1 + 2a1) v1v22 + (−aa3 − a3) v42 − aa1v
3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

ab1 = 0
−aa1 = 0

−aa3 − a3 = 0
2aa3 + 2a3 = 0

−2ab2 − 2b2 = 0
ab2 + b2 = 0

ab1 + 2a1 = 0
−aa1 − 2b1 = 0

−a2a2 − a2a3 + a2b2 + a2b3 − aa3 + ab2 + a2 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(−ax+ y)

x (ya− x)

)
(x)

= −axy + a y2 − xy + y2

ya− x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−axy+a y2−xy+y2

ya−x

dy
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Which results in

S = (a− 1) ln (y − x) + ln (y)
1 + a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(−ax+ y)
x (ya− x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = a− 1
(1 + a) (−y + x)

Sy =
−ya+ x

y (−y + x) (1 + a)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

x (1 + a) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R (1 + a)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
1 + a

+ c1 (4)
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To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(a− 1) ln (y − x) + ln (y)
1 + a

= − ln (x)
1 + a

+ c1

Which simplifies to

(a− 1) ln (y − x)− c1a− c1 + ln (x) + ln (y)
1 + a

= 0

Summary
The solution(s) found are the following

(1)(a− 1) ln (y − x)− c1a− c1 + ln (x) + ln (y)
1 + a

= 0

Verification of solutions

(a− 1) ln (y − x)− c1a− c1 + ln (x) + ln (y)
1 + a

= 0

Verified OK.

20.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

5613



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(−ya+ x)) dy = (y(−ax+ y)) dx
(−y(−ax+ y)) dx+(x(−ya+ x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(−ax+ y)
N(x, y) = x(−ya+ x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y(−ax+ y))

= ax− 2y

And

∂N

∂x
= ∂

∂x
(x(−ya+ x))

= −ya+ 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (−ya+ x)((ax− 2y)− (−ya+ 2x))

= −(y + x) (a− 2)
x (ya− x)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (ax− y)((−ya+ 2x)− (ax− 2y))

= −(y + x) (a− 2)
y (ax− y)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−ya+ 2x)− (ax− 2y)
x (−y (−ax+ y))− y (x (−ya+ x))

= 2− a

(a− 1)xy

Replacing all powers of terms xy by t gives

R = 2− a

(a− 1) t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( 2−a

(a−1)t

)
dt
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The result of integrating gives

µ = e
(2−a) ln(t)

a−1

= t−
a−2
a−1

Now t is replaced back with xy giving

µ = (xy)−
a−2
a−1

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= (xy)−
a−2
a−1 (−y(−ax+ y))

= y(ax− y) (xy)
2−a
a−1

And

N = µN

= (xy)−
a−2
a−1 (x(−ya+ x))

= −x(ya− x) (xy)
2−a
a−1

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y(ax− y) (xy)
2−a
a−1

)
+
(
−x(ya− x) (xy)

2−a
a−1

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y(ax− y) (xy)

2−a
a−1 dx

(3)φ = x(a− 1) (−y + x) y(xy)
2−a
a−1 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x(a− 1) y(xy)

2−a
a−1 + x(a− 1) (−y + x) (xy)

2−a
a−1

+ x(−y + x) (xy)
2−a
a−1 (2− a) + f ′(y)

= −x(ya− x) (xy)
2−a
a−1 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x(ya− x) (xy)
2−a
a−1 . Therefore equation (4) becomes

(5)−x(ya− x) (xy)
2−a
a−1 = −x(ya− x) (xy)

2−a
a−1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x(a− 1) (−y + x) y(xy)
2−a
a−1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x(a− 1) (−y + x) y(xy)
2−a
a−1

Summary
The solution(s) found are the following

(1)x(a− 1) (−y + x) y(yx)
2−a
a−1 = c1

Verification of solutions

x(a− 1) (−y + x) y(yx)
2−a
a−1 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 60� �
dsolve(x*(x-a*y(x))*diff(y(x),x) = y(x)*(y(x)-a*x),y(x), singsol=all)� �

y(x) = x−ae(−a+1)RootOf
(
xa+1ea_Z+c1a+c1+xa+1ea_Z+c1a−_Z+c1−1

)
−c1(a+1)

3 Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 36� �
DSolve[x(x-a y[x])y'[x]==y[x](y[x]-a x),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
(a− 1) log

(
1− y(x)

x

)
+ log

(
y(x)
x

)
= −(a+ 1) log(x) + c1, y(x)

]
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20.17 problem 564
20.17.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5619

Internal problem ID [3814]
Internal file name [OUTPUT/3307_Sunday_June_05_2022_09_07_25_AM_94863056/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 564.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`], [

_Abel , `2nd type `, `class C`]]

x(xn + ya) y′ + (b+ cy) y2 = 0

20.17.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (cy + b) y2
x (xn + ya)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− (cy + b) y2(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (xn + ya)

− (cy + b)2 y4(x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2 (xn + ya)2

−
(

(cy + b) y2
x2 (xn + ya) +

(cy + b) y2xnn

x2 (xn + ya)2
)(

x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5

+ y2a6 + xa2 + ya3 + a1
)
−
(
− c y2

x (xn + ya) −
2(cy + b) y
x (xn + ya) +

(cy + b) y2a
x (xn + ya)2

)(
x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, xn}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, x
n = v3}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)

(4ab4 + 2bb4) v2v31v3 + 2acv41v32b7 + (2aca7 + acb8) v42v31
+ (aca8 − 2bca8) v52v21 +

(
−acb10 − 4bca9 − c2a5

)
v62v1

+
(
2a2b8 + 2aba7 + 2acb4

)
v32v

3
1

+
(
a2b9 + aba8 − abb9 + aca4 + acb5 − b2a8

)
v42v

2
1

+
(
−2abb10 − 2b2a9 − 2bca5

)
v52v1

+
(
3a2b7 + abb7

)
v22v

4
1 + (6ab7 + 2bb7) v2v41v3

+ (−bna7 + 4ab8 + 2ba7 + bb8 + 3cb4) v22v31v3
+ (−bna8 − cna4 + 2ab9 + ba8 + ca4 + 2cb5) v32v21v3
+(−cna7+2ca7+2cb8) v32v31v3+(−cna8+ca8+cb9) v42v21v3
+ (−bna9 − cna5 − bb10 + cb6) v42v1v3
+ (−bna4 + 2ab5 + ba4 + bb5 + 3cb2) v22v21v3
+ (−bna5 − cna2 + 2cb3) v32v1v3 + (2ab2 + 2bb2) v2v21v3
+ (−bna2 + bb3 + 3cb1) v22v1v3 +

(
2a2b4 + abb4

)
v22v

3
1

+
(
a2b5 + aba4 + 2acb2

)
v32v

2
1 +

(
−abb6 + acb3 − b2a5

)
v42v1

+ (−bna10 − cna6 − ba10 − ca6) v52v3
+ (−bna6 − cna3 − ba6 − ca3) v42v3 + (−cna10 − ca10) v62v3
+
(
a2b2 + abb2

)
v22v

2
1 + (−bna3 − cna1 − ba3 − ca1) v32v3

+ (−bna1 − ba1) v22v3 + v23v
2
1v2b5 − c2v21v

6
2a8

− 2c2v1v72a9 + 2v23v31v2b8 + v23v
2
1v

2
2b9 − abv32a1

+ 3v3cv41v22b7 + 2v3bv1v2b1 + 2acv1v32b1 + abv1v
2
2b1

+ 2v23v31b4 − 3c2v82a10 + 3v23v41b7 + v23v
2
1b2

+
(
−aca10− 6bca10− 2c2a6

)
v72 +

(
−aba3−aca1− b2a3

)
v42

+
(
−aba6 − aca3 − 2b2a6 − 2bca3

)
v52

+
(
−aba10 − aca6 − 3b2a10 − 4bca6 − c2a3

)
v62

− v3cnv1v
5
2a9 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
b2 = 0
b5 = 0
b9 = 0

abb1 = 0
2b4 = 0
3b7 = 0
2b8 = 0
2bb1 = 0
3cb7 = 0

−c2a8 = 0
−2c2a9 = 0
−3c2a10 = 0
−aba1 = 0
2acb1 = 0
2acb7 = 0
−cna9 = 0

2ab2 + 2bb2 = 0
a2b2 + abb2 = 0
4ab4 + 2bb4 = 0
2a2b4 + abb4 = 0
6ab7 + 2bb7 = 0
3a2b7 + abb7 = 0
−bna1 − ba1 = 0

−cna10 − ca10 = 0
aca8 − 2bca8 = 0
2aca7 + acb8 = 0

−cna7 + 2ca7 + 2cb8 = 0
−cna8 + ca8 + cb9 = 0

−aba3 − aca1 − b2a3 = 0
−aca10 − 6bca10 − 2c2a6 = 0

a2b5 + aba4 + 2acb2 = 0
−acb10 − 4bca9 − c2a5 = 0

−2abb10 − 2b2a9 − 2bca5 = 0
−abb6 + acb3 − b2a5 = 0

2a2b8 + 2aba7 + 2acb4 = 0
−bna5 − cna2 + 2cb3 = 0
−bna2 + bb3 + 3cb1 = 0

−aba6 − aca3 − 2b2a6 − 2bca3 = 0
−bna3 − cna1 − ba3 − ca1 = 0
−bna6 − cna3 − ba6 − ca3 = 0

−bna10 − cna6 − ba10 − ca6 = 0
−bna9 − cna5 − bb10 + cb6 = 0

−aba10 − aca6 − 3b2a10 − 4bca6 − c2a3 = 0
−bna4 + 2ab5 + ba4 + bb5 + 3cb2 = 0
−bna7 + 4ab8 + 2ba7 + bb8 + 3cb4 = 0

a2b9 + aba8 − abb9 + aca4 + acb5 − b2a8 = 0
−bna8 − cna4 + 2ab9 + ba8 + ca4 + 2cb5 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −abb10
c2

a3 = 0
a4 = 0

a5 = −ab10
c

a6 = 0
a7 = 0
a8 = 0
a9 = 0
a10 = 0
b1 = 0
b2 = 0

b3 = −bnab10
c2

b4 = 0
b5 = 0

b6 = −(an− b) b10
c

b7 = 0
b8 = 0
b9 = 0
b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −ax(cy + b)
c2

η = −y(acny − y2c2 + bna− bcy)
c2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −y(acny − y2c2 + bna− bcy)
c2

−
(
− (cy + b) y2
x (xn + ya)

)(
−ax(cy + b)

c2

)
= −a2cn y3 − xnacn y2 + xnc2y3 − a2bn y2 − abc y3 − y xnabn+ xnbc y2 − a b2y2

c2xn + c2ya

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a2cn y3−xnacn y2+xnc2y3−a2bn y2−abc y3−y xnabn+xnbc y2−a b2y2

c2xn+c2ya

dy

Which results in

S = c2
(
ln (cy + b)
(an+ b) b − (n a2 − c xn + ab) ln (−a2ny − a xnn+ xncy − aby)

(an+ b)na (−n a2 + c xn − ab) − ln (y)
ban

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (cy + b) y2
x (xn + ya)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = xn−1c2(an− cy)
(an+ b) ((an− cy)xn + ya (an+ b)) a

Sy = − (xn + ya) c2
(cy + b) ((an− cy)xn + ya (an+ b)) y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= c2

x (an+ b) a (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= c2

R (an+ b) a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c2 ln (R)
(an+ b) a + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−c2(− ln (−a2ny − a xnn+ xnyc− aby) b− ln (b+ cy) an+ ln (y) (an+ b))
(an+ b) ban = c2 ln (x)

(an+ b) a + c1

Which simplifies to

−c2(− ln (−a2ny − a xnn+ xnyc− aby) b− ln (b+ cy) an+ ln (y) (an+ b))
(an+ b) ban = c2 ln (x)

(an+ b) a + c1

Summary
The solution(s) found are the following

(1)
−c2(− ln (−a2ny − a xnn+ xnyc− aby) b− ln (b+ cy) an+ ln (y) (an+ b))

(an+ b) ban

= c2 ln (x)
(an+ b) a + c1
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Verification of solutions

−c2(− ln (−a2ny − a xnn+ xnyc− aby) b− ln (b+ cy) an+ ln (y) (an+ b))
(an+ b) ban

= c2 ln (x)
(an+ b) a + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel AIR successful: ODE belongs to the 1F1 2-parameter class`� �
3 Solution by Maple
Time used: 0.266 (sec). Leaf size: 107� �
dsolve(x*(x^n+a*y(x))*diff(y(x),x)+(b+c*y(x))*y(x)^2 = 0,y(x), singsol=all)� �
y(x)

= b

RootOf
(
−_Zan

b x−na2bn− _Zan
b x−na b2 + c1a2n2 + _Zan

b acn− _Z
an+b

b anb+ c1abn+ _Zan
b bc
)
b− c
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3 Solution by Mathematica
Time used: 1.357 (sec). Leaf size: 91� �
DSolve[x(x^n+a y[x])y'[x]+(b+c y[x])y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
y(x)−an+b

b (cy(x)− an)(b+ cy(x))an
b

a2n2(an+ b) − x−ne−
an(log(y(x))−log(b+cy(x)))

b

an2 = c1, y(x)
]
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20.18 problem 565
20.18.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5628
20.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5631

Internal problem ID [3815]
Internal file name [OUTPUT/3308_Sunday_June_05_2022_09_07_29_AM_38407598/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 565.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

(
1− x2y

)
y′ − y2x = −1

20.18.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−x2y + 1
)
dy =

(
x y2 − 1

)
dx(

−x y2 + 1
)
dx+

(
−x2y + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x y2 + 1
N(x, y) = −x2y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x y2 + 1

)
= −2xy

And
∂N

∂x
= ∂

∂x

(
−x2y + 1

)
= −2xy

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x y2 + 1dx

(3)φ = −1
2y

2x2 + x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2y + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2y + 1. Therefore equation (4) becomes

(5)−x2y + 1 = −x2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
2y

2x2 + x+ y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
2y

2x2 + x+ y
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Summary
The solution(s) found are the following

(1)−y2x2

2 + x+ y = c1

Figure 888: Slope field plot

Verification of solutions

−y2x2

2 + x+ y = c1

Verified OK.

20.18.2 Maple step by step solution

Let’s solve
(1− x2y) y′ − y2x = −1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−2xy = −2xy

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x y2 + 1) dx+ f1(y)

• Evaluate integral

F (x, y) = −y2x2

2 + x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−x2y + 1 = −x2y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 1

• Solve for f1(y)
f1(y) = y

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

2y
2x2 + x+ y

• Substitute F (x, y) into the solution of the ODE
−1

2y
2x2 + x+ y = c1

• Solve for y{
y = 1+

√
−2c1x2+2x3+1

x2 , y = −−1+
√

−2c1x2+2x3+1
x2

}

5632



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 51� �
dsolve((1-x^2*y(x))*diff(y(x),x)+1-x*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 1 +
√
2c1x2 + 2x3 + 1

x2

y(x) = 1−
√
2c1x2 + 2x3 + 1

x2

3 Solution by Mathematica
Time used: 0.528 (sec). Leaf size: 57� �
DSolve[(1-x^2 y[x])y'[x]+1-x y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√
2x3 + c1x2 + 1

x2

y(x) → 1 +
√
2x3 + c1x2 + 1

x2
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20.19 problem 566
Internal problem ID [3816]
Internal file name [OUTPUT/3309_Sunday_June_05_2022_09_07_33_AM_6425475/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 566.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

Unable to solve or complete the solution.

(
1− x2y

)
y′ + y2x = 1

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 963� �
dsolve((1-x^2*y(x))*diff(y(x),x)-1+x*y(x)^2 = 0,y(x), singsol=all)� �
y(x)

=
4 2

3

(
c1(−80 + (c1 − 80)x6 + 160x3)2

(√
5
√
− (x3−1)2

c1x6−80x6+160x3−80 −
1
4

)) 2
3

+ ((−c1 + 80)x7 − 160x4 + 80x) 4 1
3

(
c1(−80 + (c1 − 80)x6 + 160x3)2

(√
5
√

− (x3−1)2
c1x6−80x6+160x3−80 −

1
4

)) 1
3

+ (c21 − 80c1)x8 + 160c1x5 − 80c1x2

x24 2
3

(
c1 (−80 + (c1 − 80)x6 + 160x3)2

(√
5
√
− (x3−1)2

c1x6−80x6+160x3−80 −
1
4

)) 2
3

+
(
c1x4 − 4 1

3

(
c1 (−80 + (c1 − 80)x6 + 160x3)2

(√
5
√

− (x3−1)2
c1x6−80x6+160x3−80 −

1
4

)) 1
3
)
(−80 + (c1 − 80)x6 + 160x3)

y(x)

=
4 2

3

(
c1(−80 + (c1 − 80)x6 + 160x3)2

(√
5
√
− (x3−1)2

c1x6−80x6+160x3−80 −
1
4

)) 2
3 (√

3 + i
)
+
(
2i4 1

3

(
c1(−80 + (c1 − 80)x6 + 160x3)2

(√
5
√

− (x3−1)2
c1x6−80x6+160x3−80 −

1
4

)) 1
3

+
(
i−

√
3
)
c1x

)
(−80 + (c1 − 80)x6 + 160x3)x

x24 2
3

(
c1 (−80 + (c1 − 80)x6 + 160x3)2

(√
5
√

− (x3−1)2
c1x6−80x6+160x3−80 −

1
4

)) 2
3 (√

3 + i
)
+
(
2i4 1

3

(
c1 (−80 + (c1 − 80)x6 + 160x3)2

(√
5
√

− (x3−1)2
c1x6−80x6+160x3−80 −

1
4

)) 1
3

+
(
i−

√
3
)
c1x4

)
(−80 + (c1 − 80)x6 + 160x3)

y(x)

=

(
i−

√
3
)
4 2

3

(
c1(−80 + (c1 − 80)x6 + 160x3)2

(√
5
√
− (x3−1)2

c1x6−80x6+160x3−80 −
1
4

)) 2
3

+ (−80 + (c1 − 80)x6 + 160x3)x
(
2i4 1

3

(
c1(−80 + (c1 − 80)x6 + 160x3)2

(√
5
√
− (x3−1)2

c1x6−80x6+160x3−80 −
1
4

)) 1
3

+ c1x
(√

3 + i
))

(
i−

√
3
)
x24 2

3

(
c1 (−80 + (c1 − 80)x6 + 160x3)2

(√
5
√

− (x3−1)2
c1x6−80x6+160x3−80 −

1
4

)) 2
3

+ (−80 + (c1 − 80)x6 + 160x3)
(
2i4 1

3

(
c1 (−80 + (c1 − 80)x6 + 160x3)2

(√
5
√

− (x3−1)2
c1x6−80x6+160x3−80 −

1
4

)) 1
3

+ c1x4
(√

3 + i
))
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3 Solution by Mathematica
Time used: 36.012 (sec). Leaf size: 506� �
DSolve[(1-x^2 y[x])y'[x]-1+x y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
3
√

−(1− 6c1)2x3 +
√

(−1 + 6c1)3 (6c1x6 + (2− 12c1)x3 − 1 + 6c1) + 1 + 36c12 − 12c1
−1 + 6c1

− x2

3
√
−(1− 6c1)2x3 +

√
(−1 + 6c1)3 (6c1x6 + (2− 12c1)x3 − 1 + 6c1) + 1 + 36c12 − 12c1

+ x
y(x)

→
i
(√

3 + i
) 3
√

−(1− 6c1)2x3 +
√

(−1 + 6c1)3 (6c1x6 + (2− 12c1)x3 − 1 + 6c1) + 1 + 36c12 − 12c1
−2 + 12c1

+
(
1 + i

√
3
)
x2

2 3
√

−(1− 6c1)2x3 +
√

(−1 + 6c1)3 (6c1x6 + (2− 12c1)x3 − 1 + 6c1) + 1 + 36c12 − 12c1
+ x

y(x) →

−
i
(√

3− i
) 3
√

−(1− 6c1)2x3 +
√

(−1 + 6c1)3 (6c1x6 + (2− 12c1)x3 − 1 + 6c1) + 1 + 36c12 − 12c1
−2 + 12c1

+
(
1− i

√
3
)
x2

2 3
√

−(1− 6c1)2x3 +
√

(−1 + 6c1)3 (6c1x6 + (2− 12c1)x3 − 1 + 6c1) + 1 + 36c12 − 12c1
+ x

y(x) → x
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20.20 problem 567
20.20.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5637
20.20.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5643

Internal problem ID [3817]
Internal file name [OUTPUT/3310_Sunday_June_05_2022_09_07_37_AM_37747343/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 567.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x(−yx+ 1) y′ + (1 + yx) y = 0

20.20.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(xy + 1)
x (xy − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(xy + 1) (b3 − a2)

x (xy − 1) − y2(xy + 1)2 a3
x2 (xy − 1)2

−
(

y2

x (xy − 1) −
y(xy + 1)
x2 (xy − 1) −

y2(xy + 1)
x (xy − 1)2

)
(xa2 + ya3 + a1)

−
(

xy + 1
x (xy − 1) +

y

xy − 1 − y(xy + 1)
(xy − 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x3y2b1 − x2y3a1 − 2x2y2a2 − 2x2y2b3 − 2x2yb1 − 2x y2a1 − 2b2x2 + 2y2a3 − xb1 + ya1

x2 (xy − 1)2
= 0

Setting the numerator to zero gives

−x3y2b1+x2y3a1+2x2y2a2+2x2y2b3+2x2yb1+2x y2a1+2b2x2−2y2a3+xb1−ya1 = 0
(6E)

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

a1v
2
1v

3
2− b1v

3
1v

2
2 +2a2v21v22 +2b3v21v22 +2a1v1v22 +2b1v21v2−2a3v22 +2b2v21−a1v2+ b1v1 = 0

(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

−b1v
3
1v

2
2 +a1v

2
1v

3
2 +(2a2+2b3) v21v22 +2b1v21v2+2b2v21 +2a1v1v22 + b1v1−2a3v22 −a1v2 = 0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
2a1 = 0

−2a3 = 0
−b1 = 0
2b1 = 0
2b2 = 0

2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(xy + 1)
x (xy − 1)

)
(−x)

= 2y2x
xy − 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y2x
xy−1

dy

Which results in

S = 1
2xy + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(xy + 1)
x (xy − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
2x2y

Sy =
xy − 1
2y2x
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy ln (y) + 1
2xy = ln (x)

2 + c1

Which simplifies to

xy ln (y) + 1
2xy = ln (x)

2 + c1

Which gives

y = − 1
xLambertW

(
− e−2c1

x2

)

5641



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(xy+1)
x(xy−1)

dS
dR

= 1
2R

R = x

S = ln (y)xy + 1
2xy

Summary
The solution(s) found are the following

(1)y = − 1
xLambertW

(
− e−2c1

x2

)
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Figure 889: Slope field plot

Verification of solutions

y = − 1
xLambertW

(
− e−2c1

x2

)
Verified OK.

20.20.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(−xy + 1)) dy = (−y(xy + 1)) dx
(y(xy + 1)) dx+(x(−xy + 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(xy + 1)
N(x, y) = x(−xy + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(xy + 1))

= 2xy + 1

And
∂N

∂x
= ∂

∂x
(x(−xy + 1))

= −2xy + 1

5644



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (xy − 1)((2xy + 1)− (−2xy + 1))

= − 4y
xy − 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (xy + 1)((−2xy + 1)− (2xy + 1))

= − 4x
xy + 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−2xy + 1)− (2xy + 1)
x (y (xy + 1))− y (x (−xy + 1))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2 (y(xy + 1))

= xy + 1
y x2

And

N = µN

= 1
y2x2 (x(−xy + 1))

= −xy + 1
x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

xy + 1
y x2

)
+
(
−xy + 1
x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
xy + 1
y x2 dx

(3)φ = − 1
xy

+ ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −xy+1
x y2

. Therefore equation (4) becomes

(5)−xy + 1
x y2

= 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − 1
xy

+ ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 1
xy

+ ln (x)− ln (y)
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The solution becomes

y = − 1
xLambertW

(
− ec1

x2

)
Summary
The solution(s) found are the following

(1)y = − 1
xLambertW

(
− ec1

x2

)

Figure 890: Slope field plot

Verification of solutions

y = − 1
xLambertW

(
− ec1

x2

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 18� �
dsolve(x*(1-x*y(x))*diff(y(x),x)+(1+x*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = − 1
LambertW

(
− c1

x2

)
x

3 Solution by Mathematica
Time used: 6.024 (sec). Leaf size: 35� �
DSolve[x(1-x y[x])y'[x]+(1+x y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

xW

(
e
−1+ 9c1

22/3

x2

)
y(x) → 0
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20.21 problem 568
20.21.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5650
20.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5653

Internal problem ID [3818]
Internal file name [OUTPUT/3311_Sunday_June_05_2022_09_07_41_AM_57182755/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 568.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

x(2 + yx) y′ + 2y + y2x = 2x3 + 3

20.21.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

5650



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

((xy + 2)x) dy =
(
2x3 − x y2 − 2y + 3

)
dx(

−2x3 + x y2 + 2y − 3
)
dx+((xy + 2)x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x3 + x y2 + 2y − 3
N(x, y) = (xy + 2)x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2x3 + x y2 + 2y − 3

)
= 2xy + 2

And
∂N

∂x
= ∂

∂x
((xy + 2)x)

= 2xy + 2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3 + x y2 + 2y − 3 dx

(3)φ = −x(x3 − x y2 − 4y + 6)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x(−2xy − 4)

2 + f ′(y)

= (xy + 2)x+ f ′(y)

But equation (2) says that ∂φ
∂y

= (xy + 2)x. Therefore equation (4) becomes

(5)(xy + 2)x = (xy + 2)x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x(x3 − x y2 − 4y + 6)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x3 − x y2 − 4y + 6)
2
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Summary
The solution(s) found are the following

(1)−x(x3 − y2x− 4y + 6)
2 = c1

Figure 891: Slope field plot

Verification of solutions

−x(x3 − y2x− 4y + 6)
2 = c1

Verified OK.

20.21.2 Maple step by step solution

Let’s solve
x(2 + yx) y′ + 2y + y2x = 2x3 + 3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2xy + 2 = 2xy + 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−2x3 + x y2 + 2y − 3) dx+ f1(y)

• Evaluate integral

F (x, y) = −x4

2 + y2x2

2 + 2xy − 3x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
(xy + 2)x = x2y + 2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = (xy + 2)x− x2y − 2x

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

2x
4 + 1

2y
2x2 + 2xy − 3x

• Substitute F (x, y) into the solution of the ODE
−1

2x
4 + 1

2y
2x2 + 2xy − 3x = c1

• Solve for y{
y = −2−

√
x4+2c1+6x+4

x
, y = −2+

√
x4+2c1+6x+4

x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
dsolve(x*(2+x*y(x))*diff(y(x),x) = 3+2*x^3-2*y(x)-x*y(x)^2,y(x), singsol=all)� �

y(x) = −2−
√
x4 − 2c1 + 6x+ 4

x

y(x) = −2 +
√
x4 − 2c1 + 6x+ 4

x

3 Solution by Mathematica
Time used: 0.633 (sec). Leaf size: 62� �
DSolve[x(2+x y[x])y'[x]==3+2 x^3-2 y[x]-x y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2x+

√
x2 (x4 + 6x+ 4 + c1)

x2

y(x) → −2x+
√

x2 (x4 + 6x+ 4 + c1)
x2

5655



20.22 problem 569
20.22.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5656
20.22.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5662

Internal problem ID [3819]
Internal file name [OUTPUT/3312_Sunday_June_05_2022_09_07_44_AM_87670743/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 569.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class C`]]

x(2− yx) y′ + 2y − xy2(1 + yx) = 0

20.22.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(y2x2 + xy − 2)
x (xy − 2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2−
y(y2x2 + xy − 2) (b3 − a2)

x (xy − 2) − y2(y2x2 + xy − 2)2 a3
x2 (xy − 2)2

−
(
−y(2x y2 + y)

x (xy − 2)

+ y(y2x2 + xy − 2)
x2 (xy − 2) + y2(y2x2 + xy − 2)

x (xy − 2)2
)
(xa2 + ya3 + a1)

−
(
−y2x2 + xy − 2

x (xy − 2) − y(2x2y + x)
x (xy − 2) + y(y2x2 + xy − 2)

(xy − 2)2
)
(xb2+yb3+b1) = 0

Putting the above in normal form gives

−x4y6a3 + 2x5y3b2 + x4y4a2 + x4y4b3 − 2x3y5a3 + 2x4y3b1 − 4x4y2b2 − 4x3y3a2 − 4x3y3b3 − 5x3y2b1 − 3x2y3a1 − 8x3yb2 + 8x y3a3 − 4x2yb1 + 4x y2a1 + 8b2x2 − 8y2a3 + 4xb1 − 4ya1
x2 (xy − 2)2

= 0

Setting the numerator to zero gives

(6E)−x4y6a3 + 2x5y3b2 + x4y4a2 + x4y4b3 − 2x3y5a3 + 2x4y3b1
− 4x4y2b2 − 4x3y3a2 − 4x3y3b3 − 5x3y2b1 − 3x2y3a1 − 8x3yb2
+ 8x y3a3 − 4x2yb1 + 4x y2a1 + 8b2x2 − 8y2a3 + 4xb1 − 4ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
4
1v

6
2 + a2v

4
1v

4
2 − 2a3v31v52 + 2b2v51v32 + b3v

4
1v

4
2 + 2b1v41v32 − 4a2v31v32

− 4b2v41v22 − 4b3v31v32 − 3a1v21v32 − 5b1v31v22 + 8a3v1v32 − 8b2v31v2
+ 4a1v1v22 − 4b1v21v2 − 8a3v22 + 8b2v21 − 4a1v2 + 4b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v51v32 − a3v
4
1v

6
2 + (a2 + b3) v41v42 + 2b1v41v32 − 4b2v41v22 − 2a3v31v52

+ (−4a2 − 4b3) v31v32 − 5b1v31v22 − 8b2v31v2 − 3a1v21v32 − 4b1v21v2
+ 8b2v21 + 8a3v1v32 + 4a1v1v22 + 4b1v1 − 8a3v22 − 4a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−3a1 = 0
4a1 = 0

−8a3 = 0
−2a3 = 0
−a3 = 0
8a3 = 0

−5b1 = 0
−4b1 = 0
2b1 = 0
4b1 = 0

−8b2 = 0
−4b2 = 0
2b2 = 0
8b2 = 0

−4a2 − 4b3 = 0
a2 + b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(y2x2 + xy − 2)

x (xy − 2)

)
(−x)

= − y3x2

xy − 2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y3x2

xy−2

dy
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Which results in

S = −
−x

y
+ 1

y2

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(y2x2 + xy − 2)
x (xy − 2)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −xy + 2
x3y2

Sy =
−xy + 2
y3x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx− 1
y2x2 = ln (x) + c1
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Which simplifies to

yx− 1
y2x2 = ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
y2x2+xy−2

)
x(xy−2)

dS
dR

= 1
R

R = x

S = xy − 1
y2x2

Summary
The solution(s) found are the following

(1)yx− 1
y2x2 = ln (x) + c1
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Figure 892: Slope field plot

Verification of solutions

yx− 1
y2x2 = ln (x) + c1

Verified OK.

20.22.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(−xy + 2)) dy =
(
−2y + x y2(xy + 1)

)
dx(

2y − x y2(xy + 1)
)
dx+(x(−xy + 2)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y − x y2(xy + 1)
N(x, y) = x(−xy + 2)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y − x y2(xy + 1)

)
= −3y2x2 − 2xy + 2

And
∂N

∂x
= ∂

∂x
(x(−xy + 2))

= −2xy + 2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (xy − 2)
((
2− 2xy(xy + 1)− y2x2)− (−2xy + 2)

)
= 3y2x

xy − 2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y3x2 + x y2 − 2y
(
(−2xy + 2)−

(
2− 2xy(xy + 1)− y2x2))

= − 3y x2

y2x2 + xy − 2

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−2xy + 2)− (2− 2xy(xy + 1)− y2x2)
x (2y − x y2 (xy + 1))− y (x (−xy + 2))

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(
2y − x y2(xy + 1)

)
= −y2x2 − xy + 2

x3y2

And

N = µN

= 1
x3y3

(x(−xy + 2))

= −xy + 2
y3x2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−y2x2 − xy + 2
x3y2

)
+
(
−xy + 2
y3x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y2x2 − xy + 2

x3y2
dx

(3)φ = 1
xy

− 1
y2x2 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

x y2
+ 2

y3x2 + f ′(y)

= −xy + 2
y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −xy+2
y3x2 . Therefore equation (4) becomes

(5)−xy + 2
y3x2 = −xy + 2

y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1
xy

− 1
y2x2 − ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
xy

− 1
y2x2 − ln (x)
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Summary
The solution(s) found are the following

(1)1
xy

− 1
y2x2 − ln (x) = c1

Figure 893: Slope field plot

Verification of solutions

1
xy

− 1
y2x2 − ln (x) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
dsolve(x*(2-x*y(x))*diff(y(x),x)+2*y(x)-x*y(x)^2*(1+x*y(x)) = 0,y(x), singsol=all)� �

y(x) = −1 +
√
1− 4 ln (x) + 4c1

2 (− ln (x) + c1)x

y(x) = 1 +
√

1− 4 ln (x) + 4c1
2 (ln (x)− c1)x

3 Solution by Mathematica
Time used: 1.356 (sec). Leaf size: 86� �
DSolve[x(2-x y[x])y'[x]+2 y[x]-x y[x]^2(1+x y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2

x+
√

− 1
x3x2

√
−x(−4 log(x) + 1 + 4c1)

y(x) → 2
x+

(
− 1

x3

)3/2
x5
√

−x(−4 log(x) + 1 + 4c1)
y(x) → 0
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20.23 problem 570
20.23.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5669
20.23.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5675

Internal problem ID [3820]
Internal file name [OUTPUT/3313_Sunday_June_05_2022_09_07_50_AM_14374786/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 570.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x(3− yx) y′ − y(yx− 1) = 0

20.23.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(xy − 1)
x (xy − 3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(xy − 1) (b3 − a2)

x (xy − 3) − y2(xy − 1)2 a3
x2 (xy − 3)2

−
(
− y2

x (xy − 3) +
y(xy − 1)
x2 (xy − 3) +

y2(xy − 1)
x (xy − 3)2

)
(xa2 + ya3 + a1)

−
(
− xy − 1
x (xy − 3) −

y

xy − 3 + y(xy − 1)
(xy − 3)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x4y2b2 − 2x2y4a3 + x3y2b1 − x2y3a1 − 12x3yb2 − 2x2y2a2 − 2x2y2b3 + 4x y3a3 − 6x2yb1 + 2x y2a1 + 12b2x2 − 4y2a3 + 3xb1 − 3ya1
x2 (xy − 3)2

= 0

Setting the numerator to zero gives

(6E)2x4y2b2 − 2x2y4a3 + x3y2b1 − x2y3a1 − 12x3yb2 − 2x2y2a2 − 2x2y2b3
+ 4x y3a3 − 6x2yb1 + 2x y2a1 + 12b2x2 − 4y2a3 + 3xb1 − 3ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v21v42 + 2b2v41v22 − a1v
2
1v

3
2 + b1v

3
1v

2
2 − 2a2v21v22 + 4a3v1v32 − 12b2v31v2

− 2b3v21v22 + 2a1v1v22 − 6b1v21v2 − 4a3v22 + 12b2v21 − 3a1v2 + 3b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v41v22 + b1v
3
1v

2
2 − 12b2v31v2 − 2a3v21v42 − a1v

2
1v

3
2 + (−2a2 − 2b3) v21v22

− 6b1v21v2 + 12b2v21 + 4a3v1v32 + 2a1v1v22 + 3b1v1 − 4a3v22 − 3a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−3a1 = 0
−a1 = 0
2a1 = 0

−4a3 = 0
−2a3 = 0
4a3 = 0

−6b1 = 0
3b1 = 0

−12b2 = 0
2b2 = 0
12b2 = 0

−2a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(xy − 1)
x (xy − 3)

)
(−x)

= − 2y
xy − 3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2y
xy−3

dy

Which results in

S = −xy

2 + 3 ln (y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(xy − 1)
x (xy − 3)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y

2
Sy =

−xy + 3
2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−yx

2 + 3 ln (y)
2 = − ln (x)

2 + c1

Which simplifies to

−yx

2 + 3 ln (y)
2 = − ln (x)

2 + c1

Which gives

y = e
−LambertW

(
−x e−

ln(x)
3 +2c1

3
3

)
− ln(x)

3 + 2c1
3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y(xy−1)
x(xy−3)

dS
dR

= − 1
2R

R = x

S = −xy

2 + 3 ln (y)
2

Summary
The solution(s) found are the following

(1)y = e
−LambertW

(
−x e−

ln(x)
3 +2c1

3
3

)
− ln(x)

3 + 2c1
3
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Figure 894: Slope field plot

Verification of solutions

y = e
−LambertW

(
−x e−

ln(x)
3 +2c1

3
3

)
− ln(x)

3 + 2c1
3

Verified OK.

20.23.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(−xy + 3)) dy = (y(xy − 1)) dx
(−y(xy − 1)) dx+(x(−xy + 3)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(xy − 1)
N(x, y) = x(−xy + 3)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y(xy − 1))

= −2xy + 1

And
∂N

∂x
= ∂

∂x
(x(−xy + 3))

= −2xy + 3
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (xy − 3)((−2xy + 1)− (−2xy + 3))

= 2
x (xy − 3)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (xy − 1)((−2xy + 3)− (−2xy + 1))

= − 2
y (xy − 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−2xy + 3)− (−2xy + 1)
x (−y (xy − 1))− y (x (−xy + 3))

= − 1
xy

Replacing all powers of terms xy by t gives

R = −1
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 1
t

)
dt
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The result of integrating gives

µ = e− ln(t)

= 1
t

Now t is replaced back with xy giving

µ = 1
xy

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
xy

(−y(xy − 1))

= −xy + 1
x

And

N = µN

= 1
xy

(x(−xy + 3))

= −xy + 3
y

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−xy + 1
x

)
+
(
−xy + 3

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−xy + 1

x
dx

(3)φ = −xy + ln (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −xy+3
y

. Therefore equation (4) becomes

(5)−xy + 3
y

= −x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (3
y

)
dy

f(y) = 3 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −xy + ln (x) + 3 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −xy + ln (x) + 3 ln (y)

The solution becomes

y = e
−LambertW

(
−x e−

ln(x)
3 + c1

3
3

)
− ln(x)

3 + c1
3

Summary
The solution(s) found are the following

(1)y = e
−LambertW

(
−x e−

ln(x)
3 + c1

3
3

)
− ln(x)

3 + c1
3
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Figure 895: Slope field plot

Verification of solutions

y = e
−LambertW

(
−x e−

ln(x)
3 + c1

3
3

)
− ln(x)

3 + c1
3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 74� �
dsolve(x*(3-x*y(x))*diff(y(x),x) = y(x)*(x*y(x)-1),y(x), singsol=all)� �

y(x) = −
3 LambertW

( (
−x2) 13 c1

3

)
x

y(x) = −
3 LambertW

(
−
(
−x2) 13 c1(1+i

√
3
)

6

)
x

y(x) = −
3 LambertW

( (
−x2) 13 c1(i√3−1

)
6

)
x

3 Solution by Mathematica
Time used: 15.394 (sec). Leaf size: 35� �
DSolve[x(3-x y[x])y'[x]==y[x](x y[x]-1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3W
(
e
−1+ 9c1

22/3 x2/3
)

x
y(x) → 0
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20.24 problem 571
20.24.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5682
20.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5684
20.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5688
20.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5692

Internal problem ID [3821]
Internal file name [OUTPUT/3314_Sunday_June_05_2022_09_07_54_AM_6383022/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 571.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x2(1− y) y′ + (1− x) y = 0

20.24.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − (x− 1) y
x2 (y − 1)

Where f(x) = −x−1
x2 and g(y) = y

y−1 . Integrating both sides gives

1
y

y−1
dy = −x− 1

x2 dx

∫ 1
y

y−1
dy =

∫
−x− 1

x2 dx

y − ln (y) = −1
x
− ln (x) + c1
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Which results in

y = e−
LambertW

(
−e

ln(x)x−c1x+1
x

)
x−ln(x)x+c1x−1

x

Which simplifies to

y = e−LambertW
(
−x e−c1+

1
x

)
x e−c1e 1

x

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
−x e−c1+

1
x

)
x e−c1e 1

x

Figure 896: Slope field plot

Verification of solutions

y = e−LambertW
(
−x e−c1+

1
x

)
x e−c1e 1

x

Verified OK.
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20.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − (x− 1) y
x2 (y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 869: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − x2

x− 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x2

x−1
dx

Which results in

S = −1
x
− ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (x− 1) y
x2 (y − 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1− x

x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x)x− 1
x

= y − ln (y) + c1

Which simplifies to

− ln (x)x− 1
x

= y − ln (y) + c1

Which gives

y = −LambertW
(
−e

ln(x)x+c1x+1
x

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (x−1)y
x2(y−1)

dS
dR

= R−1
R

R = y

S = − ln (x)x− 1
x

Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e

ln(x)x+c1x+1
x

)
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Figure 897: Slope field plot

Verification of solutions

y = −LambertW
(
−e

ln(x)x+c1x+1
x

)
Verified OK.

20.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y − 1

y

)
dy =

(
x− 1
x2

)
dx(

−x− 1
x2

)
dx+

(
−y − 1

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x− 1
x2

N(x, y) = −y − 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x− 1

x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−y − 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− 1

x2 dx

(3)φ = −1
x
− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y−1
y
. Therefore equation (4) becomes

(5)−y − 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y − 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1− y

y

)
dy

f(y) = −y + ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
x
− ln (x)− y + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
x
− ln (x)− y + ln (y)

The solution becomes

y = −LambertW
(
−e

ln(x)x+c1x+1
x

)
Summary
The solution(s) found are the following

(1)y = −LambertW
(
−e

ln(x)x+c1x+1
x

)

Figure 898: Slope field plot
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Verification of solutions

y = −LambertW
(
−e

ln(x)x+c1x+1
x

)
Verified OK.

20.24.4 Maple step by step solution

Let’s solve
x2(1− y) y′ + (1− x) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1−y)

y
= −1−x

x2

• Integrate both sides with respect to x∫ y′(1−y)
y

dx =
∫
−1−x

x2 dx+ c1

• Evaluate integral
−y + ln (y) = c1 + ln (x) + 1

x

• Solve for y

y = −LambertW
(
−e

ln(x)x+c1x+1
x

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 33� �
dsolve(x^2*(1-y(x))*diff(y(x),x)+(1-x)*y(x) = 0,y(x), singsol=all)� �

y(x) = x e
−LambertW

(
−x e

c1x+1
x

)
x+c1x+1

x

3 Solution by Mathematica
Time used: 4.497 (sec). Leaf size: 26� �
DSolve[x^2(1-y[x])y'[x]+(1-x)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W
(
x
(
−e

1
x
−c1
))

y(x) → 0
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20.25 problem 572
20.25.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5694
20.25.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5696
20.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5700
20.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5704

Internal problem ID [3822]
Internal file name [OUTPUT/3315_Sunday_June_05_2022_09_07_58_AM_58251220/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 572.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x2(1− y) y′ + (x+ 1) y2 = 0

20.25.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x+ 1) y2
x2 (y − 1)

Where f(x) = x+1
x2 and g(y) = y2

y−1 . Integrating both sides gives

1
y2

y−1

dy = x+ 1
x2 dx

∫ 1
y2

y−1

dy =
∫

x+ 1
x2 dx

1
y
+ ln (y) = −1

x
+ ln (x) + c1
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Which results in

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Which simplifies to

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Summary
The solution(s) found are the following

(1)y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Figure 899: Slope field plot

Verification of solutions

y = x e
LambertW

(
− e

1
x e−c1

x

)
ec1e− 1

x

Verified OK.
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20.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x+ 1) y2
x2 (y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 872: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2

x+1
dx

Which results in

S = −1
x
+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ 1) y2
x2 (y − 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x+ 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
R

+ ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)x− 1
x

= 1
y
+ ln (y) + c1

Which simplifies to

ln (x)x− 1
x

= 1
y
+ ln (y) + c1

Which gives

y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x

5698



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+1)y2
x2(y−1)

dS
dR

= R−1
R2

R = y

S = ln (x)x− 1
x

Summary
The solution(s) found are the following

(1)y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x
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Figure 900: Slope field plot

Verification of solutions

y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x

Verified OK.

20.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y − 1
y2

)
dy =

(
x+ 1
x2

)
dx(

−x+ 1
x2

)
dx+

(
y − 1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x2

N(x, y) = y − 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y − 1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x2 dx

(3)φ = 1
x
− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y−1
y2

. Therefore equation (4) becomes

(5)y − 1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y − 1
y2

)
dy

f(y) = 1
y
+ ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
− ln (x) + 1

y
+ ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
− ln (x) + 1

y
+ ln (y)

The solution becomes

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Summary
The solution(s) found are the following

(1)y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x
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Figure 901: Slope field plot

Verification of solutions

y = e
ln(x)x+LambertW

(
−e−

ln(x)x+c1x−1
x

)
x+c1x−1

x

Verified OK.

20.25.4 Maple step by step solution

Let’s solve
x2(1− y) y′ + (x+ 1) y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1−y)

y2
= −x+1

x2

• Integrate both sides with respect to x∫ y′(1−y)
y2

dx =
∫
−x+1

x2 dx+ c1
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• Evaluate integral
− 1

y
− ln (y) = c1 − ln (x) + 1

x

• Solve for y

y = e
ln(x)x+LambertW

(
−e−

ln(x)x−c1x−1
x

)
x−c1x−1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 35� �
dsolve(x^2*(1-y(x))*diff(y(x),x)+(1+x)*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = x e
LambertW

− e
−c1x+1

x
x

x+c1x−1

x

3 Solution by Mathematica
Time used: 6.17 (sec). Leaf size: 30� �
DSolve[x^2(1-y[x])y'[x]+(1+x)y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

W
(
− e

1
x−c1

x

)
y(x) → 0
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20.26 problem 573
20.26.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5706
20.26.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5708
20.26.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 5710
20.26.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5714
20.26.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5718
20.26.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5721

Internal problem ID [3823]
Internal file name [OUTPUT/3316_Sunday_June_05_2022_09_08_01_AM_41920033/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 573.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
yy′ + x

(
1− y2

)
= 0

20.26.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (y2 − 1)x
(x2 + 1) y

Where f(x) = x
x2+1 and g(y) = y2−1

y
. Integrating both sides gives

1
y2−1
y

dy = x

x2 + 1 dx
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∫ 1
y2−1
y

dy =
∫

x

x2 + 1 dx

ln (y − 1)
2 + ln (y + 1)

2 = ln (x2 + 1)
2 + c1

The above can be written as(
1
2

)
(ln (y − 1) + ln (y + 1)) = ln (x2 + 1)

2 + 2c1

ln (y − 1) + ln (y + 1) = (2)
(
ln (x2 + 1)

2 + 2c1
)

= ln
(
x2 + 1

)
+ 4c1

Raising both side to exponential gives

eln(y−1)+ln(y+1) = e2c1+ln
(
x2+1

)

Which simplifies to

y2 − 1 = 2c1
(
x2 + 1

)
= c2

(
x2 + 1

)
The solution is

y2 − 1 = c2
(
x2 + 1

)
Summary
The solution(s) found are the following

(1)y2 − 1 = c2
(
x2 + 1

)
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Figure 902: Slope field plot

Verification of solutions

y2 − 1 = c2
(
x2 + 1

)
Verified OK.

20.26.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + 1

)
u(x)x(u′(x)x+ u(x)) + x

(
1− u(x)2 x2) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
ux (x2 + 1)

Where f(x) = − 1
x(x2+1) and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = − 1
x (x2 + 1) dx
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∫ 1
u2+1
u

du =
∫

− 1
x (x2 + 1) dx

ln (u2 + 1)
2 = ln (x2 + 1)

2 − ln (x) + c2

Raising both side to exponential gives

√
u2 + 1 = e

ln
(
x2+1

)
2 −ln(x)+c2

Which simplifies to

√
u2 + 1 = c3e

ln
(
x2+1

)
2 −ln(x)

Which simplifies to √
u (x)2 + 1 = c3

√
x2 + 1 ec2
x

The solution is √
u (x)2 + 1 = c3

√
x2 + 1 ec2
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3
√
x2 + 1 ec2
x√

y2 + x2

x2 = c3
√
x2 + 1 ec2
x

Summary
The solution(s) found are the following

(1)
√

y2 + x2

x2 = c3
√
x2 + 1 ec2
x
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Figure 903: Slope field plot

Verification of solutions √
y2 + x2

x2 = c3
√
x2 + 1 ec2
x

Verified OK.

20.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (y2 − 1)x
(x2 + 1) y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 875: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2 + 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2+1
x

dx

Which results in

S = ln (x2 + 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (y2 − 1)x
(x2 + 1) y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

x2 + 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 − 1

5712



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R− 1)
2 + ln (R + 1)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + 1)
2 = ln (y − 1)

2 + ln (y + 1)
2 + c1

Which simplifies to

ln (x2 + 1)
2 = ln (y − 1)

2 + ln (y + 1)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
y2−1

)
x

(x2+1)y
dS
dR

= R
R2−1

R = y

S = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)ln (x2 + 1)
2 = ln (y − 1)

2 + ln (y + 1)
2 + c1
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Figure 904: Slope field plot

Verification of solutions

ln (x2 + 1)
2 = ln (y − 1)

2 + ln (y + 1)
2 + c1

Verified OK.

20.26.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= (y2 − 1)x
(x2 + 1) y

This is a Bernoulli ODE.
y′ = x

x2 + 1y −
x

x2 + 1
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
x

x2 + 1
f1(x) = − x

x2 + 1
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = x y2

x2 + 1 − x

x2 + 1 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = xw(x)

x2 + 1 − x

x2 + 1
w′ = 2xw

x2 + 1 − 2x
x2 + 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − 2x
x2 + 1

q(x) = − 2x
x2 + 1
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Hence the ode is

w′(x)− 2xw(x)
x2 + 1 = − 2x

x2 + 1

The integrating factor µ is

µ = e
∫
− 2x

x2+1dx

= 1
x2 + 1

The ode becomes

d
dx(µw) = (µ)

(
− 2x
x2 + 1

)
d
dx

(
w

x2 + 1

)
=
(

1
x2 + 1

)(
− 2x
x2 + 1

)
d
(

w

x2 + 1

)
=
(
− 2x
(x2 + 1)2

)
dx

Integrating gives

w

x2 + 1 =
∫

− 2x
(x2 + 1)2

dx

w

x2 + 1 = 1
x2 + 1 + c1

Dividing both sides by the integrating factor µ = 1
x2+1 results in

w(x) = 1 + c1
(
x2 + 1

)
which simplifies to

w(x) = c1x
2 + c1 + 1

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
2 + c1 + 1

Solving for y gives

y(x) =
√

c1x2 + c1 + 1

y(x) = −
√

c1x2 + c1 + 1
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Summary
The solution(s) found are the following

(1)y =
√
c1x2 + c1 + 1

(2)y = −
√

c1x2 + c1 + 1

Figure 905: Slope field plot

Verification of solutions

y =
√

c1x2 + c1 + 1

Verified OK.

y = −
√

c1x2 + c1 + 1

Verified OK.
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20.26.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

y2 − 1

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
y

y2 − 1

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1
N(x, y) = y

y2 − 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0

And
∂N

∂x
= ∂

∂x

(
y

y2 − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= y
y2−1 . Therefore equation (4) becomes

(5)y

y2 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

y2 − 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

y2 − 1

)
dy

f(y) = ln (y − 1)
2 + ln (y + 1)

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + ln (y − 1)

2 + ln (y + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + ln (y − 1)

2 + ln (y + 1)
2

Summary
The solution(s) found are the following

(1)− ln (x2 + 1)
2 + ln (y − 1)

2 + ln (y + 1)
2 = c1
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Figure 906: Slope field plot

Verification of solutions

− ln (x2 + 1)
2 + ln (y − 1)

2 + ln (y + 1)
2 = c1

Verified OK.

20.26.6 Maple step by step solution

Let’s solve
(x2 + 1) yy′ + x(1− y2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y
1−y2

= − x
x2+1

• Integrate both sides with respect to x∫
y′y
1−y2

dx =
∫
− x

x2+1dx+ c1

• Evaluate integral
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− ln(y−1)
2 − ln(y+1)

2 = − ln
(
x2+1

)
2 + c1

• Solve for y{
y = −e2c1+

√
e2c1x2+

(
e2c1

)2+e2c1
e2c1 + 1, y = − e2c1+

√
e2c1x2+

(
e2c1

)2+e2c1
e2c1 + 1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve((x^2+1)*y(x)*diff(y(x),x)+x*(1-y(x)^2) = 0,y(x), singsol=all)� �

y(x) =
√

c1x2 + c1 + 1
y(x) = −

√
c1x2 + c1 + 1

3 Solution by Mathematica
Time used: 1.033 (sec). Leaf size: 57� �
DSolve[(1+x^2)*y[x]*y'[x]+x*(1-y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
1 + e2c1 (x2 + 1)

y(x) →
√
1 + e2c1 (x2 + 1)

y(x) → −1
y(x) → 1
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20.27 problem 574
20.27.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5723
20.27.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5727
20.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5731

Internal problem ID [3824]
Internal file name [OUTPUT/3317_Sunday_June_05_2022_09_08_04_AM_39526110/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 574.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

(
−x2 + 1

)
yy′ + y2x = −2x2

20.27.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y2 + 2x)
(x2 − 1) y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 878: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = eln(x−1)+ln(x+1)

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x−1)+ln(x+1)

y

dy

Which results in

S = y2

2 (x+ 1) (x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y2 + 2x)
(x2 − 1) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x y2

(x2 − 1)2

Sy =
y

x2 − 1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x2

(x2 − 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R2

(R2 − 1)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2 (R + 1) −

ln (R + 1)
2 − 1

2 (R− 1) +
ln (R− 1)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x2 − 2 = − 1
2 (x+ 1) −

ln (x+ 1)
2 − 1

2 (x− 1) +
ln (x− 1)

2 + c1

Which simplifies to

y2

2x2 − 2 = − 1
2 (x+ 1) −

ln (x+ 1)
2 − 1

2 (x− 1) +
ln (x− 1)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
(
y2+2x

)
(x2−1)y

dS
dR

= 2R2

(R2−1)2

R = x

S = y2

2x2 − 2

Summary
The solution(s) found are the following

(1)y2

2x2 − 2 = − 1
2 (x+ 1) −

ln (x+ 1)
2 − 1

2 (x− 1) +
ln (x− 1)

2 + c1
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Figure 907: Slope field plot

Verification of solutions

y2

2x2 − 2 = − 1
2 (x+ 1) −

ln (x+ 1)
2 − 1

2 (x− 1) +
ln (x− 1)

2 + c1

Verified OK.

20.27.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x(y2 + 2x)
(x2 − 1) y

This is a Bernoulli ODE.
y′ = x

x2 − 1y +
2x2

x2 − 1
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
x

x2 − 1

f1(x) =
2x2

x2 − 1
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = x y2

x2 − 1 + 2x2

x2 − 1 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = xw(x)

x2 − 1 + 2x2

x2 − 1

w′ = 2xw
x2 − 1 + 4x2

x2 − 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − 2x
x2 − 1

q(x) = 4x2

x2 − 1

Hence the ode is

w′(x)− 2xw(x)
x2 − 1 = 4x2

x2 − 1

The integrating factor µ is

µ = e
∫
− 2x

x2−1dx

= e− ln(x−1)−ln(x+1)

Which simplifies to

µ = 1
x2 − 1

The ode becomes

d
dx(µw) = (µ)

(
4x2

x2 − 1

)
d
dx

(
w

x2 − 1

)
=
(

1
x2 − 1

)(
4x2

x2 − 1

)
d
(

w

x2 − 1

)
=
(

4x2

(x2 − 1)2
)

dx

Integrating gives

w

x2 − 1 =
∫ 4x2

(x2 − 1)2
dx

w

x2 − 1 = − 1
x+ 1 − ln (x+ 1)− 1

x− 1 + ln (x− 1) + c1

Dividing both sides by the integrating factor µ = 1
x2−1 results in

w(x) =
(
x2 − 1

)(
− 1
x+ 1 − ln (x+ 1)− 1

x− 1 + ln (x− 1)
)
+ c1

(
x2 − 1

)
which simplifies to

w(x) =
(
x2 − 1

)
ln (x− 1) + c1x

2 − ln (x+ 1)x2 − 2x− c1 + ln (x+ 1)
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 =
(
x2 − 1

)
ln (x− 1) + c1x

2 − ln (x+ 1)x2 − 2x− c1 + ln (x+ 1)

Solving for y gives

y(x) =
√

− ln (x+ 1)x2 + ln (x− 1)x2 + c1x2 + ln (x+ 1)− ln (x− 1)− c1 − 2x
y(x) = −

√
(x2 − 1) ln (x− 1) + c1x2 − ln (x+ 1)x2 − 2x− c1 + ln (x+ 1)

Summary
The solution(s) found are the following

(1)y =
√

− ln (x+ 1)x2 + ln (x− 1)x2 + c1x2 + ln (x+ 1)− ln (x− 1)− c1 − 2x
(2)y = −

√
(x2 − 1) ln (x− 1) + c1x2 − ln (x+ 1)x2 − 2x− c1 + ln (x+ 1)

Figure 908: Slope field plot
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Verification of solutions

y =
√

− ln (x+ 1)x2 + ln (x− 1)x2 + c1x2 + ln (x+ 1)− ln (x− 1)− c1 − 2x

Verified OK.

y = −
√
(x2 − 1) ln (x− 1) + c1x2 − ln (x+ 1)x2 − 2x− c1 + ln (x+ 1)

Verified OK.

20.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore ((
−x2 + 1

)
y
)
dy =

(
−x y2 − 2x2) dx(

x y2 + 2x2) dx+((−x2 + 1
)
y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x y2 + 2x2

N(x, y) =
(
−x2 + 1

)
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x y2 + 2x2)

= 2xy

And

∂N

∂x
= ∂

∂x

((
−x2 + 1

)
y
)

= −2xy

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

(x2 − 1) y ((2xy)− (−2xy))

= − 4x
x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4x

x2−1 dx
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The result of integrating gives

µ = e−2 ln(x−1)−2 ln(x+1)

= 1
(x− 1)2 (x+ 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)2 (x+ 1)2

(
x y2 + 2x2)

= x(y2 + 2x)
(x− 1)2 (x+ 1)2

And

N = µN

= 1
(x− 1)2 (x+ 1)2

((
−x2 + 1

)
y
)

= − y

x2 − 1
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x(y2 + 2x)
(x− 1)2 (x+ 1)2

)
+
(
− y

x2 − 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x(y2 + 2x)

(x− 1)2 (x+ 1)2
dx

(3)φ = − ln (x+ 1)
2 + y2 − 2

4x+ 4 + ln (x− 1)
2 + −y2 − 2

4x− 4 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y

4x+ 4 − 2y
4x− 4 + f ′(y)

= − y

x2 − 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= − y
x2−1 . Therefore equation (4) becomes

(5)− y

x2 − 1 = − y

x2 − 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x+ 1)
2 + y2 − 2

4x+ 4 + ln (x− 1)
2 + −y2 − 2

4x− 4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ 1)
2 + y2 − 2

4x+ 4 + ln (x− 1)
2 + −y2 − 2

4x− 4

Summary
The solution(s) found are the following

(1)− ln (x+ 1)
2 + y2 − 2

4x+ 4 + ln (x− 1)
2 + −y2 − 2

4x− 4 = c1
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Figure 909: Slope field plot

Verification of solutions

− ln (x+ 1)
2 + y2 − 2

4x+ 4 + ln (x− 1)
2 + −y2 − 2

4x− 4 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 87� �
dsolve((-x^2+1)*y(x)*diff(y(x),x)+2*x^2+x*y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√

ln (x− 1)x2 − ln (x+ 1)x2 + c1x2 − ln (x− 1) + ln (x+ 1)− c1 − 2x
y(x) = −

√
(x2 − 1) ln (x− 1) + c1x2 − ln (x+ 1)x2 − 2x− c1 + ln (x+ 1)

3 Solution by Mathematica
Time used: 0.448 (sec). Leaf size: 93� �
DSolve[(1-x^2)y[x] y'[x]+2 x^2+x y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

(x2 − 1) log(1− x)− (x2 − 1) log(x+ 1) + c1x2 − 2x− c1

y(x) →
√

(x2 − 1) log(1− x)− (x2 − 1) log(x+ 1) + c1x2 − 2x− c1

5736



20.28 problem 575
20.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5737
20.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5740
20.28.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5744
20.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5748

Internal problem ID [3825]
Internal file name [OUTPUT/3318_Sunday_June_05_2022_09_08_10_AM_92024260/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 575.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

2y′x2y + y2 = x2(1 + 2x)

20.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2(u′(x)x+ u(x))x3u(x) + u(x)2 x2 = x2(1 + 2x)

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= (1 + 2x) (−u2 + 1)
2x2u
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Where f(x) = 1+2x
2x2 and g(u) = −u2+1

u
. Integrating both sides gives

1
−u2+1

u

du = 1 + 2x
2x2 dx

∫ 1
−u2+1

u

du =
∫ 1 + 2x

2x2 dx

− ln (u− 1)
2 − ln (u+ 1)

2 = − 1
2x + ln (x) + c2

The above can be written as(
−1
2

)
(ln (u− 1) + ln (u+ 1)) = − 1

2x + ln (x) + 2c2

ln (u− 1) + ln (u+ 1) = (−2)
(
− 1
2x + ln (x) + 2c2

)
= 1

x
− 2 ln (x)− 4c2

Raising both side to exponential gives

eln(u−1)+ln(u+1) = e 1
x
−2 ln(x)−2c2

Which simplifies to

u2 − 1 = −2c2e
1
x
−2 ln(x)

= c3e
1
x
−2 ln(x)

Which simplifies to

u(x)2 − 1 = c3e
1
x

x2

The solution is

u(x)2 − 1 = c3e
1
x

x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − 1 = c3e
1
x

x2

y2

x2 − 1 = c3e
1
x

x2
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Which simplifies to

−(−y + x) (y + x) = c3e
1
x

Summary
The solution(s) found are the following

(1)−(−y + x) (y + x) = c3e
1
x

Figure 910: Slope field plot

Verification of solutions

−(−y + x) (y + x) = c3e
1
x

Verified OK.
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20.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−2x3 − x2 + y2

2x2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 880: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e 1
x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
1
x

y

dy

Which results in

S = y2e− 1
x

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x3 − x2 + y2

2x2y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2e− 1
x

2x2

Sy = e− 1
xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e− 1

x (1 + 2x)
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e− 1

R (1 + 2R)
2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2e− 1
R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2e− 1
x

2 = e− 1
xx2

2 + c1

Which simplifies to

(y2 − x2) e− 1
x

2 − c1 = 0
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x3−x2+y2

2x2y
dS
dR

= e−
1
R (1+2R)

2

R = x

S = y2e− 1
x

2

Summary
The solution(s) found are the following

(1)(y2 − x2) e− 1
x

2 − c1 = 0
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Figure 911: Slope field plot

Verification of solutions

(y2 − x2) e− 1
x

2 − c1 = 0

Verified OK.

20.28.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −−2x3 − x2 + y2

2x2y

This is a Bernoulli ODE.

y′ = − 1
2x2y −

−2x3 − x2

2x2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2x2

f1(x) = −−2x3 − x2

2x2

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = − y2

2x2 − −2x3 − x2

2x2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

2x2 − −2x3 − x2

2x2

w′ = − w

x2 − −2x3 − x2

x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 1
x2

q(x) = 1 + 2x

Hence the ode is

w′(x) + w(x)
x2 = 1 + 2x

The integrating factor µ is

µ = e
∫ 1

x2 dx

= e− 1
x

The ode becomes
d
dx(µw) = (µ) (1 + 2x)

d
dx

(
e− 1

xw
)
=
(
e− 1

x

)
(1 + 2x)

d
(
e− 1

xw
)
=
(
e− 1

x (1 + 2x)
)
dx

Integrating gives

e− 1
xw =

∫
e− 1

x (1 + 2x) dx

e− 1
xw = e− 1

xx2 + c1

Dividing both sides by the integrating factor µ = e− 1
x results in

w(x) = e 1
x e− 1

xx2 + c1e
1
x

which simplifies to

w(x) = x2 + c1e
1
x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x2 + c1e
1
x

Solving for y gives

y(x) =
√

x2 + c1e
1
x

y(x) = −
√

x2 + c1e
1
x
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Summary
The solution(s) found are the following

(1)y =
√

x2 + c1e
1
x

(2)y = −
√

x2 + c1e
1
x

Figure 912: Slope field plot

Verification of solutions

y =
√

x2 + c1e
1
x

Verified OK.

y = −
√

x2 + c1e
1
x

Verified OK.
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20.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x2y

)
dy =

(
x2(1 + 2x)− y2

)
dx(

−x2(1 + 2x) + y2
)
dx+

(
2x2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2(1 + 2x) + y2

N(x, y) = 2x2y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2(1 + 2x) + y2

)
= 2y

And
∂N

∂x
= ∂

∂x

(
2x2y

)
= 4xy

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x2y
((2y)− (4xy))

= 1− 2x
x2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1−2x

x2 dx

The result of integrating gives

µ = e−
1
x
−2 ln(x)

= e− 1
x

x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− 1
x

x2

(
−x2(1 + 2x) + y2

)
= e− 1

x (−2x3 − x2 + y2)
x2
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And

N = µN

= e− 1
x

x2

(
2x2y

)
= 2 e− 1

xy

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

e− 1
x (−2x3 − x2 + y2)

x2

)
+
(
2 e− 1

xy
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ e− 1
x (−2x3 − x2 + y2)

x2 dx

(3)φ =
(
−x2 + y2

)
e− 1

x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 e− 1

xy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 e− 1
xy. Therefore equation (4) becomes

(5)2 e− 1
xy = 2 e− 1

xy + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
−x2 + y2

)
e− 1

x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
−x2 + y2

)
e− 1

x

Summary
The solution(s) found are the following

(1)
(
y2 − x2) e− 1

x = c1

Figure 913: Slope field plot
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Verification of solutions (
y2 − x2) e− 1

x = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(2*x^2*y(x)*diff(y(x),x) = x^2*(1+2*x)-y(x)^2,y(x), singsol=all)� �

y(x) =
√

c1e
1
x + x2

y(x) = −
√

c1e
1
x + x2

3 Solution by Mathematica
Time used: 7.192 (sec). Leaf size: 43� �
DSolve[2 x^2 y[x] y'[x]==x^2(1+2 x)-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x2 + c1e

1
x

y(x) →
√
x2 + c1e

1
x
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20.29 problem 576
20.29.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5753
20.29.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5759

Internal problem ID [3826]
Internal file name [OUTPUT/3319_Sunday_June_05_2022_09_08_15_AM_76470084/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 20
Problem number: 576.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x(1− 2yx) y′ + (2yx+ 1) y = 0

20.29.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(2xy + 1)
x (2xy − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(2xy + 1) (b3 − a2)

x (2xy − 1) − y2(2xy + 1)2 a3
x2 (2xy − 1)2

−
(

2y2
x (2xy − 1) −

y(2xy + 1)
x2 (2xy − 1) −

2y2(2xy + 1)
x (2xy − 1)2

)
(xa2 + ya3 + a1)

−
(

2xy + 1
x (2xy − 1) +

2y
2xy − 1 − 2y(2xy + 1)

(2xy − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x3y2b1 − 4x2y3a1 − 4x2y2a2 − 4x2y2b3 − 4x2yb1 − 4x y2a1 − 2b2x2 + 2y2a3 − xb1 + ya1

x2 (2xy − 1)2
= 0

Setting the numerator to zero gives

(6E)−4x3y2b1 + 4x2y3a1 + 4x2y2a2 + 4x2y2b3 + 4x2yb1
+ 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a1v21v32 − 4b1v31v22 + 4a2v21v22 + 4b3v21v22 + 4a1v1v22
+ 4b1v21v2 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4b1v31v22 + 4a1v21v32 + (4a2 + 4b3) v21v22 + 4b1v21v2
+ 2b2v21 + 4a1v1v22 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
4a1 = 0

−2a3 = 0
−4b1 = 0
4b1 = 0
2b2 = 0

4a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(2xy + 1)
x (2xy − 1)

)
(−x)

= 4y2x
2xy − 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4y2x
2xy−1

dy

Which results in

S = 1
4xy + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(2xy + 1)
x (2xy − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
4x2y

Sy =
2xy − 1
4y2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2xy ln (y) + 1
4xy = ln (x)

2 + c1

Which simplifies to

2xy ln (y) + 1
4xy = ln (x)

2 + c1

Which gives

y = eLambertW
(
− e−2c1

2x2

)
+2c1x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(2xy+1)
x(2xy−1)

dS
dR

= 1
2R

R = x

S = 2 ln (y)xy + 1
4xy

Summary
The solution(s) found are the following

(1)y = eLambertW
(
− e−2c1

2x2

)
+2c1x
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Figure 914: Slope field plot

Verification of solutions

y = eLambertW
(
− e−2c1

2x2

)
+2c1x

Verified OK.

20.29.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(−2xy + 1)) dy = (−y(2xy + 1)) dx
(y(2xy + 1)) dx+(x(−2xy + 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(2xy + 1)
N(x, y) = x(−2xy + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(2xy + 1))

= 4xy + 1

And
∂N

∂x
= ∂

∂x
(x(−2xy + 1))

= −4xy + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

2x2y − x
((4xy + 1)− (−4xy + 1))

= − 8y
2xy − 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2x y2 + y
((−4xy + 1)− (4xy + 1))

= − 8x
2xy + 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−4xy + 1)− (4xy + 1)
x (y (2xy + 1))− y (x (−2xy + 1))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2 (y(2xy + 1))

= 2xy + 1
y x2

And

N = µN

= 1
y2x2 (x(−2xy + 1))

= −2xy + 1
x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

2xy + 1
y x2

)
+
(
−2xy + 1

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2xy + 1
y x2 dx

(3)φ = − 1
xy

+ 2 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2xy+1
x y2

. Therefore equation (4) becomes

(5)−2xy + 1
x y2

= 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−2
y

)
dy

f(y) = −2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − 1
xy

+ 2 ln (x)− 2 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 1
xy

+ 2 ln (x)− 2 ln (y)
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The solution becomes

y = − 1

2xLambertW
(
− e

c1
2

2x2

)
Summary
The solution(s) found are the following

(1)y = − 1

2xLambertW
(
− e

c1
2

2x2

)

Figure 915: Slope field plot

Verification of solutions

y = − 1

2xLambertW
(
− e

c1
2

2x2

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 18� �
dsolve(x*(1-2*x*y(x))*diff(y(x),x)+(1+2*x*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = − 1
2 LambertW

(
− c1

2x2

)
x

3 Solution by Mathematica
Time used: 5.96 (sec). Leaf size: 37� �
DSolve[x(1-2 x y[x])y'[x]+(1+2 x y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

2xW
(

e
−1+ 9c1

22/3

x2

)
y(x) → 0
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21 Various 21
21.1 problem 577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5767
21.2 problem 578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5779
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21.1 problem 577
21.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5767
21.1.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5773

Internal problem ID [3827]
Internal file name [OUTPUT/3320_Sunday_June_05_2022_09_08_20_AM_43559036/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 577.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x(2yx+ 1) y′ + (2 + 3yx) y = 0

21.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (3xy + 2) y
x (2xy + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3xy + 2) y(b3 − a2)

x (2xy + 1) − (3xy + 2)2 y2a3
x2 (2xy + 1)2

−
(
− 3y2
x (2xy + 1) +

(3xy + 2) y
x2 (2xy + 1) +

2(3xy + 2) y2

x (2xy + 1)2
)
(xa2 + ya3 + a1)

−
(
− 3y
2xy + 1 − 3xy + 2

x (2xy + 1) +
2(3xy + 2) y
(2xy + 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

10x4y2b2 − 15x2y4a3 + 6x3y2b1 − 6x2y3a1 + 10x3yb2 − x2y2a2 − x2y2b3 − 20x y3a3 + 6x2yb1 − 8x y2a1 + 3b2x2 − 6y2a3 + 2xb1 − 2ya1
x2 (2xy + 1)2

= 0

Setting the numerator to zero gives

(6E)10x4y2b2 − 15x2y4a3 + 6x3y2b1 − 6x2y3a1 + 10x3yb2 − x2y2a2 − x2y2b3
− 20x y3a3 + 6x2yb1 − 8x y2a1 + 3b2x2 − 6y2a3 + 2xb1 − 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−15a3v21v42 + 10b2v41v22 − 6a1v21v32 + 6b1v31v22 − a2v
2
1v

2
2 − 20a3v1v32 + 10b2v31v2

− b3v
2
1v

2
2 − 8a1v1v22 + 6b1v21v2 − 6a3v22 + 3b2v21 − 2a1v2 + 2b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)10b2v41v22 + 6b1v31v22 + 10b2v31v2 − 15a3v21v42 − 6a1v21v32 + (−a2 − b3) v21v22
+ 6b1v21v2 + 3b2v21 − 20a3v1v32 − 8a1v1v22 + 2b1v1 − 6a3v22 − 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−8a1 = 0
−6a1 = 0
−2a1 = 0
−20a3 = 0
−15a3 = 0
−6a3 = 0
2b1 = 0
6b1 = 0
3b2 = 0
10b2 = 0

−a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− (3xy + 2) y
x (2xy + 1)

)
(−x)

= −x y2 − y

2xy + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x y2−y
2xy+1

dy

Which results in

S = − ln (y(xy + 1))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (3xy + 2) y
x (2xy + 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

xy + 1

Sy =
−2xy − 1
y (xy + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)− ln (1 + yx) = 2 ln (x) + c1

Which simplifies to

− ln (y)− ln (1 + yx) = 2 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (3xy+2)y
x(2xy+1)

dS
dR

= 2
R

R = x

S = − ln (y)− ln (xy + 1)

Summary
The solution(s) found are the following

(1)− ln (y)− ln (1 + yx) = 2 ln (x) + c1

5772



Figure 916: Slope field plot

Verification of solutions

− ln (y)− ln (1 + yx) = 2 ln (x) + c1

Verified OK.

21.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(2xy + 1)) dy = (−y(3xy + 2)) dx
(y(3xy + 2)) dx+(x(2xy + 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(3xy + 2)
N(x, y) = x(2xy + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(3xy + 2))

= 6xy + 2

And
∂N

∂x
= ∂

∂x
(x(2xy + 1))

= 4xy + 1

5774



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x2y + x
((6xy + 2)− (4xy + 1))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x(y(3xy + 2))
= 3y2x2 + 2xy

And

N = µN

= x(x(2xy + 1))
= 2x3y + x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3y2x2 + 2xy
)
+
(
2x3y + x2) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3y2x2 + 2xy dx

(3)φ = y x2(xy + 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2(xy + 1) + x3y + f ′(y)

= 2x3y + x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x3y + x2. Therefore equation (4) becomes

(5)2x3y + x2 = 2x3y + x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y x2(xy + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y x2(xy + 1)
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Summary
The solution(s) found are the following

(1)yx2(1 + yx) = c1

Figure 917: Slope field plot

Verification of solutions

yx2(1 + yx) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
dsolve(x*(1+2*x*y(x))*diff(y(x),x)+(2+3*x*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = −x+
√

x (x+ 4c1)
2x2

y(x) = −x−
√

x (x+ 4c1)
2x2

3 Solution by Mathematica
Time used: 0.555 (sec). Leaf size: 69� �
DSolve[x(1+2 x y[x])y'[x]+(2+3 x y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
x3/2 +

√
x2(x+ 4c1)

2x5/2

y(x) → −x3/2 +
√

x2(x+ 4c1)
2x5/2
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21.2 problem 578
21.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5779
21.2.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5785

Internal problem ID [3828]
Internal file name [OUTPUT/3321_Sunday_June_05_2022_09_08_24_AM_21999103/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 578.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class C`]]

x(2yx+ 1) y′ +
(
1 + 2yx− y2x2) y = 0

21.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(y2x2 − 2xy − 1)
x (2xy + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(y2x2 − 2xy − 1) (b3 − a2)

x (2xy + 1) − y2(y2x2 − 2xy − 1)2 a3
x2 (2xy + 1)2

−
(
y(2x y2 − 2y)
x (2xy + 1) − y(y2x2 − 2xy − 1)

x2 (2xy + 1)

− 2y2(y2x2 − 2xy − 1)
x (2xy + 1)2

)
(xa2 + ya3 + a1)−

(
y2x2 − 2xy − 1
x (2xy + 1)

+ y(2x2y − 2x)
x (2xy + 1) − 2y(y2x2 − 2xy − 1)

(2xy + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4y6a3 + 4x5y3b2 + 2x4y4a2 + 2x4y4b3 − 4x3y5a3 + 4x4y3b1 − 5x4y2b2 + 2x3y3a2 + 2x3y3b3 + 7x2y4a3 − x3y2b1 + 5x2y3a1 − 8x3yb2 + 8x y3a3 − 4x2yb1 + 4x y2a1 − 2b2x2 + 2y2a3 − xb1 + ya1

x2 (2xy + 1)2
= 0

Setting the numerator to zero gives

(6E)−x4y6a3 − 4x5y3b2 − 2x4y4a2 − 2x4y4b3 + 4x3y5a3 − 4x4y3b1 + 5x4y2b2
− 2x3y3a2 − 2x3y3b3 − 7x2y4a3 + x3y2b1 − 5x2y3a1 + 8x3yb2
− 8x y3a3 + 4x2yb1 − 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
4
1v

6
2 − 2a2v41v42 + 4a3v31v52 − 4b2v51v32 − 2b3v41v42 − 4b1v41v32 − 2a2v31v32

− 7a3v21v42 + 5b2v41v22 − 2b3v31v32 − 5a1v21v32 + b1v
3
1v

2
2 − 8a3v1v32

+ 8b2v31v2 − 4a1v1v22 + 4b1v21v2 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0

5780



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4b2v51v32 − a3v
4
1v

6
2 + (−2a2 − 2b3) v41v42 − 4b1v41v32 + 5b2v41v22 + 4a3v31v52

+ (−2a2 − 2b3) v31v32 + b1v
3
1v

2
2 + 8b2v31v2 − 7a3v21v42 − 5a1v21v32

+ 4b1v21v2 + 2b2v21 − 8a3v1v32 − 4a1v1v22 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−5a1 = 0
−4a1 = 0
−a1 = 0
−8a3 = 0
−7a3 = 0
−2a3 = 0
−a3 = 0
4a3 = 0

−4b1 = 0
4b1 = 0

−4b2 = 0
2b2 = 0
5b2 = 0
8b2 = 0

−2a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(y2x2 − 2xy − 1)

x (2xy + 1)

)
(−x)

= y3x2

2xy + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3x2

2xy+1

dy

Which results in

S =
−2x

y
− 1

2y2

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y2x2 − 2xy − 1)
x (2xy + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2xy + 1
x3y2

Sy =
2xy + 1
y3x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−4yx− 1
2y2x2 = ln (x) + c1

Which simplifies to

−4yx− 1
2y2x2 = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
y2x2−2xy−1

)
x(2xy+1)

dS
dR

= 1
R

R = x

S = −4xy − 1
2y2x2

Summary
The solution(s) found are the following

(1)−4yx− 1
2y2x2 = ln (x) + c1
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Figure 918: Slope field plot

Verification of solutions

−4yx− 1
2y2x2 = ln (x) + c1

Verified OK.

21.2.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(2xy + 1)) dy =
(
−
(
−y2x2 + 2xy + 1

)
y
)
dx((

−y2x2 + 2xy + 1
)
y
)
dx+(x(2xy + 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
−y2x2 + 2xy + 1

)
y

N(x, y) = x(2xy + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

((
−y2x2 + 2xy + 1

)
y
)

= −3y2x2 + 4xy + 1

And
∂N

∂x
= ∂

∂x
(x(2xy + 1))

= 4xy + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x2y + x

(((
−2x2y + 2x

)
y − y2x2 + 2xy + 1

)
− (4xy + 1)

)
= − 3y2x

2xy + 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (y2x2 − 2xy − 1)
(
(4xy + 1)−

((
−2x2y + 2x

)
y − y2x2 + 2xy + 1

))
= − 3y x2

y2x2 − 2xy − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (4xy + 1)− ((−2x2y + 2x) y − y2x2 + 2xy + 1)
x ((−y2x2 + 2xy + 1) y)− y (x (2xy + 1))

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

((
−y2x2 + 2xy + 1

)
y
)

= −y2x2 + 2xy + 1
y2x3

And

N = µN

= 1
x3y3

(x(2xy + 1))

= 2xy + 1
y3x2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−y2x2 + 2xy + 1
y2x3

)
+
(
2xy + 1
y3x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y2x2 + 2xy + 1

y2x3 dx

(3)φ = − 2
xy

− 1
2y2x2 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

x y2
+ 1

y3x2 + f ′(y)

= 2xy + 1
y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2xy+1
y3x2 . Therefore equation (4) becomes

(5)2xy + 1
y3x2 = 2xy + 1

y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − 2
xy

− 1
2y2x2 − ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 2
xy

− 1
2y2x2 − ln (x)
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Summary
The solution(s) found are the following

(1)− 2
xy

− 1
2y2x2 − ln (x) = c1

Figure 919: Slope field plot

Verification of solutions

− 2
xy

− 1
2y2x2 − ln (x) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
dsolve(x*(1+2*x*y(x))*diff(y(x),x)+(1+2*x*y(x)-x^2*y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) = −2 +
√
4− 2 ln (x) + 2c1

2 (ln (x)− c1)x

y(x) = 2 +
√

4− 2 ln (x) + 2c1
2 (− ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.786 (sec). Leaf size: 79� �
DSolve[x(1+2 x y[x])y'[x]+(1+2 x y[x]-x^2 y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

−2x2 +
√

x(−2 log(x)+4+c1)√
1
x3

y(x) → − x

2x2 +
√

x(−2 log(x)+4+c1)√
1
x3

y(x) → 0
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21.3 problem 579
21.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5792
21.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5794

Internal problem ID [3829]
Internal file name [OUTPUT/3322_Sunday_June_05_2022_09_08_29_AM_41933184/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 579.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class C`], _dAlembert]

x2(x− 2y) y′ + 4y2x− y3 = 2x3

21.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2(x− 2u(x)x) (u′(x)x+ u(x)) + 4u(x)2 x3 − u(x)3 x3 = 2x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 − 2u2 − u+ 2
(2u− 1)x

Where f(x) = − 1
x
and g(u) = u3−2u2−u+2

2u−1 . Integrating both sides gives

1
u3−2u2−u+2

2u−1
du = −1

x
dx
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∫ 1
u3−2u2−u+2

2u−1
du =

∫
−1
x
dx

− ln (u+ 1)
2 − ln (u− 1)

2 + ln (u− 2) = − ln (x) + c2

Raising both side to exponential gives

e−
ln(u+1)

2 − ln(u−1)
2 +ln(u−2) = e− ln(x)+c2

Which simplifies to

u− 2√
u+ 1

√
u− 1

= c3
x

The solution is
u(x)− 2√

u (x) + 1
√

u (x)− 1
= c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−2 + y
x√

y
x
+ 1

√
y
x
− 1

= c3
x

y − 2x√
y+x
x

√
y−x
x

x
= c3

x

Which simplifies to

y − 2x√
y−x
x

√
y+x
x

= c3

Summary
The solution(s) found are the following

(1)y − 2x√
y−x
x

√
y+x
x

= c3
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Figure 920: Slope field plot

Verification of solutions

y − 2x√
y−x
x

√
y+x
x

= c3

Verified OK.

21.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x3 − 4x y2 + y3

x2 (−x+ 2y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x3 − 4x y2 + y3) (b3 − a2)

x2 (−x+ 2y) − (2x3 − 4x y2 + y3)2 a3
x4 (−x+ 2y)2

−
(
− 6x2 − 4y2
x2 (−x+ 2y) +

4x3 − 8x y2 + 2y3
x3 (−x+ 2y) − 2x3 − 4x y2 + y3

x2 (−x+ 2y)2
)
(xa2 + ya3

+ a1)−
(
− −8xy + 3y2
x2 (−x+ 2y) +

4x3 − 8x y2 + 2y3

x2 (−x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x6a2 + 4x6a3 + 3x6b2 − 2x6b3 − 8x5ya2 − 4x5yb2 + 8x5yb3 + 4x4y2a2 − 20x4y2a3 + 7x4y2b2 − 4x4y2b3 − 2x3y3a2 + 12x3y3a3 − 4x3y3b2 + 2x3y3b3 + 2x2y4a2 + 5x2y4a3 − 2x2y4b3 − 4x y5a3 + y6a3 + 4x5b1 − 4x4ya1 − 8x4yb1 + 8x3y2a1 + 11x3y2b1 − 11x2y3a1 − 4x2y3b1 + 4x y4a1
x4 (x− 2y)2

= 0

Setting the numerator to zero gives

(6E)
−2x6a2 − 4x6a3 − 3x6b2 + 2x6b3 + 8x5ya2 + 4x5yb2 − 8x5yb3 − 4x4y2a2
+20x4y2a3− 7x4y2b2 +4x4y2b3 +2x3y3a2− 12x3y3a3 +4x3y3b2− 2x3y3b3
− 2x2y4a2 − 5x2y4a3 + 2x2y4b3 + 4x y5a3 − y6a3 − 4x5b1 + 4x4ya1
+ 8x4yb1 − 8x3y2a1 − 11x3y2b1 + 11x2y3a1 + 4x2y3b1 − 4x y4a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−2a2v61 + 8a2v51v2 − 4a2v41v22 + 2a2v31v32 − 2a2v21v42 − 4a3v61 + 20a3v41v22
− 12a3v31v32 − 5a3v21v42 + 4a3v1v52 − a3v

6
2 − 3b2v61 + 4b2v51v2 − 7b2v41v22

+ 4b2v31v32 + 2b3v61 − 8b3v51v2 + 4b3v41v22 − 2b3v31v32 + 2b3v21v42 + 4a1v41v2
−8a1v31v22+11a1v21v32−4a1v1v42−4b1v51+8b1v41v2−11b1v31v22+4b1v21v32 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−2a2 − 4a3 − 3b2 + 2b3) v61 + (8a2 + 4b2 − 8b3) v51v2
− 4b1v51 + (−4a2 + 20a3 − 7b2 + 4b3) v41v22 + (4a1 + 8b1) v41v2
+ (2a2 − 12a3 + 4b2 − 2b3) v31v32 + (−8a1 − 11b1) v31v22
+(−2a2−5a3+2b3) v21v42 +(11a1+4b1) v21v32 +4a3v1v52 −4a1v1v42 −a3v

6
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−a3 = 0
4a3 = 0

−4b1 = 0
−8a1 − 11b1 = 0

4a1 + 8b1 = 0
11a1 + 4b1 = 0

−2a2 − 5a3 + 2b3 = 0
8a2 + 4b2 − 8b3 = 0

−4a2 + 20a3 − 7b2 + 4b3 = 0
−2a2 − 4a3 − 3b2 + 2b3 = 0
2a2 − 12a3 + 4b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2x3 − 4x y2 + y3

x2 (−x+ 2y)

)
(x)

= −2x3 + x2y + 2x y2 − y3

x2 − 2xy
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x3+x2y+2x y2−y3

x2−2xy

dy

Which results in

S = − ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x3 − 4x y2 + y3

x2 (−x+ 2y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(x− 2y)
(2x− y) (x2 − y2)

Sy = − x(x− 2y)
(2x− y) (x2 − y2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y + x)
2 − ln (y − x)

2 + ln (y − 2x) = − ln (x) + c1

Which simplifies to

− ln (y + x)
2 − ln (y − x)

2 + ln (y − 2x) = − ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x3−4x y2+y3

x2(−x+2y)
dS
dR

= − 1
R

R = x

S = − ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y)

Summary
The solution(s) found are the following

(1)− ln (y + x)
2 − ln (y − x)

2 + ln (y − 2x) = − ln (x) + c1
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Figure 921: Slope field plot

Verification of solutions

− ln (y + x)
2 − ln (y − x)

2 + ln (y − 2x) = − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.594 (sec). Leaf size: 65� �
dsolve(x^2*(x-2*y(x))*diff(y(x),x) = 2*x^3-4*x*y(x)^2+y(x)^3,y(x), singsol=all)� �

y(x) =
x
(
2c1x2 −

√
3c1x2 + 1

)
c1x2 − 1

y(x) =
x
(
2c1x2 +

√
3c1x2 + 1

)
c1x2 − 1

3 Solution by Mathematica
Time used: 14.225 (sec). Leaf size: 132� �
DSolve[x^2(x-2 y[x])y'[x]==2 x^3-4 x y[x]^2+y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3 −
√

e2c1x2 (−3x2 + e2c1)
x2 + e2c1

y(x) → 2x3 +
√
e2c1x2 (−3x2 + e2c1)
x2 + e2c1

y(x) → 2x
y(x) → −

√
x2

y(x) →
√
x2
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21.4 problem 580
21.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5802
21.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5804
21.4.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5808
21.4.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5812
21.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5815

Internal problem ID [3830]
Internal file name [OUTPUT/3323_Sunday_June_05_2022_09_08_36_AM_26718574/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 580.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2(x+ 1)xyy′ − y2 = 1

21.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1
2 (x+ 1)xy

Where f(x) = 1
2x(x+1) and g(y) = y2+1

y
. Integrating both sides gives

1
y2+1
y

dy = 1
2x (x+ 1) dx∫ 1

y2+1
y

dy =
∫ 1

2x (x+ 1) dx
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ln (y2 + 1)
2 = − ln (x+ 1)

2 + ln (x)
2 + c1

Raising both side to exponential gives√
y2 + 1 = e−

ln(x+1)
2 + ln(x)

2 +c1

Which simplifies to √
y2 + 1 = c2e−

ln(x+1)
2 + ln(x)

2

Which simplifies to √
y2 + 1 = c2

√
x ec1√

x+ 1

The solution is √
y2 + 1 = c2

√
x ec1√

x+ 1

Summary
The solution(s) found are the following

(1)
√

y2 + 1 = c2
√
x ec1√

x+ 1

Figure 922: Slope field plot
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Verification of solutions √
y2 + 1 = c2

√
x ec1√

x+ 1

Verified OK.

21.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1
2 (x+ 1)xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 882: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 2x(x+ 1)
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

2x (x+ 1)dx

Which results in

S = − ln (x+ 1)
2 + ln (x)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1
2 (x+ 1)xy

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
2x (x+ 1)

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ 1)
2 + ln (x)

2 = ln (y2 + 1)
2 + c1

Which simplifies to

− ln (x+ 1)
2 + ln (x)

2 = ln (y2 + 1)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1
2(x+1)xy

dS
dR

= R
R2+1

R = y

S = − ln (x+ 1)
2 + ln (x)

2

Summary
The solution(s) found are the following

(1)− ln (x+ 1)
2 + ln (x)

2 = ln (y2 + 1)
2 + c1
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Figure 923: Slope field plot

Verification of solutions

− ln (x+ 1)
2 + ln (x)

2 = ln (y2 + 1)
2 + c1

Verified OK.

21.4.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y2 + 1
2 (x+ 1)xy

This is a Bernoulli ODE.

y′ = 1
2x (x+ 1)y +

1
2x (x+ 1)

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

2x (x+ 1)

f1(x) =
1

2x (x+ 1)
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

2x (x+ 1) +
1

2x (x+ 1) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

2x (x+ 1) +
1

2x (x+ 1)

w′ = w

x (x+ 1) +
1

x (x+ 1) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − 1
x (x+ 1)

q(x) = 1
x (x+ 1)

Hence the ode is

w′(x)− w(x)
x (x+ 1) = 1

x (x+ 1)

The integrating factor µ is

µ = e
∫
− 1

x(x+1)dx

= eln(x+1)−ln(x)

Which simplifies to

µ = x+ 1
x

The ode becomes

d
dx(µw) = (µ)

(
1

x (x+ 1)

)
d
dx

(
(x+ 1)w

x

)
=
(
x+ 1
x

)(
1

x (x+ 1)

)
d
(
(x+ 1)w

x

)
= 1

x2 dx

Integrating gives

(x+ 1)w
x

=
∫ 1

x2 dx

(x+ 1)w
x

= −1
x
+ c1

Dividing both sides by the integrating factor µ = x+1
x

results in

w(x) = − 1
x+ 1 + c1x

x+ 1

which simplifies to

w(x) = c1x− 1
x+ 1
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x− 1
x+ 1

Solving for y gives

y(x) =
√
(x+ 1) (c1x− 1)

x+ 1

y(x) = −
√

(x+ 1) (c1x− 1)
x+ 1

Summary
The solution(s) found are the following

(1)y =
√
(x+ 1) (c1x− 1)

x+ 1

(2)y = −
√
(x+ 1) (c1x− 1)

x+ 1

Figure 924: Slope field plot

5811



Verification of solutions

y =
√

(x+ 1) (c1x− 1)
x+ 1

Verified OK.

y = −
√
(x+ 1) (c1x− 1)

x+ 1

Verified OK.

21.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2y

y2 + 1

)
dy =

(
1

x (x+ 1)

)
dx(

− 1
x (x+ 1)

)
dx+

(
2y

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (x+ 1)

N(x, y) = 2y
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (x+ 1)

)
= 0

And

∂N

∂x
= ∂

∂x

(
2y

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (x+ 1) dx

(3)φ = ln (x+ 1)− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2y
y2+1 . Therefore equation (4) becomes

(5)2y
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 2y
y2 + 1

)
dy

f(y) = ln
(
y2 + 1

)
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x+ 1)− ln (x) + ln
(
y2 + 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (x+ 1)− ln (x) + ln
(
y2 + 1

)
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Summary
The solution(s) found are the following

(1)ln (x+ 1)− ln (x) + ln
(
y2 + 1

)
= c1

Figure 925: Slope field plot

Verification of solutions

ln (x+ 1)− ln (x) + ln
(
y2 + 1

)
= c1

Verified OK.

21.4.5 Maple step by step solution

Let’s solve
2(x+ 1)xyy′ − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′

y2+1 = 1
2x(x+1)
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• Integrate both sides with respect to x∫
yy′

y2+1dx =
∫ 1

2x(x+1)dx+ c1

• Evaluate integral
ln
(
y2+1

)
2 = − ln(x+1)

2 + ln(x)
2 + c1

• Solve for y{
y =

√
−e−2c1 (x+1)

(
e−2c1x+e−2c1−x

)
e−2c1 (x+1) , y = −

√
−e−2c1 (x+1)

(
e−2c1x+e−2c1−x

)
e−2c1 (x+1)

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 42� �
dsolve(2*(1+x)*x*y(x)*diff(y(x),x) = 1+y(x)^2,y(x), singsol=all)� �

y(x) =
√
(x+ 1) (c1x− 1)

x+ 1

y(x) = −
√
(x+ 1) (c1x− 1)

x+ 1
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3 Solution by Mathematica
Time used: 0.779 (sec). Leaf size: 115� �
DSolve[2(1+x)x y[x] y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−1 + (−1 + e2c1)x√

x+ 1

y(x) →
√

−1 + (−1 + e2c1)x√
x+ 1

y(x) → −i
y(x) → i

y(x) → −
√
−x− 1√
x+ 1

y(x) →
√
−x− 1√
x+ 1
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21.5 problem 581
21.5.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5818
21.5.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5822
21.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5826

Internal problem ID [3831]
Internal file name [OUTPUT/3324_Sunday_June_05_2022_09_08_41_AM_64978465/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 581.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

3y′x2y + 2y2x = −1

21.5.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x y2 + 1
3x2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 885: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
y x

4
3

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
y x

4
3

dy

Which results in

S = y2x
4
3

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x y2 + 1
3x2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y2x 1
3

3
Sy = y x

4
3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x 2
3

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R 2
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R
1
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x
4
3

2 = −x
1
3 + c1

Which simplifies to

y2x
4
3

2 = −x
1
3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x y2+1
3x2y

dS
dR

= − 1
3R

2
3

R = x

S = y2x
4
3

2

Summary
The solution(s) found are the following

(1)y2x
4
3

2 = −x
1
3 + c1
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Figure 926: Slope field plot

Verification of solutions

y2x
4
3

2 = −x
1
3 + c1

Verified OK.

21.5.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −2x y2 + 1
3x2y

This is a Bernoulli ODE.
y′ = − 2

3xy −
1
3x2

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 2
3x

f1(x) = − 1
3x2

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −2y2
3x − 1

3x2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −2w(x)

3x − 1
3x2

w′ = −4w
3x − 2

3x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4
3x

q(x) = − 2
3x2
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Hence the ode is

w′(x) + 4w(x)
3x = − 2

3x2

The integrating factor µ is

µ = e
∫ 4

3xdx

= x
4
3

The ode becomes

d
dx(µw) = (µ)

(
− 2
3x2

)
d
dx

(
x

4
3w
)
=
(
x

4
3

)(
− 2
3x2

)
d
(
x

4
3w
)
=
(
− 2
3x 2

3

)
dx

Integrating gives

x
4
3w =

∫
− 2
3x 2

3
dx

x
4
3w = −2x 1

3 + c1

Dividing both sides by the integrating factor µ = x
4
3 results in

w(x) = −2
x
+ c1

x
4
3

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −2
x
+ c1

x
4
3

Solving for y gives

y(x) =

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3

y(x) = −

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3
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Summary
The solution(s) found are the following

(1)y =

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3

(2)y = −

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3

Figure 927: Slope field plot

Verification of solutions

y =

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3

Verified OK.

y = −

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3

Verified OK.
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21.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x2y

)
dy =

(
−2x y2 − 1

)
dx(

2x y2 + 1
)
dx+

(
3x2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x y2 + 1
N(x, y) = 3x2y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x y2 + 1

)
= 4xy

And
∂N

∂x
= ∂

∂x

(
3x2y

)
= 6xy

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x2y
((4xy)− (6xy))

= − 2
3x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 2

3x dx

The result of integrating gives

µ = e−
2 ln(x)

3

= 1
x

2
3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

2
3

(
2x y2 + 1

)
= 2x y2 + 1

x
2
3
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And

N = µN

= 1
x

2
3

(
3x2y

)
= 3y x 4

3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x y2 + 1
x

2
3

)
+
(
3y x 4

3

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x y2 + 1
x

2
3

dx

(3)φ = 3x 1
3 (x y2 + 2)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y x 4

3 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3y x 4
3 . Therefore equation (4) becomes

(5)3y x 4
3 = 3y x 4

3 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 3x 1
3 (x y2 + 2)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
3x 1

3 (x y2 + 2)
2

Summary
The solution(s) found are the following

(1)3x 1
3 (y2x+ 2)

2 = c1

Figure 928: Slope field plot
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Verification of solutions

3x 1
3 (y2x+ 2)

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 42� �
dsolve(3*x^2*y(x)*diff(y(x),x)+1+2*x*y(x)^2 = 0,y(x), singsol=all)� �

y(x) =

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3

y(x) = −

√
x

10
3

(
−2x 1

3 + c1
)

x
7
3

3 Solution by Mathematica
Time used: 3.776 (sec). Leaf size: 47� �
DSolve[3 x^2 y[x] y'[x]+1+2 x y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−2
x
+ c1

x4/3

y(x) →
√

−2
x
+ c1

x4/3
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21.6 problem 582
21.6.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5831
21.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5833

Internal problem ID [3832]
Internal file name [OUTPUT/3325_Sunday_June_05_2022_09_08_46_AM_29546916/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 582.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class C`], _dAlembert]

x2(4x− 3y) y′ −
(
6x2 − 3yx+ 2y2

)
y = 0

21.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2(4x− 3u(x)x) (u′(x)x+ u(x))−
(
6x2 − 3u(x)x2 + 2u(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u(u2 + 1)
(3u− 4)x

Where f(x) = − 2
x
and g(u) = u

(
u2+1

)
3u−4 . Integrating both sides gives

1
u(u2+1)
3u−4

du = −2
x
dx
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∫ 1
u(u2+1)
3u−4

du =
∫

−2
x
dx

2 ln
(
u2 + 1

)
+ 3arctan (u)− 4 ln (u) = −2 ln (x) + c2

The solution is

2 ln
(
u(x)2 + 1

)
+ 3arctan (u(x))− 4 ln (u(x)) + 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

2 ln
(
y2

x2 + 1
)
+ 3arctan

(y
x

)
− 4 ln

(y
x

)
+ 2 ln (x)− c2 = 0

2 ln
(
y2

x2 + 1
)
+ 3arctan

(y
x

)
− 4 ln

(y
x

)
+ 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)2 ln
(
y2

x2 + 1
)
+ 3arctan

(y
x

)
− 4 ln

(y
x

)
+ 2 ln (x)− c2 = 0

Figure 929: Slope field plot
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Verification of solutions

2 ln
(
y2

x2 + 1
)
+ 3arctan

(y
x

)
− 4 ln

(y
x

)
+ 2 ln (x)− c2 = 0

Verified OK.

21.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(6x2 − 3xy + 2y2)
x2 (−4x+ 3y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(6x2 − 3xy + 2y2) (b3 − a2)

x2 (−4x+ 3y) − y2(6x2 − 3xy + 2y2)2 a3
x4 (−4x+ 3y)2

−
(
− y(12x− 3y)
x2 (−4x+ 3y) +

2y(6x2 − 3xy + 2y2)
x3 (−4x+ 3y)

− 4y(6x2 − 3xy + 2y2)
x2 (−4x+ 3y)2

)
(xa2 + ya3 + a1)−

(
−6x2 − 3xy + 2y2

x2 (−4x+ 3y)

− y(−3x+ 4y)
x2 (−4x+ 3y) +

3y(6x2 − 3xy + 2y2)
x2 (−4x+ 3y)2

)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−8x6b2 − 6x4y2a2 + 12x4y2a3 + 24x4y2b2 + 6x4y2b3 − 16x3y3a2 − 12x3y3a3 − 12x3y3b2 + 16x3y3b3 + 6x2y4a2 − 6x2y4b3 + 4y6a3 + 24x5b1 − 24x4ya1 − 24x4yb1 + 24x3y2a1 + 33x3y2b1 − 33x2y3a1 − 12x2y3b1 + 12x y4a1
x4 (4x− 3y)2

= 0

Setting the numerator to zero gives

(6E)−8x6b2 + 6x4y2a2 − 12x4y2a3 − 24x4y2b2 − 6x4y2b3 + 16x3y3a2 + 12x3y3a3
+ 12x3y3b2 − 16x3y3b3 − 6x2y4a2 + 6x2y4b3 − 4y6a3 − 24x5b1 + 24x4ya1
+ 24x4yb1 − 24x3y2a1 − 33x3y2b1 + 33x2y3a1 + 12x2y3b1 − 12x y4a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v41v22 + 16a2v31v32 − 6a2v21v42 − 12a3v41v22 + 12a3v31v32 − 4a3v62 − 8b2v61
−24b2v41v22+12b2v31v32−6b3v41v22−16b3v31v32+6b3v21v42+24a1v41v2−24a1v31v22
+ 33a1v21v32 − 12a1v1v42 − 24b1v51 + 24b1v41v2 − 33b1v31v22 + 12b1v21v32 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−8b2v61 − 24b1v51 + (6a2 − 12a3 − 24b2 − 6b3) v41v22 + (24a1 + 24b1) v41v2
+ (16a2 + 12a3 + 12b2 − 16b3) v31v32 + (−24a1 − 33b1) v31v22
+ (−6a2 + 6b3) v21v42 + (33a1 + 12b1) v21v32 − 12a1v1v42 − 4a3v62 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−12a1 = 0
−4a3 = 0
−24b1 = 0
−8b2 = 0

−24a1 − 33b1 = 0
24a1 + 24b1 = 0
33a1 + 12b1 = 0
−6a2 + 6b3 = 0

6a2 − 12a3 − 24b2 − 6b3 = 0
16a2 + 12a3 + 12b2 − 16b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= y

x

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(6x2 − 3xy + 2y2)
x2 (−4x+ 3y)

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2(4x− 3y)

2 (x2 + y2) y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3R + 4

2R (R2 + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln
(
R2 + 1

)
− 3 arctan (R)

2 + 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = − ln
(
y2

x2 + 1
)
−

3 arctan
(
y
x

)
2 + 2 ln

(y
x

)
+ c1

Which simplifies to

ln (x) + ln
(
y2 + x2)+ 3arctan

(
y
x

)
2 − 2 ln (y)− c1 = 0
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
6x2−3xy+2y2

)
x2(−4x+3y)

dS
dR

= −3R+4
2R(R2+1)

R = y

x
S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) + ln
(
y2 + x2)+ 3arctan

(
y
x

)
2 − 2 ln (y)− c1 = 0
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Figure 930: Slope field plot

Verification of solutions

ln (x) + ln
(
y2 + x2)+ 3arctan

(
y
x

)
2 − 2 ln (y)− c1 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 44� �
dsolve(x^2*(4*x-3*y(x))*diff(y(x),x) = (6*x^2-3*x*y(x)+2*y(x)^2)*y(x),y(x), singsol=all)� �

2 ln
(
y(x)
x

)
− ln

(
x2 + y(x)2

x2

)
−

3 arctan
(

y(x)
x

)
2 − ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 43� �
DSolve[x^2(4 x-3 y[x])y'[x]==(6 x^2-3 x y[x]+2 y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
3 arctan

(
y(x)
x

)
+ 2 log

(
y(x)2
x2 + 1

)
− 4 log

(
y(x)
x

)
= −2 log(x) + c1, y(x)

]
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21.7 problem 583
21.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5841
21.7.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5846

Internal problem ID [3833]
Internal file name [OUTPUT/3326_Sunday_June_05_2022_09_08_50_AM_88676049/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 583.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

(
1− yx3) y′ − y2x2 = 0

21.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2x2

x3y − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−
y2x2(b3 − a2)

x3y − 1 − y4x4a3

(x3y − 1)2
−
(
− 2y2x
x3y − 1 +

3y3x4

(x3y − 1)2
)
(xa2+ya3+a1)

−
(
− 2x2y

x3y − 1 + y2x5

(x3y − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6y2b2 − 2y4x4a3 + x5y2b1 − x4y3a1 − 4x3yb2 − 3x2y2a2 − x2y2b3 − 2x y3a3 − 2x2yb1 − 2x y2a1 + b2

(x3y − 1)2
= 0

Setting the numerator to zero gives

(6E)2x6y2b2 − 2y4x4a3 + x5y2b1 − x4y3a1 − 4x3yb2 − 3x2y2a2
− x2y2b3 − 2x y3a3 − 2x2yb1 − 2x y2a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v41v42 + 2b2v61v22 − a1v
4
1v

3
2 + b1v

5
1v

2
2 − 3a2v21v22 − 2a3v1v32

− 4b2v31v2 − b3v
2
1v

2
2 − 2a1v1v22 − 2b1v21v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)2b2v61v22 + b1v
5
1v

2
2 − 2a3v41v42 − a1v

4
1v

3
2 − 4b2v31v2

+ (−3a2 − b3) v21v22 − 2b1v21v2 − 2a3v1v32 − 2a1v1v22 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−2a1 = 0
−a1 = 0
−2a3 = 0
−2b1 = 0
−4b2 = 0
2b2 = 0

−3a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −3y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −3y −
(
− y2x2

x3y − 1

)
(x)

= −2x3y2 + 3y
x3y − 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x3y2+3y
x3y−1

dy

Which results in

S = − ln (2x3y − 3)
6 − ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2x2

x3y − 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x2y

2x3y − 3

Sy =
−x3y + 1
2x3y2 − 3y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (2yx3 − 3)
6 − ln (y)

3 = c1

Which simplifies to

− ln (2yx3 − 3)
6 − ln (y)

3 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2x2

x3y−1
dS
dR

= 0

R = x

S = − ln (2x3y − 3)
6 − ln (y)

3
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Summary
The solution(s) found are the following

(1)− ln (2yx3 − 3)
6 − ln (y)

3 = c1

Figure 931: Slope field plot

Verification of solutions

− ln (2yx3 − 3)
6 − ln (y)

3 = c1

Verified OK.

21.7.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x3y + 1

)
dy =

(
y2x2) dx(

−y2x2) dx+(−x3y + 1
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2x2

N(x, y) = −x3y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y2x2)

= −2x2y
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And
∂N

∂x
= ∂

∂x

(
−x3y + 1

)
= −3x2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−x3y + 1
((
−2x2y

)
−
(
−3x2y

))
= − x2y

x3y − 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y2x2

((
−3x2y

)
−
(
−2x2y

))
= 1

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 1

y
dy

The result of integrating gives

µ = eln(y)

= y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y
(
−y2x2)

= −y3x2
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And

N = µN

= y
(
−x3y + 1

)
= −y

(
x3y − 1

)
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−y3x2)+ (−y
(
x3y − 1

)) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y3x2 dx

(3)φ = −x3y3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x3y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y(x3y − 1). Therefore equation (4) becomes

(5)−y
(
x3y − 1

)
= −x3y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3y3 + 1
2y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3y3 + 1
2y

2

Summary
The solution(s) found are the following

(1)−y3x3

3 + y2

2 = c1

Figure 932: Slope field plot
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Verification of solutions

−y3x3

3 + y2

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.594 (sec). Leaf size: 685� �
dsolve((1-x^3*y(x))*diff(y(x),x) = x^2*y(x)^2,y(x), singsol=all)� �

y(x) =

3 +

(x3+
√

c61+x6
) 2

3
−c21

2

c21

(
x3+

√
c61+x6

) 2
3

2x3

y(x) =

(
x3 +

√
c61 + x6

) 4
3 + c21

(
x3 +

√
c61 + x6

) 2
3 + c41

2c21
(
x3 +

√
c61 + x6

) 2
3
x3

y(x) =

(
x3 +

√
c61 + x6

) 4
3 + c21

(
x3 +

√
c61 + x6

) 2
3 + c41

2c21
(
x3 +

√
c61 + x6

) 2
3
x3

y(x) =
2c21
(
x3 +

√
c61 + x6

) 2
3 +

(
x3 +

√
c61 + x6

) 4
3 (

i
√
3− 1

)
− c41

(
1 + i

√
3
)

4
(
x3 +

√
c61 + x6

) 2
3
c21x

3

y(x) = −
−2c21

(
x3 +

√
c61 + x6

) 2
3 +

(
1 + i

√
3
) (

x3 +
√

c61 + x6
) 4

3 − c41
(
i
√
3− 1

)
4
(
x3 +

√
c61 + x6

) 2
3
c21x

3

y(x) =
2c21
(
x3 +

√
c61 + x6

) 2
3 +

(
x3 +

√
c61 + x6

) 4
3 (

i
√
3− 1

)
− c41

(
1 + i

√
3
)

4
(
x3 +

√
c61 + x6

) 2
3
c21x

3

y(x) = −
−2c21

(
x3 +

√
c61 + x6

) 2
3 +

(
1 + i

√
3
) (

x3 +
√

c61 + x6
) 4

3 − c41
(
i
√
3− 1

)
4
(
x3 +

√
c61 + x6

) 2
3
c21x

3

y(x) =
2c21
(
x3 +

√
c61 + x6

) 2
3 +

(
x3 +

√
c61 + x6

) 4
3 (

i
√
3− 1

)
− c41

(
1 + i

√
3
)

4
(
x3 +

√
c61 + x6

) 2
3
c21x

3

y(x) = −
−2c21

(
x3 +

√
c61 + x6

) 2
3 +

(
1 + i

√
3
) (

x3 +
√

c61 + x6
) 4

3 − c41
(
i
√
3− 1

)
4
(
x3 +

√
c61 + x6

) 2
3
c21x

3
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3 Solution by Mathematica
Time used: 50.23 (sec). Leaf size: 331� �
DSolve[(1-x^3 y[x])y'[x]==x^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

3
√

12c1x6 + 2
√
6
√

c1x6 (1 + 6c1x6) + 1 + 1
3
√
12c1x6 + 2

√
6
√

c1x6 (1 + 6c1x6) + 1
+ 1

2x3

y(x)

→

2i
(√

3 + i
) 3
√

12c1x6 + 2
√
6
√

c1x6 (1 + 6c1x6) + 1−
2
(
1+i

√
3
)

3
√
12c1x6 + 2

√
6
√
c1x6 (1 + 6c1x6) + 1

+ 4

8x3

y(x)

→

−2
(
1 + i

√
3
) 3
√

12c1x6 + 2
√
6
√
c1x6 (1 + 6c1x6) + 1 +

2i
(√

3+i
)

3
√

12c1x6 + 2
√
6
√
c1x6 (1 + 6c1x6) + 1

+ 4

8x3

y(x) → 0
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21.8 problem 584
21.8.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5854
21.8.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5857
21.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5860
21.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5863

Internal problem ID [3834]
Internal file name [OUTPUT/3327_Sunday_June_05_2022_09_08_55_AM_42711474/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 584.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _exact , _rational , _Bernoulli]

2yx3y′ + 3y2x2 = −a

21.8.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y2x2 + a

2x3y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 887: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x3y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x3y

dy

Which results in

S = x3y2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y2x2 + a

2x3y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3y2x2

2
Sy = x3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −a

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −a

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −aR

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x3

2 = −ax

2 + c1

Which simplifies to

y2x3

2 = −ax

2 + c1

Summary
The solution(s) found are the following

(1)y2x3

2 = −ax

2 + c1

Verification of solutions

y2x3

2 = −ax

2 + c1

Verified OK.

21.8.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −3y2x2 + a

2x3y

This is a Bernoulli ODE.
y′ = − 3

2xy −
a

2x3
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 3
2x

f1(x) = − a

2x3

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −3y2
2x − a

2x3 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −3w(x)

2x − a

2x3

w′ = −3w
x

− a

x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 3
x

q(x) = − a

x3

Hence the ode is

w′(x) + 3w(x)
x

= − a

x3

The integrating factor µ is

µ = e
∫ 3

x
dx

= x3

The ode becomes

d
dx(µw) = (µ)

(
− a

x3

)
d
dx
(
x3w

)
=
(
x3) (− a

x3

)
d
(
x3w

)
= (−a) dx

Integrating gives

x3w =
∫

−a dx

x3w = −ax+ c1

Dividing both sides by the integrating factor µ = x3 results in

w(x) = − a

x2 + c1
x3

which simplifies to

w(x) = −ax+ c1
x3

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −ax+ c1
x3
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Solving for y gives

y(x) =
√
x (−ax+ c1)

x2

y(x) = −
√
x (−ax+ c1)

x2

Summary
The solution(s) found are the following

(1)y =
√

x (−ax+ c1)
x2

(2)y = −
√
x (−ax+ c1)

x2

Verification of solutions

y =
√
x (−ax+ c1)

x2

Verified OK.

y = −
√
x (−ax+ c1)

x2

Verified OK.

21.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

5860



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x3y

)
dy =

(
−3y2x2 − a

)
dx(

3y2x2 + a
)
dx+

(
2x3y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y2x2 + a

N(x, y) = 2x3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3y2x2 + a

)
= 6x2y

And
∂N

∂x
= ∂

∂x

(
2x3y

)
= 6x2y
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3y2x2 + a dx

(3)φ = x
(
y2x2 + a

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x3y + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x3y. Therefore equation (4) becomes

(5)2x3y = 2x3y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x
(
y2x2 + a

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
y2x2 + a

)
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Summary
The solution(s) found are the following

(1)x
(
y2x2 + a

)
= c1

Verification of solutions

x
(
y2x2 + a

)
= c1

Verified OK.

21.8.4 Maple step by step solution

Let’s solve
2yx3y′ + 3y2x2 = −a

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
6x2y = 6x2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(3y2x2 + a) dx+ f1(y)

• Evaluate integral
F (x, y) = x3y2 + ax+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
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2x3y = 2x3y + d
dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x3y2 + ax

• Substitute F (x, y) into the solution of the ODE
x3y2 + ax = c1

• Solve for y{
y =

√
x(−ax+c1)

x2 , y = −
√

x(−ax+c1)
x2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve(2*x^3*y(x)*diff(y(x),x)+a+3*x^2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√

(−ax+ c1)x
x2

y(x) = −
√

(−ax+ c1)x
x2
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3 Solution by Mathematica
Time used: 0.311 (sec). Leaf size: 44� �
DSolve[2 x^3 y[x] y'[x]+a+3 x^2 y[x]^2 ==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−ax+ c1
x3/2

y(x) →
√
−ax+ c1
x3/2
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21.9 problem 585
21.9.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5866
21.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5869

Internal problem ID [3835]
Internal file name [OUTPUT/3328_Sunday_June_05_2022_09_09_00_AM_11286905/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 585.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

x
(
3− 2x2y

)
y′ + 3y − 3y2x2 = 4x

21.9.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x
(
−2x2y + 3

))
dy =

(
3y2x2 + 4x− 3y

)
dx(

−3y2x2 − 4x+ 3y
)
dx+

(
x
(
−2x2y + 3

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3y2x2 − 4x+ 3y
N(x, y) = x

(
−2x2y + 3

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3y2x2 − 4x+ 3y

)
= −6x2y + 3

And
∂N

∂x
= ∂

∂x

(
x
(
−2x2y + 3

))
= −6x2y + 3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3y2x2 − 4x+ 3y dx

(3)φ = −x
(
y2x2 + 2x− 3y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x

(
2x2y − 3

)
+ f ′(y)

= −2x3y + 3x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(−2x2y + 3). Therefore equation (4) becomes

(5)x
(
−2x2y + 3

)
= −2x3y + 3x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x
(
y2x2 + 2x− 3y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x
(
y2x2 + 2x− 3y

)
Summary
The solution(s) found are the following

(1)−x
(
y2x2 + 2x− 3y

)
= c1
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Figure 933: Slope field plot

Verification of solutions

−x
(
y2x2 + 2x− 3y

)
= c1

Verified OK.

21.9.2 Maple step by step solution

Let’s solve
x(3− 2x2y) y′ + 3y − 3y2x2 = 4x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
−6x2y + 3 = −6x2y + 3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−3y2x2 − 4x+ 3y) dx+ f1(y)

• Evaluate integral
F (x, y) = −x3y2 − 2x2 + 3xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x(−2x2y + 3) = −2x3y + 3x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2x3y − 3x+ x(−2x2y + 3)

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −x3y2 − 2x2 + 3xy

• Substitute F (x, y) into the solution of the ODE
−x3y2 − 2x2 + 3xy = c1

• Solve for y{
y = 3+

√
−8x3−4c1x+9

2x2 , y = −−3+
√

−8x3−4c1x+9
2x2

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
dsolve(x*(3-2*x^2*y(x))*diff(y(x),x) = 4*x-3*y(x)+3*x^2*y(x)^2,y(x), singsol=all)� �

y(x) = 3 +
√
−8x3 + 4c1x+ 9

2x2

y(x) = 3−
√
−8x3 + 4c1x+ 9

2x2

3 Solution by Mathematica
Time used: 0.783 (sec). Leaf size: 71� �
DSolve[x(3-2 x^2 y[x])y'[x]==4 x-3 y[x]+3 x^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
−3x+

√
x2 (−8x3 + 4c1x+ 9)

2x3

y(x) → 3x+
√

x2 (−8x3 + 4c1x+ 9)
2x3
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21.10 problem 586
21.10.1 Solving as first order ode lie symmetry calculated ode . . . . . . 5872

Internal problem ID [3836]
Internal file name [OUTPUT/3329_Sunday_June_05_2022_09_09_04_AM_20779684/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 586.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

x
(
3 + 2x2y

)
y′ +

(
4 + 3x2y

)
y = 0

21.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (3x2y + 4) y
x (2x2y + 3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3x2y + 4) y(b3 − a2)

x (2x2y + 3) − (3x2y + 4)2 y2a3
x2 (2x2y + 3)2

−
(
− 6y2
2x2y + 3 + (3x2y + 4) y

x2 (2x2y + 3) +
4(3x2y + 4) y2

(2x2y + 3)2
)
(xa2 + ya3 + a1)

−
(
− 3xy
2x2y + 3 − 3x2y + 4

x (2x2y + 3) +
2(3x2y + 4) yx
(2x2y + 3)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

10x6y2b2 − 15x4y4a3 + 6x5y2b1 − 6x4y3a1 + 30x4yb2 + 2x3y2a2 + x3y2b3 − 39x2y3a3 + 18x3yb1 − 15x2y2a1 + 21b2x2 − 28y2a3 + 12xb1 − 12ya1
(2x2y + 3)2 x2

= 0

Setting the numerator to zero gives

(6E)10x6y2b2 − 15x4y4a3 + 6x5y2b1 − 6x4y3a1 + 30x4yb2 + 2x3y2a2 + x3y2b3
− 39x2y3a3 + 18x3yb1 − 15x2y2a1 + 21b2x2 − 28y2a3 + 12xb1 − 12ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−15a3v41v42 + 10b2v61v22 − 6a1v41v32 + 6b1v51v22 + 2a2v31v22 − 39a3v21v32 + 30b2v41v2
+ b3v

3
1v

2
2 − 15a1v21v22 + 18b1v31v2 − 28a3v22 + 21b2v21 − 12a1v2 + 12b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)10b2v61v22 + 6b1v51v22 − 15a3v41v42 − 6a1v41v32 + 30b2v41v2 + (2a2 + b3) v31v22
+ 18b1v31v2 − 39a3v21v32 − 15a1v21v22 + 21b2v21 + 12b1v1 − 28a3v22 − 12a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−15a1 = 0
−12a1 = 0
−6a1 = 0
−39a3 = 0
−28a3 = 0
−15a3 = 0

6b1 = 0
12b1 = 0
18b1 = 0
10b2 = 0
21b2 = 0
30b2 = 0

2a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
− (3x2y + 4) y
x (2x2y + 3)

)
(x)

= −y2x2 − 2y
2x2y + 3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y2x2−2y
2x2y+3

dy

Which results in

S = − ln (x2y + 2)
2 − 3 ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (3x2y + 4) y
x (2x2y + 3)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − xy

x2y + 2

Sy =
−2x2y − 3
y (x2y + 2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x2y + 2)
2 − 3 ln (y)

2 = 2 ln (x) + c1

Which simplifies to

− ln (x2y + 2)
2 − 3 ln (y)

2 = 2 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
3x2y+4

)
y

x(2x2y+3)
dS
dR

= 2
R

R = x

S = − ln (x2y + 2)
2 − 3 ln (y)

2

Summary
The solution(s) found are the following

(1)− ln (x2y + 2)
2 − 3 ln (y)

2 = 2 ln (x) + c1
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Figure 934: Slope field plot

Verification of solutions

− ln (x2y + 2)
2 − 3 ln (y)

2 = 2 ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 1.562 (sec). Leaf size: 39� �
dsolve(x*(3+2*x^2*y(x))*diff(y(x),x)+(4+3*x^2*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) =
RootOf

(
x2_Z8 − 2_Z2c1 − c1

)6
x2 − 2c1

x2c1
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3 Solution by Mathematica
Time used: 60.296 (sec). Leaf size: 1769� �
DSolve[x(3+2 x^2 y[x])y'[x]+(4+3 x^2 y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → − 1

2x2

+

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6

2
√
3

− 1
2

√√√√√√√√√√√√
2
x4 + 2 22/3e−2c1

3
√
3 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) −

3
√
2 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
32/3x6 − 2

√
3

x6

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6

y(x) → − 1
2x2

+

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6

2
√
3

+1
2

√√√√√√√√√√√√
2
x4 + 2 22/3e−2c1

3
√
3 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) −

3
√
2 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
32/3x6 − 2

√
3

x6

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6

y(x) → − 1
2x2

−

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6

2
√
3

− 1
2

√√√√√√√√√√√√
2
x4 + 2 22/3e−2c1

3
√
3 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) −

3
√
2 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
32/3x6 + 2

√
3

x6

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6

y(x) → − 1
2x2

−

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6

2
√
3

+1
2

√√√√√√√√√√√√
2
x4 + 2 22/3e−2c1

3
√
3 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) −

3
√
2 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
32/3x6 + 2

√
3

x6

√√√√√√√ 3
x4 − 2 62/3e−2c1

3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

) +
3
√
6 3

√
e−6c1

(√
48e6c1x18 + 81e8c1x16 − 9e4c1x8

)
x6
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21.11 problem 587
21.11.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5881
21.11.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5883

Internal problem ID [3837]
Internal file name [OUTPUT/3330_Sunday_June_05_2022_09_09_10_AM_88470503/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 587.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

8yx3y′ − 6y2x2 − y4 = −3x4

21.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

8u(x)x4(u′(x)x+ u(x))− 6u(x)2 x4 − u(x)4 x4 = −3x4

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u4 − 2u2 − 3
8ux

Where f(x) = 1
8x and g(u) = u4−2u2−3

u
. Integrating both sides gives

1
u4−2u2−3

u

du = 1
8x dx

∫ 1
u4−2u2−3

u

du =
∫ 1

8x dx

ln (u2 − 3)
8 − ln (u2 + 1)

8 = ln (x)
8 + c2
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The above can be written as(
1
8

)(
ln
(
u2 − 3

)
− ln

(
u2 + 1

))
= ln (x)

8 + 2c2

ln
(
u2 − 3

)
− ln

(
u2 + 1

)
= (8)

(
ln (x)
8 + 2c2

)
= ln (x) + 16c2

Raising both side to exponential gives

eln
(
u2−3

)
−ln

(
u2+1

)
= eln(x)+8c2

Which simplifies to

u2 − 3
u2 + 1 = 8c2x

= c3x

The solution is
u(x)2 − 3
u (x)2 + 1

= c3x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − 3
y2

x2 + 1
= c3x

y2 − 3x2

y2 + x2 = c3x

Summary
The solution(s) found are the following

(1)y2 − 3x2

y2 + x2 = c3x
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Figure 935: Slope field plot

Verification of solutions

y2 − 3x2

y2 + x2 = c3x

Verified OK.

21.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3x4 + 6y2x2 + y4

8y x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(−3x4 + 6y2x2 + y4) (b3 − a2)
8y x3 − (−3x4 + 6y2x2 + y4)2 a3

64y2x6

−
(
−12x3 + 12x y2

8y x3 − 3(−3x4 + 6y2x2 + y4)
8y x4

)
(xa2 + ya3 + a1)

−
(
12x2y + 4y3

8y x3 − −3x4 + 6y2x2 + y4

8y2x3

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−9x8a3 + 24x8b2 − 48x7ya2 + 48x7yb3 − 60x6y2a3 − 16b2y2x6 − 18x4y4a3 + 24x4y4b2 − 16x3y5a2 + 16x3y5b3 − 12x2y6a3 + y8a3 + 24x7b1 − 24x6ya1 + 48x5y2b1 − 48x4y3a1 + 24x3y4b1 − 24x2y5a1
64y2x6

= 0

Setting the numerator to zero gives

(6E)−9x8a3 − 24x8b2 + 48x7ya2 − 48x7yb3 + 60x6y2a3 + 16b2y2x6 + 18x4y4a3
− 24x4y4b2 + 16x3y5a2 − 16x3y5b3 + 12x2y6a3 − y8a3 − 24x7b1
+ 24x6ya1 − 48x5y2b1 + 48x4y3a1 − 24x3y4b1 + 24x2y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)48a2v71v2 + 16a2v31v52 − 9a3v81 + 60a3v61v22 + 18a3v41v42 + 12a3v21v62
− a3v

8
2 − 24b2v81 + 16b2v61v22 − 24b2v41v42 − 48b3v71v2 − 16b3v31v52

+ 24a1v61v2 + 48a1v41v32 + 24a1v21v52 − 24b1v71 − 48b1v51v22 − 24b1v31v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−9a3 − 24b2) v81 + (48a2 − 48b3) v71v2 − 24b1v71 + (60a3 + 16b2) v61v22
+ 24a1v61v2 − 48b1v51v22 + (18a3 − 24b2) v41v42 + 48a1v41v32
+ (16a2 − 16b3) v31v52 − 24b1v31v42 + 12a3v21v62 + 24a1v21v52 − a3v

8
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

24a1 = 0
48a1 = 0
−a3 = 0
12a3 = 0

−48b1 = 0
−24b1 = 0

16a2 − 16b3 = 0
48a2 − 48b3 = 0
−9a3 − 24b2 = 0
18a3 − 24b2 = 0
60a3 + 16b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−3x4 + 6y2x2 + y4

8y x3

)
(x)

= 3x4 + 2y2x2 − y4

8x2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x4+2y2x2−y4

8x2y

dy

Which results in

S = ln
(
x2 + y2

)
− ln

(
−3x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3x4 + 6y2x2 + y4

8y x3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 8x y2
3x4 + 2y2x2 − y4

Sy =
8x2y

3x4 + 2y2x2 − y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
y2 + x2)− ln

(
y2 − 3x2) = − ln (x) + c1

Which simplifies to

ln
(
y2 + x2)− ln

(
y2 − 3x2) = − ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3x4+6y2x2+y4

8y x3
dS
dR

= − 1
R

R = x

S = ln
(
x2 + y2

)
− ln

(
−3x2 + y2

)

Summary
The solution(s) found are the following

(1)ln
(
y2 + x2)− ln

(
y2 − 3x2) = − ln (x) + c1
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Figure 936: Slope field plot

Verification of solutions

ln
(
y2 + x2)− ln

(
y2 − 3x2) = − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 54� �
dsolve(8*x^3*y(x)*diff(y(x),x)+3*x^4-6*x^2*y(x)^2-y(x)^4 = 0,y(x), singsol=all)� �

y(x) = x
√
− (c1x− 1) (c1x+ 3)

c1x− 1

y(x) = −
x
√

− (c1x− 1) (c1x+ 3)
c1x− 1

3 Solution by Mathematica
Time used: 5.038 (sec). Leaf size: 160� �
DSolve[8 x^3 y[x] y'[x]+3 x^4 -6 x^2 y[x]^2 -y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x2 (3 + e8c1x)√
−1 + e8c1x

y(x) →
√
−x2 (3 + e8c1x)√
−1 + e8c1x

y(x) → −i
√
3
√
−x2

y(x) → i
√
3
√
−x2

y(x) → x5/2
√
−x3

y(x) →
√
−x3
√
x
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21.12 problem 588
21.12.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5891
21.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5892
21.12.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5895
21.12.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5899
21.12.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5902

Internal problem ID [3838]
Internal file name [OUTPUT/3331_Sunday_June_05_2022_09_09_16_AM_35807100/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 588.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy
(
b x2 + a

)
y′ −By2 = A

21.12.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= B y2 + A

xy (b x2 + a)

Where f(x) = 1
x(b x2+a) and g(y) = B y2+A

y
. Integrating both sides gives

1
B y2+A

y

dy = 1
x (b x2 + a) dx∫ 1

B y2+A
y

dy =
∫ 1

x (b x2 + a) dx
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ln (B y2 + A)
2B = − ln (b x2 + a)

2a + ln (x)
a

+ c1

Raising both side to exponential gives

e
ln
(
B y2+A

)
2B = e−

ln
(
b x2+a

)
2a + ln(x)

a
+c1

Which simplifies to

(
B y2 + A

) 1
2B = c2e−

ln
(
b x2+a

)
2a + ln(x)

a

Which simplifies to (
A+By2

) 1
2B = c2

(
b x2 + a

)− 1
2a x

1
a ec1

The solution is (
A+By2

) 1
2B = c2

(
b x2 + a

)− 1
2a x

1
a ec1

Summary
The solution(s) found are the following

(1)
(
A+By2

) 1
2B = c2

(
b x2 + a

)− 1
2a x

1
a ec1

Verification of solutions (
A+By2

) 1
2B = c2

(
b x2 + a

)− 1
2a x

1
a ec1

Verified OK.

21.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = B y2 + A

xy (b x2 + a)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 891: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x
(
b x2 + a

)
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x (b x2 + a)dx

Which results in

S = − ln (b x2 + a)
2a + ln (x)

a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = B y2 + A

xy (b x2 + a)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x (b x2 + a)

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

B y2 + A
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

BR2 + A
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (BR2 + A)
2B + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (b x2 + a) + 2 ln (x)
2a = ln (A+By2)

2B + c1

Which simplifies to

− ln (b x2 + a) + 2 ln (x)
2a = ln (A+By2)

2B + c1

Summary
The solution(s) found are the following

(1)− ln (b x2 + a) + 2 ln (x)
2a = ln (A+By2)

2B + c1

Verification of solutions

− ln (b x2 + a) + 2 ln (x)
2a = ln (A+By2)

2B + c1

Verified OK.

21.12.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= B y2 + A

xy (b x2 + a)

This is a Bernoulli ODE.

y′ = B

x (b x2 + a)y +
A

x (b x2 + a)
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
B

x (b x2 + a)

f1(x) =
A

x (b x2 + a)
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = B y2

x (b x2 + a) +
A

x (b x2 + a) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = Bw(x)

x (b x2 + a) +
A

x (b x2 + a)

w′ = 2Bw

x (b x2 + a) +
2A

x (b x2 + a) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = − 2B
x (b x2 + a)

q(x) = 2A
x (b x2 + a)

Hence the ode is

w′(x)− 2Bw(x)
x (b x2 + a) = 2A

x (b x2 + a)

The integrating factor µ is

µ = e
∫
− 2B

x
(
b x2+a

)dx

= e
B ln

(
b x2+a

)
a

− 2B ln(x)
a

Which simplifies to

µ =
(
b x2 + a

)B
a x− 2B

a

The ode becomes

d
dx(µw) = (µ)

(
2A

x (b x2 + a)

)
d
dx

((
b x2 + a

)B
a x− 2B

a w
)
=
((

b x2 + a
)B

a x− 2B
a

)( 2A
x (b x2 + a)

)
d
((

b x2 + a
)B

a x− 2B
a w
)
=
(
2Ax

−a−2B
a

(
b x2 + a

)−a+B
a

)
dx

Integrating gives(
b x2 + a

)B
a x− 2B

a w =
∫

2Ax
−a−2B

a

(
b x2 + a

)−a+B
a dx

(
b x2 + a

)B
a x− 2B

a w = −Ax1−a+2B
a (b x2 + a)1+

−a+B
a

B
+ c1

Dividing both sides by the integrating factor µ = (b x2 + a)
B
a x− 2B

a results in

w(x) = −(b x2 + a)−
B
a x

2B
a Ax1−a+2B

a (b x2 + a)1+
−a+B

a

B
+ c1

(
b x2 + a

)−B
a x

2B
a

which simplifies to

w(x) = −A

B
+ c1

(
b x2 + a

)−B
a x

2B
a
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −A

B
+ c1

(
b x2 + a

)−B
a x

2B
a

Solving for y gives

y(x) =

√
−B

(
−c1 (b x2 + a)−

B
a x

2B
a B + A

)
B

y(x) = −

√
−B

(
−c1 (b x2 + a)−

B
a x

2B
a B + A

)
B

Summary
The solution(s) found are the following

(1)y =

√
−B

(
−c1 (b x2 + a)−

B
a x

2B
a B + A

)
B

(2)y = −

√
−B

(
−c1 (b x2 + a)−

B
a x

2B
a B + A

)
B

Verification of solutions

y =

√
−B

(
−c1 (b x2 + a)−

B
a x

2B
a B + A

)
B

Verified OK.

y = −

√
−B

(
−c1 (b x2 + a)−

B
a x

2B
a B + A

)
B

Verified OK.
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21.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

B y2 + A

)
dy =

(
1

x (b x2 + a)

)
dx(

− 1
x (b x2 + a)

)
dx+

(
y

B y2 + A

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (b x2 + a)

N(x, y) = y

B y2 + A

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x (b x2 + a)

)
= 0

And
∂N

∂x
= ∂

∂x

(
y

B y2 + A

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (b x2 + a) dx

(3)φ =
ln
(
b x2+a

)
2 − ln (x)

a
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= y
B y2+A

. Therefore equation (4) becomes

(5)y

B y2 + A
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

B y2 + A

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

B y2 + A

)
dy

f(y) = ln (B y2 + A)
2B + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
ln
(
b x2+a

)
2 − ln (x)

a
+ ln (B y2 + A)

2B + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln
(
b x2+a

)
2 − ln (x)

a
+ ln (B y2 + A)

2B

Summary
The solution(s) found are the following

(1)
ln
(
b x2+a

)
2 − ln (x)

a
+ ln (A+By2)

2B = c1

Verification of solutions

ln
(
b x2+a

)
2 − ln (x)

a
+ ln (A+By2)

2B = c1

Verified OK.
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21.12.5 Maple step by step solution

Let’s solve
xy(b x2 + a) y′ −By2 = A

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′

A+By2
= 1

x(b x2+a)

• Integrate both sides with respect to x∫
yy′

A+By2
dx =

∫ 1
x(b x2+a)dx+ c1

• Evaluate integral
ln
(
A+By2

)
2B = − ln

(
b x2+a

)
2a + ln(x)

a
+ c1

• Solve for y
y =

√√√√√√−B

A−e−
B

(
−2c1a+ln

(
b x2+a

x2

))
a


B

, y = −

√√√√√√−B

A−e−
B

(
−2c1a+ln

(
b x2+a

x2

))
a


B


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 82� �
dsolve(x*y(x)*(b*x^2+a)*diff(y(x),x) = A+B*y(x)^2,y(x), singsol=all)� �

y(x) =

√
−B

(
−x

2B
a (b x2 + a)−

B
a c1B + A

)
B

y(x) = −

√
−B

(
−x

2B
a (b x2 + a)−

B
a c1B + A

)
B

3 Solution by Mathematica
Time used: 1.98 (sec). Leaf size: 134� �
DSolve[x y[x] (a+b x^2)y'[x]==A+B y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−A+ e2Bc1x

2B
a (a+ bx2)−

B
a

√
B

y(x) →

√
−A+ e2Bc1x

2B
a (a+ bx2)−

B
a

√
B

y(x) → − i
√
A√
B

y(x) → i
√
A√
B
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21.13 problem 589
21.13.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 5904
21.13.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 5908
21.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5912

Internal problem ID [3839]
Internal file name [OUTPUT/3332_Sunday_June_05_2022_09_09_20_AM_91899239/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 589.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

3yx4y′ + 2y2x3 = 1

21.13.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x3y2 − 1
3x4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 894: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
y x

4
3

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
y x

4
3

dy

Which results in

S = y2x
4
3

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x3y2 − 1
3x4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y2x 1
3

3
Sy = y x

4
3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

3x 8
3

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

3R 8
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
5R 5

3
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2x
4
3

2 = − 1
5x 5

3
+ c1

Which simplifies to

y2x
4
3

2 = − 1
5x 5

3
+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x3y2−1
3x4y

dS
dR

= 1
3R

8
3

R = x

S = y2x
4
3

2

Summary
The solution(s) found are the following

(1)y2x
4
3

2 = − 1
5x 5

3
+ c1
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Figure 937: Slope field plot

Verification of solutions

y2x
4
3

2 = − 1
5x 5

3
+ c1

Verified OK.

21.13.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −2x3y2 − 1
3x4y

This is a Bernoulli ODE.
y′ = − 2

3xy +
1
3x4

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 2
3x

f1(x) =
1
3x4

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −2y2
3x + 1

3x4 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −2w(x)

3x + 1
3x4

w′ = −4w
3x + 2

3x4 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4
3x

q(x) = 2
3x4
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Hence the ode is

w′(x) + 4w(x)
3x = 2

3x4

The integrating factor µ is

µ = e
∫ 4

3xdx

= x
4
3

The ode becomes

d
dx(µw) = (µ)

(
2
3x4

)
d
dx

(
x

4
3w
)
=
(
x

4
3

)( 2
3x4

)
d
(
x

4
3w
)
=
(

2
3x 8

3

)
dx

Integrating gives

x
4
3w =

∫ 2
3x 8

3
dx

x
4
3w = − 2

5x 5
3
+ c1

Dividing both sides by the integrating factor µ = x
4
3 results in

w(x) = − 2
5x3 + c1

x
4
3

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = − 2
5x3 + c1

x
4
3

Solving for y gives

y(x) =

√
5
√

x
17
3

(
−2 + 5c1x

5
3

)
5x 13

3

y(x) = −

√
5
√
x

17
3

(
−2 + 5c1x

5
3

)
5x 13

3
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Summary
The solution(s) found are the following

(1)y =

√
5
√

x
17
3

(
−2 + 5c1x

5
3

)
5x 13

3

(2)y = −

√
5
√

x
17
3

(
−2 + 5c1x

5
3

)
5x 13

3

Figure 938: Slope field plot

Verification of solutions

y =

√
5
√
x

17
3

(
−2 + 5c1x

5
3

)
5x 13

3

Verified OK.

y = −

√
5
√

x
17
3

(
−2 + 5c1x

5
3

)
5x 13

3

Verified OK.
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21.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x4y

)
dy =

(
−2x3y2 + 1

)
dx(

2x3y2 − 1
)
dx+

(
3x4y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x3y2 − 1
N(x, y) = 3x4y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x3y2 − 1

)
= 4x3y

And
∂N

∂x
= ∂

∂x

(
3x4y

)
= 12x3y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3y x4

((
4x3y

)
−
(
12x3y

))
= − 8

3x
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 8

3x dx

The result of integrating gives

µ = e−
8 ln(x)

3

= 1
x

8
3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

8
3

(
2x3y2 − 1

)
= 2x3y2 − 1

x
8
3
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And

N = µN

= 1
x

8
3

(
3x4y

)
= 3y x 4

3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x3y2 − 1
x

8
3

)
+
(
3y x 4

3

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x3y2 − 1
x

8
3

dx

(3)φ =
3x3y2

2 + 3
5

x
5
3

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y x 4

3 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3y x 4
3 . Therefore equation (4) becomes

(5)3y x 4
3 = 3y x 4

3 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
3x3y2

2 + 3
5

x
5
3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
3x3y2

2 + 3
5

x
5
3

Summary
The solution(s) found are the following

(1)
3y2x3

2 + 3
5

x
5
3

= c1

Figure 939: Slope field plot

5915



Verification of solutions

3y2x3

2 + 3
5

x
5
3

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 51� �
dsolve(3*x^4*y(x)*diff(y(x),x) = 1-2*x^3*y(x)^2,y(x), singsol=all)� �

y(x) = −

√
5
√

x
17
3

(
−2 + 5x 5

3 c1
)

5x 13
3

y(x) =

√
5
√

x
17
3

(
−2 + 5x 5

3 c1
)

5x 13
3

3 Solution by Mathematica
Time used: 3.675 (sec). Leaf size: 51� �
DSolve[3 x^4 y[x] y'[x]==1-2 x^3 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
− 2
5x3 + c1

x4/3

y(x) →
√

− 2
5x3 + c1

x4/3
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21.14 problem 590
Internal problem ID [3840]
Internal file name [OUTPUT/3333_Sunday_June_05_2022_09_09_26_AM_19785721/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 590.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

Unable to solve or complete the solution.

x7yy′ − 5yx3 = 2x2 + 2

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 120� �
dsolve(x^7*y(x)*diff(y(x),x) = 2*x^2+2+5*x^3*y(x),y(x), singsol=all)� �
−

(
y(x) hypergeom

([1
2 ,

5
4

]
,
[3
2

]
,−

(
x3y(x)+1

)2
x2

)
x3 − c1x+ hypergeom

([1
2 ,

5
4

]
,
[3
2

]
,−

(
x3y(x)+1

)2
x2

))(
x6y(x)2+2x3y(x)+x2+1

x2

) 1
4 + 2x2(

x6y(x)2+2x3y(x)+x2+1
x2

) 1
4
x

= 0

3 Solution by Mathematica
Time used: 0.381 (sec). Leaf size: 98� �
DSolve[x^7 y[x] y'[x]==2(1+x^2)+5 x^3 y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve

c1 =
i
(
x3y(x)+1

) 4

√
x4y(x)2 + 1

x2 + 2xy(x) + 1Hypergeometric2F1
(

1
2 ,

5
4 ,

3
2 ,−

(
y(x)x3+1

)2
x2

)
2x + ix

4

√
−(x3y(x) + 1)2

x2 − 1

, y(x)
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21.15 problem 591
21.15.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5919
21.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5921
21.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5925
21.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5929

Internal problem ID [3841]
Internal file name [OUTPUT/3334_Sunday_June_05_2022_09_09_29_AM_6927719/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 591.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yy′
√
x2 + 1 + x

√
y2 + 1 = 0

21.15.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x
√
y2 + 1

y
√
x2 + 1

Where f(x) = − x√
x2+1 and g(y) =

√
y2+1
y

. Integrating both sides gives

1√
y2+1
y

dy = − x√
x2 + 1

dx

∫ 1√
y2+1
y

dy =
∫

− x√
x2 + 1

dx
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√
y2 + 1 = −

√
x2 + 1 + c1

The solution is √
y2 + 1 +

√
x2 + 1− c1 = 0

Summary
The solution(s) found are the following

(1)
√

y2 + 1 +
√
x2 + 1− c1 = 0

Figure 940: Slope field plot

Verification of solutions √
y2 + 1 +

√
x2 + 1− c1 = 0

Verified OK.
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21.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x
√
y2 + 1

y
√
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 896: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −
√
x2 + 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−
√
x2+1
x

dx

Which results in

S = −
√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x
√
y2 + 1

y
√
x2 + 1

5922



Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − x√
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y√

y2 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R√

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
R2 + 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
√
x2 + 1 =

√
y2 + 1 + c1

Which simplifies to

−
√
x2 + 1 =

√
y2 + 1 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
√

y2+1
y
√
x2+1

dS
dR

= R√
R2+1

R = y

S = −
√
x2 + 1

Summary
The solution(s) found are the following

(1)−
√
x2 + 1 =

√
y2 + 1 + c1
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Figure 941: Slope field plot

Verification of solutions

−
√
x2 + 1 =

√
y2 + 1 + c1

Verified OK.

21.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− y√

y2 + 1

)
dy =

(
x√

x2 + 1

)
dx(

− x√
x2 + 1

)
dx+

(
− y√

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x√
x2 + 1

N(x, y) = − y√
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x√

x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− y√

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x√

x2 + 1
dx

(3)φ = −
√
x2 + 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − y√
y2+1

. Therefore equation (4) becomes

(5)− y√
y2 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − y√
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− y√

y2 + 1

)
dy

f(y) = −
√
y2 + 1 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −
√
x2 + 1−

√
y2 + 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
√
x2 + 1−

√
y2 + 1

Summary
The solution(s) found are the following

(1)−
√

y2 + 1−
√
x2 + 1 = c1

Figure 942: Slope field plot

Verification of solutions

−
√

y2 + 1−
√
x2 + 1 = c1

Verified OK.
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21.15.4 Maple step by step solution

Let’s solve
yy′

√
x2 + 1 + x

√
y2 + 1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′√
y2+1

= − x√
x2+1

• Integrate both sides with respect to x∫
yy′√
y2+1

dx =
∫
− x√

x2+1dx+ c1

• Evaluate integral
√
y2 + 1 = −

√
x2 + 1 + c1

• Solve for y{
y =

√
x2 − 2c1

√
x2 + 1 + c21, y = −

√
x2 − 2c1

√
x2 + 1 + c21

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(y(x)*diff(y(x),x)*sqrt(x^2+1)+x*sqrt(1+y(x)^2) = 0,y(x), singsol=all)� �

√
x2 + 1 +

√
y (x)2 + 1 + c1 = 0
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3 Solution by Mathematica
Time used: 0.288 (sec). Leaf size: 75� �
DSolve[y[x] y'[x]Sqrt[1+x^2]+x Sqrt[1+y[x]^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x2 + c1

(
−2

√
x2 + 1 + c1

)
y(x) →

√
x2 + c1

(
−2

√
x2 + 1 + c1

)
y(x) → −i
y(x) → i

5930



21.16 problem 592
21.16.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5931
21.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5933
21.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5937
21.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5941

Internal problem ID [3842]
Internal file name [OUTPUT/3335_Sunday_June_05_2022_09_09_33_AM_31761864/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 592.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(y + 1) y′
√
x2 + 1− y3 = 0

21.16.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y3

(y + 1)
√
x2 + 1

Where f(x) = 1√
x2+1 and g(y) = y3

y+1 . Integrating both sides gives

1
y3

y+1

dy = 1√
x2 + 1

dx

∫ 1
y3

y+1

dy =
∫ 1√

x2 + 1
dx
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−1
y
− 1

2y2 = arcsinh (x) + c1

Which results in

y = −1 +
√
1− 2c1 − 2 arcsinh (x)

2c1 + 2 arcsinh (x)

y = −
1 +

√
1− 2c1 − 2 arcsinh (x)

2 (arcsinh (x) + c1)

Summary
The solution(s) found are the following

(1)y = −1 +
√
1− 2c1 − 2 arcsinh (x)

2c1 + 2 arcsinh (x)

(2)y = −
1 +

√
1− 2c1 − 2 arcsinh (x)

2 (arcsinh (x) + c1)

Figure 943: Slope field plot
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Verification of solutions

y = −1 +
√
1− 2c1 − 2 arcsinh (x)

2c1 + 2 arcsinh (x)

Verified OK.

y = −
1 +

√
1− 2c1 − 2 arcsinh (x)

2 (arcsinh (x) + c1)

Verified OK.

21.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y3

(y + 1)
√
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 899: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
√
x2 + 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1√

x2 + 1
dx

Which results in

S = arcsinh (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y3

(y + 1)
√
x2 + 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1√
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y + 1

y3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R + 1

R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

− 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arcsinh (x) = −1
y
− 1

2y2 + c1

Which simplifies to

arcsinh (x) = −1
y
− 1

2y2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y3

(y+1)
√
x2+1

dS
dR

= R+1
R3

R = y

S = arcsinh (x)

Summary
The solution(s) found are the following

(1)arcsinh (x) = −1
y
− 1

2y2 + c1
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Figure 944: Slope field plot

Verification of solutions

arcsinh (x) = −1
y
− 1

2y2 + c1

Verified OK.

21.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y + 1
y3

)
dy =

(
1√

x2 + 1

)
dx(

− 1√
x2 + 1

)
dx+

(
y + 1
y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
x2 + 1

N(x, y) = y + 1
y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

x2 + 1

)
= 0

5938



And
∂N

∂x
= ∂

∂x

(
y + 1
y3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

x2 + 1
dx

(3)φ = − arcsinh (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y+1
y3

. Therefore equation (4) becomes

(5)y + 1
y3

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y + 1
y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y + 1
y3

)
dy

f(y) = −1
y
− 1

2y2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arcsinh (x)− 1
y
− 1

2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arcsinh (x)− 1
y
− 1

2y2

Summary
The solution(s) found are the following

(1)− arcsinh (x)− 1
y
− 1

2y2 = c1

Figure 945: Slope field plot

Verification of solutions

− arcsinh (x)− 1
y
− 1

2y2 = c1

Verified OK.
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21.16.4 Maple step by step solution

Let’s solve
(y + 1) y′

√
x2 + 1− y3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y+1)

y3
= 1√

x2+1

• Integrate both sides with respect to x∫ y′(y+1)
y3

dx =
∫ 1√

x2+1dx+ c1

• Evaluate integral
− 1

y
− 1

2y2 = arcsinh(x) + c1

• Solve for y{
y = −1+

√
1−2c1−2 arcsinh(x)

2(arcsinh(x)+c1) , y = −1+
√

1−2c1−2 arcsinh(x)
2(arcsinh(x)+c1)

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 57� �
dsolve((1+y(x))*diff(y(x),x)*sqrt(x^2+1) = y(x)^3,y(x), singsol=all)� �

y(x) = −1 +
√

1− 2c1 − 2 arcsinh (x)
2c1 + 2 arcsinh (x)

y(x) = −1−
√

1− 2c1 − 2 arcsinh (x)
2c1 + 2 arcsinh (x)
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3 Solution by Mathematica
Time used: 0.621 (sec). Leaf size: 120� �
DSolve[(1+y[x])y'[x]Sqrt[1+x^2]==y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
1 +

√
2 log

(√
x2 + 1− x

)
+ 1− 2c1

−2 log
(√

x2 + 1− x
)
+ 2c1

y(x) →
−1 +

√
2 log

(√
x2 + 1− x

)
+ 1− 2c1

2
(
− log

(√
x2 + 1− x

)
+ c1

)
y(x) → 0
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21.17 problem 593
Internal problem ID [3843]
Internal file name [OUTPUT/3336_Sunday_June_05_2022_09_09_38_AM_28303486/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 593.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class C`]]

Unable to solve or complete the solution.

(g0 (x) + y g1 (x)) y′ − f1 (x) y − f2 (x) y2 − f3 (x) y3 = f0 (x)

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(g1(x)*(diff(f3(x), x))-f3(x)*(diff(g1(x), x)))/(g1(x)*f3(x)), y(x)` **
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g0(x)+K[1]*g0(x)*f1(x)-K[1]*g1(x)*f0(x)-y(x)*f0(x)*(diff(g
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*g0(x)*(diff(f3(x), x))+2*g1(x)*f3(x)*K[1]+y(x)*g1(x)*(diff(f2(x), x))-y(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g1(x)+y(x)*(diff(f1(x), x))*g0(x)+2*g0(x)*f2(x)*K[1]-y(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f1(x), x))*g1(x)+3*g0(x)*f3(x)*K[1]+y(x)*g0(x)*(diff(f2(x), x))+g1(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g0(x)-K[1]*g0(x)*f0(x)-y(x)*f0(x)*(diff(g0(x), x)))/(g0(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(g1(x)*f3(x)*K[1]+y(x)*g1(x)*(diff(f3(x), x))-y(x)*f3(x)*(diff(g1(x), x)))/(g1(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(2*g0(x)*f3(x)*K[1]+y(x)*g0(x)*(diff(f3(x), x))+y(x)*g1(x)*(diff(f2(x), x))-y(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g1(x)+y(x)*(diff(f1(x), x))*g0(x)-2*K[1]*g1(x)*f0(x)-y(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f1(x), x))*g1(x)+g0(x)*f2(x)*K[1]+y(x)*g0(x)*(diff(f2(x), x))-K[1]*f1
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g0(x)+K[1]*g0(x)*f1(x)-K[1]*g1(x)*f0(x)-y(x)*f0(x)*(diff(g

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*g0(x)*(diff(f3(x), x))+2*g1(x)*f3(x)*K[1]+y(x)*g1(x)*(diff(f2(x), x))-y(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g1(x)+y(x)*(diff(f1(x), x))*g0(x)+2*g0(x)*f2(x)*K[1]-y(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f1(x), x))*g1(x)+3*g0(x)*f3(x)*K[1]+y(x)*g0(x)*(diff(f2(x), x))+g1(x)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g0(x)+3*g0(x)*f2(x)*K[1]+K[1]*f1(x)*g1(x)-y(x)*f0(x)*(diff
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(g0(x)*(diff(f3(x), x))-(diff(g0(x), x))*f3(x)+g1(x)*(diff(f2(x), x))-(diff(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f1(x), x))*g1(x)+y(x)*g0(x)*(diff(f2(x), x))+3*g1(x)*f3(x)*K[1]-y(x)*
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*(diff(f0(x), x))*g1(x)+y(x)*(diff(f1(x), x))*g0(x)+4*g0(x)*f3(x)*K[1]+2*g1(
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve((g0(x)+y(x)*g1(x))*diff(y(x),x) = f0(x)+f1(x)*y(x)+f2(x)*y(x)^2+f3(x)*y(x)^3,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(g0[x]+y[x] g1[x])y'[x]==f0[x]+f1[x] y[x]+f2[x] y[x]^2+f3[x] y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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21.18 problem 594
21.18.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5946
21.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5948
21.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5952
21.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5956

Internal problem ID [3844]
Internal file name [OUTPUT/3337_Sunday_June_05_2022_09_09_44_AM_25162347/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 594.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y2y′ + x(2− y) = 0

21.18.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(y − 2)
y2

Where f(x) = x and g(y) = y−2
y2

. Integrating both sides gives

1
y−2
y2

dy = x dx

∫ 1
y−2
y2

dy =
∫

x dx

y2

2 + 2y + 4 ln (y − 2) = x2

2 + c1
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The solution is
y2

2 + 2y + 4 ln (y − 2)− x2

2 − c1 = 0

Summary
The solution(s) found are the following

(1)y2

2 + 2y + 4 ln (y − 2)− x2

2 − c1 = 0

Figure 946: Slope field plot

Verification of solutions

y2

2 + 2y + 4 ln (y − 2)− x2

2 − c1 = 0

Verified OK.
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21.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y − 2)
y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 902: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y − 2)
y2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2

y − 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

R− 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + 2R + 4 ln (R− 2) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = y2

2 + 2y + 4 ln (y − 2) + c1

Which simplifies to

x2

2 = y2

2 + 2y + 4 ln (y − 2) + c1

5950



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(y−2)
y2

dS
dR

= R2

R−2

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)x2

2 = y2

2 + 2y + 4 ln (y − 2) + c1
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Figure 947: Slope field plot

Verification of solutions

x2

2 = y2

2 + 2y + 4 ln (y − 2) + c1

Verified OK.

21.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y2

y − 2

)
dy = (x) dx

(−x) dx+
(

y2

y − 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = y2

y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
y2

y − 2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2

y−2 . Therefore equation (4) becomes

(5)y2

y − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2

y − 2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y2

y − 2

)
dy

f(y) = y2

2 + 2y + 4 ln (y − 2) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + y2

2 + 2y + 4 ln (y − 2) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + y2

2 + 2y + 4 ln (y − 2)

Summary
The solution(s) found are the following

(1)y2

2 + 2y + 4 ln (y − 2)− x2

2 = c1
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Figure 948: Slope field plot

Verification of solutions

y2

2 + 2y + 4 ln (y − 2)− x2

2 = c1

Verified OK.

21.18.4 Maple step by step solution

Let’s solve
y2y′ + x(2− y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y2

2−y
= −x

• Integrate both sides with respect to x∫
y′y2

2−y
dx =

∫
−xdx+ c1

• Evaluate integral
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−y2

2 − 2y − 4 ln (y − 2) = −x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve(y(x)^2*diff(y(x),x)+x*(2-y(x)) = 0,y(x), singsol=all)� �

x2

2 − y(x)2

2 − 2y(x)− 4 ln (y(x)− 2) + c1 = 0

3 Solution by Mathematica
Time used: 0.37 (sec). Leaf size: 43� �
DSolve[y[x]^2*y'[x]+x*(2-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
#12

2 + 2#1+ 4 log(#1− 2)− 6&
] [

x2

2 + c1

]
y(x) → 2
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21.19 problem 595
21.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5958
21.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 5960
21.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5964
21.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5968

Internal problem ID [3845]
Internal file name [OUTPUT/3338_Sunday_June_05_2022_09_09_47_AM_40115610/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 595.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y2y′ − x
(
y2 + 1

)
= 0

21.19.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(y2 + 1)
y2

Where f(x) = x and g(y) = y2+1
y2

. Integrating both sides gives

1
y2+1
y2

dy = x dx

∫ 1
y2+1
y2

dy =
∫

x dx
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y − arctan (y) = x2

2 + c1

Which results in

y = x2

2 + c1 − RootOf
(
x2 + 2 tan (_Z) + 2c1 − 2_Z

)
Summary
The solution(s) found are the following

(1)y = x2

2 + c1 − RootOf
(
x2 + 2 tan (_Z) + 2c1 − 2_Z

)

Figure 949: Slope field plot

Verification of solutions

y = x2

2 + c1 − RootOf
(
x2 + 2 tan (_Z) + 2c1 − 2_Z

)
Verified OK.
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21.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y2 + 1)
y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 905: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y2 + 1)
y2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = y − arctan (y) + c1

Which simplifies to

x2

2 = y − arctan (y) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
(
y2+1

)
y2

dS
dR

= R2

R2+1

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)x2

2 = y − arctan (y) + c1
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Figure 950: Slope field plot

Verification of solutions

x2

2 = y − arctan (y) + c1

Verified OK.

21.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y2

y2 + 1

)
dy = (x) dx

(−x) dx+
(

y2

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = y2

y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
y2

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2

y2+1 . Therefore equation (4) becomes

(5)y2

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2

y2 + 1
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2

y2 + 1

)
dy

f(y) = y − arctan (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + y − arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + y − arctan (y)

Summary
The solution(s) found are the following

(1)−x2

2 + y − arctan (y) = c1

Figure 951: Slope field plot
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Verification of solutions

−x2

2 + y − arctan (y) = c1

Verified OK.

21.19.4 Maple step by step solution

Let’s solve
y2y′ − x(y2 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y2

y2+1 = x

• Integrate both sides with respect to x∫
y′y2

y2+1dx =
∫
xdx+ c1

• Evaluate integral
y − arctan (y) = x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 22� �
dsolve(y(x)^2*diff(y(x),x) = x*(1+y(x)^2),y(x), singsol=all)� �

y(x) = − tan
(
RootOf

(
x2 + 2 tan (_Z) + 2c1 − 2_Z

))
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3 Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 39� �
DSolve[y[x]^2*y'[x]==x*(1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
#1− tan−1(#1)&

] [x2

2 + c1

]
y(x) → −i
y(x) → i
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21.20 problem 596
21.20.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5970
21.20.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5973

Internal problem ID [3846]
Internal file name [OUTPUT/3339_Sunday_June_05_2022_09_09_51_AM_80345082/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 596.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

(
x+ y2

)
y′ + y = bx+ a

21.20.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

y2 + x
)
dy = (bx+ a− y) dx

(−bx− a+ y) dx+
(
y2 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bx− a+ y

N(x, y) = y2 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−bx− a+ y)

= 1

And
∂N

∂x
= ∂

∂x

(
y2 + x

)
= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−bx− a+ y dx

(3)φ = −
(
bx

2 + a− y

)
x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= y2 + x. Therefore equation (4) becomes

(5)y2 + x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2
)
dy

f(y) = y3

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −
(
bx

2 + a− y

)
x+ y3

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
bx

2 + a− y

)
x+ y3

3
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Summary
The solution(s) found are the following

(1)−
(
bx

2 + a− y

)
x+ y3

3 = c1

Verification of solutions

−
(
bx

2 + a− y

)
x+ y3

3 = c1

Verified OK.

21.20.2 Maple step by step solution

Let’s solve
(x+ y2) y′ + y = bx+ a

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−bx− a+ y) dx+ f1(y)

• Evaluate integral
F (x, y) = − b x2

2 − ax+ xy + f1(y)

• Take derivative of F (x, y) with respect to y
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N(x, y) = ∂
∂y
F (x, y)

• Compute derivative
y2 + x = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y2

• Solve for f1(y)

f1(y) = y3

3

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

2b x
2 − ax+ xy + 1

3y
3

• Substitute F (x, y) into the solution of the ODE
−1

2b x
2 − ax+ xy + 1

3y
3 = c1

• Solve for y
y =

(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3

2 − 2x(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3
, y = −

(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3

4 + x(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3
−

I
√
3


(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3

2 + 2x(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3


2 , y = −

(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3

4 + x(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3
+

I
√
3


(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3

2 + 2x(
6b x2+12ax+12c1+2

√
9x4b2+36ab x3+36b x2c1+36a2x2+72c1ax+16x3+36c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 584� �
dsolve((x+y(x)^2)*diff(y(x),x)+y(x) = b*x+a,y(x), singsol=all)� �
y(x)

=

(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 2
3 − 4x

2
(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 1
3

y(x) =

−
i
√
3
(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 2
3 + 4i

√
3x+

(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 2
3 − 4x

4
(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 1
3

y(x)

=
i
√
3
(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 2
3 + 4i

√
3x−

(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 2
3 + 4x

4
(
6b x2 + 12ax− 12c1 + 2

√
9b2x4 + 36a x3b+ 36x2a2 − 36bc1x2 − 72c1ax+ 16x3 + 36c21

) 1
3

3 Solution by Mathematica
Time used: 5.463 (sec). Leaf size: 420� �
DSolve[(x+y[x]^2)y'[x]+y[x]==a+b x,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−2 22/3x+ 3
√
2
(√

16x3 + 9 (2ax+ bx2 + 2c1) 2 + 6ax+ 3bx2 + 6c1
)

2/3

2 3
√√

16x3 + 9 (2ax+ bx2 + 2c1) 2 + 6ax+ 3bx2 + 6c1
y(x)

→
i

3
√
2
(√

3 + i
) (√

36a2x2 + 36abx3 + 72ac1x+ 9b2x4 + 36bc1x2 + 16x3 + 36c12 + 6ax+ 3bx2 + 6c1
) 2/3 + 2 22/3

(
1 + i

√
3
)
x

4 3
√√

16x3 + 9 (2ax+ bx2 + 2c1) 2 + 6ax+ 3bx2 + 6c1

y(x) → x− i
√
3x

3
√
2 3
√√

16x3 + 9 (2ax+ bx2 + 2c1) 2 + 6ax+ 3bx2 + 6c1

−
i
(√

3− i
) 3
√√

16x3 + 9 (2ax+ bx2 + 2c1) 2 + 6ax+ 3bx2 + 6c1
2 22/3
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21.21 problem 597
21.21.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 5976
21.21.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5980
21.21.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5984

Internal problem ID [3847]
Internal file name [OUTPUT/3340_Sunday_June_05_2022_09_09_54_AM_44059038/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 597.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational]

(
x− y2

)
y′ + y = x2

21.21.1 Solving as differentialType ode

Writing the ode as

y′ = x2 − y

x− y2
(1)

Which becomes (
−y2

)
dy = (−x) dy +

(
x2 − y

)
dx (2)

But the RHS is complete differential because

(−x) dy +
(
x2 − y

)
dx = d

(
1
3x

3 − xy

)
Hence (2) becomes

(
−y2

)
dy = d

(
1
3x

3 − xy

)
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Integrating both sides gives gives these solutions

y =

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

2 + 2x(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3
+ c1

y = −

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

4 − x(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3
+

i
√
3

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2 + c1

y = −

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

4 − x(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3
−

i
√
3

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

2
+ 2x(

−4x3 − 12c1 + 4
√

x6 + 6c1x3 − 4x3 + 9c21
) 1

3
+ c1

y = −

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

4
− x(

−4x3 − 12c1 + 4
√

x6 + 6c1x3 − 4x3 + 9c21
) 1

3

+

i
√
3

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2 + c1

(2)

y = −

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

4
− x(

−4x3 − 12c1 + 4
√

x6 + 6c1x3 − 4x3 + 9c21
) 1

3

−

i
√
3

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2 + c1

(3)
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Figure 952: Slope field plot

5979



Verification of solutions

y =

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

2
+ 2x(

−4x3 − 12c1 + 4
√

x6 + 6c1x3 − 4x3 + 9c21
) 1

3
+ c1

Verified OK.

y = −

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

4
− x(

−4x3 − 12c1 + 4
√

x6 + 6c1x3 − 4x3 + 9c21
) 1

3

+

i
√
3

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2 + c1

Verified OK.

y = −

(
−4x3 − 12c1 + 4

√
x6 + 6c1x3 − 4x3 + 9c21

) 1
3

4
− x(

−4x3 − 12c1 + 4
√

x6 + 6c1x3 − 4x3 + 9c21
) 1

3

−

i
√
3

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2 + c1

Verified OK.

21.21.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2 + x

)
dy =

(
x2 − y

)
dx(

−x2 + y
)
dx+

(
−y2 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + y

N(x, y) = −y2 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 + y

)
= 1

And
∂N

∂x
= ∂

∂x

(
−y2 + x

)
= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + y dx

(3)φ = −1
3x

3 + xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y2 + x. Therefore equation (4) becomes

(5)−y2 + x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y2
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y2

)
dy

f(y) = −y3

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3 + xy − 1
3y

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 + xy − 1
3y

3

Summary
The solution(s) found are the following

(1)−x3

3 + yx− y3

3 = c1

Figure 953: Slope field plot
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Verification of solutions

−x3

3 + yx− y3

3 = c1

Verified OK.

21.21.3 Maple step by step solution

Let’s solve
(x− y2) y′ + y = x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x2 + y) dx+ f1(y)

• Evaluate integral
F (x, y) = −x3

3 + xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−y2 + x = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)
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d
dy
f1(y) = −y2

• Solve for f1(y)

f1(y) = −y3

3

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

3x
3 + xy − 1

3y
3

• Substitute F (x, y) into the solution of the ODE
−1

3x
3 + xy − 1

3y
3 = c1

• Solve for y
y =

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 + 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3
, y = −

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

4 − x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3
−

I
√
3


(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2 , y = −

(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

4 − x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3
+

I
√
3


(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3

2 − 2x(
−4x3−12c1+4

√
x6+6c1x3−4x3+9c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 318� �
dsolve((x-y(x)^2)*diff(y(x),x) = x^2-y(x),y(x), singsol=all)� �
y(x) =

(
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 2
3 + 4x

2
(
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 1
3

y(x)

=
i

(
−
(
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 2
3 + 4x

)√
3−

(
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 2
3 − 4x

4
(
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 1
3

y(x)

=
i

((
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 2
3 − 4x

)√
3−

(
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 2
3 − 4x

4
(
−4x3 + 12c1 + 4

√
x6 + (−6c1 − 4)x3 + 9c21

) 1
3

3 Solution by Mathematica
Time used: 3.81 (sec). Leaf size: 326� �
DSolve[(x-y[x]^2)y'[x]==x^2-y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

2x+ 3
√
2
(
x3 +

√
x6 + (−4 + 6c1)x3 + 9c12 + 3c1

)
2/3

22/3 3
√

x3 +
√
x6 + (−4 + 6c1)x3 + 9c12 + 3c1

y(x) →
22/3

(
1− i

√
3
) (

x3 +
√

x6 + (−4 + 6c1)x3 + 9c12 + 3c1
)

2/3 + 3
√
2
(
2 + 2i

√
3
)
x

4 3
√

x3 +
√
x6 + (−4 + 6c1)x3 + 9c12 + 3c1

y(x) →
22/3

(
1 + i

√
3
) (

x3 +
√

x6 + (−4 + 6c1)x3 + 9c12 + 3c1
)

2/3 + 3
√
2
(
2− 2i

√
3
)
x

4 3
√

x3 +
√
x6 + (−4 + 6c1)x3 + 9c12 + 3c1
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21.22 problem 598
21.22.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 5987
21.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 5989
21.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 5994

Internal problem ID [3848]
Internal file name [OUTPUT/3341_Sunday_June_05_2022_09_09_59_AM_24231628/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 598.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
y2 + x2) y′ + yx = 0

21.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
u(x)2 x2 + x2) (u′(x)x+ u(x)) + u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u2 + 2)
x (u2 + 1)

Where f(x) = − 1
x
and g(u) = u

(
u2+2

)
u2+1 . Integrating both sides gives

1
u(u2+2)
u2+1

du = −1
x
dx
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∫ 1
u(u2+2)
u2+1

du =
∫

−1
x
dx

ln (u2 + 2)
4 + ln (u)

2 = − ln (x) + c2

Raising both side to exponential gives

e
ln
(
u2+2

)
4 + ln(u)

2 = e− ln(x)+c2

Which simplifies to (
u2 + 2

) 1
4
√
u = c3

x

The solution is (
u(x)2 + 2

) 1
4
√
u (x) = c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y2

x2 + 2
) 1

4
√

y

x
= c3

x(
y2 + 2x2

x2

) 1
4
√

y

x
= c3

x

Summary
The solution(s) found are the following

(1)
(
y2 + 2x2

x2

) 1
4
√

y

x
= c3

x
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Figure 954: Slope field plot

Verification of solutions (
y2 + 2x2

x2

) 1
4
√

y

x
= c3

x

Verified OK.

21.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − yx

x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
yx(b3 − a2)
x2 + y2

− y2x2a3

(x2 + y2)2
−
(
− y

x2 + y2
+ 2x2y

(x2 + y2)2
)
(xa2 + ya3 + a1)

−
(
− x

x2 + y2
+ 2y2x

(x2 + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x4b2 − 2y2x2a3 + x2y2b2 + 2x y3a2 − 2x y3b3 + y4a3 + y4b2 + x3b1 − x2ya1 − x y2b1 + y3a1

(x2 + y2)2
= 0

Setting the numerator to zero gives

(6E)2x4b2 − 2y2x2a3 + x2y2b2 + 2x y3a2 − 2x y3b3
+ y4a3 + y4b2 + x3b1 − x2ya1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v1v32 − 2a3v21v22 + a3v
4
2 + 2b2v41 + b2v

2
1v

2
2 + b2v

4
2

− 2b3v1v32 − a1v
2
1v2 + a1v

3
2 + b1v

3
1 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

5990



Equation (7E) now becomes

(8E)2b2v41 + b1v
3
1 + (−2a3 + b2) v21v22 − a1v

2
1v2

+ (2a2 − 2b3) v1v32 − b1v1v
2
2 + (a3 + b2) v42 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−b1 = 0
2b2 = 0

2a2 − 2b3 = 0
−2a3 + b2 = 0

a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− yx

x2 + y2

)
(x)

= 2x2y + y3

x2 + y2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2y+y3

x2+y2

dy

Which results in

S = ln (2x2 + y2)
4 + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − yx

x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

2x2 + y2

Sy =
x2 + y2

2x2y + y3
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + 2x2)
4 + ln (y)

2 = c1

Which simplifies to
ln (y2 + 2x2)

4 + ln (y)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − yx
x2+y2

dS
dR

= 0

R = x

S = ln (2x2 + y2)
4 + ln (y)

2
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Summary
The solution(s) found are the following

(1)ln (y2 + 2x2)
4 + ln (y)

2 = c1

Figure 955: Slope field plot

Verification of solutions

ln (y2 + 2x2)
4 + ln (y)

2 = c1

Verified OK.

21.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + y2

)
dy = (−xy) dx

(xy) dx+
(
x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy

N(x, y) = x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(xy)

= x
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And
∂N

∂x
= ∂

∂x

(
x2 + y2

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + y2
((x)− (2x))

= − x

x2 + y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

xy
((2x)− (x))

= 1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 1

y
dy

The result of integrating gives

µ = eln(y)

= y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y(xy)
= x y2
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And

N = µN

= y
(
x2 + y2

)
=
(
x2 + y2

)
y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

x y2
)
+
((
x2 + y2

)
y
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x y2 dx

(3)φ = y2x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2y + f ′(y)

But equation (2) says that ∂φ
∂y

= (x2 + y2) y. Therefore equation (4) becomes

(5)
(
x2 + y2

)
y = x2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y3
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y3
)
dy

f(y) = y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
2y

2x2 + 1
4y

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
2y

2x2 + 1
4y

4

Summary
The solution(s) found are the following

(1)y2x2

2 + y4

4 = c1

Figure 956: Slope field plot
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Verification of solutions

y2x2

2 + y4

4 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.828 (sec). Leaf size: 221� �
dsolve((x^2+y(x)^2)*diff(y(x),x)+x*y(x) = 0,y(x), singsol=all)� �

y(x) =

√
x2c1

(
c1x2 +

√
c21x

4 + 1
)

x
(
c1x2 +

√
c21x

4 + 1
)
c1

y(x) =

√
x2c1

(
c1x2 −

√
c21x

4 + 1
)

x
(
c1x2 −

√
c21x

4 + 1
)
c1

y(x) = −

√
x2c1

(
c1x2 +

√
c21x

4 + 1
)

x
(
c1x2 +

√
c21x

4 + 1
)
c1

y(x) =

√
x2c1

(
c1x2 −

√
c21x

4 + 1
)

x
(
−c1x2 +

√
c21x

4 + 1
)
c1
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3 Solution by Mathematica
Time used: 13.959 (sec). Leaf size: 218� �
DSolve[(x^2+y[x]^2)y'[x]+x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 −

√
x4 + e4c1

y(x) →
√

−x2 −
√
x4 + e4c1

y(x) → −
√
−x2 +

√
x4 + e4c1

y(x) →
√

−x2 +
√
x4 + e4c1

y(x) → 0

y(x) → −
√
−
√
x4 − x2

y(x) →
√

−
√
x4 − x2

y(x) → −
√√

x4 − x2

y(x) →
√√

x4 − x2
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21.23 problem 599
21.23.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6001
21.23.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6003
21.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6008

Internal problem ID [3849]
Internal file name [OUTPUT/3342_Sunday_June_05_2022_09_10_03_AM_25528897/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 599.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
y2 + x2) y′ − yx = 0

21.23.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
u(x)2 x2 + x2) (u′(x)x+ u(x))− u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u3

x (u2 + 1)

Where f(x) = − 1
x
and g(u) = u3

u2+1 . Integrating both sides gives

1
u3

u2+1
du = −1

x
dx
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∫ 1
u3

u2+1
du =

∫
−1
x
dx

− 1
2u2 + ln (u) = − ln (x) + c2

The solution is

− 1
2u (x)2

+ ln (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− x2

2y2 + ln
(y
x

)
+ ln (x)− c2 = 0

− x2

2y2 + ln
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)− x2

2y2 + ln
(y
x

)
+ ln (x)− c2 = 0

Figure 957: Slope field plot
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Verification of solutions

− x2

2y2 + ln
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

21.23.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = yx

x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
yx(b3 − a2)
x2 + y2

− y2x2a3

(x2 + y2)2
−
(

y

x2 + y2
− 2x2y

(x2 + y2)2
)
(xa2 + ya3 + a1)

−
(

x

x2 + y2
− 2y2x

(x2 + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−3x2y2b2 + 2x y3a2 − 2x y3b3 + y4a3 − y4b2 + x3b1 − x2ya1 − x y2b1 + y3a1

(x2 + y2)2
= 0
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Setting the numerator to zero gives

(6E)3x2y2b2 − 2x y3a2 + 2x y3b3 − y4a3 + y4b2 − x3b1 + x2ya1 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v1v32 − a3v
4
2 + 3b2v21v22 + b2v

4
2 + 2b3v1v32 + a1v

2
1v2 − a1v

3
2 − b1v

3
1 + b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b1v
3
1 + 3b2v21v22 + a1v

2
1v2 + (−2a2 + 2b3) v1v32 + b1v1v

2
2 + (−a3 + b2) v42 − a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−b1 = 0
3b2 = 0

−2a2 + 2b3 = 0
−a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

yx

x2 + y2

)
(x)

= y3

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3

x2+y2

dy

Which results in

S = − x2

2y2 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = yx

x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x

y2

Sy =
x2 + y2

y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y) y2 − x2

2y2 = c1

Which simplifies to

2 ln (y) y2 − x2

2y2 = c1

Which gives

y = e
LambertW

(
e−2c1x2

)
2 +c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= yx
x2+y2

dS
dR

= 0

R = x

S = 2 ln (y) y2 − x2

2y2

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
e−2c1x2

)
2 +c1

6007



Figure 958: Slope field plot

Verification of solutions

y = e
LambertW

(
e−2c1x2

)
2 +c1

Verified OK.

21.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + y2

)
dy = (xy) dx

(−xy) dx+
(
x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy

N(x, y) = x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−xy)

= −x

And
∂N

∂x
= ∂

∂x

(
x2 + y2

)
= 2x

6009



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + y2
((−x)− (2x))

= − 3x
x2 + y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

xy
((2x)− (−x))

= −3
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy

The result of integrating gives

µ = e−3 ln(y)

= 1
y3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3

(−xy)

= − x

y2

And

N = µN

= 1
y3
(
x2 + y2

)
= x2 + y2

y3

6010



So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

− x

y2

)
+
(
x2 + y2

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

y2
dx

(3)φ = − x2

2y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2+y2

y3
. Therefore equation (4) becomes

(5)x2 + y2

y3
= x2

y3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x2

2y2 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x2

2y2 + ln (y)

The solution becomes

y = e
LambertW

(
e−2c1x2

)
2 +c1

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
e−2c1x2

)
2 +c1
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Figure 959: Slope field plot

Verification of solutions

y = e
LambertW

(
e−2c1x2

)
2 +c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve((x^2+y(x)^2)*diff(y(x),x) = x*y(x),y(x), singsol=all)� �

y(x) =
√

1
LambertW (c1x2) x

3 Solution by Mathematica
Time used: 7.386 (sec). Leaf size: 49� �
DSolve[(x^2+y[x]^2)y'[x]==x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x√
W (e−2c1x2)

y(x) → x√
W (e−2c1x2)

y(x) → 0
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21.24 problem 600
21.24.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6015
21.24.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6017
21.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6022

Internal problem ID [3850]
Internal file name [OUTPUT/3343_Sunday_June_05_2022_09_10_07_AM_34322906/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 600.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x2 − y2

)
y′ − 2yx = 0

21.24.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 − u(x)2 x2) (u′(x)x+ u(x))− 2u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u2 + 1)
(u2 − 1)x

Where f(x) = − 1
x
and g(u) = u

(
u2+1

)
u2−1 . Integrating both sides gives

1
u(u2+1)
u2−1

du = −1
x
dx
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∫ 1
u(u2+1)
u2−1

du =
∫

−1
x
dx

ln
(
u2 + 1

)
− ln (u) = − ln (x) + c2

Raising both side to exponential gives

eln
(
u2+1

)
−ln(u) = e− ln(x)+c2

Which simplifies to

u2 + 1
u

= c3
x

The solution is
u(x)2 + 1
u (x) = c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y2

x2 + 1
)
x

y
= c3

x

y2 + x2

yx
= c3

x

Which simplifies to

y2 + x2

y
= c3

Summary
The solution(s) found are the following

(1)y2 + x2

y
= c3
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Figure 960: Slope field plot

Verification of solutions

y2 + x2

y
= c3

Verified OK.

21.24.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2yx
−x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2yx(b3 − a2)
−x2 + y2

− 4y2x2a3

(−x2 + y2)2

−
(
− 2y
−x2 + y2

− 4y x2

(−x2 + y2)2
)
(xa2 + ya3 + a1)

−
(
− 2x
−x2 + y2

+ 4y2x
(−x2 + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4b2 + 2y2x2a3 + 4x2y2b2 − 4x y3a2 + 4x y3b3 − 2y4a3 − y4b2 + 2x3b1 − 2x2ya1 + 2x y2b1 − 2y3a1
(x2 − y2)2

= 0

Setting the numerator to zero gives

(6E)−x4b2 − 2y2x2a3 − 4x2y2b2 + 4x y3a2 − 4x y3b3 + 2y4a3
+ y4b2 − 2x3b1 + 2x2ya1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v1v32 − 2a3v21v22 + 2a3v42 − b2v
4
1 − 4b2v21v22 + b2v

4
2

− 4b3v1v32 + 2a1v21v2 + 2a1v32 − 2b1v31 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2v
4
1 − 2b1v31 + (−2a3 − 4b2) v21v22 + 2a1v21v2

+ (4a2 − 4b3) v1v32 − 2b1v1v22 + (2a3 + b2) v42 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0
−b2 = 0

4a2 − 4b3 = 0
−2a3 − 4b2 = 0

2a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2yx
−x2 + y2

)
(x)

= −x2y − y3

x2 − y2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2y−y3

x2−y2

dy

Which results in

S = ln
(
x2 + y2

)
− ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2yx
−x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
x2 + y2

Sy =
2y

x2 + y2
− 1

y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
y2 + x2)− ln (y) = c1

Which simplifies to

ln
(
y2 + x2)− ln (y) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2yx
−x2+y2

dS
dR

= 0

R = x

S = ln
(
x2 + y2

)
− ln (y)
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Summary
The solution(s) found are the following

(1)ln
(
y2 + x2)− ln (y) = c1

Figure 961: Slope field plot

Verification of solutions

ln
(
y2 + x2)− ln (y) = c1

Verified OK.

21.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 − y2

)
dy = (2xy) dx

(−2xy) dx+
(
x2 − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy
N(x, y) = x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−2xy)

= −2x
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And
∂N

∂x
= ∂

∂x

(
x2 − y2

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 − y2
((−2x)− (2x))

= − 4x
x2 − y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2xy ((2x)− (−2x))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−2xy)

= −2x
y
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And

N = µN

= 1
y2
(
x2 − y2

)
= x2 − y2

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2x
y

)
+
(
x2 − y2

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x

y
dx

(3)φ = −x2

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2−y2

y2
. Therefore equation (4) becomes

(5)x2 − y2

y2
= x2

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

y
− y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

y
− y

Summary
The solution(s) found are the following

(1)−x2

y
− y = c1
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Figure 962: Slope field plot

Verification of solutions

−x2

y
− y = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 47� �
dsolve((x^2-y(x)^2)*diff(y(x),x) = 2*x*y(x),y(x), singsol=all)� �

y(x) = 1−
√
−4c21x2 + 1
2c1

y(x) = 1 +
√
−4c21x2 + 1
2c1

3 Solution by Mathematica
Time used: 1.088 (sec). Leaf size: 66� �
DSolve[(x^2-y[x]^2)y'[x]==2 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
ec1 −

√
−4x2 + e2c1

)
y(x) → 1

2

(√
−4x2 + e2c1 + ec1

)
y(x) → 0

6028



21.25 problem 601
21.25.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6029
21.25.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 6031
21.25.3 Solving as first order ode lie symmetry calculated ode . . . . . . 6035
21.25.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6041
21.25.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6045

Internal problem ID [3851]
Internal file name [OUTPUT/3344_Sunday_June_05_2022_09_10_13_AM_31824054/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 601.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
x2 − y2

)
y′ + x(x+ 2y) = 0

21.25.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 − u(x)2 x2) (u′(x)x+ u(x)) + x(x+ 2u(x)x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 − 3u− 1
(u2 − 1)x
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Where f(x) = − 1
x
and g(u) = u3−3u−1

u2−1 . Integrating both sides gives

1
u3−3u−1
u2−1

du = −1
x
dx

∫ 1
u3−3u−1
u2−1

du =
∫

−1
x
dx

ln (u3 − 3u− 1)
3 = − ln (x) + c2

Raising both side to exponential gives(
u3 − 3u− 1

) 1
3 = e− ln(x)+c2

Which simplifies to (
u3 − 3u− 1

) 1
3 = c3

x

Which simplifies to (
u(x)3 − 3u(x)− 1

) 1
3 = c3ec2

x

The solution is (
u(x)3 − 3u(x)− 1

) 1
3 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y3

x3 − 3y
x

− 1
) 1

3

= c3ec2
x(

y3 − 3x2y − x3

x3

) 1
3

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
y3 − 3x2y − x3

x3

) 1
3

= c3ec2
x
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Figure 963: Slope field plot

Verification of solutions (
y3 − 3x2y − x3

x3

) 1
3

= c3ec2
x

Verified OK.

21.25.2 Solving as differentialType ode

Writing the ode as

y′ = −x(x+ 2y)
x2 − y2

(1)

Which becomes (
−y2

)
dy =

(
−x2) dy + (−x(x+ 2y)) dx (2)

But the RHS is complete differential because

(
−x2) dy + (−x(x+ 2y)) dx = d

(
−1
3x

3 − x2y

)
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Hence (2) becomes

(
−y2

)
dy = d

(
−1
3x

3 − x2y

)
Integrating both sides gives gives these solutions

y =

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

2 + 2x2(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3
+ c1

y = −

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

4 − x2(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3
+

i
√
3

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2 + c1

y = −

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

4 − x2(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3
−

i
√
3

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

2
+ 2x2(

4x3 − 12c1 + 4
√

−3x6 − 6c1x3 + 9c21
) 1

3
+ c1

(2)

y = −

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

4
− x2(

4x3 − 12c1 + 4
√

−3x6 − 6c1x3 + 9c21
) 1

3

+

i
√
3

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2 + c1

(3)

y = −

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

4
− x2(

4x3 − 12c1 + 4
√

−3x6 − 6c1x3 + 9c21
) 1

3

−

i
√
3

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2 + c1
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Figure 964: Slope field plot
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Verification of solutions

y =

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

2
+ 2x2(

4x3 − 12c1 + 4
√
−3x6 − 6c1x3 + 9c21

) 1
3
+ c1

Verified OK.

y = −

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

4
− x2(

4x3 − 12c1 + 4
√

−3x6 − 6c1x3 + 9c21
) 1

3

+

i
√
3

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2 + c1

Verified OK.

y = −

(
4x3 − 12c1 + 4

√
−3x6 − 6c1x3 + 9c21

) 1
3

4
− x2(

4x3 − 12c1 + 4
√

−3x6 − 6c1x3 + 9c21
) 1

3

−

i
√
3

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2 + c1

Verified OK.

21.25.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x(x+ 2y)
−x2 + y2

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
x(x+ 2y) (b3 − a2)

−x2 + y2
− x2(x+ 2y)2 a3

(−x2 + y2)2

−
(

x+ 2y
−x2 + y2

+ x

−x2 + y2
+ 2x2(x+ 2y)

(−x2 + y2)2
)
(xa2 + ya3 + a1)

−
(

2x
−x2 + y2

− 2x(x+ 2y) y
(−x2 + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4a2 − x4a3 + 3x4b2 − x4b3 − 4x3ya3 + 2x3yb2 − 3x2y2a2 − 6x2y2a3 + 3x2y2b3 − 4x y3a2 − 2x y3a3 + 4x y3b3 − 2y4a3 + y4b2 + 2x3b1 − 2x2ya1 + 2x2yb1 − 2x y2a1 + 2x y2b1 − 2y3a1
(x2 − y2)2

= 0

Setting the numerator to zero gives

(6E)x4a2 − x4a3 + 3x4b2 − x4b3 − 4x3ya3 + 2x3yb2 − 3x2y2a2
− 6x2y2a3 + 3x2y2b3 − 4x y3a2 − 2x y3a3 + 4x y3b3 − 2y4a3 + y4b2
+ 2x3b1 − 2x2ya1 + 2x2yb1 − 2x y2a1 + 2x y2b1 − 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
1 − 3a2v21v22 − 4a2v1v32 − a3v

4
1 − 4a3v31v2 − 6a3v21v22 − 2a3v1v32

− 2a3v42 + 3b2v41 + 2b2v31v2 + b2v
4
2 − b3v

4
1 + 3b3v21v22 + 4b3v1v32

− 2a1v21v2 − 2a1v1v22 − 2a1v32 + 2b1v31 + 2b1v21v2 + 2b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 + 3b2 − b3) v41 + (−4a3 + 2b2) v31v2 + 2b1v31
+ (−3a2 − 6a3 + 3b3) v21v22 + (−2a1 + 2b1) v21v2 + (−4a2 − 2a3 + 4b3) v1v32
+ (−2a1 + 2b1) v1v22 + (−2a3 + b2) v42 − 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2b1 = 0

−2a1 + 2b1 = 0
−4a3 + 2b2 = 0
−2a3 + b2 = 0

−4a2 − 2a3 + 4b3 = 0
−3a2 − 6a3 + 3b3 = 0
a2 − a3 + 3b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x(x+ 2y)
−x2 + y2

)
(x)

= x3 + 3x2y − y3

x2 − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3+3x2y−y3

x2−y2

dy

Which results in

S = ln (−x3 − 3x2y + y3)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(x+ 2y)
−x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x(x+ 2y)
x3 + 3x2y − y3

Sy =
x2 − y2

x3 + 3x2y − y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y3 − 3x2y − x3)
3 = c1

Which simplifies to

ln (y3 − 3x2y − x3)
3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(x+2y)
−x2+y2

dS
dR

= 0

R = x

S = ln (−x3 − 3x2y + y3)
3

Summary
The solution(s) found are the following

(1)ln (y3 − 3x2y − x3)
3 = c1
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Figure 965: Slope field plot

Verification of solutions

ln (y3 − 3x2y − x3)
3 = c1

Verified OK.

21.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 − y2

)
dy = (−x(x+ 2y)) dx

(x(x+ 2y)) dx+
(
x2 − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x(x+ 2y)
N(x, y) = x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(x(x+ 2y))

= 2x

And
∂N

∂x
= ∂

∂x

(
x2 − y2

)
= 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x(x+ 2y) dx

(3)φ = x2(x+ 3y)
3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 − y2. Therefore equation (4) becomes

(5)x2 − y2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y2

)
dy

f(y) = −y3

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2(x+ 3y)
3 − y3

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2(x+ 3y)

3 − y3

3

Summary
The solution(s) found are the following

(1)x2(x+ 3y)
3 − y3

3 = c1

Figure 966: Slope field plot

Verification of solutions

x2(x+ 3y)
3 − y3

3 = c1

Verified OK.
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21.25.5 Maple step by step solution

Let’s solve
(x2 − y2) y′ + x(x+ 2y) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2x = 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
x(x+ 2y) dx+ f1(y)

• Evaluate integral
F (x, y) = x3

3 + x2y + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2 − y2 = x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −y2

• Solve for f1(y)

f1(y) = −y3

3

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 1
3x

3 + x2y − 1
3y

3

• Substitute F (x, y) into the solution of the ODE
1
3x

3 + x2y − 1
3y

3 = c1

• Solve for y
y =

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 + 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3
, y = −

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

4 − x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3
−

I
√
3


(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2 , y = −

(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

4 − x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3
+

I
√
3


(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3

2 − 2x2(
4x3−12c1+4

√
−3x6−6c1x3+9c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 320� �
dsolve((x^2-y(x)^2)*diff(y(x),x)+x*(x+2*y(x)) = 0,y(x), singsol=all)� �

y(x) =
4c1x2 +

(
4 + 4x3c

3
2
1 + 4

√
−3x6c31 + 2x3c

3
2
1 + 1

) 2
3

2
(
4 + 4x3c

3
2
1 + 4

√
−3x6c31 + 2x3c

3
2
1 + 1

) 1
3 √

c1

y(x)

=
4i
√
3 c1x2 − i

(
4 + 4x3c

3
2
1 + 4

√
−3x6c31 + 2x3c

3
2
1 + 1

) 2
3 √

3− 4c1x2 −
(
4 + 4x3c

3
2
1 + 4

√
−3x6c31 + 2x3c

3
2
1 + 1

) 2
3

4
(
4 + 4x3c

3
2
1 + 4

√
−3x6c31 + 2x3c

3
2
1 + 1

) 1
3 √

c1

y(x) =

(
4 + 4x3c

3
2
1 + 4

√
−3x6c31 + 2x3c

3
2
1 + 1

) 1
3 (

i
√
3− 1

)
4√c1

−
√
c1
(
1 + i

√
3
)
x2(

4 + 4x3c
3
2
1 + 4

√
−3x6c31 + 2x3c

3
2
1 + 1

) 1
3
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3 Solution by Mathematica
Time used: 42.021 (sec). Leaf size: 611� �
DSolve[(x^2-y[x]^2)*y'[x]+x*(x+2*y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

x3 +
√
−3x6 + 2e3c1x3 + e6c1 + e3c1

3
√
2

+
3
√
2x2

3
√

x3 +
√
−3x6 + 2e3c1x3 + e6c1 + e3c1

y(x) →
i
(

3
√
2
(√

3 + i
) (

x3 +
√
−3x6 + 2e3c1x3 + e6c1 + e3c1

) 2/3 − 2
(√

3− i
)
x2
)

2 22/3 3
√

x3 +
√
−3x6 + 2e3c1x3 + e6c1 + e3c1

y(x) →
2i 3
√
2
(√

3 + i
)
x2 + 22/3

(
−1− i

√
3
) (

x3 +
√
−3x6 + 2e3c1x3 + e6c1 + e3c1

) 2/3

4 3
√

x3 +
√
−3x6 + 2e3c1x3 + e6c1 + e3c1

y(x) →
3
√√

3
√
−x6 + x3

3
√
2

+
3
√
2x2

3
√√

3
√
−x6 + x3

y(x) →
(
−2− 2i

√
3
)
x2 + i

3
√
2
(√

3 + i
) (√

3
√
−x6 + x3)2/3

2 22/3 3
√√

3
√
−x6 + x3

y(x) →
2i 3
√
2
(√

3 + i
)
x2 + 22/3

(
−1− i

√
3
) (√

3
√
−x6 + x3)2/3

4 3
√√

3
√
−x6 + x3
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Internal problem ID [3852]
Internal file name [OUTPUT/3345_Sunday_June_05_2022_09_10_17_AM_74370641/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 602.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
y2 + x2) y′ + 2x(y + 2x) = 0

21.26.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
u(x)2 x2 + x2) (u′(x)x+ u(x)) + 2x(u(x)x+ 2x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 + 3u+ 4
x (u2 + 1)
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Where f(x) = − 1
x
and g(u) = u3+3u+4

u2+1 . Integrating both sides gives

1
u3+3u+4
u2+1

du = −1
x
dx

∫ 1
u3+3u+4
u2+1

du =
∫

−1
x
dx

ln (u3 + 3u+ 4)
3 = − ln (x) + c2

Raising both side to exponential gives(
u3 + 3u+ 4

) 1
3 = e− ln(x)+c2

Which simplifies to (
u3 + 3u+ 4

) 1
3 = c3

x

Which simplifies to (
u(x)3 + 3u(x) + 4

) 1
3 = c3ec2

x

The solution is (
u(x)3 + 3u(x) + 4

) 1
3 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y3

x3 + 3y
x

+ 4
) 1

3

= c3ec2
x(

y3 + 3x2y + 4x3

x3

) 1
3

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
y3 + 3x2y + 4x3

x3

) 1
3

= c3ec2
x
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Figure 967: Slope field plot

Verification of solutions (
y3 + 3x2y + 4x3

x3

) 1
3

= c3ec2
x

Verified OK.

21.26.2 Solving as differentialType ode

Writing the ode as

y′ = −2x(y + 2x)
y2 + x2 (1)

Which becomes (
y2
)
dy =

(
−x2) dy + (−2x(2x+ y)) dx (2)

But the RHS is complete differential because

(
−x2) dy + (−2x(2x+ y)) dx = d

(
−x2y − 4

3x
3
)
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Hence (2) becomes

(
y2
)
dy = d

(
−x2y − 4

3x
3
)

Integrating both sides gives gives these solutions

y =

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

2 − 2x2(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3
+ c1

y = −

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

4 + x2(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3
+

i
√
3

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2 + c1

y = −

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

4 + x2(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3
−

i
√
3

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

2
− 2x2(

−16x3 + 12c1 + 4
√

20x6 − 24c1x3 + 9c21
) 1

3
+ c1

y = −

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

4
+ x2(

−16x3 + 12c1 + 4
√

20x6 − 24c1x3 + 9c21
) 1

3

+

i
√
3

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2 + c1

(2)

y = −

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

4
+ x2(

−16x3 + 12c1 + 4
√

20x6 − 24c1x3 + 9c21
) 1

3

−

i
√
3

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2 + c1

(3)
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Figure 968: Slope field plot
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Verification of solutions

y =

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

2
− 2x2(

−16x3 + 12c1 + 4
√

20x6 − 24c1x3 + 9c21
) 1

3
+ c1

Verified OK.

y = −

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

4
+ x2(

−16x3 + 12c1 + 4
√

20x6 − 24c1x3 + 9c21
) 1

3

+

i
√
3

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2 + c1

Verified OK.

y = −

(
−16x3 + 12c1 + 4

√
20x6 − 24c1x3 + 9c21

) 1
3

4
+ x2(

−16x3 + 12c1 + 4
√

20x6 − 24c1x3 + 9c21
) 1

3

−

i
√
3

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2 + c1

Verified OK.

21.26.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x(2x+ y)
x2 + y2

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2x(2x+ y) (b3 − a2)

x2 + y2
− 4x2(2x+ y)2 a3

(x2 + y2)2

−
(
−2(2x+ y)

x2 + y2
− 4x

x2 + y2
+ 4x2(2x+ y)

(x2 + y2)2
)
(xa2 + ya3 + a1)

−
(
− 2x
x2 + y2

+ 4x(2x+ y) y
(x2 + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x4a2 − 16x4a3 + 3x4b2 − 4x4b3 − 16x3ya3 − 8x3yb2 + 12x2y2a2 − 6x2y2a3 − 12x2y2b3 + 4x y3a2 + 8x y3a3 − 4x y3b3 + 2y4a3 + y4b2 + 2x3b1 − 2x2ya1 − 8x2yb1 + 8x y2a1 − 2x y2b1 + 2y3a1
(x2 + y2)2

= 0

Setting the numerator to zero gives

(6E)4x4a2 − 16x4a3 + 3x4b2 − 4x4b3 − 16x3ya3 − 8x3yb2 + 12x2y2a2
− 6x2y2a3 − 12x2y2b3 + 4x y3a2 + 8x y3a3 − 4x y3b3 + 2y4a3
+ y4b2 + 2x3b1 − 2x2ya1 − 8x2yb1 + 8x y2a1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v41 + 12a2v21v22 + 4a2v1v32 − 16a3v41 − 16a3v31v2 − 6a3v21v22 + 8a3v1v32
+ 2a3v42 + 3b2v41 − 8b2v31v2 + b2v

4
2 − 4b3v41 − 12b3v21v22 − 4b3v1v32

− 2a1v21v2 + 8a1v1v22 + 2a1v32 + 2b1v31 − 8b1v21v2 − 2b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(4a2 − 16a3 + 3b2 − 4b3) v41 + (−16a3 − 8b2) v31v2
+ 2b1v31 + (12a2 − 6a3 − 12b3) v21v22 + (−2a1 − 8b1) v21v2
+ (4a2 + 8a3 − 4b3) v1v32 + (8a1 − 2b1) v1v22 + (2a3 + b2) v42 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
2b1 = 0

−2a1 − 8b1 = 0
8a1 − 2b1 = 0

−16a3 − 8b2 = 0
2a3 + b2 = 0

4a2 + 8a3 − 4b3 = 0
12a2 − 6a3 − 12b3 = 0

4a2 − 16a3 + 3b2 − 4b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2x(2x+ y)

x2 + y2

)
(x)

= 4x3 + 3x2y + y3

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x3+3x2y+y3

x2+y2

dy
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Which results in

S = ln (4x3 + 3x2y + y3)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x(2x+ y)
x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x(2x+ y)
4x3 + 3x2y + y3

Sy =
x2 + y2

4x3 + 3x2y + y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x)
3 + ln (y2 − yx+ 4x2)

3 = c1
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Which simplifies to

ln (y + x)
3 + ln (y2 − yx+ 4x2)

3 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x(2x+y)
x2+y2

dS
dR

= 0

R = x

S = ln (y + x)
3 + ln (4x2 − xy + y2)

3

Summary
The solution(s) found are the following

(1)ln (y + x)
3 + ln (y2 − yx+ 4x2)

3 = c1
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Figure 969: Slope field plot

Verification of solutions

ln (y + x)
3 + ln (y2 − yx+ 4x2)

3 = c1

Verified OK.

21.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + y2

)
dy = (−2x(2x+ y)) dx

(2x(2x+ y)) dx+
(
x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x(2x+ y)
N(x, y) = x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2x(2x+ y))

= 2x

And
∂N

∂x
= ∂

∂x

(
x2 + y2

)
= 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x(2x+ y) dx

(3)φ = x2(4x+ 3y)
3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + y2. Therefore equation (4) becomes

(5)x2 + y2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2
)
dy

f(y) = y3

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2(4x+ 3y)
3 + y3

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2(4x+ 3y)

3 + y3

3

Summary
The solution(s) found are the following

(1)x2(4x+ 3y)
3 + y3

3 = c1

Figure 970: Slope field plot

Verification of solutions

x2(4x+ 3y)
3 + y3

3 = c1

Verified OK.
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21.26.5 Maple step by step solution

Let’s solve
(y2 + x2) y′ + 2x(y + 2x) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2x = 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
2x(2x+ y) dx+ f1(y)

• Evaluate integral
F (x, y) = 4x3

3 + x2y + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2 + y2 = x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y2

• Solve for f1(y)

f1(y) = y3

3

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 4
3x

3 + x2y + 1
3y

3

• Substitute F (x, y) into the solution of the ODE
4
3x

3 + x2y + 1
3y

3 = c1

• Solve for y
y =

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 − 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3
, y = −

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

4 + x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3
−

I
√
3


(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2 , y = −

(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

4 + x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3
+

I
√
3


(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3

2 + 2x2(
−16x3+12c1+4

√
20x6−24c1x3+9c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 321� �
dsolve((x^2+y(x)^2)*diff(y(x),x)+2*x*(2*x+y(x)) = 0,y(x), singsol=all)� �

y(x) = −

2

c1x
2 −

(
4−16x3c

3
2
1 +4

√
20x6c31−8x3c

3
2
1 +1

) 2
3

4


(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3 √

c1

y(x) = −

(
1 + i

√
3
)(

4− 16x3c
3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3

4√c1

−
√
c1
(
i
√
3− 1

)
x2(

4− 16x3c
3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3

y(x)

=
4i
√
3 c1x2 + i

(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 2
3 √

3 + 4c1x2 −
(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 2
3

4
(
4− 16x3c

3
2
1 + 4

√
20x6c31 − 8x3c

3
2
1 + 1

) 1
3 √

c1
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3 Solution by Mathematica
Time used: 20.751 (sec). Leaf size: 593� �
DSolve[(x^2+y[x]^2)y'[x]+2 x(2 x+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√
−4x3 +

√
20x6 − 8e3c1x3 + e6c1 + e3c1

y(x) →
3
√
2
(
2 + 2i

√
3
)
x2 + i22/3

(√
3 + i

) (
−4x3 +

√
20x6 − 8e3c1x3 + e6c1 + e3c1

) 2/3

4 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

y(x) →
(
1− i

√
3
)
x2

22/3 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

−
(
1 + i

√
3
) 3
√

−4x3 +
√
20x6 − 8e3c1x3 + e6c1 + e3c1

2 3
√
2

y(x) → 3
√√

5
√
x6 − 2x3 − x2

3
√√

5
√
x6 − 2x3

y(x) →

(
1− i

√
3
)
x2 +

(
−1− i

√
3
) (√

5
√
x6 − 2x3

)2/3
2 3
√√

5
√
x6 − 2x3

y(x) →

(
1 + i

√
3
)
x2 + i

(√
3 + i

) (√
5
√
x6 − 2x3

)2/3
2 3
√√

5
√
x6 − 2x3
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21.27 problem 603
21.27.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6069

Internal problem ID [3853]
Internal file name [OUTPUT/3346_Sunday_June_05_2022_09_10_21_AM_49304108/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 603.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

(
1− x2 + y2

)
y′ + y2 = x2 + 1

21.27.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−x2 + y2 − 1
−x2 + y2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−x2 + y2 − 1) (b3 − a2)

−x2 + y2 + 1 − (−x2 + y2 − 1)2 a3
(−x2 + y2 + 1)2

−
(

2x
−x2 + y2 + 1 − 2(−x2 + y2 − 1)x

(−x2 + y2 + 1)2
)
(xa2 + ya3 + a1)

−
(
− 2y
−x2 + y2 + 1 + 2(−x2 + y2 − 1) y

(−x2 + y2 + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4a2 − x4a3 + x4b2 − x4b3 − 2x2y2a2 + 2x2y2a3 − 2x2y2b2 + 2x2y2b3 + y4a2 − y4a3 + y4b2 − y4b3 − 4x2a2 − 2x2a3 − 2x2b2 − 4xya3 + 4xyb2 + 2y2a3 + 2y2b2 + 4y2b3 − 4xa1 + 4yb1 − a2 − a3 + b2 + b3

(x2 − y2 − 1)2
= 0

Setting the numerator to zero gives

(6E)x4a2 − x4a3 + x4b2 − x4b3 − 2x2y2a2 + 2x2y2a3 − 2x2y2b2 + 2x2y2b3
+ y4a2 − y4a3 + y4b2 − y4b3 − 4x2a2 − 2x2a3 − 2x2b2 − 4xya3 + 4xyb2
+ 2y2a3 + 2y2b2 + 4y2b3 − 4xa1 + 4yb1 − a2 − a3 + b2 + b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
1 − 2a2v21v22 + a2v

4
2 − a3v

4
1 + 2a3v21v22 − a3v

4
2 + b2v

4
1 − 2b2v21v22 + b2v

4
2

− b3v
4
1 + 2b3v21v22 − b3v

4
2 − 4a2v21 − 2a3v21 − 4a3v1v2 + 2a3v22 − 2b2v21

+ 4b2v1v2 + 2b2v22 + 4b3v22 − 4a1v1 + 4b1v2 − a2 − a3 + b2 + b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(a2 − a3 + b2 − b3) v41 + (−2a2 + 2a3 − 2b2 + 2b3) v21v22
+ (−4a2 − 2a3 − 2b2) v21 + (−4a3 +4b2) v1v2 − 4a1v1 + (a2 − a3 + b2 − b3) v42
+ (2a3 + 2b2 + 4b3) v22 + 4b1v2 − a2 − a3 + b2 + b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
4b1 = 0

−4a3 + 4b2 = 0
−4a2 − 2a3 − 2b2 = 0
2a3 + 2b2 + 4b3 = 0

−2a2 + 2a3 − 2b2 + 2b3 = 0
−a2 − a3 + b2 + b3 = 0
a2 − a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b3

b1 = 0
b2 = −b3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y + x

η = y − x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − x−
(
−−x2 + y2 − 1
−x2 + y2 + 1

)
(−y + x)

= −2y + 2x
x2 − y2 − 1

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2y+2x
x2−y2−1

dy

Which results in

S = y2

4 + xy

2 + ln (y − x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x2 + y2 − 1
−x2 + y2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

2 + 1
−2y + 2x

Sy =
x2 − y2 − 1
−2y + 2x
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= −x

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

4 + yx

2 + ln (y − x)
2 = −x2

4 + c1

Which simplifies to
y2

4 + yx

2 + ln (y − x)
2 = −x2

4 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x2+y2−1
−x2+y2+1

dS
dR

= −R
2

R = x

S = y2

4 + xy

2 + ln (y − x)
2
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Summary
The solution(s) found are the following

(1)y2

4 + yx

2 + ln (y − x)
2 = −x2

4 + c1

Figure 971: Slope field plot

Verification of solutions

y2

4 + yx

2 + ln (y − x)
2 = −x2

4 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = (y(x)-x)/(x-y(x)), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve((1-x^2+y(x)^2)*diff(y(x),x) = 1+x^2-y(x)^2,y(x), singsol=all)� �

y(x)2 + 2xy(x) + x2 + 2 ln (−x+ y(x))− c1 = 0

3 Solution by Mathematica
Time used: 0.349 (sec). Leaf size: 25� �
DSolve[(1-x^2+y[x]^2)y'[x]==1+x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
e

1
2 (y(x)+x)2(x− y(x)) = c1, y(x)

]
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21.28 problem 604
21.28.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 6076
21.28.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6080
21.28.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6083

Internal problem ID [3854]
Internal file name [OUTPUT/3347_Sunday_June_05_2022_09_10_25_AM_63582962/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 604.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x)*G(y)

,0]`]]

(
a2 + x2 + y2

)
y′ + 2yx = 0

21.28.1 Solving as differentialType ode

Writing the ode as

y′ = − 2yx
a2 + x2 + y2

(1)

Which becomes (
a2 + y2

)
dy =

(
−x2) dy + (−2xy) dx (2)

But the RHS is complete differential because(
−x2) dy + (−2xy) dx = d

(
−x2y

)
Hence (2) becomes (

a2 + y2
)
dy = d

(
−x2y

)
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Integrating both sides gives gives these solutions

y =

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

2 − 2(a2 + x2)(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3
+ c1

y = −

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

4 + a2 + x2(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3
+

i
√
3

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 + 2a2+2x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2 + c1

y = −

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

4 + a2 + x2(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3
−

i
√
3

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 + 2a2+2x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

2
− 2(a2 + x2)(

12c1 + 4
√

4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21
) 1

3
+ c1

y = −

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

4
+ a2 + x2(

12c1 + 4
√

4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21
) 1

3

+

i
√
3

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 + 2a2+2x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2

+ c1
(2)

y = −

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

4
+ a2 + x2(

12c1 + 4
√

4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21
) 1

3

−

i
√
3

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 + 2a2+2x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2

+ c1
(3)
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Verification of solutions

y =

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

2
− 2(a2 + x2)(

12c1 + 4
√

4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21
) 1

3
+ c1

Verified OK.

y = −

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

4
+ a2 + x2(

12c1 + 4
√

4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21
) 1

3

+

i
√
3

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 + 2a2+2x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2

+ c1

Verified OK.

y = −

(
12c1 + 4

√
4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21

) 1
3

4
+ a2 + x2(

12c1 + 4
√

4a6 + 12x2a4 + 12a2x4 + 4x6 + 9c21
) 1

3

−

i
√
3

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 + 2a2+2x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2

+ c1

Verified OK.
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21.28.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
a2 + x2 + y2

)
dy = (−2xy) dx

(2xy) dx+
(
a2 + x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy
N(x, y) = a2 + x2 + y2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(2xy)

= 2x

And
∂N

∂x
= ∂

∂x

(
a2 + x2 + y2

)
= 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2xy dx

(3)φ = x2y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= a2 + x2 + y2. Therefore equation (4) becomes

(5)a2 + x2 + y2 = x2 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = a2 + y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
a2 + y2

)
dy

f(y) = a2y + 1
3y

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2y + a2y + 1
3y

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2y + a2y + 1
3y

3

Summary
The solution(s) found are the following

(1)x2y + ya2 + y3

3 = c1

Verification of solutions

x2y + ya2 + y3

3 = c1

Verified OK.
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21.28.3 Maple step by step solution

Let’s solve
(a2 + x2 + y2) y′ + 2yx = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2x = 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
2xydx+ f1(y)

• Evaluate integral
F (x, y) = x2y + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
a2 + x2 + y2 = x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = a2 + y2

• Solve for f1(y)
f1(y) = a2y + 1

3y
3

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = x2y + a2y + 1
3y

3

• Substitute F (x, y) into the solution of the ODE
x2y + a2y + 1

3y
3 = c1

• Solve for y
y =

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 − 2
(
a2+x2)(

12c1+4
√

4a6+12x2a4+12a2x4+4x6+9c21

) 1
3
, y = −

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

4 + a2+x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3
−

I
√
3


(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 +
2
(
a2+x2

)
(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2 , y = −

(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

4 + a2+x2(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3
+

I
√
3


(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3

2 +
2
(
a2+x2

)
(
12c1+4

√
4a6+12x2a4+12a2x4+4x6+9c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 329� �
dsolve((a^2+x^2+y(x)^2)*diff(y(x),x)+2*x*y(x) = 0,y(x), singsol=all)� �

y(x) = −

2

a2 + x2 −

(
−12c1+4

√
4a6+12a4x2+12a2x4+4x6+9c21

) 2
3

4


(
−12c1 + 4

√
4a6 + 12a4x2 + 12a2x4 + 4x6 + 9c21

) 1
3

y(x) =

−

(
1
4 +

i
√
3

4

)(
−12c1 + 4

√
4a6 + 12a4x2 + 12a2x4 + 4x6 + 9c21

) 2
3 +

(
i
√
3− 1

)
(a2 + x2)(

−12c1 + 4
√
4a6 + 12a4x2 + 12a2x4 + 4x6 + 9c21

) 1
3

y(x) =

(
i
√
3−1

)(
−12c1+4

√
4a6+12a4x2+12a2x4+4x6+9c21

) 2
3

4 +
(
1 + i

√
3
)
(a2 + x2)(

−12c1 + 4
√

4a6 + 12a4x2 + 12a2x4 + 4x6 + 9c21
) 1

3

3 Solution by Mathematica
Time used: 5.48 (sec). Leaf size: 317� �
DSolve[(a^2+x^2+y[x]^2)y'[x]+2 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

3
√
2
(√

4 (a2 + x2)3 + 9c12 + 3c1
)

2/3 − 2a2 − 2x2

22/3 3

√√
4 (a2 + x2)3 + 9c12 + 3c1

y(x) →
(
1 + i

√
3
)
(a2 + x2)

22/3 3

√√
4 (a2 + x2)3 + 9c12 + 3c1

+
i
(√

3 + i
) 3

√√
4 (a2 + x2)3 + 9c12 + 3c1

2 3
√
2

y(x) →
(
1− i

√
3
)
(a2 + x2)

22/3 3

√√
4 (a2 + x2)3 + 9c12 + 3c1

−
i
(√

3− i
) 3

√√
4 (a2 + x2)3 + 9c12 + 3c1

2 3
√
2

y(x) → 0
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21.29 problem 605
21.29.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6086
21.29.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6089

Internal problem ID [3855]
Internal file name [OUTPUT/3348_Sunday_June_05_2022_09_10_29_AM_30252829/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 605.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

(
a2 + x2 + y2

)
y′ + 2yx = −b2 − x2

21.29.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

a2 + x2 + y2
)
dy =

(
−b2 − x2 − 2xy

)
dx(

b2 + x2 + 2xy
)
dx+

(
a2 + x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = b2 + x2 + 2xy
N(x, y) = a2 + x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
b2 + x2 + 2xy

)
= 2x

And
∂N

∂x
= ∂

∂x

(
a2 + x2 + y2

)
= 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
b2 + x2 + 2xy dx

(3)φ = b2x+ 1
3x

3 + x2y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= a2 + x2 + y2. Therefore equation (4) becomes

(5)a2 + x2 + y2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a2 + y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
a2 + y2

)
dy

f(y) = a2y + 1
3y

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = b2x+ 1
3x

3 + x2y + a2y + 1
3y

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = b2x+ 1
3x

3 + x2y + a2y + 1
3y

3
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Summary
The solution(s) found are the following

(1)b2x+ x3

3 + x2y + ya2 + y3

3 = c1

Verification of solutions

b2x+ x3

3 + x2y + ya2 + y3

3 = c1

Verified OK.

21.29.2 Maple step by step solution

Let’s solve
(a2 + x2 + y2) y′ + 2yx = −b2 − x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2x = 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(b2 + x2 + 2xy) dx+ f1(y)

• Evaluate integral
F (x, y) = b2x+ x3

3 + x2y + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

6089



• Compute derivative
a2 + x2 + y2 = x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = a2 + y2

• Solve for f1(y)
f1(y) = a2y + 1

3y
3

• Substitute f1(y) into equation for F (x, y)
F (x, y) = b2x+ 1

3x
3 + x2y + a2y + 1

3y
3

• Substitute F (x, y) into the solution of the ODE
b2x+ 1

3x
3 + x2y + a2y + 1

3y
3 = c1

• Solve for y
y =

(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3

2 − 2
(
a2+x2)(

−12b2x−4x3+12c1+4
√

4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3
, y = −

(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3

4 + a2+x2(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3
−

I
√
3


(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3

2 +
2
(
a2+x2

)
(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3


2 , y = −

(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3

4 + a2+x2(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3
+

I
√
3


(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3

2 +
2
(
a2+x2

)
(
−12b2x−4x3+12c1+4

√
4a6+12x2a4+12a2x4+9x2b4+6x4b2+5x6−18b2xc1−6c1x3+9c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 569� �
dsolve((a^2+x^2+y(x)^2)*diff(y(x),x)+b^2+x^2+2*x*y(x) = 0,y(x), singsol=all)� �
y(x) =

−

2

a2 + x2 −

(
−12b2x−4x3−12c1+4

√
4a6+12a4x2+12a2x4+9b4x2+6b2x4+5x6+18b2c1x+6c1x3+9c21

) 2
3

4


(
−12b2x− 4x3 − 12c1 + 4

√
4a6 + 12a4x2 + 12a2x4 + 9b4x2 + 6b2x4 + 5x6 + 18b2c1x+ 6c1x3 + 9c21

) 1
3

y(x) =

−

(
1
4 +

i
√
3

4

)(
−12b2x− 4x3 − 12c1 + 4

√
4a6 + 12a4x2 + 12a2x4 + 9b4x2 + 6b2x4 + 5x6 + 18b2c1x+ 6c1x3 + 9c21

) 2
3 +

(
i
√
3− 1

)
(a2 + x2)(

−12b2x− 4x3 − 12c1 + 4
√

4a6 + 12a4x2 + 12a2x4 + 9b4x2 + 6b2x4 + 5x6 + 18b2c1x+ 6c1x3 + 9c21
) 1

3

y(x)

=

(
i
√
3−1

)(
−12b2x−4x3−12c1+4

√
4a6+12a4x2+12a2x4+9b4x2+6b2x4+5x6+18b2c1x+6c1x3+9c21

) 2
3

4 +
(
1 + i

√
3
)
(a2 + x2)(

−12b2x− 4x3 − 12c1 + 4
√

4a6 + 12a4x2 + 12a2x4 + 9b4x2 + 6b2x4 + 5x6 + 18b2c1x+ 6c1x3 + 9c21
) 1

3
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3 Solution by Mathematica
Time used: 7.229 (sec). Leaf size: 438� �
DSolve[(a^2+x^2+y[x]^2)y'[x]+b^2+x^2+2 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

3
√
2
(√

4 (a2 + x2)3 + (3b2x+ x3 − 3c1) 2 − 3b2x− x3 + 3c1
)

2/3 − 2a2 − 2x2

22/3 3

√√
4 (a2 + x2)3 + (3b2x+ x3 − 3c1) 2 − 3b2x− x3 + 3c1

y(x) →
(
1 + i

√
3
)
(a2 + x2)

22/3 3

√√
4 (a2 + x2)3 + (3b2x+ x3 − 3c1) 2 − 3b2x− x3 + 3c1

+
i
(√

3 + i
) 3

√√
4 (a2 + x2)3 + (3b2x+ x3 − 3c1) 2 − 3b2x− x3 + 3c1

2 3
√
2

y(x) →
(
1− i

√
3
)
(a2 + x2)

22/3 3

√√
4 (a2 + x2)3 + (3b2x+ x3 − 3c1) 2 − 3b2x− x3 + 3c1

−
i
(√

3− i
) 3

√√
4 (a2 + x2)3 + (3b2x+ x3 − 3c1) 2 − 3b2x− x3 + 3c1

2 3
√
2
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21.30 problem 606
21.30.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6093

Internal problem ID [3856]
Internal file name [OUTPUT/3349_Sunday_June_05_2022_09_10_33_AM_48343881/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 21
Problem number: 606.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection"

Maple gives the following as the ode type
[_rational]

(
x+ x2 + y2

)
y′ − y = 0

21.30.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + y2 + x

)
dy = (y) dx

(−y) dx+
(
x2 + y2 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = x2 + y2 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y)

= −1

And

∂N

∂x
= ∂

∂x

(
x2 + y2 + x

)
= 1 + 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = −y and N = x+ x2 + y2 by this integrating factor the
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ode becomes exact. The new M,N are

M = − y

y2 + x2

N = x+ x2 + y2

y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 + y2 + x

x2 + y2

)
dy =

(
y

x2 + y2

)
dx(

− y

x2 + y2

)
dx+

(
x2 + y2 + x

x2 + y2

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − y

x2 + y2

N(x, y) = x2 + y2 + x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− y

x2 + y2

)
= −x2 + y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
x2 + y2 + x

x2 + y2

)
= −x2 + y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− y

x2 + y2
dx

(3)φ = − arctan
(
x

y

)
+ f(y)

6096



Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
(

x2

y2
+ 1
) + f ′(y)

= x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2+y2+x
x2+y2

. Therefore equation (4) becomes

(5)x2 + y2 + x

x2 + y2
= x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan
(
x

y

)
+ y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan
(
x

y

)
+ y

Summary
The solution(s) found are the following

(1)− arctan
(
x

y

)
+ y = c1
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Figure 972: Slope field plot

Verification of solutions

− arctan
(
x

y

)
+ y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
<- Riccati successful
<- inverse_Riccati successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 40� �
dsolve((x+x^2+y(x)^2)*diff(y(x),x) = y(x),y(x), singsol=all)� �

e−2iy(x)(ix+ y(x)) + 2(x+ iy(x)) c1
2iy (x) + 2x = 0

3 Solution by Mathematica
Time used: 0.117 (sec). Leaf size: 18� �
DSolve[(x+x^2+y[x]^2)y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)− arctan

(
x

y(x)

)
= c1, y(x)

]
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22.1 problem 607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6101
22.2 problem 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6117
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22.14problem 622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6240
22.15problem 623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6250
22.16problem 624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6263
22.17problem 625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6266
22.18problem 626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6278
22.19problem 627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6290
22.20problem 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6300
22.21problem 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6307
22.22problem 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6323
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22.1 problem 607
22.1.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6101
22.1.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6103
22.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6109

Internal problem ID [3857]
Internal file name [OUTPUT/3350_Sunday_June_05_2022_09_10_36_AM_66072948/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 607.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
3x2 − y2

)
y′ − 2yx = 0

22.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
3x2 − u(x)2 x2) (u′(x)x+ u(x))− 2u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u3 − u

x (u2 − 3)

Where f(x) = − 1
x
and g(u) = u3−u

u2−3 . Integrating both sides gives

1
u3−u
u2−3

du = −1
x
dx
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∫ 1
u3−u
u2−3

du =
∫

−1
x
dx

− ln (u+ 1)− ln (u− 1) + 3 ln (u) = − ln (x) + c2

Raising both side to exponential gives

e− ln(u+1)−ln(u−1)+3 ln(u) = e− ln(x)+c2

Which simplifies to

u3

u2 − 1 = c3
x

The solution is
u(x)3

u (x)2 − 1
= c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y3

x3
(

y2

x2 − 1
) = c3

x

y3

x (y2 − x2) = c3
x

Which simplifies to

− y3

(−y + x) (y + x) = c3

Summary
The solution(s) found are the following

(1)− y3

(−y + x) (y + x) = c3
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Figure 973: Slope field plot

Verification of solutions

− y3

(−y + x) (y + x) = c3

Verified OK.

22.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2yx
−3x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2yx(b3 − a2)
−3x2 + y2

− 4y2x2a3

(−3x2 + y2)2

−
(
− 2y
−3x2 + y2

− 12y x2

(−3x2 + y2)2
)
(xa2 + ya3 + a1)

−
(
− 2x
−3x2 + y2

+ 4y2x
(−3x2 + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x4b2 + 2y2x2a3 − 8x2y2b2 + 4x y3a2 − 4x y3b3 + 2y4a3 + y4b2 − 6x3b1 + 6x2ya1 − 2x y2b1 + 2y3a1
(3x2 − y2)2

= 0

Setting the numerator to zero gives

(6E)3x4b2 + 2y2x2a3 − 8x2y2b2 + 4x y3a2 − 4x y3b3 + 2y4a3
+ y4b2 − 6x3b1 + 6x2ya1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v1v32 + 2a3v21v22 + 2a3v42 + 3b2v41 − 8b2v21v22 + b2v
4
2

− 4b3v1v32 + 6a1v21v2 + 2a1v32 − 6b1v31 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v41 − 6b1v31 + (2a3 − 8b2) v21v22 + 6a1v21v2
+ (4a2 − 4b3) v1v32 − 2b1v1v22 + (2a3 + b2) v42 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
6a1 = 0

−6b1 = 0
−2b1 = 0
3b2 = 0

4a2 − 4b3 = 0
2a3 − 8b2 = 0
2a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

6105



Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2yx
−3x2 + y2

)
(x)

= x2y − y3

3x2 − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y−y3

3x2−y2

dy

Which results in

S = − ln (y + x)− ln (y − x) + 3 ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2yx
−3x2 + y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
x2 − y2

Sy = − 1
y + x

+ 1
−y + x

+ 3
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y + x)− ln (y − x) + 3 ln (y) = c1

Which simplifies to

− ln (y + x)− ln (y − x) + 3 ln (y) = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2yx
−3x2+y2

dS
dR

= 0

R = x

S = − ln (y + x)− ln (y − x) + 3 ln (y)

Summary
The solution(s) found are the following

(1)− ln (y + x)− ln (y − x) + 3 ln (y) = c1
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Figure 974: Slope field plot

Verification of solutions

− ln (y + x)− ln (y − x) + 3 ln (y) = c1

Verified OK.

22.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x2 − y2

)
dy = (2xy) dx

(−2xy) dx+
(
3x2 − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy
N(x, y) = 3x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy)

= −2x

And
∂N

∂x
= ∂

∂x

(
3x2 − y2

)
= 6x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x2 − y2
((−2x)− (6x))

= − 8x
3x2 − y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2xy ((6x)− (−2x))

= −4
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 4

y
dy

The result of integrating gives

µ = e−4 ln(y)

= 1
y4

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y4

(−2xy)

= −2x
y3
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And

N = µN

= 1
y4
(
3x2 − y2

)
= 3x2 − y2

y4

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2x
y3

)
+
(
3x2 − y2

y4

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x
y3

dx

(3)φ = −x2

y3
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x2

y4
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3x2−y2

y4
. Therefore equation (4) becomes

(5)3x2 − y2

y4
= 3x2

y4
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y2

)
dy

f(y) = 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

y3
+ 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

y3
+ 1

y

Summary
The solution(s) found are the following

(1)−x2

y3
+ 1

y
= c1
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Figure 975: Slope field plot

Verification of solutions

−x2

y3
+ 1

y
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 317� �
dsolve((3*x^2-y(x)^2)*diff(y(x),x) = 2*x*y(x),y(x), singsol=all)� �

y(x) =

1 +

(
12

√
3x
√

27c21x2−4 c1−108c21x2+8
) 1

3

2 + 2(
12

√
3x
√

27c21x2−4 c1−108c21x2+8
) 1

3

3c1
y(x) =

−

(
1 + i

√
3
) (

12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 2

3 − 4i
√
3− 4

(
12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 1

3 + 4

12
(
12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 1

3
c1

y(x)

=

(
i
√
3− 1

) (
12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 2

3 − 4i
√
3 + 4

(
12
√
3x
√
27c21x2 − 4 c1 − 108c21x2 + 8

) 1
3 − 4

12
(
12
√
3x
√
27c21x2 − 4 c1 − 108c21x2 + 8

) 1
3
c1
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3 Solution by Mathematica
Time used: 60.21 (sec). Leaf size: 458� �
DSolve[(3 x^2-y[x]^2)y'[x]==2 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3

 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

3
√
2

+
3
√
2e2c1

3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1


y(x) →

i
(√

3 + i
) 3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

−
i
(√

3− i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3

y(x) → −
i
(√

3− i
) 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

+
i
(√

3 + i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3
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22.2 problem 608
22.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6117
22.2.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6122

Internal problem ID [3858]
Internal file name [OUTPUT/3351_Sunday_June_05_2022_09_10_40_AM_54155562/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 608.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x4 + y2

)
y′ − 4yx3 = 0

22.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 4y x3

x4 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
4y x3(b3 − a2)

x4 + y2
− 16y2x6a3

(x4 + y2)2
−
(

12y x2

x4 + y2
− 16y x6

(x4 + y2)2
)
(xa2 + ya3 + a1)

−
(

4x3

x4 + y2
− 8y2x3

(x4 + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−3x8b2 + 12y2x6a3 + 4x7b1 − 4x6ya1 − 6x4y2b2 + 16x3y3a2 − 8x3y3b3 + 12x2y4a3 − 4x3y2b1 + 12x2y3a1 − y4b2

(x4 + y2)2
= 0

Setting the numerator to zero gives

(6E)−3x8b2 − 12y2x6a3 − 4x7b1 + 4x6ya1 + 6x4y2b2 − 16x3y3a2
+ 8x3y3b3 − 12x2y4a3 + 4x3y2b1 − 12x2y3a1 + y4b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−12a3v61v22 − 3b2v81 + 4a1v61v2 − 4b1v71 − 16a2v31v32 − 12a3v21v42
+ 6b2v41v22 + 8b3v31v32 − 12a1v21v32 + 4b1v31v22 + b2v

4
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−3b2v81 − 4b1v71 − 12a3v61v22 + 4a1v61v2 + 6b2v41v22
+ (−16a2 + 8b3) v31v32 + 4b1v31v22 − 12a3v21v42 − 12a1v21v32 + b2v

4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−12a1 = 0

4a1 = 0
−12a3 = 0
−4b1 = 0
4b1 = 0

−3b2 = 0
6b2 = 0

−16a2 + 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(

4y x3

x4 + y2

)
(x)

= −2x4y + 2y3
x4 + y2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x4y+2y3
x4+y2

dy

Which results in

S = ln (x2 + y)
2 + ln (−x2 + y)

2 − ln (y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4y x3

x4 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x3

x4 − y2

Sy =
−x4 − y2

2x4y − 2y3
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + y)
2 + ln (−x2 + y)

2 − ln (y)
2 = c1

Which simplifies to
ln (x2 + y)

2 + ln (−x2 + y)
2 − ln (y)

2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4y x3

x4+y2
dS
dR

= 0

R = x

S = ln (x2 + y)
2 + ln (−x2 + y)

2 − ln (y)
2
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Summary
The solution(s) found are the following

(1)ln (x2 + y)
2 + ln (−x2 + y)

2 − ln (y)
2 = c1

Figure 976: Slope field plot

Verification of solutions

ln (x2 + y)
2 + ln (−x2 + y)

2 − ln (y)
2 = c1

Verified OK.

22.2.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x4 + y2

)
dy =

(
4x3y

)
dx(

−4x3y
)
dx+

(
x4 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x3y

N(x, y) = x4 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−4x3y

)
= −4x3
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And
∂N

∂x
= ∂

∂x

(
x4 + y2

)
= 4x3

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x4 + y2
((
−4x3)− (4x3))

= − 8x3

x4 + y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

4x3y

((
4x3)− (−4x3))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2
(
−4x3y

)
= −4x3

y
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And

N = µN

= 1
y2
(
x4 + y2

)
= x4 + y2

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−4x3

y

)
+
(
x4 + y2

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4x3

y
dx

(3)φ = −x4

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x4+y2

y2
. Therefore equation (4) becomes

(5)x4 + y2

y2
= x4

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x4

y
+ y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x4

y
+ y

Summary
The solution(s) found are the following

(1)−x4

y
+ y = c1
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Figure 977: Slope field plot

Verification of solutions

−x4

y
+ y = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 41� �
dsolve((x^4+y(x)^2)*diff(y(x),x) = 4*x^3*y(x),y(x), singsol=all)� �

y(x) = −
√
4x4 + c21
2 + c1

2

y(x) =
√

4x4 + c21
2 + c1

2

3 Solution by Mathematica
Time used: 0.341 (sec). Leaf size: 58� �
DSolve[(x^4+y[x]^2)y'[x]==4 x^3 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
c1 −

√
4x4 + c12

)
y(x) → 1

2

(√
4x4 + c12 + c1

)
y(x) → 0
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22.3 problem 609
22.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6129
22.3.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 6134
22.3.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 6138
22.3.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6142
22.3.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6146

Internal problem ID [3859]
Internal file name [OUTPUT/3352_Sunday_June_05_2022_09_10_45_AM_7784807/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 609.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y(y + 1) y′ = x(x+ 1)

22.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(x+ 1)
y (y + 1)

Where f(x) = x(x+ 1) and g(y) = 1
y(y+1) . Integrating both sides gives

1
1

y(y+1)
dy = x(x+ 1) dx

∫ 1
1

y(y+1)
dy =

∫
x(x+ 1) dx
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1
3y

3 + 1
2y

2 = 1
2x

2 + 1
3x

3 + c1

Which results in

y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2
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Summary
The solution(s) found are the following

(1)y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

(2)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

(3)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2
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Figure 978: Slope field plot
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Verification of solutions
y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

Verified OK.
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22.3.2 Solving as differentialType ode

Writing the ode as

y′ = x(x+ 1)
y (y + 1) (1)

Which becomes (
y2 + y

)
dy = (x(x+ 1)) dx (2)

But the RHS is complete differential because

(x(x+ 1)) dx = d

(
1
2x

2 + 1
3x

3
)

Hence (2) becomes

(
y2 + y

)
dy = d

(
1
2x

2 + 1
3x

3
)

Integrating both sides gives gives these solutions

y =

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2 + 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3
− 1

2 + c1

y = −

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4 − 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3
− 1

2 +

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2 + c1

y = −

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4 − 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3
− 1

2 −

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2 + c1

(2)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1
(3)y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1
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Figure 979: Slope field plot
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Verification of solutions
y

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2 + c1

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

+

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1

Verified OK.
y =

−

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

4
− 1

4
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

−

i
√
3

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 − 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3


2

+ c1

Verified OK.
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22.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(x+ 1)
y (y + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 914: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x (x+ 1)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x(x+1)

dx

Which results in

S = 1
2x

2 + 1
3x

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(x+ 1)
y (y + 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2 + x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y(y + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R(R + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
3R

3 + 1
2R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1

Which simplifies to

1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(x+1)
y(y+1)

dS
dR

= R(R + 1)

R = y

S = 1
2x

2 + 1
3x

3

Summary
The solution(s) found are the following

(1)1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1
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Figure 980: Slope field plot

Verification of solutions

1
2x

2 + 1
3x

3 = y3

3 + y2

2 + c1

Verified OK.

22.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y(y + 1)) dy = (x(x+ 1)) dx
(−x(x+ 1)) dx+(y(y + 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x(x+ 1)
N(x, y) = y(y + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x(x+ 1))

= 0

And
∂N

∂x
= ∂

∂x
(y(y + 1))

= 0

6143



Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x(x+ 1) dx

(3)φ = −1
3x

3 − 1
2x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y(y + 1). Therefore equation (4) becomes

(5)y(y + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y(y + 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y(y + 1)) dy

f(y) = 1
3y

3 + 1
2y

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3 − 1
2x

2 + 1
3y

3 + 1
2y

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 − 1
2x

2 + 1
3y

3 + 1
2y

2

Summary
The solution(s) found are the following

(1)−x3

3 + y3

3 − x2

2 + y2

2 = c1

Figure 981: Slope field plot

Verification of solutions

−x3

3 + y3

3 − x2

2 + y2

2 = c1

Verified OK.
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22.3.5 Maple step by step solution

Let’s solve
y(y + 1) y′ = x(x+ 1)

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y(y + 1) y′dx =

∫
x(x+ 1) dx+ c1

• Evaluate integral
y3

3 + y2

2 = 1
2x

2 + 1
3x

3 + c1

• Solve for y

y =

(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3

2 + 1

2
(
−1+4x3+6x2+12c1+2

√
4x6+12x5+24c1x3+9x4+36c1x2−2x3+36c21−3x2−6c1

) 1
3
− 1

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 498� �
dsolve(y(x)*(1+y(x))*diff(y(x),x) = x*(1+x),y(x), singsol=all)� �
y(x)

=

(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

2
+ 1

2
(
−1 + 4x3 + 6x2 + 12c1 + 2

√
4x6 + 12x5 + 24c1x3 + 9x4 + 36c1x2 − 2x3 + 36c21 − 3x2 − 6c1

) 1
3

− 1
2

y(x) =

−

(
1 + i

√
3
) (

4x3 + 6x2 + 2
√

(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1
) 2

3 − i
√
3 + 2

(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3 + 1

4
(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3

y(x)

=

(
i
√
3− 1

) (
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 2
3 − i

√
3− 2

(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3 − 1

4
(
4x3 + 6x2 + 2

√
(2x3 + 3x2 + 6c1) (2x3 + 3x2 + 6c1 − 1) + 12c1 − 1

) 1
3
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3 Solution by Mathematica
Time used: 4.291 (sec). Leaf size: 346� �
DSolve[y[x]*(1+y[x])*y'[x]==x*(1+x),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

2

 3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1

+ 1
3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1
− 1


y(x) → 1

8

2i
(√

3 + i
)

3
√

4x3 + 6x2 +
√
−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1

+ −2− 2i
√
3

3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1
− 4


y(x) → 1

8

−2
(
1 + i

√
3
)

3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1

+
2i
(√

3 + i
)

3
√

4x3 + 6x2 +
√

−1 + (4x3 + 6x2 − 1 + 12c1) 2 − 1 + 12c1
− 4
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22.4 problem 610
Internal problem ID [3860]
Internal file name [OUTPUT/3353_Sunday_June_05_2022_09_10_48_AM_72620562/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 610.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

(
x+ 2y + y2

)
y′ + y(y + 1) + (y + x)2 y2 = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, (x^2*y^2+2*x*y^3+y^4)/(y^2+x+2*y)], [0, (x^3*y^2+2*x^2*y^3+x*y^4-x*y^2-y^3-� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 110� �
dsolve((x+2*y(x)+y(x)^2)*diff(y(x),x)+y(x)*(1+y(x))+(x+y(x))^2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = x2 − c1x+
√

x4 − 2c1x3 + (c21 − 2)x2 + (4 + 2c1)x− 4c1 + 1− 1
−2x+ 2c1

y(x) = −x2 + c1x+
√

x4 − 2c1x3 + (c21 − 2)x2 + (4 + 2c1)x− 4c1 + 1 + 1
2x− 2c1
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3 Solution by Mathematica
Time used: 2.323 (sec). Leaf size: 146� �
DSolve[(x+2 y[x]+y[x]^2)y'[x]+y[x](1+y[x])+(x+y[x])^2 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
x2 +

√
(−x2 + c1x+ 1) 2 + 4(x− c1)− c1x− 1

2(x− c1)

y(x) → −x2 +
√

(−x2 + c1x+ 1) 2 + 4(x− c1) + c1x+ 1
2(x− c1)

y(x) → 1
2

(
−
√
x2 − x

)
y(x) → 1

2

(√
x2 − x

)
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22.5 problem 611
22.5.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6152

Internal problem ID [3861]
Internal file name [OUTPUT/3354_Sunday_June_05_2022_09_10_52_AM_61029113/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 611.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

(
x2 + 2y + y2

)
y′ = −2x

22.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 + y2 + 2y
)
dy = (−2x) dx

(2x) dx+
(
x2 + y2 + 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x
N(x, y) = x2 + y2 + 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2x)

= 0

And
∂N

∂x
= ∂

∂x

(
x2 + y2 + 2y

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + y2 + 2y ((0)− (2x))

= − 2x
x2 + y2 + 2y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2x((2x)− (0))

= 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
1 dy

The result of integrating gives

µ = ey

= ey

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= ey(2x)
= 2x ey

And

N = µN

= ey
(
x2 + y2 + 2y

)
=
(
x2 + y2 + 2y

)
ey

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(2x ey) +
((
x2 + y2 + 2y

)
ey
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x ey dx

(3)φ = x2ey + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2ey + f ′(y)

But equation (2) says that ∂φ
∂y

= (x2 + y2 + 2y) ey. Therefore equation (4) becomes

(5)
(
x2 + y2 + 2y

)
ey = x2ey + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = eyy2 + 2y ey

= eyy(y + 2)

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(eyy(y + 2)) dy

f(y) = eyy2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2ey + eyy2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2ey + eyy2

Summary
The solution(s) found are the following

(1)x2ey + y2ey = c1

Figure 982: Slope field plot

Verification of solutions

x2ey + y2ey = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve((x^2+2*y(x)+y(x)^2)*diff(y(x),x)+2*x = 0,y(x), singsol=all)� �(

x2 + y(x)2
)
ey(x) + c1 = 0

3 Solution by Mathematica
Time used: 0.156 (sec). Leaf size: 24� �
DSolve[(x^2+2 y[x]+y[x]^2)y'[x]+2 x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2ey(x) + ey(x)y(x)2 = c1, y(x)

]
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22.6 problem 612
22.6.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 6158
22.6.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6163
22.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6166

Internal problem ID [3862]
Internal file name [OUTPUT/3355_Sunday_June_05_2022_09_10_55_AM_45283480/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 612.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x)*G(y)

,0]`]]

(
x3 + 2y − y2

)
y′ + 3x2y = 0

22.6.1 Solving as differentialType ode

Writing the ode as

y′ = − 3x2y

x3 + 2y − y2
(1)

Which becomes (
−y2 + 2y

)
dy =

(
−x3) dy + (−3x2y

)
dx (2)

But the RHS is complete differential because(
−x3) dy + (−3x2y

)
dx = d

(
−x3y

)
Hence (2) becomes (

−y2 + 2y
)
dy = d

(
−x3y

)
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Integrating both sides gives gives these solutions

y =

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

2 − 2(−x3 − 1)(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3
+ 1 + c1

y = −

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

4 + −x3 − 1(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3
+ 1 +

i
√
3

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 + −2x3−2(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2 + c1

y = −

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

4 + −x3 − 1(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3
+ 1−

i
√
3

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 + −2x3−2(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

2
− 2(−x3 − 1)(

12x3 − 12c1 + 8 + 4
√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3
+ 1 + c1

(2)y = −

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

4
+ −x3 − 1(

12x3 − 12c1 + 8 + 4
√

−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1
) 1

3
+ 1

+

i
√
3

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 + −2x3−2(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2

+ c1

(3)y = −

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

4
+ −x3 − 1(

12x3 − 12c1 + 8 + 4
√

−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1
) 1

3
+ 1

−

i
√
3

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 + −2x3−2(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2

+ c1
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Figure 983: Slope field plot
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Verification of solutions

y =

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

2
− 2(−x3 − 1)(

12x3 − 12c1 + 8 + 4
√

−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1
) 1

3
+ 1 + c1

Verified OK.

y = −

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

4
+ −x3 − 1(

12x3 − 12c1 + 8 + 4
√

−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1
) 1

3
+ 1

+

i
√
3

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 + −2x3−2(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2

+ c1

Verified OK.

y = −

(
12x3 − 12c1 + 8 + 4

√
−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1

) 1
3

4
+ −x3 − 1(

12x3 − 12c1 + 8 + 4
√

−4x9 − 3x6 − 18c1x3 + 9c21 − 12c1
) 1

3
+ 1

−

i
√
3

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 + −2x3−2(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2

+ c1

Verified OK.
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22.6.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3 − y2 + 2y

)
dy =

(
−3x2y

)
dx(

3x2y
)
dx+

(
x3 − y2 + 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x2y

N(x, y) = x3 − y2 + 2y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3x2y

)
= 3x2

And
∂N

∂x
= ∂

∂x

(
x3 − y2 + 2y

)
= 3x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3x2y dx

(3)φ = x3y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3 − y2 + 2y. Therefore equation (4) becomes

(5)x3 − y2 + 2y = x3 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −y2 + 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y2 + 2y

)
dy

f(y) = −1
3y

3 + y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x3y − 1
3y

3 + y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x3y − 1
3y

3 + y2

Summary
The solution(s) found are the following

(1)yx3 − y3

3 + y2 = c1
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Figure 984: Slope field plot

Verification of solutions

yx3 − y3

3 + y2 = c1

Verified OK.

22.6.3 Maple step by step solution

Let’s solve
(x3 + 2y − y2) y′ + 3x2y = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
3x2 = 3x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
3x2ydx+ f1(y)

• Evaluate integral
F (x, y) = x3y + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x3 − y2 + 2y = x3 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −y2 + 2y

• Solve for f1(y)
f1(y) = −1

3y
3 + y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x3y − 1

3y
3 + y2

• Substitute F (x, y) into the solution of the ODE
x3y − 1

3y
3 + y2 = c1

• Solve for y
y =

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 − 2
(
−x3−1

)(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3
+ 1, y = −

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

4 + −x3−1(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3
+ 1−

I
√
3


(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 +
2
(
−x3−1

)
(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2 , y = −

(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

4 + −x3−1(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3
+ 1 +

I
√
3


(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3

2 +
2
(
−x3−1

)
(
12x3−12c1+8+4

√
−4x9−3x6−18c1x3+9c21−12c1

) 1
3


2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 445� �
dsolve((x^3+2*y(x)-y(x)^2)*diff(y(x),x)+3*x^2*y(x) = 0,y(x), singsol=all)� �
y(x) =

(
12x3 + 12c1 + 8 + 4

√
−4x9 − 3x6 + 18c1x3 + 9c21 + 12c1

) 1
3

2
+ 2x3 + 2(

12x3 + 12c1 + 8 + 4
√

−4x9 − 3x6 + 18c1x3 + 9c21 + 12c1
) 1

3
+ 1

y(x) = −

(
12x3 + 12c1 + 8 + 4

√
−4x9 − 3x6 + 18c1x3 + 9c21 + 12c1

) 1
3

4
+ −x3 − 1(

12x3 + 12c1 + 8 + 4
√

−4x9 − 3x6 + 18c1x3 + 9c21 + 12c1
) 1

3

+ 1 +

i
√
3

x3 −

(
12x3+12c1+8+4

√
−4x9−3x6+18c1x3+9c21+12c1

) 2
3

4 + 1


(
12x3 + 12c1 + 8 + 4

√
−4x9 − 3x6 + 18c1x3 + 9c21 + 12c1

) 1
3

y(x)

=

(
i
√
3−1

)(
12x3+12c1+8+4

√
−4x9−3x6+18c1x3+9c21+12c1

) 2
3

4 − 1 +
(
12x3 + 12c1 + 8 + 4

√
−4x9 − 3x6 + 18c1x3 + 9c21 + 12c1

) 1
3 − i(x3 + 1)

√
3− x3(

12x3 + 12c1 + 8 + 4
√

−4x9 − 3x6 + 18c1x3 + 9c21 + 12c1
) 1

3

6169



3 Solution by Mathematica
Time used: 5.508 (sec). Leaf size: 409� �
DSolve[(x^3+2 y[x]-y[x]^2)y'[x]+3 x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

3
√
2(x3 + 1)

3
√

−3x3 +
√
−4x9 − 3x6 − 18c1x3 + 3c1(−4 + 3c1)− 2 + 3c1

−
3
√

−3x3 +
√
−4x9 − 3x6 − 18c1x3 + 3c1(−4 + 3c1)− 2 + 3c1

3
√
2

+ 1

y(x) →
(
1 + i

√
3
)
(x3 + 1)

22/3 3
√

−3x3 +
√

−4x9 − 3x6 − 18c1x3 + 3c1(−4 + 3c1)− 2 + 3c1

+
(
1− i

√
3
) 3
√

−3x3 +
√

−4x9 − 3x6 − 18c1x3 + 3c1(−4 + 3c1)− 2 + 3c1
2 3
√
2

+ 1

y(x) →
(
1− i

√
3
)
(x3 + 1)

22/3 3
√

−3x3 +
√

−4x9 − 3x6 − 18c1x3 + 3c1(−4 + 3c1)− 2 + 3c1

+
(
1 + i

√
3
) 3
√

−3x3 +
√
−4x9 − 3x6 − 18c1x3 + 3c1(−4 + 3c1)− 2 + 3c1

2 3
√
2

+ 1

y(x) → 0
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22.7 problem 613
22.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6171
22.7.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6177

Internal problem ID [3863]
Internal file name [OUTPUT/3356_Sunday_June_05_2022_09_11_00_AM_33843648/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 613.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

(
1 + y + yx+ y2

)
y′ + y = −1

22.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y + 1
xy + y2 + y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(y + 1) (b3 − a2)
xy + y2 + y + 1 − (y + 1)2 a3

(xy + y2 + y + 1)2
− (y + 1) y(xa2 + ya3 + a1)

(xy + y2 + y + 1)2

−
(
− 1
xy + y2 + y + 1 + (y + 1) (x+ 2y + 1)

(xy + y2 + y + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2y2b2 + 2x y3b2 + y4b2 + x y2b2 − x y2b3 + y3a2 − y3a3 + 2y3b2 − 2y3b3 − x2b2 − 2xyb3 − y2a1 + 2y2a2 − 2y2a3 − y2b1 + 3y2b2 − 4y2b3 − xb1 − ya1 + 2ya2 − 2ya3 − 2yb1 + 2yb2 − 2yb3 + a2 − a3 + b2 − b3

(xy + y2 + y + 1)2
= 0

Setting the numerator to zero gives

(6E)x2y2b2 + 2x y3b2 + y4b2 + x y2b2 − x y2b3 + y3a2 − y3a3 + 2y3b2 − 2y3b3
− x2b2 − 2xyb3 − y2a1 + 2y2a2 − 2y2a3 − y2b1 + 3y2b2 − 4y2b3 − xb1
− ya1 + 2ya2 − 2ya3 − 2yb1 + 2yb2 − 2yb3 + a2 − a3 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
2
1v

2
2 + 2b2v1v32 + b2v

4
2 + a2v

3
2 − a3v

3
2 + b2v1v

2
2 + 2b2v32 − b3v1v

2
2 − 2b3v32

− a1v
2
2 + 2a2v22 − 2a3v22 − b1v

2
2 − b2v

2
1 + 3b2v22 − 2b3v1v2 − 4b3v22 − a1v2

+ 2a2v2 − 2a3v2 − b1v1 − 2b1v2 + 2b2v2 − 2b3v2 + a2 − a3 + b2 − b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
2
1v

2
2 − b2v

2
1 + 2b2v1v32 + (b2 − b3) v1v22 − 2b3v1v2 − b1v1 + b2v

4
2

+ (a2 − a3 + 2b2 − 2b3) v32 + (−a1 + 2a2 − 2a3 − b1 + 3b2 − 4b3) v22
+ (−a1 + 2a2 − 2a3 − 2b1 + 2b2 − 2b3) v2 + a2 − a3 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−b1 = 0
−b2 = 0
2b2 = 0

−2b3 = 0
b2 − b3 = 0

a2 − a3 + b2 − b3 = 0
a2 − a3 + 2b2 − 2b3 = 0

−a1 + 2a2 − 2a3 − 2b1 + 2b2 − 2b3 = 0
−a1 + 2a2 − 2a3 − b1 + 3b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a3

a3 = a3

b1 = 0
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y + x

η = 0
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(
− y + 1
xy + y2 + y + 1

)
(y + x)

= xy + y2 + x+ y

xy + y2 + y + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy+y2+x+y
xy+y2+y+1

dy

Which results in

S = y + ln (y + x)− ln (y + 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y + 1
xy + y2 + y + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y + x

Sy = 1 + 1
y + x

− 1
y + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y + ln (y + x)− ln (y + 1) = c1

Which simplifies to

y + ln (y + x)− ln (y + 1) = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y+1
xy+y2+y+1

dS
dR

= 0

R = x

S = y + ln (y + x)− ln (y + 1)

Summary
The solution(s) found are the following

(1)y + ln (y + x)− ln (y + 1) = c1
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Figure 985: Slope field plot

Verification of solutions

y + ln (y + x)− ln (y + 1) = c1

Verified OK.

22.7.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

6177



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
xy + y2 + y + 1

)
dy = (−y − 1) dx

(y + 1) dx+
(
xy + y2 + y + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y + 1
N(x, y) = xy + y2 + y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y + 1)

= 1

And
∂N

∂x
= ∂

∂x

(
xy + y2 + y + 1

)
= y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy + y2 + y + 1((1)− (y))

= 1− y

xy + y2 + y + 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y + 1((y)− (1))

= y − 1
y + 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ y−1

y+1 dy

The result of integrating gives

µ = ey−2 ln(y+1)

= ey

(y + 1)2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= ey

(y + 1)2
(y + 1)

= ey
y + 1
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And

N = µN

= ey

(y + 1)2
(
xy + y2 + y + 1

)
= (xy + y2 + y + 1) ey

(y + 1)2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

ey
y + 1

)
+
(
(xy + y2 + y + 1) ey

(y + 1)2
)

dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ ey
y + 1 dx

(3)φ = eyx
y + 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − eyx

(y + 1)2
+ eyx

y + 1 + f ′(y)

= eyxy
(y + 1)2

+ f ′(y)

6180



But equation (2) says that ∂φ
∂y

=
(
xy+y2+y+1

)
ey

(y+1)2 . Therefore equation (4) becomes

(5)(xy + y2 + y + 1) ey

(y + 1)2
= eyxy

(y + 1)2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = ey(y2 + y + 1)
(y + 1)2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (ey(y2 + y + 1)
(y + 1)2

)
dy

f(y) = y ey
y + 1 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = eyx
y + 1 + y ey

y + 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
eyx
y + 1 + y ey

y + 1

Summary
The solution(s) found are the following

(1)eyx
y + 1 + y ey

y + 1 = c1
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Figure 986: Slope field plot

Verification of solutions

eyx
y + 1 + y ey

y + 1 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 19� �
dsolve((1+y(x)+x*y(x)+y(x)^2)*diff(y(x),x)+1+y(x) = 0,y(x), singsol=all)� �

−c1(y(x) + 1) e−y(x) + x+ y(x) = 0

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 23� �
DSolve[(1+y[x]+x y[x]+y[x]^2)y'[x]+1+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = −y(x) + c1e

−y(x)(y(x) + 1), y(x)
]

6183



22.8 problem 614
22.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6184

Internal problem ID [3864]
Internal file name [OUTPUT/3357_Sunday_June_05_2022_09_11_04_AM_19658737/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 614.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

(y + x)2 y′ = a2

22.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = a2

x2 + 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
a2(b3 − a2)

x2 + 2xy + y2
− a4a3

(x2 + 2xy + y2)2

+ a2(2x+ 2y) (xa2 + ya3 + a1)
(x2 + 2xy + y2)2

+ a2(2x+ 2y) (xb2 + yb3 + b1)
(x2 + 2xy + y2)2

= 0

Putting the above in normal form gives

−a4a3 − a2x2a2 − 2a2x2b2 − a2x2b3 − 2a2xya3 − 2a2xyb2 − 4a2xyb3 + a2y2a2 − 2a2y2a3 − 3a2y2b3 − x4b2 − 4x3yb2 − 6x2y2b2 − 4x y3b2 − y4b2 − 2a2xa1 − 2a2xb1 − 2a2ya1 − 2a2yb1
(x2 + 2xy + y2)2

= 0

Setting the numerator to zero gives

(6E)−a4a3 + a2x2a2 + 2a2x2b2 + a2x2b3 + 2a2xya3 + 2a2xyb2 + 4a2xyb3
− a2y2a2 + 2a2y2a3 + 3a2y2b3 + x4b2 + 4x3yb2 + 6x2y2b2
+ 4x y3b2 + y4b2 + 2a2xa1 + 2a2xb1 + 2a2ya1 + 2a2yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a4a3 + a2a2v
2
1 − a2a2v

2
2 + 2a2a3v1v2 + 2a2a3v22 + 2a2b2v21 + 2a2b2v1v2

+ a2b3v
2
1 + 4a2b3v1v2 + 3a2b3v22 + b2v

4
1 + 4b2v31v2 + 6b2v21v22

+ 4b2v1v32 + b2v
4
2 + 2a2a1v1 + 2a2a1v2 + 2a2b1v1 + 2a2b1v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)b2v
4
1 + 4b2v31v2 + 6b2v21v22 +

(
a2a2 + 2a2b2 + a2b3

)
v21 + 4b2v1v32

+
(
2a2a3 + 2a2b2 + 4a2b3

)
v1v2 +

(
2a2a1 + 2a2b1

)
v1 + b2v

4
2

+
(
−a2a2 + 2a2a3 + 3a2b3

)
v22 +

(
2a2a1 + 2a2b1

)
v2 − a4a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
4b2 = 0
6b2 = 0

−a4a3 = 0
2a2a1 + 2a2b1 = 0

−a2a2 + 2a2a3 + 3a2b3 = 0
a2a2 + 2a2b2 + a2b3 = 0

2a2a3 + 2a2b2 + 4a2b3 = 0

Solving the above equations for the unknowns gives

a1 = −b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(

a2

x2 + 2xy + y2

)
(−1)

= a2 + x2 + 2xy + y2

x2 + 2xy + y2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a2+x2+2xy+y2

x2+2xy+y2

dy

Which results in

S = y − a arctan
(
2x+ 2y

2a

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a2

x2 + 2xy + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − a2

(y + x)2 + a2

Sy = 1− a2

(y + x)2 + a2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y − a arctan
(
y + x

a

)
= c1

Which simplifies to

y − a arctan
(
y + x

a

)
= c1

Summary
The solution(s) found are the following

(1)y − a arctan
(
y + x

a

)
= c1

Verification of solutions

y − a arctan
(
y + x

a

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 24� �
dsolve((x+y(x))^2*diff(y(x),x) = a^2,y(x), singsol=all)� �

y(x) = aRootOf (tan (_Z) a− a_Z+ c1 − x)− c1

3 Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 21� �
DSolve[(x+y[x])^2 y'[x]==a^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)− a arctan

(
y(x) + x

a

)
= c1, y(x)

]
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22.9 problem 615
22.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6190

Internal problem ID [3865]
Internal file name [OUTPUT/3358_Sunday_June_05_2022_09_11_39_AM_8499490/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 615.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

(−y + x)2 y′ = a2

22.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = a2

x2 − 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
a2(b3 − a2)

x2 − 2xy + y2
− a4a3

(x2 − 2xy + y2)2

+ a2(−2y + 2x) (xa2 + ya3 + a1)
(x2 − 2xy + y2)2

+ a2(2y − 2x) (xb2 + yb3 + b1)
(x2 − 2xy + y2)2

= 0

Putting the above in normal form gives

−a4a3 − a2x2a2 + 2a2x2b2 − a2x2b3 − 2a2xya3 − 2a2xyb2 + 4a2xyb3 + a2y2a2 + 2a2y2a3 − 3a2y2b3 − x4b2 + 4x3yb2 − 6x2y2b2 + 4x y3b2 − y4b2 − 2a2xa1 + 2a2xb1 + 2a2ya1 − 2a2yb1
(x2 − 2xy + y2)2

= 0

Setting the numerator to zero gives

(6E)−a4a3 + a2x2a2 − 2a2x2b2 + a2x2b3 + 2a2xya3 + 2a2xyb2 − 4a2xyb3
− a2y2a2 − 2a2y2a3 + 3a2y2b3 + x4b2 − 4x3yb2 + 6x2y2b2
− 4x y3b2 + y4b2 + 2a2xa1 − 2a2xb1 − 2a2ya1 + 2a2yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a4a3 + a2a2v
2
1 − a2a2v

2
2 + 2a2a3v1v2 − 2a2a3v22 − 2a2b2v21 + 2a2b2v1v2

+ a2b3v
2
1 − 4a2b3v1v2 + 3a2b3v22 + b2v

4
1 − 4b2v31v2 + 6b2v21v22

− 4b2v1v32 + b2v
4
2 + 2a2a1v1 − 2a2a1v2 − 2a2b1v1 + 2a2b1v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)b2v
4
1 − 4b2v31v2 + 6b2v21v22 +

(
a2a2 − 2a2b2 + a2b3

)
v21 − 4b2v1v32

+
(
2a2a3 + 2a2b2 − 4a2b3

)
v1v2 +

(
2a2a1 − 2a2b1

)
v1 + b2v

4
2

+
(
−a2a2 − 2a2a3 + 3a2b3

)
v22 +

(
−2a2a1 + 2a2b1

)
v2 − a4a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−4b2 = 0
6b2 = 0

−a4a3 = 0
−2a2a1 + 2a2b1 = 0
2a2a1 − 2a2b1 = 0

−a2a2 − 2a2a3 + 3a2b3 = 0
a2a2 − 2a2b2 + a2b3 = 0

2a2a3 + 2a2b2 − 4a2b3 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(

a2

x2 − 2xy + y2

)
(1)

= −a2 + x2 − 2xy + y2

x2 − 2xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a2+x2−2xy+y2

x2−2xy+y2

dy

Which results in

S = y + a ln (−a− x+ y)
2 − a ln (a− x+ y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a2

x2 − 2xy + y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = a2

(a+ x− y) (a− x+ y)

Sy = − (−y + x)2

(a+ x− y) (a− x+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y + a ln (−a− x+ y)
2 − a ln (a− x+ y)

2 = c1

Which simplifies to

y + a ln (−a− x+ y)
2 − a ln (a− x+ y)

2 = c1

Summary
The solution(s) found are the following

(1)y + a ln (−a− x+ y)
2 − a ln (a− x+ y)

2 = c1

Verification of solutions

y + a ln (−a− x+ y)
2 − a ln (a− x+ y)

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 36� �
dsolve((x-y(x))^2*diff(y(x),x) = a^2,y(x), singsol=all)� �

y(x) = eRootOf
(
a ln
(
e_Z+2a

)
−a_Z−2 e_Z+2c1−2a−2x

)
+ a+ x

3 Solution by Mathematica
Time used: 0.174 (sec). Leaf size: 49� �
DSolve[(x-y[x])^2 y'[x]==a^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−
(
a2
(
log(a− y(x) + x)

2a − log(−a− y(x) + x)
2a

))
− y(x) = c1, y(x)

]
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22.10 problem 616
22.10.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6196
22.10.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6198

Internal problem ID [3866]
Internal file name [OUTPUT/3359_Sunday_June_05_2022_09_12_02_AM_85377748/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 616.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x2 + 2yx− y2

)
y′ − 2yx+ y2 = −x2

22.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + 2u(x)x2 − u(x)2 x2) (u′(x)x+ u(x))− 2u(x)x2 + u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 − 3u2 + u− 1
(u2 − 2u− 1)x

Where f(x) = − 1
x
and g(u) = u3−3u2+u−1

u2−2u−1 . Integrating both sides gives

1
u3−3u2+u−1
u2−2u−1

du = −1
x
dx
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∫ 1
u3−3u2+u−1
u2−2u−1

du =
∫

−1
x
dx

∫ u _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a = − ln (x) + c2

Which results in ∫ u _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a = − ln (x) + c2

The solution is ∫ u(x) _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form∫ y

x _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ ln (x)− c2 = 0∫ y

x _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
∫ y

x _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ ln (x)− c2 = 0
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Figure 987: Slope field plot

Verification of solutions∫ y
x _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ ln (x)− c2 = 0

Verified OK.

22.10.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 − 2xy + y2

−x2 − 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x2 − 2xy + y2) (b3 − a2)

−x2 − 2xy + y2
− (x2 − 2xy + y2)2 a3

(−x2 − 2xy + y2)2

−
(

−2y + 2x
−x2 − 2xy + y2

− (x2 − 2xy + y2) (−2y − 2x)
(−x2 − 2xy + y2)2

)
(xa2 + ya3 + a1)

−
(

2y − 2x
−x2 − 2xy + y2

− (x2 − 2xy + y2) (2y − 2x)
(−x2 − 2xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4a2 − x4a3 − 3x4b2 − x4b3 + 4x3ya2 + 4x3ya3 + 8x3yb2 − 4x3yb3 − 8x2y2a2 − 2x2y2a3 + 2x2y2b2 + 8x2y2b3 + 4x y3a2 − 4x y3b2 − 4x y3b3 − y4a2 − y4a3 + y4b2 + y4b3 − 4x3b1 + 4x2ya1 + 4x2yb1 − 4x y2a1
(x2 + 2xy − y2)2

= 0

Setting the numerator to zero gives

(6E)x4a2 − x4a3 − 3x4b2 − x4b3 + 4x3ya2 + 4x3ya3 + 8x3yb2 − 4x3yb3
− 8x2y2a2 − 2x2y2a3 + 2x2y2b2 + 8x2y2b3 + 4x y3a2 − 4x y3b2 − 4x y3b3
− y4a2 − y4a3 + y4b2 + y4b3 − 4x3b1 + 4x2ya1 + 4x2yb1 − 4x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
1 + 4a2v31v2 − 8a2v21v22 + 4a2v1v32 − a2v

4
2 − a3v

4
1 + 4a3v31v2 − 2a3v21v22

− a3v
4
2 − 3b2v41 + 8b2v31v2 + 2b2v21v22 − 4b2v1v32 + b2v

4
2 − b3v

4
1 − 4b3v31v2

+ 8b3v21v22 − 4b3v1v32 + b3v
4
2 + 4a1v21v2 − 4a1v1v22 − 4b1v31 + 4b1v21v2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 − 3b2 − b3) v41 + (4a2 + 4a3 + 8b2 − 4b3) v31v2
− 4b1v31 + (−8a2 − 2a3 + 2b2 + 8b3) v21v22 + (4a1 + 4b1) v21v2
+ (4a2 − 4b2 − 4b3) v1v32 − 4a1v1v22 + (−a2 − a3 + b2 + b3) v42 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−4b1 = 0

4a1 + 4b1 = 0
4a2 − 4b2 − 4b3 = 0

−8a2 − 2a3 + 2b2 + 8b3 = 0
−a2 − a3 + b2 + b3 = 0
a2 − a3 − 3b2 − b3 = 0

4a2 + 4a3 + 8b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

x

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − 2xy + y2

−x2 − 2xy + y2
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Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − x(x2 + 2xy − y2)

x3 − x2y + 3x y2 − y3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R2 + 2R + 1

R3 − 3R2 +R− 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− R2 − 2R− 1
R3 − 3R2 +R− 1dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x

− _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ c1

Which simplifies to

ln (x) =
∫ y

x

− _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2−2xy+y2

−x2−2xy+y2
dS
dR

= −R2+2R+1
R3−3R2+R−1

R = y

x
S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

x

− _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ c1

6203



Figure 988: Slope field plot

Verification of solutions

ln (x) =
∫ y

x

− _a2 − 2_a− 1
_a3 − 3_a2 + _a− 1d_a+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve((x^2+2*x*y(x)-y(x)^2)*diff(y(x),x)+x^2-2*x*y(x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = RootOf
(∫ _Z _a2 − 2_a− 1

_a3 − 3_a2 + _a− 1d_a+ ln (x) + c1

)
x

3 Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 91� �
DSolve[(x^2+2 x y[x]-y[x]^2)y'[x]+x^2-2 x y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

RootSum
#13 − 3#12 +#1

− 1&,
#12 log

(
y(x)
x

−#1
)
− 2#1 log

(
y(x)
x

−#1
)
− log

(
y(x)
x

−#1
)

3#12 − 6#1+ 1
&

 =

− log(x) + c1, y(x)
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22.11 problem 619
22.11.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6206
22.11.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6208

Internal problem ID [3867]
Internal file name [OUTPUT/3360_Sunday_June_05_2022_09_12_07_AM_87598158/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 619.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(y + x)2 y′ + 2yx− 5y2 = x2

22.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x+ x)2 (u′(x)x+ u(x)) + 2u(x)x2 − 5u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − (u− 1)3

x (u+ 1)2

Where f(x) = − 1
x
and g(u) = (u−1)3

(u+1)2 . Integrating both sides gives

1
(u−1)3

(u+1)2
du = −1

x
dx
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∫ 1
(u−1)3

(u+1)2
du =

∫
−1
x
dx

ln (u− 1)− 4
u− 1 − 2

(u− 1)2
= − ln (x) + c2

The solution is

ln (u(x)− 1)− 4
u (x)− 1 − 2

(u (x)− 1)2
+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(y
x
− 1
)
− 4

y
x
− 1 − 2(

y
x
− 1
)2 + ln (x)− c2 = 0

ln
(
y − x

x

)
− 4x

y − x
− 2x2

(y − x)2
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
y − x

x

)
− 4x

y − x
− 2x2

(y − x)2
+ ln (x)− c2 = 0

Figure 989: Slope field plot
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Verification of solutions

ln
(
y − x

x

)
− 4x

y − x
− 2x2

(y − x)2
+ ln (x)− c2 = 0

Verified OK.

22.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 − 2xy + 5y2
x2 + 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x2 − 2xy + 5y2) (b3 − a2)

x2 + 2xy + y2
− (x2 − 2xy + 5y2)2 a3

(x2 + 2xy + y2)2

−
(

−2y + 2x
x2 + 2xy + y2

− (x2 − 2xy + 5y2) (2x+ 2y)
(x2 + 2xy + y2)2

)
(xa2 + ya3 + a1)

−
(

−2x+ 10y
x2 + 2xy + y2

− (x2 − 2xy + 5y2) (2x+ 2y)
(x2 + 2xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a2 + x4a3 − 5x4b2 − x4b3 + 4x3ya2 − 4x3ya3 + 4x3yb2 − 4x3yb3 − 6x2y2a2 + 18x2y2a3 + 6x2y2b2 + 6x2y2b3 − 4x y3a2 − 28x y3a3 − 4x y3b2 + 4x y3b3 + 5y4a2 + 13y4a3 − y4b2 − 5y4b3 − 4x3b1 + 4x2ya1 + 8x2yb1 − 8x y2a1 + 12x y2b1 − 12y3a1
(x2 + 2xy + y2)2

= 0
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Setting the numerator to zero gives

(6E)
−x4a2 − x4a3 + 5x4b2 + x4b3 − 4x3ya2 + 4x3ya3 − 4x3yb2
+ 4x3yb3 + 6x2y2a2 − 18x2y2a3 − 6x2y2b2 − 6x2y2b3 + 4x y3a2
+ 28x y3a3 + 4x y3b2 − 4x y3b3 − 5y4a2 − 13y4a3 + y4b2 + 5y4b3
+ 4x3b1 − 4x2ya1 − 8x2yb1 + 8x y2a1 − 12x y2b1 + 12y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a2v

4
1 − 4a2v31v2 + 6a2v21v22 + 4a2v1v32 − 5a2v42 − a3v

4
1 + 4a3v31v2

− 18a3v21v22 + 28a3v1v32 − 13a3v42 + 5b2v41 − 4b2v31v2 − 6b2v21v22
+ 4b2v1v32 + b2v

4
2 + b3v

4
1 + 4b3v31v2 − 6b3v21v22 − 4b3v1v32 + 5b3v42

− 4a1v21v2 + 8a1v1v22 + 12a1v32 + 4b1v31 − 8b1v21v2 − 12b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−a2 − a3 + 5b2 + b3) v41 + (−4a2 + 4a3 − 4b2 + 4b3) v31v2
+ 4b1v31 + (6a2 − 18a3 − 6b2 − 6b3) v21v22 + (−4a1 − 8b1) v21v2
+ (4a2 + 28a3 + 4b2 − 4b3) v1v32 + (8a1 − 12b1) v1v22
+ (−5a2 − 13a3 + b2 + 5b3) v42 + 12a1v32 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

12a1 = 0
4b1 = 0

−4a1 − 8b1 = 0
8a1 − 12b1 = 0

−5a2 − 13a3 + b2 + 5b3 = 0
−4a2 + 4a3 − 4b2 + 4b3 = 0

−a2 − a3 + 5b2 + b3 = 0
4a2 + 28a3 + 4b2 − 4b3 = 0
6a2 − 18a3 − 6b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 − 2xy + 5y2
x2 + 2xy + y2

)
(x)

= −x3 + 3x2y − 3x y2 + y3

x2 + 2xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3+3x2y−3x y2+y3

x2+2xy+y2

dy

Which results in

S = − 4x
y − x

+ ln (y − x)− 2x2

(y − x)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − 2xy + 5y2
x2 + 2xy + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 − 2xy + 5y2

(−y + x)3

Sy = − (y + x)2

(−y + x)3
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(−y + x)2 ln (y − x) + 2x(x− 2y)
(−y + x)2

= c1

Which simplifies to

(−y + x)2 ln (y − x) + 2x(x− 2y)
(−y + x)2

= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2−2xy+5y2
x2+2xy+y2

dS
dR

= 0

R = x

S = (−y + x)2 ln (y − x) + 2x(x− 2y)
(−y + x)2

Summary
The solution(s) found are the following

(1)(−y + x)2 ln (y − x) + 2x(x− 2y)
(−y + x)2

= c1
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Figure 990: Slope field plot

Verification of solutions

(−y + x)2 ln (y − x) + 2x(x− 2y)
(−y + x)2

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 35� �
dsolve((x+y(x))^2*diff(y(x),x) = x^2-2*x*y(x)+5*y(x)^2,y(x), singsol=all)� �

y(x) = x
(
1 + eRootOf

(
e2_Z ln(x)+c1e2_Z+_Z e2_Z−4 e_Z−2

))
3 Solution by Mathematica
Time used: 0.34 (sec). Leaf size: 41� �
DSolve[(x+y[x])^2 y'[x]==x^2-2 x y[x]+5 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve

 2− 4y(x)
x(

y(x)
x

− 1
)2 + log

(
y(x)
x

− 1
)

= − log(x) + c1, y(x)
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22.12 problem 620
22.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6216

Internal problem ID [3868]
Internal file name [OUTPUT/3361_Sunday_June_05_2022_09_12_11_AM_25132835/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 620.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational]

(a+ b+ x+ y)2 y′ − 2(y + a)2 = 0

22.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2a2 + 4ya+ 2y2
a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
2(a2 + 2ya+ y2) (b3 − a2)

a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2

− 4(a2 + 2ya+ y2)2 a3
(a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2)2

+ 2(a2 + 2ya+ y2) (2a+ 2b+ 2x+ 2y) (xa2 + ya3 + a1)
(a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2)2

−
(

4a+ 4y
a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2

− 2(a2 + 2ya+ y2) (2a+ 2b+ 2x+ 2y)
(a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2)2

)
(xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−2a4a2 + 4a4a3 − a4b2 − 2a4b3 + 4a3ba2 − 4a3bb2 − 4a3bb3 − 4a3xb2 − 4a3xb3 + 8a3ya2 + 12a3ya3 − 4a3yb2 − 8a3yb3 + 2a2b2a2 − 6a2b2b2 − 2a2b2b3 − 8a2bxb2 − 4a2bxb3 + 12a2bya2 − 4a2bya3 − 12a2byb2 − 8a2byb3 − 2a2x2a2 − 2a2x2b2 − 2a2x2b3 − 4a2xya3 − 12a2xyb2 − 8a2xyb3 + 12a2y2a2 + 12a2y2a3 − 6a2y2b2 − 12a2y2b3 − 4a b3b2 − 8a b2xb2 + 4a b2ya2 − 12a b2yb2 − 4ab x2b2 − 16abxyb2 + 12ab y2a2 − 8ab y2a3 − 12ab y2b2 − 4ab y2b3 − 4a x2ya2 − 4a x2yb2 − 8ax y2a3 − 12ax y2b2 − 4ax y2b3 + 8a y3a2 + 4a y3a3 − 4a y3b2 − 8a y3b3 − b4b2 − 4b3xb2 − 4b3yb2 − 6b2x2b2 − 8b2xyb2 + 2b2y2a2 − 6b2y2b2 + 2b2y2b3 − 4b x3b2 − 4b x2yb2 − 8bx y2b2 + 4bx y2b3 + 4b y3a2 − 4b y3a3 − 4b y3b2 − x4b2 − 2x2y2a2 − 2x2y2b2 + 2x2y2b3 − 4x y3a3 − 4x y3b2 + 2y4a2 − y4b2 − 2y4b3 − 4a3a1 − 4a2ba1 + 4a2bb1 − 4a2xa1 + 4a2xb1 − 12a2ya1 + 4a b2b1 + 8abxb1 − 8abya1 + 8abyb1 + 4a x2b1 − 8axya1 + 8axyb1 − 12a y2a1 + 4b2yb1 + 8bxyb1 − 4b y2a1 + 4b y2b1 + 4x2yb1 − 4x y2a1 + 4x y2b1 − 4y3a1
(a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2)2

= 0

Setting the numerator to zero gives

(6E)

−2a4a2 − 4a4a3 + a4b2 + 2a4b3 − 4a3ba2 + 4a3bb2 + 4a3bb3
+ 4a3xb2 + 4a3xb3 − 8a3ya2 − 12a3ya3 + 4a3yb2 + 8a3yb3
− 2a2b2a2 + 6a2b2b2 + 2a2b2b3 + 8a2bxb2 + 4a2bxb3
− 12a2bya2 + 4a2bya3 + 12a2byb2 + 8a2byb3 + 2a2x2a2
+ 2a2x2b2 + 2a2x2b3 + 4a2xya3 + 12a2xyb2 + 8a2xyb3
− 12a2y2a2 − 12a2y2a3 + 6a2y2b2 + 12a2y2b3 + 4a b3b2
+ 8a b2xb2 − 4a b2ya2 + 12a b2yb2 + 4ab x2b2 + 16abxyb2
− 12ab y2a2 + 8ab y2a3 + 12ab y2b2 + 4ab y2b3 + 4a x2ya2
+ 4a x2yb2 + 8ax y2a3 + 12ax y2b2 + 4ax y2b3 − 8a y3a2
− 4a y3a3 + 4a y3b2 + 8a y3b3 + b4b2 + 4b3xb2 + 4b3yb2
+ 6b2x2b2 + 8b2xyb2 − 2b2y2a2 + 6b2y2b2 − 2b2y2b3 + 4b x3b2
+ 4b x2yb2 + 8bx y2b2 − 4bx y2b3 − 4b y3a2 + 4b y3a3 + 4b y3b2
+ x4b2 + 2x2y2a2 + 2x2y2b2 − 2x2y2b3 + 4x y3a3 + 4x y3b2
− 2y4a2 + y4b2 + 2y4b3 + 4a3a1 + 4a2ba1 − 4a2bb1 + 4a2xa1
− 4a2xb1 + 12a2ya1 − 4a b2b1 − 8abxb1 + 8abya1 − 8abyb1
− 4a x2b1 + 8axya1 − 8axyb1 + 12a y2a1 − 4b2yb1 − 8bxyb1
+ 4b y2a1 − 4b y2b1 − 4x2yb1 + 4x y2a1 − 4x y2b1 + 4y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−2a4a2 − 4a4a3 + a4b2 + 2a4b3 − 4a3ba2 + 4a3bb2 + 4a3bb3
− 8a3a2v2− 12a3a3v2+4a3b2v1+4a3b2v2+4a3b3v1+8a3b3v2
− 2a2b2a2 + 6a2b2b2 + 2a2b2b3 − 12a2ba2v2 + 4a2ba3v2
+ 8a2bb2v1 + 12a2bb2v2 + 4a2bb3v1 + 8a2bb3v2 + 2a2a2v21
− 12a2a2v22 + 4a2a3v1v2 − 12a2a3v22 + 2a2b2v21 + 12a2b2v1v2
+ 6a2b2v22 + 2a2b3v21 + 8a2b3v1v2 + 12a2b3v22 + 4a b3b2
− 4a b2a2v2 + 8a b2b2v1 + 12a b2b2v2 − 12aba2v22 + 8aba3v22
+ 4abb2v21 + 16abb2v1v2 + 12abb2v22 + 4abb3v22 + 4aa2v21v2
− 8aa2v32 + 8aa3v1v22 − 4aa3v32 + 4ab2v21v2 + 12ab2v1v22
+ 4ab2v32 + 4ab3v1v22 + 8ab3v32 + b4b2 + 4b3b2v1 + 4b3b2v2
− 2b2a2v22 +6b2b2v21 +8b2b2v1v2 +6b2b2v22 − 2b2b3v22 − 4ba2v32
+ 4ba3v32 + 4bb2v31 + 4bb2v21v2 + 8bb2v1v22 + 4bb2v32 − 4bb3v1v22
+ 2a2v21v22 − 2a2v42 + 4a3v1v32 + b2v

4
1 + 2b2v21v22 + 4b2v1v32

+ b2v
4
2 − 2b3v21v22 + 2b3v42 + 4a3a1 + 4a2ba1 − 4a2bb1 + 4a2a1v1

+12a2a1v2 − 4a2b1v1 − 4a b2b1 +8aba1v2 − 8abb1v1 − 8abb1v2
+8aa1v1v2 +12aa1v22 − 4ab1v21 − 8ab1v1v2 − 4b2b1v2 +4ba1v22
−8bb1v1v2−4bb1v22+4a1v1v22+4a1v32−4b1v21v2−4b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

b2v
4
1 + 4a b3b2 + (4a3 + 4b2) v1v32

+(8aa3 +12ab2 +4ab3 +8bb2 − 4bb3 +4a1 − 4b1) v1v22 +
(
4a2a3

+ 12a2b2 + 8a2b3 + 16abb2 + 8b2b2 + 8aa1 − 8ab1 − 8bb1
)
v1v2

+(2a2+2b2−2b3) v21v22+(4aa2+4ab2+4bb2−4b1) v21v2+4bb2v31
+ (−2a2 + b2 + 2b3) v42 + 4a2ba1 + 4a3bb2 − 4a3ba2 − 2a4a2
− 4a4a3+a4b2+2a4b3+ b4b2+4a3a1+

(
4a3b2+4a3b3+8a2bb2

+4a2bb3+8a b2b2+4b3b2+4a2a1−4a2b1−8abb1
)
v1+

(
−8a3a2

−12a3a3+4a3b2+8a3b3−12a2ba2+4a2ba3+12a2bb2+8a2bb3
−4a b2a2+12a b2b2+4b3b2+12a2a1+8aba1−8abb1−4b2b1

)
v2

+
(
−12a2a2−12a2a3+6a2b2+12a2b3−12aba2+8aba3+12abb2

+ 4abb3 − 2b2a2 + 6b2b2 − 2b2b3 + 12aa1 + 4ba1 − 4bb1
)
v22

− 4a b2b1 − 2a2b2a2 + 6a2b2b2 + 2a2b2b3 − 4a2bb1 + 4a3bb3
+
(
2a2a2 + 2a2b2 + 2a2b3 + 4abb2 + 6b2b2 − 4ab1

)
v21

+(−8aa2−4aa3+4ab2+8ab3−4ba2+4ba3+4bb2+4a1) v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
4bb2 = 0

4a3 + 4b2 = 0
−2a2 + b2 + 2b3 = 0
2a2 + 2b2 − 2b3 = 0

4aa2 + 4ab2 + 4bb2 − 4b1 = 0
2a2a2 + 2a2b2 + 2a2b3 + 4abb2 + 6b2b2 − 4ab1 = 0
8aa3 + 12ab2 + 4ab3 + 8bb2 − 4bb3 + 4a1 − 4b1 = 0

−8aa2 − 4aa3 + 4ab2 + 8ab3 − 4ba2 + 4ba3 + 4bb2 + 4a1 = 0
4a2a3 + 12a2b2 + 8a2b3 + 16abb2 + 8b2b2 + 8aa1 − 8ab1 − 8bb1 = 0

4a3b2 + 4a3b3 + 8a2bb2 + 4a2bb3 + 8a b2b2 + 4b3b2 + 4a2a1 − 4a2b1 − 8abb1 = 0
−12a2a2 − 12a2a3 + 6a2b2 + 12a2b3 − 12aba2 + 8aba3 + 12abb2 + 4abb3 − 2b2a2 + 6b2b2 − 2b2b3 + 12aa1 + 4ba1 − 4bb1 = 0

−8a3a2 − 12a3a3 + 4a3b2 + 8a3b3 − 12a2ba2 + 4a2ba3 + 12a2bb2 + 8a2bb3 − 4a b2a2 + 12a b2b2 + 4b3b2 + 12a2a1 + 8aba1 − 8abb1 − 4b2b1 = 0
−2a4a2 − 4a4a3 + a4b2 + 2a4b3 − 4a3ba2 + 4a3bb2 + 4a3bb3 − 2a2b2a2 + 6a2b2b2 + 2a2b2b3 + 4a b3b2 + b4b2 + 4a3a1 + 4a2ba1 − 4a2bb1 − 4a b2b1 = 0
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Solving the above equations for the unknowns gives

a1 = bb3

a2 = b3

a3 = 0
b1 = ab3

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x+ b

η = a+ y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= a+ y −
(

2a2 + 4ya+ 2y2
a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2

)
(x+ b)

= a3 + 3a2y + a b2 + 2abx+ x2a+ 3a y2 + y b2 + 2bxy + x2y + y3

a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a3+3a2y+a b2+2abx+x2a+3a y2+y b2+2bxy+x2y+y3

a2+2ab+2ax+2ya+b2+2bx+2by+x2+2xy+y2

dy
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Which results in

S = 2arctan
(
2a+ 2y
2b+ 2x

)
+ ln (a+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2a2 + 4ya+ 2y2
a2 + 2ab+ 2ax+ 2ya+ b2 + 2bx+ 2by + x2 + 2xy + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2a− 2y
a2 + 2ya+ y2 + (x+ b)2

Sy =
(a+ b+ x+ y)2(

a2 + 2ya+ y2 + (x+ b)2
)
(a+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)
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To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 arctan
(
y + a

x+ b

)
+ ln (y + a) = c1

Which simplifies to

2 arctan
(
y + a

x+ b

)
+ ln (y + a) = c1

Summary
The solution(s) found are the following

(1)2 arctan
(
y + a

x+ b

)
+ ln (y + a) = c1

Verification of solutions

2 arctan
(
y + a

x+ b

)
+ ln (y + a) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve((a+b+x+y(x))^2*diff(y(x),x) = 2*(a+y(x))^2,y(x), singsol=all)� �

y(x) = −a+ tan (RootOf (−2_Z+ ln (tan (_Z)) + ln (x+ b) + c1)) (−x− b)
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3 Solution by Mathematica
Time used: 0.151 (sec). Leaf size: 25� �
DSolve[(a+b+x+y[x])^2 y'[x]==2(a+y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
log(a+ y(x))− 2 arctan

(
b+ x

a+ y(x)

)
= c1, y(x)

]
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22.13 problem 621
22.13.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6224
22.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6226
22.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6232
22.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6236

Internal problem ID [3869]
Internal file name [OUTPUT/3362_Sunday_June_05_2022_09_12_15_AM_97060292/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 621.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
2x2 + 4yx− y2

)
y′ + 4yx+ 2y2 = x2

22.13.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
2x2 + 4u(x)x2 − u(x)2 x2) (u′(x)x+ u(x)) + 4u(x)x2 + 2u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 − 6u2 − 6u+ 1
(u2 − 4u− 2)x
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Where f(x) = − 1
x
and g(u) = u3−6u2−6u+1

u2−4u−2 . Integrating both sides gives

1
u3−6u2−6u+1

u2−4u−2
du = −1

x
dx

∫ 1
u3−6u2−6u+1

u2−4u−2
du =

∫
−1
x
dx

ln (u3 − 6u2 − 6u+ 1)
3 = − ln (x) + c2

Raising both side to exponential gives(
u3 − 6u2 − 6u+ 1

) 1
3 = e− ln(x)+c2

Which simplifies to (
u3 − 6u2 − 6u+ 1

) 1
3 = c3

x

Which simplifies to

(
u(x)3 − 6u(x)2 − 6u(x) + 1

) 1
3 = c3ec2

x

The solution is (
u(x)3 − 6u(x)2 − 6u(x) + 1

) 1
3 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y3

x3 − 6y2
x2 − 6y

x
+ 1
) 1

3

= c3ec2
x(

y3 − 6y2x− 6x2y + x3

x3

) 1
3

= c3ec2
x

Which simplifies to (
(y + x) (y2 − 7yx+ x2)

x3

) 1
3

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
(y + x) (y2 − 7yx+ x2)

x3

) 1
3

= c3ec2
x
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Figure 991: Slope field plot

Verification of solutions (
(y + x) (y2 − 7yx+ x2)

x3

) 1
3

= c3ec2
x

Verified OK.

22.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2 + 4xy + 2y2
−2x2 − 4xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−x2 + 4xy + 2y2) (b3 − a2)

−2x2 − 4xy + y2
− (−x2 + 4xy + 2y2)2 a3

(−2x2 − 4xy + y2)2

−
(

−2x+ 4y
−2x2 − 4xy + y2

− (−x2 + 4xy + 2y2) (−4x− 4y)
(−2x2 − 4xy + y2)2

)
(xa2 + ya3 + a1)

−
(

4x+ 4y
−2x2 − 4xy + y2

− (−x2 + 4xy + 2y2) (−4x+ 2y)
(−2x2 − 4xy + y2)2

)
(xb2+yb3+b1) = 0

Putting the above in normal form gives

−2x4a2 + x4a3 − 16x4b2 − 2x4b3 + 8x3ya2 − 8x3ya3 − 22x3yb2 − 8x3yb3 − 15x2y2a2 + 24x2y2a3 − 24x2y2b2 + 15x2y2b3 + 8x y3a2 + 22x y3a3 + 8x y3b2 − 8x y3b3 + 2y4a2 + 16y4a3 − y4b2 − 2y4b3 − 12x3b1 + 12x2ya1 − 6x2yb1 + 6x y2a1 − 12x y2b1 + 12y3a1
(2x2 + 4xy − y2)2

= 0

Setting the numerator to zero gives

(6E)
−2x4a2 − x4a3 + 16x4b2 + 2x4b3 − 8x3ya2 + 8x3ya3 + 22x3yb2
+ 8x3yb3 + 15x2y2a2 − 24x2y2a3 + 24x2y2b2 − 15x2y2b3 − 8x y3a2
− 22x y3a3 − 8x y3b2 + 8x y3b3 − 2y4a2 − 16y4a3 + y4b2 + 2y4b3
+ 12x3b1 − 12x2ya1 + 6x2yb1 − 6x y2a1 + 12x y2b1 − 12y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−2a2v41 − 8a2v31v2 + 15a2v21v22 − 8a2v1v32 − 2a2v42 − a3v

4
1 + 8a3v31v2

− 24a3v21v22 − 22a3v1v32 − 16a3v42 + 16b2v41 + 22b2v31v2 + 24b2v21v22
− 8b2v1v32 + b2v

4
2 + 2b3v41 + 8b3v31v2 − 15b3v21v22 + 8b3v1v32 + 2b3v42

− 12a1v21v2 − 6a1v1v22 − 12a1v32 + 12b1v31 + 6b1v21v2 + 12b1v1v22 = 0

6227



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−2a2 − a3 + 16b2 + 2b3) v41 + (−8a2 + 8a3 + 22b2 + 8b3) v31v2
+ 12b1v31 + (15a2 − 24a3 + 24b2 − 15b3) v21v22
+ (−12a1 + 6b1) v21v2 + (−8a2 − 22a3 − 8b2 + 8b3) v1v32
+ (−6a1 + 12b1) v1v22 + (−2a2 − 16a3 + b2 + 2b3) v42 − 12a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−12a1 = 0
12b1 = 0

−12a1 + 6b1 = 0
−6a1 + 12b1 = 0

−8a2 − 22a3 − 8b2 + 8b3 = 0
−8a2 + 8a3 + 22b2 + 8b3 = 0
−2a2 − 16a3 + b2 + 2b3 = 0
−2a2 − a3 + 16b2 + 2b3 = 0

15a2 − 24a3 + 24b2 − 15b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x2 + 4xy + 2y2
−2x2 − 4xy + y2

)
(x)

= −x3 + 6x2y + 6x y2 − y3

2x2 + 4xy − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3+6x2y+6x y2−y3

2x2+4xy−y2

dy

Which results in

S = ln (x3 − 6x2y − 6x y2 + y3)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + 4xy + 2y2
−2x2 − 4xy + y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
3x+ 3y + 2x− 7y

3x2 − 21xy + 3y2

Sy =
1

3x+ 3y + −7x+ 2y
3x2 − 21xy + 3y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x)
3 + ln (y2 − 7yx+ x2)

3 = c1

Which simplifies to

ln (y + x)
3 + ln (y2 − 7yx+ x2)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+4xy+2y2
−2x2−4xy+y2

dS
dR

= 0

R = x

S = ln (y + x)
3 + ln (x2 − 7xy + y2)

3

Summary
The solution(s) found are the following

(1)ln (y + x)
3 + ln (y2 − 7yx+ x2)

3 = c1
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Figure 992: Slope field plot

Verification of solutions

ln (y + x)
3 + ln (y2 − 7yx+ x2)

3 = c1

Verified OK.

22.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

6232



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x2 + 4xy − y2

)
dy =

(
x2 − 4xy − 2y2

)
dx(

−x2 + 4xy + 2y2
)
dx+

(
2x2 + 4xy − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + 4xy + 2y2

N(x, y) = 2x2 + 4xy − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 + 4xy + 2y2

)
= 4x+ 4y

And
∂N

∂x
= ∂

∂x

(
2x2 + 4xy − y2

)
= 4x+ 4y
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + 4xy + 2y2 dx

(3)φ = −1
3x

3 + 2x2y + 2x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x2 + 4xy + f ′(y)

= 2x(x+ 2y) + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x2 + 4xy − y2. Therefore equation (4) becomes

(5)2x2 + 4xy − y2 = 2x(x+ 2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y2

)
dy

f(y) = −y3

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3 + 2x2y + 2x y2 − 1
3y

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 + 2x2y + 2x y2 − 1
3y

3

Summary
The solution(s) found are the following

(1)−x3

3 + 2x2y + 2y2x− y3

3 = c1

Figure 993: Slope field plot

Verification of solutions

−x3

3 + 2x2y + 2y2x− y3

3 = c1

Verified OK.
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22.13.4 Maple step by step solution

Let’s solve
(2x2 + 4yx− y2) y′ + 4yx+ 2y2 = x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
4x+ 4y = 4x+ 4y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x2 + 4xy + 2y2) dx+ f1(y)

• Evaluate integral
F (x, y) = −x3

3 + 2x2y + 2x y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2x2 + 4xy − y2 = 2x2 + 4xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −y2

• Solve for f1(y)

f1(y) = −y3

3

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −1
3x

3 + 2x2y + 2x y2 − 1
3y

3

• Substitute F (x, y) into the solution of the ODE
−1

3x
3 + 2x2y + 2x y2 − 1

3y
3 = c1

• Solve for y
y =

(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3

2 + 12x2(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3
+ 2x, y = −

(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3

4 − 6x2(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3
+ 2x−

I
√
3


(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3

2 − 12x2(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3


2 , y = −

(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3

4 − 6x2(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3
+ 2x+

I
√
3


(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3

2 − 12x2(
108x3−12c1+12

√
−15x6−18c1x3+c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 439� �
dsolve((2*x^2+4*x*y(x)-y(x)^2)*diff(y(x),x) = x^2-4*x*y(x)-2*y(x)^2,y(x), singsol=all)� �

y(x) =

(
108x3c31+4+4

√
−135c61x6+54x3c31+1

) 1
3

2 + 12x2c21(
108x3c31+4+4

√
−135c61x6+54x3c31+1

) 1
3
+ 2c1x

c1
y(x)

=

−

(
108x3c31+4+4

√
−135c61x6+54x3c31+1

) 1
3

4 − 6x2c21(
108x3c31+4+4

√
−135c61x6+54x3c31+1

) 1
3
+ 2c1x−

i
√
3

−24c21x2+
(
108x3c31+4+4

√
−135c61x6+54x3c31+1

) 2
3


4
(
108x3c31+4+4

√
−135c61x6+54x3c31+1

) 1
3

c1
y(x) =

−
24i

√
3 c21x2 − i

√
3
(
108x3c31 + 4 + 4

√
−135c61x6 + 54x3c31 + 1

) 2
3 + 24c21x2 − 8c1x

(
108x3c31 + 4 + 4

√
−135c61x6 + 54x3c31 + 1

) 1
3 +

(
108x3c31 + 4 + 4

√
−135c61x6 + 54x3c31 + 1

) 2
3

4
(
108x3c31 + 4 + 4

√
−135c61x6 + 54x3c31 + 1

) 1
3
c1
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3 Solution by Mathematica
Time used: 29.679 (sec). Leaf size: 781� �
DSolve[(2 x^2+4 x y[x]-y[x]^2)y'[x]==x^2-4 x y[x]-2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

27x3 +
√
−135x6 + 54e3c1x3 + e6c1 + e3c1

3
√
2

+ 6 3
√
2x2

3
√

27x3 +
√
−135x6 + 54e3c1x3 + e6c1 + e3c1

+ 2x

y(x) → −
(
1− i

√
3
) 3
√

27x3 +
√
−135x6 + 54e3c1x3 + e6c1 + e3c1

2 3
√
2

−
3 3
√
2
(
1 + i

√
3
)
x2

3
√
27x3 +

√
−135x6 + 54e3c1x3 + e6c1 + e3c1

+ 2x

y(x) → −
(
1 + i

√
3
) 3
√

27x3 +
√
−135x6 + 54e3c1x3 + e6c1 + e3c1

2 3
√
2

−
3 3
√
2
(
1− i

√
3
)
x2

3
√
27x3 +

√
−135x6 + 54e3c1x3 + e6c1 + e3c1

+ 2x

y(x) →
4 3
√
232/3x2 + 4 3

√√
15
√
−x6 + 9x3x+ 22/3 3

√
3
(√

15
√
−x6 + 9x3)2/3

2 3
√√

15
√
−x6 + 9x3

y(x)

→
−4 3

√
232/3x2 + 12i 3

√
2 6
√
3x2 + 8 3

√√
15
√
−x6 + 9x3x− i22/335/6

(√
15
√
−x6 + 9x3)2/3 − 22/3 3

√
3
(√

15
√
−x6 + 9x3)2/3

4 3
√√

15
√
−x6 + 9x3

y(x)

→
3
√
3
(√

15
√
−x6 + 9x3)2/3Root[2#13 − 1&, 3

]
− 2 3

√
−232/3x2 + 2 3

√√
15
√
−x6 + 9x3x

3
√√

15
√
−x6 + 9x3

6239



22.14 problem 622
22.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6240
22.14.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6242

Internal problem ID [3870]
Internal file name [OUTPUT/3363_Sunday_June_05_2022_09_12_19_AM_12172034/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 622.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(y + 3x)2 y′ − 4(3x+ 2y) y = 0

22.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x+ 3x)2 (u′(x)x+ u(x))− 4(3x+ 2u(x)x)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 − 2u2 − 3u
x (u+ 3)2

Where f(x) = − 1
x
and g(u) = u3−2u2−3u

(u+3)2 . Integrating both sides gives

1
u3−2u2−3u

(u+3)2
du = −1

x
dx
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∫ 1
u3−2u2−3u

(u+3)2
du =

∫
−1
x
dx

3 ln (u− 3) + ln (u+ 1)− 3 ln (u) = − ln (x) + c2

Raising both side to exponential gives

e3 ln(u−3)+ln(u+1)−3 ln(u) = e− ln(x)+c2

Which simplifies to

(u− 3)3 (u+ 1)
u3 = c3

x

Therefore the solution y is

y = xu

= xRootOf
(
x_Z4 + (−c3 − 8x)_Z3 + 18x_Z2 − 27x

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
x_Z4 + (−c3 − 8x)_Z3 + 18x_Z2 − 27x

)

Figure 994: Slope field plot
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Verification of solutions

y = xRootOf
(
x_Z4 + (−c3 − 8x)_Z3 + 18x_Z2 − 27x

)
Verified OK.

22.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 4y(3x+ 2y)
9x2 + 6xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
4y(3x+ 2y) (b3 − a2)

9x2 + 6xy + y2
− 16y2(3x+ 2y)2 a3

(9x2 + 6xy + y2)2

−
(

12y
9x2 + 6xy + y2

− 4y(3x+ 2y) (18x+ 6y)
(9x2 + 6xy + y2)2

)
(xa2 + ya3 + a1)

−
(

12x+ 8y
9x2 + 6xy + y2

+ 8y
9x2 + 6xy + y2

− 4y(3x+ 2y) (6x+ 2y)
(9x2 + 6xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−27x4b2 + 36x3yb2 + 36x2y2a3 − 18x2y2b2 + 24x y3a2 + 48x y3a3 − 12x y3b2 − 24x y3b3 + 8y4a2 + 28y4a3 − y4b2 − 8y4b3 + 108x3b1 − 108x2ya1 + 144x2yb1 − 144x y2a1 + 36x y2b1 − 36y3a1
(9x2 + 6xy + y2)2

= 0
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Setting the numerator to zero gives

(6E)−27x4b2 − 36x3yb2 − 36x2y2a3 + 18x2y2b2 − 24x y3a2 − 48x y3a3
+ 12x y3b2 + 24x y3b3 − 8y4a2 − 28y4a3 + y4b2 + 8y4b3 − 108x3b1
+ 108x2ya1 − 144x2yb1 + 144x y2a1 − 36x y2b1 + 36y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−24a2v1v32 − 8a2v42 − 36a3v21v22 − 48a3v1v32 − 28a3v42 − 27b2v41 − 36b2v31v2
+ 18b2v21v22 + 12b2v1v32 + b2v

4
2 + 24b3v1v32 + 8b3v42 + 108a1v21v2

+ 144a1v1v22 + 36a1v32 − 108b1v31 − 144b1v21v2 − 36b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−27b2v41 − 36b2v31v2 − 108b1v31 + (−36a3 + 18b2) v21v22
+ (108a1 − 144b1) v21v2 + (−24a2 − 48a3 + 12b2 + 24b3) v1v32
+ (144a1 − 36b1) v1v22 + (−8a2 − 28a3 + b2 + 8b3) v42 + 36a1v32 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

36a1 = 0
−108b1 = 0
−36b2 = 0
−27b2 = 0

108a1 − 144b1 = 0
144a1 − 36b1 = 0
−36a3 + 18b2 = 0

−24a2 − 48a3 + 12b2 + 24b3 = 0
−8a2 − 28a3 + b2 + 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

4y(3x+ 2y)
9x2 + 6xy + y2

)
(x)

= −3x2y − 2x y2 + y3

9x2 + 6xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

6244



The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−3x2y−2x y2+y3

9x2+6xy+y2

dy

Which results in

S = ln (y + x) + 3 ln (y − 3x)− 3 ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4y(3x+ 2y)
9x2 + 6xy + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y + x

− 9
y − 3x

Sy =
1

y + x
+ 3

y − 3x − 3
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x) + 3 ln (−3x+ y)− 3 ln (y) = c1

Which simplifies to

ln (y + x) + 3 ln (−3x+ y)− 3 ln (y) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4y(3x+2y)
9x2+6xy+y2

dS
dR

= 0

R = x

S = ln (y + x) + 3 ln (y − 3x)− 3 ln (y)
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Summary
The solution(s) found are the following

(1)ln (y + x) + 3 ln (−3x+ y)− 3 ln (y) = c1

Figure 995: Slope field plot

Verification of solutions

ln (y + x) + 3 ln (−3x+ y)− 3 ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 44� �
dsolve((3*x+y(x))^2*diff(y(x),x) = 4*(3*x+2*y(x))*y(x),y(x), singsol=all)� �

−3 ln
(
−3x+ y(x)

x

)
− ln

(
x+ y(x)

x

)
+ 3 ln

(
y(x)
x

)
− ln (x)− c1 = 0
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3 Solution by Mathematica
Time used: 60.159 (sec). Leaf size: 747� �
DSolve[(3 x+y[x])^2 y'[x]==4(3 x+2 y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4

−
√

12 3
√

−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

−
√
2
√√√√−6 3

√
−ec1x4 (−16x+ ec1)− 48x2 + (−8x+ ec1) 3 − 72x2 (−8x+ ec1)√

12 3
√
−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

+ (−8x+ ec1) 2

+ 8x− ec1


y(x) → 1

4

−
√

12 3
√

−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

+
√
2
√√√√−6 3

√
−ec1x4 (−16x+ ec1)− 48x2 + (−8x+ ec1) 3 − 72x2 (−8x+ ec1)√

12 3
√
−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

+ (−8x+ ec1) 2

+ 8x− ec1


y(x) → 1

4

√12 3
√

−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

−
√
2
√√√√−6 3

√
−ec1x4 (−16x+ ec1)− 48x2 + 72x2 (−8x+ ec1)− (−8x+ ec1) 3√

12 3
√
−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

+ (−8x+ ec1) 2

+ 8x− ec1


y(x) → 1

4

√12 3
√

−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

+
√
2
√√√√−6 3

√
−ec1x4 (−16x+ ec1)− 48x2 + 72x2 (−8x+ ec1)− (−8x+ ec1) 3√

12 3
√
−ec1x4 (−16x+ ec1) + 16x2 − 16ec1x+ e2c1

+ (−8x+ ec1) 2

+ 8x− ec1
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22.15 problem 623
22.15.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 6250
22.15.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6254

Internal problem ID [3871]
Internal file name [OUTPUT/3364_Sunday_June_05_2022_09_12_24_AM_95809875/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 623.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational]

(1− 3x− y)2 y′ − (1− 2y) (3− 6x− 4y) = 0

22.15.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = (2Y (X) + 2y0 − 1) (4Y (X) + 4y0 + 6X + 6x0 − 3)

(−1 + 3X + 3x0 + Y (X) + y0)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
1
6

y0 =
1
2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 12Y (X)X + 8Y (X)2

9X2 + 6Y (X)X + Y (X)2
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 4Y (3X + 2Y )
9X2 + 6Y X + Y 2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 4Y (3X + 2Y ) and N = 9X2+6Y X+Y 2 are
both homogeneous and of the same order n = 2. Therefore this is a homogeneous ode.
Since this ode is homogeneous, it is converted to separable ODE using the substitution
u = Y

X
, or Y = uX. Hence

dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 8u2 + 12u

(u+ 3)2

du
dX =

8u(X)2+12u(X)
(u(X)+3)2 − u(X)

X

Or
d

dX
u(X)−

8u(X)2+12u(X)
(u(X)+3)2 − u(X)

X
= 0

Or(
d

dX
u(X)

)
u(X)2X+6

(
d

dX
u(X)

)
u(X)X+u(X)3+9

(
d

dX
u(X)

)
X−2u(X)2−3u(X) = 0

Or
X(u(X) + 3)2

(
d

dX
u(X)

)
+ u(X)3 − 2u(X)2 − 3u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u3 − 2u2 − 3u
X (u+ 3)2
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Where f(X) = − 1
X

and g(u) = u3−2u2−3u
(u+3)2 . Integrating both sides gives

1
u3−2u2−3u

(u+3)2
du = − 1

X
dX

∫ 1
u3−2u2−3u

(u+3)2
du =

∫
− 1
X

dX

3 ln (u− 3) + ln (u+ 1)− 3 ln (u) = − ln (X) + c2

Raising both side to exponential gives

e3 ln(u−3)+ln(u+1)−3 ln(u) = e− ln(X)+c2

Which simplifies to

(u− 3)3 (u+ 1)
u3 = c3

X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X RootOf
(
X _Z4 + (−8X − c3)_Z3 + 18X _Z2 − 27X

)
Using the solution for Y (X)

Y (X) = X RootOf
(
X _Z4 + (−8X − c3)_Z3 + 18X _Z2 − 27X

)
And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
2

X = x+ 1
6

Then the solution in y becomes

y − 1
2 =

(
x− 1

6

)
RootOf

(
(6x− 1)_Z4 + (−6c3 − 48x+ 8)_Z3 + (108x− 18)_Z2 − 162x+ 27

)
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Summary
The solution(s) found are the following

(1)y − 1
2 =

(
x− 1

6

)
RootOf

(
(6x− 1)_Z4 + (−6c3 − 48x+ 8)_Z3

+ (108x− 18)_Z2 − 162x+ 27
)

Figure 996: Slope field plot

Verification of solutions

y − 1
2 =

(
x− 1

6

)
RootOf

(
(6x− 1)_Z4 + (−6c3 − 48x+ 8)_Z3 + (108x− 18)_Z2

− 162x+ 27
)

Verified OK.
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22.15.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 12xy + 8y2 − 6x− 10y + 3
9x2 + 6xy + y2 − 6x− 2y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(12xy + 8y2 − 6x− 10y + 3) (b3 − a2)

9x2 + 6xy + y2 − 6x− 2y + 1

− (12xy + 8y2 − 6x− 10y + 3)2 a3
(9x2 + 6xy + y2 − 6x− 2y + 1)2

−
(

12y − 6
9x2 + 6xy + y2 − 6x− 2y + 1

− (12xy + 8y2 − 6x− 10y + 3) (18x+ 6y − 6)
(9x2 + 6xy + y2 − 6x− 2y + 1)2

)
(xa2 + ya3 + a1)

−
(

−10 + 12x+ 16y
9x2 + 6xy + y2 − 6x− 2y + 1

− (12xy + 8y2 − 6x− 10y + 3) (6x+ 2y − 2)
(9x2 + 6xy + y2 − 6x− 2y + 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−27x4b2 + 36x3yb2 + 36x2y2a3 − 18x2y2b2 + 24x y3a2 + 48x y3a3 − 12x y3b2 − 24x y3b3 + 8y4a2 + 28y4a3 − y4b2 − 8y4b3 + 108x3b1 − 18x3b2 + 54x3b3 − 108x2ya1 − 18x2ya2 − 90x2ya3 + 144x2yb1 + 24x2yb2 + 72x2yb3 − 144x y2a1 − 60x y2a2 − 156x y2a3 + 36x y2b1 + 30x y2b2 + 54x y2b3 − 36y3a1 − 26y3a2 − 82y3a3 + 4y3b2 + 20y3b3 + 54x2a1 + 9x2a2 + 36x2a3 − 126x2b1 − 12x2b2 − 63x2b3 + 180xya1 + 48xya2 + 138xya3 − 84xyb1 − 26xyb2 − 60xyb3 + 78y2a1 + 31y2a2 + 94y2a3 − 6y2b1 − 6y2b2 − 21y2b3 − 54xa1 − 12xa2 − 36xa3 + 42xb1 + 8xb2 + 24xb3 − 54ya1 − 16ya2 − 48ya3 + 10yb1 + 4yb2 + 12yb3 + 12a1 + 3a2 + 9a3 − 4b1 − b2 − 3b3
(9x2 + 6xy + y2 − 6x− 2y + 1)2

= 0
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Setting the numerator to zero gives

(6E)

−27x4b2 − 36x3yb2 − 36x2y2a3 + 18x2y2b2 − 24x y3a2 − 48x y3a3
+ 12x y3b2 + 24x y3b3 − 8y4a2 − 28y4a3 + y4b2 + 8y4b3 − 108x3b1
+ 18x3b2 − 54x3b3 + 108x2ya1 + 18x2ya2 + 90x2ya3 − 144x2yb1
− 24x2yb2 − 72x2yb3 + 144x y2a1 + 60x y2a2 + 156x y2a3 − 36x y2b1
− 30x y2b2 − 54x y2b3 + 36y3a1 + 26y3a2 + 82y3a3 − 4y3b2
− 20y3b3 − 54x2a1 − 9x2a2 − 36x2a3 + 126x2b1 + 12x2b2 + 63x2b3
− 180xya1 − 48xya2 − 138xya3 + 84xyb1 + 26xyb2 + 60xyb3
− 78y2a1 − 31y2a2 − 94y2a3 + 6y2b1 + 6y2b2 + 21y2b3 + 54xa1
+ 12xa2 + 36xa3 − 42xb1 − 8xb2 − 24xb3 + 54ya1 + 16ya2 + 48ya3
− 10yb1 − 4yb2 − 12yb3 − 12a1 − 3a2 − 9a3 + 4b1 + b2 + 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−24a2v1v32 − 8a2v42 − 36a3v21v22 − 48a3v1v32 − 28a3v42 − 27b2v41
− 36b2v31v2 + 18b2v21v22 + 12b2v1v32 + b2v

4
2 + 24b3v1v32 + 8b3v42

+ 108a1v21v2 + 144a1v1v22 + 36a1v32 + 18a2v21v2 + 60a2v1v22 + 26a2v32
+ 90a3v21v2 + 156a3v1v22 + 82a3v32 − 108b1v31 − 144b1v21v2 − 36b1v1v22
+18b2v31−24b2v21v2−30b2v1v22−4b2v32−54b3v31−72b3v21v2−54b3v1v22
−20b3v32−54a1v21−180a1v1v2−78a1v22−9a2v21−48a2v1v2−31a2v22
−36a3v21−138a3v1v2−94a3v22+126b1v21+84b1v1v2+6b1v22+12b2v21
+ 26b2v1v2 + 6b2v22 + 63b3v21 + 60b3v1v2 + 21b3v22 + 54a1v1 + 54a1v2
+ 12a2v1 + 16a2v2 + 36a3v1 + 48a3v2 − 42b1v1 − 10b1v2 − 8b2v1
− 4b2v2 − 24b3v1 − 12b3v2 − 12a1 − 3a2 − 9a3 + 4b1 + b2 + 3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

6255



Equation (7E) now becomes

(8E)

−27b2v41−36b2v31v2+(−108b1+18b2−54b3) v31+(−36a3+18b2) v21v22
+ (108a1 + 18a2 + 90a3 − 144b1 − 24b2 − 72b3) v21v2
+ (−54a1 − 9a2 − 36a3 + 126b1 + 12b2 + 63b3) v21
+ (−24a2 − 48a3 + 12b2 + 24b3) v1v32
+ (144a1 + 60a2 + 156a3 − 36b1 − 30b2 − 54b3) v1v22
+ (−180a1 − 48a2 − 138a3 + 84b1 + 26b2 + 60b3) v1v2
+ (54a1 + 12a2 + 36a3 − 42b1 − 8b2 − 24b3) v1
+ (−8a2 − 28a3 + b2 + 8b3) v42 + (36a1 + 26a2 + 82a3 − 4b2 − 20b3) v32
+ (−78a1 − 31a2 − 94a3 + 6b1 + 6b2 + 21b3) v22
+ (54a1 + 16a2 + 48a3 − 10b1 − 4b2 − 12b3) v2
− 12a1 − 3a2 − 9a3 + 4b1 + b2 + 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−36b2 = 0
−27b2 = 0

−36a3 + 18b2 = 0
−108b1 + 18b2 − 54b3 = 0

−24a2 − 48a3 + 12b2 + 24b3 = 0
−8a2 − 28a3 + b2 + 8b3 = 0

36a1 + 26a2 + 82a3 − 4b2 − 20b3 = 0
−180a1 − 48a2 − 138a3 + 84b1 + 26b2 + 60b3 = 0

−78a1 − 31a2 − 94a3 + 6b1 + 6b2 + 21b3 = 0
−54a1 − 9a2 − 36a3 + 126b1 + 12b2 + 63b3 = 0

−12a1 − 3a2 − 9a3 + 4b1 + b2 + 3b3 = 0
54a1 + 12a2 + 36a3 − 42b1 − 8b2 − 24b3 = 0
54a1 + 16a2 + 48a3 − 10b1 − 4b2 − 12b3 = 0

108a1 + 18a2 + 90a3 − 144b1 − 24b2 − 72b3 = 0
144a1 + 60a2 + 156a3 − 36b1 − 30b2 − 54b3 = 0
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Solving the above equations for the unknowns gives

a1 = a1

a2 = −6a1
a3 = 0
b1 = 3a1
b2 = 0
b3 = −6a1

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −6x+ 1
η = −6y + 3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6y + 3−
(

12xy + 8y2 − 6x− 10y + 3
9x2 + 6xy + y2 − 6x− 2y + 1

)
(−6x+ 1)

= 18x2y + 12x y2 − 6y3 − 9x2 − 18xy + 7y2 + 6x− 2y
9x2 + 6xy + y2 − 6x− 2y + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

18x2y+12x y2−6y3−9x2−18xy+7y2+6x−2y
9x2+6xy+y2−6x−2y+1

dy
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Which results in

S = − ln (3y + 3x− 2)
6 − ln (y − 3x)

2 + ln (2y − 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 12xy + 8y2 − 6x− 10y + 3
9x2 + 6xy + y2 − 6x− 2y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3− 6x− 4y
(3y + 3x− 2) (3x− y)

Sy = − 1
−4 + 6x+ 6y + 1

−2y + 6x + 1
2y − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (3y + 3x− 2)
6 − ln (−3x+ y)

2 + ln (2y − 1)
2 = c1
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Which simplifies to

− ln (3y + 3x− 2)
6 − ln (−3x+ y)

2 + ln (2y − 1)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 12xy+8y2−6x−10y+3
9x2+6xy+y2−6x−2y+1

dS
dR

= 0

R = x

S = − ln (3y + 3x− 2)
6 − ln (y − 3x)

2 + ln (2y − 1)
2

Summary
The solution(s) found are the following

(1)− ln (3y + 3x− 2)
6 − ln (−3x+ y)

2 + ln (2y − 1)
2 = c1
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Figure 997: Slope field plot

Verification of solutions

− ln (3y + 3x− 2)
6 − ln (−3x+ y)

2 + ln (2y − 1)
2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.313 (sec). Leaf size: 75� �
dsolve((1-3*x-y(x))^2*diff(y(x),x) = (1-2*y(x))*(3-6*x-4*y(x)),y(x), singsol=all)� �

3 ln
(
1− 2y(x)
6x− 1

)
− 4 ln (2)− 3 ln

(
3x− y(x)
6x− 1

)
− ln

(
−3y(x) + 2− 3x

6x− 1

)
− ln (6x− 1)− c1 = 0
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3 Solution by Mathematica
Time used: 60.194 (sec). Leaf size: 1089� �
DSolve[(1-3 x-y[x])^2 y'[x]==(1-2 y[x])(3-6 x-4 y[x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
6

−
√

36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3
√
−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

− 1
2

√√√√− 8 (−(6x− 1)3 + 96e2c1(6x− 1) + 30ec1(1− 6x)2 + 64e3c1)√
36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3

√
−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

+ 8 (12x+ 1 + 4ec1) 2 − 96 (3x(3x+ 1) + 2ec1)− 12 22/3 3
√

−ec1(6x− 1)4 (6x− 1 + ec1)

+ 12x+ 1 + 4ec1


y(x)

→ 1
6

−
√

36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3
√
−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

+1
2

√√√√− 8 (−(6x− 1)3 + 96e2c1(6x− 1) + 30ec1(1− 6x)2 + 64e3c1)√
36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3

√
−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

+ 8 (12x+ 1 + 4ec1) 2 − 96 (3x(3x+ 1) + 2ec1)− 12 22/3 3
√
−ec1(6x− 1)4 (6x− 1 + ec1)

+ 12x+ 1 + 4ec1


y(x)

→ 1
6

√36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3
√

−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

− 1
2

√√√√ 8 (−(6x− 1)3 + 96e2c1(6x− 1) + 30ec1(1− 6x)2 + 64e3c1)√
36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3

√
−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

+ 8 (12x+ 1 + 4ec1) 2 − 96 (3x(3x+ 1) + 2ec1)− 12 22/3 3
√

−ec1(6x− 1)4 (6x− 1 + ec1)

+ 12x+ 1 + 4ec1


y(x)

→ 1
6

√36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3
√

−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

+1
2

√√√√ 8 (−(6x− 1)3 + 96e2c1(6x− 1) + 30ec1(1− 6x)2 + 64e3c1)√
36x2 − 12x+ 16ec1(6x− 1) + 3 22/3 3

√
−ec1(6x− 1)4 (6x− 1 + ec1) + 1 + 16e2c1

+ 8 (12x+ 1 + 4ec1) 2 − 96 (3x(3x+ 1) + 2ec1)− 12 22/3 3
√

−ec1(6x− 1)4 (6x− 1 + ec1)

+ 12x+ 1 + 4ec1
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22.16 problem 624
Internal problem ID [3872]
Internal file name [OUTPUT/3365_Sunday_June_05_2022_09_12_28_AM_58937740/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 624.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

(
cot (x)− 2y2

)
y′ − y3 csc (x) sec (x) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
equivalence obtained to this Abel ODE: diff(y(x),x) = 2*(cot(x)*csc(x)*sec(x)+cot(x)^2+1)/cot(x)^2*y(x)^2+4/cot(x)^2*csc(x)*sec(x)*y
trying to solve the Abel ODE ...
Looking for potential symmetries
Looking for potential symmetries
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(cot(x)*tan(x)+1)/cot(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(cot(x)-tan(x)), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)-3*y(x)/x, y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �

6264



7 Solution by Maple� �
dsolve((cot(x)-2*y(x)^2)*diff(y(x),x) = y(x)^3*csc(x)*sec(x),y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 7.946 (sec). Leaf size: 74� �
DSolve[(Cot[x]-2 y[x]^2)y'[x]==y[x]^3 Csc[x] Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
√

cot(x)
√
W (−2e−8c1 tan(x))√

2

y(x) → i
√

cot(x)
√

W (−2e−8c1 tan(x))√
2

y(x) → 0
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22.17 problem 625
22.17.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 6266
22.17.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 6269
22.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6272

Internal problem ID [3873]
Internal file name [OUTPUT/3366_Sunday_June_05_2022_09_13_39_AM_74873622/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 625.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

3y2y′ − ay3 = x+ 1

22.17.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a y3 + x+ 1
3y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 919: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = eax
y2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eax
y2

dy

Which results in

S = e−axy3

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a y3 + x+ 1
3y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −a e−axy3

3
Sy = e−axy2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−ax(x+ 1)

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−aR(R + 1)

3

6268



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(aR + a+ 1) e−aR

3a2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−axy3

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Which simplifies to

e−axy3

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Summary
The solution(s) found are the following

(1)e−axy3

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Verification of solutions

e−axy3

3 = −(ax+ a+ 1) e−ax

3a2 + c1

Verified OK.

22.17.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= a y3 + x+ 1
3y2

This is a Bernoulli ODE.
y′ = a

3y +
x

3 + 1
3
1
y2

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
a

3
f1(x) =

x

3 + 1
3

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = a y3

3 + x

3 + 1
3 (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = aw(x)

3 + x

3 + 1
3

w′ = aw + x+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −a

q(x) = x+ 1
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Hence the ode is

w′(x)− aw(x) = x+ 1

The integrating factor µ is

µ = e
∫
−adx

= e−ax

The ode becomes
d
dx(µw) = (µ) (x+ 1)

d
dx
(
e−axw

)
=
(
e−ax

)
(x+ 1)

d
(
e−axw

)
=
(
e−ax(x+ 1)

)
dx

Integrating gives

e−axw =
∫

e−ax(x+ 1) dx

e−axw = −(ax+ a+ 1) e−ax

a2
+ c1

Dividing both sides by the integrating factor µ = e−ax results in

w(x) = −eax(ax+ a+ 1) e−ax

a2
+ c1eax

which simplifies to

w(x) = c1eaxa2 − 1 + (−x− 1) a
a2

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = c1eaxa2 − 1 + (−x− 1) a
a2

Solving for y gives

y(x) = ((c1eaxa2 − 1 + (−x− 1) a) a)
1
3

a

y(x) =
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
−1 + i

√
3
)

2a

y(x) = −
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
1 + i

√
3
)

2a
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Summary
The solution(s) found are the following

(1)y = ((c1eaxa2 − 1 + (−x− 1) a) a)
1
3

a

(2)y =
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
−1 + i

√
3
)

2a

(3)y = −
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
1 + i

√
3
)

2a
Verification of solutions

y = ((c1eaxa2 − 1 + (−x− 1) a) a)
1
3

a

Verified OK.

y =
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
−1 + i

√
3
)

2a

Verified OK.

y = −
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
1 + i

√
3
)

2a

Verified OK.

22.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3y2
)
dy =

(
a y3 + x+ 1

)
dx(

−a y3 − x− 1
)
dx+

(
3y2
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a y3 − x− 1
N(x, y) = 3y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−a y3 − x− 1

)
= −3a y2

And
∂N

∂x
= ∂

∂x

(
3y2
)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3y2
((
−3a y2

)
− (0)

)
= −a

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
−adx

The result of integrating gives

µ = e−ax

= e−ax

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−ax
(
−a y3 − x− 1

)
= −e−ax

(
a y3 + x+ 1

)
And

N = µN

= e−ax
(
3y2
)

= 3 e−axy2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−ax
(
a y3 + x+ 1

))
+
(
3 e−axy2

) dy
dx = 0

6274



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−ax

(
a y3 + x+ 1

)
dx

(3)φ = (y3a2 + ax+ a+ 1) e−ax

a2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3 e−axy2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3 e−axy2. Therefore equation (4) becomes

(5)3 e−axy2 = 3 e−axy2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y3a2 + ax+ a+ 1) e−ax

a2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(y3a2 + ax+ a+ 1) e−ax

a2
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Summary
The solution(s) found are the following

(1)(a2y3 + ax+ a+ 1) e−ax

a2
= c1

Verification of solutions

(a2y3 + ax+ a+ 1) e−ax

a2
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 106� �
dsolve(3*y(x)^2*diff(y(x),x) = 1+x+a*y(x)^3,y(x), singsol=all)� �

y(x) = ((c1eaxa2 − 1 + (−x− 1) a) a)
1
3

a

y(x) = −
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
1 + i

√
3
)

2a

y(x) =
((c1eaxa2 − 1 + (−x− 1) a) a)

1
3
(
i
√
3− 1

)
2a
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3 Solution by Mathematica
Time used: 15.792 (sec). Leaf size: 111� �
DSolve[3 y[x]^2 y'[x]==1+x+a y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

a2c1eax − a(x+ 1)− 1
a2/3

y(x) → −
3
√
−1 3
√
a2c1eax − a(x+ 1)− 1

a2/3

y(x) → (−1)2/3 3
√
a2c1eax − a(x+ 1)− 1

a2/3
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22.18 problem 626
22.18.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 6278
22.18.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6283
22.18.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6286

Internal problem ID [3874]
Internal file name [OUTPUT/3367_Sunday_June_05_2022_09_13_47_AM_95255538/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 626.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational]

(
x2 − 3y2

)
y′ + 2yx = −1

22.18.1 Solving as differentialType ode

Writing the ode as

y′ = −1− 2yx
x2 − 3y2 (1)

Which becomes (
−3y2

)
dy =

(
−x2) dy + (−2xy − 1) dx (2)

But the RHS is complete differential because(
−x2) dy + (−2xy − 1) dx = d

(
−x2y − x

)
Hence (2) becomes (

−3y2
)
dy = d

(
−x2y − x

)
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Integrating both sides gives gives these solutions

y =

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

6 + 2x2(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3
+ c1

y = −

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

12 − x2(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3
+

i
√
3

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2 + c1

y = −

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

12 − x2(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3
−

i
√
3

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2 + c1
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Summary
The solution(s) found are the following

(1)
y =

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

6
+ 2x2(

108x− 108c1 + 12
√

−12x6 + 81c21 − 162c1x+ 81x2
) 1

3
+ c1

(2)y = −

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

12
− x2(

108x− 108c1 + 12
√

−12x6 + 81c21 − 162c1x+ 81x2
) 1

3

+

i
√
3

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2

+ c1

(3)y = −

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

12
− x2(

108x− 108c1 + 12
√

−12x6 + 81c21 − 162c1x+ 81x2
) 1

3

−

i
√
3

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2

+ c1
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Figure 998: Slope field plot

6281



Verification of solutions

y =

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

6
+ 2x2(

108x− 108c1 + 12
√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3
+ c1

Verified OK.

y = −

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

12
− x2(

108x− 108c1 + 12
√

−12x6 + 81c21 − 162c1x+ 81x2
) 1

3

+

i
√
3

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2

+ c1

Verified OK.

y = −

(
108x− 108c1 + 12

√
−12x6 + 81c21 − 162c1x+ 81x2

) 1
3

12
− x2(

108x− 108c1 + 12
√

−12x6 + 81c21 − 162c1x+ 81x2
) 1

3

−

i
√
3

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2

+ c1

Verified OK.
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22.18.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 − 3y2

)
dy = (−2xy − 1) dx

(2xy + 1) dx+
(
x2 − 3y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy + 1
N(x, y) = x2 − 3y2

6283



The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(2xy + 1)

= 2x

And
∂N

∂x
= ∂

∂x

(
x2 − 3y2

)
= 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2xy + 1dx

(3)φ = x2y + x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 − 3y2. Therefore equation (4) becomes

(5)x2 − 3y2 = x2 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −3y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−3y2

)
dy

f(y) = −y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2y − y3 + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2y − y3 + x

Summary
The solution(s) found are the following

(1)x2y − y3 + x = c1
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Figure 999: Slope field plot

Verification of solutions

x2y − y3 + x = c1

Verified OK.

22.18.3 Maple step by step solution

Let’s solve
(x2 − 3y2) y′ + 2yx = −1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
2x = 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2xy + 1) dx+ f1(y)

• Evaluate integral
F (x, y) = x2y + x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2 − 3y2 = x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −3y2

• Solve for f1(y)
f1(y) = −y3

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x2y − y3 + x

• Substitute F (x, y) into the solution of the ODE
x2y − y3 + x = c1

• Solve for y
y =

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 + 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3
, y = −

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

12 − x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3
−

I
√
3


(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2 , y = −

(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

12 − x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3
+

I
√
3


(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3

6 − 2x2(
108x−108c1+12

√
−12x6+81c21−162c1x+81x2

) 1
3


2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 298� �
dsolve((x^2-3*y(x)^2)*diff(y(x),x)+1+2*x*y(x) = 0,y(x), singsol=all)� �
y(x) =

(
108x+ 108c1 + 12

√
−12x6 + 81c21 + 162c1x+ 81x2

) 2
3 + 12x2

6
(
108x+ 108c1 + 12

√
−12x6 + 81c21 + 162c1x+ 81x2

) 1
3

y(x)

=
12i

√
3x2 − i

(
108x+ 108c1 + 12

√
−12x6 + 81c21 + 162c1x+ 81x2

) 2
3 √3− 12x2 −

(
108x+ 108c1 + 12

√
−12x6 + 81c21 + 162c1x+ 81x2

) 2
3

12
(
108x+ 108c1 + 12

√
−12x6 + 81c21 + 162c1x+ 81x2

) 1
3

y(x) =

(
108x+ 108c1 + 12

√
−12x6 + 81c21 + 162c1x+ 81x2

) 1
3 (

i
√
3− 1

)
12

−
(
1 + i

√
3
)
x2(

108x+ 108c1 + 12
√

−12x6 + 81c21 + 162c1x+ 81x2
) 1

3
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3 Solution by Mathematica
Time used: 4.724 (sec). Leaf size: 307� �
DSolve[(x^2-3 y[x]^2)y'[x]+1+2 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3
√√

−108x6 + 729(x− c1)2 − 27x+ 27c1
3 3
√
2

−
3
√
2x2

3
√√

−108x6 + 729(x− c1)2 − 27x+ 27c1

y(x) →
(
1− i

√
3
) 3
√√

−108x6 + 729(x− c1)2 − 27x+ 27c1
6 3
√
2

+
(
1 + i

√
3
)
x2

22/3 3
√√

−108x6 + 729(x− c1)2 − 27x+ 27c1

y(x) →
(
1 + i

√
3
) 3
√√

−108x6 + 729(x− c1)2 − 27x+ 27c1
6 3
√
2

+
(
1− i

√
3
)
x2

22/3 3
√√

−108x6 + 729(x− c1)2 − 27x+ 27c1
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22.19 problem 627
22.19.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6290
22.19.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6292

Internal problem ID [3875]
Internal file name [OUTPUT/3368_Sunday_June_05_2022_09_13_50_AM_43512464/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 627.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
2x2 + 3y2

)
y′ + x(y + 3x) = 0

22.19.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
2x2 + 3u(x)2 x2) (u′(x)x+ u(x)) + x(u(x)x+ 3x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3(u3 + u+ 1)
x (3u2 + 2)

Where f(x) = − 3
x
and g(u) = u3+u+1

3u2+2 . Integrating both sides gives

1
u3+u+1
3u2+2

du = −3
x
dx
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∫ 1
u3+u+1
3u2+2

du =
∫

−3
x
dx

∫ u 3_a2 + 2
_a3 + _a+ 1d_a = −3 ln (x) + c2

Which results in ∫ u 3_a2 + 2
_a3 + _a+ 1d_a = −3 ln (x) + c2

The solution is ∫ u(x) 3_a2 + 2
_a3 + _a+ 1d_a+ 3 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form∫ y

x 3_a2 + 2
_a3 + _a+ 1d_a+ 3 ln (x)− c2 = 0∫ y

x 3_a2 + 2
_a3 + _a+ 1d_a+ 3 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
∫ y

x 3_a2 + 2
_a3 + _a+ 1d_a+ 3 ln (x)− c2 = 0
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Figure 1000: Slope field plot

Verification of solutions∫ y
x 3_a2 + 2
_a3 + _a+ 1d_a+ 3 ln (x)− c2 = 0

Verified OK.

22.19.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x(3x+ y)
2x2 + 3y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
x(3x+ y) (b3 − a2)

2x2 + 3y2 − x2(3x+ y)2 a3
(2x2 + 3y2)2

−
(
− 3x+ y

2x2 + 3y2 − 3x
2x2 + 3y2 + 4x2(3x+ y)

(2x2 + 3y2)2
)
(xa2 + ya3 + a1)

−
(
− x

2x2 + 3y2 + 6x(3x+ y) y
(2x2 + 3y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

6x4a2 − 9x4a3 + 6x4b2 − 6x4b3 − 6x3ya3 − 18x3yb2 + 27x2y2a2 − 3x2y2a3 + 9x2y2b2 − 27x2y2b3 + 6x y3a2 + 18x y3a3 − 6x y3b3 + 3y4a3 + 9y4b2 + 2x3b1 − 2x2ya1 − 18x2yb1 + 18x y2a1 − 3x y2b1 + 3y3a1
(2x2 + 3y2)2

= 0

Setting the numerator to zero gives

(6E)6x4a2 − 9x4a3 + 6x4b2 − 6x4b3 − 6x3ya3 − 18x3yb2 + 27x2y2a2 − 3x2y2a3
+ 9x2y2b2 − 27x2y2b3 + 6x y3a2 + 18x y3a3 − 6x y3b3 + 3y4a3 + 9y4b2
+ 2x3b1 − 2x2ya1 − 18x2yb1 + 18x y2a1 − 3x y2b1 + 3y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v41 + 27a2v21v22 + 6a2v1v32 − 9a3v41 − 6a3v31v2 − 3a3v21v22 + 18a3v1v32
+ 3a3v42 + 6b2v41 − 18b2v31v2 + 9b2v21v22 + 9b2v42 − 6b3v41 − 27b3v21v22
− 6b3v1v32 − 2a1v21v2 + 18a1v1v22 + 3a1v32 + 2b1v31 − 18b1v21v2 − 3b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(6a2 − 9a3 + 6b2 − 6b3) v41 + (−6a3 − 18b2) v31v2 + 2b1v31
+ (27a2 − 3a3 + 9b2 − 27b3) v21v22 + (−2a1 − 18b1) v21v2
+ (6a2 + 18a3 − 6b3) v1v32 + (18a1 − 3b1) v1v22 + (3a3 + 9b2) v42 + 3a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a1 = 0
2b1 = 0

−2a1 − 18b1 = 0
18a1 − 3b1 = 0

−6a3 − 18b2 = 0
3a3 + 9b2 = 0

6a2 + 18a3 − 6b3 = 0
6a2 − 9a3 + 6b2 − 6b3 = 0

27a2 − 3a3 + 9b2 − 27b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

x

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(3x+ y)
2x2 + 3y2
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Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2x3 − 3x y2

3x3 + 3x2y + 3y3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3R2 − 2

3R3 + 3R + 3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− 3R2 + 2
3 (R3 +R + 1)dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x

− 3_a2 + 2
3 (_a3 + _a+ 1)d_a+ c1

Which simplifies to

ln (x) =
∫ y

x

− 3_a2 + 2
3 (_a3 + _a+ 1)d_a+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x(3x+y)
2x2+3y2

dS
dR

= −3R2−2
3R3+3R+3

R = y

x
S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

x

− 3_a2 + 2
3 (_a3 + _a+ 1)d_a+ c1
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Figure 1001: Slope field plot

Verification of solutions

ln (x) =
∫ y

x

− 3_a2 + 2
3 (_a3 + _a+ 1)d_a+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve((2*x^2+3*y(x)^2)*diff(y(x),x)+x*(3*x+y(x)) = 0,y(x), singsol=all)� �

y(x) = RootOf
(∫ _Z 3_a2 + 2

_a3 + _a+ 1d_a+ 3 ln (x) + 3c1
)
x

3 Solution by Mathematica
Time used: 0.133 (sec). Leaf size: 66� �
DSolve[(2*x^2+3*y[x]^2)*y'[x]+x*(3*x+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

RootSum
#13 +#1+ 1&,

3#12 log
(

y(x)
x

−#1
)
+ 2 log

(
y(x)
x

−#1
)

3#12 + 1
&

 =

−3 log(x) + c1, y(x)



6299



22.20 problem 628
22.20.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6300

Internal problem ID [3876]
Internal file name [OUTPUT/3369_Sunday_June_05_2022_09_13_55_AM_12667550/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 628.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[`y=_G(x,y') `]

3
(
x2 − y2

)
y′ + 6(x+ 1)xy − 2y3 = −3 ex

22.20.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

3x2 − 3y2
)
dy =

(
−3 ex − 6(x+ 1)xy + 2y3

)
dx(

3 ex + 6(x+ 1)xy − 2y3
)
dx+

(
3x2 − 3y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3 ex + 6(x+ 1)xy − 2y3

N(x, y) = 3x2 − 3y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3 ex + 6(x+ 1)xy − 2y3

)
= 6x2 − 6y2 + 6x

And
∂N

∂x
= ∂

∂x

(
3x2 − 3y2

)
= 6x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x2 − 3y2
((
6x(x+ 1)− 6y2

)
− (6x)

)
= 2
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 dx

The result of integrating gives

µ = e2x

= e2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e2x
(
3 ex + 6(x+ 1)xy − 2y3

)
=
(
−2y3 +

(
6x2 + 6x

)
y + 3 ex

)
e2x

And

N = µN

= e2x
(
3x2 − 3y2

)
=
(
3x2 − 3y2

)
e2x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

−2y3 +
(
6x2 + 6x

)
y + 3 ex

)
e2x
)
+
((
3x2 − 3y2

)
e2x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
−2y3 +

(
6x2 + 6x

)
y + 3 ex

)
e2x dx

(3)φ = 3 e2xx2y − e2xy3 + e3x + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x2e2x − 3y2e2x + f ′(y)

=
(
3x2 − 3y2

)
e2x + f ′(y)

But equation (2) says that ∂φ
∂y

= (3x2 − 3y2) e2x. Therefore equation (4) becomes

(5)
(
3x2 − 3y2

)
e2x =

(
3x2 − 3y2

)
e2x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 3 e2xx2y − e2xy3 + e3x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 3 e2xx2y − e2xy3 + e3x

Summary
The solution(s) found are the following

(1)3 e2xx2y − e2xy3 + e3x = c1
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Figure 1002: Slope field plot

Verification of solutions

3 e2xx2y − e2xy3 + e3x = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 345� �
dsolve(3*(x^2-y(x)^2)*diff(y(x),x)+3*exp(x)+6*x*y(x)*(1+x)-2*y(x)^3 = 0,y(x), singsol=all)� �

y(x) =
2 1

3

(
2 e4xx2 + 2 1

3

((
e3x + c1 +

√
−4x6e4x + e6x + 2c1e3x + c21

)
e4x
) 2

3
)
e−2x

2
((

e3x + c1 +
√

−4x6e4x + e6x + 2c1e3x + c21

)
e4x
) 1

3

y(x) =

−

(
−2 e4x

(
i
√
3− 1

)
x2 +

(
1 + i

√
3
)
2 1

3

((
e3x + c1 +

√
−4x6e4x + e6x + 2c1e3x + c21

)
e4x
) 2

3
)
e−2x2 1

3

4
((

e3x + c1 +
√

−4x6e4x + e6x + 2c1e3x + c21

)
e4x
) 1

3

y(x)

=
e−2x2 1

3

(
−2 e4x

(
1 + i

√
3
)
x2 +

(
i
√
3− 1

)
2 1

3

((
e3x + c1 +

√
−4x6e4x + e6x + 2c1e3x + c21

)
e4x
) 2

3
)

4
((

e3x + c1 +
√

−4x6e4x + e6x + 2c1e3x + c21

)
e4x
) 1

3

6305



3 Solution by Mathematica
Time used: 60.281 (sec). Leaf size: 497� �
DSolve[3(x^2-y[x]^2)y'[x]+3 Exp[x]+6 x y[x](1+x)-2 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
e−2x 3

√√
e8x (−4e4xx6 + e6x − 2c1e3x + c12)− e7x + c1e4x

3
√
2

−
3
√
2e2xx2

3
√√

e8x (−4e4xx6 + e6x − 2c1e3x + c12)− e7x + c1e4x

y(x) →
(
1− i

√
3
)
e−2x 3

√√
e8x (−4e4xx6 + e6x − 2c1e3x + c12)− e7x + c1e4x

2 3
√
2

+
(
1 + i

√
3
)
e2xx2

22/3 3
√√

e8x (−4e4xx6 + e6x − 2c1e3x + c12)− e7x + c1e4x

y(x) →
(
1 + i

√
3
)
e−2x 3

√√
e8x (−4e4xx6 + e6x − 2c1e3x + c12)− e7x + c1e4x

2 3
√
2

+
(
1− i

√
3
)
e2xx2

22/3 3
√√

e8x (−4e4xx6 + e6x − 2c1e3x + c12)− e7x + c1e4x
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22.21 problem 629
22.21.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6307
22.21.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6309
22.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6315
22.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6319

Internal problem ID [3877]
Internal file name [OUTPUT/3370_Sunday_June_05_2022_09_13_59_AM_6073655/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 629.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
3x2 + 2yx+ 4y2

)
y′ + 6yx+ y2 = −2x2

22.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
3x2 + 2u(x)x2 + 4u(x)2 x2) (u′(x)x+ u(x)) + 6u(x)x2 + u(x)2 x2 = −2x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −4u3 + 3u2 + 9u+ 2
x (4u2 + 2u+ 3)
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Where f(x) = − 1
x
and g(u) = 4u3+3u2+9u+2

4u2+2u+3 . Integrating both sides gives

1
4u3+3u2+9u+2

4u2+2u+3
du = −1

x
dx

∫ 1
4u3+3u2+9u+2

4u2+2u+3
du =

∫
−1
x
dx

ln (4u3 + 3u2 + 9u+ 2)
3 = − ln (x) + c2

Raising both side to exponential gives(
4u3 + 3u2 + 9u+ 2

) 1
3 = e− ln(x)+c2

Which simplifies to (
4u3 + 3u2 + 9u+ 2

) 1
3 = c3

x

Which simplifies to

(
4u(x)3 + 3u(x)2 + 9u(x) + 2

) 1
3 = c3ec2

x

The solution is (
4u(x)3 + 3u(x)2 + 9u(x) + 2

) 1
3 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

4y3
x3 + 3y2

x2 + 9y
x

+ 2
) 1

3

= c3ec2
x(

4y3 + 3y2x+ 9x2y + 2x3

x3

) 1
3

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
4y3 + 3y2x+ 9x2y + 2x3

x3

) 1
3

= c3ec2
x
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Figure 1003: Slope field plot

Verification of solutions (
4y3 + 3y2x+ 9x2y + 2x3

x3

) 1
3

= c3ec2
x

Verified OK.

22.21.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2x2 + 6xy + y2

3x2 + 2xy + 4y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x2 + 6xy + y2) (b3 − a2)

3x2 + 2xy + 4y2 − (2x2 + 6xy + y2)2 a3
(3x2 + 2xy + 4y2)2

−
(
− 4x+ 6y
3x2 + 2xy + 4y2 + (2x2 + 6xy + y2) (6x+ 2y)

(3x2 + 2xy + 4y2)2
)
(xa2 + ya3 + a1)

−
(
− 6x+ 2y
3x2 + 2xy + 4y2 +

(2x2 + 6xy + y2) (2x+ 8y)
(3x2 + 2xy + 4y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

6x4a2 − 4x4a3 + 23x4b2 − 6x4b3 + 8x3ya2 − 24x3ya3 + 2x3yb2 − 8x3yb3 + 33x2y2a2 − 54x2y2a3 + 6x2y2b2 − 33x2y2b3 + 48x y3a2 − 2x y3a3 + 16x y3b2 − 48x y3b3 + 4y4a2 + 21y4a3 + 16y4b2 − 4y4b3 + 14x3b1 − 14x2ya1 − 10x2yb1 + 10x y2a1 − 22x y2b1 + 22y3a1
(3x2 + 2xy + 4y2)2

= 0

Setting the numerator to zero gives

(6E)
6x4a2 − 4x4a3 + 23x4b2 − 6x4b3 + 8x3ya2 − 24x3ya3 + 2x3yb2
− 8x3yb3 + 33x2y2a2 − 54x2y2a3 + 6x2y2b2 − 33x2y2b3 + 48x y3a2
− 2x y3a3 + 16x y3b2 − 48x y3b3 + 4y4a2 + 21y4a3 + 16y4b2 − 4y4b3
+ 14x3b1 − 14x2ya1 − 10x2yb1 + 10x y2a1 − 22x y2b1 + 22y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
6a2v41 + 8a2v31v2 + 33a2v21v22 + 48a2v1v32 + 4a2v42 − 4a3v41 − 24a3v31v2
− 54a3v21v22 − 2a3v1v32 + 21a3v42 + 23b2v41 + 2b2v31v2 + 6b2v21v22
+ 16b2v1v32 + 16b2v42 − 6b3v41 − 8b3v31v2 − 33b3v21v22 − 48b3v1v32 − 4b3v42
− 14a1v21v2 + 10a1v1v22 + 22a1v32 + 14b1v31 − 10b1v21v2 − 22b1v1v22 = 0

6310



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(6a2 − 4a3 + 23b2 − 6b3) v41 + (8a2 − 24a3 + 2b2 − 8b3) v31v2
+ 14b1v31 + (33a2 − 54a3 + 6b2 − 33b3) v21v22 + (−14a1 − 10b1) v21v2
+ (48a2 − 2a3 + 16b2 − 48b3) v1v32 + (10a1 − 22b1) v1v22
+ (4a2 + 21a3 + 16b2 − 4b3) v42 + 22a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

22a1 = 0
14b1 = 0

−14a1 − 10b1 = 0
10a1 − 22b1 = 0

4a2 + 21a3 + 16b2 − 4b3 = 0
6a2 − 4a3 + 23b2 − 6b3 = 0
8a2 − 24a3 + 2b2 − 8b3 = 0

33a2 − 54a3 + 6b2 − 33b3 = 0
48a2 − 2a3 + 16b2 − 48b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2x2 + 6xy + y2

3x2 + 2xy + 4y2

)
(x)

= 2x3 + 9x2y + 3x y2 + 4y3
3x2 + 2xy + 4y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x3+9x2y+3x y2+4y3
3x2+2xy+4y2

dy

Which results in

S = ln (2x3 + 9x2y + 3x y2 + 4y3)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2x2 + 6xy + y2

3x2 + 2xy + 4y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x2 + 6xy + y2

2x3 + 9x2y + 3x y2 + 4y3

Sy =
3x2 + 2xy + 4y2

2x3 + 9x2y + 3x y2 + 4y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (4y3 + 3y2x+ 9x2y + 2x3)
3 = c1

Which simplifies to

ln (4y3 + 3y2x+ 9x2y + 2x3)
3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2x2+6xy+y2

3x2+2xy+4y2
dS
dR

= 0

R = x

S = ln (2x3 + 9x2y + 3x y2 + 4y3)
3

Summary
The solution(s) found are the following

(1)ln (4y3 + 3y2x+ 9x2y + 2x3)
3 = c1
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Figure 1004: Slope field plot

Verification of solutions

ln (4y3 + 3y2x+ 9x2y + 2x3)
3 = c1

Verified OK.

22.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x2 + 2xy + 4y2

)
dy =

(
−2x2 − 6xy − y2

)
dx(

2x2 + 6xy + y2
)
dx+

(
3x2 + 2xy + 4y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x2 + 6xy + y2

N(x, y) = 3x2 + 2xy + 4y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x2 + 6xy + y2

)
= 6x+ 2y

And
∂N

∂x
= ∂

∂x

(
3x2 + 2xy + 4y2

)
= 6x+ 2y
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x2 + 6xy + y2 dx

(3)φ = 2
3x

3 + 3x2y + x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x2 + 2xy + f ′(y)

= x(3x+ 2y) + f ′(y)

But equation (2) says that ∂φ
∂y

= 3x2 + 2xy + 4y2. Therefore equation (4) becomes

(5)3x2 + 2xy + 4y2 = x(3x+ 2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 4y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
4y2
)
dy

f(y) = 4y3
3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 2
3x

3 + 3x2y + x y2 + 4
3y

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
2
3x

3 + 3x2y + x y2 + 4
3y

3

Summary
The solution(s) found are the following

(1)2x3

3 + 3x2y + y2x+ 4y3
3 = c1

Figure 1005: Slope field plot

Verification of solutions

2x3

3 + 3x2y + y2x+ 4y3
3 = c1

Verified OK.
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22.21.4 Maple step by step solution

Let’s solve
(3x2 + 2yx+ 4y2) y′ + 6yx+ y2 = −2x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
6x+ 2y = 6x+ 2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2x2 + 6xy + y2) dx+ f1(y)

• Evaluate integral
F (x, y) = 2x3

3 + 3x2y + x y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
3x2 + 2xy + 4y2 = 3x2 + 2xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 4y2

• Solve for f1(y)

f1(y) = 4y3
3

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 2
3x

3 + 3x2y + x y2 + 4
3y

3

• Substitute F (x, y) into the solution of the ODE
2
3x

3 + 3x2y + x y2 + 4
3y

3 = c1

• Solve for y
y =

(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3

4 − 11x2

4
(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3
− x

4 , y = −

(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3

8 + 11x2

8
(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3
− x

4 −

I
√
3


(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3

4 + 11x2

4
(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3


2 , y = −

(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3

8 + 11x2

8
(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3
− x

4 +
I
√
3


(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3

4 + 11x2

4
(
x3+24c1+2

√
333x6+12c1x3+144c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 432� �
dsolve((3*x^2+2*x*y(x)+4*y(x)^2)*diff(y(x),x)+2*x^2+6*x*y(x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =

(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 1
3 − 11x2c21(

x3c31+8+2
√

333c61x6+4x3c31+16
) 1

3
− c1x

4c1
y(x) =

−
11i

√
3 c21x2 + i

(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 2
3 √3− 11c21x2 + 2c1x

(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 1
3 +

(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 2
3

8
(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 1
3
c1

y(x)

=
11i

√
3 c21x2 + i

(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 2
3 √3 + 11c21x2 − 2c1x

(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 1
3 −

(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 2
3

8
(
x3c31 + 8 + 2

√
333c61x6 + 4x3c31 + 16

) 1
3
c1
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3 Solution by Mathematica
Time used: 41.45 (sec). Leaf size: 612� �
DSolve[(3 x^2+2 x y[x]+4 y[x]^2)y'[x]+2 x^2+6 x y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4

 3
√

x3 + 2
√
333x6 + 4e3c1x3 + 16e6c1 + 8e3c1

− 11x2

3
√

x3 + 2
√
333x6 + 4e3c1x3 + 16e6c1 + 8e3c1

− x


y(x) → 1

16

2i
(√

3 + i
)

3
√

x3 + 2
√
333x6 + 4e3c1x3 + 16e6c1 + 8e3c1

+
22
(
1 + i

√
3
)
x2

3
√

x3 + 2
√
333x6 + 4e3c1x3 + 16e6c1 + 8e3c1

− 4x


y(x) → 1

16

−2
(
1 + i

√
3
)

3
√
x3 + 2

√
333x6 + 4e3c1x3 + 16e6c1 + 8e3c1

+
22
(
1− i

√
3
)
x2

3
√

x3 + 2
√
333x6 + 4e3c1x3 + 16e6c1 + 8e3c1

− 4x


y(x) → 1

4

 3
√

6
√
37
√
x6 + x3 − 11x2

3
√

6
√
37
√
x6 + x3

− x


y(x) → 1

8

(−1− i
√
3
)

3
√

6
√
37
√
x6 + x3 +

11
(
1− i

√
3
)
x2

3
√
6
√
37
√
x6 + x3

− 2x


y(x) → 1

8

i
(√

3 + i
)

3
√

6
√
37
√
x6 + x3 +

11
(
1 + i

√
3
)
x2

3
√
6
√
37
√
x6 + x3

− 2x
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22.22 problem 630
22.22.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 6323
22.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6330

Internal problem ID [3878]
Internal file name [OUTPUT/3371_Sunday_June_05_2022_09_14_03_AM_82144075/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 22
Problem number: 630.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational]

(1− 3x+ 2y)2 y′ − (4 + 2x− 3y)2 = 0

22.22.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = (3Y (X) + 3y0 − 2X − 2x0 − 4)2

(1− 3X − 3x0 + 2Y (X) + 2y0)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 =
11
5

y0 =
14
5

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 4X2 − 12Y (X)X + 9Y (X)2

9X2 − 12Y (X)X + 4Y (X)2
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 4X2 − 12Y X + 9Y 2

9X2 − 12Y X + 4Y 2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 4X2 − 12Y X + 9Y 2 and N = 9X2 −
12Y X + 4Y 2 are both homogeneous and of the same order n = 2. Therefore this is a
homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE
using the substitution u = Y

X
, or Y = uX. Hence

dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = (3u− 2)2

(2u− 3)2

du
dX =

(3u(X)−2)2

(2u(X)−3)2 − u(X)
X

Or
d

dX
u(X)−

(3u(X)−2)2

(2u(X)−3)2 − u(X)
X

= 0

Or

4
(

d

dX
u(X)

)
u(X)2X−12

(
d

dX
u(X)

)
u(X)X+4u(X)3+9

(
d

dX
u(X)

)
X−21u(X)2+21u(X)−4 = 0

Or
4
(
u(X)− 3

2

)2

X

(
d

dX
u(X)

)
+ 4u(X)3 − 21u(X)2 + 21u(X)− 4 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −4u3 − 21u2 + 21u− 4
4X
(
u− 3

2

)2
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Where f(X) = − 1
X

and g(u) = 4u3−21u2+21u−4
4
(
u− 3

2
)2 . Integrating both sides gives

1
4u3−21u2+21u−4

4
(
u− 3

2
)2 du = − 1

X
dX

∫ 1
4u3−21u2+21u−4

4
(
u− 3

2
)2 du =

∫
− 1
X

dX

− ln (u− 1)
9 + 5 ln (u− 4)

9 + 5 ln (4u− 1)
9 = − ln (X) + c2

The above can be written as

− ln (u− 1) + 5 ln (u− 4) + 5 ln (4u− 1)
9 = − ln (X) + c2

− ln (u− 1) + 5 ln (u− 4) + 5 ln (4u− 1) = (9) (− ln (X) + c2)
= −9 ln (X) + 9c2

Raising both side to exponential gives

e− ln(u−1)+5 ln(u−4)+5 ln(4u−1) = e−9 ln(X)+9c2

Which simplifies to

(u− 4)5 (4u− 1)5

u− 1 = 9c2
X9

= c3
X9

Which simplifies to

u(X) = RootOf
(
1024_Z10 − 21760_Z9 + 190080_Z8 − 873120_Z7 + 2235540_Z6

− 3122577_Z5 + 2235540_Z4 − 873120_Z3 + 190080_Z2

+
(
−c3e9c2

X9 − 21760
)
_Z+ c3e9c2

X9 + 1024
)

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X RootOf
(
1024_Z10X9 − 21760_Z9X9 + 190080_Z8X9 − 873120_Z7X9 + 2235540_Z6X9 − 3122577_Z5X9 + 2235540_Z4X9 − 873120_Z3X9 + 190080_Z2X9 +

(
−c3e9c2 − 21760X9)_Z+ c3e9c2 + 1024X9)
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Using the solution for Y (X)

Y (X) = X RootOf
(
1024_Z10X9 − 21760_Z9X9 + 190080_Z8X9 − 873120_Z7X9 + 2235540_Z6X9 − 3122577_Z5X9 + 2235540_Z4X9 − 873120_Z3X9 + 190080_Z2X9 +

(
−c3e9c2 − 21760X9)_Z+ c3e9c2 + 1024X9)

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 14
5

X = x+ 11
5

Then the solution in y becomes

y − 14
5 =

(
x− 11

5

)
RootOf

((
2000000000x9 − 39600000000x8 + 348480000000x7 − 1788864000000x6 + 5903251200000x5 − 12987152640000x4 + 19047823872000x3 − 17959376793600x2 + 9877657236480x− 2414538435584

)
_Z10 +

(
−42500000000x9 + 841500000000x8 − 7405200000000x7 + 38013360000000x6 − 125444088000000x5 + 275976993600000x4 − 404766257280000x3 + 381636756864000x2 − 209900216275200x+ 51308941756160

)
_Z9 +

(
371250000000x9 − 7350750000000x8 + 64686600000000x7 − 332057880000000x6 + 1095791004000000x5 − 2410740208800000x4 + 3535752306240000x3 − 3333709317312000x2 + 1833540124521600x− 448198697105280

)
_Z8 +

(
−1705312500000x9 + 33765187500000x8 − 297133650000000x7 + 1525286070000000x6 − 5033444031000000x5 + 11073576868200000x4 − 16241246073360000x3 + 15313174869168000x2 − 8422246178042400x+ 2058771287965920

)
_Z7 +

(
4366289062500x9 − 86452523437500x8 + 760782206250000x7 − 3905348658750000x6 + 12887650573875000x5 − 28352831262525000x4 + 41584152518370000x3 − 39207915231606000x2 + 21564353377383300x− 5271286381138140

)
_Z6 +

(
−6098783203125x9 + 120755907421875x8 − 1062651985312500x7 + 5454946857937500x6 − 18001324631193750x5 + 39602914188626250x4 − 58084274143318500x3 + 54765172763700300x2 − 30120845020035165x+ 7362873227119707

)
_Z5 +

(
4366289062500x9 − 86452523437500x8 + 760782206250000x7 − 3905348658750000x6 + 12887650573875000x5 − 28352831262525000x4 + 41584152518370000x3 − 39207915231606000x2 + 21564353377383300x− 5271286381138140

)
_Z4 +

(
−1705312500000x9 + 33765187500000x8 − 297133650000000x7 + 1525286070000000x6 − 5033444031000000x5 + 11073576868200000x4 − 16241246073360000x3 + 15313174869168000x2 − 8422246178042400x+ 2058771287965920

)
_Z3 +

(
371250000000x9 − 7350750000000x8 + 64686600000000x7 − 332057880000000x6 + 1095791004000000x5 − 2410740208800000x4 + 3535752306240000x3 − 3333709317312000x2 + 1833540124521600x− 448198697105280

)
_Z2 +

(
−1953125c3e9c2 − 42500000000x9 + 841500000000x8 − 7405200000000x7 + 38013360000000x6 − 125444088000000x5 + 275976993600000x4 − 404766257280000x3 + 381636756864000x2 − 209900216275200x+ 51308941756160

)
_Z+ 1953125c3e9c2 + 2000000000x9 − 39600000000x8 + 348480000000x7 − 1788864000000x6 + 5903251200000x5 − 12987152640000x4 + 19047823872000x3 − 17959376793600x2 + 9877657236480x− 2414538435584

)
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Summary
The solution(s) found are the following

(1)y − 14
5 =

(
x− 11

5

)
RootOf

((
2000000000x9 − 39600000000x8 + 348480000000x7

− 1788864000000x6 + 5903251200000x5 − 12987152640000x4 + 19047823872000x3

− 17959376793600x2 + 9877657236480x− 2414538435584
)
_Z10

+
(
−42500000000x9 + 841500000000x8 − 7405200000000x7 + 38013360000000x6

− 125444088000000x5 + 275976993600000x4 − 404766257280000x3

+ 381636756864000x2 − 209900216275200x+ 51308941756160
)
_Z9

+
(
371250000000x9 − 7350750000000x8 + 64686600000000x7 − 332057880000000x6

+ 1095791004000000x5 − 2410740208800000x4 + 3535752306240000x3

− 3333709317312000x2 + 1833540124521600x− 448198697105280
)
_Z8

+
(
−1705312500000x9 + 33765187500000x8 − 297133650000000x7

+ 1525286070000000x6 − 5033444031000000x5 + 11073576868200000x4

− 16241246073360000x3 + 15313174869168000x2 − 8422246178042400x
+ 2058771287965920

)
_Z7

+
(
4366289062500x9 − 86452523437500x8 + 760782206250000x7

−3905348658750000x6+12887650573875000x5−28352831262525000x4+41584152518370000x3

−39207915231606000x2+21564353377383300x−5271286381138140
)
_Z6+

(
−6098783203125x9

+120755907421875x8−1062651985312500x7+5454946857937500x6−18001324631193750x5

+39602914188626250x4−58084274143318500x3+54765172763700300x2−30120845020035165x
+7362873227119707

)
_Z5+

(
4366289062500x9−86452523437500x8+760782206250000x7

−3905348658750000x6+12887650573875000x5−28352831262525000x4+41584152518370000x3

−39207915231606000x2+21564353377383300x−5271286381138140
)
_Z4+

(
−1705312500000x9

+33765187500000x8−297133650000000x7+1525286070000000x6−5033444031000000x5

+11073576868200000x4−16241246073360000x3+15313174869168000x2−8422246178042400x
+2058771287965920

)
_Z3+

(
371250000000x9−7350750000000x8+64686600000000x7

−332057880000000x6+1095791004000000x5−2410740208800000x4+3535752306240000x3

−3333709317312000x2+1833540124521600x−448198697105280
)
_Z2+

(
−1953125c3e9c2

−42500000000x9+841500000000x8−7405200000000x7+38013360000000x6−125444088000000x5

+275976993600000x4−404766257280000x3+381636756864000x2−209900216275200x
+51308941756160

)
_Z+1953125c3e9c2+2000000000x9−39600000000x8+348480000000x7

−1788864000000x6+5903251200000x5−12987152640000x4+19047823872000x3−17959376793600x2

+ 9877657236480x− 2414538435584
)
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Figure 1006: Slope field plot
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Verification of solutions

y − 14
5 =

(
x− 11

5

)
RootOf

((
2000000000x9 − 39600000000x8 + 348480000000x7

− 1788864000000x6 + 5903251200000x5 − 12987152640000x4 + 19047823872000x3

− 17959376793600x2 + 9877657236480x− 2414538435584
)
_Z10

+
(
−42500000000x9 + 841500000000x8 − 7405200000000x7 + 38013360000000x6

− 125444088000000x5 + 275976993600000x4 − 404766257280000x3

+ 381636756864000x2 − 209900216275200x+ 51308941756160
)
_Z9

+
(
371250000000x9 − 7350750000000x8 + 64686600000000x7 − 332057880000000x6

+ 1095791004000000x5 − 2410740208800000x4 + 3535752306240000x3

− 3333709317312000x2 + 1833540124521600x− 448198697105280
)
_Z8

+
(
−1705312500000x9 + 33765187500000x8 − 297133650000000x7

+ 1525286070000000x6 − 5033444031000000x5 + 11073576868200000x4

− 16241246073360000x3 + 15313174869168000x2 − 8422246178042400x
+ 2058771287965920

)
_Z7

+
(
4366289062500x9 − 86452523437500x8 + 760782206250000x7

−3905348658750000x6+12887650573875000x5−28352831262525000x4+41584152518370000x3

−39207915231606000x2+21564353377383300x−5271286381138140
)
_Z6+

(
−6098783203125x9

+120755907421875x8−1062651985312500x7+5454946857937500x6−18001324631193750x5

+39602914188626250x4−58084274143318500x3+54765172763700300x2−30120845020035165x
+7362873227119707

)
_Z5+

(
4366289062500x9−86452523437500x8+760782206250000x7

−3905348658750000x6+12887650573875000x5−28352831262525000x4+41584152518370000x3

−39207915231606000x2+21564353377383300x−5271286381138140
)
_Z4+

(
−1705312500000x9

+33765187500000x8−297133650000000x7+1525286070000000x6−5033444031000000x5

+11073576868200000x4−16241246073360000x3+15313174869168000x2−8422246178042400x
+2058771287965920

)
_Z3+

(
371250000000x9−7350750000000x8+64686600000000x7

−332057880000000x6+1095791004000000x5−2410740208800000x4+3535752306240000x3

−3333709317312000x2+1833540124521600x−448198697105280
)
_Z2+

(
−1953125c3e9c2

−42500000000x9+841500000000x8−7405200000000x7+38013360000000x6−125444088000000x5

+275976993600000x4−404766257280000x3+381636756864000x2−209900216275200x
+51308941756160

)
_Z+1953125c3e9c2+2000000000x9−39600000000x8+348480000000x7

−1788864000000x6+5903251200000x5−12987152640000x4+19047823872000x3−17959376793600x2

+ 9877657236480x− 2414538435584
)

Verified OK.
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22.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 4x2 − 12xy + 9y2 + 16x− 24y + 16
9x2 − 12xy + 4y2 − 6x+ 4y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(4x2 − 12xy + 9y2 + 16x− 24y + 16) (b3 − a2)

9x2 − 12xy + 4y2 − 6x+ 4y + 1

− (4x2 − 12xy + 9y2 + 16x− 24y + 16)2 a3
(9x2 − 12xy + 4y2 − 6x+ 4y + 1)2

−
(

8x− 12y + 16
9x2 − 12xy + 4y2 − 6x+ 4y + 1

− (4x2 − 12xy + 9y2 + 16x− 24y + 16) (18x− 12y − 6)
(9x2 − 12xy + 4y2 − 6x+ 4y + 1)2

)
(xa2

+ ya3 + a1)−
(

−24− 12x+ 18y
9x2 − 12xy + 4y2 − 6x+ 4y + 1

− (4x2 − 12xy + 9y2 + 16x− 24y + 16) (−12x+ 8y + 4)
(9x2 − 12xy + 4y2 − 6x+ 4y + 1)2

)
(xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−36x4a2 + 16x4a3 − 141x4b2 − 36x4b3 − 96x3ya2 − 96x3ya3 + 346x3yb2 + 96x3yb3 + 111x2y2a2 + 276x2y2a3 − 276x2y2b2 − 111x2y2b3 − 96x y3a2 − 346x y3a3 + 96x y3b2 + 96x y3b3 + 36y4a2 + 141y4a3 − 16y4b2 − 36y4b3 − 48x3a2 + 128x3a3 − 60x3b1 + 140x3b2 − 120x3b3 + 60x2ya1 + 144x2ya2 − 744x2ya3 + 130x2yb1 − 452x2yb2 + 352x2yb3 − 130x y2a1 + 32x y2a2 + 1328x y2a3 − 60x y2b1 + 276x y2b2 − 486x y2b3 + 60y3a1 − 60y3a2 − 650y3a3 − 32y3b2 + 192y3b3 − 168x2a1 − 228x2a2 + 384x2a3 + 32x2b1 + 206x2b2 − 52x2b3 + 464xya1 + 104xya2 − 1432xya3 − 236xyb1 − 38xyb2 + 256xyb3 − 218y2a1 − 23y2a2 + 964y2a3 + 132y2b1 − 24y2b2 − 87y2b3 − 280xa1 + 32xa2 + 512xa3 + 260xb1 − 76xb2 + 80xb3 + 100ya1 + 40ya2 − 656ya3 − 110yb1 − 8yb2 − 128yb3 + 112a1 + 16a2 + 256a3 − 88b1 − b2 − 16b3
(9x2 − 12xy + 4y2 − 6x+ 4y + 1)2

= 0
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Setting the numerator to zero gives

(6E)

−36x4a2 − 16x4a3 + 141x4b2 + 36x4b3 + 96x3ya2 + 96x3ya3
− 346x3yb2 − 96x3yb3 − 111x2y2a2 − 276x2y2a3 + 276x2y2b2
+ 111x2y2b3 + 96x y3a2 + 346x y3a3 − 96x y3b2 − 96x y3b3
− 36y4a2 − 141y4a3 + 16y4b2 + 36y4b3 + 48x3a2 − 128x3a3
+ 60x3b1 − 140x3b2 + 120x3b3 − 60x2ya1 − 144x2ya2 + 744x2ya3
− 130x2yb1 + 452x2yb2 − 352x2yb3 + 130x y2a1 − 32x y2a2
− 1328x y2a3 + 60x y2b1 − 276x y2b2 + 486x y2b3 − 60y3a1
+ 60y3a2 + 650y3a3 + 32y3b2 − 192y3b3 + 168x2a1 + 228x2a2
− 384x2a3 − 32x2b1 − 206x2b2 + 52x2b3 − 464xya1 − 104xya2
+ 1432xya3 + 236xyb1 + 38xyb2 − 256xyb3 + 218y2a1 + 23y2a2
−964y2a3−132y2b1+24y2b2+87y2b3+280xa1−32xa2−512xa3
− 260xb1 + 76xb2 − 80xb3 − 100ya1 − 40ya2 + 656ya3 + 110yb1
+ 8yb2 + 128yb3 − 112a1 − 16a2 − 256a3 + 88b1 + b2 + 16b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−36a2v41 + 96a2v31v2 − 111a2v21v22 + 96a2v1v32 − 36a2v42 − 16a3v41
+ 96a3v31v2 − 276a3v21v22 + 346a3v1v32 − 141a3v42 + 141b2v41
−346b2v31v2+276b2v21v22 −96b2v1v32 +16b2v42 +36b3v41 −96b3v31v2
+111b3v21v22−96b3v1v32+36b3v42−60a1v21v2+130a1v1v22−60a1v32
+48a2v31 −144a2v21v2−32a2v1v22 +60a2v32 −128a3v31 +744a3v21v2
− 1328a3v1v22 + 650a3v32 + 60b1v31 − 130b1v21v2 + 60b1v1v22
−140b2v31+452b2v21v2−276b2v1v22+32b2v32+120b3v31−352b3v21v2
+486b3v1v22−192b3v32+168a1v21−464a1v1v2+218a1v22+228a2v21
−104a2v1v2+23a2v22−384a3v21+1432a3v1v2−964a3v22−32b1v21
+ 236b1v1v2 − 132b1v22 − 206b2v21 + 38b2v1v2 + 24b2v22 + 52b3v21
− 256b3v1v2 + 87b3v22 + 280a1v1 − 100a1v2 − 32a2v1 − 40a2v2
− 512a3v1 + 656a3v2 − 260b1v1 + 110b1v2 + 76b2v1 + 8b2v2
−80b3v1+128b3v2−112a1−16a2−256a3+88b1+ b2+16b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(−36a2−16a3+141b2+36b3) v41+(96a2+96a3−346b2−96b3) v31v2
+ (48a2 − 128a3 + 60b1 − 140b2 + 120b3) v31
+ (−111a2 − 276a3 + 276b2 + 111b3) v21v22
+ (−60a1 − 144a2 + 744a3 − 130b1 + 452b2 − 352b3) v21v2
+ (168a1 + 228a2 − 384a3 − 32b1 − 206b2 + 52b3) v21
+ (96a2 + 346a3 − 96b2 − 96b3) v1v32
+ (130a1 − 32a2 − 1328a3 + 60b1 − 276b2 + 486b3) v1v22
+ (−464a1 − 104a2 + 1432a3 + 236b1 + 38b2 − 256b3) v1v2
+ (280a1 − 32a2 − 512a3 − 260b1 + 76b2 − 80b3) v1
+ (−36a2 − 141a3 + 16b2 + 36b3) v42
+ (−60a1 + 60a2 + 650a3 + 32b2 − 192b3) v32
+ (218a1 + 23a2 − 964a3 − 132b1 + 24b2 + 87b3) v22
+ (−100a1 − 40a2 + 656a3 + 110b1 + 8b2 + 128b3) v2
− 112a1 − 16a2 − 256a3 + 88b1 + b2 + 16b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−111a2 − 276a3 + 276b2 + 111b3 = 0
−36a2 − 141a3 + 16b2 + 36b3 = 0
−36a2 − 16a3 + 141b2 + 36b3 = 0
96a2 + 96a3 − 346b2 − 96b3 = 0
96a2 + 346a3 − 96b2 − 96b3 = 0

−60a1 + 60a2 + 650a3 + 32b2 − 192b3 = 0
48a2 − 128a3 + 60b1 − 140b2 + 120b3 = 0

−464a1 − 104a2 + 1432a3 + 236b1 + 38b2 − 256b3 = 0
−112a1 − 16a2 − 256a3 + 88b1 + b2 + 16b3 = 0

−100a1 − 40a2 + 656a3 + 110b1 + 8b2 + 128b3 = 0
−60a1 − 144a2 + 744a3 − 130b1 + 452b2 − 352b3 = 0
130a1 − 32a2 − 1328a3 + 60b1 − 276b2 + 486b3 = 0
168a1 + 228a2 − 384a3 − 32b1 − 206b2 + 52b3 = 0
218a1 + 23a2 − 964a3 − 132b1 + 24b2 + 87b3 = 0
280a1 − 32a2 − 512a3 − 260b1 + 76b2 − 80b3 = 0
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Solving the above equations for the unknowns gives

a1 = −11b3
5

a2 = b3

a3 = 0

b1 = −14b3
5

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 11
5

η = y − 14
5

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y − 14
5 −

(
4x2 − 12xy + 9y2 + 16x− 24y + 16
9x2 − 12xy + 4y2 − 6x+ 4y + 1

)(
x− 11

5

)
= −20x3 + 105x2y − 105x y2 + 20y3 − 162x2 + 126xy + 63y2 + 180x− 315y + 162

45x2 − 60xy + 20y2 − 30x+ 20y + 5
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−20x3+105x2y−105x y2+20y3−162x2+126xy+63y2+180x−315y+162
45x2−60xy+20y2−30x+20y+5

dy

Which results in

S = − ln (−5x− 3 + 5y)
9 + 5 ln (−4x+ 6 + y)

9 + 5 ln (−x− 9 + 4y)
9

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4x2 − 12xy + 9y2 + 16x− 24y + 16
9x2 − 12xy + 4y2 − 6x+ 4y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
20
(
2 + x− 3y

2

)2
(−5y + 3 + 5x) (−y − 6 + 4x) (−4y + 9 + x)

Sy = −
45
(
−1

3 + x− 2y
3

)2
(−5y + 3 + 5x) (−y − 6 + 4x) (−4y + 9 + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−5x+ 5y − 3)
9 + 5 ln (−4x+ 6 + y)

9 + 5 ln (−x− 9 + 4y)
9 = c1

Which simplifies to

− ln (−5x+ 5y − 3)
9 + 5 ln (−4x+ 6 + y)

9 + 5 ln (−x− 9 + 4y)
9 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4x2−12xy+9y2+16x−24y+16
9x2−12xy+4y2−6x+4y+1

dS
dR

= 0

R = x

S = − ln (−5x− 3 + 5y)
9 + 5 ln (−4x+ 6 + y)

9 + 5 ln (−x− 9 + 4y)
9

Summary
The solution(s) found are the following

(1)− ln (−5x+ 5y − 3)
9 + 5 ln (−4x+ 6 + y)

9 + 5 ln (−x− 9 + 4y)
9 = c1
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Figure 1007: Slope field plot

Verification of solutions

− ln (−5x+ 5y − 3)
9 + 5 ln (−4x+ 6 + y)

9 + 5 ln (−x− 9 + 4y)
9 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 2.437 (sec). Leaf size: 1337� �
dsolve((1-3*x+2*y(x))^2*diff(y(x),x) = (4+2*x-3*y(x))^2,y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 60.209 (sec). Leaf size: 3501� �
DSolve[(1-3 x+2 y[x])^2 y'[x]==(4+2 x-3 y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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23.1 problem 631
23.1.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6339
23.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6342

Internal problem ID [3879]
Internal file name [OUTPUT/3372_Sunday_June_05_2022_09_14_09_AM_1620389/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 631.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

(
1− 3x2y + 6y2

)
y′ − 3y2x = −x2

23.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−3x2y + 6y2 + 1
)
dy =

(
3x y2 − x2) dx(

−3x y2 + x2) dx+(−3x2y + 6y2 + 1
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x y2 + x2

N(x, y) = −3x2y + 6y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3x y2 + x2)

= −6xy

And
∂N

∂x
= ∂

∂x

(
−3x2y + 6y2 + 1

)
= −6xy

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x y2 + x2 dx

(3)φ = −3
2y

2x2 + 1
3x

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3x2y + f ′(y)

But equation (2) says that ∂φ
∂y

= −3x2y + 6y2 + 1. Therefore equation (4) becomes

(5)−3x2y + 6y2 + 1 = −3x2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 6y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
6y2 + 1

)
dy

f(y) = 2y3 + y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −3
2y

2x2 + 1
3x

3 + 2y3 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3
2y

2x2 + 1
3x

3 + 2y3 + y
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Summary
The solution(s) found are the following

(1)−3y2x2

2 + x3

3 + 2y3 + y = c1

Figure 1008: Slope field plot

Verification of solutions

−3y2x2

2 + x3

3 + 2y3 + y = c1

Verified OK.

23.1.2 Maple step by step solution

Let’s solve
(1− 3x2y + 6y2) y′ − 3y2x = −x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−6xy = −6xy

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−3x y2 + x2) dx+ f1(y)

• Evaluate integral

F (x, y) = −3y2x2

2 + x3

3 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−3x2y + 6y2 + 1 = −3x2y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 6y2 + 1

• Solve for f1(y)
f1(y) = 2y3 + y

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −3

2y
2x2 + 1

3x
3 + 2y3 + y

• Substitute F (x, y) into the solution of the ODE
−3

2y
2x2 + 1

3x
3 + 2y3 + y = c1

• Solve for y
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y =

(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3

12 −
12
(

1
6−

x4
16

)
(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3
+ x2

4 , y = −

(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3

24 +
6
(

1
6−

x4
16

)
(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3
+ x2

4 −

I
√
3


(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3

12 +
12
(

1
6−x4

16

)
(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3


2 , y = −

(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3

24 +
6
(

1
6−

x4
16

)
(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3
+ x2

4 +
I
√
3


(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3

12 +
12
(

1
6−x4

16

)
(
−108x2−144x3+432c1+27x6+12

√
−54x9+162c1x6+144x6+216x5−864c1x3−27x4−648c1x2+1296c21+96

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 771� �
dsolve((1-3*x^2*y(x)+6*y(x)^2)*diff(y(x),x)+x^2-3*x*y(x)^2 = 0,y(x), singsol=all)� �
y(x)

=

(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 − 162c1x6 + 144x6 + 216x5 + 864c1x3 − 27x4 + 648c1x2 + 1296c21 + 96

) 1
3

12
+ 3x4 − 8

4
(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 − 162c1x6 + 144x6 + 216x5 + 864c1x3 − 27x4 + 648c1x2 + 1296c21 + 96

) 1
3

+ x2

4
y(x)

=
24 + i

(
−24 + 9x4 −

(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 2
3
)√

3− 9x4 + 6x2
(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 1
3 −

(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 2
3

24
(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 1
3

y(x)

=
24 + i

(
−9x4 +

(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 2
3 + 24

)√
3− 9x4 + 6x2

(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 1
3 −

(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 2
3

24
(
−108x2 − 144x3 − 432c1 + 27x6 + 12

√
−54x9 + (−162c1 + 144)x6 + 216x5 − 27x4 + 864c1x3 + 648c1x2 + 1296c21 + 96

) 1
3
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3 Solution by Mathematica
Time used: 7.652 (sec). Leaf size: 570� �
DSolve[(1-3 x^2 y[x]+6 y[x]^2)y'[x]+x^2-3 x y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → x2

4

−

3

√√√√−27x6

4 + 36x3 + 27x2 +

√
4
(
6− 9x4

4

)3

+
(
−27x6

4 + 36x3 + 27x2 + 108c1
)

2 + 108c1

6 3
√
2

+
6− 9x4

4

3 22/3 3

√√√√−27x6

4 + 36x3 + 27x2 +

√
4
(
6− 9x4

4

)3

+
(
−27x6

4 + 36x3 + 27x2 + 108c1
)

2 + 108c1

y(x) → x2

4

+

(
1− i

√
3
) 3

√√√√−27x6

4 + 36x3 + 27x2 +

√
4
(
6− 9x4

4

)3

+
(
−27x6

4 + 36x3 + 27x2 + 108c1
)

2 + 108c1

12 3
√
2

−

(
1 + i

√
3
) (

6− 9x4

4

)
6 22/3 3

√√√√−27x6

4 + 36x3 + 27x2 +

√
4
(
6− 9x4

4

)3

+
(
−27x6

4 + 36x3 + 27x2 + 108c1
)

2 + 108c1

y(x) → x2

4

+

(
1 + i

√
3
) 3

√√√√−27x6

4 + 36x3 + 27x2 +

√
4
(
6− 9x4

4

)3

+
(
−27x6

4 + 36x3 + 27x2 + 108c1
)

2 + 108c1

12 3
√
2

−

(
1− i

√
3
) (

6− 9x4

4

)
6 22/3 3

√√√√−27x6

4 + 36x3 + 27x2 +

√
4
(
6− 9x4

4

)3

+
(
−27x6

4 + 36x3 + 27x2 + 108c1
)

2 + 108c1
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23.2 problem 632
23.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6347
23.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6350

Internal problem ID [3880]
Internal file name [OUTPUT/3373_Sunday_June_05_2022_09_14_13_AM_33642125/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 632.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`]]

(x− 6y)2 y′ + 2yx− 6y2 = −a

23.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

(x− 6y)2
)
dy =

(
−2xy + 6y2 − a

)
dx(

2xy − 6y2 + a
)
dx+

(
(x− 6y)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy − 6y2 + a

N(x, y) = (x− 6y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2xy − 6y2 + a

)
= 2x− 12y

And
∂N

∂x
= ∂

∂x

(
(x− 6y)2

)
= 2x− 12y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2xy − 6y2 + a dx

(3)φ = x
(
xy − 6y2 + a

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x(x− 12y) + f ′(y)

But equation (2) says that ∂φ
∂y

= (x− 6y)2. Therefore equation (4) becomes

(5)(x− 6y)2 = x(x− 12y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 36y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
36y2

)
dy

f(y) = 12y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x
(
xy − 6y2 + a

)
+ 12y3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
xy − 6y2 + a

)
+ 12y3
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Summary
The solution(s) found are the following

(1)x
(
yx− 6y2 + a

)
+ 12y3 = c1

Verification of solutions

x
(
yx− 6y2 + a

)
+ 12y3 = c1

Verified OK.

23.2.2 Maple step by step solution

Let’s solve
(x− 6y)2 y′ + 2yx− 6y2 = −a

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2x− 12y = 2x− 12y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2xy − 6y2 + a) dx+ f1(y)

• Evaluate integral
F (x, y) = x2y − 6x y2 + ax+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
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(x− 6y)2 = x2 − 12xy + d
dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = (x− 6y)2 − x2 + 12xy

• Solve for f1(y)
f1(y) = 12y3

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x2y − 6x y2 + 12y3 + ax

• Substitute F (x, y) into the solution of the ODE
x2y − 6x y2 + 12y3 + ax = c1

• Solve for y{
y =

(
−x3−18ax+18c1

) 1
3

6 + x
6 , y = −

(
−x3−18ax+18c1

) 1
3

12 − I
√
3
(
−x3−18ax+18c1

) 1
3

12 + x
6 , y = −

(
−x3−18ax+18c1

) 1
3

12 + I
√
3
(
−x3−18ax+18c1

) 1
3

12 + x
6

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 115� �
dsolve((x-6*y(x))^2*diff(y(x),x)+a+2*x*y(x)-6*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = (−x3 − 18ax− 18c1)
1
3

6 + x

6

y(x) = −(−x3 − 18ax− 18c1)
1
3

12 − i
√
3 (−x3 − 18ax− 18c1)

1
3

12 + x

6

y(x) = −(−x3 − 18ax− 18c1)
1
3

12 + i
√
3 (−x3 − 18ax− 18c1)

1
3

12 + x

6

3 Solution by Mathematica
Time used: 0.663 (sec). Leaf size: 115� �
DSolve[(x-6 y[x])^2 y'[x]+a+2 x y[x]-6 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6

(
x+ 3

√
−18ax− x3 + 18c1

)
y(x) → x

6 + 1
12i
(√

3 + i
)

3
√

−18ax− x3 + 18c1

y(x) → x

6 − 1
12

(
1 + i

√
3
)

3
√
−18ax− x3 + 18c1

6352



23.3 problem 633
23.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6353
23.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6354
23.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6359

Internal problem ID [3881]
Internal file name [OUTPUT/3374_Sunday_June_05_2022_09_14_17_AM_18256558/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 633.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x2 + ay2

)
y′ − yx = 0

23.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + au(x)2 x2) (u′(x)x+ u(x))− u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u3a

x (a u2 + 1)

Where f(x) = −a
x
and g(u) = u3

a u2+1 . Integrating both sides gives

1
u3

a u2+1
du = −a

x
dx
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∫ 1
u3

a u2+1
du =

∫
−a

x
dx

− 1
2u2 + a ln (u) = −a ln (x) + c2

The solution is

− 1
2u (x)2

+ a ln (u(x)) + a ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− x2

2y2 + a ln
(y
x

)
+ a ln (x)− c2 = 0

− x2

2y2 + a ln
(y
x

)
+ a ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)− x2

2y2 + a ln
(y
x

)
+ a ln (x)− c2 = 0

Verification of solutions

− x2

2y2 + a ln
(y
x

)
+ a ln (x)− c2 = 0

Verified OK.

23.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = yx

a y2 + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
yx(b3 − a2)
a y2 + x2 − y2x2a3

(a y2 + x2)2
−
(

y

a y2 + x2 −
2y x2

(a y2 + x2)2
)
(xa2+ya3+a1)

−
(

x

a y2 + x2 − 2y2xa
(a y2 + x2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

a2y4b2 + 3a x2y2b2 − 2ax y3a2 + 2ax y3b3 − a y4a3 + ax y2b1 − a y3a1 − x3b1 + x2ya1

(a y2 + x2)2
=0

Setting the numerator to zero gives

a2y4b2 + 3a x2y2b2 − 2ax y3a2 + 2ax y3b3 − a y4a3 + ax y2b1 − a y3a1 − x3b1 + x2ya1 = 0
(6E)

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

a2b2v
4
2 − 2aa2v1v32 − aa3v

4
2 + 3ab2v21v22 + 2ab3v1v32 − aa1v

3
2 + ab1v1v

2
2 + a1v

2
1v2 − b1v

3
1 = 0
(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

−b1v
3
1 +3ab2v21v22 +a1v

2
1v2+(−2aa2+2ab3) v1v32 +ab1v1v

2
2 +
(
a2b2−aa3

)
v42 −aa1v

3
2 = 0
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
ab1 = 0
−b1 = 0

−aa1 = 0
3ab2 = 0

−2aa2 + 2ab3 = 0
a2b2 − aa3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

yx

a y2 + x2

)
(x)

= a y3

a y2 + x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a y3

a y2+x2

dy

Which results in

S = − x2

2a y2 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = yx

a y2 + x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x

a y2

Sy =
a y2 + x2

a y3
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y) ay2 − x2

2ay2 = c1

Which simplifies to

2 ln (y) ay2 − x2

2ay2 = c1

Which gives

y = e
LambertW

(
x2e−2c1

a

)
2 +c1

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
x2e−2c1

a

)
2 +c1

Verification of solutions

y = e
LambertW

(
x2e−2c1

a

)
2 +c1

Verified OK.
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23.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
a y2 + x2) dy = (xy) dx

(−xy) dx+
(
a y2 + x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy

N(x, y) = a y2 + x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xy)

= −x

And

∂N

∂x
= ∂

∂x

(
a y2 + x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

a y2 + x2 ((−x)− (2x))

= − 3x
a y2 + x2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

xy
((2x)− (−x))

= −3
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy
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The result of integrating gives

µ = e−3 ln(y)

= 1
y3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3

(−xy)

= − x

y2

And

N = µN

= 1
y3
(
a y2 + x2)

= a y2 + x2

y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

− x

y2

)
+
(
a y2 + x2

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

y2
dx

(3)φ = − x2

2y2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= a y2+x2

y3
. Therefore equation (4) becomes

(5)a y2 + x2

y3
= x2

y3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a

y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
a

y

)
dy

f(y) = a ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x2

2y2 + a ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x2

2y2 + a ln (y)

The solution becomes

y = e
aLambertW

x2e−
2c1
a

a

+2c1

2a
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Summary
The solution(s) found are the following

(1)y = e
aLambertW

x2e−
2c1
a

a

+2c1

2a

Verification of solutions

y = e
aLambertW

x2e−
2c1
a

a

+2c1

2a

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve((x^2+a*y(x)^2)*diff(y(x),x) = x*y(x),y(x), singsol=all)� �

y(x) =
√

1
aLambertW

(
c1x2

a

) x
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3 Solution by Mathematica
Time used: 13.5 (sec). Leaf size: 71� �
DSolve[(x^2+a y[x]^2)y'[x]==x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

√
a

√
W

(
x2e−

2c1
a

a

)
y(x) → x

√
a

√
W

(
x2e−

2c1
a

a

)
y(x) → 0
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23.4 problem 634
23.4.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6365
23.4.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6367

Internal problem ID [3882]
Internal file name [OUTPUT/3375_Sunday_June_05_2022_09_14_21_AM_89473952/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 634.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x2 + yx+ ay2

)
y′ − yx− y2 = x2a

23.4.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + u(x)x2 + au(x)2 x2) (u′(x)x+ u(x))− u(x)x2 − u(x)2 x2 = x2a

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − a(u3 − 1)
x (a u2 + u+ 1)

Where f(x) = −a
x
and g(u) = u3−1

a u2+u+1 . Integrating both sides gives

1
u3−1

a u2+u+1
du = −a

x
dx
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∫ 1
u3−1

a u2+u+1
du =

∫
−a

x
dx

(a− 1) ln (u2 + u+ 1)
3 +

(
2
3 + a

3

)
ln (u− 1) = −a ln (x) + c2

The above can be written as

(a− 1) ln (u2 + u+ 1) + (2 + a) ln (u− 1)
3 = −a ln (x) + c2

(a− 1) ln
(
u2 + u+ 1

)
+ (2 + a) ln (u− 1) = (3) (−a ln (x) + c2)

= −3a ln (x) + 3c2

Raising both side to exponential gives

e(a−1) ln
(
u2+u+1

)
+(2+a) ln(u−1) = e−3a ln(x)+3c2

Which simplifies to (
u2 + u+ 1

)a−1 (u− 1)2+a = 3c2e−3a ln(x)

= c3e−3a ln(x)

Which simplifies to

u(x) = RootOf
(
−
(
_Z2 + 3_Z+ 3

)a−1_Z2_Za + c3x
−3ae3c2

)
+ 1

Therefore the solution y is

y = xu

= x
(
RootOf

(
−
(
_Z2 + 3_Z+ 3

)a−1_Z2_Zax3a + c3e3c2
)
+ 1
)

Summary
The solution(s) found are the following

(1)y = x
(
RootOf

(
−
(
_Z2 + 3_Z+ 3

)a−1_Z2_Zax3a + c3e3c2
)
+ 1
)

Verification of solutions

y = x
(
RootOf

(
−
(
_Z2 + 3_Z+ 3

)a−1_Z2_Zax3a + c3e3c2
)
+ 1
)

Verified OK.
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23.4.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2a+ xy + y2

a y2 + x2 + xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x2a+ xy + y2) (b3 − a2)

a y2 + x2 + xy
− (x2a+ xy + y2)2 a3

(a y2 + x2 + xy)2

−
(

2ax+ y

a y2 + x2 + xy
− (x2a+ xy + y2) (2x+ y)

(a y2 + x2 + xy)2
)
(xa2 + ya3 + a1)

−
(

x+ 2y
a y2 + x2 + xy

− (x2a+ xy + y2) (2ya+ x)
(a y2 + x2 + xy)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x4a3 − 2a2x3yb2 + 3a2x2y2a2 − 3a2x2y2b3 + 2a2x y3a3 − a2y4b2 − 2a2x2yb1 + 2a2x y2a1 + a x4a2 − a x4b2 − a x4b3 + 2a x3ya2 + 2a x3ya3 − 2a x3yb3 + 3a x2y2a3 − 3a x2y2b2 + 2ax y3a2 − 2ax y3b2 − 2ax y3b3 + a y4a2 + a y4a3 − a y4b3 − a x3b1 + a x2ya1 − ax y2b1 + a y3a1 + x3b1 − x2ya1 + 2x2yb1 − 2x y2a1 + x y2b1 − y3a1

(a y2 + x2 + xy)2
= 0

Setting the numerator to zero gives

(6E)
−a2x4a3 + 2a2x3yb2 − 3a2x2y2a2 + 3a2x2y2b3 − 2a2x y3a3 + a2y4b2
+ 2a2x2yb1 − 2a2x y2a1 − a x4a2 + a x4b2 + a x4b3 − 2a x3ya2
− 2a x3ya3 + 2a x3yb3 − 3a x2y2a3 + 3a x2y2b2 − 2ax y3a2 + 2ax y3b2
+ 2ax y3b3 − a y4a2 − a y4a3 + a y4b3 + a x3b1 − a x2ya1 + ax y2b1
− a y3a1 − x3b1 + x2ya1 − 2x2yb1 + 2x y2a1 − x y2b1 + y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−3a2a2v21v22 − a2a3v
4
1 − 2a2a3v1v32 + 2a2b2v31v2 + a2b2v

4
2 + 3a2b3v21v22

− 2a2a1v1v22 + 2a2b1v21v2 − aa2v
4
1 − 2aa2v31v2 − 2aa2v1v32 − aa2v

4
2

− 2aa3v31v2 − 3aa3v21v22 − aa3v
4
2 + ab2v

4
1 + 3ab2v21v22 + 2ab2v1v32

+ ab3v
4
1 + 2ab3v31v2 + 2ab3v1v32 + ab3v

4
2 − aa1v

2
1v2 − aa1v

3
2 + ab1v

3
1

+ ab1v1v
2
2 + a1v

2
1v2 + 2a1v1v22 + a1v

3
2 − b1v

3
1 − 2b1v21v2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(
−a2a3 − aa2 + ab2 + ab3

)
v41 +

(
2a2b2 − 2aa2 − 2aa3 + 2ab3

)
v31v2

+ (ab1 − b1) v31 +
(
−3a2a2 + 3a2b3 − 3aa3 + 3ab2

)
v21v

2
2

+
(
2a2b1 − aa1 + a1 − 2b1

)
v21v2 +

(
−2a2a3 − 2aa2 + 2ab2 + 2ab3

)
v1v

3
2

+
(
−2a2a1 + ab1 + 2a1 − b1

)
v1v

2
2

+
(
a2b2 − aa2 − aa3 + ab3

)
v42 + (−aa1 + a1) v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−aa1 + a1 = 0
ab1 − b1 = 0

2a2b1 − aa1 + a1 − 2b1 = 0
−2a2a1 + ab1 + 2a1 − b1 = 0
a2b2 − aa2 − aa3 + ab3 = 0

2a2b2 − 2aa2 − 2aa3 + 2ab3 = 0
−2a2a3 − 2aa2 + 2ab2 + 2ab3 = 0

−a2a3 − aa2 + ab2 + ab3 = 0
−3a2a2 + 3a2b3 − 3aa3 + 3ab2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2a+ xy + y2

a y2 + x2 + xy

)
(x)

= −a x3 + a y3

a y2 + x2 + xy

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a x3+a y3

a y2+x2+xy

dy
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Which results in

S =
(2
3 +

a
3

)
ln (y − x) + (a−1) ln

(
x2+xy+y2

)
3

a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2a+ xy + y2

a y2 + x2 + xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2a+ xy + y2

a (−y + x) (x2 + xy + y2)

Sy =
−a y2 − x2 − xy

a (−y + x) (x2 + xy + y2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(2 + a) ln (y − x) + (a− 1) ln (x2 + yx+ y2)
3a = c1
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Which simplifies to

(2 + a) ln (y − x) + (a− 1) ln (x2 + yx+ y2)
3a = c1

Summary
The solution(s) found are the following

(1)(2 + a) ln (y − x) + (a− 1) ln (x2 + yx+ y2)
3a = c1

Verification of solutions

(2 + a) ln (y − x) + (a− 1) ln (x2 + yx+ y2)
3a = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 105� �
dsolve((x^2+x*y(x)+a*y(x)^2)*diff(y(x),x) = a*x^2+x*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) = x
−2a+2
2+a e

(−a+1)RootOf

e_Z−x
− 6a

2+a e
− 2(a_Z+3c1a−_Z)

2+a −3x
− 3a

2+a e
−a_Z+3c1a−_Z

2+a −3

−3c1a

2+a + x
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3 Solution by Mathematica
Time used: 0.193 (sec). Leaf size: 54� �
DSolve[(x^2+x y[x]+a y[x]^2)y'[x]==a x^2+x y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
3(a− 1) log

(
y(x)2
x2 + y(x)

x
+ 1
)

+ 1
3(a+ 2) log

(
1− y(x)

x

)
= −a log(x) + c1, y(x)

]
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23.5 problem 635
23.5.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6373
23.5.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6375

Internal problem ID [3883]
Internal file name [OUTPUT/3376_Sunday_June_05_2022_09_14_26_AM_28638708/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 635.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x2a+ 2yx− ay2

)
y′ − 2axy − y2 = −x2

23.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2a+ 2u(x)x2 − au(x)2 x2) (u′(x)x+ u(x))− 2a x2u(x)− u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(u2 + 1) (ua− 1)
x (a u2 − a− 2u)

Where f(x) = − 1
x
and g(u) =

(
u2+1

)
(ua−1)

a u2−a−2u . Integrating both sides gives

1
(u2+1)(ua−1)
a u2−a−2u

du = −1
x
dx
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∫ 1
(u2+1)(ua−1)
a u2−a−2u

du =
∫

−1
x
dx

− ln (ua− 1) + ln
(
u2 + 1

)
= − ln (x) + c2

Raising both side to exponential gives

e− ln(ua−1)+ln
(
u2+1

)
= e− ln(x)+c2

Which simplifies to

u2 + 1
ua− 1 = c3

x

The solution is
u(x)2 + 1
u (x) a− 1 = c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 + 1
ya
x
− 1 = c3

x

y2 + x2

x (ya− x) = c3
x

Which simplifies to

y2 + x2

ya− x
= c3

Summary
The solution(s) found are the following

(1)y2 + x2

ya− x
= c3

Verification of solutions

y2 + x2

ya− x
= c3

Verified OK.
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23.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2axy − x2 + y2

−x2a+ a y2 − 2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2axy − x2 + y2) (b3 − a2)

−x2a+ a y2 − 2xy − (2axy − x2 + y2)2 a3
(−x2a+ a y2 − 2xy)2

−
(
− 2ya− 2x
−x2a+ a y2 − 2xy+

(2axy − x2 + y2) (−2ax− 2y)
(−x2a+ a y2 − 2xy)2

)
(xa2+ya3+a1)

−
(
− 2ax+ 2y
−x2a+ a y2 − 2xy

+ (2axy − x2 + y2) (2ya− 2x)
(−x2a+ a y2 − 2xy)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x4b2 + 2a2x2y2a3 + 4a2x2y2b2 − 4a2x y3a2 + 4a2x y3b3 − 2a2y4a3 − a2y4b2 + 2a2x3b1 − 2a2x2ya1 + 2a2x y2b1 − 2a2y3a1 − a x4a2 + a x4b3 − 4a x3ya3 − 4a x3yb2 + 6a x2y2a2 − 6a x2y2b3 + 4ax y3a3 + 4ax y3b2 − a y4a2 + a y4b3 + x4a3 + 2x4b2 − 4x3ya2 + 4x3yb3 − 4x2y2a3 − 2x2y2b2 − y4a3 + 2x3b1 − 2x2ya1 + 2x y2b1 − 2y3a1
(x2a− a y2 + 2xy)2

= 0

6375



Setting the numerator to zero gives

(6E)
−a2x4b2 − 2a2x2y2a3 − 4a2x2y2b2 + 4a2x y3a2 − 4a2x y3b3 + 2a2y4a3
+ a2y4b2 − 2a2x3b1 + 2a2x2ya1 − 2a2x y2b1 + 2a2y3a1 + a x4a2
− a x4b3 + 4a x3ya3 + 4a x3yb2 − 6a x2y2a2 + 6a x2y2b3 − 4ax y3a3
− 4ax y3b2 + a y4a2 − a y4b3 − x4a3 − 2x4b2 + 4x3ya2 − 4x3yb3
+ 4x2y2a3 + 2x2y2b2 + y4a3 − 2x3b1 + 2x2ya1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

4a2a2v1v32 − 2a2a3v21v22 + 2a2a3v42 − a2b2v
4
1 − 4a2b2v21v22 + a2b2v

4
2

− 4a2b3v1v32 + 2a2a1v21v2 + 2a2a1v32 − 2a2b1v31 − 2a2b1v1v22 + aa2v
4
1

− 6aa2v21v22 + aa2v
4
2 + 4aa3v31v2 − 4aa3v1v32 + 4ab2v31v2 − 4ab2v1v32

− ab3v
4
1 + 6ab3v21v22 − ab3v

4
2 + 4a2v31v2 − a3v

4
1 + 4a3v21v22 + a3v

4
2

− 2b2v41 + 2b2v21v22 − 4b3v31v2 + 2a1v21v2 + 2a1v32 − 2b1v31 − 2b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(
−a2b2 + aa2 − ab3 − a3 − 2b2

)
v41

+ (4aa3 + 4ab2 + 4a2 − 4b3) v31v2 +
(
−2a2b1 − 2b1

)
v31

+
(
−2a2a3 − 4a2b2 − 6aa2 + 6ab3 + 4a3 + 2b2

)
v21v

2
2 +

(
2a2a1 + 2a1

)
v21v2

+
(
4a2a2 − 4a2b3 − 4aa3 − 4ab2

)
v1v

3
2 +

(
−2a2b1 − 2b1

)
v1v

2
2

+
(
2a2a3 + a2b2 + aa2 − ab3 + a3

)
v42 +

(
2a2a1 + 2a1

)
v32 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

2a2a1 + 2a1 = 0
−2a2b1 − 2b1 = 0

4aa3 + 4ab2 + 4a2 − 4b3 = 0
4a2a2 − 4a2b3 − 4aa3 − 4ab2 = 0
−a2b2 + aa2 − ab3 − a3 − 2b2 = 0
2a2a3 + a2b2 + aa2 − ab3 + a3 = 0

−2a2a3 − 4a2b2 − 6aa2 + 6ab3 + 4a3 + 2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2axy − x2 + y2

−x2a+ a y2 − 2xy

)
(x)

= −a x2y − a y3 + x3 + x y2

x2a− a y2 + 2xy
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a x2y−a y3+x3+x y2

x2a−a y2+2xy

dy

Which results in

S = − ln (ya− x) + ln
(
x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2axy − x2 + y2

−x2a+ a y2 − 2xy
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
ya− x

+ 2x
x2 + y2

Sy = − a

ya− x
+ 2y

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (ya− x) + ln
(
y2 + x2) = c1

Which simplifies to

− ln (ya− x) + ln
(
y2 + x2) = c1

Summary
The solution(s) found are the following

(1)− ln (ya− x) + ln
(
y2 + x2) = c1

Verification of solutions

− ln (ya− x) + ln
(
y2 + x2) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 59� �
dsolve((a*x^2+2*x*y(x)-a*y(x)^2)*diff(y(x),x)+x^2-2*a*x*y(x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = a−
√
−4c21x2 + a2 − 4c1x

2c1

y(x) = a+
√
−4c21x2 + a2 − 4c1x

2c1

3 Solution by Mathematica
Time used: 4.359 (sec). Leaf size: 87� �
DSolve[(a x^2+2 x y[x]-a y[x]^2)y'[x]+x^2-2 a x y[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
a(−ec1)−

√
a2e2c1 + 4x (−x+ ec1)

)
y(x) → 1

2

(√
a2e2c1 + 4x (−x+ ec1)− aec1

)
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23.6 problem 637
23.6.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6381
23.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6383
23.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6388
23.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6391

Internal problem ID [3884]
Internal file name [OUTPUT/3377_Sunday_June_05_2022_09_14_33_AM_92492853/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 637.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
x2a+ 2bxy + cy2

)
y′ + 2axy + by2 = −k x2

23.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2a+ 2b x2u(x) + cu(x)2 x2) (u′(x)x+ u(x)) + 2a x2u(x) + bu(x)2 x2 = −k x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3c+ 3u2b+ 3ua+ k

x (c u2 + 2bu+ a)
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Where f(x) = − 1
x
and g(u) = u3c+3u2b+3ua+k

c u2+2bu+a
. Integrating both sides gives

1
u3c+3u2b+3ua+k

c u2+2bu+a

du = −1
x
dx

∫ 1
u3c+3u2b+3ua+k

c u2+2bu+a

du =
∫

−1
x
dx

ln (u3c+ 3u2b+ 3ua+ k)
3 = − ln (x) + c2

Raising both side to exponential gives(
u3c+ 3u2b+ 3ua+ k

) 1
3 = e− ln(x)+c2

Which simplifies to (
u3c+ 3u2b+ 3ua+ k

) 1
3 = c3

x

Which simplifies to

(
u(x)3 c+ 3u(x)2 b+ 3u(x) a+ k

) 1
3 = c3ec2

x

The solution is (
u(x)3 c+ 3u(x)2 b+ 3u(x) a+ k

) 1
3 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y3c

x3 + 3y2b
x2 + 3ya

x
+ k

) 1
3

= c3ec2
x(

y3c+ 3bxy2 + 3ya x2 + k x3

x3

) 1
3

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
y3c+ 3bxy2 + 3ya x2 + k x3

x3

) 1
3

= c3ec2
x

Verification of solutions(
y3c+ 3bxy2 + 3ya x2 + k x3

x3

) 1
3

= c3ec2
x

Verified OK.
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23.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2axy + b y2 + k x2

x2a+ 2bxy + y2c

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2axy + b y2 + k x2) (b3 − a2)

x2a+ 2bxy + y2c
− (2axy + b y2 + k x2)2 a3

(x2a+ 2bxy + y2c)2

−
(
− 2ya+ 2kx
x2a+ 2bxy + y2c

+ (2axy + b y2 + k x2) (2ax+ 2by)
(x2a+ 2bxy + y2c)2

)
(xa2

+ ya3 + a1)−
(
− 2ax+ 2by
x2a+ 2bxy + y2c

+ (2axy + b y2 + k x2) (2bx+ 2cy)
(x2a+ 2bxy + y2c)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3a2x4b2 − 6a2x2y2a3 + 6ab x3yb2 + 3ab x2y2a2 − 3ab x2y2b3 − 6abx y3a3 + 4acx y3a2 − 4acx y3b3 + 2ac y4a3 + ak x4a2 − ak x4b3 − 4ak x3ya3 + 6b2x2y2b2 − 3b2y4a3 + 4bcx y3b2 + bc y4a2 − bc y4b3 − 2bk x4b2 + 4bk x3ya2 − 4bk x3yb3 + c2y4b2 − 2ck x3yb2 + 3ck x2y2a2 − 3ck x2y2b3 + 2ckx y3a3 − k2x4a3 + 2a2x3b1 − 2a2x2ya1 + 2ab x2yb1 − 2abx y2a1 − 2acx y2b1 + 2ac y3a1 + 2b2x y2b1 − 2b2y3a1 − 2bk x3b1 + 2bk x2ya1 − 2ck x2yb1 + 2ckx y2a1
(x2a+ 2bxy + y2c)2

= 0
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Setting the numerator to zero gives

(6E)

3a2x4b2 − 6a2x2y2a3 + 6ab x3yb2 + 3ab x2y2a2 − 3ab x2y2b3
− 6abx y3a3 + 4acx y3a2 − 4acx y3b3 + 2ac y4a3 + ak x4a2
− ak x4b3 − 4ak x3ya3 + 6b2x2y2b2 − 3b2y4a3 + 4bcx y3b2 + bc y4a2
− bc y4b3 − 2bk x4b2 + 4bk x3ya2 − 4bk x3yb3 + c2y4b2 − 2ck x3yb2
+ 3ck x2y2a2 − 3ck x2y2b3 + 2ckx y3a3 − k2x4a3 + 2a2x3b1 − 2a2x2ya1
+ 2ab x2yb1 − 2abx y2a1 − 2acx y2b1 + 2ac y3a1 + 2b2x y2b1
− 2b2y3a1 − 2bk x3b1 + 2bk x2ya1 − 2ck x2yb1 + 2ckx y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−6a2a3v21v22 + 3a2b2v41 + 3aba2v21v22 − 6aba3v1v32 + 6abb2v31v2
− 3abb3v21v22 + 4aca2v1v32 + 2aca3v42 − 4acb3v1v32 + aka2v

4
1

− 4aka3v31v2 − akb3v
4
1 − 3b2a3v42 + 6b2b2v21v22 + bca2v

4
2 + 4bcb2v1v32

− bcb3v
4
2 + 4bka2v31v2 − 2bkb2v41 − 4bkb3v31v2 + c2b2v

4
2 + 3cka2v21v22

+ 2cka3v1v32 − 2ckb2v31v2 − 3ckb3v21v22 − k2a3v
4
1 − 2a2a1v21v2

+ 2a2b1v31 − 2aba1v1v22 + 2abb1v21v2 + 2aca1v32 − 2acb1v1v22 − 2b2a1v32
+ 2b2b1v1v22 + 2bka1v21v2 − 2bkb1v31 + 2cka1v1v22 − 2ckb1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

(
3a2b2 + aka2 − akb3 − 2bkb2 − k2a3

)
v41

+ (6abb2 − 4aka3 + 4bka2 − 4bkb3 − 2ckb2) v31v2 +
(
2a2b1 − 2bkb1

)
v31

+
(
−6a2a3 + 3aba2 − 3abb3 + 6b2b2 + 3cka2 − 3ckb3

)
v21v

2
2

+
(
−2a2a1 + 2abb1 + 2bka1 − 2ckb1

)
v21v2

+ (−6aba3 + 4aca2 − 4acb3 + 4bcb2 + 2cka3) v1v32
+
(
−2aba1 − 2acb1 + 2b2b1 + 2cka1

)
v1v

2
2

+
(
2aca3 − 3b2a3 + bca2 − bcb3 + c2b2

)
v42 +

(
2aca1 − 2b2a1

)
v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2aca1 − 2b2a1 = 0
2a2b1 − 2bkb1 = 0

−2aba1 − 2acb1 + 2b2b1 + 2cka1 = 0
−2a2a1 + 2abb1 + 2bka1 − 2ckb1 = 0

2aca3 − 3b2a3 + bca2 − bcb3 + c2b2 = 0
3a2b2 + aka2 − akb3 − 2bkb2 − k2a3 = 0

6abb2 − 4aka3 + 4bka2 − 4bkb3 − 2ckb2 = 0
−6aba3 + 4aca2 − 4acb3 + 4bcb2 + 2cka3 = 0

−6a2a3 + 3aba2 − 3abb3 + 6b2b2 + 3cka2 − 3ckb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2axy + b y2 + k x2

x2a+ 2bxy + y2c

)
(x)

= 3a x2y + 3bx y2 + y3c+ k x3

x2a+ 2bxy + y2c

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3a x2y+3bx y2+y3c+k x3

x2a+2bxy+y2c

dy

Which results in

S = ln (3a x2y + 3bx y2 + y3c+ k x3)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2axy + b y2 + k x2

x2a+ 2bxy + y2c
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2axy + b y2 + k x2

3a x2y + 3bx y2 + y3c+ k x3

Sy =
x2a+ 2bxy + y2c

3a x2y + 3bx y2 + y3c+ k x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y3c+ 3bxy2 + 3ya x2 + k x3)
3 = c1

Which simplifies to

ln (y3c+ 3bxy2 + 3ya x2 + k x3)
3 = c1

Summary
The solution(s) found are the following

(1)ln (y3c+ 3bxy2 + 3ya x2 + k x3)
3 = c1

Verification of solutions

ln (y3c+ 3bxy2 + 3ya x2 + k x3)
3 = c1

Verified OK.
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23.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2a+ 2bxy + y2c

)
dy =

(
−2axy − b y2 − k x2) dx(

2axy + b y2 + k x2) dx+(x2a+ 2bxy + y2c
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2axy + b y2 + k x2

N(x, y) = x2a+ 2bxy + y2c
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2axy + b y2 + k x2)

= 2ax+ 2by

And
∂N

∂x
= ∂

∂x

(
x2a+ 2bxy + y2c

)
= 2ax+ 2by

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2axy + b y2 + k x2 dx

(3)φ = a x2y + bx y2 + 1
3k x

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2a+ 2bxy + f ′(y)

But equation (2) says that ∂φ
∂y

= x2a+ 2bxy + y2c. Therefore equation (4) becomes

(5)x2a+ 2bxy + y2c = x2a+ 2bxy + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y2c

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2c
)
dy

f(y) = y3c

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = a x2y + bx y2 + 1
3k x

3 + 1
3y

3c+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = a x2y + bx y2 + 1
3k x

3 + 1
3y

3c

Summary
The solution(s) found are the following

(1)ya x2 + bxy2 + k x3

3 + y3c

3 = c1

Verification of solutions

ya x2 + bxy2 + k x3

3 + y3c

3 = c1

Verified OK.

6390



23.6.4 Maple step by step solution

Let’s solve
(x2a+ 2bxy + cy2) y′ + 2axy + by2 = −k x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2ax+ 2by = 2ax+ 2by

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2axy + b y2 + k x2) dx+ f1(y)

• Evaluate integral
F (x, y) = a x2y + bx y2 + k x3

3 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2a+ 2bxy + y2c = x2a+ 2bxy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y2c

• Solve for f1(y)

f1(y) = y3c
3

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = a x2y + bx y2 + 1
3k x

3 + 1
3y

3c

• Substitute F (x, y) into the solution of the ODE
a x2y + bx y2 + 1

3k x
3 + 1

3y
3c = c1

• Solve for y
y =

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c2 c

) 1
3

2c − 2x2(ca−b2
)

c

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c2 c

) 1
3
− bx

c
, y = −

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c2 c

) 1
3

4c + x2(ca−b2
)

c

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c2 c

) 1
3
− bx

c
−

I
√
3


(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c

2 c

) 1
3

2c +
2x2

(
ca−b2

)
c

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c

2 c

) 1
3


2 , y = −

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c2 c

) 1
3

4c + x2(ca−b2
)

c

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c2 c

) 1
3
− bx

c
+

I
√
3


(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c

2 c

) 1
3

2c +
2x2

(
ca−b2

)
c

(
12abc x3−8b3x3−4c2k x3+12c2c1+4

√
4a3c x6−3a2b2x6−6abck x6+4b3k x6+c2k2x6+18c1abc x3−12c1b3x3−6c1c2k x3+9c21c

2 c

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 1111� �
dsolve((a*x^2+2*b*x*y(x)+c*y(x)^2)*diff(y(x),x)+k*x^2+2*a*x*y(x)+b*y(x)^2 = 0,y(x), singsol=all)� �
y(x)

=

(
12a x3c31bc−8b3x3c31−4c31c2k x3+4

√
4a3c c61x6−3a2b2c61x6−6abc c61k x6+4b3c61k x6+c2c61k

2x6+6a x3c31bc−4b3x3c31−2c31c2k x3+c2 c+4c2
) 1

3

2 − 2x2c21
(
ac−b2

)(
12a x3c31bc−8b3x3c31−4c31c2k x3+4

√
4a3c c61x6−3a2b2c61x6−6abc c61k x6+4b3c61k x6+c2c61k

2x6+6a x3c31bc−4b3x3c31−2c31c2k x3+c2 c+4c2
) 1

3
− bxc1

cc1
y(x) =

−

(
1
4 +

i
√
3

4

)(
4
√
4
(
c2k2

4 +
(
a3 − 3

2abk
)
c− 3a2b2

4 + b3k
)
x6c61 + 6

(
abc− 2

3b
3 − 1

3c
2k
)
x3c31 + c2 c+ (−4c31k x3 + 4) c2 + 12a x3c31bc− 8b3x3c31

) 2
3

+ c1x

((
4
√

4
(
c2k2

4 +
(
a3 − 3

2abk
)
c− 3a2b2

4 + b3k
)
x6c61 + 6

(
abc− 2

3b
3 − 1

3c
2k
)
x3c31 + c2 c+ (−4c31k x3 + 4) c2 + 12a x3c31bc− 8b3x3c31

) 1
3

b+ c1x(ac− b2)
(
i
√
3− 1

))
(
4
√
4
(
c2k2

4 +
(
a3 − 3

2abk
)
c− 3a2b2

4 + b3k
)
x6c61 + 6

(
abc− 2

3b
3 − 1

3c
2k
)
x3c31 + c2 c+ (−4c31k x3 + 4) c2 + 12a x3c31bc− 8b3x3c31

) 1
3

cc1

y(x)

=

(
i
√
3−1

)(
4
√

4
(

c2k2
4 +

(
a3− 3

2abk
)
c− 3a2b2

4 +b3k
)
x6c61+6

(
abc− 2

3 b
3− 1

3 c
2k
)
x3c31+c2 c+

(
−4c31k x3+4

)
c2+12a x3c31bc−8b3x3c31

) 2
3

4 + c1x

(
−
(
4
√

4
(
c2k2

4 +
(
a3 − 3

2abk
)
c− 3a2b2

4 + b3k
)
x6c61 + 6

(
abc− 2

3b
3 − 1

3c
2k
)
x3c31 + c2 c+ (−4c31k x3 + 4) c2 + 12a x3c31bc− 8b3x3c31

) 1
3

b+ c1x(ac− b2)
(
1 + i

√
3
))

(
4
√

4
(
c2k2

4 +
(
a3 − 3

2abk
)
c− 3a2b2

4 + b3k
)
x6c61 + 6

(
abc− 2

3b
3 − 1

3c
2k
)
x3c31 + c2 c+ (−4c31k x3 + 4) c2 + 12a x3c31bc− 8b3x3c31

) 1
3

cc1
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3 Solution by Mathematica
Time used: 60.354 (sec). Leaf size: 744� �
DSolve[(a x^2+2 b x y[x]+c y[x]^2)y'[x]+k x^2+2 a x y[x]+b y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

22/3 3

√√
−4x6 (b2 − ac)3 + (3abcx3 − 2b3x3 + c2 (−kx3 + e3c1)) 2 + 3abcx3 − 2b3x3 − c2kx3 + c2e3c1 + 2

3
√
2x2(b2−ac

)
3

√√
−4x6 (b2 − ac)3 + (3abcx3 − 2b3x3 + c2 (−kx3 + e3c1)) 2 + 3abcx3 − 2b3x3 − c2kx3 + c2e3c1

− 2bx

2c
y(x)

→

9i22/3
(√

3 + i
) 3

√√
−4x6 (b2 − ac)3 + (3abcx3 − 2b3x3 + c2 (−kx3 + e3c1)) 2 + 3abcx3 − 2b3x3 − c2kx3 + c2e3c1 +

18
3
√
2
(
1+i

√
3
)
x2(ac−b2

)
3

√√
−4x6 (b2 − ac)3 + (3abcx3 − 2b3x3 + c2 (−kx3 + e3c1)) 2 + 3abcx3 − 2b3x3 − c2kx3 + c2e3c1

− 36bx

36c
y(x)

→

−9 22/3
(
1 + i

√
3
) 3

√√
−4x6 (b2 − ac)3 + (3abcx3 − 2b3x3 + c2 (−kx3 + e3c1)) 2 + 3abcx3 − 2b3x3 − c2kx3 + c2e3c1 +

18i
3
√
2
(√

3+i
)
x2(b2−ac

)
3

√√
−4x6 (b2 − ac)3 + (3abcx3 − 2b3x3 + c2 (−kx3 + e3c1)) 2 + 3abcx3 − 2b3x3 − c2kx3 + c2e3c1

− 36bx

36c
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23.7 problem 638
23.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6395
23.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6397
23.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6402
23.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6405

Internal problem ID [3885]
Internal file name [OUTPUT/3378_Sunday_June_05_2022_09_14_38_AM_90961464/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 638.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x
(
1− y2

)
y′ −

(
x2 + 1

)
y = 0

23.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −(x2 + 1) y
(y2 − 1)x

Where f(x) = −x2+1
x

and g(y) = y
y2−1 . Integrating both sides gives

1
y

y2−1
dy = −x2 + 1

x
dx

∫ 1
y

y2−1
dy =

∫
−x2 + 1

x
dx

y2

2 − ln (y) = −x2

2 − ln (x) + c1
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Which results in

y = 1√
− 1

LambertW
(
−ex2−2c1x2

)

Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = 1√
− 1

LambertW
(
−ex2−2c1x2

)
gives

y = 1√
− 1

LambertW
(
− ex2x2

c21

)

Summary
The solution(s) found are the following

(1)y = 1√
− 1

LambertW
(
− ex2x2

c21

)

Figure 1009: Slope field plot
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Verification of solutions

y = 1√
− 1

LambertW
(
− ex2x2

c21

)

Verified OK.

23.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(x2 + 1) y
(y2 − 1)x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 926: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = − x

x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x
x2+1

dx

Which results in

S = −x2

2 − ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(x2 + 1) y
(y2 − 1)x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −x− 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2 − 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 − 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

2 − ln (x) = y2

2 − ln (y) + c1

Which simplifies to

−x2

2 − ln (x) = y2

2 − ln (y) + c1

Which gives

y = 1√
− 1

LambertW
(
−ex2+2c1x2

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
x2+1

)
y

(y2−1)x
dS
dR

= R2−1
R

R = y

S = −x2

2 − ln (x)
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Summary
The solution(s) found are the following

(1)y = 1√
− 1

LambertW
(
−ex2+2c1x2

)

Figure 1010: Slope field plot

Verification of solutions

y = 1√
− 1

LambertW
(
−ex2+2c1x2

)

Verified OK.
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23.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2 − 1

y

)
dy =

(
x2 + 1

x

)
dx(

−x2 + 1
x

)
dx+

(
−y2 − 1

y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x2 + 1
x

N(x, y) = −y2 − 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 + 1

x

)
= 0

And
∂N

∂x
= ∂

∂x

(
−y2 − 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + 1

x
dx

(3)φ = −x2

2 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= −y2−1
y

. Therefore equation (4) becomes

(5)−y2 − 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y2 − 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−y2 + 1

y

)
dy

f(y) = −y2

2 + ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (x)− y2

2 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (x)− y2

2 + ln (y)

The solution becomes

y = 1√
− 1

LambertW
(
−ex2+2c1x2

)

Summary
The solution(s) found are the following

(1)y = 1√
− 1

LambertW
(
−ex2+2c1x2

)
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Figure 1011: Slope field plot

Verification of solutions

y = 1√
− 1

LambertW
(
−ex2+2c1x2

)

Verified OK.

23.7.4 Maple step by step solution

Let’s solve
x(1− y2) y′ − (x2 + 1) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
1−y2

)
y

= x2+1
x

• Integrate both sides with respect to x∫ y′
(
1−y2

)
y

dx =
∫

x2+1
x

dx+ c1
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• Evaluate integral

−y2

2 + ln (y) = ln (x) + x2

2 + c1

• Solve for y
y = x

e
LambertW

(
−ex

2+2c1x2
)

2 −x2
2 −c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(x*(1-y(x)^2)*diff(y(x),x) = (x^2+1)*y(x),y(x), singsol=all)� �

y(x) = 1√
− 1

LambertW
(
−ex2c1x2

)

3 Solution by Mathematica
Time used: 5.963 (sec). Leaf size: 62� �
DSolve[x(1-y[x]^2)y'[x]==(1+x^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√

W (x2 (−ex2−2c1))

y(x) → i
√
W (x2 (−ex2−2c1))

y(x) → 0
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23.8 problem 639
23.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6407

Internal problem ID [3886]
Internal file name [OUTPUT/3379_Sunday_June_05_2022_09_14_41_AM_90044330/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 639.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
3x− y2

)
y′ +

(
5x− 2y2

)
y = 0

23.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(2y2 − 5x)
x (y2 − 3x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(2y2 − 5x) (b3 − a2)

x (y2 − 3x) − y2(2y2 − 5x)2 a3
x2 (y2 − 3x)2

−
(

5y
x (y2 − 3x) +

y(2y2 − 5x)
x2 (y2 − 3x) −

3y(2y2 − 5x)
x (y2 − 3x)2

)
(xa2 + ya3 + a1)

−
(
− 2y2 − 5x
x (y2 − 3x) −

4y2
x (y2 − 3x) +

2y2(2y2 − 5x)
x (y2 − 3x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x2y4b2 − 6y6a3 − 19x3y2b2 + x2y3a2 − 2x2y3b3 + 32x y4a3 + 2x y4b1 − 2y5a1 + 24x4b2 − 40x2y2a3 − 13x2y2b1 + 12x y3a1 + 15x3b1 − 15x2ya1

x2 (−y2 + 3x)2
= 0

Setting the numerator to zero gives

(6E)3x2y4b2 − 6y6a3 − 19x3y2b2 + x2y3a2 − 2x2y3b3 + 32x y4a3 + 2x y4b1 − 2y5a1
+ 24x4b2 − 40x2y2a3 − 13x2y2b1 + 12x y3a1 + 15x3b1 − 15x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−6a3v62 +3b2v21v42 −2a1v52 +a2v
2
1v

3
2 +32a3v1v42 +2b1v1v42 −19b2v31v22 −2b3v21v32

+ 12a1v1v32 − 40a3v21v22 − 13b1v21v22 + 24b2v41 − 15a1v21v2 + 15b1v31 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)24b2v41 − 19b2v31v22 +15b1v31 +3b2v21v42 + (a2 − 2b3) v21v32 + (−40a3 − 13b1) v21v22
− 15a1v21v2 + (32a3 + 2b1) v1v42 + 12a1v1v32 − 6a3v62 − 2a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−15a1 = 0
−2a1 = 0
12a1 = 0
−6a3 = 0
15b1 = 0

−19b2 = 0
3b2 = 0
24b2 = 0

a2 − 2b3 = 0
−40a3 − 13b1 = 0

32a3 + 2b1 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(2y2 − 5x)

x (y2 − 3x)

)
(2x)

= −5y3 + 13xy
−y2 + 3x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−5y3+13xy
−y2+3x

dy

Which results in

S = − ln (5y2 − 13x)
65 + 3 ln (y)

13
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(2y2 − 5x)
x (y2 − 3x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
−25y2 + 65x

Sy =
−y2 + 3x

−5y3 + 13xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 2

5x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

5R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R)
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (5y2 − 13x)
65 + 3 ln (y)

13 = −2 ln (x)
5 + c1

Which simplifies to

− ln (5y2 − 13x)
65 + 3 ln (y)

13 = −2 ln (x)
5 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
2y2−5x

)
x(y2−3x)

dS
dR

= − 2
5R

R = x

S = − ln (5y2 − 13x)
65 + 3 ln (y)

13

Summary
The solution(s) found are the following

(1)− ln (5y2 − 13x)
65 + 3 ln (y)

13 = −2 ln (x)
5 + c1
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Figure 1012: Slope field plot

Verification of solutions

− ln (5y2 − 13x)
65 + 3 ln (y)

13 = −2 ln (x)
5 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 35� �
dsolve(x*(3*x-y(x)^2)*diff(y(x),x)+(5*x-2*y(x)^2)*y(x) = 0,y(x), singsol=all)� �

ln (x)− c1 −
2 ln

(
5y(x)2−13x

x

)
65 +

6 ln
(

y(x)√
x

)
13 = 0
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3 Solution by Mathematica
Time used: 7.068 (sec). Leaf size: 661� �
DSolve[x(3 x-y[x]^2)y'[x]+(5 x-2 y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 1
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 2
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 3
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 4
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 5
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 6
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 7
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 8
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 9
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 10
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 11
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 12
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 13
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 14
]

y(x) → Root
[
−#115 − 25#12e

65c1
2

x26 + 65e
65c1
2

x25 &, 15
]
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23.9 problem 640
23.9.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6416

Internal problem ID [3887]
Internal file name [OUTPUT/3380_Sunday_June_05_2022_09_14_47_AM_27272874/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 640.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational]

x
(
y2 + x2) y′ − (x2 + x4 + y2

)
y = 0

23.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
u(x)2 x2 + x2) (u′(x)x+ u(x))−

(
x2 + x4 + u(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= ux

u2 + 1
Where f(x) = x and g(u) = u

u2+1 . Integrating both sides gives

1
u

u2+1
du = x dx

∫ 1
u

u2+1
du =

∫
x dx

u2

2 + ln (u) = x2

2 + c2
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The solution is
u(x)2

2 + ln (u(x))− x2

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

2x2 + ln
(y
x

)
− x2

2 − c2 = 0

y2

2x2 + ln
(y
x

)
− x2

2 − c2 = 0

Summary
The solution(s) found are the following

(1)y2

2x2 + ln
(y
x

)
− x2

2 − c2 = 0

Figure 1013: Slope field plot

Verification of solutions

y2

2x2 + ln
(y
x

)
− x2

2 − c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 36� �
dsolve(x*(x^2+y(x)^2)*diff(y(x),x) = (x^2+x^4+y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = ex2
2 +c1x√
ex2+2c1

LambertW
(
ex2+2c1

)

3 Solution by Mathematica
Time used: 5.133 (sec). Leaf size: 49� �
DSolve[x(x^2+y[x]^2)y'[x]==(x^2+x^4+y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√
W (ex2+2c1)

y(x) → x
√
W (ex2+2c1)

y(x) → 0
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23.10 problem 641
23.10.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6419
23.10.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6427

Internal problem ID [3888]
Internal file name [OUTPUT/3381_Sunday_June_05_2022_09_14_50_AM_65385180/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 641.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

x
(
1− x2 + y2

)
y′ +

(
1 + x2 − y2

)
y = 0

23.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(−x2 + y2 − 1)
x (−x2 + y2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+ y(−x2 + y2 − 1) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (−x2 + y2 + 1)

− y2(−x2 + y2 − 1)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2 (−x2 + y2 + 1)2

−
(
− 2y
−x2 + y2 + 1 − y(−x2 + y2 − 1)

x2 (−x2 + y2 + 1) +
2y(−x2 + y2 − 1)
(−x2 + y2 + 1)2

)(
x3a7

+ x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

−
(

−x2 + y2 − 1
x (−x2 + y2 + 1) +

2y2
x (−x2 + y2 + 1) −

2y2(−x2 + y2 − 1)
x (−x2 + y2 + 1)2

)(
x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−2x2y3a1 − x y4b1 + 4x3ya2 + 2x2y2a3 − 2x2y2b2 − 4x y3b3 + 4x2ya1 − 4x y2b1 + yb5x
2 + 4x4b7 + 2x3yb8 + 3x3b4 + 4x4ya4 − 2x4yb5 + 2x3y2a5 − 2x2y3b5 + 2x y4a5 − 4x y4b6 + x2ya4 − x y2a5 − x y2b6 + x7b4 − y7a6 − 4x5b4 + 4y5a6 − 3y3a6 − 4x6y2b7 + 2x4y4b7 + 2x4y2b7 + 2x7yb8 − 4x5y3b8 + 2x3y5b8 − 4x5yb8 + 2x6y2b9 − 4x4y4b9 + 2x2y6b9 − 2x4y2b9 − 2x2y4b9 − 2x7ya7 − 2x6y2a8 + 4x5y3a7 − 2x5y3a9 + 2x5y3b10 + 4x4y4a8 − 2x3y5a7 + 4x3y5a9 − 4x3y5b10 − 2x2y6a8 − 2x y7a9 + 2x y7b10 + 2x3ya7 − x5b1 + y5a1 − 2x4b2 + 2y4a3 + xb1 − ya1 + 2b2x2 − 2y2a3 + x4ya1 + 2x3y2b1 + 2x8b7 − 6x6b7 − 2y8a10 + 6y6a10 − 4y4a10 − 2x y3a9 − 2x y3b10 − 2x4y4a10 + 4x2y6a10 + 2x4y2a8 + 2x2y4a8 − 2x2y4a10 + 4x y5a9 + 4x5ya7 − 4x y5b10 − x6ya4 + x6yb5 − x5y2a5 − 2x5y2b4 + x5y2b6 + 2x4y3a4 − x4y3a6 − 2x4y3b5 + 2x3y4a5 + x3y4b4 − 2x3y4b6 − x2y5a4 + 2x2y5a6 + x2y5b5 − x y6a5 + x y6b6

(x2 − y2 − 1)2 x2

= 0

Setting the numerator to zero gives

(6E)

−2x2y3a1 − x y4b1 + 4x3ya2 + 2x2y2a3 − 2x2y2b2 − 4x y3b3
+ 4x2ya1 − 4x y2b1 + yb5x

2 + 4x4b7 + 2x3yb8 + 3x3b4 + 4x4ya4
− 2x4yb5 + 2x3y2a5 − 2x2y3b5 + 2x y4a5 − 4x y4b6 + x2ya4
−x y2a5−x y2b6+x7b4−y7a6−4x5b4+4y5a6−3y3a6−4x6y2b7
+ 2x4y4b7 + 2x4y2b7 + 2x7yb8 − 4x5y3b8 + 2x3y5b8 − 4x5yb8
+ 2x6y2b9 − 4x4y4b9 + 2x2y6b9 − 2x4y2b9 − 2x2y4b9 − 2x7ya7
− 2x6y2a8+4x5y3a7− 2x5y3a9+2x5y3b10+4x4y4a8− 2x3y5a7
+ 4x3y5a9 − 4x3y5b10 − 2x2y6a8 − 2x y7a9 + 2x y7b10 + 2x3ya7
−x5b1+y5a1−2x4b2+2y4a3+xb1−ya1+2b2x2−2y2a3+x4ya1
+2x3y2b1 +2x8b7 − 6x6b7 − 2y8a10 +6y6a10 − 4y4a10 − 2x y3a9
−2x y3b10−2x4y4a10+4x2y6a10+2x4y2a8+2x2y4a8−2x2y4a10
+4x y5a9+4x5ya7−4x y5b10−x6ya4+x6yb5−x5y2a5−2x5y2b4
+ x5y2b6 + 2x4y3a4 − x4y3a6 − 2x4y3b5 + 2x3y4a5 + x3y4b4
− 2x3y4b6 − x2y5a4 + 2x2y5a6 + x2y5b5 − x y6a5 + x y6b6 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−2v21v32a1 − v1v
4
2b1 + 4v31v2a2 + 2v21v22a3 − 2v21v22b2 − 4v1v32b3

+ 2v41v32a4 − v41v
3
2a6 − 2v41v32b5 + 2v31v42a5 + v31v

4
2b4 − 2v31v42b6

− v21v
5
2a4 + 2v21v52a6 + v21v

5
2b5 − v1v

6
2a5 + v1v

6
2b6 + 2v1v72b10

+ 2v31v2a7 + v41v2a1 + 2v31v22b1 − 2v1v32a9 − 2v1v32b10 − 2v41v42a10
+ 4v21v62a10 + 2v41v22a8 + 2v21v42a8 − 2v21v42a10 + 4v1v52a9
+ 4v51v2a7 − 4v1v52b10 − v61v2a4 + v61v2b5 − v51v

2
2a5 − 2v51v22b4

+ v51v
2
2b6 + 4v41b7 + 3v31b4 + v71b4 − v72a6 − 4v51b4 + 4v52a6

− 3v32a6 − v51b1 + v52a1 − 2v41b2 + 2v42a3 + v1b1 − v2a1 + 2b2v21
− 2v22a3 + 2v81b7 − 6v61b7 − 2v82a10 + 6v62a10 − 4v42a10 + 2v31v52b8
− 4v51v2b8 + 2v61v22b9 − 4v41v42b9 + 2v21v62b9 − 2v41v22b9 − 2v21v42b9
− 2v71v2a7 − 2v61v22a8 +4v51v32a7 − 2v51v32a9 +2v51v32b10 +4v41v42a8
− 2v31v52a7 +4v31v52a9 − 4v31v52b10 − 2v21v62a8 − 2v1v72a9 +4v21v2a1
− 4v1v22b1 + v2b5v

2
1 + 2v31v2b8 + 4v41v2a4 − 2v41v2b5 + 2v31v22a5

− 2v21v32b5 + 2v1v42a5 − 4v1v42b6 + v21v2a4 − v1v
2
2a5 − v1v

2
2b6

− 4v61v22b7 + 2v41v42b7 + 2v41v22b7 + 2v71v2b8 − 4v51v32b8 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

(−2a1− 2b5) v32v21 +(2a5− b1− 4b6) v42v1+(4a2+2a7+2b8) v2v31
+(2a3−2b2) v22v21+(−4b3−2a9−2b10) v32v1+(2a4−a6−2b5) v32v41
+ (2a5 + b4 − 2b6) v42v31 + (−a4 + 2a6 + b5) v52v21 + (−a5 + b6) v62v1
+ (2b10 − 2a9) v72v1 + (a1 + 4a4 − 2b5) v2v41 + (2a5 + 2b1) v22v31
+ (−2a10 − 4b9 + 4a8 + 2b7) v42v41 + (4a10 + 2b9 − 2a8) v62v21
+(2a8−2b9+2b7) v22v41+(2a8−2a10−2b9) v42v21+(4a9−4b10) v52v1
+ (4a7 − 4b8) v2v51 + (−a4 + b5) v2v61 + (−a5 − 2b4 + b6) v22v51
+ (2b8 − 2a7 + 4a9 − 4b10) v52v31 + (2b9 − 2a8 − 4b7) v22v61
+ (−2a7 + 2b8) v2v71 + (4a7 − 2a9 + 2b10 − 4b8) v32v51
+ (4a1 + a4 + b5) v2v21 + (−a5 − 4b1 − b6) v22v1 + 3v31b4
+ v71b4 − v72a6 − 3v32a6 + v1b1 − v2a1 + 2b2v21 − 2v22a3
+ 2v81b7 − 6v61b7 − 2v82a10 + 6v62a10 + (4b7 − 2b2) v41
+ (a1 + 4a6) v52 + (2a3 − 4a10) v42 + (−b1 − 4b4) v51 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
b1 = 0
b4 = 0

−a1 = 0
−2a3 = 0
−3a6 = 0
−a6 = 0

−2a10 = 0
6a10 = 0
2b2 = 0
3b4 = 0

−6b7 = 0
2b7 = 0

−2a1 − 2b5 = 0
a1 + 4a6 = 0

2a3 − 4a10 = 0
2a3 − 2b2 = 0
−a4 + b5 = 0
−a5 + b6 = 0
2a5 + 2b1 = 0

−2a7 + 2b8 = 0
4a7 − 4b8 = 0
4a9 − 4b10 = 0
−b1 − 4b4 = 0
4b7 − 2b2 = 0
2b10 − 2a9 = 0

a1 + 4a4 − 2b5 = 0
4a1 + a4 + b5 = 0

4a2 + 2a7 + 2b8 = 0
−a4 + 2a6 + b5 = 0
2a4 − a6 − 2b5 = 0
−a5 − 4b1 − b6 = 0
−a5 − 2b4 + b6 = 0
2a5 − b1 − 4b6 = 0
2a5 + b4 − 2b6 = 0

2a8 − 2a10 − 2b9 = 0
2a8 − 2b9 + 2b7 = 0
4a10 + 2b9 − 2a8 = 0

−4b3 − 2a9 − 2b10 = 0
2b9 − 2a8 − 4b7 = 0

4a7 − 2a9 + 2b10 − 4b8 = 0
−2a10 − 4b9 + 4a8 + 2b7 = 0
2b8 − 2a7 + 4a9 − 4b10 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b8

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = b8

a8 = b9

a9 = b10

a10 = 0
b1 = 0
b2 = 0
b3 = −b10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b8

b9 = b9

b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x y2

η = y3 − y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y3 − y −
(
y(−x2 + y2 − 1)
x (−x2 + y2 + 1)

)(
x y2

)
= −x2y − y3 + y

x2 − y2 − 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2y−y3+y
x2−y2−1

dy

Which results in

S = ln
(
x2 + y2 − 1

)
− ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(−x2 + y2 − 1)
x (−x2 + y2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
x2 + y2 − 1

Sy =
2y

x2 + y2 − 1 − 1
y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
y2 + x2 − 1

)
− ln (y) = ln (x) + c1

Which simplifies to

ln
(
y2 + x2 − 1

)
− ln (y) = ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
−x2+y2−1

)
x(−x2+y2+1)

dS
dR

= 1
R

R = x

S = ln
(
x2 + y2 − 1

)
− ln (y)
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Summary
The solution(s) found are the following

(1)ln
(
y2 + x2 − 1

)
− ln (y) = ln (x) + c1

Figure 1014: Slope field plot

Verification of solutions

ln
(
y2 + x2 − 1

)
− ln (y) = ln (x) + c1

Verified OK.

23.10.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−x2 + y2 + 1

))
dy =

(
−y
(
x2 − y2 + 1

))
dx(

y
(
x2 − y2 + 1

))
dx+

(
x
(
−x2 + y2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
x2 − y2 + 1

)
N(x, y) = x

(
−x2 + y2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y
(
x2 − y2 + 1

))
= x2 − 3y2 + 1
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And
∂N

∂x
= ∂

∂x

(
x
(
−x2 + y2 + 1

))
= −3x2 + y2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (−x2 + y2 + 1)
((
x2 − 3y2 + 1

)
−
(
−3x2 + y2 + 1

))
= −4x2 + 4y2

x (x2 − y2 − 1)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (x2 − y2 + 1)
((
−3x2 + y2 + 1

)
−
(
x2 − 3y2 + 1

))
= −4x2 + 4y2

y (x2 − y2 + 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−3x2 + y2 + 1)− (x2 − 3y2 + 1)
x (y (x2 − y2 + 1))− y (x (−x2 + y2 + 1))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

6429



Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
y
(
x2 − y2 + 1

))
= x2 − y2 + 1

y x2

And

N = µN

= 1
y2x2

(
x
(
−x2 + y2 + 1

))
= −x2 + y2 + 1

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

x2 − y2 + 1
y x2

)
+
(
−x2 + y2 + 1

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 − y2 + 1

y x2 dx

(3)φ = x2 + y2 − 1
yx

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2 + y2 − 1

y2x
+ 2

x
+ f ′(y)

= −x2 + y2 + 1
x y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x2+y2+1
x y2

. Therefore equation (4) becomes

(5)−x2 + y2 + 1
x y2

= −x2 + y2 + 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2 + y2 − 1
yx

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2 + y2 − 1

yx
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Summary
The solution(s) found are the following

(1)y2 + x2 − 1
yx

= c1

Figure 1015: Slope field plot

Verification of solutions

y2 + x2 − 1
yx

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
equivalence obtained to this Abel ODE: diff(y(x),x) = 2*(x^2+1)/x/(x^2-1)*y(x)+6/(x^2-1)^2/x*y(x)^2+4/(x^2-1)^3/x*y(x)^3
trying to solve the Abel ODE ...
<- Abel successful
equivalence to an Abel ODE successful, Abel ODE has been solved`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 128� �
dsolve(x*(1-x^2+y(x)^2)*diff(y(x),x)+(1+x^2-y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x)2 (x2 − 1)
x2 − y (x)2 − 1

= −
√
x+ 1x

√
x− 1√

c1x2−c1+4
x2−1

− x2

2 + 1
2

y(x)2 (x2 − 1)
x2 − y (x)2 − 1

=
√
x+ 1x

√
x− 1√

c1x2−c1+4
x2−1

− x2

2 + 1
2

6433



3 Solution by Mathematica
Time used: 1.518 (sec). Leaf size: 106� �
DSolve[x(1-x^2+y[x]^2)y'[x]+(1+x^2-y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x2 − 4c1x2 + 4c12 + x− 2c1x

2c1

y(x) →
√
x2 − 4c1x2 + 4c12 + x− 2c1x

2c1
y(x) → Indeterminate
y(x) → −x− 1
y(x) → 1− x
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23.11 problem 642
23.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6435
23.11.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6444

Internal problem ID [3889]
Internal file name [OUTPUT/3382_Sunday_June_05_2022_09_14_54_AM_46183284/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 642.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

x
(
a− x2 − y2

)
y′ +

(
a+ x2 + y2

)
y = 0

23.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(x2 + y2 + a)
x (x2 + y2 − a)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+ y(x2 + y2 + a) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (x2 + y2 − a)

− y2(x2 + y2 + a)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2 (x2 + y2 − a)2

−
(

2y
x2 + y2 − a

− y(x2 + y2 + a)
x2 (x2 + y2 − a) −

2y(x2 + y2 + a)
(x2 + y2 − a)2

)(
x3a7

+ x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

−
(

x2 + y2 + a

x (x2 + y2 − a) +
2y2

x (x2 + y2 − a) −
2y2(x2 + y2 + a)
x (x2 + y2 − a)2

)(
x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

4a x3ya2 + 2a x2y2a3 + 2a x2y2b2 + 4ax y3b3 + 4a x2ya1 + 4ax y2b1 + 4a x4ya4 − 2a x4yb5 + 2a x3y2a5 + 2a x2y3b5 − 2ax y4a5 + 4ax y4b6 + a2x2ya4 + 4a x5ya7 + 4ax y5b10 + 2x3y a2a7 + 2x3y a2b8 − 2x y3a2a9 − 2x y3a2b10 − 2a x4y2b7 − 4a x5yb8 − 2a x4y2b9 + 2a x2y4b9 + 2a x4y2a8 − 2a x2y4a8 − 2a x2y4a10 − 4ax y5a9 + a2x2yb5 − a2x y2a5 − a2x y2b6 − 2x7ya7 + 2x7yb8 − 2x6y2a8 + 2x6y2b9 − 4x5y3a7 − 2x5y3a9 + 4x5y3b8 + 2x5y3b10 − 4x4y4a8 + 4x4y4b9 − 2x3y5a7 − 4x3y5a9 + 2x3y5b8 + 4x3y5b10 − 2x2y5a6 + x2y5b5 − x y6a5 + x y6b6 − 4a x5b4 − x6ya4 + x6yb5 − x5y2a5 + 2x5y2b4 + x5y2b6 − 2x4y3a4 + 2x2y3a1 − x y4b1 + 2a2x2b2 − 2a2y2a3 + a2xb1 − a2ya1 − x5b1 + y5a1 + 2x8b7 − 2y8a10 − x4y3a6 + 2x4y3b5 − 2x3y4a5 + x3y4b4 + 2x3y4b6 − x2y5a4 + x7b4 − y7a6 − 2x2y6a8 + 2x2y6b9 − 2x y7a9 + 2x y7b10 + 4x6y2b7 + 2x4y4b7 − 6a x6b7 + 4a2x4b7 − 2x4y4a10 − 4x2y6a10 − 6a y6a10 − 4a2y4a10 − 4a y5a6 + 3a2x3b4 − 3a2y3a6 − 2a x4b2 − 2a y4a3 + x4ya1 − 2x3y2b1

(−x2 − y2 + a)2 x2

= 0
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Setting the numerator to zero gives

(6E)

4a x3ya2 + 2a x2y2a3 + 2a x2y2b2 + 4ax y3b3 + 4a x2ya1
+ 4ax y2b1 + 4a x4ya4 − 2a x4yb5 + 2a x3y2a5 + 2a x2y3b5
− 2ax y4a5 + 4ax y4b6 + a2x2ya4 + 4a x5ya7 + 4ax y5b10
+ 2x3y a2a7 + 2x3y a2b8 − 2x y3a2a9 − 2x y3a2b10 − 2a x4y2b7
− 4a x5yb8 − 2a x4y2b9 + 2a x2y4b9 + 2a x4y2a8 − 2a x2y4a8
− 2a x2y4a10 − 4ax y5a9 + a2x2yb5 − a2x y2a5 − a2x y2b6
− 2x7ya7 + 2x7yb8 − 2x6y2a8 + 2x6y2b9 − 4x5y3a7 − 2x5y3a9
+ 4x5y3b8 + 2x5y3b10 − 4x4y4a8 + 4x4y4b9 − 2x3y5a7
− 4x3y5a9 + 2x3y5b8 + 4x3y5b10 − 2x2y5a6 + x2y5b5
− x y6a5 + x y6b6 − 4a x5b4 − x6ya4 + x6yb5 − x5y2a5
+ 2x5y2b4 + x5y2b6 − 2x4y3a4 + 2x2y3a1 − x y4b1 + 2a2x2b2
− 2a2y2a3 + a2xb1 − a2ya1 − x5b1 + y5a1 + 2x8b7 − 2y8a10
− x4y3a6 + 2x4y3b5 − 2x3y4a5 + x3y4b4 + 2x3y4b6 − x2y5a4
+ x7b4 − y7a6 − 2x2y6a8 + 2x2y6b9 − 2x y7a9 + 2x y7b10
+ 4x6y2b7 + 2x4y4b7 − 6a x6b7 + 4a2x4b7 − 2x4y4a10
− 4x2y6a10 − 6a y6a10 − 4a2y4a10 − 4a y5a6 + 3a2x3b4
− 3a2y3a6 − 2a x4b2 − 2a y4a3 + x4ya1 − 2x3y2b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

4av31v2a2 + a2v21v2b5 − a2v1v
2
2a5 − a2v1v

2
2b6 + 2av21v22a3

+ 2av21v22b2 + 4av1v32b3 + 4av21v2a1 + 4av1v22b1 + 4av41v2a4
− 2av41v2b5 + 2av31v22a5 + 2av21v32b5 − 2av1v42a5 + 4av1v42b6
+ a2v21v2a4 + 4av51v2a7 + 4av1v52b10 + 2v31v2a2a7 + 2v31v2a2b8
− 2v1v32a2a9 − 2v1v32a2b10 − 2av41v22b7 − 4av51v2b8 − 2av41v22b9
+ 2av21v42b9 + 2av41v22a8 − 2av21v42a8 − 2av21v42a10 − 4av1v52a9
−v51b1+v52a1+2v81b7−2v82a10+v71b4−v72a6+2v21v32a1−v1v

4
2b1

+ 2a2v21b2 − 2a2v22a3 + a2v1b1 − a2v2a1 − v41v
3
2a6 + 2v41v32b5

− 2v31v42a5 + v31v
4
2b4 + 2v31v42b6 − v21v

5
2a4 − 2v21v62a8 + 2v21v62b9

− 2v1v72a9 + 2v1v72b10 + 4v61v22b7 + 2v41v42b7 − 6av61b7 + 4a2v41b7
−2v41v42a10−4v21v62a10−6av62a10−4a2v42a10−4av52a6+3a2v31b4
− 3a2v32a6 − 2av41b2 − 2av42a3 + v41v2a1 − 2v31v22b1 − 2v71v2a7
+ 2v71v2b8 − 2v61v22a8 + 2v61v22b9 − 4v51v32a7 − 2v51v32a9 + 4v51v32b8
+2v51v32b10− 4v41v42a8+4v41v42b9− 2v31v52a7− 4v31v52a9+2v31v52b8
+ 4v31v52b10 − 2v21v52a6 + v21v

5
2b5 − v1v

6
2a5 + v1v

6
2b6 − 4av51b4

− v61v2a4 + v61v2b5 − v51v
2
2a5 + 2v51v22b4 + v51v

2
2b6 − 2v41v32a4 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

(
−4a2a10 − 2aa3

)
v42 + (−4ab4 − b1) v51 + (−4aa6 + a1) v52

+
(
4a2b7 − 2ab2

)
v41 +

(
a2a4 + a2b5 + 4aa1

)
v2v

2
1

+
(
−a2a5 − a2b6 + 4ab1

)
v22v1 + (2aa3 + 2ab2) v22v21

+
(
−2a2a9 − 2a2b10 + 4ab3

)
v32v1 + (4aa4 − 2ab5 + a1) v2v41

+(2aa5−2b1) v22v31+(2ab5+2a1) v32v21+(−2aa5+4ab6−b1) v42v1
+ (4aa7 − 4ab8) v2v51 + (−4aa9 + 4ab10) v52v1
+ (2aa8 − 2ab7 − 2ab9) v22v41 + (−2aa8 − 2aa10 + 2ab9) v42v21
+ (−2a4 − a6 + 2b5) v32v41 + (−2a5 + b4 + 2b6) v42v31
+ (−a4 − 2a6 + b5) v52v21 + (−2a8 + 2b9 − 4a10) v62v21
+ (−2a9 + 2b10) v72v1 + (4b7 − 2a8 + 2b9) v22v61
+ (2b7 − 2a10 − 4a8 + 4b9) v42v41 + (−2a7 + 2b8) v2v71
+(−4a7−2a9+4b8+2b10) v32v51+(−2a7−4a9+2b8+4b10) v52v31
+ (−a5 + b6) v62v1 + (−a4 + b5) v2v61 + (−a5 + 2b4 + b6) v22v51
+
(
2a2a7 + 2a2b8 + 4aa2

)
v2v

3
1 + 2v81b7 − 2v82a10

+ v71b4 − v72a6 + 2a2v21b2 − 2a2v22a3 + a2v1b1 − a2v2a1
− 6av61b7 − 6av62a10 + 3a2v31b4 − 3a2v32a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
b4 = 0

a2b1 = 0
−a6 = 0

−2a10 = 0
2b7 = 0

−6aa10 = 0
−6ab7 = 0
−a2a1 = 0
−2a2a3 = 0
−3a2a6 = 0
2a2b2 = 0
3a2b4 = 0

−a4 + b5 = 0
−a5 + b6 = 0

−2a7 + 2b8 = 0
−2a9 + 2b10 = 0

−2a4 − a6 + 2b5 = 0
−a4 − 2a6 + b5 = 0
−2a5 + b4 + 2b6 = 0
−a5 + 2b4 + b6 = 0

−2a8 + 2b9 − 4a10 = 0
4b7 − 2a8 + 2b9 = 0

−4a7 − 2a9 + 4b8 + 2b10 = 0
−2a7 − 4a9 + 2b8 + 4b10 = 0
2b7 − 2a10 − 4a8 + 4b9 = 0

−4aa6 + a1 = 0
2ab5 + 2a1 = 0

−4a2a10 − 2aa3 = 0
2aa3 + 2ab2 = 0
2aa5 − 2b1 = 0

4aa7 − 4ab8 = 0
−4aa9 + 4ab10 = 0

−4ab4 − b1 = 0
4a2b7 − 2ab2 = 0

4aa4 − 2ab5 + a1 = 0
a2a4 + a2b5 + 4aa1 = 0

2a2a7 + 2a2b8 + 4aa2 = 0
−2aa5 + 4ab6 − b1 = 0

−a2a5 − a2b6 + 4ab1 = 0
−2aa8 − 2aa10 + 2ab9 = 0

2aa8 − 2ab7 − 2ab9 = 0
−2a2a9 − 2a2b10 + 4ab3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −ab8

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = b8

a8 = b9

a9 = b10

a10 = 0
b1 = 0
b2 = 0
b3 = ab10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b8

b9 = b9

b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x y2

η = y3 + ya

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y3 + ya−
(
y(x2 + y2 + a)
x (x2 + y2 − a)

)(
x y2

)
= −a x2y + a y3 + a2y

−x2 − y2 + a

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a x2y+a y3+a2y
−x2−y2+a

dy

Which results in

S = − ln (−x2 + y2 + a) + ln (y)
a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(x2 + y2 + a)
x (x2 + y2 − a)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
a (−x2 + y2 + a)

Sy =
− 2y

−x2+y2+a
+ 1

y

a

6442



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

ax
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

aR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
a

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−x2 + y2 + a) + ln (y)
a

= − ln (x)
a

+ c1

Which simplifies to

−c1a− ln (−x2 + y2 + a) + ln (y) + ln (x)
a

= 0

Summary
The solution(s) found are the following

(1)−c1a− ln (−x2 + y2 + a) + ln (y) + ln (x)
a

= 0

Verification of solutions

−c1a− ln (−x2 + y2 + a) + ln (y) + ln (x)
a

= 0

Verified OK.
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23.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−x2 − y2 + a

))
dy =

(
−y
(
x2 + y2 + a

))
dx(

y
(
x2 + y2 + a

))
dx+

(
x
(
−x2 − y2 + a

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
x2 + y2 + a

)
N(x, y) = x

(
−x2 − y2 + a

)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y
(
x2 + y2 + a

))
= x2 + 3y2 + a

And

∂N

∂x
= ∂

∂x

(
x
(
−x2 − y2 + a

))
= −3x2 − y2 + a

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (−x2 − y2 + a)
((
x2 + 3y2 + a

)
−
(
−3x2 − y2 + a

))
= 4x2 + 4y2

x (−x2 − y2 + a)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (x2 + y2 + a)
((
−3x2 − y2 + a

)
−
(
x2 + 3y2 + a

))
= −4x2 − 4y2

y (x2 + y2 + a)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−3x2 − y2 + a)− (x2 + 3y2 + a)
x (y (x2 + y2 + a))− y (x (−x2 − y2 + a))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
y
(
x2 + y2 + a

))
= x2 + y2 + a

y x2

And

N = µN

= 1
y2x2

(
x
(
−x2 − y2 + a

))
= −x2 − y2 + a

x y2
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

x2 + y2 + a

y x2

)
+
(
−x2 − y2 + a

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + y2 + a

y x2 dx

(3)φ = x2 − y2 − a

xy
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2

x
− x2 − y2 − a

x y2
+ f ′(y)

= −x2 − y2 + a

x y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x2−y2+a
x y2

. Therefore equation (4) becomes

(5)−x2 − y2 + a

x y2
= −x2 − y2 + a

x y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2 − y2 − a

xy
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2 − y2 − a

xy

Summary
The solution(s) found are the following

(1)x2 − y2 − a

xy
= c1

Verification of solutions

x2 − y2 − a

xy
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
equivalence obtained to this Abel ODE: diff(y(x),x) = -2*(x^2+a)/x/(-x^2+a)*y(x)-6*a/x/(-x^2+a)^2*y(x)^2-4*a/(-x^2+a)^3/x*y(x)^3
trying to solve the Abel ODE ...
<- Abel successful
equivalence to an Abel ODE successful, Abel ODE has been solved`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 148� �
dsolve(x*(a-x^2-y(x)^2)*diff(y(x),x)+(a+x^2+y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x)2 (−x2 + a)
a− x2 − y (x)2

= −
√
x2 − a x√

−c1x2+c1a−4a
−x2+a

+ x2

2 − a

2

y(x)2 (−x2 + a)
a− x2 − y (x)2

=
√
x2 − a x√

−c1x2+c1a−4a
−x2+a

+ x2

2 − a

2
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3 Solution by Mathematica
Time used: 1.014 (sec). Leaf size: 65� �
DSolve[x(a-x^2-y[x]^2)y'[x]+(a+x^2+y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
c1x−

√
−4a+ (4 + c12)x2

)
y(x) → 1

2

(√
−4a+ (4 + c12)x2 + c1x

)
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23.12 problem 643
23.12.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6451
23.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6453

Internal problem ID [3890]
Internal file name [OUTPUT/3383_Sunday_June_05_2022_09_14_58_AM_28330483/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 643.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
y2 + 2x2) y′ − (2x2 + 3y2

)
y = 0

23.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
u(x)2 x2 + 2x2) (u′(x)x+ u(x))−

(
2x2 + 3u(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u3

x (u2 + 2)

Where f(x) = 2
x
and g(u) = u3

u2+2 . Integrating both sides gives

1
u3

u2+2
du = 2

x
dx
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∫ 1
u3

u2+2
du =

∫ 2
x
dx

− 1
u2 + ln (u) = 2 ln (x) + c2

The solution is

− 1
u (x)2

+ ln (u(x))− 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x2

y2
+ ln

(y
x

)
− 2 ln (x)− c2 = 0

−x2

y2
+ ln

(y
x

)
− 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)−x2

y2
+ ln

(y
x

)
− 2 ln (x)− c2 = 0

Figure 1016: Slope field plot
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Verification of solutions

−x2

y2
+ ln

(y
x

)
− 2 ln (x)− c2 = 0

Verified OK.

23.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (2x2 + 3y2) y
x (2x2 + y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2x2 + 3y2) y(b3 − a2)

x (2x2 + y2) − (2x2 + 3y2)2 y2a3
x2 (2x2 + y2)2

−
(

4y
2x2 + y2

− (2x2 + 3y2) y
x2 (2x2 + y2) −

4(2x2 + 3y2) y
(2x2 + y2)2

)
(xa2 + ya3 + a1)

−
(

6y2
x (2x2 + y2) +

2x2 + 3y2
x (2x2 + y2) −

2(2x2 + 3y2) y2

x (2x2 + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−12x4y2b2 − 8x3y3a2 + 8x3y3b3 − 4x2y4a3 + 2x2y4b2 + 6y6a3 + 4x5b1 − 4x4ya1 + 16x3y2b1 − 16x2y3a1 + 3x y4b1 − 3y5a1
(2x2 + y2)2 x2

= 0
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Setting the numerator to zero gives

(6E)−12x4y2b2 + 8x3y3a2 − 8x3y3b3 + 4x2y4a3 − 2x2y4b2 − 6y6a3
− 4x5b1 + 4x4ya1 − 16x3y2b1 + 16x2y3a1 − 3x y4b1 + 3y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)8a2v31v32 + 4a3v21v42 − 6a3v62 − 12b2v41v22 − 2b2v21v42 − 8b3v31v32
+ 4a1v41v2 + 16a1v21v32 + 3a1v52 − 4b1v51 − 16b1v31v22 − 3b1v1v42 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4b1v51 − 12b2v41v22 + 4a1v41v2 + (8a2 − 8b3) v31v32 − 16b1v31v22
+ (4a3 − 2b2) v21v42 + 16a1v21v32 − 3b1v1v42 − 6a3v62 + 3a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a1 = 0
4a1 = 0
16a1 = 0
−6a3 = 0
−16b1 = 0
−4b1 = 0
−3b1 = 0
−12b2 = 0

8a2 − 8b3 = 0
4a3 − 2b2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
(2x2 + 3y2) y
x (2x2 + y2)

)
(x)

= − 2y3
2x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2y3
2x2+y2

dy
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Which results in

S = x2

2y2 − ln (y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (2x2 + 3y2) y
x (2x2 + y2)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

y2

Sy =
−2x2 − y2

2y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − 3

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y) y2 + x2

2y2 = −3 ln (x)
2 + c1
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Which simplifies to

− ln (y) y2 + x2

2y2 = −3 ln (x)
2 + c1

Which gives

y = e
LambertW

(
2 e4c1
x4

)
2 −2c1x3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
2x2+3y2

)
y

x(2x2+y2)
dS
dR

= − 3
2R

R = x

S = − ln (y) y2 + x2

2y2

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
2 e4c1
x4

)
2 −2c1x3
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Figure 1017: Slope field plot

Verification of solutions

y = e
LambertW

(
2 e4c1
x4

)
2 −2c1x3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 37� �
dsolve(x*(2*x^2+y(x)^2)*diff(y(x),x) = (2*x^2+3*y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = e2c1
√
2
√√√√ e−4c1

x4 LambertW
(

2 e−4c1
x4

) x3

3 Solution by Mathematica
Time used: 7.668 (sec). Leaf size: 61� �
DSolve[x(2 x^2+y[x]^2)y'[x]==(2 x^2+3 y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2x√

W
(

2e−2c1
x4

)
y(x) →

√
2x√

W
(

2e−2c1
x4

)
y(x) → 0
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23.13 problem 644
23.13.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6460

Internal problem ID [3891]
Internal file name [OUTPUT/3384_Sunday_June_05_2022_09_15_03_AM_97087088/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 644.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

(
x
(
a− x2 − y2

)
+ y
)
y′ −

(
a− x2 − y2

)
y = −x

23.13.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2y + y3 − ya+ x

x3 + x y2 − ax− y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x2y + y3 − ya+ x) (b3 − a2)

x3 + x y2 − ax− y
− (x2y + y3 − ya+ x)2 a3

(x3 + x y2 − ax− y)2

−
(

2xy + 1
x3 + x y2 − ax− y

− (x2y + y3 − ya+ x) (3x2 + y2 − a)
(x3 + x y2 − ax− y)2

)
(xa2

+ ya3 + a1)−
(

x2 + 3y2 − a

x3 + x y2 − ax− y

− (x2y + y3 − ya+ x) (2xy − 1)
(x3 + x y2 − ax− y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x5b1 − x4ya1 + 2x3y2b1 − 2x2y3a1 + x y4b1 − y5a1 − 2a x3b1 + 2a x2ya1 − 2ax y2b1 + 2a y3a1 − x4a2 − x4b3 − 2x2y2a2 − 2x2y2b3 − y4a2 − y4b3 + a2xb1 − a2ya1 − a x2a2 + a x2b3 − 2axya3 − 2axyb2 + a y2a2 − a y2b3 − 2x3a1 − 2x2yb1 − 2x y2a1 − 2y3b1 + x2a3 + x2b2 − 2xya2 + 2xyb3 − y2a3 − y2b2 + xb1 − ya1

(−x3 − x y2 + ax+ y)2
= 0

Setting the numerator to zero gives

(6E)
−x5b1 + x4ya1 − 2x3y2b1 + 2x2y3a1 − x y4b1 + y5a1 + 2a x3b1 − 2a x2ya1
+2ax y2b1−2a y3a1+x4a2+x4b3+2x2y2a2+2x2y2b3+y4a2+y4b3−a2xb1
+ a2ya1 + a x2a2 − a x2b3 + 2axya3 + 2axyb2 − a y2a2 + a y2b3 + 2x3a1
+2x2yb1+2x y2a1+2y3b1−x2a3−x2b2+2xya2−2xyb3+y2a3+y2b2−xb1
+ ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

a1v
4
1v2 + 2a1v21v32 + a1v

5
2 − b1v

5
1 − 2b1v31v22 − b1v1v

4
2 − 2aa1v21v2

− 2aa1v32 + 2ab1v31 + 2ab1v1v22 + a2v
4
1 + 2a2v21v22 + a2v

4
2 + b3v

4
1

+ 2b3v21v22 + b3v
4
2 + a2a1v2 − a2b1v1 + aa2v

2
1 − aa2v

2
2 + 2aa3v1v2

+ 2ab2v1v2 − ab3v
2
1 + ab3v

2
2 + 2a1v31 + 2a1v1v22 + 2b1v21v2 + 2b1v32

+ 2a2v1v2 − a3v
2
1 + a3v

2
2 − b2v

2
1 + b2v

2
2 − 2b3v1v2 + a1v2 − b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

−b1v
5
1 + a1v

4
1v2 + (a2 + b3) v41 − 2b1v31v22 + (2ab1 + 2a1) v31 + 2a1v21v32

+ (2a2 + 2b3) v21v22 + (−2aa1 + 2b1) v21v2 + (aa2 − ab3 − a3 − b2) v21
− b1v1v

4
2 + (2ab1 + 2a1) v1v22 + (2aa3 + 2ab2 + 2a2 − 2b3) v1v2

+
(
−a2b1 − b1

)
v1 + a1v

5
2 + (a2 + b3) v42 + (−2aa1 + 2b1) v32

+ (−aa2 + ab3 + a3 + b2) v22 +
(
a2a1 + a1

)
v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
2a1 = 0

−2b1 = 0
−b1 = 0

a2 + b3 = 0
2a2 + 2b3 = 0
a2a1 + a1 = 0

−a2b1 − b1 = 0
2ab1 + 2a1 = 0

−2aa1 + 2b1 = 0
2aa3 + 2ab2 + 2a2 − 2b3 = 0

−aa2 + ab3 + a3 + b2 = 0
aa2 − ab3 − a3 − b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = −b2

b1 = 0
b2 = b2

b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
x2y + y3 − ya+ x

x3 + x y2 − ax− y

)
(−y)

= −x4 − 2y2x2 − y4 + x2a+ a y2

−x3 − x y2 + ax+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4−2y2x2−y4+x2a+a y2

−x3−x y2+ax+y

dy

Which results in

S = − ln (x2 + y2 − a)
2a + ln (x2 + y2)

2a + arctan
(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2y + y3 − ya+ x

x3 + x y2 − ax− y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y3 + (x2 − a) y + x

(x2 + y2) (−x2 − y2 + a)

Sy =
−x3 + (−y2 + a)x+ y

(x2 + y2) (−x2 − y2 + a)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 arctan
(
y
x

)
a− ln (y2 + x2 − a) + ln (y2 + x2)

2a = c1

Which simplifies to

2 arctan
(
y
x

)
a− ln (y2 + x2 − a) + ln (y2 + x2)

2a = c1

Summary
The solution(s) found are the following

(1)
2 arctan

(
y
x

)
a− ln (y2 + x2 − a) + ln (y2 + x2)

2a = c1

6464



Verification of solutions

2 arctan
(
y
x

)
a− ln (y2 + x2 − a) + ln (y2 + x2)

2a = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.5 (sec). Leaf size: 37� �
dsolve((x*(a-x^2-y(x)^2)+y(x))*diff(y(x),x)+x-(a-x^2-y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) = cot
(
RootOf

(
2c1a− 2a_Z+ ln

(
− x2

a sin (_Z)2 − x2

)))
x

3 Solution by Mathematica
Time used: 0.181 (sec). Leaf size: 47� �
DSolve[(x*(a-x^2-y[x]^2)+y[x])*y'[x]+x-(a-x^2-y[x]^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

 log (−a+ x2 + y(x)2)− 2a tan−1
(

y(x)
x

)
− log (x2 + y(x)2)

2a = c1, y(x)
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23.14 problem 645
23.14.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6466
23.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6467
23.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6470
23.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6473

Internal problem ID [3892]
Internal file name [OUTPUT/3385_Sunday_June_05_2022_09_15_07_AM_42846905/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 645.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x(y + a)2 y′ − by2 = 0

23.14.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= b y2

x (a+ y)2

Where f(x) = b
x
and g(y) = y2

(a+y)2 . Integrating both sides gives

1
y2

(a+y)2
dy = b

x
dx

∫ 1
y2

(a+y)2
dy =

∫
b

x
dx
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y − a2

y
+ 2a ln (y) = ln (x) b+ c1

Which results in
y = eRootOf

(
ln(x)b e_Z−2_Za e_Z−e2_Z+c1e_Z+a2

)

Summary
The solution(s) found are the following

(1)y = eRootOf
(
ln(x)b e_Z−2_Za e_Z−e2_Z+c1e_Z+a2

)
Verification of solutions

y = eRootOf
(
ln(x)b e_Z−2_Za e_Z−e2_Z+c1e_Z+a2

)

Verified OK.

23.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = b y2

x (a2 + 2ya+ y2)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 929: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

b
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
b

dx

Which results in

S = ln (x) b

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = b y2

x (a2 + 2ya+ y2)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = b

x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (a+ y)2

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (a+R)2

R2

6469



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R− a2

R
+ 2a ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) b = y − a2

y
+ 2a ln (y) + c1

Which simplifies to

ln (x) b = y − a2

y
+ 2a ln (y) + c1

Summary
The solution(s) found are the following

(1)ln (x) b = y − a2

y
+ 2a ln (y) + c1

Verification of solutions

ln (x) b = y − a2

y
+ 2a ln (y) + c1

Verified OK.

23.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
a2 + 2ya+ y2

b y2

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
a2 + 2ya+ y2

b y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = a2 + 2ya+ y2

b y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And

∂N

∂x
= ∂

∂x

(
a2 + 2ya+ y2

b y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= a2+2ya+y2

b y2
. Therefore equation (4) becomes

(5)a2 + 2ya+ y2

b y2
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a2 + 2ya+ y2

b y2

= (a+ y)2

y2b
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Integrating the above w.r.t y results in

∫
f ′(y) dy =

∫ ((a+ y)2

y2b

)
dy

f(y) =
y − a2

y
+ 2a ln (y)
b

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) +
y − a2

y
+ 2a ln (y)
b

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) +
y − a2

y
+ 2a ln (y)
b

Summary
The solution(s) found are the following

(1)− ln (x) +
y − a2

y
+ 2a ln (y)
b

= c1

Verification of solutions

− ln (x) +
y − a2

y
+ 2a ln (y)
b

= c1

Verified OK.

23.14.4 Maple step by step solution

Let’s solve
x(y + a)2 y′ − by2 = 0

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′(y+a)2

y2
= b

x

• Integrate both sides with respect to x∫ y′(y+a)2
y2

dx =
∫

b
x
dx+ c1

• Evaluate integral
y − a2

y
+ 2a ln (y) = ln (x) b+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 33� �
dsolve(x*(a+y(x))^2*diff(y(x),x) = b*y(x)^2,y(x), singsol=all)� �

y(x) = eRootOf
(
ln(x)b e_Z+c1b e_Z−2_Za e_Z−e2_Z+a2

)

3 Solution by Mathematica
Time used: 0.425 (sec). Leaf size: 37� �
DSolve[x(a+y[x])^2 y'[x]==b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
− a2

#1 + 2a log(#1) + #1&
]
[b log(x) + c1]

y(x) → 0
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23.15 problem 646
23.15.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6475
23.15.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6477

Internal problem ID [3893]
Internal file name [OUTPUT/3386_Sunday_June_05_2022_09_15_12_AM_99840944/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 646.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 − yx+ y2

)
y′ +

(
x2 + yx+ y2

)
y = 0

23.15.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)
x
(
x2 − u(x)x2 + u(x)2 x2) (u′(x)x+ u(x)) +

(
x2 + u(x)x2 + u(x)2 x2)u(x)x = 0

In canonical form the ODE is
u′ = F (x, u)

= f(x)g(u)

= − 2u(u2 + 1)
x (u2 − u+ 1)

Where f(x) = − 2
x
and g(u) = u

(
u2+1

)
u2−u+1 . Integrating both sides gives

1
u(u2+1)
u2−u+1

du = −2
x
dx

∫ 1
u(u2+1)
u2−u+1

du =
∫

−2
x
dx

− arctan (u) + ln (u) = −2 ln (x) + c2
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The solution is
− arctan (u(x)) + ln (u(x)) + 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− arctan
(y
x

)
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

− arctan
(y
x

)
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)− arctan
(y
x

)
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

Figure 1018: Slope field plot

Verification of solutions

− arctan
(y
x

)
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

Verified OK.
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23.15.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (x2 + xy + y2) y
x (x2 − xy + y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x2 + xy + y2) y(b3 − a2)

x (x2 − xy + y2) − (x2 + xy + y2)2 y2a3
x2 (x2 − xy + y2)2

−
(
− (2x+ y) y
x (x2 − xy + y2) +

(x2 + xy + y2) y
x2 (x2 − xy + y2)

+ (x2 + xy + y2) y(2x− y)
x (x2 − xy + y2)2

)
(xa2 + ya3 + a1)−

(
− (x+ 2y) y
x (x2 − xy + y2)

− x2 + xy + y2

x (x2 − xy + y2) +
(x2 + xy + y2) y(−x+ 2y)

x (x2 − xy + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6b2 − 2x4y2a2 − 2x4y2a3 + 4x4y2b2 + 2x4y2b3 − 4x3y3a3 − 4x3y3b2 + 2x2y4a2 − 4x2y4a3 + 2x2y4b2 − 2x2y4b3 − 2y6a3 + x5b1 − x4ya1 + 2x4yb1 − 2x3y2a1 + x3y2b1 − x2y3a1 − 2x2y3b1 + 2x y4a1 + x y4b1 − y5a1

x2 (x2 − xy + y2)2
= 0
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Setting the numerator to zero gives

(6E)2x6b2 − 2x4y2a2 − 2x4y2a3 + 4x4y2b2 + 2x4y2b3 − 4x3y3a3 − 4x3y3b2
+ 2x2y4a2 − 4x2y4a3 + 2x2y4b2 − 2x2y4b3 − 2y6a3 + x5b1 − x4ya1 + 2x4yb1
− 2x3y2a1 + x3y2b1 − x2y3a1 − 2x2y3b1 + 2x y4a1 + x y4b1 − y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v41v22 + 2a2v21v42 − 2a3v41v22 − 4a3v31v32 − 4a3v21v42 − 2a3v62 + 2b2v61
+ 4b2v41v22 − 4b2v31v32 + 2b2v21v42 + 2b3v41v22 − 2b3v21v42 − a1v

4
1v2 − 2a1v31v22

− a1v
2
1v

3
2 +2a1v1v42 − a1v

5
2 + b1v

5
1 +2b1v41v2 + b1v

3
1v

2
2 − 2b1v21v32 + b1v1v

4
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v61 + b1v
5
1 + (−2a2 − 2a3 + 4b2 + 2b3) v41v22 + (−a1 + 2b1) v41v2

+ (−4a3 − 4b2) v31v32 + (−2a1 + b1) v31v22 + (2a2 − 4a3 + 2b2 − 2b3) v21v42
+ (−a1 − 2b1) v21v32 + (2a1 + b1) v1v42 − 2a3v62 − a1v

5
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
−2a3 = 0
2b2 = 0

−2a1 + b1 = 0
−a1 − 2b1 = 0
−a1 + 2b1 = 0
2a1 + b1 = 0

−4a3 − 4b2 = 0
−2a2 − 2a3 + 4b2 + 2b3 = 0
2a2 − 4a3 + 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− (x2 + xy + y2) y
x (x2 − xy + y2)

)
(x)

= 2x2y + 2y3
x2 − xy + y2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2y+2y3
x2−xy+y2

dy

Which results in

S = −
arctan

(
y
x

)
2 + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (x2 + xy + y2) y
x (x2 − xy + y2)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

2x2 + 2y2

Sy =
x2 − xy + y2

2 (x2 + y2) y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
arctan

(
y
x

)
2 + ln (y)

2 = − ln (x)
2 + c1

Which simplifies to

−
arctan

(
y
x

)
2 + ln (y)

2 = − ln (x)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
x2+xy+y2

)
y

x(x2−xy+y2)
dS
dR

= − 1
2R

R = x

S = −
arctan

(
y
x

)
2 + ln (y)

2
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Summary
The solution(s) found are the following

(1)−
arctan

(
y
x

)
2 + ln (y)

2 = − ln (x)
2 + c1

Figure 1019: Slope field plot

Verification of solutions

−
arctan

(
y
x

)
2 + ln (y)

2 = − ln (x)
2 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve(x*(x^2-x*y(x)+y(x)^2)*diff(y(x),x)+(x^2+x*y(x)+y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) = tan (RootOf (ln (tan (_Z))− _Z+ 2 ln (x) + 2c1))x

3 Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 28� �
DSolve[x(x^2-x y[x]+y[x]^2)y'[x]+(x^2+x y[x]+y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
log
(
y(x)
x

)
− arctan

(
y(x)
x

)
= −2 log(x) + c1, y(x)

]
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23.16 problem 647
23.16.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6484
23.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6486
23.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6492

Internal problem ID [3894]
Internal file name [OUTPUT/3387_Sunday_June_05_2022_09_15_16_AM_96744274/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 647.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 − yx− y2

)
y′ −

(
x2 + yx− y2

)
y = 0

23.16.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 − u(x)x2 − u(x)2 x2) (u′(x)x+ u(x))−

(
x2 + u(x)x2 − u(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u2

(u2 + u− 1)x

Where f(x) = − 2
x
and g(u) = u2

u2+u−1 . Integrating both sides gives

1
u2

u2+u−1
du = −2

x
dx
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∫ 1
u2

u2+u−1
du =

∫
−2
x
dx

u+ 1
u
+ ln (u) = −2 ln (x) + c2

The solution is

u(x) + 1
u (x) + ln (u(x)) + 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ x

y
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

y

x
+ x

y
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
+ x

y
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

Figure 1020: Slope field plot
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Verification of solutions
y

x
+ x

y
+ ln

(y
x

)
+ 2 ln (x)− c2 = 0

Verified OK.

23.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(−x2 − xy + y2)
x (−x2 + xy + y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(−x2 − xy + y2) (b3 − a2)

x (−x2 + xy + y2) − y2(−x2 − xy + y2)2 a3
x2 (−x2 + xy + y2)2

−
(

y(−2x− y)
x (−x2 + xy + y2) −

y(−x2 − xy + y2)
x2 (−x2 + xy + y2)

− y(−x2 − xy + y2) (−2x+ y)
x (−x2 + xy + y2)2

)
(xa2 + ya3 + a1)−

(
−x2 − xy + y2

x (−x2 + xy + y2)

+ y(−x+ 2y)
x (−x2 + xy + y2) −

y(−x2 − xy + y2) (x+ 2y)
x (−x2 + xy + y2)2

)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−4x5yb2 − 2x4y2a2 − 2x4y2b2 + 2x4y2b3 − 2x2y4a2 + 2x2y4a3 + 2x2y4b3 − 4x y5a3 + x5b1 − x4ya1 + 2x4yb1 − 2x3y2a1 − 3x3y2b1 + 3x2y3a1 + 2x2y3b1 − 2x y4a1 + x y4b1 − y5a1

x2 (x2 − xy − y2)2
= 0

Setting the numerator to zero gives

(6E)−4x5yb2 + 2x4y2a2 + 2x4y2b2 − 2x4y2b3 + 2x2y4a2 − 2x2y4a3
− 2x2y4b3 + 4x y5a3 − x5b1 + x4ya1 − 2x4yb1 + 2x3y2a1
+ 3x3y2b1 − 3x2y3a1 − 2x2y3b1 + 2x y4a1 − x y4b1 + y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v41v22 + 2a2v21v42 − 2a3v21v42 + 4a3v1v52 − 4b2v51v2 + 2b2v41v22
− 2b3v41v22 − 2b3v21v42 + a1v

4
1v2 + 2a1v31v22 − 3a1v21v32 + 2a1v1v42

+ a1v
5
2 − b1v

5
1 − 2b1v41v2 + 3b1v31v22 − 2b1v21v32 − b1v1v

4
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4b2v51v2 − b1v
5
1 + (2a2 + 2b2 − 2b3) v41v22 + (a1 − 2b1) v41v2 + (2a1 + 3b1) v31v22

+(2a2−2a3−2b3) v21v42 +(−3a1−2b1) v21v32 +4a3v1v52 +(2a1− b1) v1v42 +a1v
5
2

= 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
4a3 = 0
−b1 = 0
−4b2 = 0

−3a1 − 2b1 = 0
a1 − 2b1 = 0
2a1 − b1 = 0
2a1 + 3b1 = 0

2a2 − 2a3 − 2b3 = 0
2a2 + 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(−x2 − xy + y2)
x (−x2 + xy + y2)

)
(x)

= − 2y2x
x2 − xy − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2y2x
x2−xy−y2

dy

Which results in

S = y

2x + x

2y + ln (y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(−x2 − xy + y2)
x (−x2 + xy + y2)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 − y2

2x2y

Sy =
−x2 + xy + y2

2x y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy ln (y) + x2 + y2

2xy = − ln (x)
2 + c1

Which simplifies to

xy ln (y) + x2 + y2

2xy = − ln (x)
2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
−x2−xy+y2

)
x(−x2+xy+y2)

dS
dR

= − 1
2R

R = x

S = ln (y)xy + x2 + y2

2xy

Summary
The solution(s) found are the following

(1)xy ln (y) + x2 + y2

2xy = − ln (x)
2 + c1
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Figure 1021: Slope field plot

Verification of solutions

xy ln (y) + x2 + y2

2xy = − ln (x)
2 + c1

Verified OK.

23.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 − xy − y2

))
dy =

(
y
(
x2 + xy − y2

))
dx(

−y
(
x2 + xy − y2

))
dx+

(
x
(
x2 − xy − y2

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
x2 + xy − y2

)
N(x, y) = x

(
x2 − xy − y2

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
x2 + xy − y2

))
= −x2 − 2xy + 3y2

And
∂N

∂x
= ∂

∂x

(
x
(
x2 − xy − y2

))
= 3x2 − 2xy − y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 − xy − y2)
((
−x2 − xy + y2 − y(x− 2y)

)
−
(
x2 − xy − y2 + x(2x− y)

))
= −4x2 + 4y2

x (x2 − xy − y2)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (x2 + xy − y2)
((
x2 − xy − y2 + x(2x− y)

)
−
(
−x2 − xy + y2 − y(x− 2y)

))
= −4x2 + 4y2

y (x2 + xy − y2)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (x2 − xy − y2 + x(2x− y))− (−x2 − xy + y2 − y(x− 2y))
x (−y (x2 + xy − y2))− y (x (x2 − xy − y2))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
−y
(
x2 + xy − y2

))
= −x2 − xy + y2

x2y

And

N = µN

= 1
y2x2

(
x
(
x2 − xy − y2

))
= x2 − xy − y2

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−x2 − xy + y2

x2y

)
+
(
x2 − xy − y2

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − xy + y2

x2y
dx

(3)φ = −x

y
− y

x
− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
− 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2−xy−y2

x y2
. Therefore equation (4) becomes

(5)x2 − xy − y2

x y2
= x

y2
− 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

y
− y

x
− ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

y
− y

x
− ln (x)− ln (y)
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Summary
The solution(s) found are the following

(1)−x

y
− y

x
− ln (x)− ln (y) = c1

Figure 1022: Slope field plot

Verification of solutions

−x

y
− y

x
− ln (x)− ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.235 (sec). Leaf size: 29� �
dsolve(x*(x^2-x*y(x)-y(x)^2)*diff(y(x),x) = (x^2+x*y(x)-y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = eRootOf
(
2 e_Z ln(x)+e2_Z+2c1e_Z+_Z e_Z+1

)
x

3 Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 31� �
DSolve[x(x^2-x y[x]-y[x]^2)y'[x]==(x^2+x y[x]-y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[

x

y(x) +
y(x)
x

+ log
(
y(x)
x

)
= −2 log(x) + c1, y(x)

]
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23.17 problem 648
23.17.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6499
23.17.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6500
23.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6505

Internal problem ID [3895]
Internal file name [OUTPUT/3388_Sunday_June_05_2022_09_15_21_AM_29206279/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 648.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 + axy + y2

)
y′ −

(
x2 + bxy + y2

)
y = 0

23.17.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 + a x2u(x) + u(x)2 x2) (u′(x)x+ u(x))−

(
x2 + b x2u(x) + u(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= (b− a)u2

x (au+ u2 + 1)

Where f(x) = b−a
x

and g(u) = u2

au+u2+1 . Integrating both sides gives

1
u2

au+u2+1
du = b− a

x
dx
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∫ 1
u2

au+u2+1
du =

∫
b− a

x
dx

u− 1
u
+ a ln (u) = (b− a) ln (x) + c2

The solution is

u(x)− 1
u (x) + a ln (u(x))− (b− a) ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
− x

y
+ a ln

(y
x

)
− (b− a) ln (x)− c2 = 0

y

x
− x

y
+ a ln

(y
x

)
+ (−b+ a) ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
− x

y
+ a ln

(y
x

)
+ (−b+ a) ln (x)− c2 = 0

Verification of solutions
y

x
− x

y
+ a ln

(y
x

)
+ (−b+ a) ln (x)− c2 = 0

Verified OK.

23.17.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (bxy + x2 + y2) y
x (axy + x2 + y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(bxy + x2 + y2) y(b3 − a2)

x (axy + x2 + y2) − (bxy + x2 + y2)2 y2a3
x2 (axy + x2 + y2)2

−
(

(by + 2x) y
x (axy + x2 + y2) −

(bxy + x2 + y2) y
x2 (axy + x2 + y2)

− (bxy + x2 + y2) y(ya+ 2x)
x (axy + x2 + y2)2

)
(xa2 + ya3 + a1)−

(
(bx+ 2y) y

x (axy + x2 + y2)

+ bxy + x2 + y2

x (axy + x2 + y2) −
(bxy + x2 + y2) y(ax+ 2y)

x (axy + x2 + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

a2x4y2b2 − ab x4y2b2 + ab x2y4a3 − b2x2y4a3 − ab x3y2b1 + ab x2y3a1 + 2a x5yb2 − a x4y2a2 + a x4y2b3 + a x2y4a2 − a x2y4b3 + 2ax y5a3 − 2b x5yb2 + b x4y2a2 − b x4y2b3 − b x2y4a2 + b x2y4b3 − 2bx y5a3 − 2a x2y3b1 + 2ax y4a1 − 2b x4yb1 + 2b x3y2a1 − x5b1 + x4ya1 − 2x3y2b1 + 2x2y3a1 − x y4b1 + y5a1

x2 (axy + x2 + y2)2
= 0

Setting the numerator to zero gives

(6E)
a2x4y2b2 − ab x4y2b2 + ab x2y4a3 − b2x2y4a3 − ab x3y2b1 + ab x2y3a1
+2a x5yb2−a x4y2a2+a x4y2b3+a x2y4a2−a x2y4b3+2ax y5a3−2b x5yb2
+b x4y2a2−b x4y2b3−b x2y4a2+b x2y4b3−2bx y5a3−2a x2y3b1+2ax y4a1
−2b x4yb1+2b x3y2a1−x5b1+x4ya1−2x3y2b1+2x2y3a1−x y4b1+y5a1 =0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)
a2b2v

4
1v

2
2+aba3v

2
1v

4
2−abb2v

4
1v

2
2−b2a3v

2
1v

4
2+aba1v

2
1v

3
2−abb1v

3
1v

2
2−aa2v

4
1v

2
2

+ aa2v
2
1v

4
2 + 2aa3v1v52 + 2ab2v51v2 + ab3v

4
1v

2
2 − ab3v

2
1v

4
2 + ba2v

4
1v

2
2 − ba2v

2
1v

4
2

−2ba3v1v52−2bb2v51v2−bb3v
4
1v

2
2+bb3v

2
1v

4
2+2aa1v1v42−2ab1v21v32+2ba1v31v22

− 2bb1v41v2 + a1v
4
1v2 + 2a1v21v32 + a1v

5
2 − b1v

5
1 − 2b1v31v22 − b1v1v

4
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(2ab2 − 2bb2) v51v2 − b1v

5
1 +

(
a2b2 − abb2 − aa2 + ab3 + ba2 − bb3

)
v41v

2
2

+ (−2bb1 + a1) v41v2 + (−abb1 + 2ba1 − 2b1) v31v22
+
(
aba3 − b2a3 + aa2 − ab3 − ba2 + bb3

)
v21v

4
2 + (aba1 − 2ab1 + 2a1) v21v32

+ (2aa3 − 2ba3) v1v52 + (2aa1 − b1) v1v42 + a1v
5
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−b1 = 0

2aa3 − 2ba3 = 0
2ab2 − 2bb2 = 0
2aa1 − b1 = 0

−2bb1 + a1 = 0
−abb1 + 2ba1 − 2b1 = 0
aba1 − 2ab1 + 2a1 = 0

aba3 − b2a3 + aa2 − ab3 − ba2 + bb3 = 0
a2b2 − abb2 − aa2 + ab3 + ba2 − bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
(bxy + x2 + y2) y
x (axy + x2 + y2)

)
(x)

= x y2a− bx y2

axy + x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2a−bx y2

axy+x2+y2

dy

Which results in

S =
y − x2

y
+ ax ln (y)

x (−b+ a)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (bxy + x2 + y2) y
x (axy + x2 + y2)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x2 − y2

x2y (−b+ a)

Sy =
axy + x2 + y2

y2x (−b+ a)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= b

x (−b+ a) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= b

R (−b+ a)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = b ln (R)
−b+ a

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ax ln (y) y − x2 + y2

xy (−b+ a) = b ln (x)
−b+ a

+ c1

Which simplifies to

ax ln (y) y − x2 + y2

xy (−b+ a) = b ln (x)
−b+ a

+ c1
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Summary
The solution(s) found are the following

(1)ax ln (y) y − x2 + y2

xy (−b+ a) = b ln (x)
−b+ a

+ c1

Verification of solutions

ax ln (y) y − x2 + y2

xy (−b+ a) = b ln (x)
−b+ a

+ c1

Verified OK.

23.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
axy + x2 + y2

))
dy =

(
y
(
bxy + x2 + y2

))
dx(

−y
(
bxy + x2 + y2

))
dx+

(
x
(
axy + x2 + y2

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
bxy + x2 + y2

)
N(x, y) = x

(
axy + x2 + y2

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y
(
bxy + x2 + y2

))
= −2bxy − x2 − 3y2

And

∂N

∂x
= ∂

∂x

(
x
(
axy + x2 + y2

))
= 2axy + 3x2 + y2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (axy + x2 + y2)
((
−bxy − x2 − y2 − y(bx+ 2y)

)
−
(
axy + x2 + y2 + x(ya+ 2x)

))
= −4x2 − 2y(a+ b)x− 4y2

x (axy + x2 + y2)
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (bxy + x2 + y2)
((
axy + x2 + y2 + x(ya+ 2x)

)
−
(
−bxy − x2 − y2 − y(bx+ 2y)

))
= −4x2 − 2y(a+ b)x− 4y2

y (bxy + x2 + y2)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (axy + x2 + y2 + x(ya+ 2x))− (−bxy − x2 − y2 − y(bx+ 2y))
x (−y (bxy + x2 + y2))− y (x (axy + x2 + y2))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
−y
(
bxy + x2 + y2

))
= −bxy − x2 − y2

x2y

And

N = µN

= 1
y2x2

(
x
(
axy + x2 + y2

))
= axy + x2 + y2

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−bxy − x2 − y2

x2y

)
+
(
axy + x2 + y2

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−bxy − x2 − y2

x2y
dx

(3)φ = −x

y
+ y

x
− ln (x) b+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ 1

x
+ f ′(y)
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But equation (2) says that ∂φ
∂y

= axy+x2+y2

x y2
. Therefore equation (4) becomes

(5)axy + x2 + y2

x y2
= x

y2
+ 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a

y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
a

y

)
dy

f(y) = a ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

y
+ y

x
− ln (x) b+ a ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

y
+ y

x
− ln (x) b+ a ln (y)

Summary
The solution(s) found are the following

(1)−x

y
+ y

x
− ln (x) b+ a ln (y) = c1

Verification of solutions

−x

y
+ y

x
− ln (x) b+ a ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 43� �
dsolve(x*(x^2+a*x*y(x)+y(x)^2)*diff(y(x),x) = (x^2+b*x*y(x)+y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = eRootOf
(
e_Za ln(x)−ln(x)b e_Z+e_Zc1a−c1b e_Z+_Za e_Z+e2_Z−1

)
x

3 Solution by Mathematica
Time used: 0.265 (sec). Leaf size: 38� �
DSolve[x(x^2+a x y[x]+y[x]^2)y'[x]==(x^2+b x y[x]+y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
a log

(
y(x)
x

)
− x

y(x) +
y(x)
x

= (b− a) log(x) + c1, y(x)
]
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23.18 problem 649
23.18.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6511
23.18.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6513
23.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6519

Internal problem ID [3896]
Internal file name [OUTPUT/3389_Sunday_June_05_2022_09_15_26_AM_90975155/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 649.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 − 2y2

)
y′ −

(
−y2 + 2x2) y = 0

23.18.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 − 2u(x)2 x2) (u′(x)x+ u(x))−

(
−u(x)2 x2 + 2x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u2 + 1)
(2u2 − 1)x

Where f(x) = − 1
x
and g(u) = u

(
u2+1

)
2u2−1 . Integrating both sides gives

1
u(u2+1)
2u2−1

du = −1
x
dx
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∫ 1
u(u2+1)
2u2−1

du =
∫

−1
x
dx

3 ln (u2 + 1)
2 − ln (u) = − ln (x) + c2

Raising both side to exponential gives

e
3 ln

(
u2+1

)
2 −ln(u) = e− ln(x)+c2

Which simplifies to

(u2 + 1)
3
2

u
= c3

x

The solution is (
u(x)2 + 1

) 3
2

u (x) = c3
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y2

x2 + 1
) 3

2
x

y
= c3

x

(y2 + x2)
√

y2+x2

x2

xy
= c3

x

Which simplifies to

(y2 + x2)
√

y2+x2

x2

y
= c3

Summary
The solution(s) found are the following

(1)
(y2 + x2)

√
y2+x2

x2

y
= c3
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Figure 1023: Slope field plot

Verification of solutions

(y2 + x2)
√

y2+x2

x2

y
= c3

Verified OK.

23.18.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(−2x2 + y2)
x (−x2 + 2y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(−2x2 + y2) (b3 − a2)

x (−x2 + 2y2) − y2(−2x2 + y2)2 a3
x2 (−x2 + 2y2)2

−
(
− 4y
−x2 + 2y2 − y(−2x2 + y2)

x2 (−x2 + 2y2) +
2y(−2x2 + y2)
(−x2 + 2y2)2

)
(xa2 + ya3 + a1)

−
(

−2x2 + y2

x (−x2 + 2y2) +
2y2

x (−x2 + 2y2)−
4y2(−2x2 + y2)
x (−x2 + 2y2)2

)
(xb2+yb3+ b1) = 0

Putting the above in normal form gives

−x6b2 + 2x4y2a3 + 5x4y2b2 − 6x3y3a2 + 6x3y3b3 − 5x2y4a3 − 2x2y4b2 − y6a3 + 2x5b1 − 2x4ya1 + x3y2b1 − x2y3a1 + 2x y4b1 − 2y5a1
(x2 − 2y2)2 x2

= 0

Setting the numerator to zero gives

(6E)−x6b2 − 2x4y2a3 − 5x4y2b2 + 6x3y3a2 − 6x3y3b3 + 5x2y4a3 + 2x2y4b2
+ y6a3 − 2x5b1 + 2x4ya1 − x3y2b1 + x2y3a1 − 2x y4b1 + 2y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v31v32 − 2a3v41v22 + 5a3v21v42 + a3v
6
2 − b2v

6
1 − 5b2v41v22 + 2b2v21v42

− 6b3v31v32 + 2a1v41v2 + a1v
2
1v

3
2 + 2a1v52 − 2b1v51 − b1v

3
1v

2
2 − 2b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2v
6
1 − 2b1v51 + (−2a3 − 5b2) v41v22 + 2a1v41v2 + (6a2 − 6b3) v31v32

− b1v
3
1v

2
2 + (5a3 + 2b2) v21v42 + a1v

2
1v

3
2 − 2b1v1v42 + a3v

6
2 + 2a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
2a1 = 0

−2b1 = 0
−b1 = 0
−b2 = 0

6a2 − 6b3 = 0
−2a3 − 5b2 = 0
5a3 + 2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(−2x2 + y2)
x (−x2 + 2y2)

)
(x)

= −x2y − y3

x2 − 2y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2y−y3

x2−2y2
dy

Which results in

S = 3 ln (x2 + y2)
2 − ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(−2x2 + y2)
x (−x2 + 2y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3x
x2 + y2

Sy =
3y

x2 + y2
− 1

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y2 + x2)
2 − ln (y) = ln (x) + c1

Which simplifies to

3 ln (y2 + x2)
2 − ln (y) = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
−2x2+y2

)
x(−x2+2y2)

dS
dR

= 1
R

R = x

S = 3 ln (x2 + y2)
2 − ln (y)

Summary
The solution(s) found are the following

(1)3 ln (y2 + x2)
2 − ln (y) = ln (x) + c1
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Figure 1024: Slope field plot

Verification of solutions

3 ln (y2 + x2)
2 − ln (y) = ln (x) + c1

Verified OK.

23.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 − 2y2

))
dy =

(
y
(
2x2 − y2

))
dx(

−y
(
2x2 − y2

))
dx+

(
x
(
x2 − 2y2

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
2x2 − y2

)
N(x, y) = x

(
x2 − 2y2

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
2x2 − y2

))
= −2x2 + 3y2

And
∂N

∂x
= ∂

∂x

(
x
(
x2 − 2y2

))
= 3x2 − 2y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 − 2y2)
((
−2x2 + 3y2

)
−
(
3x2 − 2y2

))
= −5x2 + 5y2

x (x2 − 2y2)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2x2y − y3
((
3x2 − 2y2

)
−
(
−2x2 + 3y2

))
= −5x2 + 5y2

2x2y − y3

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (3x2 − 2y2)− (−2x2 + 3y2)
x (−y (2x2 − y2))− y (x (x2 − 2y2))

= − 5
3xy

Replacing all powers of terms xy by t gives

R = − 5
3t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 5
3t
)
dt
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The result of integrating gives

µ = e−
5 ln(t)

3

= 1
t
5
3

Now t is replaced back with xy giving

µ = 1
(xy)

5
3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy)

5
3

(
−y
(
2x2 − y2

))
= −2x2 + y2

x (xy)
2
3

And

N = µN

= 1
(xy)

5
3

(
x
(
x2 − 2y2

))
= x2 − 2y2

y (xy)
2
3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−2x2 + y2

x (xy)
2
3

)
+
(
x2 − 2y2

y (xy)
2
3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x2 + y2

x (xy)
2
3

dx

(3)φ = −3(x2 + y2)
2 (xy)

2
3

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 3y

(xy)
2
3
+ (x2 + y2)x

(xy)
5
3

+ f ′(y)

= x2 − 2y2

y (xy)
2
3

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2−2y2

y(xy)
2
3
. Therefore equation (4) becomes

(5)x2 − 2y2

y (xy)
2
3

= x2 − 2y2

y (xy)
2
3

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −3(x2 + y2)
2 (xy)

2
3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3(x2 + y2)
2 (xy)

2
3
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Summary
The solution(s) found are the following

(1)−3(y2 + x2)
2 (yx)

2
3

= c1

Figure 1025: Slope field plot

Verification of solutions

−3(y2 + x2)
2 (yx)

2
3

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.562 (sec). Leaf size: 1765� �
dsolve(x*(x^2-2*y(x)^2)*diff(y(x),x) = (2*x^2-y(x)^2)*y(x),y(x), singsol=all)� �
y(x) =

−
6x2c1

√
3
√
2
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3

((
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 2

3 + 2
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3 + 4
)√√√√√

(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 2

3
+2
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3
+4(

8−108c21x2+12
√
3
√

27c41x4−4c21x2
) 1

3

y(x)

=
6x2c1

√
3
√
2
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3

((
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 2

3 + 2
(
8− 108c21x2 + 12

√
3
√
27c41x4 − 4c21x2

) 1
3 + 4

)√√√√√
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 2

3
+2
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3
+4(

8−108c21x2+12
√
3
√

27c41x4−4c21x2
) 1

3

y(x)

=
24x2c1

√
3
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3

((
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3 − 2
)√√√√√√

−
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3
+2

−2+i

(8−108c21x2+12
√
3
√

27c41x4−4c21x2
) 1

3
+2

√
3+
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3


(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3

(
−2 + i

((
8− 108c21x2 + 12

√
3
√
27c41x4 − 4c21x2

) 1
3 + 2

)√
3 +

(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3
)

y(x)

=
24x2c1

√
3
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3

(
−
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3 + 2
)√√√√√√

−
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3
+2

−2+i

(8−108c21x2+12
√
3
√

27c41x4−4c21x2
) 1

3
+2

√
3+
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3


(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3

(
−2 + i

((
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3 + 2
)√

3 +
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3
)

y(x) =

−
24x2c1

√
3
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3√√√√√√
(8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3
−2

2+i

(8−108c21x2+12
√
3
√

27c41x4−4c21x2
) 1

3
+2

√
3−
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3


(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3

((
i
√
3− 1

) (
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3 + 2i
√
3 + 2

)((
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3 − 2
)

y(x)

=
24x2c1

√
3
(
8− 108c21x2 + 12

√
3
√

27c41x4 − 4c21x2
) 1

3√√√√√√
(8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3
−2

2+i

(8−108c21x2+12
√
3
√

27c41x4−4c21x2
) 1

3
+2

√
3−
(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3


(
8−108c21x2+12

√
3
√

27c41x4−4c21x2
) 1

3

((
i
√
3− 1

) (
8− 108c21x2 + 12

√
3
√
27c41x4 − 4c21x2

) 1
3 + 2i

√
3 + 2

)((
8− 108c21x2 + 12

√
3
√
27c41x4 − 4c21x2

) 1
3 − 2

)
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3 Solution by Mathematica
Time used: 60.285 (sec). Leaf size: 873� �
DSolve[x(x^2-2 y[x]^2)y'[x]==(2 x^2-y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ −

√√√√√√−x2 +
3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4

3
√
232/3

+
3

√
2
3e

2c1x2

3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4

y(x)

→

√√√√√√−x2 +
3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4

3
√
232/3

+
3

√
2
3e

2c1x2

3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4

y(x) →

−1
2

√√√√√−4x2 +
(
2
3

)2/3 (
−1− i

√
3
)

3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4 −
2 3
√
2
(√

3− 3i
)
e2c1x2

35/6 3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4

y(x)

→ 1
2

√√√√√−4x2 +
(
2
3

)2/3 (
−1− i

√
3
)

3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4 −
2 3
√
2
(√

3− 3i
)
e2c1x2

35/6 3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4

y(x) →

−1
2

√√√√√−4x2 + i

(
2
3

)2/3 (√
3 + i

)
3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4 −
2 3
√
2
(√

3 + 3i
)
e2c1x2

35/6 3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4

y(x)

→ 1
2

√√√√√−4x2 + i

(
2
3

)2/3 (√
3 + i

)
3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4 −
2 3
√
2
(√

3 + 3i
)
e2c1x2

35/6 3
√√

81e4c1x8 − 12e6c1x6 − 9e2c1x4
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23.19.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6528
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Internal file name [OUTPUT/3390_Sunday_June_05_2022_09_15_31_AM_22749071/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 650.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 + 2y2

)
y′ −

(
2x2 + 3y2

)
y = 0

23.19.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 + 2u(x)2 x2) (u′(x)x+ u(x))−

(
2x2 + 3u(x)2 x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(u2 + 1)
x (2u2 + 1)

Where f(x) = 1
x
and g(u) = u

(
u2+1

)
2u2+1 . Integrating both sides gives

1
u(u2+1)
2u2+1

du = 1
x
dx
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∫ 1
u(u2+1)
2u2+1

du =
∫ 1

x
dx

ln (u2 + 1)
2 + ln (u) = ln (x) + c2

Raising both side to exponential gives

e
ln
(
u2+1

)
2 +ln(u) = eln(x)+c2

Which simplifies to
√
u2 + 1u = c3x

The solution is √
u (x)2 + 1u(x) = c3x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 y
x

= c3x√
y2+x2

x2 y

x
= c3x

Summary
The solution(s) found are the following

(1)

√
y2+x2

x2 y

x
= c3x
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Figure 1026: Slope field plot

Verification of solutions √
y2+x2

x2 y

x
= c3x

Verified OK.

23.19.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (2x2 + 3y2) y
x (x2 + 2y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2x2 + 3y2) y(b3 − a2)

x (x2 + 2y2) − (2x2 + 3y2)2 y2a3
x2 (x2 + 2y2)2

−
(

4y
x2 + 2y2 − (2x2 + 3y2) y

x2 (x2 + 2y2) −
2(2x2 + 3y2) y
(x2 + 2y2)2

)
(xa2 + ya3 + a1)

−
(

6y2
x (x2 + 2y2) +

2x2 + 3y2
x (x2 + 2y2) −

4(2x2 + 3y2) y2

x (x2 + 2y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6b2 + 2x4y2a3 + x4y2b2 + 2x3y3a2 − 2x3y3b3 + 7x2y4a3 + 2x2y4b2 + 3y6a3 + 2x5b1 − 2x4ya1 + 5x3y2b1 − 5x2y3a1 + 6x y4b1 − 6y5a1
(x2 + 2y2)2 x2

= 0

Setting the numerator to zero gives

(6E)−x6b2 − 2x4y2a3 − x4y2b2 − 2x3y3a2 + 2x3y3b3 − 7x2y4a3 − 2x2y4b2
− 3y6a3 − 2x5b1 + 2x4ya1 − 5x3y2b1 + 5x2y3a1 − 6x y4b1 + 6y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v31v32 − 2a3v41v22 − 7a3v21v42 − 3a3v62 − b2v
6
1 − b2v

4
1v

2
2 − 2b2v21v42

+ 2b3v31v32 + 2a1v41v2 + 5a1v21v32 + 6a1v52 − 2b1v51 − 5b1v31v22 − 6b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2v
6
1 − 2b1v51 + (−2a3 − b2) v41v22 + 2a1v41v2 + (−2a2 + 2b3) v31v32

− 5b1v31v22 + (−7a3 − 2b2) v21v42 + 5a1v21v32 − 6b1v1v42 − 3a3v62 + 6a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
5a1 = 0
6a1 = 0

−3a3 = 0
−6b1 = 0
−5b1 = 0
−2b1 = 0
−b2 = 0

−2a2 + 2b3 = 0
−7a3 − 2b2 = 0
−2a3 − b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
(2x2 + 3y2) y
x (x2 + 2y2)

)
(x)

= −x2y − y3

x2 + 2y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2y−y3

x2+2y2
dy

Which results in

S = − ln (x2 + y2)
2 − ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (2x2 + 3y2) y
x (x2 + 2y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x

x2 + y2

Sy = − y

x2 + y2
− 1

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y2 + x2)
2 − ln (y) = −3 ln (x) + c1

Which simplifies to

− ln (y2 + x2)
2 − ln (y) = −3 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
2x2+3y2

)
y

x(x2+2y2)
dS
dR

= − 3
R

R = x

S = − ln (x2 + y2)
2 − ln (y)

Summary
The solution(s) found are the following

(1)− ln (y2 + x2)
2 − ln (y) = −3 ln (x) + c1
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Figure 1027: Slope field plot

Verification of solutions

− ln (y2 + x2)
2 − ln (y) = −3 ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.656 (sec). Leaf size: 89� �
dsolve(x*(x^2+2*y(x)^2)*diff(y(x),x) = (2*x^2+3*y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = −
√
−2− 2

√
4c1x2 + 1x
2

y(x) =
√

−2− 2
√
4c1x2 + 1x
2

y(x) = −
√
−2 + 2

√
4c1x2 + 1x
2

y(x) =
√

−2 + 2
√
4c1x2 + 1x
2

3 Solution by Mathematica
Time used: 42.486 (sec). Leaf size: 277� �
DSolve[x(x^2+2 y[x]^2)y'[x]==(2 x^2+3 y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x2 −
√
x4 + 4e2c1x6

√
2

y(x) →
√
−x2 −

√
x4 + 4e2c1x6

√
2

y(x) → −
√

−x2 +
√
x4 + 4e2c1x6
√
2

y(x) →
√

−x2

2 + 1
2
√
x4 + 4e2c1x6

y(x) → −

√
−
√
x4 − x2
√
2

y(x) →
√
−
√
x4 − x2
√
2

y(x) → −

√√
x4 − x2
√
2

y(x) →
√√

x4 − x2
√
2
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23.20 problem 651
23.20.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6538
23.20.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6540

Internal problem ID [3898]
Internal file name [OUTPUT/3391_Sunday_June_05_2022_09_15_36_AM_44218859/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 651.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

2x
(
5x2 + y2

)
y′ − x2y + y3 = 0

23.20.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x
(
5x2 + u(x)2 x2) (u′(x)x+ u(x))− x3u(x) + u(x)3 x3 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 3u(u2 + 3)
2x (u2 + 5)

Where f(x) = − 3
2x and g(u) =

(
u2+3

)
u

u2+5 . Integrating both sides gives

1
(u2+3)u
u2+5

du = − 3
2x dx
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∫ 1
(u2+3)u
u2+5

du =
∫

− 3
2x dx

− ln (u2 + 3)
3 + 5 ln (u)

3 = −3 ln (x)
2 + c2

The above can be written as

− ln (u2 + 3) + 5 ln (u)
3 = −3 ln (x)

2 + c2

− ln
(
u2 + 3

)
+ 5 ln (u) = (3)

(
−3 ln (x)

2 + c2

)
= −9 ln (x)

2 + 3c2

Raising both side to exponential gives

e− ln
(
u2+3

)
+5 ln(u) = e−

9 ln(x)
2 +3c2

Which simplifies to

u5

u2 + 3 = 3c2
x

9
2

= c3

x
9
2

Which simplifies to

u(x) = RootOf
(
_Z5 − c3e3c2_Z2

x
9
2

− 3c3e3c2

x
9
2

)

Therefore the solution y is

y = xu

= xRootOf
(
_Z5x

9
2 − e3c2c3_Z2 − 3c3e3c2

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
_Z5x

9
2 − e3c2c3_Z2 − 3c3e3c2

)

6539



Figure 1028: Slope field plot

Verification of solutions

y = xRootOf
(
_Z5x

9
2 − e3c2c3_Z2 − 3c3e3c2

)
Verified OK.

23.20.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(−x2 + y2)
2x (5x2 + y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(−x2 + y2) (b3 − a2)

2x (5x2 + y2) − y2(−x2 + y2)2 a3
4x2 (5x2 + y2)2

−
(

y

5x2 + y2
+ y(−x2 + y2)

2x2 (5x2 + y2) +
5y(−x2 + y2)
(5x2 + y2)2

)
(xa2 + ya3 + a1)

−
(
− −x2 + y2

2x (5x2 + y2) −
y2

x (5x2 + y2) +
y2(−x2 + y2)
x (5x2 + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

90x6b2 + 9x4y2a3 + 72x4y2b2 − 24x3y3a2 + 24x3y3b3 − 30x2y4a3 + 6x2y4b2 − 3y6a3 − 10x5b1 + 10x4ya1 + 32x3y2b1 − 32x2y3a1 + 2x y4b1 − 2y5a1
4 (5x2 + y2)2 x2

= 0

Setting the numerator to zero gives

(6E)90x6b2 + 9x4y2a3 + 72x4y2b2 − 24x3y3a2 + 24x3y3b3 − 30x2y4a3 + 6x2y4b2
− 3y6a3 − 10x5b1 + 10x4ya1 + 32x3y2b1 − 32x2y3a1 + 2x y4b1 − 2y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−24a2v31v32 + 9a3v41v22 − 30a3v21v42 − 3a3v62 + 90b2v61 + 72b2v41v22 + 6b2v21v42
+ 24b3v31v32 + 10a1v41v2 − 32a1v21v32 − 2a1v52 − 10b1v51 + 32b1v31v22 + 2b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)90b2v61 − 10b1v51 + (9a3 + 72b2) v41v22 + 10a1v41v2 + (−24a2 + 24b3) v31v32
+ 32b1v31v22 + (−30a3 + 6b2) v21v42 − 32a1v21v32 + 2b1v1v42 − 3a3v62 − 2a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−32a1 = 0
−2a1 = 0
10a1 = 0
−3a3 = 0
−10b1 = 0

2b1 = 0
32b1 = 0
90b2 = 0

−24a2 + 24b3 = 0
−30a3 + 6b2 = 0
9a3 + 72b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(−x2 + y2)
2x (5x2 + y2)

)
(x)

= 9x2y + 3y3
10x2 + 2y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

9x2y+3y3
10x2+2y2

dy

Which results in

S = −2 ln (3x2 + y2)
9 + 10 ln (y)

9
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(−x2 + y2)
2x (5x2 + y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x
9x2 + 3y2

Sy =
10x2 + 2y2
9x2y + 3y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (y2 + 3x2)
9 + 10 ln (y)

9 = − ln (x)
3 + c1

Which simplifies to

−2 ln (y2 + 3x2)
9 + 10 ln (y)

9 = − ln (x)
3 + c1

6544



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
(
−x2+y2

)
2x(5x2+y2)

dS
dR

= − 1
3R

R = x

S = −2 ln (3x2 + y2)
9 + 10 ln (y)

9

Summary
The solution(s) found are the following

(1)−2 ln (y2 + 3x2)
9 + 10 ln (y)

9 = − ln (x)
3 + c1
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Figure 1029: Slope field plot

Verification of solutions

−2 ln (y2 + 3x2)
9 + 10 ln (y)

9 = − ln (x)
3 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.688 (sec). Leaf size: 29� �
dsolve(2*x*(5*x^2+y(x)^2)*diff(y(x),x) = x^2*y(x)-y(x)^3,y(x), singsol=all)� �

y(x) = RootOf
(
_Z45c1x

9 − _Z18 − 6_Z9 − 9
) 9

2 x

3 Solution by Mathematica
Time used: 2.771 (sec). Leaf size: 216� �
DSolve[2 x(5 x^2+y[x]^2)y'[x]==x^2 y[x]-y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
−#15 + #12e3c1

x3/2 + 3e3c1
√
x&, 1

]
y(x) → Root

[
−#15 + #12e3c1

x3/2 + 3e3c1
√
x&, 2

]
y(x) → Root

[
−#15 + #12e3c1

x3/2 + 3e3c1
√
x&, 3

]
y(x) → Root

[
−#15 + #12e3c1

x3/2 + 3e3c1
√
x&, 4

]
y(x) → Root

[
−#15 + #12e3c1

x3/2 + 3e3c1
√
x&, 5

]
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23.21 problem 652
23.21.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6548
23.21.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6549

Internal problem ID [3899]
Internal file name [OUTPUT/3392_Sunday_June_05_2022_09_15_41_AM_98283707/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 652.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 + axy + 2y2

)
y′ − (ax+ 2y) y2 = 0

23.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 + a x2u(x) + 2u(x)2 x2) (u′(x)x+ u(x))− (ax+ 2u(x)x)u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u

x (au+ 2u2 + 1)
Where f(x) = − 1

x
and g(u) = u

au+2u2+1 . Integrating both sides gives

1
u

au+2u2+1
du = −1

x
dx

∫ 1
u

au+2u2+1
du =

∫
−1
x
dx

u2 + au+ ln (u) = − ln (x) + c2
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The solution is
u(x)2 + au(x) + ln (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 + ya

x
+ ln

(y
x

)
+ ln (x)− c2 = 0

y2

x2 + ya

x
+ ln

(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y2

x2 + ya

x
+ ln

(y
x

)
+ ln (x)− c2 = 0

Verification of solutions

y2

x2 + ya

x
+ ln

(y
x

)
+ ln (x)− c2 = 0

Verified OK.

23.21.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (ax+ 2y) y2
x (axy + x2 + 2y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(ax+ 2y) y2(b3 − a2)
x (axy + x2 + 2y2) − (ax+ 2y)2 y4a3

x2 (axy + x2 + 2y2)2

−
(

a y2

x (axy + x2 + 2y2) −
(ax+ 2y) y2

x2 (axy + x2 + 2y2)

− (ax+ 2y) y2(ya+ 2x)
x (axy + x2 + 2y2)2

)
(xa2 + ya3 + a1)−

(
2y2

x (axy + x2 + 2y2)

+ 2(ax+ 2y) y
x (axy + x2 + 2y2) −

(ax+ 2y) y2(ax+ 4y)
x (axy + x2 + 2y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x3y2b1 − a2x2y3a1 − a x4y2a2 + a x4y2b3 − 2a x3y3a3 + 2a x4yb1 − 2a x3y2a1 + 4a x2y3b1 − 4ax y4a1 − x6b2 + 2x4y2b2 − 4x3y3a2 + 4x3y3b3 − 6x2y4a3 + 6x3y2b1 − 6x2y3a1 + 4x y4b1 − 4y5a1
x2 (axy + x2 + 2y2)2

= 0

Setting the numerator to zero gives

(6E)−a2x3y2b1 + a2x2y3a1 + a x4y2a2 − a x4y2b3 + 2a x3y3a3 − 2a x4yb1
+ 2a x3y2a1 − 4a x2y3b1 + 4ax y4a1 + x6b2 − 2x4y2b2 + 4x3y3a2
− 4x3y3b3 + 6x2y4a3 − 6x3y2b1 + 6x2y3a1 − 4x y4b1 + 4y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2a1v
2
1v

3
2 − a2b1v

3
1v

2
2 + aa2v

4
1v

2
2 + 2aa3v31v32 − ab3v

4
1v

2
2 + 2aa1v31v22

+ 4aa1v1v42 − 2ab1v41v2 − 4ab1v21v32 + 4a2v31v32 + 6a3v21v42 + b2v
6
1

− 2b2v41v22 − 4b3v31v32 + 6a1v21v32 + 4a1v52 − 6b1v31v22 − 4b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
6
1 + (aa2 − ab3 − 2b2) v41v22 − 2ab1v41v2

+ (2aa3 + 4a2 − 4b3) v31v32 +
(
−a2b1 + 2aa1 − 6b1

)
v31v

2
2 + 6a3v21v42

+
(
a2a1 − 4ab1 + 6a1

)
v21v

3
2 + (4aa1 − 4b1) v1v42 + 4a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
4a1 = 0
6a3 = 0

−2ab1 = 0
4aa1 − 4b1 = 0

−a2b1 + 2aa1 − 6b1 = 0
a2a1 − 4ab1 + 6a1 = 0
2aa3 + 4a2 − 4b3 = 0
aa2 − ab3 − 2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

(ax+ 2y) y2
x (axy + x2 + 2y2)

)
(x)

= x2y

axy + x2 + 2y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y
axy+x2+2y2

dy

Which results in

S = ln (y) + ya

x
+ y2

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (ax+ 2y) y2
x (axy + x2 + 2y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y(ax+ 2y)
x3

Sy =
x2

y
+ ax+ 2y

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)x2 + axy + y2

x2 = c1

Which simplifies to

ln (y)x2 + axy + y2

x2 = c1

Summary
The solution(s) found are the following

(1)ln (y)x2 + axy + y2

x2 = c1

Verification of solutions

ln (y)x2 + axy + y2

x2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 21� �
dsolve(x*(x^2+a*x*y(x)+2*y(x)^2)*diff(y(x),x) = (a*x+2*y(x))*y(x)^2,y(x), singsol=all)� �

y(x) = eRootOf
(
e2_Z+a e_Z+c1+_Z+ln(x)

)
x

3 Solution by Mathematica
Time used: 0.171 (sec). Leaf size: 34� �
DSolve[x(x^2+a x y[x]+2 y[x]^2)y'[x]==(a x+2 y[x])y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
ay(x)
x

+ y(x)2
x2 + log

(
y(x)
x

)
= − log(x) + c1, y(x)

]

6554



23.22 problem 653
23.22.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 6555
23.22.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 6559
23.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6563
23.22.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6566

Internal problem ID [3900]
Internal file name [OUTPUT/3393_Sunday_June_05_2022_09_15_46_AM_93595619/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 653.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _exact , _rational , _Bernoulli]

3xy2y′ + y3 = 2x

23.22.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y3 − 2x
3y2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 932: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x y2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x y2

dy

Which results in

S = x y3

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y3 − 2x
3y2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y3

3
Sy = x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R

3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy3

3 = x2

3 + c1

Which simplifies to

xy3

3 = x2

3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y3−2x
3y2x

dS
dR

= 2R
3

R = x

S = x y3

3

Summary
The solution(s) found are the following

(1)xy3

3 = x2

3 + c1
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Figure 1030: Slope field plot

Verification of solutions

xy3

3 = x2

3 + c1

Verified OK.

23.22.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y3 − 2x
3y2x

This is a Bernoulli ODE.
y′ = − 1

3xy +
2
3
1
y2

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
3x

f1(x) =
2
3

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = − y3

3x + 2
3 (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = −w(x)

3x + 2
3

w′ = −w

x
+ 2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = 2
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Hence the ode is

w′(x) + w(x)
x

= 2

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µw) = (µ) (2)
d
dx(xw) = (x) (2)

d(xw) = (2x) dx

Integrating gives

xw =
∫

2x dx

xw = x2 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = x+ c1
x

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = x+ c1
x

Solving for y gives

y(x) = ((x2 + c1)x2)
1
3

x

y(x) =
((x2 + c1)x2)

1
3
(
−1 + i

√
3
)

2x

y(x) = −
((x2 + c1)x2)

1
3
(
1 + i

√
3
)

2x
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Summary
The solution(s) found are the following

(1)y = ((x2 + c1)x2)
1
3

x

(2)y =
((x2 + c1)x2)

1
3
(
−1 + i

√
3
)

2x

(3)y = −
((x2 + c1)x2)

1
3
(
1 + i

√
3
)

2x

Figure 1031: Slope field plot
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Verification of solutions

y = ((x2 + c1)x2)
1
3

x

Verified OK.

y =
((x2 + c1)x2)

1
3
(
−1 + i

√
3
)

2x

Verified OK.

y = −
((x2 + c1)x2)

1
3
(
1 + i

√
3
)

2x

Verified OK.

23.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

3x y2
)
dy =

(
−y3 + 2x

)
dx(

y3 − 2x
)
dx+

(
3x y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y3 − 2x
N(x, y) = 3x y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y3 − 2x

)
= 3y2

And
∂N

∂x
= ∂

∂x

(
3x y2

)
= 3y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y3 − 2x dx

(3)φ = x y3 − x2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3x y2. Therefore equation (4) becomes

(5)3x y2 = 3x y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x y3 − x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x y3 − x2

Summary
The solution(s) found are the following

(1)xy3 − x2 = c1
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Figure 1032: Slope field plot

Verification of solutions

xy3 − x2 = c1

Verified OK.

23.22.4 Maple step by step solution

Let’s solve
3xy2y′ + y3 = 2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
3y2 = 3y2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y3 − 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = x y3 − x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
3x y2 = 3x y2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x y3 − x2

• Substitute F (x, y) into the solution of the ODE
x y3 − x2 = c1

• Solve for y{
y =

((
x2+c1

)
x2) 13

x
, y = −

((
x2+c1

)
x2) 13

2x − I
√
3
((
x2+c1

)
x2) 13

2x , y = −
((
x2+c1

)
x2) 13

2x + I
√
3
((
x2+c1

)
x2) 13

2x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 73� �
dsolve(3*x*y(x)^2*diff(y(x),x) = 2*x-y(x)^3,y(x), singsol=all)� �

y(x) = ((x2 + c1)x2)
1
3

x

y(x) = −
((x2 + c1)x2)

1
3
(
1 + i

√
3
)

2x

y(x) =
((x2 + c1)x2)

1
3
(
i
√
3− 1

)
2x

3 Solution by Mathematica
Time used: 0.22 (sec). Leaf size: 72� �
DSolve[3 x y[x]^2 y'[x]==2 x-y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

x2 + c1
3
√
x

y(x) → −
3
√
−1 3
√
x2 + c1

3
√
x

y(x) → (−1)2/3 3
√

x2 + c1
3
√
x
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23.23 problem 654
23.23.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6569

Internal problem ID [3901]
Internal file name [OUTPUT/3394_Sunday_June_05_2022_09_15_53_AM_93116793/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 654.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

(
1− 4x+ 3y2x

)
y′ −

(
2− y2

)
y = 0

23.23.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

3x y2 − 4x+ 1
)
dy =

((
−y2 + 2

)
y
)
dx(

−
(
−y2 + 2

)
y
)
dx+

(
3x y2 − 4x+ 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
(
−y2 + 2

)
y

N(x, y) = 3x y2 − 4x+ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−
(
−y2 + 2

)
y
)

= 3y2 − 2

And
∂N

∂x
= ∂

∂x

(
3x y2 − 4x+ 1

)
= 3y2 − 4

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x y2 − 4x+ 1
((
3y2 − 2

)
−
(
3y2 − 4

))
= 2

3x y2 − 4x+ 1

6570



Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (y2 − 2)
((
3y2 − 4

)
−
(
3y2 − 2

))
= − 2

y (y2 − 2)
Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e

∫
− 2

y
(
y2−2

) dy

The result of integrating gives

µ = e−
ln
(
y2−2

)
2 +ln(y)

= y√
y2 − 2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y√
y2 − 2

(
−
(
−y2 + 2

)
y
)

=
√
y2 − 2 y2

And

N = µN

= y√
y2 − 2

(
3x y2 − 4x+ 1

)
= (3x y2 − 4x+ 1) y√

y2 − 2
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(√

y2 − 2 y2
)
+
(
(3x y2 − 4x+ 1) y√

y2 − 2

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ √
y2 − 2 y2 dx

(3)φ =
√
y2 − 2 y2x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y3x√

y2 − 2
+ 2
√

y2 − 2 yx+ f ′(y)

= xy(3y2 − 4)√
y2 − 2

+ f ′(y)

But equation (2) says that ∂φ
∂y

=
(
3x y2−4x+1

)
y√

y2−2
. Therefore equation (4) becomes

(5)(3x y2 − 4x+ 1) y√
y2 − 2

= xy(3y2 − 4)√
y2 − 2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y√
y2 − 2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y√

y2 − 2

)
dy

f(y) =
√
y2 − 2 + c1

6572



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
√

y2 − 2 y2x+
√

y2 − 2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
√

y2 − 2 y2x+
√
y2 − 2

Summary
The solution(s) found are the following

(1)
√

y2 − 2 y2x+
√

y2 − 2 = c1

Figure 1033: Slope field plot

Verification of solutions √
y2 − 2 y2x+

√
y2 − 2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve((1-4*x+3*x*y(x)^2)*diff(y(x),x) = (2-y(x)^2)*y(x),y(x), singsol=all)� �

x+ 1
y (x)2

− c1√
y (x)2 − 2 y (x)2

= 0

3 Solution by Mathematica
Time used: 60.163 (sec). Leaf size: 2348� �
DSolve[(1-4 x+3 x y[x]^2)y'[x]==(2-y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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23.24 problem 655
23.24.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6575
23.24.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6581
23.24.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6585

Internal problem ID [3902]
Internal file name [OUTPUT/3395_Sunday_June_05_2022_09_15_58_AM_99002878/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 655.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _exact , _rational]

x
(
−3y2 + x

)
y′ +

(
2x− y2

)
y = 0

23.24.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(y2 − 2x)
x (3y2 − x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(y2 − 2x) (b3 − a2)

x (3y2 − x) − y2(y2 − 2x)2 a3
x2 (3y2 − x)2

−
(

2y
x (3y2 − x) +

y(y2 − 2x)
x2 (3y2 − x) −

y(y2 − 2x)
x (3y2 − x)2

)
(xa2 + ya3 + a1)

−
(
− y2 − 2x
x (3y2 − x) −

2y2
x (3y2 − x) +

6y2(y2 − 2x)
x (3y2 − x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

12x2y4b2 − 4y6a3 − 3x3y2b2 − 5x2y3a2 + 10x2y3b3 + 6x y4a3 + 3x y4b1 − 3y5a1 + 3x4b2 − 6x2y2a3 + 3x2y2b1 + 2x y3a1 + 2x3b1 − 2x2ya1

x2 (−3y2 + x)2
= 0

Setting the numerator to zero gives

(6E)12x2y4b2 − 4y6a3 − 3x3y2b2 − 5x2y3a2 + 10x2y3b3 + 6x y4a3 + 3x y4b1
− 3y5a1 + 3x4b2 − 6x2y2a3 + 3x2y2b1 + 2x y3a1 + 2x3b1 − 2x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−4a3v62 + 12b2v21v42 − 3a1v52 − 5a2v21v32 + 6a3v1v42 + 3b1v1v42 − 3b2v31v22
+ 10b3v21v32 + 2a1v1v32 − 6a3v21v22 + 3b1v21v22 + 3b2v41 − 2a1v21v2 + 2b1v31 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v41 − 3b2v31v22 + 2b1v31 + 12b2v21v42 + (−5a2 + 10b3) v21v32 + (−6a3 + 3b1) v21v22
− 2a1v21v2 + (6a3 + 3b1) v1v42 + 2a1v1v32 − 4a3v62 − 3a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−3a1 = 0
−2a1 = 0
2a1 = 0

−4a3 = 0
2b1 = 0

−3b2 = 0
3b2 = 0
12b2 = 0

−5a2 + 10b3 = 0
−6a3 + 3b1 = 0
6a3 + 3b1 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(y2 − 2x)
x (3y2 − x)

)
(2x)

= −5y3 + 5xy
−3y2 + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−5y3+5xy
−3y2+x

dy

Which results in

S = ln (y(y2 − x))
5

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(y2 − 2x)
x (3y2 − x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
−5y2 + 5x

Sy =
1
5y − 2y

−5y2 + 5x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

5x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

5R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
5 + ln (y2 − x)

5 = − ln (x)
5 + c1

Which simplifies to

ln (y)
5 + ln (y2 − x)

5 = − ln (x)
5 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
y2−2x

)
x(3y2−x)

dS
dR

= − 1
5R

R = x

S = ln (y)
5 + ln (y2 − x)

5

Summary
The solution(s) found are the following

(1)ln (y)
5 + ln (y2 − x)

5 = − ln (x)
5 + c1
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Figure 1034: Slope field plot

Verification of solutions

ln (y)
5 + ln (y2 − x)

5 = − ln (x)
5 + c1

Verified OK.

23.24.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−3y2 + x

))
dy =

(
−y
(
−y2 + 2x

))
dx(

y
(
−y2 + 2x

))
dx+

(
x
(
−3y2 + x

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
−y2 + 2x

)
N(x, y) = x

(
−3y2 + x

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
−y2 + 2x

))
= −3y2 + 2x

And
∂N

∂x
= ∂

∂x

(
x
(
−3y2 + x

))
= −3y2 + 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y
(
−y2 + 2x

)
dx

(3)φ = xy
(
−y2 + x

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

(
−y2 + x

)
− 2x y2 + f ′(y)

= x
(
−3y2 + x

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(−3y2 + x). Therefore equation (4) becomes

(5)x
(
−3y2 + x

)
= x

(
−3y2 + x

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy
(
−y2 + x

)
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy
(
−y2 + x

)
Summary
The solution(s) found are the following

(1)xy
(
x− y2

)
= c1

Figure 1035: Slope field plot

Verification of solutions

xy
(
x− y2

)
= c1

Verified OK.
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23.24.3 Maple step by step solution

Let’s solve
x(−3y2 + x) y′ + (2x− y2) y = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−3y2 + 2x = −3y2 + 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
y(−y2 + 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = y(−x y2 + x2) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x(−3y2 + x) = −3x y2 + x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = x(−3y2 + x) + 3x y2 − x2

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = y(−x y2 + x2)
• Substitute F (x, y) into the solution of the ODE

y(−x y2 + x2) = c1

• Solve for y
y =

((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3

6x + 2x2((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3
, y = −

((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3

12x − x2((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3
−

I
√
3


((

12
√
3
√

−4x5+27c21−108c1
)
x2
) 1

3

6x − 2x2((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3


2 , y = −

((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3

12x − x2((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3
+

I
√
3


((

12
√
3
√

−4x5+27c21−108c1
)
x2
) 1

3

6x − 2x2((
12

√
3
√

−4x5+27c21−108c1
)
x2
) 1

3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 242� �
dsolve(x*(x-3*y(x)^2)*diff(y(x),x)+(2*x-y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) =
12 1

3

(
x312 1

3 +
((√

−12x5 + 81c21 + 9c1
)
x2
) 2

3
)

6x
((√

−12x5 + 81c21 + 9c1
)
x2
) 1

3

y(x) =
3 1

32 2
3

((
−1− i

√
3
) ((√

−12x5 + 81c21 + 9c1
)
x2
) 2

3 +
(
i3 5

6 − 3 1
3

)
2 2

3x3
)

12
((√

−12x5 + 81c21 + 9c1
)
x2
) 1

3
x

y(x) = −
3 1

32 2
3

((
1− i

√
3
) ((√

−12x5 + 81c21 + 9c1
)
x2
) 2

3 +
(
i3 5

6 + 3 1
3

)
2 2

3x3
)

12
((√

−12x5 + 81c21 + 9c1
)
x2
) 1

3
x

3 Solution by Mathematica
Time used: 33.937 (sec). Leaf size: 328� �
DSolve[x(x-3 y[x]^2)y'[x]+(2 x-y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2 3
√
3x3 + 3

√
2
(
9c1x2 +

√
−12x9 + 81c12x4

) 2/3

62/3x 3
√

9c1x2 +
√
−12x9 + 81c12x4

y(x) →
2 3
√
2 6
√
3
(√

3 + 3i
)
x3 + 3

√
3
(
1− i

√
3
) (

18c1x2 + 2
√
−12x9 + 81c12x4

) 2/3

12x 3
√
9c1x2 +

√
−12x9 + 81c12x4

y(x) →
2 3
√
2 6
√
3
(√

3− 3i
)
x3 + 3

√
3
(
1 + i

√
3
) (

18c1x2 + 2
√
−12x9 + 81c12x4

) 2/3

12x 3
√
9c1x2 +

√
−12x9 + 81c12x4
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23.25 problem 656
23.25.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6588

Internal problem ID [3903]
Internal file name [OUTPUT/3396_Sunday_June_05_2022_09_16_03_AM_31018233/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 656.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

3x
(
x+ y2

)
y′ − 3yx− 2y3 = −x3

23.25.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

3x
(
y2 + x

))
dy =

(
−x3 + 2y3 + 3xy

)
dx(

x3 − 2y3 − 3xy
)
dx+

(
3x
(
y2 + x

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x3 − 2y3 − 3xy
N(x, y) = 3x

(
y2 + x

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x3 − 2y3 − 3xy

)
= −6y2 − 3x

And
∂N

∂x
= ∂

∂x

(
3x
(
y2 + x

))
= 3y2 + 6x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x (y2 + x)
((
−6y2 − 3x

)
−
(
3y2 + 6x

))
= −3

x

6589



Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
x3 − 2y3 − 3xy

)
= x3 − 2y3 − 3xy

x3

And

N = µN

= 1
x3

(
3x
(
y2 + x

))
= 3y2 + 3x

x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x3 − 2y3 − 3xy
x3

)
+
(
3y2 + 3x

x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3 − 2y3 − 3xy

x3 dx

(3)φ = x3 + y3 + 3xy
x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y2 + 3x

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3y2+3x
x2 . Therefore equation (4) becomes

(5)3y2 + 3x
x2 = 3y2 + 3x

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x3 + y3 + 3xy
x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x3 + y3 + 3xy

x2

Summary
The solution(s) found are the following

(1)x3 + y3 + 3yx
x2 = c1
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Figure 1036: Slope field plot

Verification of solutions

x3 + y3 + 3yx
x2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 360� �
dsolve(3*x*(x+y(x)^2)*diff(y(x),x)+x^3-3*x*y(x)-2*y(x)^3 = 0,y(x), singsol=all)� �
y(x) =

(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 2
3 − 4x

2
(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 1
3

y(x) =

−
i
√
3
(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 2
3 + 4i

√
3x+

(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 2
3 − 4x

4
(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 1
3

y(x)

=
i
√
3
(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 2
3 + 4i

√
3x−

(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 2
3 + 4x

4
(
−4c1x2 − 4x3 + 4

√
x3 (c21x+ 2c1x2 + x3 + 4)

) 1
3

3 Solution by Mathematica
Time used: 28.201 (sec). Leaf size: 362� �
DSolve[3 x(x+y[x]^2)y'[x]+x^3-3 x y[x]-2 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

−x3 + c1x2 +
√

x3 (x3 − 2c1x2 + c12x+ 4)
3
√
2

−
3
√
2x

3
√

−x3 + c1x2 +
√

x3 (x3 − 2c1x2 + c12x+ 4)
y(x)

→
i22/3

(√
3 + i

) (
−x3 + c1x

2 +
√
x3 (x3 − 2c1x2 + c12x+ 4)

)
2/3 + 3

√
2
(
2 + 2i

√
3
)
x

4 3
√

−x3 + c1x2 +
√

x3 (x3 − 2c1x2 + c12x+ 4)
y(x)

→
3
√
2
(
2− 2i

√
3
)
x− i22/3

(√
3− i

) (
−x3 + c1x

2 +
√

x3 (x3 − 2c1x2 + c12x+ 4)
)

2/3

4 3
√

−x3 + c1x2 +
√
x3 (x3 − 2c1x2 + c12x+ 4)
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23.26 problem 657
Internal problem ID [3904]
Internal file name [OUTPUT/3397_Sunday_June_05_2022_09_16_07_AM_9109252/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 657.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

Unable to solve or complete the solution.

x
(
x3 − 3yx3 + 4y2

)
y′ − 6y3 = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
<- symmetry pattern of the form [F(x)*G(y), 0] successful`� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 31� �
dsolve(x*(x^3-3*x^3*y(x)+4*y(x)^2)*diff(y(x),x) = 6*y(x)^3,y(x), singsol=all)� �

y(x) = eRootOf
(
−3x3e_Z+6c1x3+x3_Z+2 e2_Z)
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3 Solution by Mathematica
Time used: 0.155 (sec). Leaf size: 27� �
DSolve[x(x^3-3 x^3 y[x]+4 y[x]^2)y'[x]==6 y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)2
x3 + 1

2(log(y(x))− 3y(x)) = c1, y(x)
]
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23.27 problem 658
23.27.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 6597
23.27.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 6601
23.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6605
23.27.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6608

Internal problem ID [3905]
Internal file name [OUTPUT/3398_Sunday_June_05_2022_09_16_12_AM_92347386/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 658.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _exact , _rational , _Bernoulli]

6xy2y′ + 2y3 = −x

23.27.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y3 + x

6x y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 936: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x y2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x y2

dy

Which results in

S = x y3

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y3 + x

6x y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y3

3
Sy = x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x

6 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

6
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2

12 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy3

3 = −x2

12 + c1

Which simplifies to

xy3

3 = −x2

12 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y3+x
6x y2

dS
dR

= −R
6

R = x

S = x y3

3

Summary
The solution(s) found are the following

(1)xy3

3 = −x2

12 + c1
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Figure 1037: Slope field plot

Verification of solutions

xy3

3 = −x2

12 + c1

Verified OK.

23.27.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −2y3 + x

6x y2

This is a Bernoulli ODE.
y′ = − 1

3xy −
1
6
1
y2

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
3x

f1(x) = −1
6

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = − y3

3x − 1
6 (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = −w(x)

3x − 1
6

w′ = −w

x
− 1

2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −1
2
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Hence the ode is

w′(x) + w(x)
x

= −1
2

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µw) = (µ)

(
−1
2

)
d
dx(xw) = (x)

(
−1
2

)
d(xw) =

(
−x

2

)
dx

Integrating gives

xw =
∫

−x

2 dx

xw = −x2

4 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = −x

4 + c1
x

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = −x

4 + c1
x

Solving for y gives

y(x) = 2 1
3 (−(x2 − 4c1)x2)

1
3

2x

y(x) =
2 1

3 (−(x2 − 4c1)x2)
1
3
(
−1 + i

√
3
)

4x

y(x) = −
2 1

3 (−(x2 − 4c1)x2)
1
3
(
1 + i

√
3
)

4x
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Summary
The solution(s) found are the following

(1)y = 2 1
3 (−(x2 − 4c1)x2)

1
3

2x

(2)y =
2 1

3 (−(x2 − 4c1)x2)
1
3
(
−1 + i

√
3
)

4x

(3)y = −
2 1

3 (−(x2 − 4c1)x2)
1
3
(
1 + i

√
3
)

4x

Figure 1038: Slope field plot
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Verification of solutions

y = 2 1
3 (−(x2 − 4c1)x2)

1
3

2x

Verified OK.

y =
2 1

3 (−(x2 − 4c1)x2)
1
3
(
−1 + i

√
3
)

4x

Verified OK.

y = −
2 1

3 (−(x2 − 4c1)x2)
1
3
(
1 + i

√
3
)

4x

Verified OK.

23.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
6x y2

)
dy =

(
−2y3 − x

)
dx(

2y3 + x
)
dx+

(
6x y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y3 + x

N(x, y) = 6x y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2y3 + x

)
= 6y2

And

∂N

∂x
= ∂

∂x

(
6x y2

)
= 6y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2y3 + x dx

(3)φ = 2x y3 + 1
2x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 6x y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 6x y2. Therefore equation (4) becomes

(5)6x y2 = 6x y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2x y3 + 1
2x

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2x y3 + 1
2x

2

Summary
The solution(s) found are the following

(1)2xy3 + x2

2 = c1

6607



Figure 1039: Slope field plot

Verification of solutions

2xy3 + x2

2 = c1

Verified OK.

23.27.4 Maple step by step solution

Let’s solve
6xy2y′ + 2y3 = −x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
6y2 = 6y2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2y3 + x) dx+ f1(y)

• Evaluate integral
F (x, y) = 2x y3 + x2

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
6x y2 = 6x y2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 2x y3 + 1

2x
2

• Substitute F (x, y) into the solution of the ODE
2x y3 + 1

2x
2 = c1

• Solve for y{
y =

((
−2x2+4c1

)
x2) 13

2x , y = −
((
−2x2+4c1

)
x2) 13

4x − I
√
3
((
−2x2+4c1

)
x2) 13

4x , y = −
((
−2x2+4c1

)
x2) 13

4x + I
√
3
((
−2x2+4c1

)
x2) 13

4x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 92� �
dsolve(6*x*y(x)^2*diff(y(x),x)+x+2*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = 2 1
3 (−(x2 − 4c1)x2)

1
3

2x

y(x) = −
2 1

3 (−(x2 − 4c1)x2)
1
3
(
1 + i

√
3
)

4x

y(x) =
2 1

3 (−(x2 − 4c1)x2)
1
3
(
i
√
3− 1

)
4x

3 Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 99� �
DSolve[6 x y[x]^2 y'[x]+x+2 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
−x2 + 4c1
22/3 3

√
x

y(x) → −
3
√
−1 3
√

−x2 + 4c1
22/3 3

√
x

y(x) → (−1)2/3 3
√
−x2 + 4c1

22/3 3
√
x
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23.28 problem 659
23.28.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6611
23.28.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6617

Internal problem ID [3906]
Internal file name [OUTPUT/3399_Sunday_June_05_2022_09_16_19_AM_9341951/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 659.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
x+ 6y2

)
y′ + yx− 3y3 = 0

23.28.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(3y2 − x)
x (6y2 + x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(3y2 − x) (b3 − a2)

x (6y2 + x) − y2(3y2 − x)2 a3
x2 (6y2 + x)2

−
(
− y

x (6y2 + x) −
y(3y2 − x)
x2 (6y2 + x) −

y(3y2 − x)
x (6y2 + x)2

)
(xa2 + ya3 + a1)

−
(

3y2 − x

x (6y2 + x) +
6y2

x (6y2 + x) −
12y2(3y2 − x)
x (6y2 + x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

18x2y4b2 + 9y6a3 − 3x3y2b2 + 9x2y3a2 − 18x2y3b3 + 12x y4a3 − 18x y4b1 + 18y5a1 + 2x4b2 − 2x2y2a3 − 15x2y2b1 + 6x y3a1 + x3b1 − x2ya1

x2 (6y2 + x)2
= 0

Setting the numerator to zero gives

(6E)18x2y4b2 + 9y6a3 − 3x3y2b2 + 9x2y3a2 − 18x2y3b3 + 12x y4a3 − 18x y4b1
+ 18y5a1 + 2x4b2 − 2x2y2a3 − 15x2y2b1 + 6x y3a1 + x3b1 − x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)9a3v62 + 18b2v21v42 + 18a1v52 + 9a2v21v32 + 12a3v1v42 − 18b1v1v42 − 3b2v31v22
− 18b3v21v32 + 6a1v1v32 − 2a3v21v22 − 15b1v21v22 + 2b2v41 − a1v

2
1v2 + b1v

3
1 = 0

6612



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v41 − 3b2v31v22 + b1v
3
1 + 18b2v21v42 + (9a2 − 18b3) v21v32 + (−2a3 − 15b1) v21v22

− a1v
2
1v2 + (12a3 − 18b1) v1v42 + 6a1v1v32 + 9a3v62 + 18a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
6a1 = 0
18a1 = 0
9a3 = 0

−3b2 = 0
2b2 = 0
18b2 = 0

9a2 − 18b3 = 0
−2a3 − 15b1 = 0
12a3 − 18b1 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(3y2 − x)
x (6y2 + x)

)
(2x)

= 3yx
6y2 + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3yx
6y2+x

dy

Which results in

S = ln (y)
3 + y2

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(3y2 − x)
x (6y2 + x)

6614



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2

x2

Sy =
6y2 + x

3yx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)x+ 3y2
3x = − ln (x)

3 + c1

Which simplifies to

ln (y)x+ 3y2
3x = − ln (x)

3 + c1

Which gives

y = e−
LambertW

(
6 e6c1
x3

)
2 +3c1

x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
3y2−x

)
x(6y2+x)

dS
dR

= − 1
3R

R = x

S = ln (y)x+ 3y2
3x

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
6 e6c1
x3

)
2 +3c1

x
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Figure 1040: Slope field plot

Verification of solutions

y = e−
LambertW

(
6 e6c1
x3

)
2 +3c1

x

Verified OK.

23.28.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
6y2 + x

))
dy =

(
3y3 − xy

)
dx(

−3y3 + xy
)
dx+

(
x
(
6y2 + x

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3y3 + xy

N(x, y) = x
(
6y2 + x

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3y3 + xy

)
= −9y2 + x

And
∂N

∂x
= ∂

∂x

(
x
(
6y2 + x

))
= 6y2 + 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = −3y3+yx and N = x(x+ 6y2) by this integrating factor
the ode becomes exact. The new M,N are

M = −3y3 + yx

x2y

N = x+ 6y2
xy

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
6y2 + x

yx

)
dy =

(
−−3y3 + xy

x2y

)
dx(

−3y3 + xy

x2y

)
dx+

(
6y2 + x

yx

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3y3 + xy

x2y

N(x, y) = 6y2 + x

yx

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3y3 + xy

x2y

)
= −6y

x2

And
∂N

∂x
= ∂

∂x

(
6y2 + x

yx

)
= −6y

x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3y3 + xy

x2y
dx

(3)φ = 3y2
x

+ ln (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 6y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 6y2+x
yx

. Therefore equation (4) becomes

(5)6y2 + x

yx
= 6y

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 3y2
x

+ ln (x) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
3y2
x

+ ln (x) + ln (y)

The solution becomes

y = e−
LambertW

(
6 e2c1
x3

)
2 +c1

x
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Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
6 e2c1
x3

)
2 +c1

x

Figure 1041: Slope field plot

Verification of solutions

y = e−
LambertW

(
6 e2c1
x3

)
2 +c1

x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 38� �
dsolve(x*(x+6*y(x)^2)*diff(y(x),x)+x*y(x)-3*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = e
3c1
2
√
6

6x
√

e3c1
x3 LambertW

(
6 e3c1
x3

)

3 Solution by Mathematica
Time used: 4.288 (sec). Leaf size: 69� �
DSolve[x(x+6 y[x]^2)y'[x]+x y[x]-3 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
x

√
W
(

6e3c1
x3

)
√
6

y(x) →

√
x

√
W
(

6e3c1
x3

)
√
6

y(x) → 0
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23.29 problem 660
23.29.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6624
23.29.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6626
23.29.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6632

Internal problem ID [3907]
Internal file name [OUTPUT/3400_Sunday_June_05_2022_09_16_24_AM_13107089/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 660.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 − 6y2

)
y′ − 4

(
3y2 + x2) y = 0

23.29.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 − 6u(x)2 x2) (u′(x)x+ u(x))− 4

(
3u(x)2 x2 + x2)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 3(6u3 + u)
x (6u2 − 1)

Where f(x) = − 3
x
and g(u) = 6u3+u

6u2−1 . Integrating both sides gives

1
6u3+u
6u2−1

du = −3
x
dx
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∫ 1
6u3+u
6u2−1

du =
∫

−3
x
dx

ln
(
6u2 + 1

)
− ln (u) = −3 ln (x) + c2

Raising both side to exponential gives

eln
(
6u2+1

)
−ln(u) = e−3 ln(x)+c2

Which simplifies to

6u2 + 1
u

= c3
x3

The solution is
6u(x)2 + 1

u (x) = c3
x3

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

6y2
x2 + 1

)
x

y
= c3

x3

6y2 + x2

xy
= c3

x3

Which simplifies to

6y2 + x2

y
= c3

x2

Summary
The solution(s) found are the following

(1)6y2 + x2

y
= c3

x2
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Figure 1042: Slope field plot

Verification of solutions

6y2 + x2

y
= c3

x2

Verified OK.

23.29.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 4y(x2 + 3y2)
x (−x2 + 6y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
4y(x2 + 3y2) (b3 − a2)

x (−x2 + 6y2) − 16y2(x2 + 3y2)2 a3
x2 (−x2 + 6y2)2

−
(
− 8y
−x2 + 6y2 + 4y(x2 + 3y2)

x2 (−x2 + 6y2) −
8y(x2 + 3y2)
(−x2 + 6y2)2

)
(xa2 + ya3 + a1)

−
(
− 4(x2 + 3y2)
x (−x2 + 6y2)−

24y2
x (−x2 + 6y2) +

48y2(x2 + 3y2)
x (−x2 + 6y2)2

)
(xb2+yb3+b1) = 0

Putting the above in normal form gives

−3x6b2 + 12x4y2a3 + 72x4y2b2 − 72x3y3a2 + 72x3y3b3 + 36x2y4a3 − 108x2y4b2 + 216y6a3 + 4x5b1 − 4x4ya1 + 60x3y2b1 − 60x2y3a1 − 72x y4b1 + 72y5a1
(x2 − 6y2)2 x2

= 0

Setting the numerator to zero gives

(6E)−3x6b2−12x4y2a3−72x4y2b2+72x3y3a2−72x3y3b3−36x2y4a3+108x2y4b2
− 216y6a3 − 4x5b1 + 4x4ya1 − 60x3y2b1 + 60x2y3a1 + 72x y4b1 − 72y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)72a2v31v32 − 12a3v41v22 − 36a3v21v42 − 216a3v62 − 3b2v61 − 72b2v41v22 + 108b2v21v42
− 72b3v31v32 +4a1v41v2 +60a1v21v32 − 72a1v52 − 4b1v51 − 60b1v31v22 +72b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−3b2v61−4b1v51+(−12a3−72b2) v41v22+4a1v41v2+(72a2−72b3) v31v32−60b1v31v22
+ (−36a3 + 108b2) v21v42 + 60a1v21v32 + 72b1v1v42 − 216a3v62 − 72a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−72a1 = 0
4a1 = 0
60a1 = 0

−216a3 = 0
−60b1 = 0
−4b1 = 0
72b1 = 0
−3b2 = 0

72a2 − 72b3 = 0
−36a3 + 108b2 = 0
−12a3 − 72b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 4y(x2 + 3y2)
x (−x2 + 6y2)

)
(x)

= −3x2y − 18y3
x2 − 6y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−3x2y−18y3
x2−6y2

dy

Which results in

S = ln (x2 + 6y2)
3 − ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 4y(x2 + 3y2)
x (−x2 + 6y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
3x2 + 18y2

Sy =
4y

x2 + 6y2 − 1
3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 2

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (6y2 + x2)
3 − ln (y)

3 = −2 ln (x)
3 + c1

Which simplifies to

ln (6y2 + x2)
3 − ln (y)

3 = −2 ln (x)
3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 4y
(
x2+3y2

)
x(−x2+6y2)

dS
dR

= − 2
3R

R = x

S = ln (x2 + 6y2)
3 − ln (y)

3

Summary
The solution(s) found are the following

(1)ln (6y2 + x2)
3 − ln (y)

3 = −2 ln (x)
3 + c1
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Figure 1043: Slope field plot

Verification of solutions

ln (6y2 + x2)
3 − ln (y)

3 = −2 ln (x)
3 + c1

Verified OK.

23.29.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 − 6y2

))
dy =

(
4y
(
x2 + 3y2

))
dx(

−4y
(
x2 + 3y2

))
dx+

(
x
(
x2 − 6y2

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4y
(
x2 + 3y2

)
N(x, y) = x

(
x2 − 6y2

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−4y

(
x2 + 3y2

))
= −4x2 − 36y2

And
∂N

∂x
= ∂

∂x

(
x
(
x2 − 6y2

))
= 3x2 − 6y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection x
y2

is an integrating factor.
Therefore by multiplying M = −4(3y2 + x2) y and N = x(x2 − 6y2) by this integrating
factor the ode becomes exact. The new M,N are

M = −4x(3y2 + x2)
y

N = x2(x2 − 6y2)
y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
x2(x2 − 6y2)

y2

)
dy =

(
4x(x2 + 3y2)

y

)
dx(

−4x(x2 + 3y2)
y

)
dx+

(
x2(x2 − 6y2)

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x(x2 + 3y2)
y

N(x, y) = x2(x2 − 6y2)
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−4x(x2 + 3y2)

y

)
= 4x(x2 − 3y2)

y2

And

∂N

∂x
= ∂

∂x

(
x2(x2 − 6y2)

y2

)
= 4x(x2 − 3y2)

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4x(x2 + 3y2)

y
dx

(3)φ = −(x2 + 3y2)2

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (x2 + 3y2)2

y2
− 12x2 − 36y2 + f ′(y)

= x4 − 6y2x2 − 27y4
y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2(x2−6y2
)

y2
. Therefore equation (4) becomes

(5)x2(x2 − 6y2)
y2

= x4 − 6y2x2 − 27y4
y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 27y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
27y2

)
dy

f(y) = 9y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(x2 + 3y2)2

y
+ 9y3 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(x2 + 3y2)2

y
+ 9y3

Summary
The solution(s) found are the following

(1)−(3y2 + x2)2

y
+ 9y3 = c1

Figure 1044: Slope field plot

Verification of solutions

−(3y2 + x2)2

y
+ 9y3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.688 (sec). Leaf size: 53� �
dsolve(x*(x^2-6*y(x)^2)*diff(y(x),x) = 4*(x^2+3*y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = −
c1
(
−1 +

√
−24x6+c21

c21

)
12x2

y(x) =
c1
(
1 +

√
−24x6+c21

c21

)
12x2

3 Solution by Mathematica
Time used: 1.071 (sec). Leaf size: 67� �
DSolve[x(x^2-6 y[x]^2)y'[x]==4(x^2+3 y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ec1 −
√
−24x6 + e2c1

12x2

y(x) →
√
−24x6 + e2c1 + ec1

12x2
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23.30 problem 661
23.30.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6639
23.30.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6645

Internal problem ID [3908]
Internal file name [OUTPUT/3401_Sunday_June_05_2022_09_16_33_AM_94793635/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 661.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
3x− 7y2

)
y′ +

(
5x− 3y2

)
y = 0

23.30.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(3y2 − 5x)
x (7y2 − 3x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(3y2 − 5x) (b3 − a2)

x (7y2 − 3x) − y2(3y2 − 5x)2 a3
x2 (7y2 − 3x)2

−
(

5y
x (7y2 − 3x) +

y(3y2 − 5x)
x2 (7y2 − 3x) −

3y(3y2 − 5x)
x (7y2 − 3x)2

)
(xa2 + ya3 + a1)

−
(
− 3y2 − 5x
x (7y2 − 3x) −

6y2
x (7y2 − 3x) +

14y2(3y2 − 5x)
x (7y2 − 3x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

70x2y4b2 − 30y6a3 − 34x3y2b2 − 26x2y3a2 + 52x2y3b3 + 48x y4a3 + 21x y4b1 − 21y5a1 + 24x4b2 − 40x2y2a3 + 8x2y2b1 + 18x y3a1 + 15x3b1 − 15x2ya1

x2 (−7y2 + 3x)2
= 0

Setting the numerator to zero gives

(6E)70x2y4b2 − 30y6a3 − 34x3y2b2 − 26x2y3a2 + 52x2y3b3 + 48x y4a3 + 21x y4b1
− 21y5a1 + 24x4b2 − 40x2y2a3 + 8x2y2b1 + 18x y3a1 + 15x3b1 − 15x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−30a3v62 + 70b2v21v42 − 21a1v52 − 26a2v21v32 + 48a3v1v42 + 21b1v1v42 − 34b2v31v22
+52b3v21v32 +18a1v1v32 − 40a3v21v22 +8b1v21v22 +24b2v41 − 15a1v21v2+15b1v31 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)24b2v41 − 34b2v31v22 + 15b1v31 + 70b2v21v42
+ (−26a2 + 52b3) v21v32 + (−40a3 + 8b1) v21v22 − 15a1v21v2
+ (48a3 + 21b1) v1v42 + 18a1v1v32 − 30a3v62 − 21a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−21a1 = 0
−15a1 = 0
18a1 = 0

−30a3 = 0
15b1 = 0

−34b2 = 0
24b2 = 0
70b2 = 0

−26a2 + 52b3 = 0
−40a3 + 8b1 = 0
48a3 + 21b1 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(3y2 − 5x)
x (7y2 − 3x)

)
(2x)

= −13y3 + 13xy
−7y2 + 3x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−13y3+13xy
−7y2+3x

dy

Which results in

S = 2 ln (y2 − x)
13 + 3 ln (y)

13
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(3y2 − 5x)
x (7y2 − 3x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
−13y2 + 13x

Sy = − 4y
−13y2 + 13x + 3

13y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 3

13x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

13R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R)
13 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y2 − x)
13 + 3 ln (y)

13 = −3 ln (x)
13 + c1

Which simplifies to

2 ln (y2 − x)
13 + 3 ln (y)

13 = −3 ln (x)
13 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
3y2−5x

)
x(7y2−3x)

dS
dR

= − 3
13R

R = x

S = 2 ln (y2 − x)
13 + 3 ln (y)

13

Summary
The solution(s) found are the following

(1)2 ln (y2 − x)
13 + 3 ln (y)

13 = −3 ln (x)
13 + c1
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Figure 1045: Slope field plot

Verification of solutions

2 ln (y2 − x)
13 + 3 ln (y)

13 = −3 ln (x)
13 + c1

Verified OK.

23.30.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−7y2 + 3x

))
dy =

(
−y
(
−3y2 + 5x

))
dx(

y
(
−3y2 + 5x

))
dx+

(
x
(
−7y2 + 3x

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
−3y2 + 5x

)
N(x, y) = x

(
−7y2 + 3x

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
−3y2 + 5x

))
= −9y2 + 5x

And
∂N

∂x
= ∂

∂x

(
x
(
−7y2 + 3x

))
= −7y2 + 6x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−7x y2 + 3x2

((
−9y2 + 5x

)
−
(
−7y2 + 6x

))
= −2y2 − x

−7x y2 + 3x2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

−3y3 + 5xy
((
−7y2 + 6x

)
−
(
−9y2 + 5x

))
= 2y2 + x

−3y3 + 5xy

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−7y2 + 6x)− (−9y2 + 5x)
x (y (−3y2 + 5x))− y (x (−7y2 + 3x))

= 1
2xy

Replacing all powers of terms xy by t gives

R = 1
2t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( 1

2t
)
dt
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The result of integrating gives

µ = e
ln(t)
2

=
√
t

Now t is replaced back with xy giving

µ = √
xy

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= √
xy
(
y
(
−3y2 + 5x

))
= y
(
−3y2 + 5x

)√
xy

And

N = µN

= √
xy
(
x
(
−7y2 + 3x

))
= x

(
−7y2 + 3x

)√
xy

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y
(
−3y2 + 5x

)√
xy
)
+
(
x
(
−7y2 + 3x

)√
xy
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y
(
−3y2 + 5x

)√
xy dx

(3)φ = 2x
(
−y2 + x

)
y
√
xy + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −4x y2√xy + 2x

(
−y2 + x

)√
xy + x2(−y2 + x) y

√
xy

+ f ′(y)

= y x2(−7y2 + 3x)
√
xy

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(−7y2 + 3x)√xy. Therefore equation (4) becomes

(5)x
(
−7y2 + 3x

)√
xy = y x2(−7y2 + 3x)

√
xy

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2x
(
−y2 + x

)
y
√
xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2x
(
−y2 + x

)
y
√
xy

Summary
The solution(s) found are the following

(1)2x
(
x− y2

)
y
√
yx = c1
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Figure 1046: Slope field plot

Verification of solutions

2x
(
x− y2

)
y
√
yx = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 8.578 (sec). Leaf size: 49� �
dsolve(x*(3*x-7*y(x)^2)*diff(y(x),x)+(5*x-3*y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) = RootOf
(
x

3
2_Z7 − x

5
2_Z3 − c1

)2
y(x) = RootOf

(
x

3
2_Z7 − x

5
2_Z3 + c1

)2
3 Solution by Mathematica
Time used: 4.798 (sec). Leaf size: 288� �
DSolve[x(3 x-7 y[x]^2)y'[x]+(5 x-3 y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
4#17x3 − 8#15x4 + 4#13x5 − c1

2&, 1
]

y(x) → Root
[
4#17x3 − 8#15x4 + 4#13x5 − c1

2&, 2
]

y(x) → Root
[
4#17x3 − 8#15x4 + 4#13x5 − c1

2&, 3
]

y(x) → Root
[
4#17x3 − 8#15x4 + 4#13x5 − c1

2&, 4
]

y(x) → Root
[
4#17x3 − 8#15x4 + 4#13x5 − c1

2&, 5
]

y(x) → Root
[
4#17x3 − 8#15x4 + 4#13x5 − c1

2&, 6
]

y(x) → Root
[
4#17x3 − 8#15x4 + 4#13x5 − c1

2&, 7
]
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23.31 problem 662
23.31.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6652
23.31.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6655
23.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6659
23.31.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6663

Internal problem ID [3909]
Internal file name [OUTPUT/3402_Sunday_June_05_2022_09_16_40_AM_41009224/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 23
Problem number: 662.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y2y′x2 = −x3 + x− 1

23.31.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x3 − x+ 1
y2x2

Where f(x) = −x3−x+1
x2 and g(y) = 1

y2
. Integrating both sides gives

1
1
y2

dy = −x3 − x+ 1
x2 dx

∫ 1
1
y2

dy =
∫

−x3 − x+ 1
x2 dx

y3

3 = −x2

2 + 1
x
+ ln (x) + c1
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Which results in

y = ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)
1
3

2x

y = −((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)
1
3

4x

+ i
√
3 ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x

y = −((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)
1
3

4x

− i
√
3 ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x

Summary
The solution(s) found are the following

(1)y = ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)
1
3

2x

(2)
y = −((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x

+ i
√
3 ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x

(3)
y = −((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x

− i
√
3 ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x
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Figure 1047: Slope field plot

Verification of solutions

y = ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)
1
3

2x

Verified OK.

y = −((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)
1
3

4x

+ i
√
3 ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x

Verified OK.

y = −((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)
1
3

4x

− i
√
3 ((−12x3 + 24 ln (x)x+ 24c1x+ 24)x2)

1
3

4x

Verified OK.
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23.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x3 − x+ 1
y2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 939: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − x2

x3 − x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x2

x3−x+1
dx

Which results in

S = −x2

2 + 1
x
+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3 − x+ 1
y2x2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −x3 + x− 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x3 + 2 ln (x)x+ 2
2x = y3

3 + c1

Which simplifies to

−x3 + 2 ln (x)x+ 2
2x = y3

3 + c1

6657



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x3−x+1
y2x2

dS
dR

= R2

R = y

S = −x3 + 2 ln (x)x+ 2
2x

Summary
The solution(s) found are the following

(1)−x3 + 2 ln (x)x+ 2
2x = y3

3 + c1
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Figure 1048: Slope field plot

Verification of solutions

−x3 + 2 ln (x)x+ 2
2x = y3

3 + c1

Verified OK.

23.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2

)
dy =

(
x3 − x+ 1

x2

)
dx(

−x3 − x+ 1
x2

)
dx+

(
−y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − x+ 1
x2

N(x, y) = −y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x3 − x+ 1

x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − x+ 1

x2 dx

(3)φ = −x2

2 + 1
x
+ ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y2. Therefore equation (4) becomes

(5)−y2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y2

)
dy

f(y) = −y3

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + 1
x
+ ln (x)− y3

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + 1
x
+ ln (x)− y3

3

Summary
The solution(s) found are the following

(1)−x2

2 + 1
x
+ ln (x)− y3

3 = c1

Figure 1049: Slope field plot

Verification of solutions

−x2

2 + 1
x
+ ln (x)− y3

3 = c1

Verified OK.
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23.31.4 Maple step by step solution

Let’s solve
y2y′x2 = −x3 + x− 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y2y′ = −x3+x−1

x2

• Integrate both sides with respect to x∫
y2y′dx =

∫ −x3+x−1
x2 dx+ c1

• Evaluate integral
y3

3 = −x2

2 + 1
x
+ ln (x) + c1

• Solve for y

y =
((
−12x3+24 ln(x)x+24c1x+24

)
x2) 13

2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 113� �
dsolve(x^2*y(x)^2*diff(y(x),x)+1-x+x^3 = 0,y(x), singsol=all)� �

y(x) =
2 2

3
(
−3x2(x3 − 2c1x

3 − 2x ln (x)− 2
)) 1

3

2x

y(x) = −
2 2

3
(
−3x2(x3 − 2c1x

3 − 2x ln (x)− 2
)) 1

3
(
1 + i

√
3
)

4x

y(x) =
2 2

3
(
−3x2(x3 − 2c1x

3 − 2x ln (x)− 2
)) 1

3
(
i
√
3− 1

)
4x

3 Solution by Mathematica
Time used: 0.341 (sec). Leaf size: 111� �
DSolve[x^2 y[x]^2 y'[x]+1-x+x^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3

√
−3
2

3
√
−x3 + 2x log(x) + 2c1x+ 2

3
√
x

y(x) →
3

√
−3x3

2 + 3x log(x) + 3c1x+ 3
3
√
x

y(x) →
(−1)2/3 3

√
−3x3

2 + 3x log(x) + 3c1x+ 3
3
√
x
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24 Various 24
24.1 problem 663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6666
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24.20problem 682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6875
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24.33problem 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7018
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24.1 problem 663
24.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6666
24.1.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6672

Internal problem ID [3910]
Internal file name [OUTPUT/3403_Sunday_June_05_2022_09_16_44_AM_3558794/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 663.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
1− y2x2) y′ − xy3 = 0

24.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x y3

y2x2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
x y3(b3 − a2)
y2x2 − 1 − x2y6a3

(y2x2 − 1)2

−
(
− y3

y2x2 − 1 + 2x2y5

(y2x2 − 1)2
)
(xa2 + ya3 + a1)

−
(
− 3x y2
y2x2 − 1 + 2x3y4

(y2x2 − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x4y4b2 − 2x2y6a3 + x3y4b1 − x2y5a1 − 5x2y2b2 − 2x y3a2 − 2x y3b3 − y4a3 − 3x y2b1 − y3a1 + b2

(y2x2 − 1)2
= 0

Setting the numerator to zero gives

(6E)2x4y4b2 − 2x2y6a3 + x3y4b1 − x2y5a1 − 5x2y2b2
− 2x y3a2 − 2x y3b3 − y4a3 − 3x y2b1 − y3a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v21v62 + 2b2v41v42 − a1v
2
1v

5
2 + b1v

3
1v

4
2 − 2a2v1v32

− a3v
4
2 − 5b2v21v22 − 2b3v1v32 − a1v

3
2 − 3b1v1v22 + b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v41v42 + b1v
3
1v

4
2 − 2a3v21v62 − a1v

2
1v

5
2 − 5b2v21v22

+ (−2a2 − 2b3) v1v32 − 3b1v1v22 − a3v
4
2 − a1v

3
2 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2a3 = 0
−a3 = 0
−3b1 = 0
−5b2 = 0
2b2 = 0

−2a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x y3

y2x2 − 1

)
(−x)

= − y

y2x2 − 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y
y2x2−1

dy

Which results in

S = −y2x2

2 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x y3

y2x2 − 1

6669



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −x y2

Sy = −x2y + 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2x2

2 + ln (y) = c1

Which simplifies to

−y2x2

2 + ln (y) = c1

Which gives

y = e−
LambertW

(
−e2c1x2

)
2 +c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x y3

y2x2−1
dS
dR

= 0

R = x

S = −y2x2

2 + ln (y)

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
−e2c1x2

)
2 +c1
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Figure 1050: Slope field plot

Verification of solutions

y = e−
LambertW

(
−e2c1x2

)
2 +c1

Verified OK.

24.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2x2 + 1

)
dy =

(
x y3

)
dx(

−x y3
)
dx+

(
−y2x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x y3

N(x, y) = −y2x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x y3

)
= −3x y2

And
∂N

∂x
= ∂

∂x

(
−y2x2 + 1

)
= −2x y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y2x2 + 1
((
−3x y2

)
−
(
−2x y2

))
= x y2

y2x2 − 1
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

x y3
((
−2x y2

)
−
(
−3x y2

))
= −1

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 1

y
dy

The result of integrating gives

µ = e− ln(y)

= 1
y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y

(
−x y3

)
= −x y2

And

N = µN

= 1
y

(
−y2x2 + 1

)
= −y2x2 + 1

y
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−x y2
)
+
(
−y2x2 + 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x y2 dx

(3)φ = −y2x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2y + f ′(y)

But equation (2) says that ∂φ
∂y

= −y2x2+1
y

. Therefore equation (4) becomes

(5)−y2x2 + 1
y

= −x2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −y2x2

2 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −y2x2

2 + ln (y)

The solution becomes

y = e−
LambertW

(
−e2c1x2

)
2 +c1

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
−e2c1x2

)
2 +c1
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Figure 1051: Slope field plot

Verification of solutions

y = e−
LambertW

(
−e2c1x2

)
2 +c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve((1-x^2*y(x)^2)*diff(y(x),x) = x*y(x)^3,y(x), singsol=all)� �

y(x) = e−c1√
− e−2c1x2

LambertW
(
−e−2c1x2

)
3 Solution by Mathematica
Time used: 5.286 (sec). Leaf size: 60� �
DSolve[(1-x^2 y[x]^2)y'[x]==x y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
√
W (−e−2c1x2)

x

y(x) → i
√

W (−e−2c1x2)
x

y(x) → 0
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24.2 problem 664
24.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6679
24.2.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6684

Internal problem ID [3911]
Internal file name [OUTPUT/3404_Sunday_June_05_2022_09_16_49_AM_989338/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 664.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

(
1− y2x2) y′ − (1 + yx) y2 = 0

24.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
xy − 1 − y4a3

(xy − 1)2
− y3(xa2 + ya3 + a1)

(xy − 1)2

−
(
− 2y
xy − 1 + y2x

(xy − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2y2b2 − 2y4a3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − y2b3 − 2yb1 + b2

(xy − 1)2
= 0

Setting the numerator to zero gives

(6E)2x2y2b2 − 2y4a3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − y2b3 − 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v42 + 2b2v21v22 − a1v
3
2 + b1v1v

2
2 − a2v

2
2 − 4b2v1v2 − b3v

2
2 − 2b1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21v22 + b1v1v
2
2 − 4b2v1v2 − 2a3v42 − a1v

3
2 + (−a2 − b3) v22 − 2b1v2 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2a3 = 0
−2b1 = 0
−4b2 = 0
2b2 = 0

−a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy − 1

)
(−x)

= − y

xy − 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y
xy−1

dy

Which results in

S = −xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y

Sy = −x+ 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−yx+ ln (y) = c1

Which simplifies to

−yx+ ln (y) = c1

Which gives

y = e−LambertW(−ec1x)+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy−1
dS
dR

= 0

R = x

S = −xy + ln (y)
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Summary
The solution(s) found are the following

(1)y = e−LambertW(−ec1x)+c1

Figure 1052: Slope field plot

Verification of solutions

y = e−LambertW(−ec1x)+c1

Verified OK.

24.2.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2x2 + 1

)
dy =

(
y2(xy + 1)

)
dx(

−y2(xy + 1)
)
dx+

(
−y2x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2(xy + 1)
N(x, y) = −y2x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y2(xy + 1)

)
= −3x y2 − 2y
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And
∂N

∂x
= ∂

∂x

(
−y2x2 + 1

)
= −2x y2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y2x2 + 1
((
−2y(xy + 1)− x y2

)
−
(
−2x y2

))
= y(xy + 2)

y2x2 − 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y2 (xy + 1)
((
−2x y2

)
−
(
−2y(xy + 1)− x y2

))
= −xy − 2

y (xy + 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−2x y2)− (−2y(xy + 1)− x y2)
x (−y2 (xy + 1))− y (−y2x2 + 1)

= −xy − 2
xy + 1

Replacing all powers of terms xy by t gives

R = −t− 2
t+ 1
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Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (−t−2

t+1

)
dt

The result of integrating gives

µ = e−t−ln(t+1)

= e−t

t+ 1
Now t is replaced back with xy giving

µ = e−xy

xy + 1
Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= e−xy

xy + 1
(
−y2(xy + 1)

)
= −y2e−xy

And

N = µN

= e−xy

xy + 1
(
−y2x2 + 1

)
= −e−xy(xy − 1)

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−y2e−xy
)
+
(
−e−xy(xy − 1)

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y2e−xy dx

(3)φ = y e−xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−xy − yx e−xy + f ′(y)

= e−xy(−xy + 1) + f ′(y)

But equation (2) says that ∂φ
∂y

= −e−xy(xy − 1). Therefore equation (4) becomes

(5)−e−xy(xy − 1) = e−xy(−xy + 1) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y e−xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y e−xy

The solution becomes

y = −LambertW (−c1x)
x
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Summary
The solution(s) found are the following

(1)y = −LambertW (−c1x)
x

Figure 1053: Slope field plot

Verification of solutions

y = −LambertW (−c1x)
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 25� �
dsolve((1-x^2*y(x)^2)*diff(y(x),x) = (1+x*y(x))*y(x)^2,y(x), singsol=all)� �

y(x) = −1
x

y(x) = −LambertW (−x e−c1)
x

3 Solution by Mathematica
Time used: 2.179 (sec). Leaf size: 43� �
DSolve[(1-x^2 y[x]^2)y'[x]==(1+x y[x])y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
x

y(x) → −W (−e−c1x)
x

y(x) → 0

y(x) → −1
x
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24.3 problem 665
24.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6691
24.3.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6697

Internal problem ID [3912]
Internal file name [OUTPUT/3405_Sunday_June_05_2022_09_16_53_AM_4231743/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 665.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
1 + y2x

)
y′ + y = 0

24.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

x (x y2 + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(b3 − a2)
x (x y2 + 1) −

y2a3

x2 (x y2 + 1)2

−
(

y

x2 (x y2 + 1) +
y3

x (x y2 + 1)2
)
(xa2 + ya3 + a1)

−
(
− 1
x (x y2 + 1) +

2y2

(x y2 + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4y4b2 + x3y2b2 − x2y3a2 − 2x2y3b3 − 2x y4a3 − x2y2b1 − 2x y3a1 + 2b2x2 − 2y2a3 + xb1 − ya1

x2 (x y2 + 1)2
= 0

Setting the numerator to zero gives

(6E)x4y4b2 + x3y2b2 − x2y3a2 − 2x2y3b3 − 2x y4a3 − x2y2b1
− 2x y3a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
4
1v

4
2 − a2v

2
1v

3
2 − 2a3v1v42 + b2v

3
1v

2
2 − 2b3v21v32

− 2a1v1v32 − b1v
2
1v

2
2 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1v

4
2 + b2v

3
1v

2
2 + (−a2 − 2b3) v21v32 − b1v

2
1v

2
2 + 2b2v21

− 2a3v1v42 − 2a1v1v32 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−2a1 = 0
−a1 = 0
−2a3 = 0
−b1 = 0
2b2 = 0

−a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

x (x y2 + 1)

)
(−2x)

= x y3 − y

x y2 + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y3−y
x y2+1

dy

Which results in

S = ln
(
x y2 − 1

)
− ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

x (x y2 + 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2

x y2 − 1

Sy =
2xy

x y2 − 1 − 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
−1 + y2x

)
− ln (y) = ln (x) + c1

Which simplifies to

ln
(
−1 + y2x

)
− ln (y) = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x(x y2+1)

dS
dR

= 1
R

R = x

S = ln
(
x y2 − 1

)
− ln (y)

Summary
The solution(s) found are the following

(1)ln
(
−1 + y2x

)
− ln (y) = ln (x) + c1
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Figure 1054: Slope field plot

Verification of solutions

ln
(
−1 + y2x

)
− ln (y) = ln (x) + c1

Verified OK.

24.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x y2 + 1

))
dy = (−y) dx

(y) dx+
(
x
(
x y2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = x
(
x y2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x

(
x
(
x y2 + 1

))
= 2x y2 + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x y2 + 1)
(
(1)−

(
2x y2 + 1

))
= − 2y2

x y2 + 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y

((
2x y2 + 1

)
− (1)

)
= 2xy

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2x y2 + 1)− (1)
x (y)− y (x (x y2 + 1))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2 (y)

= 1
x2y

And

N = µN

= 1
y2x2

(
x
(
x y2 + 1

))
= x y2 + 1

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

1
x2y

)
+
(
x y2 + 1
x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
x2y

dx

(3)φ = − 1
xy

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x y2+1
x y2

. Therefore equation (4) becomes

(5)x y2 + 1
x y2

= 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − 1
xy

+ y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 1
xy

+ y
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Summary
The solution(s) found are the following

(1)− 1
xy

+ y = c1

Figure 1055: Slope field plot

Verification of solutions

− 1
xy

+ y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 137� �
dsolve(x*(1+x*y(x)^2)*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = −

√
2
√
xc1
(
2c1 + x−

√
x (x+ 4c1)

)
2c1x

y(x) =

√
2
√
xc1
(
2c1 + x−

√
x (x+ 4c1)

)
2c1x

y(x) = −

√
2
√
xc1
(
2c1 + x+

√
x (x+ 4c1)

)
2c1x

y(x) =

√
2
√
xc1
(
2c1 + x+

√
x (x+ 4c1)

)
2c1x
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3 Solution by Mathematica
Time used: 0.329 (sec). Leaf size: 65� �
DSolve[x(1+x y[x]^2)y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
c1 −

√
4 + c12x√

x

)
y(x) → 1

2

(√
4 + c12x√

x
+ c1

)
y(x) → 0
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24.4 problem 666
24.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6705
24.4.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6711

Internal problem ID [3913]
Internal file name [OUTPUT/3406_Sunday_June_05_2022_09_16_59_AM_47467523/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 666.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
1 + y2x

)
y′ −

(
2− 3y2x

)
y = 0

24.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(3x y2 − 2)
x (x y2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(3x y2 − 2) (b3 − a2)

x (x y2 + 1) − y2(3x y2 − 2)2 a3
x2 (x y2 + 1)2

−
(
− 3y3
x (x y2 + 1) +

y(3x y2 − 2)
x2 (x y2 + 1) +

y3(3x y2 − 2)
x (x y2 + 1)2

)
(xa2 + ya3 + a1)

−
(
− 3x y2 − 2
x (x y2 + 1) −

6y2
x y2 + 1 + 2y2(3x y2 − 2)

(x y2 + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x4y4b2 − 12x2y6a3 + 3x3y4b1 − 3x2y5a1 + 13x3y2b2 + 5x2y3a2 + 10x2y3b3 + 16x y4a3 + 11x2y2b1 + 4x y3a1 − b2x
2 − 2y2a3 − 2xb1 + 2ya1

x2 (x y2 + 1)2
= 0

Setting the numerator to zero gives

(6E)4x4y4b2 − 12x2y6a3 + 3x3y4b1 − 3x2y5a1 + 13x3y2b2 + 5x2y3a2 + 10x2y3b3
+ 16x y4a3 + 11x2y2b1 + 4x y3a1 − b2x

2 − 2y2a3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−12a3v21v62 + 4b2v41v42 − 3a1v21v52 + 3b1v31v42 + 5a2v21v32 + 16a3v1v42 + 13b2v31v22
+ 10b3v21v32 + 4a1v1v32 + 11b1v21v22 − 2a3v22 − b2v

2
1 + 2a1v2 − 2b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)4b2v41v42 + 3b1v31v42 + 13b2v31v22 − 12a3v21v62 − 3a1v21v52 + (5a2 + 10b3) v21v32
+ 11b1v21v22 − b2v

2
1 + 16a3v1v42 + 4a1v1v32 − 2b1v1 − 2a3v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−3a1 = 0
2a1 = 0
4a1 = 0

−12a3 = 0
−2a3 = 0
16a3 = 0
−2b1 = 0
3b1 = 0
11b1 = 0
−b2 = 0
4b2 = 0
13b2 = 0

5a2 + 10b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(3x y2 − 2)

x (x y2 + 1)

)
(−2x)

= −5x y3 + 5y
x y2 + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−5x y3+5y
x y2+1

dy

Which results in

S = − ln (x y2 − 1)
5 + ln (y)

5
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(3x y2 − 2)
x (x y2 + 1)

6708



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y2

5x y2 − 5

Sy = − 2xy
5x y2 − 5 + 1

5y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

5x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

5R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R)
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−1 + y2x)
5 + ln (y)

5 = 2 ln (x)
5 + c1

Which simplifies to

− ln (−1 + y2x)
5 + ln (y)

5 = 2 ln (x)
5 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
3x y2−2

)
x(x y2+1)

dS
dR

= 2
5R

R = x

S = − ln (x y2 − 1)
5 + ln (y)

5

Summary
The solution(s) found are the following

(1)− ln (−1 + y2x)
5 + ln (y)

5 = 2 ln (x)
5 + c1
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Figure 1056: Slope field plot

Verification of solutions

− ln (−1 + y2x)
5 + ln (y)

5 = 2 ln (x)
5 + c1

Verified OK.

24.4.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x y2 + 1

))
dy =

((
−3x y2 + 2

)
y
)
dx(

−
(
−3x y2 + 2

)
y
)
dx+

(
x
(
x y2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
(
−3x y2 + 2

)
y

N(x, y) = x
(
x y2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−
(
−3x y2 + 2

)
y
)

= 9x y2 − 2

And
∂N

∂x
= ∂

∂x

(
x
(
x y2 + 1

))
= 2x y2 + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection x
y2

is an integrating factor.
Therefore by multiplying M = −(2− 3y2x) y and N = x(1 + y2x) by this integrating
factor the ode becomes exact. The new M,N are

M = −x(2− 3y2x)
y

N = x2(1 + y2x)
y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
x2(x y2 + 1)

y2

)
dy =

(
x(−3x y2 + 2)

y

)
dx(

−x(−3x y2 + 2)
y

)
dx+

(
x2(x y2 + 1)

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x(−3x y2 + 2)
y

N(x, y) = x2(x y2 + 1)
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x(−3x y2 + 2)

y

)
= 3y2x2 + 2x

y2

And
∂N

∂x
= ∂

∂x

(
x2(x y2 + 1)

y2

)
= 3y2x2 + 2x

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x(−3x y2 + 2)

y
dx

(3)φ = x2(x y2 − 1)
y

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x3 − x2(x y2 − 1)

y2
+ f ′(y)

= x2(x y2 + 1)
y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2(x y2+1
)

y2
. Therefore equation (4) becomes

(5)x2(x y2 + 1)
y2

= x2(x y2 + 1)
y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2(x y2 − 1)
y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2(x y2 − 1)

y

Summary
The solution(s) found are the following

(1)x2(−1 + y2x)
y

= c1

6715



Figure 1057: Slope field plot

Verification of solutions

x2(−1 + y2x)
y

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 45� �
dsolve(x*(1+x*y(x)^2)*diff(y(x),x) = (2-3*x*y(x)^2)*y(x),y(x), singsol=all)� �

y(x) = c1 +
√

4x5 + c21
2x3

y(x) = c1 −
√

4x5 + c21
2x3

3 Solution by Mathematica
Time used: 1.286 (sec). Leaf size: 75� �
DSolve[x(1+x y[x]^2)y'[x]==(2-3 x y[x]^2)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
4x5 + e5c1 + e

5c1
2

2x3

y(x) →
√
4x5 + e5c1 − e

5c1
2

2x3
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24.5 problem 667
24.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6718
24.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6719
24.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6722
24.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6725

Internal problem ID [3914]
Internal file name [OUTPUT/3407_Sunday_June_05_2022_09_17_06_AM_39042894/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 667.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x2(y + a)2 y′ −
(
x2 + 1

) (
y2 + a2

)
= 0

24.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x2 + 1) (a2 + y2)
x2 (a+ y)2

Where f(x) = x2+1
x2 and g(y) = a2+y2

(a+y)2 . Integrating both sides gives

1
a2+y2

(a+y)2
dy = x2 + 1

x2 dx

∫ 1
a2+y2

(a+y)2
dy =

∫
x2 + 1
x2 dx
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y + a ln
(
a2 + y2

)
= x− 1

x
+ c1

Which results in

y

=
−axRootOf

(
_Z2a2x2 − 2c1_Za x2 − 2a x3_Z+ c21x

2 + 2c1x3 + a2x2 + x4 − e_Zx2 + 2ax_Z− 2c1x− 2x2 + 1
)
+ c1x+ x2 − 1

x

Summary
The solution(s) found are the following

(1)y

=
−axRootOf

(
_Z2a2x2 − 2c1_Za x2 − 2a x3_Z+ c21x

2 + 2c1x3 + a2x2 + x4 − e_Zx2 + 2ax_Z− 2c1x− 2x2 + 1
)
+ c1x+ x2 − 1

x

Verification of solutions
y

=
−axRootOf

(
_Z2a2x2 − 2c1_Za x2 − 2a x3_Z+ c21x

2 + 2c1x3 + a2x2 + x4 − e_Zx2 + 2ax_Z− 2c1x− 2x2 + 1
)
+ c1x+ x2 − 1

x

Verified OK.

24.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = a2x2 + y2x2 + a2 + y2

x2 (a2 + 2ya+ y2)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 942: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2

x2+1
dx

Which results in

S = x− 1
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a2x2 + y2x2 + a2 + y2

x2 (a2 + 2ya+ y2)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1 + 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (a+ y)2

a2 + y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (a+R)2

R2 + a2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + a ln
(
R2 + a2

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x− 1
x
= y + ln

(
y2 + a2

)
a+ c1

Which simplifies to

x− 1
x
= y + ln

(
y2 + a2

)
a+ c1

Summary
The solution(s) found are the following

(1)x− 1
x
= y + ln

(
y2 + a2

)
a+ c1

Verification of solutions

x− 1
x
= y + ln

(
y2 + a2

)
a+ c1

Verified OK.

24.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
(a+ y)2

a2 + y2

)
dy =

(
x2 + 1
x2

)
dx

(
−x2 + 1

x2

)
dx+

(
(a+ y)2

a2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + 1
x2

N(x, y) = (a+ y)2

a2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 + 1

x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
(a+ y)2

a2 + y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + 1

x2 dx

(3)φ = −x+ 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= (a+y)2
a2+y2

. Therefore equation (4) becomes

(5)(a+ y)2

a2 + y2
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = (a+ y)2

a2 + y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ((a+ y)2

a2 + y2

)
dy

f(y) = y + a ln
(
a2 + y2

)
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x+ 1
x
+ y + a ln

(
a2 + y2

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ 1
x
+ y + a ln

(
a2 + y2

)
Summary
The solution(s) found are the following

(1)−x+ 1
x
+ y + ln

(
y2 + a2

)
a = c1

Verification of solutions

−x+ 1
x
+ y + ln

(
y2 + a2

)
a = c1

Verified OK.

24.5.4 Maple step by step solution

Let’s solve
x2(y + a)2 y′ − (x2 + 1) (y2 + a2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y+a)2
y2+a2

= x2+1
x2
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• Integrate both sides with respect to x∫ y′(y+a)2
y2+a2

dx =
∫

x2+1
x2 dx+ c1

• Evaluate integral
y + ln (y2 + a2) a = x− 1

x
+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 92� �
dsolve(x^2*(a+y(x))^2*diff(y(x),x) = (x^2+1)*(y(x)^2+a^2),y(x), singsol=all)� �
y(x)

=
−axRootOf

(
_Z2a2x2 − 2c1_Za x2 − 2_Za x3 + c21x

2 + 2c1x3 + x2a2 + x4 − x2e_Z + 2ax_Z− 2c1x− 2x2 + 1
)
+ c1x+ x2 − 1

x

3 Solution by Mathematica
Time used: 0.504 (sec). Leaf size: 48� �
DSolve[x^2 (a+y[x])^2 y'[x]==(1+x^2)(a^2+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
a log

(
#12 + a2

)
+#1&

] [
x− 1

x
+ c1

]
y(x) → −ia
y(x) → ia
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24.6 problem 668
24.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6727
24.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6729
24.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6733
24.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6737

Internal problem ID [3915]
Internal file name [OUTPUT/3408_Sunday_June_05_2022_09_17_09_AM_45300703/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 668.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

) (
y2 + 1

)
y′ + 2xy

(
1− y2

)
= 0

24.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(2y3 − 2y)
(x2 + 1) (y2 + 1)

Where f(x) = x
x2+1 and g(y) = 2y3−2y

y2+1 . Integrating both sides gives

1
2y3−2y
y2+1

dy = x

x2 + 1 dx

∫ 1
2y3−2y
y2+1

dy =
∫

x

x2 + 1 dx

6727



ln (y + 1)
2 + ln (y − 1)

2 − ln (y)
2 = ln (x2 + 1)

2 + c1

The above can be written as(
1
2

)
(ln (y + 1) + ln (y − 1)− ln (y)) = ln (x2 + 1)

2 + 2c1

ln (y + 1) + ln (y − 1)− ln (y) = (2)
(
ln (x2 + 1)

2 + 2c1
)

= ln
(
x2 + 1

)
+ 4c1

Raising both side to exponential gives

eln(y+1)+ln(y−1)−ln(y) = e2c1+ln
(
x2+1

)

Which simplifies to

y2 − 1
y

= 2c1
(
x2 + 1

)
= c2

(
x2 + 1

)
The solution is

y2 − 1
y

= c2
(
x2 + 1

)
Summary
The solution(s) found are the following

(1)y2 − 1
y

= c2
(
x2 + 1

)

6728



Figure 1058: Slope field plot

Verification of solutions

y2 − 1
y

= c2
(
x2 + 1

)
Verified OK.

24.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy(y2 − 1)
y2x2 + x2 + y2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 945: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2 + 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2+1
x

dx

Which results in

S = ln (x2 + 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy(y2 − 1)
y2x2 + x2 + y2 + 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

x2 + 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2 + 1

2y3 − 2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 + 1

2R3 − 2R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R + 1)
2 + ln (R− 1)

2 − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + 1)
2 = ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2 + c1

Which simplifies to

ln (x2 + 1)
2 = ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2xy
(
y2−1

)
y2x2+x2+y2+1

dS
dR

= R2+1
2R3−2R

R = y

S = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)ln (x2 + 1)
2 = ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2 + c1
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Figure 1059: Slope field plot

Verification of solutions

ln (x2 + 1)
2 = ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2 + c1

Verified OK.

24.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y2 + 1

2y3 − 2y

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
y2 + 1

2y3 − 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1

N(x, y) = y2 + 1
2y3 − 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y2 + 1

2y3 − 2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2+1
2y3−2y . Therefore equation (4) becomes

(5)y2 + 1
2y3 − 2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2 + 1
2y (y2 − 1)
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y2 + 1

2y3 − 2y

)
dy

f(y) = ln (y + 1)
2 + ln (y − 1)

2 − ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2

Summary
The solution(s) found are the following

(1)− ln (x2 + 1)
2 + ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2 = c1
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Figure 1060: Slope field plot

Verification of solutions

− ln (x2 + 1)
2 + ln (y + 1)

2 + ln (y − 1)
2 − ln (y)

2 = c1

Verified OK.

24.6.4 Maple step by step solution

Let’s solve
(x2 + 1) (y2 + 1) y′ + 2xy(1− y2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
y2+1

)
y(1−y2) = − 2x

x2+1

• Integrate both sides with respect to x∫ y′
(
y2+1

)
y(1−y2) dx =

∫
− 2x

x2+1dx+ c1

• Evaluate integral
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− ln (y + 1)− ln (y − 1) + ln (y) = − ln (x2 + 1) + c1

• Solve for y{
y = −−x2+

√
x4+4(ec1 )2+2x2+1−1

2 ec1 , y = x2+1+
√

x4+4(ec1 )2+2x2+1
2 ec1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 61� �
dsolve((x^2+1)*(1+y(x)^2)*diff(y(x),x)+2*x*y(x)*(1-y(x)^2) = 0,y(x), singsol=all)� �

y(x) = c1x
2

2 + c1
2 −

√
4 + (x2 + 1)2 c21

2

y(x) = c1x
2

2 + c1
2 +

√
4 + (x2 + 1)2 c21

2

3 Solution by Mathematica
Time used: 7.907 (sec). Leaf size: 98� �
DSolve[(1+x^2)(1+y[x]^2)y'[x]+2 x y[x](1-y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−ec1

(
x2 + 1

)
−
√
4 + e2c1 (x2 + 1)2

)
y(x) → 1

2

(√
4 + e2c1 (x2 + 1)2 − ec1

(
x2 + 1

))
y(x) → −1
y(x) → 0
y(x) → 1
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24.7 problem 669
24.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6739
24.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6741
24.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6745
24.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6749

Internal problem ID [3916]
Internal file name [OUTPUT/3409_Sunday_June_05_2022_09_17_14_AM_76452698/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 669.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

) (
y2 + 1

)
y′ + 2xy(1− y)2 = 0

24.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − 2xy(y − 1)2

(x2 + 1) (y2 + 1)

Where f(x) = − 2x
x2+1 and g(y) = y(y−1)2

y2+1 . Integrating both sides gives

1
y(y−1)2
y2+1

dy = − 2x
x2 + 1 dx

∫ 1
y(y−1)2
y2+1

dy =
∫

− 2x
x2 + 1 dx
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− 2
y − 1 + ln (y) = − ln

(
x2 + 1

)
+ c1

Which results in

y = eRootOf
(
− ln

(
x2+1

)
e_Z+c1e_Z−_Z e_Z+ln

(
x2+1

)
−c1+_Z+2

)

Summary
The solution(s) found are the following

(1)y = eRootOf
(
− ln

(
x2+1

)
e_Z+c1e_Z−_Z e_Z+ln

(
x2+1

)
−c1+_Z+2

)

Figure 1061: Slope field plot

Verification of solutions

y = eRootOf
(
− ln

(
x2+1

)
e_Z+c1e_Z−_Z e_Z+ln

(
x2+1

)
−c1+_Z+2

)

Verified OK.
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24.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − 2xy(y2 − 2y + 1)
y2x2 + x2 + y2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 948: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −x2 + 1
2x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x2+1
2x

dx

Which results in

S = − ln
(
x2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2xy(y2 − 2y + 1)
y2x2 + x2 + y2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − 2x
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2 + 1

y (y − 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 + 1

R (R− 1)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 2
R− 1 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
x2 + 1

)
= − 2

y − 1 + ln (y) + c1

Which simplifies to

− ln
(
x2 + 1

)
= − 2

y − 1 + ln (y) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2xy
(
y2−2y+1

)
y2x2+x2+y2+1

dS
dR

= R2+1
R(R−1)2

R = y

S = − ln
(
x2 + 1

)

Summary
The solution(s) found are the following

(1)− ln
(
x2 + 1

)
= − 2

y − 1 + ln (y) + c1
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Figure 1062: Slope field plot

Verification of solutions

− ln
(
x2 + 1

)
= − 2

y − 1 + ln (y) + c1

Verified OK.

24.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− y2 + 1
2y (y − 1)2

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
− y2 + 1
2y (y − 1)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1

N(x, y) = − y2 + 1
2y (y − 1)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
− y2 + 1
2y (y − 1)2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − y2+1
2y(y−1)2 . Therefore equation (4) becomes

(5)− y2 + 1
2y (y − 1)2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − y2 + 1
2y (y − 1)2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−y2 − 1

2y (y − 1)2
)
dy

f(y) = 1
y − 1 − ln (y)

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + 1

y − 1 − ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + 1

y − 1 − ln (y)
2

Summary
The solution(s) found are the following

(1)− ln (x2 + 1)
2 + 1

y − 1 − ln (y)
2 = c1
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Figure 1063: Slope field plot

Verification of solutions

− ln (x2 + 1)
2 + 1

y − 1 − ln (y)
2 = c1

Verified OK.

24.7.4 Maple step by step solution

Let’s solve
(x2 + 1) (y2 + 1) y′ + 2xy(1− y)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
y2+1

)
y(1−y)2 = − 2x

x2+1

• Integrate both sides with respect to x∫ y′
(
y2+1

)
y(1−y)2 dx =

∫
− 2x

x2+1dx+ c1
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• Evaluate integral
− 2

y−1 + ln (y) = − ln (x2 + 1) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 40� �
dsolve((x^2+1)*(1+y(x)^2)*diff(y(x),x)+2*x*y(x)*(1-y(x))^2 = 0,y(x), singsol=all)� �

y(x) = eRootOf
(
ln
(
x2+1

)
e_Z+2c1e_Z+_Z e_Z−ln

(
x2+1

)
−2c1−_Z−2

)

3 Solution by Mathematica
Time used: 0.324 (sec). Leaf size: 40� �
DSolve[(1+x^2)(1+y[x]^2)y'[x]+2 x y[x](1-y[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
log(#1)− 2

#1− 1&
] [

− log
(
x2 + 1

)
+ c1

]
y(x) → 0
y(x) → 1
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24.8 problem 670
24.8.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6751
24.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6754

Internal problem ID [3917]
Internal file name [OUTPUT/3410_Sunday_June_05_2022_09_17_19_AM_75910577/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 670.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

(
1− x3 + 6y2x2) y′ − (6 + 3yx− 4y3

)
x = 0

24.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

6y2x2 − x3 + 1
)
dy =

(
x
(
−4y3 + 3xy + 6

))
dx(

−x
(
−4y3 + 3xy + 6

))
dx+

(
6y2x2 − x3 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
−4y3 + 3xy + 6

)
N(x, y) = 6y2x2 − x3 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x
(
−4y3 + 3xy + 6

))
= −3x

(
−4y2 + x

)
And

∂N

∂x
= ∂

∂x

(
6y2x2 − x3 + 1

)
= 12x y2 − 3x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x
(
−4y3 + 3xy + 6

)
dx

(3)φ = 2y3x2 − x3y − 3x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 6y2x2 − x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= 6y2x2 − x3 + 1. Therefore equation (4) becomes

(5)6y2x2 − x3 + 1 = 6y2x2 − x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 2y3x2 − x3y − 3x2 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2y3x2 − x3y − 3x2 + y
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Summary
The solution(s) found are the following

(1)2y3x2 − yx3 − 3x2 + y = c1

Figure 1064: Slope field plot

Verification of solutions

2y3x2 − yx3 − 3x2 + y = c1

Verified OK.

24.8.2 Maple step by step solution

Let’s solve
(1− x3 + 6y2x2) y′ − (6 + 3yx− 4y3)x = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−x(−12y2 + 3x) = 12x y2 − 3x2

◦ Simplify
−3x(−4y2 + x) = 12x y2 − 3x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
−x(−4y3 + 3xy + 6) dx+ f1(y)

• Evaluate integral

F (x, y) = −x3y −
(
−4y3+6

)
x2

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
6y2x2 − x3 + 1 = −x3 + 6y2x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 1

• Solve for f1(y)
f1(y) = y

• Substitute f1(y) into equation for F (x, y)

F (x, y) = −x3y −
(
−4y3+6

)
x2

2 + y

• Substitute F (x, y) into the solution of the ODE

−x3y −
(
−4y3+6

)
x2

2 + y = c1

• Solve for y
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y =

(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x2−6x3+2+54c1x
) 1

3

6x + x3−1

x

(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x2−6x3+2+54c1x
) 1

3
, y = −

(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x2−6x3+2+54c1x
) 1

3

12x − x3−1

2x
(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x2−6x3+2+54c1x
) 1

3
−

I
√
3


(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x
2−6x3+2+54c1x

) 1
3

6x − x3−1

x

(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x
2−6x3+2+54c1x

) 1
3


2 , y = −

(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x2−6x3+2+54c1x
) 1

3

12x − x3−1

2x
(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x2−6x3+2+54c1x
) 1

3
+

I
√
3


(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x
2−6x3+2+54c1x

) 1
3

6x − x3−1

x

(
162x3+6

√
3
√

−2x9+249x6+162c1x4+27c21x
2−6x3+2+54c1x

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 490� �
dsolve((1-x^3+6*x^2*y(x)^2)*diff(y(x),x) = (6+3*x*y(x)-4*y(x)^3)*x,y(x), singsol=all)� �
y(x)

=
6x3 +

(
162x3 + 6

√
3
√

−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x
) 2

3 − 6

6x
(
162x3 + 6

√
3
√

−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x
) 1

3

y(x)

=
6i
√
3x3 − i

(
162x3 + 6

√
3
√

−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x
) 2

3 √3− 6x3 − 6i
√
3−

(
162x3 + 6

√
3
√

−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x
) 2

3 + 6

12x
(
162x3 + 6

√
3
√

−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x
) 1

3

y(x) =

−
6i
√
3x3 − i

(
162x3 + 6

√
3
√

−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x
) 2

3 √3 + 6x3 − 6i
√
3 +

(
162x3 + 6

√
3
√

−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x
) 2

3 − 6

12x
(
162x3 + 6

√
3
√
−2x9 + 249x6 − 162c1x4 + 27c21x2 − 6x3 + 2− 54c1x

) 1
3
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3 Solution by Mathematica
Time used: 54.173 (sec). Leaf size: 424� �
DSolve[(1-x^3+6 x^2 y[x]^2)y'[x]==(6+3 x y[x]-4 y[x]^3)x,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

3
√
2(x3 − 1)

3

√
−324x6 + 108c1x4 +

√
−864x6 (x3 − 1)3 + (−324x6 + 108c1x4) 2

−

3

√
−324x6 + 108c1x4 +

√
−864x6 (x3 − 1)3 + (−324x6 + 108c1x4) 2

6 3
√
2x2

y(x)

→
(
1 + i

√
3
)
(x3 − 1)

22/3 3

√
−324x6 + 108c1x4 +

√
−864x6 (x3 − 1)3 + (−324x6 + 108c1x4) 2

+

(
1− i

√
3
) 3

√
−324x6 + 108c1x4 +

√
−864x6 (x3 − 1)3 + (−324x6 + 108c1x4) 2

12 3
√
2x2

y(x)

→
(
1− i

√
3
)
(x3 − 1)

22/3 3

√
−324x6 + 108c1x4 +

√
−864x6 (x3 − 1)3 + (−324x6 + 108c1x4) 2

+

(
1 + i

√
3
) 3

√
−324x6 + 108c1x4 +

√
−864x6 (x3 − 1)3 + (−324x6 + 108c1x4) 2

12 3
√
2x2
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24.9 problem 671
24.9.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6759
24.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6762

Internal problem ID [3918]
Internal file name [OUTPUT/3411_Sunday_June_05_2022_09_17_23_AM_2493680/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 671.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

x
(
3 + 5x− 12y2x+ 4x2y

)
y′ +

(
3 + 10x− 8y2x+ 6x2y

)
y = 0

24.9.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x
(
4x2y − 12x y2 + 5x+ 3

))
dy =

(
−y
(
6x2y − 8x y2 + 10x+ 3

))
dx(

y
(
6x2y − 8x y2 + 10x+ 3

))
dx+

(
x
(
4x2y − 12x y2 + 5x+ 3

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
6x2y − 8x y2 + 10x+ 3

)
N(x, y) = x

(
4x2y − 12x y2 + 5x+ 3

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
6x2y − 8x y2 + 10x+ 3

))
= 12x2y − 24x y2 + 10x+ 3

And
∂N

∂x
= ∂

∂x

(
x
(
4x2y − 12x y2 + 5x+ 3

))
= 12x2y − 24x y2 + 10x+ 3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y
(
6x2y − 8x y2 + 10x+ 3

)
dx

(3)φ = xy
(
2x2y − 4x y2 + 5x+ 3

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

(
2x2y − 4x y2 + 5x+ 3

)
+ xy

(
2x2 − 8xy

)
+ f ′(y)

= 4x3y +
(
−12y2 + 5

)
x2 + 3x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(4x2y − 12x y2 + 5x+ 3). Therefore equation (4)
becomes

(5)x
(
4x2y − 12x y2 + 5x+ 3

)
= 4x3y +

(
−12y2 + 5

)
x2 + 3x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy
(
2x2y − 4x y2 + 5x+ 3

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy
(
2x2y − 4x y2 + 5x+ 3

)
Summary
The solution(s) found are the following

(1)xy
(
2x2y − 4y2x+ 5x+ 3

)
= c1
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Figure 1065: Slope field plot

Verification of solutions

xy
(
2x2y − 4y2x+ 5x+ 3

)
= c1

Verified OK.

24.9.2 Maple step by step solution

Let’s solve
x(3 + 5x− 12y2x+ 4x2y) y′ + (3 + 10x− 8y2x+ 6x2y) y = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
6x2y − 8x y2 + 10x+ 3 + y(6x2 − 16xy) = 4x2y − 12x y2 + 5x+ 3 + x(8xy − 12y2 + 5)

◦ Simplify
12x2y − 24x y2 + 10x+ 3 = 12x2y − 24x y2 + 10x+ 3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
y(6x2y − 8x y2 + 10x+ 3) dx+ f1(y)

• Evaluate integral
F (x, y) = y(2x3y − 4y2x2 + 5x2 + 3x) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x(4x2y − 12x y2 + 5x+ 3) = 2x3y − 4y2x2 + 5x2 + 3x+ y(2x3 − 8x2y) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = x(4x2y − 12x y2 + 5x+ 3)− 2x3y + 4y2x2 − 5x2 − 3x− y(2x3 − 8x2y)

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = y(2x3y − 4y2x2 + 5x2 + 3x)

• Substitute F (x, y) into the solution of the ODE
y(2x3y − 4y2x2 + 5x2 + 3x) = c1

• Solve for y
y =

((
8x5+180x3+12

√
3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3

12x + x3+15x+9

3
((

8x5+180x3+12
√
3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3
+ x

6 , y = −

((
8x5+180x3+12

√
3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3

24x − x3+15x+9

6
((

8x5+180x3+12
√
3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3
+ x

6 −

I
√
3


((

8x5+180x3+12
√

3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3

12x − x3+15x+9

3
((

8x5+180x3+12
√

3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3


2 , y = −

((
8x5+180x3+12

√
3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3

24x − x3+15x+9

6
((

8x5+180x3+12
√
3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3
+ x

6 +
I
√
3


((

8x5+180x3+12
√
3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3

12x − x3+15x+9

3
((

8x5+180x3+12
√

3
√

−8c1x5−25x6−30x5−180c1x3−509x4−108c1x2−900x3+108c21−540x2−108x+108x2−216c1
)
x

) 1
3


2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 739� �
dsolve(x*(3+5*x-12*x*y(x)^2+4*x^2*y(x))*diff(y(x),x)+(3+10*x-8*x*y(x)^2+6*x^2*y(x))*y(x) = 0,y(x), singsol=all)� �
y(x)

=
2 2

3

((
2x5 + 45x3 + 3

√
3
√

8c1x5 − 25x6 − 30x5 + 180c1x3 − 509x4 + 108c1x2 − 900x3 + 108c21 − 540x2 − 108x+ 27x2 + 54c1
)
x
) 1

3

12x

+ (x3 + 15x+ 9) 2 1
3

6
((

2x5 + 45x3 + 3
√
3
√

8c1x5 − 25x6 − 30x5 + 180c1x3 − 509x4 + 108c1x2 − 900x3 + 108c21 − 540x2 − 108x+ 27x2 + 54c1
)
x
) 1

3

+ x

6
y(x) =

−
−4x2

(
2x6 + 45x4 + 27x3 + 3x

√
3
√

−25x6 + 2 (−15 + 4c1)x5 − 509x4 + 180 (c1 − 5)x3 + 108 (c1 − 5)x2 − 108x+ 108c21 + 54c1x
) 1

3 − 2(x3 + 15x+ 9)x
(
i
√
3− 1

)
2 1

3 + 2 2
3
(
1 + i

√
3
) (

2x6 + 45x4 + 27x3 + 3x
√
3
√
−25x6 + 2 (−15 + 4c1)x5 − 509x4 + 180 (c1 − 5)x3 + 108 (c1 − 5)x2 − 108x+ 108c21 + 54c1x

) 2
3

24
(
2x6 + 45x4 + 27x3 + 3x

√
3
√

−25x6 + 2 (−15 + 4c1)x5 − 509x4 + 180 (c1 − 5)x3 + 108 (c1 − 5)x2 − 108x+ 108c21 + 54c1x
) 1

3
x

y(x)

=
4x2
(
2x6 + 45x4 + 27x3 + 3x

√
3
√

−25x6 + 2 (−15 + 4c1)x5 − 509x4 + 180 (c1 − 5)x3 + 108 (c1 − 5)x2 − 108x+ 108c21 + 54c1x
) 1

3 − 2(x3 + 15x+ 9)x
(
1 + i

√
3
)
2 1

3 + 2 2
3
(
i
√
3− 1

) (
2x6 + 45x4 + 27x3 + 3x

√
3
√

−25x6 + 2 (−15 + 4c1)x5 − 509x4 + 180 (c1 − 5)x3 + 108 (c1 − 5)x2 − 108x+ 108c21 + 54c1x
) 2

3

24
(
2x6 + 45x4 + 27x3 + 3x

√
3
√

−25x6 + 2 (−15 + 4c1)x5 − 509x4 + 180 (c1 − 5)x3 + 108 (c1 − 5)x2 − 108x+ 108c21 + 54c1x
) 1

3
x
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3 Solution by Mathematica
Time used: 60.181 (sec). Leaf size: 660� �
DSolve[x(3+5 x-12 x y[x]^2+4 x^2 y[x])y'[x]+(3+10 x-8 x y[x]^2+6 x^2 y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

3

√
−16x9 − 360x7 − 216x6 + 432c1x4 + 8

√
−4x9 (x3 + 15x+ 9)3 + (2x9 + 45x7 + 27x6 − 54c1x4) 2

12 3
√
2x2

− (x3 + 15x+ 9)x

3 22/3 3
√

−2x9 − 45x7 − 27x6 + 54c1x4 + 3
√
3
√
−x8 (25x6 + (30 + 8c1)x5 + 509x4 + 180(5 + c1)x3 + 108(5 + c1)x2 + 108x− 108c12)

+ x

6
y(x)

→

(
1− i

√
3
) 3

√
−16x9 − 360x7 − 216x6 + 432c1x4 + 8

√
−4x9 (x3 + 15x+ 9)3 + (2x9 + 45x7 + 27x6 − 54c1x4) 2

24 3
√
2x2

+
(
1 + i

√
3
)
(x3 + 15x+ 9)x

6 22/3 3
√

−2x9 − 45x7 − 27x6 + 54c1x4 + 3
√
3
√

−x8 (25x6 + (30 + 8c1)x5 + 509x4 + 180(5 + c1)x3 + 108(5 + c1)x2 + 108x− 108c12)

+ x

6
y(x)

→

(
1 + i

√
3
) 3

√
−16x9 − 360x7 − 216x6 + 432c1x4 + 8

√
−4x9 (x3 + 15x+ 9)3 + (2x9 + 45x7 + 27x6 − 54c1x4) 2

24 3
√
2x2

+
(
1− i

√
3
)
(x3 + 15x+ 9)x

6 22/3 3
√

−2x9 − 45x7 − 27x6 + 54c1x4 + 3
√
3
√

−x8 (25x6 + (30 + 8c1)x5 + 509x4 + 180(5 + c1)x3 + 108(5 + c1)x2 + 108x− 108c12)

+ x

6
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24.10 problem 672
24.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6766
24.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6768
24.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6773
24.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6776

Internal problem ID [3919]
Internal file name [OUTPUT/3412_Sunday_June_05_2022_09_17_28_AM_4154298/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 672.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x3(y2 + 1
)
y′ + 3x2y = 0

24.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − 3y
x (y2 + 1)

Where f(x) = − 3
x
and g(y) = y

y2+1 . Integrating both sides gives

1
y

y2+1
dy = −3

x
dx

∫ 1
y

y2+1
dy =

∫
−3
x
dx

y2

2 + ln (y) = −3 ln (x) + c1
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Which results in

y = 1√
1

LambertW
(

e2c1
x6

)

Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = 1√
1

LambertW
(

e2c1
x6

)
gives

y = 1√
1

LambertW
(

c21
x6

)

Summary
The solution(s) found are the following

(1)y = 1√
1

LambertW
(

c21
x6

)

Figure 1066: Slope field plot
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Verification of solutions

y = 1√
1

LambertW
(

c21
x6

)

Verified OK.

24.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − 3y
x (y2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 953: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x

3
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x
3
dx

Which results in

S = −3 ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 3y
x (y2 + 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −3
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2 + 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 + 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−3 ln (x) = y2

2 + ln (y) + c1

Which simplifies to

−3 ln (x) = y2

2 + ln (y) + c1

Which gives

y = 1√
1

LambertW
(

e−2c1
x6

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 3y
x(y2+1)

dS
dR

= R2+1
R

R = y

S = −3 ln (x)
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Summary
The solution(s) found are the following

(1)y = 1√
1

LambertW
(

e−2c1
x6

)

Figure 1067: Slope field plot

Verification of solutions

y = 1√
1

LambertW
(

e−2c1
x6

)

Verified OK.
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24.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2 + 1

3y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
−y2 + 1

3y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = −y2 + 1
3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
−y2 + 1

3y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= −y2+1
3y . Therefore equation (4) becomes

(5)−y2 + 1
3y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y2 + 1
3y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−y2 − 1

3y

)
dy

f(y) = −y2

6 − ln (y)
3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− y2

6 − ln (y)
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− y2

6 − ln (y)
3

The solution becomes

y = 1√
1

LambertW
(

e−6c1
x6

)

Summary
The solution(s) found are the following

(1)y = 1√
1

LambertW
(

e−6c1
x6

)
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Figure 1068: Slope field plot

Verification of solutions

y = 1√
1

LambertW
(

e−6c1
x6

)

Verified OK.

24.10.4 Maple step by step solution

Let’s solve
x3(y2 + 1) y′ + 3x2y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
y2+1

)
y

= − 3
x

• Integrate both sides with respect to x∫ y′
(
y2+1

)
y

dx =
∫
− 3

x
dx+ c1
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• Evaluate integral
y2

2 + ln (y) = −3 ln (x) + c1

• Solve for y

y = e−
LambertW

(
e2c1
x6

)
2 +c1

x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(x^3*(1+y(x)^2)*diff(y(x),x)+3*x^2*y(x) = 0,y(x), singsol=all)� �

y(x) = 1√
1

LambertW
(

c1
x6

)

3 Solution by Mathematica
Time used: 4.067 (sec). Leaf size: 46� �
DSolve[x^3(1+y[x]^2)y'[x]+3 x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
W

(
e2c1

x6

)

y(x) →

√
W

(
e2c1

x6

)
y(x) → 0
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24.11 problem 673
24.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6778
24.11.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6784

Internal problem ID [3920]
Internal file name [OUTPUT/3413_Sunday_June_05_2022_09_17_32_AM_17169801/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 673.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x(−yx+ 1)2 y′ +
(
1 + y2x2) y = 0

24.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(y2x2 + 1)
x (y2x2 − 2xy + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(y2x2 + 1) (b3 − a2)
x (y2x2 − 2xy + 1) − y2(y2x2 + 1)2 a3

x2 (y2x2 − 2xy + 1)2

−
(
− 2y3
y2x2 − 2xy + 1 + y(y2x2 + 1)

x2 (y2x2 − 2xy + 1)

+ y(y2x2 + 1) (2x y2 − 2y)
x (y2x2 − 2xy + 1)2

)
(xa2 + ya3 + a1)−

(
− y2x2 + 1
x (y2x2 − 2xy + 1)

− 2y2x
y2x2 − 2xy + 1 + y(y2x2 + 1) (2x2y − 2x)

x (y2x2 − 2xy + 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 8x5y3b2 − 2x4y4a2 − 2x4y4b3 − 4x4y3b1 + 8x4y2b2 − 4x2y4a3 + 2x3y2b1 − 2x2y3a1 − 4x3yb2 + 2x2y2a2 + 2x2y2b3 + 4x y3a3 + 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1

(y2x2 − 2xy + 1)2 x2

= 0

Setting the numerator to zero gives

(6E)2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 8x5y3b2 − 2x4y4a2 − 2x4y4b3
− 4x4y3b1 + 8x4y2b2 − 4x2y4a3 + 2x3y2b1 − 2x2y3a1 − 4x3yb2 + 2x2y2a2
+ 2x2y2b3 + 4x y3a3 + 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v41v62 + 2b2v61v42 − a1v
4
1v

5
2 + b1v

5
1v

4
2 − 2a2v41v42 − 8b2v51v32 − 2b3v41v42

− 4b1v41v32 − 4a3v21v42 + 8b2v41v22 − 2a1v21v32 + 2b1v31v22 + 2a2v21v22 + 4a3v1v32
− 4b2v31v2 + 2b3v21v22 + 4a1v1v22 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v61v42 + b1v
5
1v

4
2 − 8b2v51v32 − 2a3v41v62 − a1v

4
1v

5
2 + (−2a2 − 2b3) v41v42

− 4b1v41v32 + 8b2v41v22 + 2b1v31v22 − 4b2v31v2 − 4a3v21v42 − 2a1v21v32
+ (2a2 + 2b3) v21v22 + 2b2v21 + 4a3v1v32 + 4a1v1v22 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a1 = 0
−a1 = 0
4a1 = 0

−4a3 = 0
−2a3 = 0
4a3 = 0

−4b1 = 0
2b1 = 0

−8b2 = 0
−4b2 = 0
2b2 = 0
8b2 = 0

−2a2 − 2b3 = 0
2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(y2x2 + 1)
x (y2x2 − 2xy + 1)

)
(−x)

= − 2y2x
y2x2 − 2xy + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2y2x
y2x2−2xy+1

dy

Which results in

S = −xy

2 + 1
2xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(y2x2 + 1)
x (y2x2 − 2xy + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2x2 − 1
2x2y

Sy = −(xy − 1)2

2x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2x2 + 2xy ln (y) + 1
2xy = c1

Which simplifies to

−y2x2 + 2xy ln (y) + 1
2xy = c1

6782



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
(
y2x2+1

)
x(y2x2−2xy+1)

dS
dR

= 0

R = x

S = −y2x2 + 2 ln (y)xy + 1
2xy

Summary
The solution(s) found are the following

(1)−y2x2 + 2xy ln (y) + 1
2xy = c1
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Figure 1069: Slope field plot

Verification of solutions

−y2x2 + 2xy ln (y) + 1
2xy = c1

Verified OK.

24.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x(−xy + 1)2

)
dy =

(
−y
(
y2x2 + 1

))
dx(

y
(
y2x2 + 1

))
dx+

(
x(−xy + 1)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
y2x2 + 1

)
N(x, y) = x(−xy + 1)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
y2x2 + 1

))
= 3y2x2 + 1

And
∂N

∂x
= ∂

∂x

(
x(−xy + 1)2

)
= 3y2x2 − 4xy + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (xy − 1)2
((
3y2x2 + 1

)
−
(
(−xy + 1)2 − 2x(−xy + 1) y

))
= 4y

(xy − 1)2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (y2x2 + 1)
((
(−xy + 1)2 − 2x(−xy + 1) y

)
−
(
3y2x2 + 1

))
= − 4x

y2x2 + 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

=
(
(−xy + 1)2 − 2x(−xy + 1) y

)
− (3y2x2 + 1)

x (y (y2x2 + 1))− y
(
x (−xy + 1)2

)
= − 2

xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
y
(
y2x2 + 1

))
= y2x2 + 1

x2y

And

N = µN

= 1
y2x2

(
x(−xy + 1)2

)
= (xy − 1)2

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y2x2 + 1
x2y

)
+
(
(xy − 1)2

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2x2 + 1

x2y
dx

(3)φ = y2x2 − 1
xy

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x− y2x2 − 1

x y2
+ f ′(y)

= y2x2 + 1
x y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= (xy−1)2
x y2

. Therefore equation (4) becomes

(5)(xy − 1)2

x y2
= y2x2 + 1

x y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−2
y

)
dy

f(y) = −2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y2x2 − 1
xy

− 2 ln (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y2x2 − 1

xy
− 2 ln (y)

Summary
The solution(s) found are the following

(1)y2x2 − 1
xy

− 2 ln (y) = c1

Figure 1070: Slope field plot

Verification of solutions

y2x2 − 1
xy

− 2 ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 34� �
dsolve(x*(1-x*y(x))^2*diff(y(x),x)+(1+x^2*y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) = eRootOf
(
−e2_Z−2 e_Z ln(x)+2c1e_Z+2_Z e_Z+1

)
x

3 Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 25� �
DSolve[x(1-x y[x])^2 y'[x]+(1+x^2 y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
xy(x)− 1

xy(x) − 2 log(y(x)) = c1, y(x)
]
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24.12 problem 674
24.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6791
24.12.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6797

Internal problem ID [3921]
Internal file name [OUTPUT/3414_Sunday_June_05_2022_09_17_37_AM_16044341/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 674.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
1− y2x4) y′ − y3x3 = 0

24.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x3y3

x4y2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
x3y3(b3 − a2)
x4y2 − 1 − x6y6a3

(x4y2 − 1)2

−
(
− 3x2y3

x4y2 − 1 + 4x6y5

(x4y2 − 1)2
)
(xa2 + ya3 + a1)

−
(
− 3x3y2

x4y2 − 1 + 2x7y4

(x4y2 − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x8y4b2 − 2x6y6a3 + x7y4b1 − x6y5a1 − 5x4y2b2 − 4x3y3a2 − 2x3y3b3 − 3x2y4a3 − 3x3y2b1 − 3x2y3a1 + b2

(x4y2 − 1)2
= 0

Setting the numerator to zero gives

(6E)2x8y4b2 − 2x6y6a3 + x7y4b1 − x6y5a1 − 5x4y2b2 − 4x3y3a2
− 2x3y3b3 − 3x2y4a3 − 3x3y2b1 − 3x2y3a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v61v62 + 2b2v81v42 − a1v
6
1v

5
2 + b1v

7
1v

4
2 − 4a2v31v32 − 3a3v21v42

− 5b2v41v22 − 2b3v31v32 − 3a1v21v32 − 3b1v31v22 + b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v81v42 + b1v
7
1v

4
2 − 2a3v61v62 − a1v

6
1v

5
2 − 5b2v41v22

+ (−4a2 − 2b3) v31v32 − 3b1v31v22 − 3a3v21v42 − 3a1v21v32 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−3a1 = 0
−a1 = 0
−3a3 = 0
−2a3 = 0
−3b1 = 0
−5b2 = 0
2b2 = 0

−4a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
− x3y3

x4y2 − 1

)
(x)

= −x4y3 + 2y
x4y2 − 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4y3+2y
x4y2−1

dy

Which results in

S = − ln (x4y2 − 2)
4 − ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x3y3

x4y2 − 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x3y2

x4y2 − 2

Sy =
−x4y2 + 1
y (x4y2 − 2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y2x4 − 2)
4 − ln (y)

2 = c1

Which simplifies to

− ln (y2x4 − 2)
4 − ln (y)

2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x3y3

x4y2−1
dS
dR

= 0

R = x

S = − ln (x4y2 − 2)
4 − ln (y)

2

Summary
The solution(s) found are the following

(1)− ln (y2x4 − 2)
4 − ln (y)

2 = c1
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Figure 1071: Slope field plot

Verification of solutions

− ln (y2x4 − 2)
4 − ln (y)

2 = c1

Verified OK.

24.12.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x4y2 + 1

)
dy =

(
x3y3

)
dx(

−x3y3
)
dx+

(
−x4y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3y3

N(x, y) = −x4y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3y3

)
= −3x3y2

And
∂N

∂x
= ∂

∂x

(
−x4y2 + 1

)
= −4x3y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−x4y2 + 1
((
−3x3y2

)
−
(
−4x3y2

))
= − x3y2

x4y2 − 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

x3y3
((
−4x3y2

)
−
(
−3x3y2

))
= 1

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 1

y
dy

The result of integrating gives

µ = eln(y)

= y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y
(
−x3y3

)
= −x3y4

And

N = µN

= y
(
−x4y2 + 1

)
= −x4y3 + y
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−x3y4
)
+
(
−x4y3 + y

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3y4 dx

(3)φ = −x4y4

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x4y3 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x4y3 + y. Therefore equation (4) becomes

(5)−x4y3 + y = −x4y3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
4x

4y4 + 1
2y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
4x

4y4 + 1
2y

2

Summary
The solution(s) found are the following

(1)−y4x4

4 + y2

2 = c1

Figure 1072: Slope field plot

Verification of solutions

−y4x4

4 + y2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.64 (sec). Leaf size: 157� �
dsolve((1-x^4*y(x)^2)*diff(y(x),x) = x^3*y(x)^3,y(x), singsol=all)� �

y(x) =

√
−c1 −

√
c1 (x4 + c1)

(
c1 −

√
c1 (x4 + c1)

)
c1x4

y(x) =

√
−c1 +

√
c1 (x4 + c1)

(
c1 +

√
c1 (x4 + c1)

)
c1x4

y(x) =

√
−c1 −

√
c1 (x4 + c1)

(
−c1 +

√
c1 (x4 + c1)

)
c1x4

y(x) =

(
−c1 −

√
c1 (x4 + c1)

)√
−c1 +

√
c1 (x4 + c1)

c1x4
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3 Solution by Mathematica
Time used: 11.613 (sec). Leaf size: 122� �
DSolve[(1-x^4 y[x]^2)y'[x]==x^3 y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
1−

√
1 + 4c1x4

x4

y(x) →

√
1−

√
1 + 4c1x4

x4

y(x) → −

√
1 +

√
1 + 4c1x4

x4

y(x) →

√
1 +

√
1 + 4c1x4

x4

y(x) → 0
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24.13 problem 675
24.13.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 6804
24.13.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6806
24.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6809

Internal problem ID [3922]
Internal file name [OUTPUT/3415_Sunday_June_05_2022_09_17_42_AM_28322499/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 675.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational]

(
3x− y3

)
y′ + 3y = x2

24.13.1 Solving as differentialType ode

Writing the ode as

y′ = x2 − 3y
3x− y3

(1)

Which becomes (
−y3

)
dy = (−3x) dy +

(
x2 − 3y

)
dx (2)

But the RHS is complete differential because

(−3x) dy +
(
x2 − 3y

)
dx = d

(
1
3x

3 − 3xy
)

Hence (2) becomes

(
−y3

)
dy = d

(
1
3x

3 − 3xy
)
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Integrating both sides gives gives the solution as

−y4

4 = x3

3 − 3yx+ c1

Summary
The solution(s) found are the following

(1)−y4

4 = x3

3 − 3yx+ c1

Figure 1073: Slope field plot

Verification of solutions

−y4

4 = x3

3 − 3yx+ c1

Verified OK.
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24.13.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y3 + 3x

)
dy =

(
x2 − 3y

)
dx(

−x2 + 3y
)
dx+

(
−y3 + 3x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + 3y
N(x, y) = −y3 + 3x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 + 3y

)
= 3

And
∂N

∂x
= ∂

∂x

(
−y3 + 3x

)
= 3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + 3y dx

(3)φ = −1
3x

3 + 3xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y3 + 3x. Therefore equation (4) becomes

(5)−y3 + 3x = 3x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y3

)
dy

f(y) = −y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
3x

3 + 3xy − 1
4y

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 + 3xy − 1
4y

4

Summary
The solution(s) found are the following

(1)−y4

4 − x3

3 + 3yx = c1
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Figure 1074: Slope field plot

Verification of solutions

−y4

4 − x3

3 + 3yx = c1

Verified OK.

24.13.3 Maple step by step solution

Let’s solve
(3x− y3) y′ + 3y = x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
3 = 3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x2 + 3y) dx+ f1(y)

• Evaluate integral
F (x, y) = −x3

3 + 3xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−y3 + 3x = 3x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −y3

• Solve for f1(y)

f1(y) = −y4

4

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

3x
3 + 3xy − 1

4y
4

• Substitute F (x, y) into the solution of the ODE
−1

3x
3 + 3xy − 1

4y
4 = c1

• Solve for y
y = RootOf

(
3_Z4 + 4x3 − 36_Zx+ 12c1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve((3*x-y(x)^3)*diff(y(x),x) = x^2-3*y(x),y(x), singsol=all)� �

−x3

3 + 3xy(x)− y(x)4

4 + c1 = 0
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3 Solution by Mathematica
Time used: 60.166 (sec). Leaf size: 1211� �
DSolve[(3 x-y[x]^3)y'[x]==x^2-3 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√√√√√ 4x3+
(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3

√
6

− 1
2

√√√√√√√√
− 12

√
6x√√√√√ 4x3+

(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3

− 2
3

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3 − 8 (x3 + 3c1)

3 3

√
243x2 − 1

432
√
11019960576x4 − 4 (144x3 + 432c1) 3

y(x)

→ 1
2

√√√√√√√√
− 12

√
6x√√√√√ 4x3+

(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√
11019960576x4 − 4 (144x3 + 432c1) 3

− 2
3

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3 − 8 (x3 + 3c1)

3 3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3

−

√√√√√ 4x3+
(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3

√
6

y(x) →

√√√√√ 4x3+
(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√
11019960576x4 − 4 (144x3 + 432c1) 3

√
6

− 1
2

√√√√√√√√
12
√
6x√√√√√ 4x3+

(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3

− 2
3

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3 − 8 (x3 + 3c1)

3 3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3

y(x) →

√√√√√ 4x3+
(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√
11019960576x4 − 4 (144x3 + 432c1) 3

√
6

+1
2

√√√√√√√√
12
√
6x√√√√√ 4x3+

(
243x2− 1

432
√

11019960576x4−4(144x3+432c1)3
)
2/3+12c1

3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3

− 2
3

3

√
243x2 − 1

432
√
11019960576x4 − 4 (144x3 + 432c1) 3 − 8 (x3 + 3c1)

3 3

√
243x2 − 1

432
√

11019960576x4 − 4 (144x3 + 432c1) 3
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24.14 problem 676
24.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6813
24.14.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6815
24.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6821

Internal problem ID [3923]
Internal file name [OUTPUT/3416_Sunday_June_05_2022_09_17_47_AM_64716012/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 676.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x3 − y3

)
y′ + x2y = 0

24.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x3 − u(x)3 x3) (u′(x)x+ u(x)) + x3u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u3 − 2)
(u3 − 1)x

Where f(x) = − 1
x
and g(u) = u

(
u3−2

)
u3−1 . Integrating both sides gives

1
u(u3−2)
u3−1

du = −1
x
dx
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∫ 1
u(u3−2)
u3−1

du =
∫

−1
x
dx

ln (u3 − 2)
6 + ln (u)

2 = − ln (x) + c2

Raising both side to exponential gives

e
ln
(
u3−2

)
6 + ln(u)

2 = e− ln(x)+c2

Which simplifies to (
u3 − 2

) 1
6
√
u = c3

x

The solution is (
u(x)3 − 2

) 1
6
√

u (x) = c3
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y3

x3 − 2
) 1

6
√

y

x
= c3

x(
y3 − 2x3

x3

) 1
6
√

y

x
= c3

x

Summary
The solution(s) found are the following

(1)
(
y3 − 2x3

x3

) 1
6
√

y

x
= c3

x
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Figure 1075: Slope field plot

Verification of solutions (
y3 − 2x3

x3

) 1
6
√

y

x
= c3

x

Verified OK.

24.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2y

−x3 + y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
x2y(b3 − a2)
−x3 + y3

− x4y2a3

(−x3 + y3)2

−
(

2xy
−x3 + y3

+ 3x4y

(−x3 + y3)2
)
(xa2 + ya3 + a1)

−
(

x2

−x3 + y3
− 3x2y3

(−x3 + y3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6b2 − 2x4y2a3 − 3x2y4a2 + 3x2y4b3 − 2x y5a3 + y6b2 + x5b1 − x4ya1 + 2x2y3b1 − 2x y4a1
(x3 − y3)2

= 0

Setting the numerator to zero gives

(6E)2x6b2 − 2x4y2a3 − 3x2y4a2 + 3x2y4b3 − 2x y5a3
+ y6b2 + x5b1 − x4ya1 + 2x2y3b1 − 2x y4a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−3a2v21v42 − 2a3v41v22 − 2a3v1v52 + 2b2v61 + b2v
6
2

+ 3b3v21v42 − a1v
4
1v2 − 2a1v1v42 + b1v

5
1 + 2b1v21v32 = 0

6816



Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v61 + b1v
5
1 − 2a3v41v22 − a1v

4
1v2 + (−3a2 + 3b3) v21v42

+ 2b1v21v32 − 2a3v1v52 − 2a1v1v42 + b2v
6
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−2a1 = 0
−a1 = 0
−2a3 = 0
2b1 = 0
2b2 = 0

−3a2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

x2y

−x3 + y3

)
(x)

= 2x3y − y4

x3 − y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x3y−y4

x3−y3

dy

Which results in

S = ln (−2x3 + y3)
6 + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2y

−x3 + y3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2

2x3 − y3

Sy =
x3 − y3

y (2x3 − y3)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y3 − 2x3)
6 + ln (y)

2 = c1

Which simplifies to

ln (y3 − 2x3)
6 + ln (y)

2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2y
−x3+y3

dS
dR

= 0

R = x

S = ln (−2x3 + y3)
6 + ln (y)

2

Summary
The solution(s) found are the following

(1)ln (y3 − 2x3)
6 + ln (y)

2 = c1
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Figure 1076: Slope field plot

Verification of solutions

ln (y3 − 2x3)
6 + ln (y)

2 = c1

Verified OK.

24.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3 − y3

)
dy =

(
−x2y

)
dx(

x2y
)
dx+

(
x3 − y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2y

N(x, y) = x3 − y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2y
)

= x2

And
∂N

∂x
= ∂

∂x

(
x3 − y3

)
= 3x2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x3 − y3
((
x2)− (3x2))

= − 2x2

x3 − y3

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

x2y

((
3x2)− (x2))

= 2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 2

y
dy

The result of integrating gives

µ = e2 ln(y)

= y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y2
(
x2y
)

= y3x2

And

N = µN

= y2
(
x3 − y3

)
= x3y2 − y5
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

y3x2)+ (x3y2 − y5
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y3x2 dx

(3)φ = x3y3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3y2 − y5. Therefore equation (4) becomes

(5)x3y2 − y5 = x3y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y5

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y5

)
dy

f(y) = −y6

6 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
3x

3y3 − 1
6y

6 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
3x

3y3 − 1
6y

6

Summary
The solution(s) found are the following

(1)y3x3

3 − y6

6 = c1

Figure 1077: Slope field plot

Verification of solutions

y3x3

3 − y6

6 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.844 (sec). Leaf size: 389� �
dsolve((x^3-y(x)^3)*diff(y(x),x)+x^2*y(x) = 0,y(x), singsol=all)� �

y(x) = x(
−
(
c1x3 +

√
c21x

6 + 1
)
x3c1

) 1
3

y(x) = x(
c1
(
−c1x3 +

√
c21x

6 + 1
)
x3
) 1

3

y(x) = 4x(
1 + i

√
3
)2 (−(c1x3 +

√
c21x

6 + 1
)
x3c1

) 1
3

y(x) = 4x(
c1
(
−c1x3 +

√
c21x

6 + 1
)
x3
) 1

3 (1 + i
√
3
)2

y(x) = 4x(
i
√
3− 1

)2 (−(c1x3 +
√

c21x
6 + 1

)
x3c1

) 1
3

y(x) = 4x(
c1
(
−c1x3 +

√
c21x

6 + 1
)
x3
) 1

3 (
i
√
3− 1

)2
y(x) = 4x(

i
√
3− 1

)2 (−(c1x3 +
√

c21x
6 + 1

)
x3c1

) 1
3

y(x) = 4x(
c1
(
−c1x3 +

√
c21x

6 + 1
)
x3
) 1

3 (
i
√
3− 1

)2
y(x) = 4x(

1 + i
√
3
)2 (−(c1x3 +

√
c21x

6 + 1
)
x3c1

) 1
3

y(x) = 4x(
c1
(
−c1x3 +

√
c21x

6 + 1
)
x3
) 1

3 (1 + i
√
3
)2
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3 Solution by Mathematica
Time used: 6.658 (sec). Leaf size: 352� �
DSolve[(x^3-y[x]^3)y'[x]+x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
√

x3 −
√
x6 − e6c1

y(x) → − 3
√
−1 3
√

x3 −
√
x6 − e6c1

y(x) → (−1)2/3 3
√

x3 −
√
x6 − e6c1

y(x) → 3
√

x3 +
√
x6 − e6c1

y(x) → − 3
√
−1 3
√

x3 +
√
x6 − e6c1

y(x) → (−1)2/3 3
√

x3 +
√
x6 − e6c1

y(x) → 0

y(x) → 3
√

x3 −
√
x6

y(x) → − 3
√
−1 3
√

x3 −
√
x6

y(x) → (−1)2/3 3
√

x3 −
√
x6

y(x) → 3
√√

x6 + x3

y(x) → − 3
√
−1 3
√√

x6 + x3

y(x) → (−1)2/3 3
√√

x6 + x3
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24.15 problem 677
24.15.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6829
24.15.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6830
24.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6835
24.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6838

Internal problem ID [3924]
Internal file name [OUTPUT/3417_Sunday_June_05_2022_09_17_52_AM_74104899/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 677.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
x3 + y3

)
y′ + x2(ax+ 3y) = 0

24.15.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x3 + u(x)3 x3) (u′(x)x+ u(x)) + x2(ax+ 3u(x)x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u4 + a+ 4u
(u3 + 1)x
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Where f(x) = − 1
x
and g(u) = u4+a+4u

u3+1 . Integrating both sides gives

1
u4+a+4u

u3+1
du = −1

x
dx

∫ 1
u4+a+4u

u3+1
du =

∫
−1
x
dx

ln (u4 + a+ 4u)
4 = − ln (x) + c2

Raising both side to exponential gives(
u4 + a+ 4u

) 1
4 = e− ln(x)+c2

Which simplifies to (
u4 + a+ 4u

) 1
4 = c3

x

Therefore the solution y is

y = xu

= RootOf
(
−c43e4c2 + a x4 + 4x3_Z+ _Z4)

Summary
The solution(s) found are the following

(1)y = RootOf
(
−c43e4c2 + a x4 + 4x3_Z+ _Z4)

Verification of solutions

y = RootOf
(
−c43e4c2 + a x4 + 4x3_Z+ _Z4)

Verified OK.

24.15.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2(ax+ 3y)
x3 + y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
x2(ax+ 3y) (b3 − a2)

x3 + y3
− x4(ax+ 3y)2 a3

(x3 + y3)2

−
(
−2x(ax+ 3y)

x3 + y3
− x2a

x3 + y3
+ 3x4(ax+ 3y)

(x3 + y3)2
)
(xa2 + ya3 + a1)

−
(
− 3x2

x3 + y3
+ 3x2(ax+ 3y) y2

(x3 + y3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x6a3 − a x6a2 + a x6b3 + 6a x5ya3 + 3a x4y2b2 − 4a x3y3a2 + 4a x3y3b3 − 3a x2y4a3 + 3a x3y2b1 − 3a x2y3a1 − 4x6b2 + 12x4y2a3 + 4x3y3b2 − 9x2y4a2 + 9x2y4b3 − 6x y5a3 − y6b2 − 3x5b1 + 3x4ya1 + 6x2y3b1 − 6x y4a1
(x3 + y3)2

= 0

Setting the numerator to zero gives

(6E)−a2x6a3 + a x6a2 − a x6b3 − 6a x5ya3 − 3a x4y2b2 + 4a x3y3a2 − 4a x3y3b3
+3a x2y4a3− 3a x3y2b1+3a x2y3a1+4x6b2− 12x4y2a3− 4x3y3b2+9x2y4a2
− 9x2y4b3 + 6x y5a3 + y6b2 + 3x5b1 − 3x4ya1 − 6x2y3b1 + 6x y4a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−a2a3v
6
1 + aa2v

6
1 + 4aa2v31v32 − 6aa3v51v2 + 3aa3v21v42 − 3ab2v41v22 − ab3v

6
1

− 4ab3v31v32 + 3aa1v21v32 − 3ab1v31v22 + 9a2v21v42 − 12a3v41v22 + 6a3v1v52 + 4b2v61
− 4b2v31v32 + b2v

6
2 − 9b3v21v42 − 3a1v41v2 + 6a1v1v42 + 3b1v51 − 6b1v21v32 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(
−a2a3 + aa2 − ab3 + 4b2

)
v61 − 6aa3v51v2 + 3b1v51 + (−3ab2 − 12a3) v41v22

− 3a1v41v2 + (4aa2 − 4ab3 − 4b2) v31v32 − 3ab1v31v22 + (3aa3 + 9a2 − 9b3) v21v42
+ (3aa1 − 6b1) v21v32 + 6a3v1v52 + 6a1v1v42 + b2v

6
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−3a1 = 0
6a1 = 0
6a3 = 0
3b1 = 0

−6aa3 = 0
−3ab1 = 0

3aa1 − 6b1 = 0
−3ab2 − 12a3 = 0

3aa3 + 9a2 − 9b3 = 0
4aa2 − 4ab3 − 4b2 = 0

−a2a3 + aa2 − ab3 + 4b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x2(ax+ 3y)

x3 + y3

)
(x)

= a x4 + 4x3y + y4

x3 + y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a x4+4x3y+y4

x3+y3

dy

Which results in

S = ln (a x4 + 4x3y + y4)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2(ax+ 3y)
x3 + y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2(ax+ 3y)
a x4 + 4x3y + y4

Sy =
x3 + y3

a x4 + 4x3y + y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (a x4 + y4 + 4yx3)
4 = c1

Which simplifies to

ln (a x4 + y4 + 4yx3)
4 = c1

Summary
The solution(s) found are the following

(1)ln (a x4 + y4 + 4yx3)
4 = c1
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Verification of solutions

ln (a x4 + y4 + 4yx3)
4 = c1

Verified OK.

24.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x3 + y3
)
dy =

(
−x2(ax+ 3y)

)
dx(

x2(ax+ 3y)
)
dx+

(
x3 + y3

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = x2(ax+ 3y)
N(x, y) = x3 + y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2(ax+ 3y)

)
= 3x2

And
∂N

∂x
= ∂

∂x

(
x3 + y3

)
= 3x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2(ax+ 3y) dx

(3)φ = 1
4a x

4 + x3y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 + f ′(y)
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But equation (2) says that ∂φ
∂y

= x3 + y3. Therefore equation (4) becomes

(5)x3 + y3 = x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y3
)
dy

f(y) = y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
4a x

4 + x3y + 1
4y

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
4a x

4 + x3y + 1
4y

4

Summary
The solution(s) found are the following

(1)a x4

4 + yx3 + y4

4 = c1

Verification of solutions

a x4

4 + yx3 + y4

4 = c1

Verified OK.
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24.15.4 Maple step by step solution

Let’s solve
(x3 + y3) y′ + x2(ax+ 3y) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
3x2 = 3x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
x2(ax+ 3y) dx+ f1(y)

• Evaluate integral
F (x, y) = a x4

4 + x3y + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x3 + y3 = x3 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y3

• Solve for f1(y)

f1(y) = y4

4

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 1
4a x

4 + x3y + 1
4y

4

• Substitute F (x, y) into the solution of the ODE
1
4a x

4 + x3y + 1
4y

4 = c1

• Solve for y
y = RootOf

(
a x4 + _Z4 + 4x3_Z− 4c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 29� �
dsolve((x^3+y(x)^3)*diff(y(x),x)+x^2*(a*x+3*y(x)) = 0,y(x), singsol=all)� �

y(x) =
RootOf

(
a x4c

4
3
1 + 4x3c1_Z+ _Z4 − 1

)
c

1
3
1
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3 Solution by Mathematica
Time used: 60.172 (sec). Leaf size: 1430� �
DSolve[(x^3+y[x]^3)y'[x]+x^2(a x+3 y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

√√√√ 3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3
−

√√√√√√√− 3
√

9x6 +
√
3
√
27x12 + (−ax4 + e4c1) 3 +

3
√
3(−ax4+e4c1

)
3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3
− 6

√
2x3√√√√√√√

3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√
9x6 +

√
3
√

27x12 + (−ax4 + e4c1) 3

√
2 3
√
3

y(x)

→

√√√√ 3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3
+
√√√√√√√− 3

√
9x6 +

√
3
√
27x12 + (−ax4 + e4c1) 3 +

3
√
3(−ax4+e4c1

)
3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3
− 6

√
2x3√√√√√√√

3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3

√
2 3
√
3

y(x) →

−

√√√√ 3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3
+
√√√√√√√− 3

√
9x6 +

√
3
√
27x12 + (−ax4 + e4c1) 3 +

3
√
3(−ax4+e4c1

)
3
√
9x6 +

√
3
√

27x12 + (−ax4 + e4c1) 3
+ 6

√
2x3√√√√√√√

3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3

√
2 3
√
3

y(x)

→

√√√√√√√− 3
√

9x6 +
√
3
√

27x12 + (−ax4 + e4c1) 3 +
3
√
3(−ax4+e4c1

)
3
√
9x6 +

√
3
√

27x12 + (−ax4 + e4c1) 3
+ 6

√
2x3√√√√√√√

3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√

9x6 +
√
3
√
27x12 + (−ax4 + e4c1) 3

−

√√√√ 3
√
3ax4+

(
9x6+

√
3
√

27x12+
(
−ax4+e4c1

)
3
)
2/3−

3
√
3e4c1

3
√

9x6 +
√
3
√
27x12 + (−ax4 + e4c1) 3

√
2 3
√
3
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24.16 problem 678
24.16.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6841
24.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6845

Internal problem ID [3925]
Internal file name [OUTPUT/3418_Sunday_June_05_2022_09_17_56_AM_6229893/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 678.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

(
x− x2y − y3

)
y′ + y − y2x = x3

24.16.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−x2y − y3 + x
)
dy =

(
x3 + x y2 − y

)
dx(

−x3 − x y2 + y
)
dx+

(
−x2y − y3 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − x y2 + y

N(x, y) = −x2y − y3 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 − x y2 + y

)
= −2xy + 1

And
∂N

∂x
= ∂

∂x

(
−x2y − y3 + x

)
= −2xy + 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − x y2 + y dx

(3)φ = −x(x3 + 2x y2 − 4y)
4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x(4xy − 4)

4 + f ′(y)

= −x(xy − 1) + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2y − y3 + x. Therefore equation (4) becomes

(5)−x2y − y3 + x = −x(xy − 1) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y3

)
dy

f(y) = −y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x(x3 + 2x y2 − 4y)
4 − y4

4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x3 + 2x y2 − 4y)
4 − y4

4

Summary
The solution(s) found are the following

(1)−x(x3 + 2y2x− 4y)
4 − y4

4 = c1

Figure 1078: Slope field plot

Verification of solutions

−x(x3 + 2y2x− 4y)
4 − y4

4 = c1

Verified OK.
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24.16.2 Maple step by step solution

Let’s solve
(x− x2y − y3) y′ + y − y2x = x3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−2xy + 1 = −2xy + 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x3 − x y2 + y) dx+ f1(y)

• Evaluate integral

F (x, y) = −x4

4 − y2x2

2 + xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−x2y − y3 + x = −x2y + x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −y3

• Solve for f1(y)

f1(y) = −y4

4

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −1
4x

4 − 1
2y

2x2 + xy − 1
4y

4

• Substitute F (x, y) into the solution of the ODE
−1

4x
4 − 1

2y
2x2 + xy − 1

4y
4 = c1

• Solve for y
y = RootOf

(
_Z4 + 2x2_Z2 + x4 − 4_Zx+ 4c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve((x-x^2*y(x)-y(x)^3)*diff(y(x),x) = x^3-y(x)+x*y(x)^2,y(x), singsol=all)� �

−x4

4 − x2y(x)2

2 + xy(x)− y(x)4

4 + c1 = 0
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3 Solution by Mathematica
Time used: 60.188 (sec). Leaf size: 1807� �
DSolve[(x-x^2 y[x]-y[x]^3)y'[x]==x^3-y[x]+x y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

√√√√−2x2 + 3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)
3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13

√
6

− 1
2

√√√√√√√−8x2

3 − 4
√
6x√√√√−2x2 + 3

√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)
3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13

− 2
3

3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13 −

8 (x4 − 3c1)

3 3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13

y(x)

→ 1
2

√√√√√√√−8x2

3 − 4
√
6x√√√√−2x2 + 3

√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)

3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13

− 2
3

3
√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13 −

8 (x4 − 3c1)

3 3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13

−

√√√√−2x2 + 3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)

3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13

√
6

y(x)

→

√√√√−2x2 + 3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)

3
√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13
√
6

− 1
2

√√√√√√√−8x2

3 + 4
√
6x√√√√−2x2 + 3

√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)
3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13

− 2
3

3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13 −
8 (x4 − 3c1)

3 3
√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13

y(x)

→

√√√√−2x2 + 3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)

3
√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13
√
6

+1
2

√√√√√√√−8x2

3 + 4
√
6x√√√√−2x2 + 3

√
−8x6 + 9(3 + 4c1)x2 + 3

√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13 + 4(x4−3c1)

3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13

− 2
3

3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√

−16x8 + (27− 16c12 + 72c1)x4 + 64c13 −
8 (x4 − 3c1)

3 3
√

−8x6 + 9(3 + 4c1)x2 + 3
√
3
√
−16x8 + (27− 16c12 + 72c1)x4 + 64c13
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24.17 problem 679
24.17.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6848

Internal problem ID [3926]
Internal file name [OUTPUT/3419_Sunday_June_05_2022_09_18_00_AM_2965442/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 679.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection"

Maple gives the following as the ode type
[_rational]

(
x a2 + y

(
x2 − y2

))
y′ + x

(
x2 − y2

)
− ya2 = 0

24.17.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x a2 + y

(
x2 − y2

))
dy =

(
−
(
x2 − y2

)
x+ y a2

)
dx((

x2 − y2
)
x− y a2

)
dx+

(
x a2 + y

(
x2 − y2

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
x2 − y2

)
x− y a2

N(x, y) = x a2 + y
(
x2 − y2

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

((
x2 − y2

)
x− y a2

)
= −a2 − 2xy

And

∂N

∂x
= ∂

∂x

(
x a2 + y

(
x2 − y2

))
= a2 + 2xy

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2−y2

is an integrating factor.
Therefore by multiplying M = x(x2 − y2) − ya2 and N = x a2 + y(x2 − y2) by this
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integrating factor the ode becomes exact. The new M,N are

M = x(x2 − y2)− ya2

x2 − y2

N = x a2 + y(x2 − y2)
x2 − y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x a2 + y(x2 − y2)
x2 − y2

)
dy =

(
−(x2 − y2)x− y a2

x2 − y2

)
dx(

(x2 − y2)x− y a2

x2 − y2

)
dx+

(
x a2 + y(x2 − y2)

x2 − y2

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = (x2 − y2)x− y a2

x2 − y2

N(x, y) = x a2 + y(x2 − y2)
x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
(x2 − y2)x− y a2

x2 − y2

)
= −a2(x2 + y2)

(x2 − y2)2

And

∂N

∂x
= ∂

∂x

(
x a2 + y(x2 − y2)

x2 − y2

)
= −a2(x2 + y2)

(x2 − y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (x2 − y2)x− y a2

x2 − y2
dx

(3)φ = x2

2 − a2 ln (−y + x)
2 + a2 ln (y + x)

2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= a2

−2y + 2x + a2

2x+ 2y + f ′(y)

= x a2

x2 − y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x a2+y
(
x2−y2

)
x2−y2

. Therefore equation (4) becomes

(5)x a2 + y(x2 − y2)
x2 − y2

= x a2

x2 − y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2

2 − a2 ln (−y + x)
2 + a2 ln (y + x)

2 + y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2

2 − a2 ln (−y + x)
2 + a2 ln (y + x)

2 + y2

2

Summary
The solution(s) found are the following

(1)x2

2 − a2 ln (−y + x)
2 + a2 ln (y + x)

2 + y2

2 = c1
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Verification of solutions

x2

2 − a2 ln (−y + x)
2 + a2 ln (y + x)

2 + y2

2 = c1

Verified OK.
7 Solution by Maple� �
dsolve((a^2*x+y(x)*(x^2-y(x)^2))*diff(y(x),x)+x*(x^2-y(x)^2) = a^2*y(x),y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 48� �
DSolve[(a^2*x+y[x]*(x^2-y[x]^2))*y'[x]+x*(x^2-y[x]^2)==a^2*y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−1
2a

2 log(x− y(x)) + 1
2a

2 log(y(x) + x) + x2

2 + y(x)2
2 = c1, y(x)

]
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24.18 problem 680
24.18.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6854
24.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6857

Internal problem ID [3927]
Internal file name [OUTPUT/3420_Sunday_June_05_2022_09_18_05_AM_60899881/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 680.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

(
a+ x2 + y2

)
yy′ − x

(
a− x2 − y2

)
= 0

24.18.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore ((

x2 + y2 + a
)
y
)
dy =

(
x
(
−x2 − y2 + a

))
dx(

−x
(
−x2 − y2 + a

))
dx+

((
x2 + y2 + a

)
y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
−x2 − y2 + a

)
N(x, y) =

(
x2 + y2 + a

)
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x
(
−x2 − y2 + a

))
= 2xy

And
∂N

∂x
= ∂

∂x

((
x2 + y2 + a

)
y
)

= 2xy

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x
(
−x2 − y2 + a

)
dx

(3)φ = (−x2 − y2 + a)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

(
−x2 − y2 + a

)
y + f ′(y)

But equation (2) says that ∂φ
∂y

= (x2 + y2 + a) y. Therefore equation (4) becomes

(5)
(
x2 + y2 + a

)
y = −

(
−x2 − y2 + a

)
y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2ya

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2ya) dy

f(y) = a y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (−x2 − y2 + a)2

4 + a y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(−x2 − y2 + a)2

4 + a y2
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Summary
The solution(s) found are the following

(1)(a− x2 − y2)2

4 + ay2 = c1

Verification of solutions

(a− x2 − y2)2

4 + ay2 = c1

Verified OK.

24.18.2 Maple step by step solution

Let’s solve
(a+ x2 + y2) yy′ − x(a− x2 − y2) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2xy = 2xy

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
−x(−x2 − y2 + a) dx+ f1(y)

• Evaluate integral

F (x, y) =
(
−x2−y2+a

)2
4 + f1(y)

• Take derivative of F (x, y) with respect to y
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N(x, y) = ∂
∂y
F (x, y)

• Compute derivative
(x2 + y2 + a) y = −(−x2 − y2 + a) y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = (−x2 − y2 + a) y + (x2 + y2 + a) y

• Solve for f1(y)
f1(y) = a y2

• Substitute f1(y) into equation for F (x, y)

F (x, y) =
(
−x2−y2+a

)2
4 + a y2

• Substitute F (x, y) into the solution of the ODE(
−x2−y2+a

)2
4 + a y2 = c1

• Solve for y{
y =

√
−x2 − a− 2

√
x2a+ c1, y =

√
−x2 − a+ 2

√
x2a+ c1, y = −

√
−x2 − a− 2

√
x2a+ c1, y = −

√
−x2 − a+ 2

√
x2a+ c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 113� �
dsolve((a+x^2+y(x)^2)*y(x)*diff(y(x),x) = x*(a-x^2-y(x)^2),y(x), singsol=all)� �

y(x) =
√

−x2 − a− 2
√

a x2 − c1

y(x) =
√

−x2 − a+ 2
√
a x2 − c1

y(x) = −
√

−x2 − a− 2
√
a x2 − c1

y(x) = −
√

−x2 − a+ 2
√

a x2 − c1

3 Solution by Mathematica
Time used: 7.635 (sec). Leaf size: 149� �
DSolve[(a+x^2+y[x]^2)*y[x]*y'[x]==x*(a-x^2-y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−
√

a2 + 4ax2 + 4c1 − a− x2

y(x) →
√

−
√

a2 + 4ax2 + 4c1 − a− x2

y(x) → −
√√

a2 + 4ax2 + 4c1 − a− x2

y(x) →
√√

a2 + 4ax2 + 4c1 − a− x2
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24.19 problem 681
24.19.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6860
24.19.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6862
24.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6868
24.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6872

Internal problem ID [3928]
Internal file name [OUTPUT/3421_Sunday_June_05_2022_09_18_10_AM_33768828/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 681.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
y2 + 3x2) yy′ + x

(
3y2 + x2) = 0

24.19.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
u(x)2 x2 + 3x2)u(x)x(u′(x)x+ u(x)) + x

(
3u(x)2 x2 + x2) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u4 + 6u2 + 1
ux (u2 + 3)
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Where f(x) = − 1
x
and g(u) = u4+6u2+1

u(u2+3) . Integrating both sides gives

1
u4+6u2+1
u(u2+3)

du = −1
x
dx

∫ 1
u4+6u2+1
u(u2+3)

du =
∫

−1
x
dx

ln (u4 + 6u2 + 1)
4 = − ln (x) + c2

Raising both side to exponential gives(
u4 + 6u2 + 1

) 1
4 = e− ln(x)+c2

Which simplifies to (
u4 + 6u2 + 1

) 1
4 = c3

x

Which simplifies to (
u(x)4 + 6u(x)2 + 1

) 1
4 = c3ec2

x

The solution is (
u(x)4 + 6u(x)2 + 1

) 1
4 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y4

x4 + 6y2
x2 + 1

) 1
4

= c3ec2
x(

y4 + 6y2x2 + x4

x4

) 1
4

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
y4 + 6y2x2 + x4

x4

) 1
4

= c3ec2
x
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Figure 1079: Slope field plot

Verification of solutions (
y4 + 6y2x2 + x4

x4

) 1
4

= c3ec2
x

Verified OK.

24.19.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x(x2 + 3y2)
(3x2 + y2) y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
x(x2 + 3y2) (b3 − a2)

(3x2 + y2) y − x2(x2 + 3y2)2 a3
(3x2 + y2)2 y2

−
(
− x2 + 3y2
(3x2 + y2) y − 2x2

(3x2 + y2) y + 6x2(x2 + 3y2)
(3x2 + y2)2 y

)
(xa2 + ya3 + a1)

−
(
− 6x
3x2 + y2

+ 2x(x2 + 3y2)
(3x2 + y2)2

+ x(x2 + 3y2)
(3x2 + y2) y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6a3 + 3x6b2 − 6x5ya2 + 6x5yb3 + 3x4y2a3 − 15x4y2b2 − 4x3y3a2 + 4x3y3b3 + 15x2y4a3 − 3x2y4b2 − 6x y5a2 + 6x y5b3 − 3y6a3 − y6b2 + 3x5b1 − 3x4ya1 − 6x3y2b1 + 6x2y3a1 + 3x y4b1 − 3y5a1
(3x2 + y2)2 y2

= 0

Setting the numerator to zero gives

(6E)−x6a3 − 3x6b2 + 6x5ya2 − 6x5yb3 − 3x4y2a3 + 15x4y2b2 + 4x3y3a2
− 4x3y3b3 − 15x2y4a3 + 3x2y4b2 + 6x y5a2 − 6x y5b3 + 3y6a3 + y6b2
− 3x5b1 + 3x4ya1 + 6x3y2b1 − 6x2y3a1 − 3x y4b1 + 3y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v51v2 + 4a2v31v32 + 6a2v1v52 − a3v
6
1 − 3a3v41v22 − 15a3v21v42 + 3a3v62

− 3b2v61 + 15b2v41v22 + 3b2v21v42 + b2v
6
2 − 6b3v51v2 − 4b3v31v32 − 6b3v1v52

+ 3a1v41v2 − 6a1v21v32 + 3a1v52 − 3b1v51 + 6b1v31v22 − 3b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 − 3b2) v61 + (6a2 − 6b3) v51v2 − 3b1v51 + (−3a3 + 15b2) v41v22
+ 3a1v41v2 + (4a2 − 4b3) v31v32 + 6b1v31v22 + (−15a3 + 3b2) v21v42
− 6a1v21v32 + (6a2 − 6b3) v1v52 − 3b1v1v42 + (3a3 + b2) v62 + 3a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
3a1 = 0

−3b1 = 0
6b1 = 0

4a2 − 4b3 = 0
6a2 − 6b3 = 0

−15a3 + 3b2 = 0
−3a3 + 15b2 = 0
−a3 − 3b2 = 0
3a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x(x2 + 3y2)
(3x2 + y2) y

)
(x)

= x4 + 6y2x2 + y4

3x2y + y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4+6y2x2+y4

3x2y+y3

dy

Which results in

S = ln (x4 + 6y2x2 + y4)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(x2 + 3y2)
(3x2 + y2) y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x(x2 + 3y2)
x4 + 6y2x2 + y4

Sy =
3x2y + y3

x4 + 6y2x2 + y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y4 + 6y2x2 + x4)
4 = c1

Which simplifies to

ln (y4 + 6y2x2 + x4)
4 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
(
x2+3y2

)
(3x2+y2)y

dS
dR

= 0

R = x

S = ln (x4 + 6y2x2 + y4)
4

Summary
The solution(s) found are the following

(1)ln (y4 + 6y2x2 + x4)
4 = c1
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Figure 1080: Slope field plot

Verification of solutions

ln (y4 + 6y2x2 + x4)
4 = c1

Verified OK.

24.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore ((
3x2 + y2

)
y
)
dy =

(
−x
(
x2 + 3y2

))
dx(

x
(
x2 + 3y2

))
dx+

((
3x2 + y2

)
y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x
(
x2 + 3y2

)
N(x, y) =

(
3x2 + y2

)
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x
(
x2 + 3y2

))
= 6xy

And
∂N

∂x
= ∂

∂x

((
3x2 + y2

)
y
)

= 6xy
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x
(
x2 + 3y2

)
dx

(3)φ = (x2 + 3y2)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3
(
x2 + 3y2

)
y + f ′(y)

But equation (2) says that ∂φ
∂y

= (3x2 + y2) y. Therefore equation (4) becomes

(5)
(
3x2 + y2

)
y = 3

(
x2 + 3y2

)
y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −8y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−8y3

)
dy

f(y) = −2y4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x2 + 3y2)2

4 − 2y4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2 + 3y2)2

4 − 2y4

Summary
The solution(s) found are the following

(1)(3y2 + x2)2

4 − 2y4 = c1

Figure 1081: Slope field plot

Verification of solutions

(3y2 + x2)2

4 − 2y4 = c1

Verified OK.
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24.19.4 Maple step by step solution

Let’s solve
(y2 + 3x2) yy′ + x(3y2 + x2) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
6xy = 6xy

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
x(x2 + 3y2) dx+ f1(y)

• Evaluate integral

F (x, y) =
(
x2+3y2

)2
4 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
(3x2 + y2) y = 3(x2 + 3y2) y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −3(x2 + 3y2) y + (3x2 + y2) y

• Solve for f1(y)
f1(y) = −2y4

• Substitute f1(y) into equation for F (x, y)
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F (x, y) =
(
x2+3y2

)2
4 − 2y4

• Substitute F (x, y) into the solution of the ODE(
x2+3y2

)2
4 − 2y4 = c1

• Solve for y{
y =

√
−3x2 − 2

√
2x4 + c1, y =

√
−3x2 + 2

√
2x4 + c1, y = −

√
−3x2 − 2

√
2x4 + c1, y = −

√
−3x2 + 2

√
2x4 + c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 119� �
dsolve((3*x^2+y(x)^2)*y(x)*diff(y(x),x)+x*(x^2+3*y(x)^2) = 0,y(x), singsol=all)� �

y(x) =

√
−3c1x2 −

√
8c21x4 + 1

√
c1

y(x) =

√
−3c1x2 +

√
8c21x4 + 1

√
c1

y(x) = −

√
−3c1x2 −

√
8c21x4 + 1

√
c1

y(x) = −

√
−3c1x2 +

√
8c21x4 + 1

√
c1
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3 Solution by Mathematica
Time used: 8.874 (sec). Leaf size: 245� �
DSolve[(3*x^2+y[x]^2)*y[x]*y'[x]+x*(x^2+3*y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−3x2 −

√
8x4 + e4c1

y(x) →
√

−3x2 −
√
8x4 + e4c1

y(x) → −
√
−3x2 +

√
8x4 + e4c1

y(x) →
√

−3x2 +
√
8x4 + e4c1

y(x) → −
√
−2

√
2
√
x4 − 3x2

y(x) →
√

−2
√
2
√
x4 − 3x2

y(x) → −
√
2
√
2
√
x4 − 3x2

y(x) →
√

2
√
2
√
x4 − 3x2
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24.20 problem 682
Internal problem ID [3929]
Internal file name [OUTPUT/3422_Sunday_June_05_2022_09_18_14_AM_39052743/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 682.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

(
a− 3x2 − y2

)
yy′ + x

(
−x2 + y2 + a

)
= 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, (x^4+2*x^2*y^2+y^4)/(-3*x^2-y^2+a)/y]� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 122� �
dsolve((a-3*x^2-y(x)^2)*y(x)*diff(y(x),x)+x*(a-x^2+y(x)^2) = 0,y(x), singsol=all)� �
y(x)

=
√

−LambertW (− (−2x2 + a) e2c1) (x2 LambertW (− (−2x2 + a) e2c1)− 2x2 + a)
LambertW (− (−2x2 + a) e2c1)

y(x)=−
√

−LambertW (− (−2x2 + a) e2c1) (x2 LambertW (− (−2x2 + a) e2c1)− 2x2 + a)
LambertW (− (−2x2 + a) e2c1)
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3 Solution by Mathematica
Time used: 0.336 (sec). Leaf size: 39� �
DSolve[(a-3*x^2-y[x]^2)*y[x]*y'[x]+x*(a-x^2+y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2

(
a+ 2y(x)2
x2 + y(x)2 + log

(
x2 + y(x)2

))
= c1, y(x)

]
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24.21 problem 683
24.21.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6878
24.21.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6880

Internal problem ID [3930]
Internal file name [OUTPUT/3423_Sunday_June_05_2022_09_18_19_AM_22157078/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 683.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

2y3y′ + y2x = x3

24.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2u(x)3 x3(u′(x)x+ u(x)) + u(x)2 x3 = x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u4 + u2 − 1
2u3x

Where f(x) = − 1
2x and g(u) = 2u4+u2−1

u3 . Integrating both sides gives

1
2u4+u2−1

u3

du = − 1
2x dx

∫ 1
2u4+u2−1

u3

du =
∫

− 1
2x dx

ln (u2 + 1)
6 + ln (2u2 − 1)

12 = − ln (x)
2 + c2
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Raising both side to exponential gives

e
ln
(
u2+1

)
6 +

ln
(
2u2−1

)
12 = e−

ln(x)
2 +c2

Which simplifies to (
u2 + 1

) 1
6
(
2u2 − 1

) 1
12 = c3√

x

The solution is (
u(x)2 + 1

) 1
6
(
2u(x)2 − 1

) 1
12 = c3√

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y2

x2 + 1
) 1

6
(
2y2
x2 − 1

) 1
12

= c3√
x(

y2 + x2

x2

) 1
6
(
2y2 − x2

x2

) 1
12

= c3√
x

Summary
The solution(s) found are the following

(1)
(
y2 + x2

x2

) 1
6
(
2y2 − x2

x2

) 1
12

= c3√
x
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Figure 1082: Slope field plot

Verification of solutions (
y2 + x2

x2

) 1
6
(
2y2 − x2

x2

) 1
12

= c3√
x

Verified OK.

24.21.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x(−x2 + y2)
2y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

x(−x2 + y2) (b3 − a2)
2y3 − x2(−x2 + y2)2 a3

4y6

−
(
−−x2 + y2

2y3 + x2

y3

)
(xa2 + ya3 + a1)

−
(
− x

y2
+ 3x(−x2 + y2)

2y4

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6a3 − 2x4y2a3 − 6x4y2b2 + 8x3y3a2 − 8x3y3b3 + 7x2y4a3 + 2x2y4b2 − 4x y5a2 + 4x y5b3 − 2y6a3 − 4b2y6 − 6x3y2b1 + 6x2y3a1 + 2x y4b1 − 2y5a1
4y6

= 0

Setting the numerator to zero gives

(6E)−x6a3 + 2x4y2a3 + 6x4y2b2 − 8x3y3a2 + 8x3y3b3 − 7x2y4a3 − 2x2y4b2
+4x y5a2− 4x y5b3+2y6a3+4b2y6+6x3y2b1− 6x2y3a1− 2x y4b1+2y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−8a2v31v32 + 4a2v1v52 − a3v
6
1 + 2a3v41v22 − 7a3v21v42 + 2a3v62 + 6b2v41v22 − 2b2v21v42

+ 4b2v62 + 8b3v31v32 − 4b3v1v52 − 6a1v21v32 + 2a1v52 + 6b1v31v22 − 2b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
6
1 + (2a3 + 6b2) v41v22 + (−8a2 + 8b3) v31v32 + 6b1v31v22 + (−7a3 − 2b2) v21v42

− 6a1v21v32 + (4a2 − 4b3) v1v52 − 2b1v1v42 + (2a3 + 4b2) v62 + 2a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
2a1 = 0
−a3 = 0
−2b1 = 0
6b1 = 0

−8a2 + 8b3 = 0
4a2 − 4b3 = 0

−7a3 − 2b2 = 0
2a3 + 4b2 = 0
2a3 + 6b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x(−x2 + y2)

2y3

)
(x)

= −x4 + y2x2 + 2y4
2y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4+y2x2+2y4
2y3

dy

Which results in

S = ln (x2 + y2)
3 + ln (−x2 + 2y2)

6
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(−x2 + y2)
2y3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (x2 − y2)x
(x2 − 2y2) (x2 + y2)

Sy = − 2y3
(x2 − 2y2) (x2 + y2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2)
3 + ln (2y2 − x2)

6 = c1

Which simplifies to

ln (y2 + x2)
3 + ln (2y2 − x2)

6 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
(
−x2+y2

)
2y3

dS
dR

= 0

R = x

S = ln (x2 + y2)
3 + ln (−x2 + 2y2)

6

Summary
The solution(s) found are the following

(1)ln (y2 + x2)
3 + ln (2y2 − x2)

6 = c1
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Figure 1083: Slope field plot

Verification of solutions

ln (y2 + x2)
3 + ln (2y2 − x2)

6 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.734 (sec). Leaf size: 649� �
dsolve(2*y(x)^3*diff(y(x),x) = x^3-x*y(x)^2,y(x), singsol=all)� �

y(x) = −

√
2

√√√√√ c21x
4−c1x2

(
2+x6c31+2

√
x6c31+1

) 1
3
+
(
2+x6c31+2

√
x6c31+1

) 2
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) =

√
2

√√√√√ c21x
4−c1x2

(
2+x6c31+2

√
x6c31+1

) 1
3
+
(
2+x6c31+2

√
x6c31+1

) 2
3

(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) = −

√√√√√√
c1x2+

(
2+x6c31+2

√
x6c31+1

) 1
3
(−1−i

√
3
)(

2+x6c31+2
√

x6c31+1
) 1

3
+
(
i
√
3−1

)
x2c1


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) =

√√√√√√
c1x2+

(
2+x6c31+2

√
x6c31+1

) 1
3
(−1−i

√
3
)(

2+x6c31+2
√

x6c31+1
) 1

3
+
(
i
√
3−1

)
x2c1


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) = −

√√√√√√
(2+x6c31+2

√
x6c31+1

) 1
3 (

i
√
3−1

)
+
(
−1−i

√
3
)
x2c1

c1x2+
(
2+x6c31+2

√
x6c31+1

) 1
3


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1

y(x) =

√√√√√√
(2+x6c31+2

√
x6c31+1

) 1
3 (

i
√
3−1

)
+
(
−1−i

√
3
)
x2c1

c1x2+
(
2+x6c31+2

√
x6c31+1

) 1
3


(
2+x6c31+2

√
x6c31+1

) 1
3

2√c1
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3 Solution by Mathematica
Time used: 60.202 (sec). Leaf size: 714� �
DSolve[2*y[x]^3*y'[x]==x^3-x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x)→−

√√√√ 3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − x2 + x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1

√
2

y(x) →

√√√√ 3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1 − x2 + x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

√
2

y(x) →

−1
2

√√√√(−1− i
√
3
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

i
(√

3 + i
)
x4

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1

y(x)

→ 1
2

√√√√(−1− i
√
3
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

i
(√

3 + i
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

y(x) →

−1
2

√√√√i
(√

3 + i
)

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

(
−1− i

√
3
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1

y(x)

→ 1
2

√√√√i
(√

3 + i
)

3
√
x6 + 2

√
e24c1 − e12c1x6 − 2e12c1 − 2x2 +

(
−1− i

√
3
)
x4

3
√

x6 + 2
√
e24c1 − e12c1x6 − 2e12c1
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24.22 problem 684
24.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6889
24.22.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 6891
24.22.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 6893
24.22.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6897
24.22.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6901

Internal problem ID [3931]
Internal file name [OUTPUT/3424_Sunday_June_05_2022_09_18_24_AM_90760059/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 684.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y
(
1 + 2y2

)
y′ = x

(
2x2 + 1

)
24.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(2x2 + 1)
2y3 + y

Where f(x) = x(2x2 + 1) and g(y) = 1
2y3+y

. Integrating both sides gives

1
1

2y3+y

dy = x
(
2x2 + 1

)
dx

∫ 1
1

2y3+y

dy =
∫

x
(
2x2 + 1

)
dx
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(2y2 + 1)2

8 = (2x2 + 1)2

8 + c1

The solution is
(1 + 2y2)2

8 − (2x2 + 1)2

8 − c1 = 0

Summary
The solution(s) found are the following

(1)(1 + 2y2)2

8 − (2x2 + 1)2

8 − c1 = 0

Figure 1084: Slope field plot

Verification of solutions

(1 + 2y2)2

8 − (2x2 + 1)2

8 − c1 = 0

Verified OK.
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24.22.2 Solving as differentialType ode

Writing the ode as

y′ = x(2x2 + 1)
y (1 + 2y2) (1)

Which becomes (
2y3 + y

)
dy =

(
x
(
2x2 + 1

))
dx (2)

But the RHS is complete differential because

(
x
(
2x2 + 1

))
dx = d

(
1
2x

2 + 1
2x

4
)

Hence (2) becomes

(
2y3 + y

)
dy = d

(
1
2x

2 + 1
2x

4
)

Integrating both sides gives gives these solutions

y =
√

−2 + 4
√
x4 + x2 + 2c1
2 + c1

y = −
√

−2 + 4
√
x4 + x2 + 2c1
2 + c1

y =
√

−2− 4
√
x4 + x2 + 2c1
2 + c1

y = −
√

−2− 4
√
x4 + x2 + 2c1
2 + c1

Summary
The solution(s) found are the following

(1)y =
√

−2 + 4
√
x4 + x2 + 2c1
2 + c1

(2)y = −
√

−2 + 4
√
x4 + x2 + 2c1
2 + c1

(3)y =
√

−2− 4
√
x4 + x2 + 2c1
2 + c1

(4)y = −
√

−2− 4
√
x4 + x2 + 2c1
2 + c1
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Figure 1085: Slope field plot

Verification of solutions

y =
√

−2 + 4
√
x4 + x2 + 2c1
2 + c1

Verified OK.

y = −
√
−2 + 4

√
x4 + x2 + 2c1
2 + c1

Verified OK.

y =
√

−2− 4
√
x4 + x2 + 2c1
2 + c1

Verified OK.

y = −
√

−2− 4
√
x4 + x2 + 2c1
2 + c1

Verified OK.

6892



24.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(2x2 + 1)
y (2y2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 961: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x (2x2 + 1)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x(2x2+1)

dx

Which results in

S = (2x2 + 1)2

8

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(2x2 + 1)
y (2y2 + 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 2x3 + x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2y3 + y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R3 +R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (2R2 + 1)2

8 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(2x2 + 1)2

8 = (1 + 2y2)2

8 + c1

Which simplifies to

(2x2 + 1)2

8 = (1 + 2y2)2

8 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
(
2x2+1

)
y(2y2+1)

dS
dR

= 2R3 +R

R = y

S = (2x2 + 1)2

8

Summary
The solution(s) found are the following

(1)(2x2 + 1)2

8 = (1 + 2y2)2

8 + c1
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Figure 1086: Slope field plot

Verification of solutions

(2x2 + 1)2

8 = (1 + 2y2)2

8 + c1

Verified OK.

24.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y
(
2y2 + 1

))
dy =

(
x
(
2x2 + 1

))
dx(

−x
(
2x2 + 1

))
dx+

(
y
(
2y2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
2x2 + 1

)
N(x, y) = y

(
2y2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x
(
2x2 + 1

))
= 0

And
∂N

∂x
= ∂

∂x

(
y
(
2y2 + 1

))
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x
(
2x2 + 1

)
dx

(3)φ = −(2x2 + 1)2

8 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y(2y2 + 1). Therefore equation (4) becomes

(5)y
(
2y2 + 1

)
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y
(
2y2 + 1

)
= 2y3 + y

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
2y3 + y

)
dy

f(y) = (2y2 + 1)2

8 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(2x2 + 1)2

8 + (2y2 + 1)2

8 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(2x2 + 1)2

8 + (2y2 + 1)2

8

Summary
The solution(s) found are the following

(1)(1 + 2y2)2

8 − (2x2 + 1)2

8 = c1

Figure 1087: Slope field plot

Verification of solutions

(1 + 2y2)2

8 − (2x2 + 1)2

8 = c1

Verified OK.
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24.22.5 Maple step by step solution

Let’s solve
y(1 + 2y2) y′ = x(2x2 + 1)

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y(1 + 2y2) y′dx =

∫
x(2x2 + 1) dx+ c1

• Evaluate integral(
1+2y2

)2
8 =

(
2x2+1

)2
8 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 113� �
dsolve(y(x)*(1+2*y(x)^2)*diff(y(x),x) = x*(2*x^2+1),y(x), singsol=all)� �

y(x) = −
√

−2− 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) =
√

−2− 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) = −
√

−2 + 2
√
4x4 + 4x2 + 8c1 + 1

2

y(x) =
√

−2 + 2
√
4x4 + 4x2 + 8c1 + 1

2
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3 Solution by Mathematica
Time used: 2.474 (sec). Leaf size: 151� �
DSolve[y[x]*(1+2*y[x]^2)*y'[x]==x*(1+2*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−1−
√
4x4 + 4x2 + 1 + 8c1√

2

y(x) →
√

−1−
√
4x4 + 4x2 + 1 + 8c1√

2

y(x) → −
√

−1 +
√
4x4 + 4x2 + 1 + 8c1√

2

y(x) →
√

−1 +
√
4x4 + 4x2 + 1 + 8c1√

2
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24.23 problem 685
24.23.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6903
24.23.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6905

Internal problem ID [3932]
Internal file name [OUTPUT/3425_Sunday_June_05_2022_09_18_32_AM_1690158/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 685.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
3x2 + 2y2

)
yy′ = −x3

24.23.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
3x2 + 2u(x)2 x2)u(x)x(u′(x)x+ u(x)) = −x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u4 + 3u2 + 1
x (2u3 + 3u)

Where f(x) = − 1
x
and g(u) = 2u4+3u2+1

2u3+3u . Integrating both sides gives

1
2u4+3u2+1
2u3+3u

du = −1
x
dx

6903



∫ 1
2u4+3u2+1
2u3+3u

du =
∫

−1
x
dx

− ln (u2 + 1)
2 + ln

(
2u2 + 1

)
= − ln (x) + c2

Raising both side to exponential gives

e−
ln
(
u2+1

)
2 +ln

(
2u2+1

)
= e− ln(x)+c2

Which simplifies to

2u2 + 1√
u2 + 1

= c3
x

The solution is
2u(x)2 + 1√
u (x)2 + 1

= c3
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

2y2
x2 + 1√
y2

x2 + 1
= c3

x

x2 + 2y2√
y2+x2

x2 x2
= c3

x

Which simplifies to

x2 + 2y2√
y2+x2

x2 x
= c3

Summary
The solution(s) found are the following

(1)x2 + 2y2√
y2+x2

x2 x
= c3
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Figure 1088: Slope field plot

Verification of solutions

x2 + 2y2√
y2+x2

x2 x
= c3

Verified OK.

24.23.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x3

(3x2 + 2y2) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
x3(b3 − a2)
(3x2 + 2y2) y − x6a3

(3x2 + 2y2)2 y2

−
(
− 3x2

(3x2 + 2y2) y + 6x4

(3x2 + 2y2)2 y

)
(xa2 + ya3 + a1)

−
(

4x3

(3x2 + 2y2)2
+ x3

(3x2 + 2y2) y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6a3 + 3x6b2 − 6x5ya2 + 6x5yb3 − 3x4y2a3 − 3x4y2b2 − 8x3y3a2 + 8x3y3b3 − 6x2y4a3 − 12x2y4b2 − 4y6b2 + 3x5b1 − 3x4ya1 + 6x3y2b1 − 6x2y3a1

(3x2 + 2y2)2 y2
= 0

Setting the numerator to zero gives

(6E)−x6a3 − 3x6b2 + 6x5ya2 − 6x5yb3 + 3x4y2a3 + 3x4y2b2 + 8x3y3a2 − 8x3y3b3
+ 6x2y4a3 + 12x2y4b2 + 4y6b2 − 3x5b1 + 3x4ya1 − 6x3y2b1 + 6x2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)6a2v51v2 + 8a2v31v32 − a3v
6
1 + 3a3v41v22 + 6a3v21v42 − 3b2v61 + 3b2v41v22 + 12b2v21v42

+ 4b2v62 − 6b3v51v2 − 8b3v31v32 + 3a1v41v2 + 6a1v21v32 − 3b1v51 − 6b1v31v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 − 3b2) v61 + (6a2 − 6b3) v51v2 − 3b1v51 + (3a3 + 3b2) v41v22 + 3a1v41v2
+ (8a2 − 8b3) v31v32 − 6b1v31v22 + (6a3 + 12b2) v21v42 + 6a1v21v32 + 4b2v62 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a1 = 0
6a1 = 0

−6b1 = 0
−3b1 = 0
4b2 = 0

6a2 − 6b3 = 0
8a2 − 8b3 = 0
−a3 − 3b2 = 0
3a3 + 3b2 = 0
6a3 + 12b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x3

(3x2 + 2y2) y

)
(x)

= x4 + 3y2x2 + 2y4
3x2y + 2y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4+3y2x2+2y4
3x2y+2y3

dy

Which results in

S = − ln (x2 + y2)
2 + ln

(
x2 + 2y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x3

(3x2 + 2y2) y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x3

(x2 + 2y2) (x2 + y2)

Sy = − y

x2 + y2
+ 4y

x2 + 2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y2 + x2)
2 + ln

(
x2 + 2y2

)
= c1

Which simplifies to

− ln (y2 + x2)
2 + ln

(
x2 + 2y2

)
= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x3

(3x2+2y2)y
dS
dR

= 0

R = x

S = − ln (x2 + y2)
2 + ln

(
x2 + 2y2

)

Summary
The solution(s) found are the following

(1)− ln (y2 + x2)
2 + ln

(
x2 + 2y2

)
= c1
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Figure 1089: Slope field plot

Verification of solutions

− ln (y2 + x2)
2 + ln

(
x2 + 2y2

)
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.656 (sec). Leaf size: 137� �
dsolve((3*x^2+2*y(x)^2)*y(x)*diff(y(x),x)+x^3 = 0,y(x), singsol=all)� �

y(x) = −

√
−8c21x2 − 2

√
8c21x2 + 1 + 2

4c1

y(x) =

√
−8c21x2 − 2

√
8c21x2 + 1 + 2

4c1

y(x) = −

√
−8c21x2 + 2

√
8c21x2 + 1 + 2

4c1

y(x) =

√
−8c21x2 + 2

√
8c21x2 + 1 + 2

4c1

3 Solution by Mathematica
Time used: 22.078 (sec). Leaf size: 253� �
DSolve[(3*x^2+2*y[x]^2)*y[x]*y'[x]+x^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−4x2 −
√
8e2c1x2 + e4c1 + e2c1

2
√
2

y(x) →
√

−4x2 −
√
8e2c1x2 + e4c1 + e2c1

2
√
2

y(x) → −
√

−4x2 +
√
8e2c1x2 + e4c1 + e2c1

2
√
2

y(x) →
√

−4x2 +
√
8e2c1x2 + e4c1 + e2c1

2
√
2

y(x) → Undefined

y(x) → −
√
−x2
√
2

y(x) →
√
−x2
√
2
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24.24 problem 686
24.24.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6913
24.24.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6915
24.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6921
24.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6925

Internal problem ID [3933]
Internal file name [OUTPUT/3426_Sunday_June_05_2022_09_18_37_AM_3003358/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 686.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
5x2 + 2y2

)
yy′ + x

(
x2 + 5y2

)
= 0

24.24.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
5x2 + 2u(x)2 x2)u(x)x(u′(x)x+ u(x)) + x

(
x2 + 5u(x)2 x2) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u4 + 10u2 + 1
x (2u3 + 5u)
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Where f(x) = − 1
x
and g(u) = 2u4+10u2+1

2u3+5u . Integrating both sides gives

1
2u4+10u2+1

2u3+5u
du = −1

x
dx

∫ 1
2u4+10u2+1

2u3+5u
du =

∫
−1
x
dx

ln (2u4 + 10u2 + 1)
4 = − ln (x) + c2

Raising both side to exponential gives(
2u4 + 10u2 + 1

) 1
4 = e− ln(x)+c2

Which simplifies to (
2u4 + 10u2 + 1

) 1
4 = c3

x

Which simplifies to (
2u(x)4 + 10u(x)2 + 1

) 1
4 = c3ec2

x

The solution is (
2u(x)4 + 10u(x)2 + 1

) 1
4 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

2y4
x4 + 10y2

x2 + 1
) 1

4

= c3ec2
x(

2y4 + 10y2x2 + x4

x4

) 1
4

= c3ec2
x

Summary
The solution(s) found are the following

(1)
(
2y4 + 10y2x2 + x4

x4

) 1
4

= c3ec2
x
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Figure 1090: Slope field plot

Verification of solutions (
2y4 + 10y2x2 + x4

x4

) 1
4

= c3ec2
x

Verified OK.

24.24.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x(x2 + 5y2)
(5x2 + 2y2) y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
x(x2 + 5y2) (b3 − a2)

(5x2 + 2y2) y − x2(x2 + 5y2)2 a3
(5x2 + 2y2)2 y2

−
(
− x2 + 5y2
(5x2 + 2y2) y − 2x2

(5x2 + 2y2) y + 10x2(x2 + 5y2)
(5x2 + 2y2)2 y

)
(xa2 + ya3 + a1)

−
(
− 10x
5x2 + 2y2 + 4x(x2 + 5y2)

(5x2 + 2y2)2
+ x(x2 + 5y2)

(5x2 + 2y2) y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6a3 + 5x6b2 − 10x5ya2 + 10x5yb3 + 5x4y2a3 − 44x4y2b2 − 8x3y3a2 + 8x3y3b3 + 44x2y4a3 − 10x2y4b2 − 20x y5a2 + 20x y5b3 − 10y6a3 − 4y6b2 + 5x5b1 − 5x4ya1 − 19x3y2b1 + 19x2y3a1 + 10x y4b1 − 10y5a1
(5x2 + 2y2)2 y2

= 0

Setting the numerator to zero gives

(6E)−x6a3 − 5x6b2 + 10x5ya2 − 10x5yb3 − 5x4y2a3 + 44x4y2b2 + 8x3y3a2
− 8x3y3b3 − 44x2y4a3 + 10x2y4b2 + 20x y5a2 − 20x y5b3 + 10y6a3 + 4y6b2
− 5x5b1 + 5x4ya1 + 19x3y2b1 − 19x2y3a1 − 10x y4b1 + 10y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)10a2v51v2 + 8a2v31v32 + 20a2v1v52 − a3v
6
1 − 5a3v41v22 − 44a3v21v42 + 10a3v62

− 5b2v61 + 44b2v41v22 + 10b2v21v42 + 4b2v62 − 10b3v51v2 − 8b3v31v32 − 20b3v1v52
+ 5a1v41v2 − 19a1v21v32 + 10a1v52 − 5b1v51 + 19b1v31v22 − 10b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 − 5b2) v61 + (10a2 − 10b3) v51v2 − 5b1v51 + (−5a3 + 44b2) v41v22 + 5a1v41v2
+ (8a2 − 8b3) v31v32 + 19b1v31v22 + (−44a3 + 10b2) v21v42 − 19a1v21v32
+ (20a2 − 20b3) v1v52 − 10b1v1v42 + (10a3 + 4b2) v62 + 10a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−19a1 = 0
5a1 = 0
10a1 = 0

−10b1 = 0
−5b1 = 0
19b1 = 0

8a2 − 8b3 = 0
10a2 − 10b3 = 0
20a2 − 20b3 = 0

−44a3 + 10b2 = 0
−5a3 + 44b2 = 0
−a3 − 5b2 = 0
10a3 + 4b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x(x2 + 5y2)
(5x2 + 2y2) y

)
(x)

= x4 + 10y2x2 + 2y4
5x2y + 2y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4+10y2x2+2y4
5x2y+2y3

dy

Which results in

S = ln (x4 + 10y2x2 + 2y4)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x(x2 + 5y2)
(5x2 + 2y2) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x(x2 + 5y2)
x4 + 10y2x2 + 2y4

Sy =
5x2y + 2y3

x4 + 10y2x2 + 2y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (2y4 + 10y2x2 + x4)
4 = c1

Which simplifies to

ln (2y4 + 10y2x2 + x4)
4 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x
(
x2+5y2

)
(5x2+2y2)y

dS
dR

= 0

R = x

S = ln (x4 + 10y2x2 + 2y4)
4

Summary
The solution(s) found are the following

(1)ln (2y4 + 10y2x2 + x4)
4 = c1
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Figure 1091: Slope field plot

Verification of solutions

ln (2y4 + 10y2x2 + x4)
4 = c1

Verified OK.

24.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore ((
5x2 + 2y2

)
y
)
dy =

(
−x
(
x2 + 5y2

))
dx(

x
(
x2 + 5y2

))
dx+

((
5x2 + 2y2

)
y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x
(
x2 + 5y2

)
N(x, y) =

(
5x2 + 2y2

)
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x
(
x2 + 5y2

))
= 10xy

And
∂N

∂x
= ∂

∂x

((
5x2 + 2y2

)
y
)

= 10xy
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x
(
x2 + 5y2

)
dx

(3)φ = (x2 + 5y2)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 5
(
x2 + 5y2

)
y + f ′(y)

But equation (2) says that ∂φ
∂y

= (5x2 + 2y2) y. Therefore equation (4) becomes

(5)
(
5x2 + 2y2

)
y = 5

(
x2 + 5y2

)
y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −23y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−23y3

)
dy

f(y) = −23y4
4 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x2 + 5y2)2

4 − 23y4
4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2 + 5y2)2

4 − 23y4
4

Summary
The solution(s) found are the following

(1)(x2 + 5y2)2

4 − 23y4
4 = c1

Figure 1092: Slope field plot

Verification of solutions

(x2 + 5y2)2

4 − 23y4
4 = c1

Verified OK.
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24.24.4 Maple step by step solution

Let’s solve
(5x2 + 2y2) yy′ + x(x2 + 5y2) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
10xy = 10xy

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
x(x2 + 5y2) dx+ f1(y)

• Evaluate integral

F (x, y) =
(
x2+5y2

)2
4 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
(5x2 + 2y2) y = 5(x2 + 5y2) y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −5(x2 + 5y2) y + (5x2 + 2y2) y

• Solve for f1(y)

f1(y) = −23y4
4

• Substitute f1(y) into equation for F (x, y)
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F (x, y) =
(
x2+5y2

)2
4 − 23y4

4

• Substitute F (x, y) into the solution of the ODE(
x2+5y2

)2
4 − 23y4

4 = c1

• Solve for y{
y = −

√
−10x2−2

√
23x4+8c1

2 , y =
√

−10x2−2
√

23x4+8c1
2 , y = −

√
−10x2+2

√
23x4+8c1

2 , y =
√

−10x2+2
√

23x4+8c1
2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 125� �
dsolve((5*x^2+2*y(x)^2)*y(x)*diff(y(x),x)+x*(x^2+5*y(x)^2) = 0,y(x), singsol=all)� �

y(x) = −

√
−10c1x2 − 2

√
23c21x4 + 2

2√c1

y(x) =

√
−10c1x2 − 2

√
23c21x4 + 2

2√c1

y(x) = −

√
−10c1x2 + 2

√
23c21x4 + 2

2√c1

y(x) =

√
−10c1x2 + 2

√
23c21x4 + 2

2√c1
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3 Solution by Mathematica
Time used: 20.296 (sec). Leaf size: 295� �
DSolve[(5*x^2+2*y[x]^2)*y[x]*y'[x]+x*(x^2+5*y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−5x2 −

√
23x4 + 2e4c1√
2

y(x) →
√

−5x2 −
√
23x4 + 2e4c1√
2

y(x) → −
√
−5x2 +

√
23x4 + 2e4c1√
2

y(x) →
√

−5x2 +
√
23x4 + 2e4c1√
2

y(x) → −
√
−
√
23
√
x4 − 5x2

√
2

y(x) →
√

−
√
23
√
x4 − 5x2

√
2

y(x) → −
√√

23
√
x4 − 5x2

√
2

y(x) →
√√

23
√
x4 − 5x2

√
2
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24.25 problem 687
Internal problem ID [3934]
Internal file name [OUTPUT/3427_Sunday_June_05_2022_09_18_42_AM_27610018/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 687.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

(
x2 − x3 + 3y2x+ 2y3

)
y′ + 3x2y + y2 − y3 = −2x3

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, (x^2+2*x*y+y^2)/(x^3-3*x*y^2-2*y^3-x^2)], [0, (x^4+x^3*y+x*y^3+y^4+x^2*y+x*� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 409� �
dsolve((x^2-x^3+3*x*y(x)^2+2*y(x)^3)*diff(y(x),x)+2*x^3+3*x^2*y(x)+y(x)^2-y(x)^3 = 0,y(x), singsol=all)� �
y(x)

=

(
−108x3 − 108c1x+ 12

√
81x6 + 162c1x4 + 12x3 + (81c21 + 36c1)x2 + 36x c21 + 12c31

) 2
3 − 12c1 − 12x

6
(
−108x3 − 108c1x+ 12

√
81x6 + 162c1x4 + 12x3 + (81c21 + 36c1)x2 + 36x c21 + 12c31

) 1
3

y(x) =

−

(
i
√
3

12 + 1
12

)(
−108x3 − 108c1x+ 12

√
81x6 + 162c1x4 + 12x3 + (81c21 + 36c1)x2 + 36x c21 + 12c31

) 2
3 + (c1 + x)

(
i
√
3− 1

)
(
−108x3 − 108c1x+ 12

√
81x6 + 162c1x4 + 12x3 + (81c21 + 36c1)x2 + 36x c21 + 12c31

) 1
3

y(x)

=

(
i
√
3−1

)(
−108x3−108c1x+12

√
81x6+162c1x4+12x3+

(
81c21+36c1

)
x2+36x c21+12c31

) 2
3

12 + (c1 + x)
(
1 + i

√
3
)(

−108x3 − 108c1x+ 12
√

81x6 + 162c1x4 + 12x3 + (81c21 + 36c1)x2 + 36x c21 + 12c31
) 1

3

3 Solution by Mathematica
Time used: 8.541 (sec). Leaf size: 368� �
DSolve[(x^2-x^3+3 x y[x]^2+2 y[x]^3)y'[x]+2 x^3+3 x^2 y[x]+y[x]^2-y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

3
√
2(x+ c1)

3
√

27x3 +
√

729 (x3 + c1x) 2 + 108(x+ c1)3 + 27c1x

−
3
√
27x3 +

√
729 (x3 + c1x) 2 + 108(x+ c1)3 + 27c1x

3 3
√
2

y(x)

→
22/3

(
1− i

√
3
) (

27x3 +
√

729 (x3 + c1x) 2 + 108(x+ c1)3 + 27c1x
)

2/3 − 6i 3
√
2
(√

3− i
)
(x+ c1)

12 3
√

27x3 +
√

729 (x3 + c1x) 2 + 108(x+ c1)3 + 27c1x
y(x)

→
22/3

(
1 + i

√
3
) (

27x3 +
√

729 (x3 + c1x) 2 + 108(x+ c1)3 + 27c1x
)

2/3 + 6i 3
√
2
(√

3 + i
)
(x+ c1)

12 3
√

27x3 +
√
729 (x3 + c1x) 2 + 108(x+ c1)3 + 27c1x

y(x) → −x
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24.26 problem 688
24.26.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6931
24.26.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6933
24.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6939
24.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6943

Internal problem ID [3935]
Internal file name [OUTPUT/3428_Sunday_June_05_2022_09_18_47_AM_3875987/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 688.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

(
3x3 + 6x2y − 3y2x+ 20y3

)
y′ + 9x2y + 6y2x− y3 = −4x3

24.26.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
3x3 + 6x3u(x)− 3u(x)2 x3 + 20u(x)3 x3) (u′(x)x+ u(x)) + 9x3u(x) + 6u(x)2 x3 − u(x)3 x3 = −4x3

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −4(5u4 − u3 + 3u2 + 3u+ 1)
x (20u3 − 3u2 + 6u+ 3)
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Where f(x) = − 4
x
and g(u) = 5u4−u3+3u2+3u+1

20u3−3u2+6u+3 . Integrating both sides gives

1
5u4−u3+3u2+3u+1
20u3−3u2+6u+3

du = −4
x
dx

∫ 1
5u4−u3+3u2+3u+1
20u3−3u2+6u+3

du =
∫

−4
x
dx

ln
(
5u4 − u3 + 3u2 + 3u+ 1

)
= −4 ln (x) + c2

Raising both side to exponential gives

5u4 − u3 + 3u2 + 3u+ 1 = e−4 ln(x)+c2

Which simplifies to

5u4 − u3 + 3u2 + 3u+ 1 = c3
x4

Which simplifies to

u(x) = RootOf
(
5_Z4 − _Z3 − c3ec2

x4 + 3_Z2 + 3_Z+ 1
)

Therefore the solution y is

y = xu

= xRootOf
(
5x4_Z4 − x4_Z3 + 3x4_Z2 + 3x4_Z+ x4 − c3ec2

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
5x4_Z4 − x4_Z3 + 3x4_Z2 + 3x4_Z+ x4 − c3ec2

)
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Figure 1093: Slope field plot

Verification of solutions

y = xRootOf
(
5x4_Z4 − x4_Z3 + 3x4_Z2 + 3x4_Z+ x4 − c3ec2

)
Verified OK.

24.26.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −4x3 − 9x2y − 6x y2 + y3

3x3 + 6x2y − 3x y2 + 20y3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−4x3 − 9x2y − 6x y2 + y3) (b3 − a2)

3x3 + 6x2y − 3x y2 + 20y3

− (−4x3 − 9x2y − 6x y2 + y3)2 a3
(3x3 + 6x2y − 3x y2 + 20y3)2

−
(

−12x2 − 18xy − 6y2
3x3 + 6x2y − 3x y2 + 20y3

− (−4x3 − 9x2y − 6x y2 + y3) (9x2 + 12xy − 3y2)
(3x3 + 6x2y − 3x y2 + 20y3)2

)
(xa2 + ya3 + a1)

−
(

−9x2 − 12xy + 3y2
3x3 + 6x2y − 3x y2 + 20y3

− (−4x3 − 9x2y − 6x y2 + y3) (6x2 − 6xy + 60y2)
(3x3 + 6x2y − 3x y2 + 20y3)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

12x6a2 − 16x6a3 + 12x6b2 − 12x6b3 + 48x5ya2 − 72x5ya3 + 96x5yb2 − 48x5yb3 − 132x4y2a3 − 168x4y2b2 + 272x3y3a2 − 160x3y3a3 − 288x3y3b2 − 272x3y3b3 + 528x2y4a2 + 168x2y4a3 + 132x2y4b2 − 528x2y4b3 + 240x y5a2 + 384x y5a3 − 120x y5b2 − 240x y5b3 − 20y6a2 + 116y6a3 + 400y6b2 + 20y6b3 + 3x5b1 − 3x4ya1 + 60x4yb1 − 60x3y2a1 − 186x3y2b1 + 186x2y3a1 − 372x2y3b1 + 372x y4a1 − 117x y4b1 + 117y5a1
(3x3 + 6x2y − 3x y2 + 20y3)2

= 0

Setting the numerator to zero gives

(6E)

12x6a2 − 16x6a3 + 12x6b2 − 12x6b3 + 48x5ya2 − 72x5ya3 + 96x5yb2
−48x5yb3−132x4y2a3−168x4y2b2+272x3y3a2−160x3y3a3−288x3y3b2
− 272x3y3b3 + 528x2y4a2 + 168x2y4a3 + 132x2y4b2 − 528x2y4b3
+ 240x y5a2 + 384x y5a3 − 120x y5b2 − 240x y5b3 − 20y6a2 + 116y6a3
+ 400y6b2 + 20y6b3 + 3x5b1 − 3x4ya1 + 60x4yb1 − 60x3y2a1 − 186x3y2b1
+ 186x2y3a1 − 372x2y3b1 + 372x y4a1 − 117x y4b1 + 117y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

12a2v61 + 48a2v51v2 + 272a2v31v32 + 528a2v21v42 + 240a2v1v52 − 20a2v62
− 16a3v61 − 72a3v51v2 − 132a3v41v22 − 160a3v31v32 + 168a3v21v42 + 384a3v1v52
+ 116a3v62 + 12b2v61 + 96b2v51v2 − 168b2v41v22 − 288b2v31v32 + 132b2v21v42
− 120b2v1v52 + 400b2v62 − 12b3v61 − 48b3v51v2 − 272b3v31v32 − 528b3v21v42
− 240b3v1v52 + 20b3v62 − 3a1v41v2 − 60a1v31v22 + 186a1v21v32 + 372a1v1v42
+ 117a1v52 + 3b1v51 + 60b1v41v2 − 186b1v31v22 − 372b1v21v32 − 117b1v1v42 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(12a2 − 16a3 + 12b2 − 12b3) v61 + (48a2 − 72a3 + 96b2 − 48b3) v51v2
+ 3b1v51 + (−132a3 − 168b2) v41v22 + (−3a1 + 60b1) v41v2
+ (272a2 − 160a3 − 288b2 − 272b3) v31v32 + (−60a1 − 186b1) v31v22
+ (528a2 + 168a3 + 132b2 − 528b3) v21v42 + (186a1 − 372b1) v21v32
+ (240a2 + 384a3 − 120b2 − 240b3) v1v52 + (372a1 − 117b1) v1v42
+ (−20a2 + 116a3 + 400b2 + 20b3) v62 + 117a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

117a1 = 0
3b1 = 0

−60a1 − 186b1 = 0
−3a1 + 60b1 = 0

186a1 − 372b1 = 0
372a1 − 117b1 = 0

−132a3 − 168b2 = 0
−20a2 + 116a3 + 400b2 + 20b3 = 0

12a2 − 16a3 + 12b2 − 12b3 = 0
48a2 − 72a3 + 96b2 − 48b3 = 0

240a2 + 384a3 − 120b2 − 240b3 = 0
272a2 − 160a3 − 288b2 − 272b3 = 0
528a2 + 168a3 + 132b2 − 528b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−4x3 − 9x2y − 6x y2 + y3

3x3 + 6x2y − 3x y2 + 20y3

)
(x)

= 4x4 + 12x3y + 12y2x2 − 4x y3 + 20y4
3x3 + 6x2y − 3x y2 + 20y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x4+12x3y+12y2x2−4x y3+20y4
3x3+6x2y−3x y2+20y3

dy
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Which results in

S = ln (x4 + 3x3y + 3y2x2 − x y3 + 5y4)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x3 − 9x2y − 6x y2 + y3

3x3 + 6x2y − 3x y2 + 20y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4x3 + 9x2y + 6x y2 − y3

4x4 + 12x3y + 12y2x2 − 4x y3 + 20y4

Sy =
3x3 + 6x2y − 3x y2 + 20y3

4x4 + 12x3y + 12y2x2 − 4x y3 + 20y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (5y4 − xy3 + 3y2x2 + 3yx3 + x4)
4 = c1
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Which simplifies to

ln (5y4 − xy3 + 3y2x2 + 3yx3 + x4)
4 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x3−9x2y−6x y2+y3

3x3+6x2y−3x y2+20y3
dS
dR

= 0

R = x

S = ln (x4 + 3x3y + 3y2x2 − x y3 + 5y4)
4

Summary
The solution(s) found are the following

(1)ln (5y4 − xy3 + 3y2x2 + 3yx3 + x4)
4 = c1
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Figure 1094: Slope field plot

Verification of solutions

ln (5y4 − xy3 + 3y2x2 + 3yx3 + x4)
4 = c1

Verified OK.

24.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x3 + 6x2y − 3x y2 + 20y3

)
dy =

(
−4x3 − 9x2y − 6x y2 + y3

)
dx(

4x3 + 9x2y + 6x y2 − y3
)
dx+

(
3x3 + 6x2y − 3x y2 + 20y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4x3 + 9x2y + 6x y2 − y3

N(x, y) = 3x3 + 6x2y − 3x y2 + 20y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
4x3 + 9x2y + 6x y2 − y3

)
= 9x2 + 12xy − 3y2

And
∂N

∂x
= ∂

∂x

(
3x3 + 6x2y − 3x y2 + 20y3

)
= 9x2 + 12xy − 3y2
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
4x3 + 9x2y + 6x y2 − y3 dx

(3)φ = x4 + 3x3y + 3y2x2 − x y3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x3 + 6x2y − 3x y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3x3 + 6x2y − 3x y2 + 20y3. Therefore equation (4)
becomes

(5)3x3 + 6x2y − 3x y2 + 20y3 = 3x3 + 6x2y − 3x y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 20y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
20y3

)
dy

f(y) = 5y4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x4 + 3x3y + 3y2x2 − x y3 + 5y4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x4 + 3x3y + 3y2x2 − x y3 + 5y4

Summary
The solution(s) found are the following

(1)5y4 − xy3 + 3y2x2 + 3yx3 + x4 = c1

Figure 1095: Slope field plot

Verification of solutions

5y4 − xy3 + 3y2x2 + 3yx3 + x4 = c1

Verified OK.
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24.26.4 Maple step by step solution

Let’s solve
(3x3 + 6x2y − 3y2x+ 20y3) y′ + 9x2y + 6y2x− y3 = −4x3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
9x2 + 12xy − 3y2 = 9x2 + 12xy − 3y2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(4x3 + 9x2y + 6x y2 − y3) dx+ f1(y)

• Evaluate integral
F (x, y) = x4 + 3x3y + 3y2x2 − x y3 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
3x3 + 6x2y − 3x y2 + 20y3 = 3x3 + 6x2y − 3x y2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 20y3

• Solve for f1(y)
f1(y) = 5y4

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = x4 + 3x3y + 3y2x2 − x y3 + 5y4

• Substitute F (x, y) into the solution of the ODE
x4 + 3x3y + 3y2x2 − x y3 + 5y4 = c1

• Solve for y
y = RootOf

(
5_Z4 − x_Z3 + 3x2_Z2 + 3x3_Z+ x4 − c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 50� �
dsolve((3*x^3+6*x^2*y(x)-3*x*y(x)^2+20*y(x)^3)*diff(y(x),x)+4*x^3+9*x^2*y(x)+6*x*y(x)^2-y(x)^3 = 0,y(x), singsol=all)� �

y(x) =
RootOf

(
c41x

4 + 3_Z c31x
3 + 3_Z2c21x

2 − _Z3c1x+ 5_Z4 − 1
)

c1
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3 Solution by Mathematica
Time used: 60.176 (sec). Leaf size: 2201� �
DSolve[(3 x^3+6 x^2 y[x]-3 x y[x]^2+20 y[x]^3)y'[x]+4 x^3+9 x^2 y[x]+6 x y[x]^2-y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
2

√√√√√√−39x2
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3
√

99x6 + 351ec1x2 +
√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

5 3
√
232/3

+
2 3

√
2
3 (13x4 − 10ec1)

5 3
√

99x6 + 351ec1x2 +
√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

− 1
2

√√√√√√√√√√√
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3
√
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√
3
√
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5 3
√
232/3

+
2 3

√
2
3 (−13x4 + 10ec1)
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√
99x6 + 351ec1x2 +

√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

− 659x3

500

√√√√√√−39x2
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√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

5
3
√
232/3

+
2

3

√
2
3 (13x4−10ec1 )

5
3
√

99x6 + 351ec1x2 +
√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

+ x

20
y(x)

→ 1
2

√√√√√√−39x2

100 +
3
√

99x6 + 351ec1x2 +
√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

5 3
√
232/3

+
2 3

√
2
3 (13x4 − 10ec1)

5 3
√

99x6 + 351ec1x2 +
√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1
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2

√√√√√√√√√√√
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√
3
√
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5 3
√
232/3

+
2 3

√
2
3 (−13x4 + 10ec1)

5 3
√
99x6 + 351ec1x2 +

√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1
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500

√√√√√√−39x2
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√
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√
3
√
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5
3
√
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2
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2
3 (13x4−10ec1 )

5
3
√
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√
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−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

+ x
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y(x) →

−1
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5 3
√
232/3
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2 3

√
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√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

− 1
2

√√√√√√√√√√√
−39x2

50 −
3
√

99x6 + 351ec1x2 +
√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

5 3
√
232/3

+
2 3

√
2
3 (−13x4 + 10ec1)

5 3
√
99x6 + 351ec1x2 +

√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

+ 659x3

500

√√√√√√−39x2

100 +
3
√

99x6 + 351ec1x2 +
√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

5
3
√
232/3

+
2

3

√
2
3 (13x4−10ec1 )

5
3
√
99x6 + 351ec1x2 +

√
3
√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1

+ x

20
y(x) →

−1
2
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√
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√
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√
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√
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+
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√
2
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√
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√
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√
−67037x12 + 185406ec1x8 − 83733e2c1x4 + 32000e3c1
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√√√√√√√√√√√
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√
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√
3
√
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√
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√
2
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√
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√
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√
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√
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√
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√
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√
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√
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24.27 problem 689
24.27.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6946
24.27.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6947
24.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6952

Internal problem ID [3936]
Internal file name [OUTPUT/3429_Sunday_June_05_2022_09_18_52_AM_73933711/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 689.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x3 + ay3

)
y′ − x2y = 0

24.27.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x3 + au(x)3 x3) (u′(x)x+ u(x))− x3u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u4a

x (a u3 + 1)

Where f(x) = −a
x
and g(u) = u4

a u3+1 . Integrating both sides gives

1
u4

a u3+1
du = −a

x
dx
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∫ 1
u4

a u3+1
du =

∫
−a

x
dx

− 1
3u3 + a ln (u) = −a ln (x) + c2

The solution is

− 1
3u (x)3

+ a ln (u(x)) + a ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− x3

3y3 + a ln
(y
x

)
+ a ln (x)− c2 = 0

− x3

3y3 + a ln
(y
x

)
+ a ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)− x3

3y3 + a ln
(y
x

)
+ a ln (x)− c2 = 0

Verification of solutions

− x3

3y3 + a ln
(y
x

)
+ a ln (x)− c2 = 0

Verified OK.

24.27.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2y

a y3 + x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
x2y(b3 − a2)
a y3 + x3 − x4y2a3

(a y3 + x3)2
−
(

2xy
a y3 + x3 −

3x4y

(a y3 + x3)2
)
(xa2+ya3+a1)

−
(

x2

a y3 + x3 − 3x2y3a

(a y3 + x3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

a2y6b2 + 4a x3y3b2 − 3a x2y4a2 + 3a x2y4b3 − 2ax y5a3 + 2a x2y3b1 − 2ax y4a1 − x5b1 + x4ya1

(a y3 + x3)2
= 0

Setting the numerator to zero gives

(6E)a2y6b2 + 4a x3y3b2 − 3a x2y4a2 + 3a x2y4b3 − 2ax y5a3
+ 2a x2y3b1 − 2ax y4a1 − x5b1 + x4ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2b2v
6
2 − 3aa2v21v42 − 2aa3v1v52 + 4ab2v31v32 + 3ab3v21v42

− 2aa1v1v42 + 2ab1v21v32 + a1v
4
1v2 − b1v

5
1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−b1v
5
1 + a1v

4
1v2 + 4ab2v31v32 + (−3aa2 + 3ab3) v21v42

+ 2ab1v21v32 − 2aa3v1v52 − 2aa1v1v42 + a2b2v
6
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a2b2 = 0
−b1 = 0

−2aa1 = 0
−2aa3 = 0
2ab1 = 0
4ab2 = 0

−3aa2 + 3ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

x2y

a y3 + x3

)
(x)

= a y4

a y3 + x3

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a y4

a y3+x3

dy

Which results in

S = − x3

3a y3 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2y

a y3 + x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x2

a y3

Sy =
a y3 + x3

a y4
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y) ay3 − x3

3ay3 = c1

Which simplifies to

3 ln (y) ay3 − x3

3ay3 = c1

Which gives

y = e
LambertW

(
x3e−3c1

a

)
3 +c1

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
x3e−3c1

a

)
3 +c1

Verification of solutions

y = e
LambertW

(
x3e−3c1

a

)
3 +c1

Verified OK.
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24.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
a y3 + x3) dy =

(
x2y
)
dx(

−x2y
)
dx+

(
a y3 + x3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2y

N(x, y) = a y3 + x3
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2y

)
= −x2

And

∂N

∂x
= ∂

∂x

(
a y3 + x3)

= 3x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

a y3 + x3

((
−x2)− (3x2))

= − 4x2

a y3 + x3

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

x2y

((
3x2)− (−x2))

= −4
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 4

y
dy
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The result of integrating gives

µ = e−4 ln(y)

= 1
y4

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y4
(
−x2y

)
= −x2

y3

And

N = µN

= 1
y4
(
a y3 + x3)

= a y3 + x3

y4

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−x2

y3

)
+
(
a y3 + x3

y4

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2

y3
dx

(3)φ = − x3

3y3 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3

y4
+ f ′(y)

But equation (2) says that ∂φ
∂y

= a y3+x3

y4
. Therefore equation (4) becomes

(5)a y3 + x3

y4
= x3

y4
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a

y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
a

y

)
dy

f(y) = a ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x3

3y3 + a ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x3

3y3 + a ln (y)

The solution becomes

y = e
LambertW

x3e−
3c1
a

a

a+3c1

3a
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Summary
The solution(s) found are the following

(1)y = e
LambertW

x3e−
3c1
a

a

a+3c1

3a

Verification of solutions

y = e
LambertW

x3e−
3c1
a

a

a+3c1

3a

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve((x^3+a*y(x)^3)*diff(y(x),x) = x^2*y(x),y(x), singsol=all)� �

y(x) =
(

1
aLambertW

(
x3c1
a

)) 1
3

x
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3 Solution by Mathematica
Time used: 18.61 (sec). Leaf size: 113� �
DSolve[(x^3+a y[x]^3)y'[x]==x^2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

3
√
a 3

√√√√W

(
x3e−

3c1
a

a

)

y(x) → −
3
√
−1x

3
√
a 3

√√√√W

(
x3e−

3c1
a

a

)

y(x) → (−1)2/3x

3
√
a 3

√√√√W

(
x3e−

3c1
a

a

)
y(x) → 0
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24.28 problem 691
24.28.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6958
24.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 6960
24.28.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6964
24.28.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6968

Internal problem ID [3937]
Internal file name [OUTPUT/3430_Sunday_June_05_2022_09_18_56_AM_11661519/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 691.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy3y′ −
(
−x2 + 1

) (
y2 + 1

)
= 0

24.28.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x2 − 1) (−y2 − 1)
x y3

Where f(x) = x2−1
x

and g(y) = −y2−1
y3

. Integrating both sides gives

1
−y2−1

y3

dy = x2 − 1
x

dx

∫ 1
−y2−1

y3

dy =
∫

x2 − 1
x

dx
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−y2

2 + ln (y2 + 1)
2 = x2

2 − ln (x) + c1

Which results in

y = RootOf
(
_Z2 + x2 + 2c1 − 2RootOf

(
x4 + 2c1x2 − 2x2_Z+ e2_Z − x2))

Summary
The solution(s) found are the following

(1)y = RootOf
(
_Z2 + x2 + 2c1 − 2RootOf

(
x4 + 2c1x2 − 2x2_Z+ e2_Z − x2))

Figure 1096: Slope field plot

Verification of solutions

y = RootOf
(
_Z2 + x2 + 2c1 − 2RootOf

(
x4 + 2c1x2 − 2x2_Z+ e2_Z − x2))

Verified OK.
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24.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2x2 + x2 − y2 − 1
x y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 966: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

x2 − 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
x2−1

dx

Which results in

S = x2

2 − ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2x2 + x2 − y2 − 1
x y3
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x− 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − y3

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − R3

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2

2 + ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 − ln (x) = −y2

2 + ln (y2 + 1)
2 + c1

Which simplifies to

x2

2 − ln (x) = −y2

2 + ln (y2 + 1)
2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2x2+x2−y2−1
x y3

dS
dR

= − R3

R2+1

R = y

S = x2

2 − ln (x)

Summary
The solution(s) found are the following

(1)x2

2 − ln (x) = −y2

2 + ln (y2 + 1)
2 + c1
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Figure 1097: Slope field plot

Verification of solutions

x2

2 − ln (x) = −y2

2 + ln (y2 + 1)
2 + c1

Verified OK.

24.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y3

−y2 − 1

)
dy =

(
x2 − 1

x

)
dx(

−x2 − 1
x

)
dx+

(
y3

−y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − 1
x

N(x, y) = y3

−y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − 1

x

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y3

−y2 − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − 1

x
dx

(3)φ = −x2

2 + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y3

−y2−1 . Therefore equation (4) becomes

(5)y3

−y2 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − y3

y2 + 1

6966



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− y3

y2 + 1

)
dy

f(y) = −y2

2 + ln (y2 + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (x)− y2

2 + ln (y2 + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (x)− y2

2 + ln (y2 + 1)
2

Summary
The solution(s) found are the following

(1)−x2

2 + ln (x)− y2

2 + ln (y2 + 1)
2 = c1
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Figure 1098: Slope field plot

Verification of solutions

−x2

2 + ln (x)− y2

2 + ln (y2 + 1)
2 = c1

Verified OK.

24.28.4 Maple step by step solution

Let’s solve
xy3y′ − (−x2 + 1) (y2 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y3

y2+1 = −x2+1
x

• Integrate both sides with respect to x∫
y′y3

y2+1dx =
∫ −x2+1

x
dx+ c1

• Evaluate integral
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y2

2 − ln
(
y2+1

)
2 = −x2

2 + ln (x) + c1

• Solve for yy =

√
LambertW

(
− ex

2−2c1−1
x2

)(
LambertW

(
− ex

2−2c1−1
x2

)
+1
)

LambertW
(
− ex

2−2c1−1
x2

)√√√√− 1

x2LambertW
(
− ex

2−2c1−1
x2

) x
, y = −

√
LambertW

(
− ex

2−2c1−1
x2

)(
LambertW

(
− ex

2−2c1−1
x2

)
+1
)

LambertW
(
− ex

2−2c1−1
x2

)√√√√− 1

x2LambertW
(
− ex

2−2c1−1
x2

) x


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.359 (sec). Leaf size: 29� �
dsolve(x*y(x)^3*diff(y(x),x) = (-x^2+1)*(1+y(x)^2),y(x), singsol=all)� �

x2

2 − ln (x) + y(x)2

2 −
ln
(
y(x)2 + 1

)
2 + c1 = 0

3 Solution by Mathematica
Time used: 60.095 (sec). Leaf size: 61� �
DSolve[x y[x]^3 y'[x]==(1-x^2)(1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−1−W

(
−ex2−1−2c1

x2

)

y(x) →

√
−1−W

(
−ex2−1−2c1

x2

)
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24.29 problem 692
24.29.1 Solving as first order ode lie symmetry calculated ode . . . . . . 6970
24.29.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 6976

Internal problem ID [3938]
Internal file name [OUTPUT/3431_Sunday_June_05_2022_09_19_01_AM_25060472/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 692.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
x− y3

)
y′ −

(
3x+ y3

)
y = 0

24.29.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(y3 + 3x)
x (y3 − x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(y3 + 3x) (b3 − a2)

x (y3 − x) − y2(y3 + 3x)2 a3
x2 (y3 − x)2

−
(
− 3y
x (y3 − x) +

y(y3 + 3x)
x2 (y3 − x) −

y(y3 + 3x)
x (y3 − x)2

)
(xa2 + ya3 + a1)

−
(
− y3 + 3x
x (y3 − x) −

3y3
x (y3 − x) +

3y3(y3 + 3x)
x (y3 − x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−2x2y6b2 + 2y8a3 − x y6b1 + y7a1 + 12x3y3b2 − 4x2y4a2 + 12x2y4b3 + 4x y5a3 + 10x2y3b1 − 2x y4a1 + 2x4b2 + 6x2y2a3 + 3x3b1 − 3x2ya1

x2 (−y3 + x)2
= 0

Setting the numerator to zero gives

(6E)2x2y6b2 − 2y8a3 + x y6b1 − y7a1 − 12x3y3b2 + 4x2y4a2 − 12x2y4b3
− 4x y5a3 − 10x2y3b1 + 2x y4a1 − 2x4b2 − 6x2y2a3 − 3x3b1 + 3x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v82 + 2b2v21v62 − a1v
7
2 + b1v1v

6
2 + 4a2v21v42 − 4a3v1v52 − 12b2v31v32

− 12b3v21v42 + 2a1v1v42 − 10b1v21v32 − 6a3v21v22 − 2b2v41 + 3a1v21v2 − 3b1v31 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−2b2v41 − 12b2v31v32 − 3b1v31 + 2b2v21v62 + (4a2 − 12b3) v21v42 − 10b1v21v32
− 6a3v21v22 + 3a1v21v2 + b1v1v

6
2 − 4a3v1v52 + 2a1v1v42 − 2a3v82 − a1v

7
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
2a1 = 0
3a1 = 0

−6a3 = 0
−4a3 = 0
−2a3 = 0
−10b1 = 0
−3b1 = 0
−12b2 = 0
−2b2 = 0
2b2 = 0

4a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 3b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(y3 + 3x)

x (y3 − x)

)
(3x)

= −4y4 − 8xy
−y3 + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4y4−8xy
−y3+x

dy

Which results in

S = ln (y3 + 2x)
8 − ln (y)

8
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(y3 + 3x)
x (y3 − x)

6973



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
4y3 + 8x

Sy =
y3 − x

4y4 + 8xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y3 + 2x)
8 − ln (y)

8 = − ln (x)
4 + c1

Which simplifies to

ln (y3 + 2x)
8 − ln (y)

8 = − ln (x)
4 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
y3+3x

)
x(y3−x)

dS
dR

= − 1
4R

R = x

S = ln (y3 + 2x)
8 − ln (y)

8

Summary
The solution(s) found are the following

(1)ln (y3 + 2x)
8 − ln (y)

8 = − ln (x)
4 + c1
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Figure 1099: Slope field plot

Verification of solutions

ln (y3 + 2x)
8 − ln (y)

8 = − ln (x)
4 + c1

Verified OK.

24.29.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−y3 + x

))
dy =

(
y
(
y3 + 3x

))
dx(

−y
(
y3 + 3x

))
dx+

(
x
(
−y3 + x

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
y3 + 3x

)
N(x, y) = x

(
−y3 + x

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
y3 + 3x

))
= −4y3 − 3x

And
∂N

∂x
= ∂

∂x

(
x
(
−y3 + x

))
= −y3 + 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection x
y2

is an integrating factor.
Therefore by multiplying M = −(3x+ y3) y and N = x(x− y3) by this integrating
factor the ode becomes exact. The new M,N are

M = −x(3x+ y3)
y

N = x2(x− y3)
y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
x2(−y3 + x)

y2

)
dy =

(
x(y3 + 3x)

y

)
dx(

−x(y3 + 3x)
y

)
dx+

(
x2(−y3 + x)

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x(y3 + 3x)
y

N(x, y) = x2(−y3 + x)
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x(y3 + 3x)

y

)
= −2x y3 + 3x2

y2

And
∂N

∂x
= ∂

∂x

(
x2(−y3 + x)

y2

)
= −2x y3 + 3x2

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x(y3 + 3x)

y
dx

(3)φ = −x2(y3 + 2x)
2y + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3x2y

2 + x2(y3 + 2x)
2y2 + f ′(y)

= x2(−y3 + x)
y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2(−y3+x
)

y2
. Therefore equation (4) becomes

(5)x2(−y3 + x)
y2

= x2(−y3 + x)
y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2(y3 + 2x)
2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2(y3 + 2x)
2y

Summary
The solution(s) found are the following

(1)−x2(y3 + 2x)
2y = c1
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Figure 1100: Slope field plot

Verification of solutions

−x2(y3 + 2x)
2y = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 272� �
dsolve(x*(x-y(x)^3)*diff(y(x),x) = (3*x+y(x)^3)*y(x),y(x), singsol=all)� �
y(x) =

(
−27x4 + 3

√
81x8 − 3 e8c1

) 2
3 + 3 e

8c1
3

3x
(
−27x4 + 3

√
81x8 − 3 e8c1

) 1
3

y(x)

=
−i

√
3
(
−27x4 + 3

√
81x8 − 3 e8c1

) 2
3 + 3i

√
3 e

8c1
3 −

(
−27x4 + 3

√
81x8 − 3 e8c1

) 2
3 − 3 e

8c1
3

6x
(
−27x4 + 3

√
81x8 − 3 e8c1

) 1
3

y(x) =

−
−i

√
3
(
−27x4 + 3

√
81x8 − 3 e8c1

) 2
3 + 3i

√
3 e

8c1
3 +

(
−27x4 + 3

√
81x8 − 3 e8c1

) 2
3 + 3 e

8c1
3

6x
(
−27x4 + 3

√
81x8 − 3 e8c1

) 1
3

3 Solution by Mathematica
Time used: 60.326 (sec). Leaf size: 356� �
DSolve[x(x-y[x]^3)y'[x]==(3 x+y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
8c1
3

3
√

−27x7 + 3
√
3
√

−x6 (−27x8 + e8c1)
+

3
√

−9x7 +
√
3
√
−x6 (−27x8 + e8c1)

32/3x2

y(x) →
i
6
√
3
(√

3+i
)(

−9x7+
√
3
√

−x6
(
−27x8+e8c1

))2/3
x2 −

(√
3 + 3i

)
e

8c1
3

2 35/6 3
√
−9x7 +

√
3
√
−x6 (−27x8 + e8c1)

y(x) →

(
−1−i

√
3
)(

−9x7+
√
3
√

−x6
(
−27x8+e8c1

))2/3
x2 + i

3
√
3
(√

3 + i
)
e

8c1
3

2 32/3 3
√

−9x7 +
√
3
√

−x6 (−27x8 + e8c1)
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24.30 problem 693
24.30.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6983
24.30.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6985

Internal problem ID [3939]
Internal file name [OUTPUT/3432_Sunday_June_05_2022_09_19_11_AM_23615822/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 693.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
2x3 + y3

)
y′ −

(
2x3 − x2y + y3

)
y = 0

24.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
2x3 + u(x)3 x3) (u′(x)x+ u(x))−

(
2x3 − x3u(x) + u(x)3 x3)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2

x (u3 + 2)

Where f(x) = − 1
x
and g(u) = u2

u3+2 . Integrating both sides gives

1
u2

u3+2
du = −1

x
dx
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∫ 1
u2

u3+2
du =

∫
−1
x
dx

u2

2 − 2
u
= − ln (x) + c2

The solution is
u(x)2

2 − 2
u (x) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

2x2 − 2x
y

+ ln (x)− c2 = 0

y2

2x2 − 2x
y

+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y2

2x2 − 2x
y

+ ln (x)− c2 = 0

Figure 1101: Slope field plot
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Verification of solutions

y2

2x2 − 2x
y

+ ln (x)− c2 = 0

Verified OK.

24.30.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (2x3 − x2y + y3) y
x (2x3 + y3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2x3 − x2y + y3) y(b3 − a2)

x (2x3 + y3) − (2x3 − x2y + y3)2 y2a3
x2 (2x3 + y3)2

−
(
(6x2 − 2xy) y
x (2x3 + y3) − (2x3 − x2y + y3) y

x2 (2x3 + y3) − 6(2x3 − x2y + y3) yx
(2x3 + y3)2

)
(xa2

+ ya3 + a1)−
(
(−x2 + 3y2) y
x (2x3 + y3) + 2x3 − x2y + y3

x (2x3 + y3)

− 3(2x3 − x2y + y3) y3

x (2x3 + y3)2
)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

4x7yb2 − 2x6y2a2 + 2x6y2b3 − x4y4a3 − x4y4b2 + 2x3y5a2 − 2x3y5b3 + 3x2y6a3 − 4x7b1 + 4x6ya1 + 4x6yb1 − 4x5y2a1 − 4x4y3b1 + 4x3y4a1 − x3y4b1 + x2y5a1 − x y6b1 + y7a1

x2 (2x3 + y3)2
= 0

Setting the numerator to zero gives

(6E)4x7yb2 − 2x6y2a2 + 2x6y2b3 − x4y4a3 − x4y4b2 + 2x3y5a2
− 2x3y5b3 + 3x2y6a3 − 4x7b1 + 4x6ya1 + 4x6yb1 − 4x5y2a1
− 4x4y3b1 + 4x3y4a1 − x3y4b1 + x2y5a1 − x y6b1 + y7a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v61v22 + 2a2v31v52 − a3v
4
1v

4
2 + 3a3v21v62 + 4b2v71v2 − b2v

4
1v

4
2

+ 2b3v61v22 − 2b3v31v52 + 4a1v61v2 − 4a1v51v22 + 4a1v31v42 + a1v
2
1v

5
2

+ a1v
7
2 − 4b1v71 + 4b1v61v2 − 4b1v41v32 − b1v

3
1v

4
2 − b1v1v

6
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)4b2v71v2 − 4b1v71 + (−2a2 + 2b3) v61v22 + (4a1 + 4b1) v61v2
− 4a1v51v22 + (−a3 − b2) v41v42 − 4b1v41v32 + (2a2 − 2b3) v31v52
+ (4a1 − b1) v31v42 + 3a3v21v62 + a1v

2
1v

5
2 − b1v1v

6
2 + a1v

7
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−4a1 = 0
3a3 = 0

−4b1 = 0
−b1 = 0
4b2 = 0

4a1 − b1 = 0
4a1 + 4b1 = 0

−2a2 + 2b3 = 0
2a2 − 2b3 = 0
−a3 − b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
(2x3 − x2y + y3) y

x (2x3 + y3)

)
(x)

= y2x2

2x3 + y3

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2x2

2x3+y3

dy

Which results in

S =
y2

2 − 2x3

y

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (2x3 − x2y + y3) y
x (2x3 + y3)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x3 − y3

x3y

Sy =
2x3 + y3

y2x2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−4x3 + y3

2x2y
= − ln (x) + c1

Which simplifies to
−4x3 + y3

2x2y
= − ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
2x3−x2y+y3

)
y

x(2x3+y3)
dS
dR

= − 1
R

R = x

S = −4x3 + y3

2x2y
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Summary
The solution(s) found are the following

(1)−4x3 + y3

2x2y
= − ln (x) + c1

Figure 1102: Slope field plot

Verification of solutions

−4x3 + y3

2x2y
= − ln (x) + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 285� �
dsolve(x*(2*x^3+y(x)^3)*diff(y(x),x) = (2*x^3-x^2*y(x)+y(x)^3)*y(x),y(x), singsol=all)� �
y(x)

=−

(
−
(
54 + 6

√
6c31 + 18c21 ln (x) + 18c1 ln (x)2 + 6 ln (x)3 + 81

) 2
3

+ 6 ln (x) + 6c1

)
x

3
(
54 + 6

√
6c31 + 18c21 ln (x) + 18c1 ln (x)2 + 6 ln (x)3 + 81

) 1
3

y(x) =

−

((
i
√
3

6 + 1
6

)(
54 + 6

√
6c31 + 18c21 ln (x) + 18c1 ln (x)2 + 6 ln (x)3 + 81

) 2
3

+
(
i
√
3− 1

)
(ln (x) + c1)

)
x

(
54 + 6

√
6c31 + 18c21 ln (x) + 18c1 ln (x)2 + 6 ln (x)3 + 81

) 1
3

y(x) =

(
i
√
3−1

)(
54+6

√
6c31+18c21 ln(x)+18c1 ln(x)2+6 ln(x)3+81

) 2
3

6 + (ln (x) + c1)
(
1 + i

√
3
)x

(
54 + 6

√
6c31 + 18c21 ln (x) + 18c1 ln (x)2 + 6 ln (x)3 + 81

) 1
3
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3 Solution by Mathematica
Time used: 60.176 (sec). Leaf size: 362� �
DSolve[x(2 x^3+y[x]^3)y'[x]==(2 x^3-x^2 y[x]+y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
−62/3x2 log(x) + 62/3c1x2 + 3

√
6
(
9x3 +

√
3
√
x6 (27 + 2(log(x)− c1)3)

)
2/3

3 3
√

9x3 +
√
3
√

x6 (27 + 2(log(x)− c1)3)

y(x) →
i
(√

3 + i
) 3
√

9x3 +
√
3
√
x6 (27 + 2(log(x)− c1)3)

62/3

+
(
1 + i

√
3
)
x2(log(x)− c1)

3
√
6 3
√

9x3 +
√
3
√

x6 (27 + 2(log(x)− c1)3)

y(x) →
i
(√

3 + i
)
x2(− log(x) + c1)

3
√
6 3
√

9x3 +
√
3
√

x6 (27 + 2(log(x)− c1)3)

−
(
1 + i

√
3
) 3
√

9x3 +
√
3
√

x6 (27 + 2(log(x)− c1)3)
62/3
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24.31 problem 694
24.31.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 6993
24.31.2 Solving as first order ode lie symmetry calculated ode . . . . . . 6995
24.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7001

Internal problem ID [3940]
Internal file name [OUTPUT/3433_Sunday_June_05_2022_09_19_15_AM_38741446/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 694.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
2x3 − y3

)
y′ −

(
x3 − 2y3

)
y = 0

24.31.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
2x3 − u(x)3 x3) (u′(x)x+ u(x))−

(
x3 − 2u(x)3 x3)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u4 + u

(u3 − 2)x

Where f(x) = 1
x
and g(u) = u4+u

u3−2 . Integrating both sides gives

1
u4+u
u3−2

du = 1
x
dx
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∫ 1
u4+u
u3−2

du =
∫ 1

x
dx

ln
(
u2 − u+ 1

)
+ ln (u+ 1)− 2 ln (u) = ln (x) + c2

Raising both side to exponential gives

eln
(
u2−u+1

)
+ln(u+1)−2 ln(u) = eln(x)+c2

Which simplifies to

(u2 − u+ 1) (u+ 1)
u2 = c3x

The solution is (
u(x)2 − u(x) + 1

)
(u(x) + 1)

u (x)2
= c3x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y2

x2 − y
x
+ 1
) (

y
x
+ 1
)
x2

y2
= c3x

(x2 − yx+ y2) (y + x)
xy2

= c3x

Summary
The solution(s) found are the following

(1)(x2 − yx+ y2) (y + x)
xy2

= c3x
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Figure 1103: Slope field plot

Verification of solutions

(x2 − yx+ y2) (y + x)
xy2

= c3x

Verified OK.

24.31.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(−x3 + 2y3)
x (−2x3 + y3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(−x3 + 2y3) (b3 − a2)

x (−2x3 + y3) − y2(−x3 + 2y3)2 a3
x2 (−2x3 + y3)2

−
(
− 3yx
−2x3 + y3

− y(−x3 + 2y3)
x2 (−2x3 + y3) +

6y(−x3 + 2y3)x
(−2x3 + y3)2

)
(xa2 + ya3 + a1)

−
(

−x3 + 2y3
x (−2x3 + y3) +

6y3
x (−2x3 + y3)−

3y3(−x3 + 2y3)
x (−2x3 + y3)2

)
(xb2+yb3+ b1) = 0

Putting the above in normal form gives

2x8b2 + x6y2a3 + 10x5y3b2 − 9x4y4a2 + 9x4y4b3 − 10x3y5a3 − x2y6b2 − 2y8a3 − 2x7b1 + 2x6ya1 + 14x4y3b1 − 14x3y4a1 − 2x y6b1 + 2y7a1
(2x3 − y3)2 x2

= 0

Setting the numerator to zero gives

(6E)2x8b2 + x6y2a3 + 10x5y3b2 − 9x4y4a2 + 9x4y4b3 − 10x3y5a3 − x2y6b2
− 2y8a3 − 2x7b1 + 2x6ya1 + 14x4y3b1 − 14x3y4a1 − 2x y6b1 + 2y7a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−9a2v41v42 + a3v
6
1v

2
2 − 10a3v31v52 − 2a3v82 + 2b2v81 + 10b2v51v32 − b2v

2
1v

6
2

+ 9b3v41v42 + 2a1v61v2 − 14a1v31v42 + 2a1v72 − 2b1v71 + 14b1v41v32 − 2b1v1v62 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v81 − 2b1v71 + a3v
6
1v

2
2 + 2a1v61v2 + 10b2v51v32 + (−9a2 + 9b3) v41v42

+ 14b1v41v32 − 10a3v31v52 − 14a1v31v42 − b2v
2
1v

6
2 − 2b1v1v62 − 2a3v82 + 2a1v72 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
−14a1 = 0

2a1 = 0
−10a3 = 0
−2a3 = 0
−2b1 = 0
14b1 = 0
−b2 = 0
2b2 = 0
10b2 = 0

−9a2 + 9b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(−x3 + 2y3)
x (−2x3 + y3)

)
(x)

= x3y + y4

2x3 − y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3y+y4

2x3−y3

dy

Which results in

S = − ln (y + x)− ln
(
x2 − xy + y2

)
+ 2 ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(−x3 + 2y3)
x (−2x3 + y3)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3x2

(y + x) (x2 − xy + y2)

Sy =
2x3 − y3

y (y + x) (x2 − xy + y2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y + x)− ln
(
x2 − yx+ y2

)
+ 2 ln (y) = −2 ln (x) + c1

Which simplifies to

− ln (y + x)− ln
(
x2 − yx+ y2

)
+ 2 ln (y) = −2 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
−x3+2y3

)
x(−2x3+y3)

dS
dR

= − 2
R

R = x

S = − ln (y + x)− ln
(
x2 − xy + y2

)
+ 2 ln (y)

Summary
The solution(s) found are the following

(1)− ln (y + x)− ln
(
x2 − yx+ y2

)
+ 2 ln (y) = −2 ln (x) + c1
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Figure 1104: Slope field plot

Verification of solutions

− ln (y + x)− ln
(
x2 − yx+ y2

)
+ 2 ln (y) = −2 ln (x) + c1

Verified OK.

24.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
2x3 − y3

))
dy =

(
y
(
x3 − 2y3

))
dx(

−y
(
x3 − 2y3

))
dx+

(
x
(
2x3 − y3

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
x3 − 2y3

)
N(x, y) = x

(
2x3 − y3

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
x3 − 2y3

))
= −x3 + 8y3

And
∂N

∂x
= ∂

∂x

(
x
(
2x3 − y3

))
= 8x3 − y3
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x4 − x y3
((
−x3 + 8y3

)
−
(
8x3 − y3

))
= −9x3 + 9y3

2x4 − x y3

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (x3 − 2y3)
((
8x3 − y3

)
−
(
−x3 + 8y3

))
= −9x3 + 9y3

y (x3 − 2y3)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (8x3 − y3)− (−x3 + 8y3)
x (−y (x3 − 2y3))− y (x (2x3 − y3))

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(
−y
(
x3 − 2y3

))
= −x3 + 2y3

x3y2

And

N = µN

= 1
x3y3

(
x
(
2x3 − y3

))
= 2x3 − y3

x2y3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−x3 + 2y3
x3y2

)
+
(
2x3 − y3

x2y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 + 2y3

x3y2
dx

(3)φ = −x3 − y3

y2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 3

x2 − 2(−x3 − y3)
y3x2 + f ′(y)

= 2x3 − y3

x2y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x3−y3

x2y3
. Therefore equation (4) becomes

(5)2x3 − y3

x2y3
= 2x3 − y3

x2y3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x3 − y3

y2x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x3 − y3

y2x2
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Summary
The solution(s) found are the following

(1)−x3 − y3

y2x2 = c1

Figure 1105: Slope field plot

Verification of solutions

−x3 − y3

y2x2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 327� �
dsolve(x*(2*x^3-y(x)^3)*diff(y(x),x) = (x^3-2*y(x)^3)*y(x),y(x), singsol=all)� �

y(x) =

(
−108+8x3c31+12

√
−12x3c31+81

) 1
3

2 + 2x2c21(
−108+8x3c31+12

√
−12x3c31+81

) 1
3
+ c1x

x

3
y(x) =

−

(
−4i

√
3 c21x2 + i

√
3
(
−108 + 8x3c31 + 12

√
−12x3c31 + 81

) 2
3 + 4c21x2 − 4c1x

(
−108 + 8x3c31 + 12

√
−12x3c31 + 81

) 1
3 +

(
−108 + 8x3c31 + 12

√
−12x3c31 + 81

) 2
3
)
x

12
(
−108 + 8x3c31 + 12

√
−12x3c31 + 81

) 1
3

y(x) =

(
−108 + 8x3c31 + 12

√
−12x3c31 + 81

) 1
3 (

i
√
3− 1

)
x

12

−
c1x

2
(
ixc1

√
3 + c1x−

(
−108 + 8x3c31 + 12

√
−12x3c31 + 81

) 1
3
)

3
(
−108 + 8x3c31 + 12

√
−12x3c31 + 81

) 1
3
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3 Solution by Mathematica
Time used: 57.083 (sec). Leaf size: 542� �
DSolve[x(2 x^3-y[x]^3)y'[x]==(x^3-2 y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3

ec1x2 +
3
√
2e3c1x6 − 27x3 + 3

√
81x6 − 12e3c1x9

3
√
2

+
3
√
2e2c1x4

3
√

2e3c1x6 − 27x3 + 3
√
81x6 − 12e3c1x9


y(x) → ec1x2

3 +
i
(√

3 + i
) 3
√
2e3c1x6 − 27x3 + 3

√
81x6 − 12e3c1x9

6 3
√
2

−
i
(√

3− i
)
e2c1x4

3 22/3 3
√

2e3c1x6 − 27x3 + 3
√
81x6 − 12e3c1x9

y(x) → ec1x2

3 −
i
(√

3− i
) 3
√
2e3c1x6 − 27x3 + 3

√
81x6 − 12e3c1x9

6 3
√
2

+
i
(√

3 + i
)
e2c1x4

3 22/3 3
√

2e3c1x6 − 27x3 + 3
√
81x6 − 12e3c1x9

y(x) →
3
√√

x6 − x3

3
√
2

y(x) → −
i
(√

3− i
) 3
√√

x6 − x3

2 3
√
2

y(x) →
i
(√

3 + i
) 3
√√

x6 − x3

2 3
√
2
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24.32 problem 695
24.32.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 7009
24.32.2 Solving as first order ode lie symmetry calculated ode . . . . . . 7011

Internal problem ID [3941]
Internal file name [OUTPUT/3434_Sunday_June_05_2022_09_19_20_AM_83392845/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 695.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x3 + 3x2y + y3

)
y′ −

(
y2 + 3x2) y2 = 0

24.32.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x3 + 3x3u(x) + u(x)3 x3) (u′(x)x+ u(x))−

(
u(x)2 x2 + 3x2)u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u

x (u3 + 3u+ 1)
Where f(x) = − 1

x
and g(u) = u

u3+3u+1 . Integrating both sides gives

1
u

u3+3u+1
du = −1

x
dx

∫ 1
u

u3+3u+1
du =

∫
−1
x
dx

u3

3 + 3u+ ln (u) = − ln (x) + c2

7009



The solution is
u(x)3

3 + 3u(x) + ln (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y3

3x3 + 3y
x

+ ln
(y
x

)
+ ln (x)− c2 = 0

y3

3x3 + 3y
x

+ ln
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y3

3x3 + 3y
x

+ ln
(y
x

)
+ ln (x)− c2 = 0

Figure 1106: Slope field plot

Verification of solutions

y3

3x3 + 3y
x

+ ln
(y
x

)
+ ln (x)− c2 = 0

Verified OK.
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24.32.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (3x2 + y2) y2
x (x3 + 3x2y + y3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(3x2 + y2) y2(b3 − a2)
x (x3 + 3x2y + y3) − (3x2 + y2)2 y4a3

x2 (x3 + 3x2y + y3)2
−
(

6y2
x3 + 3x2y + y3

− (3x2 + y2) y2
x2 (x3 + 3x2y + y3) −

(3x2 + y2) y2(3x2 + 6xy)
x (x3 + 3x2y + y3)2

)
(xa2 + ya3 + a1)

−
(

2y3
x (x3 + 3x2y + y3) +

2(3x2 + y2) y
x (x3 + 3x2y + y3)

− (3x2 + y2) y2(3x2 + 3y2)
x (x3 + 3x2y + y3)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x8b2 + 3x6y2a2 − 3x6y2b3 + 6x5y3a3 − 2x5y3b2 + 3x4y4a2 − 3x4y4b3 + 4x3y5a3 − 6x6yb1 + 6x5y2a1 − 9x5y2b1 + 9x4y3a1 − 4x4y3b1 + 4x3y4a1 − 6x3y4b1 + 6x2y5a1 − x y6b1 + y7a1

(x3 + 3x2y + y3)2 x2

= 0
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Setting the numerator to zero gives

(6E)x8b2 + 3x6y2a2 − 3x6y2b3 + 6x5y3a3 − 2x5y3b2 + 3x4y4a2
− 3x4y4b3 + 4x3y5a3 − 6x6yb1 + 6x5y2a1 − 9x5y2b1 + 9x4y3a1
− 4x4y3b1 + 4x3y4a1 − 6x3y4b1 + 6x2y5a1 − x y6b1 + y7a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v61v22 + 3a2v41v42 + 6a3v51v32 + 4a3v31v52 + b2v
8
1 − 2b2v51v32

− 3b3v61v22 − 3b3v41v42 + 6a1v51v22 + 9a1v41v32 + 4a1v31v42 + 6a1v21v52
+ a1v

7
2 − 6b1v61v2 − 9b1v51v22 − 4b1v41v32 − 6b1v31v42 − b1v1v

6
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
8
1 + (3a2 − 3b3) v61v22 − 6b1v61v2 + (6a3 − 2b2) v51v32

+ (6a1 − 9b1) v51v22 + (3a2 − 3b3) v41v42 + (9a1 − 4b1) v41v32
+ 4a3v31v52 + (4a1 − 6b1) v31v42 + 6a1v21v52 − b1v1v

6
2 + a1v

7
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

6a1 = 0
4a3 = 0

−6b1 = 0
−b1 = 0

4a1 − 6b1 = 0
6a1 − 9b1 = 0
9a1 − 4b1 = 0
3a2 − 3b3 = 0
6a3 − 2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

(3x2 + y2) y2
x (x3 + 3x2y + y3)

)
(x)

= x3y

x3 + 3x2y + y3

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3y
x3+3x2y+y3

dy

Which results in

S = y3

3x3 + 3y
x

+ ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (3x2 + y2) y2
x (x3 + 3x2y + y3)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −3x2y − y3

x4

Sy =
x3 + 3x2y + y3

x3y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y)x3 + 9x2y + y3

3x3 = c1

Which simplifies to
3 ln (y)x3 + 9x2y + y3

3x3 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
3x2+y2

)
y2

x(x3+3x2y+y3)
dS
dR

= 0

R = x

S = 3 ln (y)x3 + 9x2y + y3

3x3
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Summary
The solution(s) found are the following

(1)3 ln (y)x3 + 9x2y + y3

3x3 = c1

Figure 1107: Slope field plot

Verification of solutions

3 ln (y)x3 + 9x2y + y3

3x3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 27� �
dsolve(x*(x^3+3*x^2*y(x)+y(x)^3)*diff(y(x),x) = (3*x^2+y(x)^2)*y(x)^2,y(x), singsol=all)� �

y(x) = eRootOf
(
e3_Z+9 e_Z+3c1+3_Z+3 ln(x)

)
x

3 Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 37� �
DSolve[x(x^3+3 x^2 y[x]+y[x]^3)y'[x]==(3 x^2+y[x]^2)y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)3
3x3 + 3y(x)

x
+ log

(
y(x)
x

)
= − log(x) + c1, y(x)

]
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24.33 problem 696
24.33.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 7018
24.33.2 Solving as first order ode lie symmetry calculated ode . . . . . . 7020
24.33.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7026

Internal problem ID [3942]
Internal file name [OUTPUT/3435_Sunday_June_05_2022_09_19_25_AM_77224013/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 696.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x3 − 2y3

)
y′ −

(
2x3 − y3

)
y = 0

24.33.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x3 − 2u(x)3 x3) (u′(x)x+ u(x))−

(
2x3 − u(x)3 x3)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u4 + u

x (2u3 − 1)

Where f(x) = − 1
x
and g(u) = u4+u

2u3−1 . Integrating both sides gives

1
u4+u
2u3−1

du = −1
x
dx
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∫ 1
u4+u
2u3−1

du =
∫

−1
x
dx

ln
(
u2 − u+ 1

)
+ ln (u+ 1)− ln (u) = − ln (x) + c2

Raising both side to exponential gives

eln
(
u2−u+1

)
+ln(u+1)−ln(u) = e− ln(x)+c2

Which simplifies to

(u2 − u+ 1) (u+ 1)
u

= c3
x

The solution is (
u(x)2 − u(x) + 1

)
(u(x) + 1)

u (x) = c3
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y2

x2 − y
x
+ 1
) (

y
x
+ 1
)
x

y
= c3

x

(x2 − yx+ y2) (y + x)
x2y

= c3
x

Which simplifies to

(x2 − yx+ y2) (y + x)
xy

= c3

Summary
The solution(s) found are the following

(1)(x2 − yx+ y2) (y + x)
xy

= c3
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Figure 1108: Slope field plot

Verification of solutions

(x2 − yx+ y2) (y + x)
xy

= c3

Verified OK.

24.33.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(−2x3 + y3)
x (−x3 + 2y3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(−2x3 + y3) (b3 − a2)

x (−x3 + 2y3) − y2(−2x3 + y3)2 a3
x2 (−x3 + 2y3)2

−
(
− 6yx
−x3 + 2y3 − y(−2x3 + y3)

x2 (−x3 + 2y3) +
3y(−2x3 + y3)x
(−x3 + 2y3)2

)
(xa2 + ya3 + a1)

−
(

−2x3 + y3

x (−x3 + 2y3) +
3y3

x (−x3 + 2y3)−
6y3(−2x3 + y3)
x (−x3 + 2y3)2

)
(xb2+yb3+ b1) = 0

Putting the above in normal form gives

−x8b2 + 2x6y2a3 + 8x5y3b2 − 9x4y4a2 + 9x4y4b3 − 8x3y5a3 − 2x2y6b2 − y8a3 + 2x7b1 − 2x6ya1 + 4x4y3b1 − 4x3y4a1 + 2x y6b1 − 2y7a1
(x3 − 2y3)2 x2

= 0

Setting the numerator to zero gives

(6E)−x8b2 − 2x6y2a3 − 8x5y3b2 + 9x4y4a2 − 9x4y4b3 + 8x3y5a3 + 2x2y6b2
+ y8a3 − 2x7b1 + 2x6ya1 − 4x4y3b1 + 4x3y4a1 − 2x y6b1 + 2y7a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)9a2v41v42 − 2a3v61v22 + 8a3v31v52 + a3v
8
2 − b2v

8
1 − 8b2v51v32 + 2b2v21v62

− 9b3v41v42 + 2a1v61v2 + 4a1v31v42 + 2a1v72 − 2b1v71 − 4b1v41v32 − 2b1v1v62 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2v
8
1 − 2b1v71 − 2a3v61v22 + 2a1v61v2 − 8b2v51v32 + (9a2 − 9b3) v41v42

− 4b1v41v32 + 8a3v31v52 + 4a1v31v42 + 2b2v21v62 − 2b1v1v62 + a3v
8
2 + 2a1v72 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
2a1 = 0
4a1 = 0

−2a3 = 0
8a3 = 0

−4b1 = 0
−2b1 = 0
−8b2 = 0
−b2 = 0
2b2 = 0

9a2 − 9b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(−2x3 + y3)
x (−x3 + 2y3)

)
(x)

= −x3y − y4

x3 − 2y3
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3y−y4

x3−2y3
dy

Which results in

S = ln (y + x) + ln
(
x2 − xy + y2

)
− ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(−2x3 + y3)
x (−x3 + 2y3)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3x2

(y + x) (x2 − xy + y2)

Sy =
−x3 + 2y3

y (y + x) (x2 − xy + y2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x) + ln
(
x2 − yx+ y2

)
− ln (y) = ln (x) + c1

Which simplifies to

ln (y + x) + ln
(
x2 − yx+ y2

)
− ln (y) = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
−2x3+y3

)
x(−x3+2y3)

dS
dR

= 1
R

R = x

S = ln (y + x) + ln
(
x2 − xy + y2

)
− ln (y)

Summary
The solution(s) found are the following

(1)ln (y + x) + ln
(
x2 − yx+ y2

)
− ln (y) = ln (x) + c1
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Figure 1109: Slope field plot

Verification of solutions

ln (y + x) + ln
(
x2 − yx+ y2

)
− ln (y) = ln (x) + c1

Verified OK.

24.33.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x3 − 2y3

))
dy =

(
y
(
2x3 − y3

))
dx(

−y
(
2x3 − y3

))
dx+

(
x
(
x3 − 2y3

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
2x3 − y3

)
N(x, y) = x

(
x3 − 2y3

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
2x3 − y3

))
= −2x3 + 4y3

And
∂N

∂x
= ∂

∂x

(
x
(
x3 − 2y3

))
= 4x3 − 2y3
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x3 − 2y3)
((
−2x3 + 4y3

)
−
(
4x3 − 2y3

))
= −6x3 + 6y3

x (x3 − 2y3)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2x3y − y4
((
4x3 − 2y3

)
−
(
−2x3 + 4y3

))
= −6x3 + 6y3

2x3y − y4

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (4x3 − 2y3)− (−2x3 + 4y3)
x (−y (2x3 − y3))− y (x (x3 − 2y3))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
−y
(
2x3 − y3

))
= −2x3 + y3

x2y

And

N = µN

= 1
y2x2

(
x
(
x3 − 2y3

))
= x3 − 2y3

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−2x3 + y3

x2y

)
+
(
x3 − 2y3
x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3 + y3

x2y
dx

(3)φ = −x3 − y3

xy
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3y

x
− −x3 − y3

x y2
+ f ′(y)

= x3 − 2y3
x y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x3−2y3
x y2

. Therefore equation (4) becomes

(5)x3 − 2y3
x y2

= x3 − 2y3
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x3 − y3

xy
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x3 − y3

xy
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Summary
The solution(s) found are the following

(1)−x3 − y3

xy
= c1

Figure 1110: Slope field plot

Verification of solutions

−x3 − y3

xy
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 317� �
dsolve(x*(x^3-2*y(x)^3)*diff(y(x),x) = (2*x^3-y(x)^3)*y(x),y(x), singsol=all)� �

y(x) =
12 1

3

(
x12 1

3 c1 +
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 2
3
)

6c1
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 1
3

y(x) =
3 1

32 2
3

((
−1− i

√
3
)(

x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 2
3

+
(
i3 5

6 − 3 1
3

)
c12

2
3x

)

12
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 1
3

c1

y(x) = −
3 1

3

((
1− i

√
3
)(

x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 2
3

+ c12
2
3x
(
i3 5

6 + 3 1
3

))
2 2

3

12
(
x

(
−9c1x2 +

√
3
√

27c31x4−4x
c1

)
c21

) 1
3

c1
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3 Solution by Mathematica
Time used: 60.353 (sec). Leaf size: 331� �
DSolve[x(x^3-2 y[x]^3)y'[x]==(2 x^3-y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
2
(
−9x3 +

√
81x6 − 12e3c1x3

) 2/3 + 2 3
√
3ec1x

62/3 3
√

−9x3 +
√
81x6 − 12e3c1x3

y(x) →
i

3
√
2 6
√
3
(√

3 + i
) (

−9x3 +
√
81x6 − 12e3c1x3

) 2/3 − 2
(√

3 + 3i
)
ec1x

2 22/335/6 3
√
−9x3 +

√
81x6 − 12e3c1x3

y(x) →
3
√
2 6
√
3
(
−1− i

√
3
) (

−9x3 +
√
81x6 − 12e3c1x3

) 2/3 − 2
(√

3− 3i
)
ec1x

2 22/335/6 3
√

−9x3 +
√
81x6 − 12e3c1x3
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24.34 problem 697
24.34.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7034
24.34.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7040

Internal problem ID [3943]
Internal file name [OUTPUT/3436_Sunday_June_05_2022_09_19_30_AM_50751068/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 24
Problem number: 697.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
x4 − 2y3

)
y′ +

(
2x4 + y3

)
y = 0

24.34.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(2x4 + y3)
x (−x4 + 2y3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(2x4 + y3) (b3 − a2)

x (−x4 + 2y3) − y2(2x4 + y3)2 a3
x2 (−x4 + 2y3)2

−
(

8y x2

−x4 + 2y3 − y(2x4 + y3)
x2 (−x4 + 2y3) +

4y(2x4 + y3)x2

(−x4 + 2y3)2
)
(xa2 + ya3 + a1)

−
(

2x4 + y3

x (−x4 + 2y3) +
3y3

x (−x4 + 2y3) −
6y3(2x4 + y3)
x (−x4 + 2y3)2

)
(xb2+ yb3+ b1) = 0

Putting the above in normal form gives

3x10b2 − 6x8y2a3 + 2x9b1 − 2x8ya1 + 8x6y3b2 − 20x5y4a2 + 15x5y4b3 − 21x4y5a3 + 12x5y3b1 − 17x4y4a1 + 2x2y6b2 + y8a3 − 2x y6b1 + 2y7a1
(x4 − 2y3)2 x2

= 0

Setting the numerator to zero gives

(6E)3x10b2 − 6x8y2a3 + 2x9b1 − 2x8ya1 + 8x6y3b2 − 20x5y4a2 + 15x5y4b3
− 21x4y5a3 + 12x5y3b1 − 17x4y4a1 + 2x2y6b2 + y8a3 − 2x y6b1 + 2y7a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−6a3v81v22 + 3b2v101 − 2a1v81v2 − 20a2v51v42 − 21a3v41v52 + 2b1v91 + 8b2v61v32
+ 15b3v51v42 − 17a1v41v42 + a3v

8
2 + 12b1v51v32 + 2b2v21v62 + 2a1v72 − 2b1v1v62 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v101 + 2b1v91 − 6a3v81v22 − 2a1v81v2 + 8b2v61v32 + (−20a2 + 15b3) v51v42
+ 12b1v51v32 − 21a3v41v52 − 17a1v41v42 + 2b2v21v62 − 2b1v1v62 + a3v

8
2 + 2a1v72 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
−17a1 = 0
−2a1 = 0
2a1 = 0

−21a3 = 0
−6a3 = 0
−2b1 = 0
2b1 = 0
12b1 = 0
2b2 = 0
3b2 = 0
8b2 = 0

−20a2 + 15b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
4a2
3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y
3
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y
3 −

(
y(2x4 + y3)
x (−x4 + 2y3)

)
(x)

= 10x4y − 5y4
3x4 − 6y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

10x4y−5y4
3x4−6y3

dy

Which results in

S = 3 ln (y(−2x4 + y3))
10

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(2x4 + y3)
x (−x4 + 2y3)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 12x3

10x4 − 5y3

Sy =
3x4 − 6y3

10x4y − 5y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

5x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

5R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3 ln (R)
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y)
10 + 3 ln (−2x4 + y3)

10 = 3 ln (x)
5 + c1

Which simplifies to

3 ln (y)
10 + 3 ln (−2x4 + y3)

10 = 3 ln (x)
5 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
2x4+y3

)
x(−x4+2y3)

dS
dR

= 3
5R

R = x

S = 3 ln (y)
10 + 3 ln (−2x4 + y3)

10

Summary
The solution(s) found are the following

(1)3 ln (y)
10 + 3 ln (−2x4 + y3)

10 = 3 ln (x)
5 + c1
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Figure 1111: Slope field plot

Verification of solutions

3 ln (y)
10 + 3 ln (−2x4 + y3)

10 = 3 ln (x)
5 + c1

Verified OK.

24.34.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x4 − 2y3

))
dy =

(
−y
(
2x4 + y3

))
dx(

y
(
2x4 + y3

))
dx+

(
x
(
x4 − 2y3

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
2x4 + y3

)
N(x, y) = x

(
x4 − 2y3

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
2x4 + y3

))
= 2x4 + 4y3

And
∂N

∂x
= ∂

∂x

(
x
(
x4 − 2y3

))
= 5x4 − 2y3
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x4 − 2y3)
((
2x4 + 4y3

)
−
(
5x4 − 2y3

))
= −3

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
y
(
2x4 + y3

))
= 2x4y + y4

x3

And

N = µN

= 1
x3

(
x
(
x4 − 2y3

))
= x4 − 2y3

x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x4y + y4

x3

)
+
(
x4 − 2y3

x2

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x4y + y4

x3 dx

(3)φ = y(2x4 − y3)
2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x4 − y3

2x2 − 3y3
2x2 + f ′(y)

= x4 − 2y3
x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x4−2y3
x2 . Therefore equation (4) becomes

(5)x4 − 2y3
x2 = x4 − 2y3

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y(2x4 − y3)
2x2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y(2x4 − y3)

2x2

Summary
The solution(s) found are the following

(1)y(2x4 − y3)
2x2 = c1

Figure 1112: Slope field plot

Verification of solutions

y(2x4 − y3)
2x2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.734 (sec). Leaf size: 28� �
dsolve(x*(x^4-2*y(x)^3)*diff(y(x),x)+(2*x^4+y(x)^3)*y(x) = 0,y(x), singsol=all)� �

ln (x)− c1 +
3 ln

(
y(x)

(
−2x4+y(x)3

)
x
16
3

)
10 = 0
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3 Solution by Mathematica
Time used: 60.195 (sec). Leaf size: 1139� �
DSolve[x(x^4-2 y[x]^3)y'[x]+(2 x^4+y[x]^3)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6

− 6
√
232/3

√√√√√4 3
√
6c1x2 +

(
9x8 −

√
81x16 − 384c13x6

)
2/3

3
√

9x8 −
√
81x16 − 384c13x6

−3

√√√√√√√√−
3
√

18x8 − 2
√

81x16 − 384c13x6

32/3 − 4 22/3c1x2

3
√
27x8 − 3

√
81x16 − 384c13x6

− 4
√
3x4√√√√4 62/3c1x2+

3
√
6
(
9x8−

√
81x16−384c13x6

)
2/3

3
√
9x8 −

√
81x16 − 384c13x6


y(x)

→ 1
6

3

√√√√√√√√−
3
√

18x8 − 2
√

81x16 − 384c13x6

32/3 − 4 22/3c1x2

3
√
27x8 − 3

√
81x16 − 384c13x6

− 4
√
3x4√√√√4 62/3c1x2+

3
√
6
(
9x8−

√
81x16−384c13x6

)
2/3

3
√
9x8 −

√
81x16 − 384c13x6

− 6
√
232/3

√√√√√4 3
√
6c1x2 +

(
9x8 −

√
81x16 − 384c13x6

)
2/3

3
√
9x8 −

√
81x16 − 384c13x6



y(x) → 1
6


6
√
232/3

√√√√√4 3
√
6c1x2 +

(
9x8 −

√
81x16 − 384c13x6

)
2/3

3
√

9x8 −
√

81x16 − 384c13x6

−3

√√√√√√√√−
3
√

18x8 − 2
√

81x16 − 384c13x6

32/3 − 4 22/3c1x2

3
√
27x8 − 3

√
81x16 − 384c13x6

+ 4
√
3x4√√√√4 62/3c1x2+

3
√
6
(
9x8−

√
81x16−384c13x6

)
2/3

3
√

9x8 −
√

81x16 − 384c13x6



y(x) → 1
6


6
√
232/3

√√√√√4 3
√
6c1x2 +

(
9x8 −

√
81x16 − 384c13x6

)
2/3

3
√

9x8 −
√

81x16 − 384c13x6

+3

√√√√√√√√−
3
√

18x8 − 2
√

81x16 − 384c13x6

32/3 − 4 22/3c1x2

3
√

27x8 − 3
√
81x16 − 384c13x6

+ 4
√
3x4√√√√4 62/3c1x2+

3
√
6
(
9x8−

√
81x16−384c13x6

)
2/3

3
√

9x8 −
√

81x16 − 384c13x6
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25.1 problem 698
25.1.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7048

Internal problem ID [3944]
Internal file name [OUTPUT/3437_Sunday_June_05_2022_09_19_37_AM_63779943/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 698.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection"

Maple gives the following as the ode type
[_rational]

x
(
x+ y + 2y3

)
y′ − y(−y + x) = 0

25.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
2y3 + x+ y

))
dy = (y(−y + x)) dx

(−y(−y + x)) dx+
(
x
(
2y3 + x+ y

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(−y + x)
N(x, y) = x

(
2y3 + x+ y

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y(−y + x))

= −x+ 2y

And

∂N

∂x
= ∂

∂x

(
x
(
2y3 + x+ y

))
= 2y3 + 2x+ y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
xy2

is an integrating factor.
Therefore by multiplying M = −y(−y + x) and N = x(x+ y + 2y3) by this integrating
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factor the ode becomes exact. The new M,N are

M = −−y + x

xy

N = x+ y + 2y3
y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2y3 + x+ y

y2

)
dy =

(
−y + x

xy

)
dx(

−−y + x

xy

)
dx+

(
2y3 + x+ y

y2

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −−y + x

xy

N(x, y) = 2y3 + x+ y

y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−−y + x

xy

)
= 1

y2

And

∂N

∂x
= ∂

∂x

(
2y3 + x+ y

y2

)
= 1

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−−y + x

xy
dx

(3)φ = ln (x)− x

y
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y3+x+y
y2

. Therefore equation (4) becomes

(5)2y3 + x+ y

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y2 + 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (2y2 + 1
y

)
dy

f(y) = y2 + ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x)− x

y
+ y2 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (x)− x

y
+ y2 + ln (y)

Summary
The solution(s) found are the following

(1)ln (x)− x

y
+ y2 + ln (y) = c1
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Figure 1113: Slope field plot

Verification of solutions

ln (x)− x

y
+ y2 + ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, y^2/(2*y^3+x+y)]� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(x*(x+y(x)+2*y(x)^3)*diff(y(x),x) = (x-y(x))*y(x),y(x), singsol=all)� �

y(x) = eRootOf
(
−e3_Z−e_Z ln(x)+c1e_Z−_Z e_Z+x

)

3 Solution by Mathematica
Time used: 0.322 (sec). Leaf size: 23� �
DSolve[x(x+y[x]+2 y[x]^3)y'[x]==(x-y[x])y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)2 − x

y(x) + log(y(x)) + log(x) = c1, y(x)
]
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25.2 problem 699
25.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7055

Internal problem ID [3945]
Internal file name [OUTPUT/3438_Sunday_June_05_2022_09_19_41_AM_49108399/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 699.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

(
5x− y − 7xy3

)
y′ + 5y − y4 = 0

25.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−7x y3 + 5x− y
)
dy =

(
y4 − 5y

)
dx(

−y4 + 5y
)
dx+

(
−7x y3 + 5x− y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y4 + 5y
N(x, y) = −7x y3 + 5x− y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y4 + 5y

)
= −4y3 + 5

And
∂N

∂x
= ∂

∂x

(
−7x y3 + 5x− y

)
= −7y3 + 5

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−7x y3 + 5x− y

((
−4y3 + 5

)
−
(
−7y3 + 5

))
= − 3y3

7x y3 − 5x+ y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

−y4 + 5y
((
−7y3 + 5

)
−
(
−4y3 + 5

))
= 3y2

y3 − 5

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 3y2

y3−5 dy

The result of integrating gives

µ = eln
(
y3−5

)
= y3 − 5

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y3 − 5
(
−y4 + 5y

)
= −y

(
y3 − 5

)2
And

N = µN

= y3 − 5
(
−7x y3 + 5x− y

)
= −

(
y3 − 5

) (
7x y3 − 5x+ y

)
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−y
(
y3 − 5

)2)+ (−(y3 − 5
) (

7x y3 − 5x+ y
)) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y
(
y3 − 5

)2 dx
(3)φ = −y

(
y3 − 5

)2
x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

(
y3 − 5

)2
x− 6y3

(
y3 − 5

)
x+ f ′(y)

= −7x y6 + 40x y3 − 25x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −(y3 − 5) (7x y3 − 5x+ y). Therefore equation (4)
becomes

(5)−
(
y3 − 5

) (
7x y3 − 5x+ y

)
= −7x y6 + 40x y3 − 25x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y4 + 5y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y4 + 5y

)
dy

f(y) = −1
5y

5 + 5
2y

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −y
(
y3 − 5

)2
x− y5

5 + 5y2
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −y
(
y3 − 5

)2
x− y5

5 + 5y2
2

Summary
The solution(s) found are the following

(1)−y
(
y3 − 5

)2
x− y5

5 + 5y2
2 = c1

Figure 1114: Slope field plot

Verification of solutions

−y
(
y3 − 5

)2
x− y5

5 + 5y2
2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve((5*x-y(x)-7*x*y(x)^3)*diff(y(x),x)+5*y(x)-y(x)^4 = 0,y(x), singsol=all)� �

x+
y(x)5
5 − 5y(x)2

2 − c1

y (x)
(
y (x)3 − 5

)2 = 0

3 Solution by Mathematica
Time used: 60.185 (sec). Leaf size: 302� �
DSolve[(5 x-y[x]-7 x y[x]^3)y'[x]+5 y[x]-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
10#17x+ 2#15 − 100#14x− 25#12 + 250#1x− 10c1&, 1

]
y(x) → Root

[
10#17x+ 2#15 − 100#14x− 25#12 + 250#1x− 10c1&, 2

]
y(x) → Root

[
10#17x+ 2#15 − 100#14x− 25#12 + 250#1x− 10c1&, 3

]
y(x) → Root

[
10#17x+ 2#15 − 100#14x− 25#12 + 250#1x− 10c1&, 4

]
y(x) → Root

[
10#17x+ 2#15 − 100#14x− 25#12 + 250#1x− 10c1&, 5

]
y(x) → Root

[
10#17x+ 2#15 − 100#14x− 25#12 + 250#1x− 10c1&, 6

]
y(x) → Root

[
10#17x+ 2#15 − 100#14x− 25#12 + 250#1x− 10c1&, 7

]
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25.3 problem 700
25.3.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7061

Internal problem ID [3946]
Internal file name [OUTPUT/3439_Sunday_June_05_2022_09_19_46_AM_61734574/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 700.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

x
(
1− 2xy3

)
y′ +

(
1− 2yx3) y = 0

25.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x
(
−2x y3 + 1

))
dy =

(
−
(
−2x3y + 1

)
y
)
dx((

−2x3y + 1
)
y
)
dx+

(
x
(
−2x y3 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
−2x3y + 1

)
y

N(x, y) = x
(
−2x y3 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

((
−2x3y + 1

)
y
)

= −4x3y + 1

And
∂N

∂x
= ∂

∂x

(
x
(
−2x y3 + 1

))
= −4x y3 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

2y3x2 − x

((
−4x3y + 1

)
−
(
−4x y3 + 1

))
= 4x2y − 4y3

2x y3 − 1
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2x3y2 − y

((
−4x y3 + 1

)
−
(
−4x3y + 1

))
= −4x3 + 4x y2

2x3y − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−4x y3 + 1)− (−4x3y + 1)
x ((−2x3y + 1) y)− y (x (−2x y3 + 1))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

((
−2x3y + 1

)
y
)

= −2x3y + 1
y x2

And

N = µN

= 1
y2x2

(
x
(
−2x y3 + 1

))
= −2x y3 + 1

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−2x3y + 1
y x2

)
+
(
−2x y3 + 1

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3y + 1

y x2 dx

(3)φ = −x3y − 1
xy

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2

y
− −x3y − 1

x y2
+ f ′(y)

= 1
x y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2x y3+1
x y2

. Therefore equation (4) becomes

(5)−2x y3 + 1
x y2

= 1
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2y) dy

f(y) = −y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3y − 1
xy

− y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x3y − 1

xy
− y2

Summary
The solution(s) found are the following

(1)−yx3 − 1
xy

− y2 = c1
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Figure 1115: Slope field plot

Verification of solutions

−yx3 − 1
xy

− y2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, x*y^2/(2*x*y^3-1)], [0, (x^4*y^2+x^2*y^4+x*y)/x/(2*x*y^3-1)]� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 361� �
dsolve(x*(1-2*x*y(x)^3)*diff(y(x),x)+(1-2*x^3*y(x))*y(x) = 0,y(x), singsol=all)� �
y(x)

= −
12 1

3

(
−
((

−9 +
√
12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81

)
x2
) 2

3 + 12 1
3x2(x2 − c1)

)
6
((

−9 +
√

12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81
)
x2
) 1

3
x

y(x) =

−
3 1

3

((
1 + i

√
3
) ((

−9 +
√

12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81
)
x2
) 2

3 +
(
i3 5

6 − 3 1
3

)
2 2

3 (x2 − c1)x2
)
2 2

3

12
((

−9 +
√
12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81

)
x2
) 1

3
x

y(x)

=
3 1

3

((
i
√
3− 1

) ((
−9 +

√
12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81

)
x2
) 2

3 + 2 2
3 (x2 − c1)x2

(
i3 5

6 + 3 1
3

))
2 2

3

12
((

−9 +
√

12x8 − 36c1x6 + 36c21x4 − 12c31x2 + 81
)
x2
) 1

3
x
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3 Solution by Mathematica
Time used: 50.301 (sec). Leaf size: 358� �
DSolve[x(1-2 x y[x]^3)y'[x]+(1-2 x^3 y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√
2(−x3 + c1x)

3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

+
3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

3 3
√
2x

y(x) →
(
1 + i

√
3
)
(x3 − c1x)

22/3 3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

−
(
1− i

√
3
) 3
√
−27x2 +

√
729x4 + 108x3 (x3 − c1x) 3

6 3
√
2x

y(x) →
(
1− i

√
3
)
(x3 − c1x)

22/3 3
√

−27x2 +
√

729x4 + 108x3 (x3 − c1x) 3

−
(
1 + i

√
3
) 3
√

−27x2 +
√
729x4 + 108x3 (x3 − c1x) 3

6 3
√
2x
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25.4 problem 701
25.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7070

Internal problem ID [3947]
Internal file name [OUTPUT/3440_Sunday_June_05_2022_09_19_50_AM_88167620/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 701.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

x
(
2− y2x− 2xy3

)
y′ + 2y = −1

25.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y + 1
x (2x y3 + x y2 − 2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+(2y + 1) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (2x y3 + x y2 − 2)

− (2y + 1)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2 (2x y3 + x y2 − 2)2

−
(
− 2y + 1
x2 (2x y3 + x y2 − 2) −

(2y + 1) (2y3 + y2)
x (2x y3 + x y2 − 2)2

)(
x3a7

+ x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

−
(

2
x (2x y3 + x y2 − 2) −

(2y + 1) (6x y2 + 2xy)
x (2x y3 + x y2 − 2)2

)(
x3b7 + x2yb8

+ x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

2x2a4 − 10y2a6 + 12x2y4b3 + 8x y5a3 + 4yb5x2 − 2a1 − a3 + 8x3yb8 − 2x3b8 − 16y4a10 − x2a8 − 3y2a10 − 4xya5 + 2x2yb1 + 2x y2a1 + x4y4b2 + 4x2y3a2 + 8x y3a1 + 2x y3a3 + 4x4y5b2 + 2x3yb2 + x2y2a2 + 8b2x2 + 8x2y3b1 + 12x2y3b3 + 16x4b7 + 12x6y6b7 + 12x6y5b7 + 3x6y4b7 − 16x5y3b7 − 4x5y2b7 + 8x5y7b8 + 8x5y6b8 + 2x5y5b8 − 4x4y4b8 + 4x4y3b8 + 4x4y8b9 + 4x4y7b9 + 4x4y6b2 + 8x y4a1 + 8x y4a3 + 8x2y2b1 + 3x2y2b3 + 4x2y4a2 − 12y3a6 − 2x2b5 − xa5 − 2ya6 − 8y2a3 + 4xb1 − 2xb3 − 4ya1 + 12x3b4 + 8x5y6b4 + 4x4y7b5 + 8x5y5b4 + 4x4y6b5 + 2x5y4b4 + x4y5b5 − 8x4y3b4 + 4x3y4b5 + 4x2y5a5 + 16x2y5b6 + 8x y6a6 + 8x3y3b5 + 4x2y4a5 + 16x2y4b6 + 8x y5a6 + 2x4yb4 + x4y6b9 + 8x3y5b9 + 12x3y4b9 − 4x4y4a7 + 4x2y6a9 + 20x2y6b10 − 4x4y3a7 + 4x2y5a9 + 20x2y5b10 − x4y2a7 + 3x4y2b8 − 6ya3 + 4x3y3b9 + x2y4a9 + 5x2y4b10 + 8x3ya7 − 8x y3a9 − 8x y3b10 − 4x2yb9 − 6x y2b10 − 2xya9 + 8x y7a10 + 8x y6a10 + 2x y5a10 + 2x5yb7 + 4x3y2b2 + 4x3a7 − 14y3a10 − 2x2ya8 − 8x y2a9 + 3x3y2b5 + x2y3a5 + 4x2y3b6 + 2x y4a6 + 4x2ya4 − 4x y2a5 − 4x y2b6 − 4xyb6
x2 (2x y3 + x y2 − 2)2

= 0

Setting the numerator to zero gives

(6E)

2x2a4 − 10y2a6 + 12x2y4b3 + 8x y5a3 + 4yb5x2 − 2a1 − a3
+8x3yb8−2x3b8−16y4a10−x2a8−3y2a10−4xya5+2x2yb1
+ 2x y2a1 + x4y4b2 + 4x2y3a2 + 8x y3a1 + 2x y3a3 + 4x4y5b2
+ 2x3yb2 + x2y2a2 + 8b2x2 + 8x2y3b1 + 12x2y3b3 + 16x4b7
+ 12x6y6b7 + 12x6y5b7 + 3x6y4b7 − 16x5y3b7 − 4x5y2b7
+8x5y7b8+8x5y6b8+2x5y5b8−4x4y4b8+4x4y3b8+4x4y8b9
+4x4y7b9+4x4y6b2+8x y4a1+8x y4a3+8x2y2b1+3x2y2b3
+ 4x2y4a2 − 12y3a6 − 2x2b5 − xa5 − 2ya6 − 8y2a3 + 4xb1
− 2xb3 − 4ya1 + 12x3b4 + 8x5y6b4 + 4x4y7b5 + 8x5y5b4
+4x4y6b5+2x5y4b4+x4y5b5− 8x4y3b4+4x3y4b5+4x2y5a5
+ 16x2y5b6 + 8x y6a6 + 8x3y3b5 + 4x2y4a5 + 16x2y4b6
+8x y5a6 +2x4yb4 +x4y6b9 +8x3y5b9 +12x3y4b9− 4x4y4a7
+ 4x2y6a9 + 20x2y6b10 − 4x4y3a7 + 4x2y5a9 + 20x2y5b10
− x4y2a7 + 3x4y2b8 − 6ya3 + 4x3y3b9 + x2y4a9 + 5x2y4b10
+ 8x3ya7 − 8x y3a9 − 8x y3b10 − 4x2yb9 − 6x y2b10 − 2xya9
+8x y7a10 +8x y6a10 +2x y5a10 +2x5yb7 +4x3y2b2 +4x3a7
− 14y3a10 − 2x2ya8 − 8x y2a9 +3x3y2b5 + x2y3a5 +4x2y3b6
+ 2x y4a6 + 4x2ya4 − 4x y2a5 − 4x y2b6 − 4xyb6 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

12v61v62b7+12v61v52b7+3v61v42b7−16v51v32b7−4v51v22b7+8v51v72b8
+8v51v62b8+2v51v52b8− 4v41v42b8+4v41v32b8+4v41v82b9+4v41v72b9
+4v41v62b2+8v1v42a1+8v1v42a3+8v21v22b1+3v21v22b3+4v21v42a2
+ 8v51v62b4 + 2v21a4 − 10v22a6 − 2v31b8 − 16v42a10 − 2a1 − a3
− v21a8 − 3v22a10 + 8b2v21 + 16v41b7 − 12v32a6 − 2v21b5 − v1a5
− 2v2a6 − 8v22a3 + 4v1b1 − 2v1b3 − 4v2a1 + 12v31b4 − 6v2a3
+ 4v31a7 − 14v32a10 + 4v41v72b5 + 8v51v52b4 + 4v41v62b5 + 2v51v42b4
+v41v

5
2b5−8v41v32b4+4v31v42b5+4v21v52a5+16v21v52b6+8v1v62a6

+8v31v32b5+4v21v42a5+16v21v42b6+8v1v52a6+2v41v2b4+ v41v
6
2b9

+ 8v31v52b9 + 12v31v42b9 − 4v41v42a7 + 4v21v62a9 + 20v21v62b10
− 4v41v32a7 + 4v21v52a9 + 20v21v52b10 − v41v

2
2a7 + 3v41v22b8

+4v31v32b9+v21v
4
2a9+5v21v42b10+8v31v2a7−8v1v32a9−8v1v32b10

− 4v21v2b9 − 6v1v22b10 − 2v1v2a9 + 8v1v72a10 + 8v1v62a10
+2v1v52a10+2v51v2b7+4v31v22b2−2v21v2a8−8v1v22a9+3v31v22b5
+ v21v

3
2a5 +4v21v32b6 +2v1v42a6 +4v21v2a4 − 4v1v22a5 − 4v1v22b6

−4v1v2b6+12v21v42b3+8v1v52a3+4v2b5v21+8v31v2b8−4v1v2a5
+2v21v2b1 +2v1v22a1 + v41v

4
2b2 +4v21v32a2 +8v1v32a1 +2v1v32a3

+ 4v41v52b2 + 2v31v2b2 + v21v
2
2a2 + 8v21v32b1 + 12v21v32b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

12v61v62b7+12v61v52b7+3v61v42b7− 16v51v32b7− 4v51v22b7+8v51v72b8
+ 4v41v82b9 − 16v42a10 + (4a5 + 16b6 + 4a9 + 20b10) v52v21
+(8a6+8a10) v62v1+(8b5+4b9) v32v31 +(8a6+2a10+8a3) v52v1
+ (4a9 + 20b10) v62v21 + (−a7 + 3b8) v22v41
+ (8a7 + 8b8 + 2b2) v2v31 + (−8a9 − 8b10 + 8a1 + 2a3) v32v1
+ (−4b9 − 2a8 + 4a4 + 4b5 + 2b1) v2v21
+(−6b10−8a9−4a5−4b6+2a1) v22v1+(−2a9−4b6−4a5) v2v1
+ (4b2 + 3b5) v22v31 + (4a2 + a5 + 8b1 + 12b3 + 4b6) v32v21
+ (8b8 + 8b4) v62v51 + (2b8 + 8b4) v52v51 + (−4b8 − 4a7 + b2) v42v41
+(4b8−8b4−4a7) v32v41+(4b9+4b5) v72v41+(4b2+4b5+b9) v62v41
+ (8a1 + 8a3 + 2a6) v42v1 + (a2 + 8b1 + 3b3) v22v21
+ (4a2 + 4a5 + 16b6 + a9 + 5b10 + 12b3) v42v21
+ (4b2 + b5) v52v41 + (4b5 + 12b9) v42v31 − 2a1 − a3
+ 16v41b7 + (−a5 + 4b1 − 2b3) v1 + (−4a1 − 6a3 − 2a6) v2
+ (2a4 − a8 + 8b2 − 2b5) v21 + (−2b8 + 12b4 + 4a7) v31
+ (−12a6 − 14a10) v32 + (−10a6 − 3a10 − 8a3) v22
+ 2v51v42b4 + 2v41v2b4 + 8v31v52b9 + 8v1v72a10 + 2v51v2b7 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−16a10 = 0

8a10 = 0
2b4 = 0

−16b7 = 0
−4b7 = 0
2b7 = 0
3b7 = 0
12b7 = 0
16b7 = 0
8b8 = 0
4b9 = 0
8b9 = 0

−2a1 − a3 = 0
−12a6 − 14a10 = 0

8a6 + 8a10 = 0
−a7 + 3b8 = 0

4a9 + 20b10 = 0
4b2 + b5 = 0
4b2 + 3b5 = 0
4b5 + 12b9 = 0
8b5 + 4b9 = 0
2b8 + 8b4 = 0
8b8 + 8b4 = 0
4b9 + 4b5 = 0

−4a1 − 6a3 − 2a6 = 0
8a1 + 8a3 + 2a6 = 0
a2 + 8b1 + 3b3 = 0

−a5 + 4b1 − 2b3 = 0
−10a6 − 3a10 − 8a3 = 0

8a6 + 2a10 + 8a3 = 0
8a7 + 8b8 + 2b2 = 0

−2a9 − 4b6 − 4a5 = 0
4b2 + 4b5 + b9 = 0

−4b8 − 4a7 + b2 = 0
−2b8 + 12b4 + 4a7 = 0

4b8 − 8b4 − 4a7 = 0
2a4 − a8 + 8b2 − 2b5 = 0

4a5 + 16b6 + 4a9 + 20b10 = 0
−8a9 − 8b10 + 8a1 + 2a3 = 0

4a2 + a5 + 8b1 + 12b3 + 4b6 = 0
−4b9 − 2a8 + 4a4 + 4b5 + 2b1 = 0
−6b10 − 8a9 − 4a5 − 4b6 + 2a1 = 0

4a2 + 4a5 + 16b6 + a9 + 5b10 + 12b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0

a4 =
a8
2

a5 = 0
a6 = 0
a7 = 0
a8 = a8

a9 = 0
a10 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = 0
b9 = 0
b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x2y + 1
2x

2

η = 0
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(

2y + 1
x (2x y3 + x y2 − 2)

)(
x2y + 1

2x
2
)

= −4y2x2 − 4x2y − x2

4y3x2 + 2y2x2 − 4x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4y2x2−4x2y−x2

4y3x2+2y2x2−4x

dy

Which results in

S = −y2

2 + y

2 − 2
x (2y + 1) −

ln (2y + 1)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y + 1
x (2x y3 + x y2 − 2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
(2y + 1)x2

Sy =
−4x y3 − 2x y2 + 4

(2y + 1)2 x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(−2y − 1)x ln (2y + 1)− 8 + (−4y3 + 2y2 + 2y)x
(8y + 4)x = c1

Which simplifies to

(−2y − 1)x ln (2y + 1)− 8 + (−4y3 + 2y2 + 2y)x
(8y + 4)x = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y+1
x(2x y3+x y2−2)

dS
dR

= 0

R = x

S = (−2y − 1)x ln (2y + 1)− 8 + (−4y3 + 2y2 + 2y)x
(8y + 4)x

Summary
The solution(s) found are the following

(1)(−2y − 1)x ln (2y + 1)− 8 + (−4y3 + 2y2 + 2y)x
(8y + 4)x = c1
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Figure 1116: Slope field plot

Verification of solutions

(−2y − 1)x ln (2y + 1)− 8 + (−4y3 + 2y2 + 2y)x
(8y + 4)x = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3`[x^2*y+1/2*x^2, 0]� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 46� �
dsolve(x*(2-x*y(x)^2-2*x*y(x)^3)*diff(y(x),x)+1+2*y(x) = 0,y(x), singsol=all)� �

y(x) = −1
2

y(x) = eRootOf
(
x e3_Z−4x e2_Z+8c1x e_Z+2_Z e_Zx+3 e_Zx+16

)
2 − 1

2
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3 Solution by Mathematica
Time used: 0.483 (sec). Leaf size: 47� �
DSolve[x(2-x y[x]^2-2 x y[x]^3)y'[x]+1+2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
64
(
−4y(x)2 + 4y(x)− 2 log(8y(x) + 4) + 3

)
− 1

4x(2y(x) + 1) = c1, y(x)
]
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25.5 problem 702
25.5.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7082
25.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7085

Internal problem ID [3948]
Internal file name [OUTPUT/3441_Sunday_June_05_2022_09_19_55_AM_64352222/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 702.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x)*G(y)

,0]`]]

(
2− 10y3x2 + 3y2

)
y′ − x

(
1 + 5y4

)
= 0

25.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−10y3x2 + 3y2 + 2
)
dy =

(
x
(
5y4 + 1

))
dx(

−x
(
5y4 + 1

))
dx+

(
−10y3x2 + 3y2 + 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x
(
5y4 + 1

)
N(x, y) = −10y3x2 + 3y2 + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x
(
5y4 + 1

))
= −20x y3

And
∂N

∂x
= ∂

∂x

(
−10y3x2 + 3y2 + 2

)
= −20x y3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x
(
5y4 + 1

)
dx

(3)φ = −x2(5y4 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −10y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −10y3x2 + 3y2 + 2. Therefore equation (4) becomes

(5)−10y3x2 + 3y2 + 2 = −10y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y2 + 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
3y2 + 2

)
dy

f(y) = y3 + 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2(5y4 + 1)
2 + y3 + 2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2(5y4 + 1)
2 + y3 + 2y
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Summary
The solution(s) found are the following

(1)−x2(1 + 5y4)
2 + y3 + 2y = c1

Figure 1117: Slope field plot

Verification of solutions

−x2(1 + 5y4)
2 + y3 + 2y = c1

Verified OK.

25.5.2 Maple step by step solution

Let’s solve
(2− 10y3x2 + 3y2) y′ − x(1 + 5y4) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact

7085



◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−20x y3 = −20x y3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
−x(5y4 + 1) dx+ f1(y)

• Evaluate integral

F (x, y) = −x2(5y4+1
)

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−10y3x2 + 3y2 + 2 = −10y3x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 3y2 + 2

• Solve for f1(y)
f1(y) = y3 + 2y

• Substitute f1(y) into equation for F (x, y)

F (x, y) = −x2(5y4+1
)

2 + y3 + 2y

• Substitute F (x, y) into the solution of the ODE

−x2(5y4+1
)

2 + y3 + 2y = c1

• Solve for y
y = RootOf

(
5_Z4x2 − 2_Z3 + x2 + 2c1 − 4_Z

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve((2-10*x^2*y(x)^3+3*y(x)^2)*diff(y(x),x) = x*(1+5*y(x)^4),y(x), singsol=all)� �

−5y(x)4 x2

2 − x2

2 + y(x)3 + 2y(x) + c1 = 0
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3 Solution by Mathematica
Time used: 60.262 (sec). Leaf size: 2097� �
DSolve[(2-10*x^2*y[x]^3+3*y[x]^2)*y'[x]==x*(1+5*y[x]^4),y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

√
3x2

√√√√√5
3
√
6x2

3
√

189x2 +
√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2
(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+3

x4 +
√
3x2

√√√√√√√√
−

−6x2+5
3
√
6x4

3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x4

(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+
6
√

3
(
100x4+1

)
√√√√√√√√√√√

5
3
√
6x2

3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2

(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+3

x4

x6 − 3
30x2

y(x)

→
−
√
3x2

√√√√√5
3
√
6x2

3
√

189x2 +
√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2
(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+3

x4 +
√
3x2

√√√√√√√√
−

−6x2+5
3
√
6x4

3
√

189x2 +
√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x4
(
5x4−10c1x2−2

)
3
√
189x2 +

√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+
6
√

3
(
100x4+1

)
√√√√√√√√√√√

5
3
√
6x2

3
√

189x2 +
√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2
(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+3

x4

x6 + 3
30x2

y(x)

→

√
3x2

√√√√√5
3
√
6x2

3
√

189x2 +
√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2
(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+3

x4 −
√
3x2

√√√√√√√√
6x2−5

3
√
6x4

3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1− 10 62/3x4

(
5x4−10c1x2−2

)
3
√
189x2 +

√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+
6
√
3
(
100x4+1

)
√√√√√√√√√√√

5
3
√
6x2

3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2

(
5x4−10c1x2−2

)
3
√
189x2 +

√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1
+3

x4

x6 + 3
30x2

y(x)

→

√
3x2

√√√√√5
3
√
6x2

3
√

189x2 +
√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2
(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+3

x4 +
√
3x2

√√√√√√√√
6x2−5

3
√
6x4

3
√
189x2 +

√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1− 10 62/3x4

(
5x4−10c1x2−2

)
3
√

189x2 +
√
3
√
27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1

+
6
√

3
(
100x4+1

)
√√√√√√√√√√√

5
3
√
6x2

3
√
189x2 +

√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1+ 10 62/3x2
(
5x4−10c1x2−2

)
3
√
189x2 +

√
3
√

27 (21x2 − 2c1) 2 − 16 (5x4 − 10c1x2 − 2) 3 − 18c1
+3

x4

x6 + 3
30x2
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25.6 problem 703
25.6.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7089

Internal problem ID [3949]
Internal file name [OUTPUT/3442_Sunday_June_05_2022_09_19_59_AM_3791101/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 703.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

x
(
a+ bxy3

)
y′ +

(
a+ c x3y

)
y = 0

25.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
bx y3 + a

))
dy =

(
−y
(
c x3y + a

))
dx(

y
(
c x3y + a

))
dx+

(
x
(
bx y3 + a

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
c x3y + a

)
N(x, y) = x

(
bx y3 + a

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y
(
c x3y + a

))
= 2c x3y + a

And

∂N

∂x
= ∂

∂x

(
x
(
bx y3 + a

))
= 2bx y3 + a
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (bx y3 + a)
((
2c x3y + a

)
−
(
2bx y3 + a

))
= −2y(b y2 − c x2)

bx y3 + a

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (c x3y + a)
((
2bx y3 + a

)
−
(
2c x3y + a

))
= 2x(b y2 − c x2)

c x3y + a

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2bx y3 + a)− (2c x3y + a)
x (y (c x3y + a))− y (x (bx y3 + a))

= − 2
xy

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt
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The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
y
(
c x3y + a

))
= c x3y + a

y x2

And

N = µN

= 1
y2x2

(
x
(
bx y3 + a

))
= bx y3 + a

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

c x3y + a

y x2

)
+
(
bx y3 + a

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
c x3y + a

y x2 dx

(3)φ = c x3y − 2a
2xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= c x2

2y − c x3y − 2a
2x y2 + f ′(y)

= a

x y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= bx y3+a
x y2

. Therefore equation (4) becomes

(5)bx y3 + a

x y2
= a

x y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = by

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(by) dy

f(y) = b y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = c x3y − 2a
2xy + b y2

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
c x3y − 2a

2xy + b y2

2

Summary
The solution(s) found are the following

(1)c x3y − 2a
2xy + by2

2 = c1

Verification of solutions

c x3y − 2a
2xy + by2

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, x*y^2/(b*x*y^3+a)], [0, y*(-b*x*y^3-c*x^3*y+2*a)/(b*x*y^3+a)]� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 492� �
dsolve(x*(a+b*x*y(x)^3)*diff(y(x),x)+(a+c*x^3*y(x))*y(x) = 0,y(x), singsol=all)� �
y(x)

=
3 1

3

(
−x2b(c x2 − 2c1) 3

1
3 +

((
9a+

√
3c3x8−18c2c1x6+36c c21x4−24c31x2+81a2b

b

)
b2x2

) 2
3
)

3
((

9a+
√

3c3x8−18c2c1x6+36c c21x4−24c31x2+81a2b
b

)
b2x2

) 1
3

bx

y(x) =

−

((
1 + i

√
3
)((

9a+
√

3c3x8−18c2c1x6+36c c21x4−24c31x2+81a2b
b

)
b2x2

) 2
3

+ x2
(
i3 5

6 − 3 1
3

)
b(c x2 − 2c1)

)
3 1

3

6
((

9a+
√

3c3x8−18c2c1x6+36c c21x4−24c31x2+81a2b
b

)
b2x2

) 1
3

bx

y(x)

=
3 1

3

((
i
√
3− 1

)((
9a+

√
3c3x8−18c2c1x6+36c c21x4−24c31x2+81a2b

b

)
b2x2

) 2
3

+ x2b
(
i3 5

6 + 3 1
3

)
(c x2 − 2c1)

)

6
((

9a+
√

3c3x8−18c2c1x6+36c c21x4−24c31x2+81a2b
b

)
b2x2

) 1
3

bx
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3 Solution by Mathematica
Time used: 60.307 (sec). Leaf size: 484� �
DSolve[x(a+b x y[x]^3)y'[x]+(a+c x^3 y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → x(−cx2 + 2c1)

3
√
3 3
√

9ab2x2 +
√
3
√

b3x4 (27a2b+ x2 (cx2 − 2c1) 3)

+
3
√

9ab2x2 +
√
3
√

b3x4 (27a2b+ x2 (cx2 − 2c1) 3)
32/3bx

y(x)

→
i

3
√
3
(√

3 + i
) (

9ab2x2 +
√
3
√

b3x4 (27a2b+ x2 (cx2 − 2c1) 3)
)

2/3 + 6
√
3
(√

3 + 3i
)
bx2(cx2 − 2c1)

6bx 3
√

9ab2x2 +
√
3
√

b3x4 (27a2b+ x2 (cx2 − 2c1) 3)
y(x)

→
6
√
3
(√

3− 3i
)
bx2(cx2 − 2c1)− i

3
√
3
(√

3− i
) (

9ab2x2 +
√
3
√
b3x4 (27a2b+ x2 (cx2 − 2c1) 3)

)
2/3

6bx 3
√

9ab2x2 +
√
3
√

b3x4 (27a2b+ x2 (cx2 − 2c1) 3)
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25.7 problem 704
25.7.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7097

Internal problem ID [3950]
Internal file name [OUTPUT/3443_Sunday_June_05_2022_09_20_03_AM_42440957/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 704.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

x
(
1− 2y3x2) y′ + (1− 2y2x3) y = 0

25.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x
(
−2y3x2 + 1

))
dy =

(
−
(
−2x3y2 + 1

)
y
)
dx((

−2x3y2 + 1
)
y
)
dx+

(
x
(
−2y3x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
−2x3y2 + 1

)
y

N(x, y) = x
(
−2y3x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

((
−2x3y2 + 1

)
y
)

= −6x3y2 + 1

And
∂N

∂x
= ∂

∂x

(
x
(
−2y3x2 + 1

))
= −6y3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

2x3y3 − x

((
−6x3y2 + 1

)
−
(
−6y3x2 + 1

))
= 6y2x(−y + x)

2y3x2 − 1
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2x3y3 − y

((
−6y3x2 + 1

)
−
(
−6x3y2 + 1

))
= −6y x2(−y + x)

2x3y2 − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−6y3x2 + 1)− (−6x3y2 + 1)
x ((−2x3y2 + 1) y)− y (x (−2y3x2 + 1))

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt

The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

((
−2x3y2 + 1

)
y
)

= −2x3y2 + 1
y2x3

And

N = µN

= 1
x3y3

(
x
(
−2y3x2 + 1

))
= −2y3x2 + 1

x2y3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−2x3y2 + 1
y2x3

)
+
(
−2y3x2 + 1

x2y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3y2 + 1

y2x3 dx

(3)φ =
−2x y2 − 1

2x2

y2
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

2
(
−2x y2 − 1

2x2

)
y3

− 4x
y

+ f ′(y)

= 1
y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −2y3x2+1
x2y3

. Therefore equation (4) becomes

(5)−2y3x2 + 1
x2y3

= 1
y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2) dy

f(y) = −2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
−2x y2 − 1

2x2

y2
− 2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−2x y2 − 1

2x2

y2
− 2y

Summary
The solution(s) found are the following

(1)
−2y2x− 1

2x2

y2
− 2y = c1
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Figure 1118: Slope field plot

Verification of solutions

−2y2x− 1
2x2

y2
− 2y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, y^3*x^2/(2*x^2*y^3-1)], [0, (1/4*y*x+x^4*y^3+x^3*y^4)/x/(2*x^2*y^3-1)]� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 811� �
dsolve(x*(1-2*x^2*y(x)^3)*diff(y(x),x)+(1-2*x^3*y(x)^2)*y(x) = 0,y(x), singsol=all)� �
y(x)

=

((
c31x

2 − 6c21x3 + 12c1x4 − 8x5 + 3
√

−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27
)
x
) 1

3

6x

+ (−2x+ c1)2 x

6
((

c31x
2 − 6c21x3 + 12c1x4 − 8x5 + 3

√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 1

3

− x

3 + c1
6

y(x)

=
−2(−c1x+ 2x2)

((
c31x

2 − 6c21x3 + 12c1x4 − 8x5 + 3
√

−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27
)
x
) 1

3 − i

(
−c21x

2 + 4c1x3 − 4x4 +
((

c31x
2 − 6c21x3 + 12c1x4 − 8x5 + 3

√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 2

3
)√

3− 4x4 + 4c1x3 − c21x
2 −

((
c31x

2 − 6c21x3 + 12c1x4 − 8x5 + 3
√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 2

3

12
((

c31x
2 − 6c21x3 + 12c1x4 − 8x5 + 3

√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 1

3
x

y(x)

=
2(c1x− 2x2)

((
c31x

2 − 6c21x3 + 12c1x4 − 8x5 + 3
√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 1

3 + i

(
−c21x

2 + 4c1x3 − 4x4 +
((

c31x
2 − 6c21x3 + 12c1x4 − 8x5 + 3

√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 2

3
)√

3− 4x4 + 4c1x3 − c21x
2 −

((
c31x

2 − 6c21x3 + 12c1x4 − 8x5 + 3
√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 2

3

12
((

c31x
2 − 6c21x3 + 12c1x4 − 8x5 + 3

√
−6c31x2 + 36c21x3 − 72c1x4 + 48x5 + 81− 27

)
x
) 1

3
x
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3 Solution by Mathematica
Time used: 60.157 (sec). Leaf size: 672� �
DSolve[x(1-2 x^2 y[x]^3)y'[x]+(1-2 x^3 y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

−2x3 + c1x
2 + x4(−2x+c1)2

3
√

−8x9 + 12c1x8 − 6c12x7 + c13x6 − 27x4 + 3
√
3
√
x8 (16x5 − 24c1x4 + 12c12x3 − 2c13x2 + 27)

+ 3
√

−8x9 + 12c1x8 − 6c12x7 + c13x6 − 27x4 + 3
√
3
√

x8 (16x5 − 24c1x4 + 12c12x3 − 2c13x2 + 27)

6x2

y(x)

→

2x2(−2x+ c1)−
i
(√

3−i
)
x4(−2x+c1)2

3
√

−8x9 + 12c1x8 − 6c12x7 + c13x6 − 27x4 + 3
√
3
√

x8 (16x5 − 24c1x4 + 12c12x3 − 2c13x2 + 27)
+ i
(√

3 + i
) 3
√

−8x9 + 12c1x8 − 6c12x7 + c13x6 − 27x4 + 3
√
3
√

x8 (16x5 − 24c1x4 + 12c12x3 − 2c13x2 + 27)

12x2

y(x)

→

2x2(−2x+ c1) +
i
(√

3+i
)
x4(−2x+c1)2

3
√

−8x9 + 12c1x8 − 6c12x7 + c13x6 − 27x4 + 3
√
3
√

x8 (16x5 − 24c1x4 + 12c12x3 − 2c13x2 + 27)
−
(
1 + i

√
3
) 3
√

−8x9 + 12c1x8 − 6c12x7 + c13x6 − 27x4 + 3
√
3
√

x8 (16x5 − 24c1x4 + 12c12x3 − 2c13x2 + 27)

12x2
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25.8 problem 705
25.8.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7106
25.8.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7112

Internal problem ID [3951]
Internal file name [OUTPUT/3444_Sunday_June_05_2022_09_20_08_AM_57519410/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 705.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x(−yx+ 1)
(
1− y2x2) y′ + (1 + yx)

(
1 + y2x2) y = 0

25.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − (y2x2 + 1) y
x (y2x2 − 2xy + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(y2x2 + 1) y(b3 − a2)
x (y2x2 − 2xy + 1) − (y2x2 + 1)2 y2a3

x2 (y2x2 − 2xy + 1)2

−
(
− 2y3
y2x2 − 2xy + 1 + (y2x2 + 1) y

x2 (y2x2 − 2xy + 1)

+ (y2x2 + 1) y(2x y2 − 2y)
x (y2x2 − 2xy + 1)2

)
(xa2 + ya3 + a1)−

(
− 2x y2
y2x2 − 2xy + 1

− y2x2 + 1
x (y2x2 − 2xy + 1) +

(y2x2 + 1) y(2x2y − 2x)
x (y2x2 − 2xy + 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 8x5y3b2 − 2x4y4a2 − 2x4y4b3 − 4x4y3b1 + 8x4y2b2 − 4x2y4a3 + 2x3y2b1 − 2x2y3a1 − 4x3yb2 + 2x2y2a2 + 2x2y2b3 + 4x y3a3 + 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1

(y2x2 − 2xy + 1)2 x2

= 0

Setting the numerator to zero gives

(6E)2x6y4b2 − 2x4y6a3 + x5y4b1 − x4y5a1 − 8x5y3b2 − 2x4y4a2 − 2x4y4b3
− 4x4y3b1 + 8x4y2b2 − 4x2y4a3 + 2x3y2b1 − 2x2y3a1 − 4x3yb2 + 2x2y2a2
+ 2x2y2b3 + 4x y3a3 + 4x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v41v62 + 2b2v61v42 − a1v
4
1v

5
2 + b1v

5
1v

4
2 − 2a2v41v42 − 8b2v51v32 − 2b3v41v42

− 4b1v41v32 − 4a3v21v42 + 8b2v41v22 − 2a1v21v32 + 2b1v31v22 + 2a2v21v22 + 4a3v1v32
− 4b2v31v2 + 2b3v21v22 + 4a1v1v22 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v61v42 + b1v
5
1v

4
2 − 8b2v51v32 − 2a3v41v62 − a1v

4
1v

5
2 + (−2a2 − 2b3) v41v42

− 4b1v41v32 + 8b2v41v22 + 2b1v31v22 − 4b2v31v2 − 4a3v21v42 − 2a1v21v32
+ (2a2 + 2b3) v21v22 + 2b2v21 + 4a3v1v32 + 4a1v1v22 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a1 = 0
−a1 = 0
4a1 = 0

−4a3 = 0
−2a3 = 0
4a3 = 0

−4b1 = 0
2b1 = 0

−8b2 = 0
−4b2 = 0
2b2 = 0
8b2 = 0

−2a2 − 2b3 = 0
2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− (y2x2 + 1) y
x (y2x2 − 2xy + 1)

)
(−x)

= − 2x y2
y2x2 − 2xy + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2x y2

y2x2−2xy+1

dy

Which results in

S = −xy

2 + 1
2xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (y2x2 + 1) y
x (y2x2 − 2xy + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2x2 − 1
2x2y

Sy = −(xy − 1)2

2x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2x2 + 2xy ln (y) + 1
2xy = c1

Which simplifies to

−y2x2 + 2xy ln (y) + 1
2xy = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
y2x2+1

)
y

x(y2x2−2xy+1)
dS
dR

= 0

R = x

S = −y2x2 + 2 ln (y)xy + 1
2xy

Summary
The solution(s) found are the following

(1)−y2x2 + 2xy ln (y) + 1
2xy = c1
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Figure 1119: Slope field plot

Verification of solutions

−y2x2 + 2xy ln (y) + 1
2xy = c1

Verified OK.

25.8.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x(−xy + 1)

(
−y2x2 + 1

))
dy =

(
−(xy + 1)

(
y2x2 + 1

)
y
)
dx(

(xy + 1)
(
y2x2 + 1

)
y
)
dx+

(
x(−xy + 1)

(
−y2x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = (xy + 1)
(
y2x2 + 1

)
y

N(x, y) = x(−xy + 1)
(
−y2x2 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
(xy + 1)

(
y2x2 + 1

)
y
)

= 4x3y3 + 3y2x2 + 2xy + 1

And
∂N

∂x
= ∂

∂x

(
x(−xy + 1)

(
−y2x2 + 1

))
= 4x3y3 − 3y2x2 − 2xy + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (xy − 1)2 (xy + 1)
((
x
(
y2x2 + 1

)
y + 2(xy + 1)x2y2 +

(
y2x2 + 1

)
(xy + 1)

)
−
(
(−xy + 1)

(
−y2x2 + 1

)
− xy

(
−y2x2 + 1

)
− 2x2(−xy + 1) y2

))
= 6x y2 + 4y

(xy − 1)2 (xy + 1)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

(xy + 1) (y2x2 + 1) y
((
(−xy + 1)

(
−y2x2 + 1

)
− xy

(
−y2x2 + 1

)
− 2x2(−xy + 1) y2

)
−
(
x
(
y2x2 + 1

)
y + 2(xy + 1)x2y2 +

(
y2x2 + 1

)
(xy + 1)

))
= −6x2y − 4x

(xy + 1) (y2x2 + 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= ((−xy + 1) (−y2x2 + 1)− xy(−y2x2 + 1)− 2x2(−xy + 1) y2)− (x(y2x2 + 1) y + 2(xy + 1)x2y2 + (y2x2 + 1) (xy + 1))
x ((xy + 1) (y2x2 + 1) y)− y (x (−xy + 1) (−y2x2 + 1))

= −3xy − 2
xy (xy + 1)

Replacing all powers of terms xy by t gives

R = −3t− 2
t (t+ 1)

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (−3t−2

t(t+1)

)
dt
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The result of integrating gives

µ = e− ln(t+1)−2 ln(t)

= 1
(t+ 1) t2

Now t is replaced back with xy giving

µ = 1
(xy + 1)x2y2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy + 1)x2y2

(
(xy + 1)

(
y2x2 + 1

)
y
)

= y2x2 + 1
x2y

And

N = µN

= 1
(xy + 1)x2y2

(
x(−xy + 1)

(
−y2x2 + 1

))
= (xy − 1)2

x y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y2x2 + 1
x2y

)
+
(
(xy − 1)2

x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2x2 + 1

x2y
dx

(3)φ = y2x2 − 1
xy

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x− y2x2 − 1

x y2
+ f ′(y)

= y2x2 + 1
x y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= (xy−1)2
x y2

. Therefore equation (4) becomes

(5)(xy − 1)2

x y2
= y2x2 + 1

x y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−2
y

)
dy

f(y) = −2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y2x2 − 1
xy

− 2 ln (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y2x2 − 1

xy
− 2 ln (y)

Summary
The solution(s) found are the following

(1)y2x2 − 1
xy

− 2 ln (y) = c1

Figure 1120: Slope field plot

Verification of solutions

y2x2 − 1
xy

− 2 ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 42� �
dsolve(x*(1-x*y(x))*(1-x^2*y(x)^2)*diff(y(x),x)+(1+x*y(x))*(1+x^2*y(x)^2)*y(x) = 0,y(x), singsol=all)� �

y(x) = −1
x

y(x) = eRootOf
(
−e2_Z−2 e_Z ln(x)+2c1e_Z+2_Z e_Z+1

)
x

3 Solution by Mathematica
Time used: 0.342 (sec). Leaf size: 35� �
DSolve[x(1-x y[x])(1-x^2 y[x]^2)y'[x]+(1+x y[x])(1+x^2 y[x]^2)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
x

Solve
[
xy(x)− 1

xy(x) − 2 log(y(x)) = c1, y(x)
]
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25.9 problem 706
25.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7119
25.9.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7124

Internal problem ID [3952]
Internal file name [OUTPUT/3445_Sunday_June_05_2022_09_20_13_AM_83546603/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 706.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x2 − y4

)
y′ − yx = 0

25.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − yx

y4 − x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
yx(b3 − a2)
y4 − x2 − y2x2a3

(y4 − x2)2
−
(
− y

y4 − x2 −
2y x2

(y4 − x2)2
)
(xa2 + ya3 + a1)

−
(
− x

y4 − x2 + 4y4x
(y4 − x2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−y8b2 + 5x2y4b2 − 2x y5a2 + 4x y5b3 − y6a3 + 3x y4b1 − y5a1 + x3b1 − x2ya1

(−y4 + x2)2
= 0

Setting the numerator to zero gives

(6E)y8b2 − 5x2y4b2 + 2x y5a2 − 4x y5b3 + y6a3 − 3x y4b1 + y5a1 − x3b1 + x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
8
2 + 2a2v1v52 + a3v

6
2 − 5b2v21v42 − 4b3v1v52 + a1v

5
2 − 3b1v1v42 + a1v

2
1v2 − b1v

3
1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b1v
3
1 − 5b2v21v42 + a1v

2
1v2 + (2a2 − 4b3) v1v52 − 3b1v1v42 + b2v

8
2 + a3v

6
2 + a1v

5
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b2 = 0

−3b1 = 0
−b1 = 0
−5b2 = 0

2a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− yx

y4 − x2

)
(2x)

= −y5 − x2y

−y4 + x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y5−x2y
−y4+x2

dy

Which results in

S = ln (y4 + x2)
2 − ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − yx

y4 − x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

y4 + x2

Sy =
2y3

y4 + x2 − 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

7122



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y4 + x2)
2 − ln (y) = c1

Which simplifies to

ln (y4 + x2)
2 − ln (y) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − yx
y4−x2

dS
dR

= 0

R = x

S = ln (y4 + x2)
2 − ln (y)

Summary
The solution(s) found are the following

(1)ln (y4 + x2)
2 − ln (y) = c1
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Figure 1121: Slope field plot

Verification of solutions

ln (y4 + x2)
2 − ln (y) = c1

Verified OK.

25.9.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y4 + x2) dy = (xy) dx

(−xy) dx+
(
−y4 + x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy

N(x, y) = −y4 + x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−xy)

= −x

And
∂N

∂x
= ∂

∂x

(
−y4 + x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y4 + x2 ((−x)− (2x))

= − 3x
−y4 + x2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

xy
((2x)− (−x))

= −3
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy

The result of integrating gives

µ = e−3 ln(y)

= 1
y3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3

(−xy)

= − x

y2

And

N = µN

= 1
y3
(
−y4 + x2)

= −y4 + x2

y3
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

− x

y2

)
+
(
−y4 + x2

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

y2
dx

(3)φ = − x2

2y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y4+x2

y3
. Therefore equation (4) becomes

(5)−y4 + x2

y3
= x2

y3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x2

2y2 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x2

2y2 − y2

2

Summary
The solution(s) found are the following

(1)− x2

2y2 − y2

2 = c1
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Figure 1122: Slope field plot

Verification of solutions

− x2

2y2 − y2

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 97� �
dsolve((x^2-y(x)^4)*diff(y(x),x) = x*y(x),y(x), singsol=all)� �

y(x) = −

√
2c1 − 2

√
c21 − 4x2

2

y(x) =

√
2c1 − 2

√
c21 − 4x2

2

y(x) = −

√
2c1 + 2

√
c21 − 4x2

2

y(x) =

√
2c1 + 2

√
c21 − 4x2

2

3 Solution by Mathematica
Time used: 2.529 (sec). Leaf size: 122� �
DSolve[(x^2-y[x]^4)y'[x]==x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−
√
−x2 + c12 − c1

y(x) →
√
−
√
−x2 + c12 − c1

y(x) → −
√√

−x2 + c12 − c1

y(x) →
√√

−x2 + c12 − c1
y(x) → 0
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25.10 problem 707
25.10.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7131
25.10.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7137

Internal problem ID [3953]
Internal file name [OUTPUT/3446_Sunday_June_05_2022_09_20_18_AM_60118635/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 707.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x3 − y4

)
y′ − 3x2y = 0

25.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 3x2y

y4 − x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−
3x2y(b3 − a2)

y4 − x3 − 9x4y2a3

(y4 − x3)2
−
(
− 6xy
y4 − x3 −

9x4y

(y4 − x3)2
)
(xa2+ya3+a1)

−
(
− 3x2

y4 − x3 + 12x2y4

(y4 − x3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−y8b2 + 11x3y4b2 − 9x2y5a2 + 12x2y5b3 − 6x y6a3 + 2x6b2 + 6x4y2a3 + 9x2y4b1 − 6x y5a1 + 3x5b1 − 3x4ya1

(−y4 + x3)2
= 0

Setting the numerator to zero gives

(6E)y8b2 − 11x3y4b2 + 9x2y5a2 − 12x2y5b3 + 6x y6a3 − 2x6b2
− 6x4y2a3 − 9x2y4b1 + 6x y5a1 − 3x5b1 + 3x4ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
8
2 + 9a2v21v52 + 6a3v1v62 − 11b2v31v42 − 12b3v21v52 + 6a1v1v52

− 6a3v41v22 − 9b1v21v42 − 2b2v61 + 3a1v41v2 − 3b1v51 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−2b2v61 − 3b1v51 − 6a3v41v22 + 3a1v41v2 − 11b2v31v42
+ (9a2 − 12b3) v21v52 − 9b1v21v42 + 6a3v1v62 + 6a1v1v52 + b2v

8
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
3a1 = 0
6a1 = 0

−6a3 = 0
6a3 = 0

−9b1 = 0
−3b1 = 0
−11b2 = 0
−2b2 = 0

9a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 3x2y

y4 − x3

)(
4x
3

)
= −y5 − 3x3y

−y4 + x3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y5−3x3y
−y4+x3

dy

Which results in

S = ln (y4 + 3x3)
3 − ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 3x2y

y4 − x3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3x2

y4 + 3x3

Sy =
y4 − x3

y5 + 3x3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y4 + 3x3)
3 − ln (y)

3 = c1

Which simplifies to

ln (y4 + 3x3)
3 − ln (y)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 3x2y
y4−x3

dS
dR

= 0

R = x

S = ln (y4 + 3x3)
3 − ln (y)

3

Summary
The solution(s) found are the following

(1)ln (y4 + 3x3)
3 − ln (y)

3 = c1
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Figure 1123: Slope field plot

Verification of solutions

ln (y4 + 3x3)
3 − ln (y)

3 = c1

Verified OK.

25.10.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y4 + x3) dy =

(
3x2y

)
dx(

−3x2y
)
dx+

(
−y4 + x3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x2y

N(x, y) = −y4 + x3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3x2y

)
= −3x2

And
∂N

∂x
= ∂

∂x

(
−y4 + x3)

= 3x2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y4 + x3

((
−3x2)− (3x2))

= − 6x2

−y4 + x3

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

3x2y

((
3x2)− (−3x2))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2
(
−3x2y

)
= −3x2

y
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And

N = µN

= 1
y2
(
−y4 + x3)

= −y4 + x3

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−3x2

y

)
+
(
−y4 + x3

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x2

y
dx

(3)φ = −x3

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y4+x3

y2
. Therefore equation (4) becomes

(5)−y4 + x3

y2
= x3

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y2

)
dy

f(y) = −y3

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

y
− y3

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

y
− y3

3

Summary
The solution(s) found are the following

(1)−x3

y
− y3

3 = c1
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Figure 1124: Slope field plot

Verification of solutions

−x3

y
− y3

3 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 25� �
dsolve((x^3-y(x)^4)*diff(y(x),x) = 3*x^2*y(x),y(x), singsol=all)� �

y(x) = RootOf
(
x9_Z4 + 3− e

9c1
4 _Z

)
x3
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3 Solution by Mathematica
Time used: 60.209 (sec). Leaf size: 1021� �
DSolve[(x^3-y[x]^4)y'[x]==3 x^2 y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

√√√√√ 3
√

9c12 −
√

−256x9 + 81c14
3
√
2

+ 4 3
√
2x3

3
√
9c12 −

√
−256x9 + 81c14

− 1
2

√√√√√√√√√
−

3
√

9c12 −
√

−256x9 + 81c14
3
√
2

− 4 3
√
2x3

3
√

9c12 −
√

−256x9 + 81c14
− 6c1√√√√√ 3

√
9c12 −

√
−256x9 + 81c14
3
√
2

+ 4
3
√
2x3

3
√

9c12 −
√

−256x9 + 81c14

y(x) → 1
2

√√√√√ 3
√

9c12 −
√

−256x9 + 81c14
3
√
2

+ 4 3
√
2x3

3
√
9c12 −

√
−256x9 + 81c14

+1
2

√√√√√√√√√
−

3
√

9c12 −
√

−256x9 + 81c14
3
√
2

− 4 3
√
2x3

3
√

9c12 −
√

−256x9 + 81c14
− 6c1√√√√√ 3

√
9c12 −

√
−256x9 + 81c14
3
√
2

+ 4
3
√
2x3

3
√
9c12 −

√
−256x9 + 81c14

y(x) → −1
2

√√√√√ 3
√

9c12 −
√

−256x9 + 81c14
3
√
2

+ 4 3
√
2x3

3
√
9c12 −

√
−256x9 + 81c14

− 1
2

√√√√√√√√√
−

3
√

9c12 −
√

−256x9 + 81c14
3
√
2

− 4 3
√
2x3

3
√

9c12 −
√

−256x9 + 81c14
+ 6c1√√√√√ 3

√
9c12 −

√
−256x9 + 81c14
3
√
2

+ 4
3
√
2x3

3
√
9c12 −

√
−256x9 + 81c14

y(x)

→ 1
2

√√√√√√√√√
−

3
√

9c12 −
√
−256x9 + 81c14
3
√
2

− 4 3
√
2x3

3
√

9c12 −
√

−256x9 + 81c14
+ 6c1√√√√√ 3

√
9c12 −

√
−256x9 + 81c14
3
√
2

+ 4
3
√
2x3

3
√

9c12 −
√

−256x9 + 81c14

− 1
2

√√√√√ 3
√

9c12 −
√

−256x9 + 81c14
3
√
2

+ 4 3
√
2x3

3
√

9c12 −
√

−256x9 + 81c14
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25.11 problem 708
25.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7145

Internal problem ID [3954]
Internal file name [OUTPUT/3447_Sunday_June_05_2022_09_20_27_AM_28104801/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 708.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[_rational]

(
a2x2 +

(
y2 + x2)2) y′ − ya2x = 0

25.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y a2x

a2x2 + x4 + 2y2x2 + y4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+ y a2x(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
a2x2 + x4 + 2y2x2 + y4

− y2a4x2(x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
(a2x2 + x4 + 2y2x2 + y4)2

−
(

y a2

a2x2 + x4 + 2y2x2 + y4
− y a2x(2x a2 + 4x3 + 4x y2)

(a2x2 + x4 + 2y2x2 + y4)2
)(

x3a7

+ x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

−
(

a2x

a2x2 + x4 + 2y2x2 + y4
− y a2x(4x2y + 4y3)

(a2x2 + x4 + 2y2x2 + y4)2
)(

x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

a4v21v2a1+3a2v1v42b1+(12b7+6b9) v62v41 +(3b7+4b9) v82v21 +
(
−a4a4+ a4b5+3a2a1

)
v2v

4
1

+
(
−a4a5 + a4b6 + 2a2b1

)
v22v

3
1 +

(
−a4a6 + 2a2a1

)
v32v

2
1 +

(
a2a4 + 2a2b5

)
v2v

6
1

+
(
2a2a5 + 10a2b4 + a2b6

)
v22v

5
1 +

(
−2a4a7 + 2a4b8 + 2a2a2

)
v2v

5
1

+
(
−2a4a8 + 2a4b9 + 3a2a3 + 6a2b2

)
v22v

4
1 +

(
−2a4a9 + 2a4b10 + 4a2b3

)
v32v

3
1

+
(
−2a4a10+2a2a3+5a2b2

)
v42v

2
1+
(
−2a2a2+4a2b3

)
v52v1+

(
−2a2a4+3a2a6+8a2b5

)
v32v

4
1

+
(
7a2b4 + 6a2b6

)
v42v

3
1 +

(
−3a2a4 + 2a2a6 + 6a2b5

)
v52v

2
1 +

(
−2a2a5 + 5a2b6

)
v62v1

+
(
a2a8 + 14a2b7 + 3a2b9 + 4b2

)
v22v

6
1 +

(
−2a2a8 + 3a2a10 + 9a2b7 + 10a2b9 + 6b2

)
v42v

4
1

+
(
−3a2a8 + 2a2a10 + 7a2b9 + 4b2

)
v62v

2
1 +

(
−4a2a7 + 2a2a9 + 12a2b8 + 2a2b10

)
v51v

3
2

+
(
−4a2a7 + 8a2b8 + 8a2b10

)
v31v

5
2 +

(
−2a2a9 + 6a2b10

)
v1v

7
2 + (12b7 + b9) v22v81

+ (18b7 + 4b9) v42v61 + 4v2a2v71b8 − a4v31b1 − a2v52a1 + 2v91v2b8 + 8v71v32b8 + 12v51v52b8
+ 8v31v72b8 + 2v1v92b8 +

(
2a4b7 + a2b2

)
v61 +

(
a4b4 − a2b1

)
v51 +

(
5a2b7 + b2

)
v81 + 3v101 b7

+ v102 b9 +
(
−a2a10 + b2

)
v82 + 4v61v32b5 + 12v51v42b4 + 3a2v71b4 − a2v72a6 + v81v2b5

+ 8v71v22b4 + 4v21v72b5 + 2v1v82b4 + 6v41v52b5 + 8v31v62b4 − a2v62a3 + 2v91b4 + v92b5 = 0
(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve
b5 = 0
b9 = 0

a4a1 = 0
2b4 = 0
8b4 = 0
12b4 = 0
4b5 = 0
6b5 = 0
3b7 = 0
2b8 = 0
8b8 = 0
12b8 = 0

−a2a1 = 0
−a2a3 = 0
−a2a6 = 0
3a2b1 = 0
3a2b4 = 0
4a2b8 = 0
−a4b1 = 0

3b7 + 4b9 = 0
12b7 + b9 = 0
12b7 + 6b9 = 0
18b7 + 4b9 = 0

−a4a6 + 2a2a1 = 0
−2a2a2 + 4a2b3 = 0

a2a4 + 2a2b5 = 0
−2a2a5 + 5a2b6 = 0
−2a2a9 + 6a2b10 = 0

−a2a10 + b2 = 0
a4b4 − a2b1 = 0
5a2b7 + b2 = 0

2a4b7 + a2b2 = 0
7a2b4 + 6a2b6 = 0

−a4a4 + a4b5 + 3a2a1 = 0
−2a4a7 + 2a4b8 + 2a2a2 = 0
−2a4a10 + 2a2a3 + 5a2b2 = 0
−3a2a4 + 2a2a6 + 6a2b5 = 0
−2a2a4 + 3a2a6 + 8a2b5 = 0

−a4a5 + a4b6 + 2a2b1 = 0
2a2a5 + 10a2b4 + a2b6 = 0

−4a2a7 + 8a2b8 + 8a2b10 = 0
−2a4a9 + 2a4b10 + 4a2b3 = 0

−2a4a8 + 2a4b9 + 3a2a3 + 6a2b2 = 0
−4a2a7 + 2a2a9 + 12a2b8 + 2a2b10 = 0

−3a2a8 + 2a2a10 + 7a2b9 + 4b2 = 0
a2a8 + 14a2b7 + 3a2b9 + 4b2 = 0

−2a2a8 + 3a2a10 + 9a2b7 + 10a2b9 + 6b2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2a2b10
a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 2b10
a8 = 0
a9 = 3b10
a10 = 0
b1 = 0
b2 = 0
b3 = a2b10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = 0
b9 = 0
b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x a2 + 2x3 + 3x y2

η = y a2 + y3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y a2 + y3 −
(

y a2x

a2x2 + x4 + 2y2x2 + y4

)(
2x a2 + 2x3 + 3x y2

)
= −a4x2y − a2x4y + a2y5 + x4y3 + 2x2y5 + y7

a2x2 + x4 + 2y2x2 + y4

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a4x2y−a2x4y+a2y5+x4y3+2x2y5+y7

a2x2+x4+2y2x2+y4

dy

Which results in

S = ln (−a2x2 + y2x2 + y4)
2a2 − ln (a2 + x2 + y2)

2a2 − ln (y)
a2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y a2x

a2x2 + x4 + 2y2x2 + y4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = a2x

(a2 + x2 + y2) ((a2 − y2)x2 − y4)

Sy =
−a2x2 − x4 − 2y2x2 − y4

(a2x2 − y2x2 − y4) (a2 + x2 + y2) y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln ((−a2 + y2)x2 + y4)− ln (a2 + x2 + y2)− 2 ln (y)
2a2 = c1

Which simplifies to

ln ((−a2 + y2)x2 + y4)− ln (a2 + x2 + y2)− 2 ln (y)
2a2 = c1

Summary
The solution(s) found are the following

(1)ln ((−a2 + y2)x2 + y4)− ln (a2 + x2 + y2)− 2 ln (y)
2a2 = c1

Verification of solutions

ln ((−a2 + y2)x2 + y4)− ln (a2 + x2 + y2)− 2 ln (y)
2a2 = c1

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -4*x^2*y(x)/a^4+(a^2+4*x^2)*(diff(y(x), x))/(a^2*x), y(x)` *** Sublevel

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- differential order: 1; linearization to 2nd order successful
<- change of variables {x -> y(x), y(x) -> x} succesful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 197� �
dsolve((a^2*x^2+(x^2+y(x)^2)^2)*diff(y(x),x) = a^2*x*y(x),y(x), singsol=all)� �

y(x) = −

√
−2a2 − 2x2 − 2

√
x4 + (2a2 − 2c1)x2 + (a2 + c1)2 − 2c1

2

y(x) =

√
−2a2 − 2x2 − 2

√
x4 + (2a2 − 2c1)x2 + (a2 + c1)2 − 2c1

2

y(x) = −

√
−2a2 − 2x2 + 2

√
x4 + (2a2 − 2c1)x2 + (a2 + c1)2 − 2c1

2

y(x) =

√
−2a2 − 2x2 + 2

√
x4 + (2a2 − 2c1)x2 + (a2 + c1)2 − 2c1

2

3 Solution by Mathematica
Time used: 7.125 (sec). Leaf size: 272� �
DSolve[(a^2 x^2+(x^2+y[x]^2)^2)y'[x]==a^2 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−
√

(a2 + x2 − c12) 2 + 4c12x2 − a2 − x2 + c12
√
2

y(x) →

√
−
√
(a2 + x2 − c12) 2 + 4c12x2 − a2 − x2 + c12

√
2

y(x) → −

√√
(a2 + x2 − c12) 2 + 4c12x2 − a2 − x2 + c12

√
2

y(x) →

√√
(a2 + x2 − c12) 2 + 4c12x2 − a2 − x2 + c12

√
2

y(x) → 0
y(x) → −

√
−x2

y(x) →
√
−x2
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25.12 problem 709
25.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7154
25.12.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7159

Internal problem ID [3955]
Internal file name [OUTPUT/3448_Sunday_June_05_2022_09_20_31_AM_7915057/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 709.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

2
(
x− y4

)
y′ − y = 0

25.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

2 (y4 − x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
2 (y4 − x) − y2a3

4 (y4 − x)2
+ y(xa2 + ya3 + a1)

2 (y4 − x)2

−
(
− 1
2 (y4 − x) +

2y4

(y4 − x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4y8b2 − 14x y4b2 + 2y5a2 − 8y5b3 − 6y4b1 + 2x2b2 + y2a3 − 2xb1 + 2ya1
4 (−y4 + x)2

= 0

Setting the numerator to zero gives

(6E)4y8b2 − 14x y4b2 + 2y5a2 − 8y5b3 − 6y4b1 + 2x2b2 + y2a3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4b2v82 + 2a2v52 − 14b2v1v42 − 8b3v52 − 6b1v42 + a3v
2
2 + 2b2v21 + 2a1v2 − 2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21 − 14b2v1v42 − 2b1v1 + 4b2v82 + (2a2 − 8b3) v52 − 6b1v42 + a3v
2
2 + 2a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
2a1 = 0

−6b1 = 0
−2b1 = 0
−14b2 = 0

2b2 = 0
4b2 = 0

2a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 4b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

2 (y4 − x)

)
(4x)

= −y5 − xy

−y4 + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y5−xy
−y4+x

dy

Which results in

S = ln (y4 + x)
2 − ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

2 (y4 − x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2y4 + 2x

Sy =
y4 − x

y (y4 + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y4 + x)
2 − ln (y) = c1

Which simplifies to

ln (y4 + x)
2 − ln (y) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
2(y4−x)

dS
dR

= 0

R = x

S = ln (y4 + x)
2 − ln (y)
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Summary
The solution(s) found are the following

(1)ln (y4 + x)
2 − ln (y) = c1

Figure 1125: Slope field plot

Verification of solutions

ln (y4 + x)
2 − ln (y) = c1

Verified OK.

25.12.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−2y4 + 2x

)
dy = (y) dx

(−y) dx+
(
−2y4 + 2x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = −2y4 + 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y)

= −1
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And
∂N

∂x
= ∂

∂x

(
−2y4 + 2x

)
= 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2y4 + 2x((−1)− (2))

= − 3
−2y4 + 2x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1

y
((2)− (−1))

= −3
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy

The result of integrating gives

µ = e−3 ln(y)

= 1
y3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3

(−y)

= − 1
y2
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And

N = µN

= 1
y3
(
−2y4 + 2x

)
= −2y4 + 2x

y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

− 1
y2

)
+
(
−2y4 + 2x

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
y2

dx

(3)φ = − x

y2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x

y3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2y4+2x
y3

. Therefore equation (4) becomes

(5)−2y4 + 2x
y3

= 2x
y3

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2y) dy

f(y) = −y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x

y2
− y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x

y2
− y2

Summary
The solution(s) found are the following

(1)− x

y2
− y2 = c1
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Figure 1126: Slope field plot

Verification of solutions

− x

y2
− y2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 89� �
dsolve(2*(x-y(x)^4)*diff(y(x),x) = y(x),y(x), singsol=all)� �

y(x) = −

√
−2
√
c21 − 4x+ 2c1
2

y(x) =

√
−2
√
c21 − 4x+ 2c1
2

y(x) = −

√
2
√
c21 − 4x+ 2c1

2

y(x) =

√
2
√

c21 − 4x+ 2c1
2

3 Solution by Mathematica
Time used: 2.408 (sec). Leaf size: 128� �
DSolve[2(x-y[x]^4)y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
c1 −

√
−4x+ c12√
2

y(x) →
√

c1 −
√
−4x+ c12√
2

y(x) → −
√√

−4x+ c12 + c1√
2

y(x) →
√√

−4x+ c12 + c1√
2

y(x) → 0
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25.13 problem 710
25.13.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7166

Internal problem ID [3956]
Internal file name [OUTPUT/3449_Sunday_June_05_2022_09_20_36_AM_63328629/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 710.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

(
4x− xy3 − 2y4

)
y′ −

(
2 + y3

)
y = 0

25.13.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−x y3 − 2y4 + 4x
)
dy =

(
y
(
y3 + 2

))
dx(

−y
(
y3 + 2

))
dx+

(
−x y3 − 2y4 + 4x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
y3 + 2

)
N(x, y) = −x y3 − 2y4 + 4x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
y3 + 2

))
= −4y3 − 2

And
∂N

∂x
= ∂

∂x

(
−x y3 − 2y4 + 4x

)
= −y3 + 4

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−x y3 − 2y4 + 4x
((
−4y3 − 2

)
−
(
−y3 + 4

))
= 3y3 + 6

x y3 + 2y4 − 4x
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (y3 + 2)
((
−y3 + 4

)
−
(
−4y3 − 2

))
= −3

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy

The result of integrating gives

µ = e−3 ln(y)

= 1
y3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3
(
−y
(
y3 + 2

))
= −y3 − 2

y2

And

N = µN

= 1
y3
(
−x y3 − 2y4 + 4x

)
= −x y3 − 2y4 + 4x

y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−y3 − 2
y2

)
+
(
−x y3 − 2y4 + 4x

y3

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y3 − 2

y2
dx

(3)φ = −(y3 + 2)x
y2

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −3x+ 2(y3 + 2)x

y3
+ f ′(y)

= −x(y3 − 4)
y3

+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x y3−2y4+4x
y3

. Therefore equation (4) becomes

(5)−x y3 − 2y4 + 4x
y3

= −x(y3 − 4)
y3

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2y) dy

f(y) = −y2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(y3 + 2)x
y2

− y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(y3 + 2)x
y2

− y2

Summary
The solution(s) found are the following

(1)−(2 + y3)x
y2

− y2 = c1

Figure 1127: Slope field plot

Verification of solutions

−(2 + y3)x
y2

− y2 = c1

Verified OK.

7170



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve((4*x-x*y(x)^3-2*y(x)^4)*diff(y(x),x) = (2+y(x)^3)*y(x),y(x), singsol=all)� �

x−
(
−y(x)2 + c1

)
y(x)2

2 + y (x)3
= 0
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3 Solution by Mathematica
Time used: 60.285 (sec). Leaf size: 2021� �
DSolve[(4 x-x y[x]^3-2 y[x]^4)y'[x]==(2+y[x]^3)y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−1
2

√√√√√ 3
√

54x3 +
√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

+
3
√
2 (24x+ c12)

3 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

4 + 2c1
3

− 1
2

√√√√√√√√√
−

3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

−
3
√
2 (24x+ c12)

3 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

2 + x (x2 + 4c1)

4

√√√√√ 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3
3
√
2

+
3
√
2(24x+c12)

3
3
√
54x3 +

√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

+ x2

4 + 2c1
3

+ 4c1
3

− x

4
y(x) →

−1
2

√√√√√ 3
√

54x3 +
√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

+
3
√
2 (24x+ c12)

3 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

4 + 2c1
3

+1
2

√√√√√√√√√
−

3
√

54x3 +
√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

−
3
√
2 (24x+ c12)

3 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

2 + x (x2 + 4c1)

4

√√√√√ 3
√
54x3 +

√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3
3
√
2

+
3
√
2(24x+c12)

3
3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

4 + 2c1
3

+ 4c1
3

− x

4
y(x)

→ 1
2

√√√√√ 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

+
3
√
2 (24x+ c12)

3 3
√
54x3 +

√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

+ x2

4 + 2c1
3

− 1
2

√√√√√√√√√
−

3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

−
3
√
2 (24x+ c12)

3 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

2 − x (x2 + 4c1)

4

√√√√√ 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3
3
√
2

+
3
√
2(24x+c12)

3
3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

4 + 2c1
3

+ 4c1
3

− x

4
y(x)

→ 1
2

√√√√√ 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

+
3
√
2 (24x+ c12)

3 3
√
54x3 +

√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

+ x2

4 + 2c1
3

+1
2

√√√√√√√√√
−

3
√

54x3 +
√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3 3
√
2

−
3
√
2 (24x+ c12)

3 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13
+ x2

2 − x (x2 + 4c1)

4

√√√√√ 3
√

54x3 +
√

(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

3
3
√
2

+
3
√
2(24x+c12)

3
3
√
54x3 +

√
(54x3 + 144c1x− 2c13) 2 − 4 (24x+ c12) 3 + 144c1x− 2c13

+ x2

4 + 2c1
3

+ 4c1
3

− x

4
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25.14 problem 711
25.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 7173
25.14.2 Solving as first order ode lie symmetry calculated ode . . . . . . 7174

Internal problem ID [3957]
Internal file name [OUTPUT/3450_Sunday_June_05_2022_09_20_40_AM_94812719/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 711.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
a x3 + (ax+ yb)3

)
yy′ + x

(
(ax+ yb)3 + by3

)
= 0

25.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
a x3 + (ax+ u(x)xb)3

)
u(x)x(u′(x)x+ u(x)) + x

(
(ax+ u(x)xb)3 + bu(x)3 x3) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(bu+ a) (b2u4 + 2ab u3 + (a2 + b2 + 1)u2 + 2abu+ a2)
xu (u3b3 + 3u2a b2 + 3u a2b+ a3 + a)

Where f(x) = − 1
x
and g(u) = (bu+a)

(
b2u4+2ab u3+

(
a2+b2+1

)
u2+2abu+a2

)
u(u3b3+3u2a b2+3u a2b+a3+a) . Integrating both

sides gives
1

(bu+a)(b2u4+2ab u3+(a2+b2+1)u2+2abu+a2)
u(u3b3+3u2a b2+3u a2b+a3+a)

du = −1
x
dx
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∫ 1
(bu+a)(b2u4+2ab u3+(a2+b2+1)u2+2abu+a2)

u(u3b3+3u2a b2+3u a2b+a3+a)

du =
∫

−1
x
dx

ln (b2u4 + 2ab u3 + a2u2 + b2u2 + 2abu+ a2 + u2)
2 − ln (bu+ a) = − ln (x) + c2

Raising both side to exponential gives

e
ln
(
b2u4+2ab u3+a2u2+b2u2+2abu+a2+u2

)
2 −ln(bu+a) = e− ln(x)+c2

Which simplifies to√
b2u4 + 2ab u3 + (a2 + b2 + 1)u2 + 2abu+ a2

bu+ a
= c3

x

Therefore the solution y is

y = ux

= xRootOf
(
b2x2_Z4 + 2ab x2_Z3 +

(
a2x2 − b2c23 + b2x2 + x2)_Z2 +

(
−2ab c23 + 2ab x2)_Z− c23a

2 + a2x2)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
b2x2_Z4 + 2ab x2_Z3 +

(
a2x2 − b2c23 + b2x2 + x2)_Z2

+
(
−2ab c23 + 2ab x2)_Z− c23a

2 + a2x2)
Verification of solutions

y = xRootOf
(
b2x2_Z4 + 2ab x2_Z3 +

(
a2x2 − b2c23 + b2x2 + x2)_Z2

+
(
−2ab c23 + 2ab x2)_Z− c23a

2 + a2x2)
Verified OK.

25.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2 −
x(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3) (b3 − a2)

(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y

− x2(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3)2 a3
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3)2 y2

−
(
− a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3

(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y

− x(3a3x2 + 6a2bxy + 3a b2y2)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y

+ x(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3) (3a3x2 + 6a2bxy + 3a b2y2 + 3x2a)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3)2 y

)
(xa2

+ ya3 + a1)−
(
− x(3a2b x2 + 6a b2xy + 3y2b3 + 3b y2)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y

+ x(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3) (3a2b x2 + 6a b2xy + 3y2b3)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3)2 y

+ x(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y2

)
(xb2 + yb3 + b1) = 0

(5E)

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

(
−a6a3 − a6b2 − a4b2

)
v81

+
(
2a6a2 − 2a6b3 − 6a5ba3 − 6a5bb2 + 2a4a2 − 2a4b3

)
v71v2

+
(
−a6b1 − a4b1

)
v71

+
(
a6a3 + a6b2 + 12a5ba2 − 12a5bb3 − 15a4b2a3 − 15a4b2b2

+ a4a3 + 2a4b2 + 3a3ba2 − 3a3bb3 + 3a2b2b2 + a2b2
)
v61v

2
2

+
(
a6a1 − 6a5bb1 + a4a1

)
v61v2

+
(
6a5ba3 + 6a5bb2 + 30a4b2a2 − 30a4b2b3 − 20a3b3a3

− 20a3b3b2 − 2a3ba3 + 8a3bb2 + 2a b3b2 + 2abb2
)
v51v

3
2

+
(
6a5ba1− 15a4b2b1+3a2b2b1

)
v51v

2
2 +
(
15a4b2a3+15a4b2b2

+40a3b3a2− 40a3b3b3− 15a2b4a3− 15a2b4b2−a3ba2+a3bb3
− 9a2b2a3 + 9a2b2b2 − a b3a2 + a b3b3 − aba2 + abb3

)
v41v

4
2

+
(
15a4b2a1 − 20a3b3b1 + 2a3bb1 − 3a2b2a1 + 2a b3b1

+ 2abb1
)
v41v

3
2 +
(
20a3b3a3 + 20a3b3b2 + 30a2b4a2 − 30a2b4b3

−6a b5a3−6a b5b2−2a3ba3−8a b3a3+2a b3b2−2aba3
)
v31v

5
2

+
(
20a3b3a1 − 15a2b4b1 − 2a3ba1 + 3a2b2b1

− 2a b3a1 − 2aba1
)
v31v

4
2

+
(
15a2b4a3 + 15a2b4b2 + 12a b5a2 − 12a b5b3 − b6a3 − b6b2

− 3a2b2a3 + 3a b3a2 − 3a b3b3 − 2b4a3 − b4b2 − b2a3
)
v21v

6
2

+
(
15a2b4a1 − 6a b5b1 − 3a2b2a1

)
v21v

5
2

+
(
6a b5a3 + 6a b5b2 + 2b6a2 − 2b6b3 + 2b4a2 − 2b4b3

)
v1v

7
2

+
(
6a b5a1 − b6b1 − b4b1

)
v1v

6
2

+
(
b6a3 + b6b2 + b4a3

)
v82 +

(
b6a1 + b4a1

)
v72 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−a6b1 − a4b1 = 0
b6a1 + b4a1 = 0

−a6a3 − a6b2 − a4b2 = 0
b6a3 + b6b2 + b4a3 = 0

6a b5a1 − b6b1 − b4b1 = 0
15a2b4a1 − 6a b5b1 − 3a2b2a1 = 0
6a5ba1 − 15a4b2b1 + 3a2b2b1 = 0

a6a1 − 6a5bb1 + a4a1 = 0
20a3b3a1 − 15a2b4b1 − 2a3ba1 + 3a2b2b1 − 2a b3a1 − 2aba1 = 0
15a4b2a1 − 20a3b3b1 + 2a3bb1 − 3a2b2a1 + 2a b3b1 + 2abb1 = 0

6a b5a3 + 6a b5b2 + 2b6a2 − 2b6b3 + 2b4a2 − 2b4b3 = 0
2a6a2 − 2a6b3 − 6a5ba3 − 6a5bb2 + 2a4a2 − 2a4b3 = 0

20a3b3a3 + 20a3b3b2 + 30a2b4a2 − 30a2b4b3 − 6a b5a3 − 6a b5b2 − 2a3ba3 − 8a b3a3 + 2a b3b2 − 2aba3 = 0
6a5ba3 + 6a5bb2 + 30a4b2a2 − 30a4b2b3 − 20a3b3a3 − 20a3b3b2 − 2a3ba3 + 8a3bb2 + 2a b3b2 + 2abb2 = 0

15a2b4a3 + 15a2b4b2 + 12a b5a2 − 12a b5b3 − b6a3 − b6b2 − 3a2b2a3 + 3a b3a2 − 3a b3b3 − 2b4a3 − b4b2 − b2a3 = 0
a6a3 + a6b2 + 12a5ba2 − 12a5bb3 − 15a4b2a3 − 15a4b2b2 + a4a3 + 2a4b2 + 3a3ba2 − 3a3bb3 + 3a2b2b2 + a2b2 = 0

15a4b2a3 + 15a4b2b2 + 40a3b3a2 − 40a3b3b3 − 15a2b4a3 − 15a2b4b2 − a3ba2 + a3bb3 − 9a2b2a3 + 9a2b2b2 − a b3a2 + a b3b3 − aba2 + abb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y

)
(x)

= a3x5 + a3x3y2 + 3a2b x4y + 3a2b x2y3 + 3a b2x3y2 + 3a b2x y4 + b3x2y3 + b3y5 + a x3y2 + b x2y3

a3x3y + 3a2b x2y2 + 3a b2x y3 + b3y4 + a x3y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a3x5+a3x3y2+3a2b x4y+3a2b x2y3+3a b2x3y2+3a b2x y4+b3x2y3+b3y5+a x3y2+b x2y3

a3x3y+3a2b x2y2+3a b2x y3+b3y4+a x3y

dy

Which results in

S = ln (a2x4 + a2x2y2 + 2ab x3y + 2abx y3 + b2x2y2 + b2y4 + y2x2)
2 − ln (ax+ by)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + b y3)
(a3x3 + 3a2b x2y + 3a b2x y2 + b3y3 + a x3) y

7179



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (a3x3 + 3a2b x2y + 3a b2x y2 + b y3(b2 + 1))x
(a2x4 + 2ab x3y + y2 (a2 + b2 + 1)x2 + 2abx y3 + b2y4) (ax+ by)

Sy =
((a3 + a)x3 + 3a2b x2y + 3a b2x y2 + b3y3) y

(a2x4 + 2ab x3y + y2 (a2 + b2 + 1)x2 + 2abx y3 + b2y4) (ax+ by)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (a2x4 + 2yab x3 + y2(a2 + b2 + 1)x2 + 2y3abx+ b2y4)
2 − ln (ax+ yb) = c1

Which simplifies to

ln (a2x4 + 2yab x3 + y2(a2 + b2 + 1)x2 + 2y3abx+ b2y4)
2 − ln (ax+ yb) = c1

Summary
The solution(s) found are the following

(1)ln (a2x4 + 2yab x3 + y2(a2 + b2 + 1)x2 + 2y3abx+ b2y4)
2 − ln (ax+ yb) = c1

Verification of solutions

ln (a2x4 + 2yab x3 + y2(a2 + b2 + 1)x2 + 2y3abx+ b2y4)
2 − ln (ax+ yb) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.672 (sec). Leaf size: 160� �
dsolve((a*x^3+(a*x+b*y(x))^3)*y(x)*diff(y(x),x)+x*((a*x+b*y(x))^3+b*y(x)^3) = 0,y(x), singsol=all)� �
y(x)

=
x
(
c1x− aRootOf

(
a2_Z4 − 2axc1_Z3 + (a2c21x2 + b2c21x

2 + c21x
2 − b2)_Z2 − 2a x3c31_Z+ c41x

4))
bRootOf

(
a2_Z4 − 2axc1_Z3 + (a2c21x2 + b2c21x

2 + c21x
2 − b2)_Z2 − 2a x3c31_Z+ c41x

4
)

3 Solution by Mathematica
Time used: 61.456 (sec). Leaf size: 13289� �
DSolve[(a*x^3+(a*x+b*y[x])^3)*y[x]*y'[x]+x*((a*x+b*y[x])^3+b*y[x]^3)==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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25.15 problem 712
Internal problem ID [3958]
Internal file name [OUTPUT/3451_Sunday_June_05_2022_09_20_46_AM_33418631/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 712.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

(
x+ 2y + 2y3x2 + y4x

)
y′ +

(
y4 + 1

)
y = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -4*x^2*y(x)/(x^4+1)^2-(3*x^4-1)*(diff(y(x), x))/(x*(x^4+1)), y(x)` ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- differential order: 1; linearization to 2nd order successful
<- change of variables {x -> y(x), y(x) -> x} succesful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 633� �
dsolve((x+2*y(x)+2*x^2*y(x)^3+x*y(x)^4)*diff(y(x),x)+(1+y(x)^4)*y(x) = 0,y(x), singsol=all)� �
y(x)

=

−1 +

(
108c31x2+12

√
3
√

27c41x2+4c1x4+18c21x2−x2−4c1 xc1+36c1x2−8
) 1

3

2 − 2
(
3c1x2−1

)(
108c31x2+12

√
3
√

27c41x2+4c1x4+18c21x2−x2−4c1 xc1+36c1x2−8
) 1

3

3c1x
y(x)

=
i

(
4− 12c1x2 −

(
108c31x2 + 12

√
3
√

27c41x2 + 18c21x2 + (4x4 − 4) c1 − x2 xc1 + 36c1x2 − 8
) 2

3
)√

3 + 12c1x2 −
((

108c31x2 + 12
√
3
√

27c41x2 + 18c21x2 + (4x4 − 4) c1 − x2 xc1 + 36c1x2 − 8
) 1

3 + 2
)2

12
(
108c31x2 + 12

√
3
√

27c41x2 + 18c21x2 + (4x4 − 4) c1 − x2 xc1 + 36c1x2 − 8
) 1

3
c1x

y(x)

=
12i

√
3 c1x2 + i

(
108c31x2 + 12

√
3
√
27c41x2 + 18c21x2 + (4x4 − 4) c1 − x2 xc1 + 36c1x2 − 8

) 2
3 √3 + 12c1x2 − 4i

√
3−

(
108c31x2 + 12

√
3
√
27c41x2 + 18c21x2 + (4x4 − 4) c1 − x2 xc1 + 36c1x2 − 8

) 2
3 − 4

(
108c31x2 + 12

√
3
√

27c41x2 + 18c21x2 + (4x4 − 4) c1 − x2 xc1 + 36c1x2 − 8
) 1

3 − 4

12c1x
(
108c31x2 + 12

√
3
√

27c41x2 + 18c21x2 + (4x4 − 4) c1 − x2 xc1 + 36c1x2 − 8
) 1

3
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3 Solution by Mathematica
Time used: 14.749 (sec). Leaf size: 675� �
DSolve[(x+2 y[x]+2 x^2 y[x]^3+x y[x]^4)y'[x]+(1+y[x]^4)y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

2c1
(
3x2+c1

)
3

√
9
2 (3 + c12)x2 + 3

2
√
3
√

−4c13x6 + (27− c14 + 18c12)x4 + 4c13x2 + c13
+ 22/3 3

√
9 (3 + c12)x2 + 3

√
3
√
−4c13x6 + (27− c14 + 18c12)x4 + 4c13x2 + 2c13 + 2c1

6x
y(x)

→

−
2i
(√

3−i
)
c1
(
3x2+c1

)
3

√
9
2 (3 + c12)x2 + 3

2
√
3
√

−4c13x6 + (27− c14 + 18c12)x4 + 4c13x2 + c13
+ i22/3

(√
3 + i

) 3
√
9 (3 + c12)x2 + 3

√
3
√

−4c13x6 + (27− c14 + 18c12)x4 + 4c13x2 + 2c13 + 4c1

12x
y(x)

→

2i
(√

3+i
)
c1
(
3x2+c1

)
3

√
9
2 (3 + c12)x2 + 3

2
√
3
√

−4c13x6 + (27− c14 + 18c12)x4 + 4c13x2 + c13
− 22/3

(
1 + i

√
3
) 3
√

9 (3 + c12)x2 + 3
√
3
√

−4c13x6 + (27− c14 + 18c12)x4 + 4c13x2 + 2c13 + 4c1

12x
y(x) → 0
y(x) → − 4

√
−1

y(x) → 4
√
−1

y(x) → −(−1)3/4

y(x) → (−1)3/4

y(x) → 1
2x
(
−1 + ix2

√
−x4

)
y(x) → −x

2 + i
√
−x4

2x
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25.16 problem 713
25.16.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7186
25.16.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7192

Internal problem ID [3959]
Internal file name [OUTPUT/3452_Sunday_June_05_2022_09_20_49_AM_27625234/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 713.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

2x
(
x3 + y4

)
y′ −

(
x3 + 2y4

)
y = 0

25.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (2y4 + x3) y
2x (y4 + x3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2y4 + x3) y(b3 − a2)

2x (y4 + x3) − (2y4 + x3)2 y2a3
4x2 (y4 + x3)2

−
(

3xy
2 (y4 + x3) −

(2y4 + x3) y
2x2 (y4 + x3) −

3(2y4 + x3) yx
2 (y4 + x3)2

)
(xa2 + ya3 + a1)

−
(

4y4
x (y4 + x3) +

2y4 + x3

2x (y4 + x3) −
2(2y4 + x3) y4

x (y4 + x3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−6x5y4b2 + 6x4y5a2 − 8x4y5b3 + 8x3y6a3 − 4x y8b1 + 4y9a1 + 2x8b2 + x6y2a3 − 14x4y4b1 + 12x3y5a1 − 2x7b1 + 2x6ya1

4 (y4 + x3)2 x2

= 0

Setting the numerator to zero gives

(6E)−6x5y4b2 + 6x4y5a2 − 8x4y5b3 + 8x3y6a3 − 4x y8b1 + 4y9a1
+ 2x8b2 + x6y2a3 − 14x4y4b1 + 12x3y5a1 − 2x7b1 + 2x6ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a1v92 + 6a2v41v52 + 8a3v31v62 − 4b1v1v82 − 6b2v51v42 − 8b3v41v52
+ 12a1v31v52 + a3v

6
1v

2
2 − 14b1v41v42 + 2b2v81 + 2a1v61v2 − 2b1v71 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v81 − 2b1v71 + a3v
6
1v

2
2 + 2a1v61v2 − 6b2v51v42 + (6a2 − 8b3) v41v52

− 14b1v41v42 + 8a3v31v62 + 12a1v31v52 − 4b1v1v82 + 4a1v92 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
2a1 = 0
4a1 = 0
12a1 = 0
8a3 = 0

−14b1 = 0
−4b1 = 0
−2b1 = 0
−6b2 = 0
2b2 = 0

6a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
(2y4 + x3) y
2x (y4 + x3)

)(
4x
3

)
= −y5 + x3y

3y4 + 3x3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y5+x3y
3y4+3x3

dy

Which results in

S = −3 ln (y4 − x3)
2 + 3 ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (2y4 + x3) y
2x (y4 + x3)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 9x2

−2y4 + 2x3

Sy = − 6y3
y4 − x3 + 3

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−3 ln (y4 − x3)
2 + 3 ln (y) = −3 ln (x) + c1

Which simplifies to

−3 ln (y4 − x3)
2 + 3 ln (y) = −3 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
2y4+x3)y
2x(y4+x3)

dS
dR

= − 3
R

R = x

S = −3 ln (y4 − x3)
2 + 3 ln (y)

Summary
The solution(s) found are the following

(1)−3 ln (y4 − x3)
2 + 3 ln (y) = −3 ln (x) + c1
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Figure 1128: Slope field plot

Verification of solutions

−3 ln (y4 − x3)
2 + 3 ln (y) = −3 ln (x) + c1

Verified OK.

25.16.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x
(
y4 + x3)) dy =

(
y
(
2y4 + x3)) dx(

−y
(
2y4 + x3)) dx+(2x(y4 + x3)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
2y4 + x3)

N(x, y) = 2x
(
y4 + x3)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
2y4 + x3))

= −10y4 − x3

And
∂N

∂x
= ∂

∂x

(
2x
(
y4 + x3))

= 2y4 + 8x3
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x (y4 + x3)
((
−10y4 − x3)− (2y4 + 8x3))

=
−6y4 − 9x3

2
x (y4 + x3)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (2y4 + x3)
((
2y4 + 8x3)− (−10y4 − x3))

= −12y4 − 9x3

y (2y4 + x3)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2y4 + 8x3)− (−10y4 − x3)
x (−y (2y4 + x3))− y (2x (y4 + x3))

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(
−y
(
2y4 + x3))

= −2y4 − x3

x3y2

And

N = µN

= 1
x3y3

(
2x
(
y4 + x3))

= 2y4 + 2x3

y3x2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−2y4 − x3

x3y2

)
+
(
2y4 + 2x3

y3x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2y4 − x3

x3y2
dx

(3)φ =
−x+ y4

x2

y2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

2
(
−x+ y4

x2

)
y3

+ 4y
x2 + f ′(y)

= 2y4 + 2x3

y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2y4+2x3

y3x2 . Therefore equation (4) becomes

(5)2y4 + 2x3

y3x2 = 2y4 + 2x3

y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
−x+ y4

x2

y2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x+ y4

x2

y2
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Summary
The solution(s) found are the following

(1)
−x+ y4

x2

y2
= c1

Figure 1129: Slope field plot

Verification of solutions

−x+ y4

x2

y2
= c1

Verified OK.

7197



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.25 (sec). Leaf size: 285� �
dsolve(2*x*(x^3+y(x)^4)*diff(y(x),x) = (x^3+2*y(x)^4)*y(x),y(x), singsol=all)� �

y(x) = −
2 3

4

((
2c1 + x−

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1

y(x) =
2 3

4

((
2c1 + x−

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1

y(x) = −
2 3

4

((
2c1 + x+

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1

y(x) =
2 3

4

((
2c1 + x+

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1

y(x) = −
i2 3

4

((
2c1 + x−

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1

y(x) = −
i2 3

4

((
2c1 + x+

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1

y(x) =
i2 3

4

((
2c1 + x−

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1

y(x) =
i2 3

4

((
2c1 + x+

√
x (x+ 4c1)

)
x3c31

) 1
4

2c1
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3 Solution by Mathematica
Time used: 4.15 (sec). Leaf size: 166� �
DSolve[2 x(x^3+y[x]^4)y'[x]==(x^3+2 y[x]^4)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

c1x2 − x3/2
√
4 + c12x√

2

y(x) →
√
c1x2 − x3/2

√
4 + c12x√

2

y(x) → −
√

x3/2
√
4 + c12x+ c1x2
√
2

y(x) →
√
x3/2

√
4 + c12x+ c1x2
√
2

y(x) → 0
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25.17 problem 714
25.17.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7201
25.17.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7207

Internal problem ID [3960]
Internal file name [OUTPUT/3453_Sunday_June_05_2022_09_20_54_AM_56053583/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 714.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
1− y4x2) y′ + y = 0

25.17.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y

x (x2y4 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(b3 − a2)
x (x2y4 − 1) −

y2a3

x2 (x2y4 − 1)2

−
(
− y

x2 (x2y4 − 1) −
2y5

(x2y4 − 1)2
)
(xa2 + ya3 + a1)

−
(

1
x (x2y4 − 1) −

4y4x
(x2y4 − 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x6y8b2 + x4y4b2 + 2x3y5a2 + 4x3y5b3 + 3x2y6a3 + 3x3y4b1 + 3x2y5a1 + 2b2x2 − 2y2a3 + xb1 − ya1

x2 (x2y4 − 1)2
= 0

Setting the numerator to zero gives

(6E)x6y8b2 + x4y4b2 + 2x3y5a2 + 4x3y5b3 + 3x2y6a3
+ 3x3y4b1 + 3x2y5a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
6
1v

8
2 + 2a2v31v52 + 3a3v21v62 + b2v

4
1v

4
2 + 4b3v31v52

+ 3a1v21v52 + 3b1v31v42 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
6
1v

8
2 + b2v

4
1v

4
2 + (2a2 + 4b3) v31v52 + 3b1v31v42 + 3a3v21v62

+ 3a1v21v52 + 2b2v21 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
3a1 = 0

−2a3 = 0
3a3 = 0
3b1 = 0
2b2 = 0

2a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y

x (x2y4 − 1)

)
(−2x)

= x2y5 + y

x2y4 − 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y5+y
x2y4−1

dy

Which results in

S = − ln (y) + ln (x2y4 + 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x (x2y4 − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y4x

x2y4 + 1

Sy =
x2y4 − 1

y (x2y4 + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y) + ln (y4x2 + 1)
2 = ln (x) + c1

Which simplifies to

− ln (y) + ln (y4x2 + 1)
2 = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x(x2y4−1)

dS
dR

= 1
R

R = x

S = − ln (y) + ln (x2y4 + 1)
2

Summary
The solution(s) found are the following

(1)− ln (y) + ln (y4x2 + 1)
2 = ln (x) + c1
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Figure 1130: Slope field plot

Verification of solutions

− ln (y) + ln (y4x2 + 1)
2 = ln (x) + c1

Verified OK.

25.17.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
−x2y4 + 1

))
dy = (−y) dx

(y) dx+
(
x
(
−x2y4 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = x
(
−x2y4 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x

(
x
(
−x2y4 + 1

))
= −3x2y4 + 1

7208



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x3y4 − x

(
(1)−

(
−3x2y4 + 1

))
= − 3y4x

x2y4 − 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y

((
−3x2y4 + 1

)
− (1)

)
= −3y3x2

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (−3x2y4 + 1)− (1)
x (y)− y (x (−x2y4 + 1))

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(y)

= 1
y2x3

And

N = µN

= 1
x3y3

(
x
(
−x2y4 + 1

))
= −x2y4 + 1

x2y3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

1
y2x3

)
+
(
−x2y4 + 1

x2y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
y2x3 dx

(3)φ = − 1
2y2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2y4+1
x2y3

. Therefore equation (4) becomes

(5)−x2y4 + 1
x2y3

= 1
y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − 1
2y2x2 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 1
2y2x2 − y2

2
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Summary
The solution(s) found are the following

(1)− 1
2y2x2 − y2

2 = c1

Figure 1131: Slope field plot

Verification of solutions

− 1
2y2x2 − y2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 133� �
dsolve(x*(1-x^2*y(x)^4)*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = −

√
2
√
xc1
(
x−

√
−4c21 + x2

)
2c1x

y(x) =

√
2
√
xc1
(
x−

√
−4c21 + x2

)
2c1x

y(x) = −

√
2
√
xc1
(
x+

√
−4c21 + x2

)
2xc1

y(x) =

√
2
√
xc1
(
x+

√
−4c21 + x2

)
2xc1
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3 Solution by Mathematica
Time used: 13.903 (sec). Leaf size: 172� �
DSolve[x(1-x^2 y[x]^4)y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
c1 −

√
x2 (−1 + c12x2)

x2

y(x) →

√
c1 −

√
x2 (−1 + c12x2)

x2

y(x) → −

√√
x2 (−1 + c12x2)

x2 + c1

y(x) →

√√
x2 (−1 + c12x2)

x2 + c1

y(x) → 0

y(x) → − 1
4
√
−x2

y(x) → 1
4
√
−x2
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25.18 problem 715
25.18.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7215
25.18.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7221

Internal problem ID [3961]
Internal file name [OUTPUT/3454_Sunday_June_05_2022_09_20_58_AM_35547513/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 715.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x2 − y5

)
y′ − 2yx = 0

25.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2yx
y5 − x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−
2yx(b3 − a2)

y5 − x2 − 4y2x2a3

(y5 − x2)2
−
(
− 2y
y5 − x2 −

4y x2

(y5 − x2)2
)
(xa2+ ya3+ a1)

−
(
− 2x
y5 − x2 + 10y5x

(y5 − x2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−y10b2 + 10x2y5b2 − 4x y6a2 + 10x y6b3 − 2y7a3 + 8x y5b1 − 2y6a1 + x4b2 + 2y2x2a3 + 2x3b1 − 2x2ya1

(−y5 + x2)2
= 0

Setting the numerator to zero gives

(6E)y10b2 − 10x2y5b2 + 4x y6a2 − 10x y6b3 + 2y7a3 − 8x y5b1
+ 2y6a1 − x4b2 − 2y2x2a3 − 2x3b1 + 2x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
10
2 + 4a2v1v62 + 2a3v72 − 10b2v21v52 − 10b3v1v62 + 2a1v62

− 8b1v1v52 − 2a3v21v22 − b2v
4
1 + 2a1v21v2 − 2b1v31 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−b2v
4
1 − 2b1v31 − 10b2v21v52 − 2a3v21v22 + 2a1v21v2

+ (4a2 − 10b3) v1v62 − 8b1v1v52 + b2v
10
2 + 2a3v72 + 2a1v62 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
2a1 = 0

−2a3 = 0
2a3 = 0

−8b1 = 0
−2b1 = 0
−10b2 = 0
−b2 = 0

4a2 − 10b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
5b3
2

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 5x
2

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2yx
y5 − x2

)(
5x
2

)
= −y6 − 4x2y

−y5 + x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y6−4x2y
−y5+x2

dy

Which results in

S = ln (y5 + 4x2)
4 − ln (y)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2yx
y5 − x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
y5 + 4x2

Sy =
y5 − x2

y6 + 4x2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y5 + 4x2)
4 − ln (y)

4 = c1

Which simplifies to

ln (y5 + 4x2)
4 − ln (y)

4 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2yx
y5−x2

dS
dR

= 0

R = x

S = ln (y5 + 4x2)
4 − ln (y)

4

Summary
The solution(s) found are the following

(1)ln (y5 + 4x2)
4 − ln (y)

4 = c1
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Figure 1132: Slope field plot

Verification of solutions

ln (y5 + 4x2)
4 − ln (y)

4 = c1

Verified OK.

25.18.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y5 + x2) dy = (2xy) dx

(−2xy) dx+
(
−y5 + x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy
N(x, y) = −y5 + x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy)

= −2x

And
∂N

∂x
= ∂

∂x

(
−y5 + x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y5 + x2 ((−2x)− (2x))

= − 4x
−y5 + x2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2xy ((2x)− (−2x))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−2xy)

= −2x
y
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And

N = µN

= 1
y2
(
−y5 + x2)

= −y5 + x2

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2x
y

)
+
(
−y5 + x2

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x

y
dx

(3)φ = −x2

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y5+x2

y2
. Therefore equation (4) becomes

(5)−y5 + x2

y2
= x2

y2
+ f ′(y)

7224



Solving equation (5) for f ′(y) gives

f ′(y) = −y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y3

)
dy

f(y) = −y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

y
− y4

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

y
− y4

4

Summary
The solution(s) found are the following

(1)−x2

y
− y4

4 = c1
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Figure 1133: Slope field plot

Verification of solutions

−x2

y
− y4

4 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 25� �
dsolve((x^2-y(x)^5)*diff(y(x),x) = 2*x*y(x),y(x), singsol=all)� �

y(x) = RootOf
(
x8_Z5 + 4− e

8c1
5 _Z

)
x2

3 Solution by Mathematica
Time used: 2.91 (sec). Leaf size: 121� �
DSolve[(x^2-y[x]^5)y'[x]==2 x y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
#15 + 4#1c1 + 4x2&, 1

]
y(x) → Root

[
#15 + 4#1c1 + 4x2&, 2

]
y(x) → Root

[
#15 + 4#1c1 + 4x2&, 3

]
y(x) → Root

[
#15 + 4#1c1 + 4x2&, 4

]
y(x) → Root

[
#15 + 4#1c1 + 4x2&, 5

]
y(x) → 0
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25.19 problem 716
25.19.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7228
25.19.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7234

Internal problem ID [3962]
Internal file name [OUTPUT/3455_Sunday_June_05_2022_09_21_04_AM_63118839/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 716.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x
(
x3 + y5

)
y′ −

(
x3 − y5

)
y = 0

25.19.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(y5 − x3)
x (y5 + x3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(y5 − x3) (b3 − a2)

x (y5 + x3) − y2(y5 − x3)2 a3
x2 (y5 + x3)2

−
(

3yx
y5 + x3 + y(y5 − x3)

x2 (y5 + x3) +
3y(y5 − x3)x
(y5 + x3)2

)
(xa2 + ya3 + a1)

−
(
− y5 − x3

x (y5 + x3) −
5y5

x (y5 + x3) +
5y5(y5 − x3)
x (y5 + x3)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−2x2y10b2 + 2y12a3 − x y10b1 + y11a1 − 12x5y5b2 + 6x4y6a2 − 10x4y6b3 + 4x3y7a3 − 10x4y5b1 + 6x3y6a1 + x7b1 − x6ya1

(y5 + x3)2 x2

= 0

Setting the numerator to zero gives

(6E)2x2y10b2 − 2y12a3 + x y10b1 − y11a1 + 12x5y5b2 − 6x4y6a2
+ 10x4y6b3 − 4x3y7a3 + 10x4y5b1 − 6x3y6a1 − x7b1 + x6ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v122 + 2b2v21v102 − a1v
11
2 + b1v1v

10
2 − 6a2v41v62 − 4a3v31v72

+ 12b2v51v52 + 10b3v41v62 − 6a1v31v62 + 10b1v41v52 + a1v
6
1v2 − b1v

7
1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b1v
7
1 + a1v

6
1v2 + 12b2v51v52 + (−6a2 + 10b3) v41v62 + 10b1v41v52

− 4a3v31v72 − 6a1v31v62 + 2b2v21v102 + b1v1v
10
2 − 2a3v122 − a1v

11
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−6a1 = 0
−a1 = 0
−4a3 = 0
−2a3 = 0
−b1 = 0
10b1 = 0
2b2 = 0
12b2 = 0

−6a2 + 10b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
5b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 5x
3

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(y5 − x3)
x (y5 + x3)

)(
5x
3

)
= 8y6 − 2x3y

3y5 + 3x3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

8y6−2x3y
3y5+3x3

dy

Which results in

S = 3 ln (4y5 − x3)
8 − 3 ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(y5 − x3)
x (y5 + x3)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 9x2

−32y5 + 8x3

Sy =
−3y5 − 3x3

2y (−4y5 + x3)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 3

8x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

8R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R)
8 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (4y5 − x3)
8 − 3 ln (y)

2 = −3 ln (x)
8 + c1

Which simplifies to

3 ln (4y5 − x3)
8 − 3 ln (y)

2 = −3 ln (x)
8 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
y5−x3)

x(y5+x3)
dS
dR

= − 3
8R

R = x

S = 3 ln (4y5 − x3)
8 − 3 ln (y)

2

Summary
The solution(s) found are the following

(1)3 ln (4y5 − x3)
8 − 3 ln (y)

2 = −3 ln (x)
8 + c1
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Figure 1134: Slope field plot

Verification of solutions

3 ln (4y5 − x3)
8 − 3 ln (y)

2 = −3 ln (x)
8 + c1

Verified OK.

25.19.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
y5 + x3)) dy =

(
y
(
−y5 + x3)) dx(

−y
(
−y5 + x3)) dx+(x(y5 + x3)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
−y5 + x3)

N(x, y) = x
(
y5 + x3)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y
(
−y5 + x3))

= 6y5 − x3

And
∂N

∂x
= ∂

∂x

(
x
(
y5 + x3))

= y5 + 4x3
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (y5 + x3)
((
6y5 − x3)− (y5 + 4x3))

= 5y5 − 5x3

x (y5 + x3)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (−y5 + x3)
((
y5 + 4x3)− (6y5 − x3))

= −5
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 5

y
dy

The result of integrating gives

µ = e−5 ln(y)

= 1
y5

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y5
(
−y
(
−y5 + x3))

= y5 − x3

y4
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And

N = µN

= 1
y5
(
x
(
y5 + x3))

= x(y5 + x3)
y5

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

y5 − x3

y4

)
+
(
x(y5 + x3)

y5

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y5 − x3

y4
dx

(3)φ = −(−4y5 + x3)x
4y4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (−4y5 + x3)x

y5
+ 5x+ f ′(y)

= x(y5 + x3)
y5

+ f ′(y)
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But equation (2) says that ∂φ
∂y

= x
(
y5+x3)
y5

. Therefore equation (4) becomes

(5)x(y5 + x3)
y5

= x(y5 + x3)
y5

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −(−4y5 + x3)x
4y4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(−4y5 + x3)x
4y4

Summary
The solution(s) found are the following

(1)−(−4y5 + x3)x
4y4 = c1
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Figure 1135: Slope field plot

Verification of solutions

−(−4y5 + x3)x
4y4 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 37� �
dsolve(x*(x^3+y(x)^5)*diff(y(x),x) = (x^3-y(x)^5)*y(x),y(x), singsol=all)� �

ln (x)− c1 +
5 ln

(
4y(x)5−x3

x3

)
8 −

5 ln
(

y(x)
x
3
5

)
2 = 0

3 Solution by Mathematica
Time used: 2.72 (sec). Leaf size: 141� �
DSolve[x(x^3+y[x]^5)y'[x]==(x^3-y[x]^5)y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
4#15x− 4#14c1 − x4&, 1

]
y(x) → Root

[
4#15x− 4#14c1 − x4&, 2

]
y(x) → Root

[
4#15x− 4#14c1 − x4&, 3

]
y(x) → Root

[
4#15x− 4#14c1 − x4&, 4

]
y(x) → Root

[
4#15x− 4#14c1 − x4&, 5

]
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25.20 problem 717
25.20.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7241

Internal problem ID [3963]
Internal file name [OUTPUT/3456_Sunday_June_05_2022_09_21_09_AM_90983552/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 717.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

x3(1 + 5x3y7
)
y′ +

(
3y5x5 − 1

)
y3 = 0

25.20.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x3(5x3y7 + 1
))

dy =
(
−y3

(
3x5y5 − 1

))
dx(

y3
(
3x5y5 − 1

))
dx+

(
x3(5x3y7 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y3
(
3x5y5 − 1

)
N(x, y) = x3(5x3y7 + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y3
(
3x5y5 − 1

))
= 24y7x5 − 3y2

And
∂N

∂x
= ∂

∂x

(
x3(5x3y7 + 1

))
= 30y7x5 + 3x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

5x6y7 + x3

((
3y2
(
3x5y5 − 1

)
+ 15y7x5)− (3x2(5x3y7 + 1

)
+ 15y7x5))

= −6y7x5 − 3x2 − 3y2
5x6y7 + x3
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

3y8x5 − y3
((
3x2(5x3y7 + 1

)
+ 15y7x5)− (3y2(3x5y5 − 1

)
+ 15y7x5))

= 6y7x5 + 3x2 + 3y2
y3 (3x5y5 − 1)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (3x2(5x3y7 + 1) + 15y7x5)− (3y2(3x5y5 − 1) + 15y7x5)
x (y3 (3x5y5 − 1))− y (x3 (5x3y7 + 1))

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt

The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(
y3
(
3x5y5 − 1

))
= 3x5y5 − 1

x3

And

N = µN

= 1
x3y3

(
x3(5x3y7 + 1

))
= 5x3y7 + 1

y3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

3x5y5 − 1
x3

)
+
(
5x3y7 + 1

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3x5y5 − 1
x3 dx

(3)φ = x3y5 + 1
2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 5x3y4 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 5x3y7+1
y3

. Therefore equation (4) becomes

(5)5x3y7 + 1
y3

= 5x3y4 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y3

)
dy

f(y) = − 1
2y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x3y5 + 1
2x2 − 1

2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x3y5 + 1
2x2 − 1

2y2

Summary
The solution(s) found are the following

(1)x3y5 + 1
2x2 − 1

2y2 = c1
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Figure 1136: Slope field plot

Verification of solutions

x3y5 + 1
2x2 − 1

2y2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2`[0, y^3/(5*x^3*y^7+1)], [0, (-1/2*x^3*y+1/2*y^3*x+x^6*y^8)/x^3/(5*x^3*y^7+1)]� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(x^3*(1+5*x^3*y(x)^7)*diff(y(x),x)+(3*x^5*y(x)^5-1)*y(x)^3 = 0,y(x), singsol=all)� �

−x3y(x)5 − 1
2x2 + 1

2y (x)2
+ c1 = 0

7247



3 Solution by Mathematica
Time used: 7.805 (sec). Leaf size: 253� �
DSolve[x^3(1+5 x^3 y[x]^7)y'[x]+(3 x^5 y[x]^5-1)y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
2#17x5 +#12

(
1− 2c1x2)− x2&, 1

]
y(x) → Root

[
2#17x5 +#12

(
1− 2c1x2)− x2&, 2

]
y(x) → Root

[
2#17x5 +#12

(
1− 2c1x2)− x2&, 3

]
y(x) → Root

[
2#17x5 +#12

(
1− 2c1x2)− x2&, 4

]
y(x) → Root

[
2#17x5 +#12

(
1− 2c1x2)− x2&, 5

]
y(x) → Root

[
2#17x5 +#12

(
1− 2c1x2)− x2&, 6

]
y(x) → Root

[
2#17x5 +#12

(
1− 2c1x2)− x2&, 7

]
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25.21 problem 718
25.21.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7249

Internal problem ID [3964]
Internal file name [OUTPUT/3457_Sunday_June_05_2022_09_21_13_AM_66890614/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 718.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

(1 + a(y + x))n y′ + a(y + x)n = 0

25.21.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −a(y + x)n (ax+ ya+ 1)−n

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 − a(y + x)n (ax+ ya+ 1)−n (b3 − a2)− a2(y + x)2n (ax+ ya+ 1)−2n a3

−
(
−a(y + x)n n(ax+ ya+ 1)−n

y + x
+ a2(y + x)n (ax+ ya+ 1)−n n

ax+ ya+ 1

)
(xa2

+ ya3 + a1)−
(
−a(y + x)n n(ax+ ya+ 1)−n

y + x

+ a2(y + x)n (ax+ ya+ 1)−n n

ax+ ya+ 1

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives(
−2(y + x)2n a3xya3 + 2(ax+ ya+ 1)2n axyb2 + (ax+ ya+ 1)n (y + x)n a2x2a2 − (ax+ ya+ 1)n (y + x)n a2x2b3 + (ax+ ya+ 1)n (y + x)n a2y2a2 − (ax+ ya+ 1)n (y + x)n a2y2b3 + (ax+ ya+ 1)n (y + x)n ana1 + (ax+ ya+ 1)n (y + x)n anb1 + (ax+ ya+ 1)n (y + x)n axa2 − (ax+ ya+ 1)n (y + x)n axb3 + (ax+ ya+ 1)n (y + x)n aya2 − (ax+ ya+ 1)n (y + x)n ayb3 − (y + x)2n a3x2a3 − (y + x)2n a3y2a3 + (ax+ ya+ 1)2n a x2b2 + (ax+ ya+ 1)2n a y2b2 − (y + x)2n a2xa3 − (y + x)2n a2ya3 + 2(ax+ ya+ 1)n (y + x)n a2xya2 − 2(ax+ ya+ 1)n (y + x)n a2xyb3 + (ax+ ya+ 1)n (y + x)n anxa2 + (ax+ ya+ 1)n (y + x)n anxb2 + (ax+ ya+ 1)n (y + x)n anya3 + (ax+ ya+ 1)n (y + x)n anyb3 + (ax+ ya+ 1)2n xb2 + (ax+ ya+ 1)2n yb2

)
(ax+ ya+ 1)−2n

(y + x) (ax+ ya+ 1)
= 0

Setting the numerator to zero gives

(6E)

−2(y + x)2n a3xya3 + 2(ax+ ya+ 1)2n axyb2
+ (ax+ ya+ 1)n (y + x)n a2x2a2 − (ax+ ya+ 1)n (y + x)n a2x2b3
+ (ax+ ya+ 1)n (y + x)n a2y2a2 − (ax+ ya+ 1)n (y + x)n a2y2b3
+ (ax+ ya+ 1)n (y + x)n ana1 + (ax+ ya+ 1)n (y + x)n anb1
+ (ax+ ya+ 1)n (y + x)n axa2 − (ax+ ya+ 1)n (y + x)n axb3
+ (ax+ ya+ 1)n (y + x)n aya2 − (ax+ ya+ 1)n (y + x)n ayb3
− (y + x)2n a3x2a3 − (y + x)2n a3y2a3 + (ax+ ya+ 1)2n a x2b2
+ (ax+ ya+ 1)2n a y2b2 − (y + x)2n a2xa3 − (y + x)2n a2ya3
+2(ax+ya+1)n (y+x)n a2xya2−2(ax+ya+1)n (y+x)n a2xyb3
+ (ax+ ya+ 1)n (y + x)n anxa2 + (ax+ ya+ 1)n (y + x)n anxb2
+ (ax+ ya+ 1)n (y + x)n anya3 + (ax+ ya+ 1)n (y + x)n anyb3
+ (ax+ ya+ 1)2n xb2 + (ax+ ya+ 1)2n yb2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, (y + x)n , (ax+ ya+ 1)n}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, (y + x)n = v3, (ax+ ya+ 1)n = v4}
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The above PDE (6E) now becomes

(7E)

−v23a
3v21a3 − 2v23a3v1v2a3 − v23a

3v22a3 + v4v3a
2v21a2 + 2v4v3a2v1v2a2

+ v4v3a
2v22a2 − v4v3a

2v21b3 − 2v4v3a2v1v2b3 − v4v3a
2v22b3 − v23a

2v1a3
− v23a

2v2a3 + v4v3anv1a2 + v4v3anv2a3 + v4v3anv1b2 + v4v3anv2b3
+ v24av

2
1b2 + 2v24av1v2b2 + v24av

2
2b2 + v4v3ana1 + v4v3anb1 + v4v3av1a2

+ v4v3av2a2 − v4v3av1b3 − v4v3av2b3 + v24v1b2 + v24v2b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

−v23a
3v21a3 +

(
a2a2 − a2b3

)
v21v3v4 + v24av

2
1b2 − 2v23a3v1v2a3

+
(
2a2a2 − 2a2b3

)
v1v2v3v4 + 2v24av1v2b2 − v23a

2v1a3

+ (ana2 + anb2 + aa2 − ab3) v1v3v4 + v24v1b2
− v23a

3v22a3 +
(
a2a2 − a2b3

)
v22v3v4 + v24av

2
2b2 − v23a

2v2a3

+ (ana3 + anb3 + aa2 − ab3) v2v3v4 + v24v2b2 + (ana1 + anb1) v3v4 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
ab2 = 0
2ab2 = 0

−a2a3 = 0
−2a3a3 = 0
−a3a3 = 0

a2a2 − a2b3 = 0
2a2a2 − 2a2b3 = 0
ana1 + anb1 = 0

ana3 + anb3 + aa2 − ab3 = 0
ana2 + anb2 + aa2 − ab3 = 0
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Solving the above equations for the unknowns gives

a1 = −b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 1
−1

= −1

This is easily solved to give

y = −x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = y + x
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And S is found from

dS = dx

ξ

= dx

−1

Integrating gives

S =
∫

dx

T

= −x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −a(y + x)n (ax+ ya+ 1)−n

Evaluating all the partial derivatives gives

Rx = 1
Ry = 1
Sx = −1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (1 + a(y + x))n

a (y + x)n − (1 + a (y + x))n (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (aR + 1)n

aRn − (aR + 1)n

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− (aR + 1)n

−aRn + (aR + 1)ndR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x =
∫ y+x

− (_aa+ 1)n

−a_an + (_aa+ 1)nd_a+ c1

Which simplifies to

−x =
∫ y+x

− (_aa+ 1)n

−a_an + (_aa+ 1)nd_a+ c1

Summary
The solution(s) found are the following

(1)−x =
∫ y+x

− (_aa+ 1)n

−a_an + (_aa+ 1)nd_a+ c1

Verification of solutions

−x =
∫ y+x

− (_aa+ 1)n

−a_an + (_aa+ 1)nd_a+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 42� �
dsolve((1+a*(x+y(x)))^n*diff(y(x),x)+a*(x+y(x))^n = 0,y(x), singsol=all)� �

y(x) = −x+RootOf
(
−x+

∫ _Z (a_a+ 1)n

−a_an + (a_a+ 1)nd_a+ c1

)
3 Solution by Mathematica
Time used: 7.033 (sec). Leaf size: 331� �
DSolve[(1+a*(x+y[x]))^n*y'[x]+a*(x+y[x])^n==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

∫ x

1

a(K[1] + y(x))n
a(K[1] + y(x))n − (a(K[1] + y(x)) + 1)ndK[1] +

∫ y(x)

1

−
−a
∫ x

1

(
an(K[1]+K[2])n−1

a(K[1]+K[2])n−(a(K[1]+K[2])+1)n − a(K[1]+K[2])n
(
an(K[1]+K[2])n−1−an(a(K[1]+K[2])+1)n−1)

(a(K[1]+K[2])n−(a(K[1]+K[2])+1)n)2

)
dK[1](x+K[2])n + (a(x+K[2]) + 1)n + (a(x+K[2]) + 1)n

∫ x

1

(
an(K[1]+K[2])n−1

a(K[1]+K[2])n−(a(K[1]+K[2])+1)n − a(K[1]+K[2])n
(
an(K[1]+K[2])n−1−an(a(K[1]+K[2])+1)n−1)

(a(K[1]+K[2])n−(a(K[1]+K[2])+1)n)2

)
dK[1]

(a(x+K[2]) + 1)n − a(x+K[2])n dK[2] = c1, y(x)
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25.22 problem 719
25.22.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7256

Internal problem ID [3965]
Internal file name [OUTPUT/3458_Sunday_June_05_2022_09_21_20_AM_70333347/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 719.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x(a+ xyn) y′ + yb = 0

25.22.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − yb

x (a+ x yn)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
yb(b3 − a2)
x (a+ x yn) −

y2b2a3

x2 (a+ x yn)2

−
(

yb

x2 (a+ x yn) +
yb yn

x (a+ x yn)2
)
(xa2 + ya3 + a1)

−
(
− b

x (a+ x yn) +
b ynn

(a+ x yn)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

y2nx4b2 − ynbn x3b2 − ynbn x2yb3 + 2yna x3b2 − ynbn x2b1 + ynb x3b2 − ynb x2ya2 − 2ynbx y2a3 + ynb x2b1 − 2ynbxya1 + a2x2b2 + ab x2b2 − ab y2a3 − y2b2a3 + abxb1 − abya1

x2 (a+ x yn)2
= 0

Setting the numerator to zero gives

(6E)y2nx4b2 − ynbn x3b2 − ynbn x2yb3 + 2yna x3b2 − ynbn x2b1
+ ynb x3b2 − ynb x2ya2 − 2ynbx y2a3 + ynb x2b1 − 2ynbxya1
+ a2x2b2 + ab x2b2 − ab y2a3 − y2b2a3 + abxb1 − abya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, yn}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, y
n = v3}

The above PDE (6E) now becomes

(7E)−v3bnv
3
1b2 − v3bnv

2
1v2b3 + v23v

4
1b2 + 2v3av31b2 − v3bnv

2
1b1

− v3bv
2
1v2a2 − 2v3bv1v22a3 + v3bv

3
1b2 + a2v21b2 − abv22a3 + abv21b2

− v22b
2a3 − 2v3bv1v2a1 + v3bv

2
1b1 − abv2a1 + abv1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)v23v
4
1b2 + (−bnb2 + 2ab2 + bb2) v31v3 + (−bnb3 − ba2) v21v2v3

+ (−bnb1 + bb1) v21v3 +
(
a2b2 + abb2

)
v21 − 2v3bv1v22a3

− 2v3bv1v2a1 + abv1b1 +
(
−aba3 − b2a3

)
v22 − abv2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
abb1 = 0

−2ba1 = 0
−2ba3 = 0
−aba1 = 0

−aba3 − b2a3 = 0
a2b2 + abb2 = 0
−bnb1 + bb1 = 0
−bnb3 − ba2 = 0

−bnb2 + 2ab2 + bb2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −nb3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −xn

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− yb

x (a+ x yn)

)
(−xn)

= yx yn − ybn+ ya

a+ x yn

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

yx yn−ybn+ya
a+x yn

dy

Which results in

S = a ln (y)
−bn+ a

−
b ln
(
−bn+ x en ln(y) + a

)
−bn+ a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − yb

x (a+ x yn)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − b yn

(−bn+ a) (x yn − bn+ a)

Sy =
a+ x yn

y (x yn − bn+ a)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − b

(−bn+ a)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − b

(−bn+ a)R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − b ln (R)
−bn+ a

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

a ln (y)− b ln (xyn − bn+ a)
−bn+ a

= − b ln (x)
−bn+ a

+ c1

Which simplifies to
a ln (y)− b ln (xyn − bn+ a) + ln (x) b− c1(−bn+ a)

−bn+ a
= 0

Summary
The solution(s) found are the following

(1)a ln (y)− b ln (xyn − bn+ a) + ln (x) b− c1(−bn+ a)
−bn+ a

= 0

Verification of solutions

a ln (y)− b ln (xyn − bn+ a) + ln (x) b− c1(−bn+ a)
−bn+ a

= 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.282 (sec). Leaf size: 38� �
dsolve(x*(a+x*y(x)^n)*diff(y(x),x)+b*y(x) = 0,y(x), singsol=all)� �

(xy(x)n − bn+ a)bn (y(x)n)−a x−bn − c1 = 0

3 Solution by Mathematica
Time used: 0.41 (sec). Leaf size: 61� �
DSolve[x(a+x y[x]^n)y'[x]+b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−an log(ay(x)− bny(x))

a− bn
− bn(log(x)− log (a− bn+ xy(x)n))

a− bn
= c1, y(x)

]
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25.23 problem 720
Internal problem ID [3966]
Internal file name [OUTPUT/3459_Sunday_June_05_2022_09_21_25_AM_50879331/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 720.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Bernoulli]

Unable to solve or complete the solution.

f(x) ymy′ + g(x) ym+1 + h(x) yn = 0

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 61� �
dsolve(f(x)*y(x)^m*diff(y(x),x)+g(x)*y(x)^(m+1)+h(x)*y(x)^n = 0,y(x), singsol=all)� �

y(x) = e−
(∫ g(x)

f(x)dx
)(n−m− 1)

∫ h(x) e(−n+m+1)
(∫ g(x)

f(x)dx
)

f (x) dx

+ c1

 1
−n+m+1
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3 Solution by Mathematica
Time used: 14.159 (sec). Leaf size: 187� �
DSolve[f[x] y[x]^m y'[x]+ g[x] y[x]^(m+1)+ h[x] y[x]^n==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

exp
(
(m− n+ 1)

∫ x

1
− g(K[1])
f(K[1])dK[1]

)(m− n+ 1)
∫ x

1

−
exp

(
−
(
(m− n+ 1)

∫ K[2]
1 − g(K[1])

f(K[1])dK[1]
))

h(K[2])
f(K[2]) dK[2] + c1

 1
m−n+1

y(x) →

(m− n+ 1) exp
(
(m− n+ 1)

∫ x

1
− g(K[1])
f(K[1])dK[1]

)∫ x

1

−
exp

(
−
(
(m− n+ 1)

∫ K[2]
1 − g(K[1])

f(K[1])dK[1]
))

h(K[2])
f(K[2]) dK[2]

 1
m−n+1
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25.24 problem 721
25.24.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 7264
25.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 7265
25.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7268
25.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7271

Internal problem ID [3967]
Internal file name [OUTPUT/3460_Sunday_June_05_2022_09_21_33_AM_63863353/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 721.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√

b2 + y2 =
√
a2 + x2

25.24.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
a2 + x2

√
b2 + y2

Where f(x) =
√
a2 + x2 and g(y) = 1√

b2+y2
. Integrating both sides gives

1
1√

b2+y2

dy =
√
a2 + x2 dx

∫ 1
1√

b2+y2

dy =
∫ √

a2 + x2 dx
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y
√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 =

√
a2 + x2 x

2 +
a2 ln

(
x+

√
a2 + x2

)
2 + c1

The solution is

y
√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 −

√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 − c1 = 0

Summary
The solution(s) found are the following

(1)y
√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 −

√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 − c1 = 0

Verification of solutions

y
√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 −

√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 − c1 = 0

Verified OK.

25.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
a2 + x2

√
b2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 970: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1√
a2 + x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1√
a2+x2

dx

Which results in

S =
√
a2 + x2 x

2 +
a2 ln

(
x+

√
a2 + x2

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
a2 + x2

√
b2 + y2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx =

√
a2 + x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
√
b2 + y2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

√
R2 + b2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R
√
R2 + b2

2 +
b2 ln

(
R +

√
R2 + b2

)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
a2 + x2 x

2 +
a2 ln

(
x+

√
a2 + x2

)
2 = y

√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 + c1

Which simplifies to
√
a2 + x2 x

2 +
a2 ln

(
x+

√
a2 + x2

)
2 = y

√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 + c1

Summary
The solution(s) found are the following

(1)
√
a2 + x2 x

2 +
a2 ln

(
x+

√
a2 + x2

)
2 = y

√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 + c1

Verification of solutions
√
a2 + x2 x

2 +
a2 ln

(
x+

√
a2 + x2

)
2 = y

√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 + c1

Verified OK.

25.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (√

b2 + y2
)
dy =

(√
a2 + x2

)
dx(

−
√
a2 + x2

)
dx+

(√
b2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
√
a2 + x2

N(x, y) =
√

b2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−
√
a2 + x2

)
= 0

And
∂N

∂x
= ∂

∂x

(√
b2 + y2

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
√
a2 + x2 dx

(3)φ = −
√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
b2 + y2. Therefore equation (4) becomes

(5)
√

b2 + y2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) =
√
b2 + y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (√
b2 + y2

)
dy

f(y) = y
√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −
√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 + y

√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 + y

√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2

Summary
The solution(s) found are the following

(1)y
√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 −

√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 = c1

Verification of solutions

y
√
b2 + y2

2 +
b2 ln

(
y +

√
b2 + y2

)
2 −

√
a2 + x2 x

2 −
a2 ln

(
x+

√
a2 + x2

)
2 = c1

Verified OK.

25.24.4 Maple step by step solution

Let’s solve
y′
√
b2 + y2 =

√
a2 + x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′
√
b2 + y2dx =

∫ √
a2 + x2dx+ c1

• Evaluate integral

y
√

b2+y2

2 +
b2 ln

(
y+
√

b2+y2
)

2 =
√
a2+x2 x

2 +
a2 ln

(
x+

√
a2+x2

)
2 + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 67� �
dsolve(diff(y(x),x)*sqrt(b^2+y(x)^2) = sqrt(a^2+x^2),y(x), singsol=all)� �

x
√
a2 + x2

2 +
a2 ln

(
x+

√
a2 + x2

)
2 −

y(x)
√

b2 + y (x)2

2

−
b2 ln

(
y(x) +

√
b2 + y (x)2

)
2 + c1 = 0

3 Solution by Mathematica
Time used: 1.428 (sec). Leaf size: 93� �
DSolve[y'[x] Sqrt[y[x]^2+b^2]==Sqrt[x^2+a^2],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

[
1
2#1

√
#12 + b2

− 1
2b

2 log
(√

#12 + b2 −#1
)
&
] [

1
2x

√
a2 + x2 − 1

2a
2 log

(√
a2 + x2 − x

)
+ c1

]
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25.25 problem 722
25.25.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 7273
25.25.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 7274
25.25.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7277
25.25.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7280

Internal problem ID [3968]
Internal file name [OUTPUT/3461_Sunday_June_05_2022_09_21_38_AM_16313864/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 722.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√

b2 − y2 =
√
a2 − x2

25.25.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
a2 − x2

√
b2 − y2

Where f(x) =
√
a2 − x2 and g(y) = 1√

b2−y2
. Integrating both sides gives

1
1√

b2−y2

dy =
√
a2 − x2 dx

∫ 1
1√

b2−y2

dy =
∫ √

a2 − x2 dx
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y
√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 = x

√
a2 − x2

2 +
a2 arctan

(
x√

a2−x2

)
2 + c1

The solution is

y
√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 − x

√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 − c1 = 0

Summary
The solution(s) found are the following

(1)y
√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 − x

√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 − c1 = 0

Verification of solutions

y
√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 − x

√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 − c1 = 0

Verified OK.

25.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
a2 − x2

√
b2 − y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 973: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1√
a2 − x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1√
a2−x2

dx

Which results in

S = x
√
a2 − x2

2 +
a2 arctan

(
x√

a2−x2

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
a2 − x2

√
b2 − y2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx =

√
a2 − x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
√

b2 − y2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

√
−R2 + b2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R
√
−R2 + b2

2 +
b2 arctan

(
R√

−R2+b2

)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x
√
a2 − x2

2 +
a2 arctan

(
x√

a2−x2

)
2 = y

√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 + c1

Which simplifies to

x
√
a2 − x2

2 +
a2 arctan

(
x√

a2−x2

)
2 = y

√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 + c1

Summary
The solution(s) found are the following

(1)x
√
a2 − x2

2 +
a2 arctan

(
x√

a2−x2

)
2 = y

√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 + c1

Verification of solutions

x
√
a2 − x2

2 +
a2 arctan

(
x√

a2−x2

)
2 = y

√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 + c1

Verified OK.

25.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (√
b2 − y2

)
dy =

(√
a2 − x2

)
dx(

−
√
a2 − x2

)
dx+

(√
b2 − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
√
a2 − x2

N(x, y) =
√

b2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−
√
a2 − x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(√
b2 − y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
√
a2 − x2 dx

(3)φ = −x
√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
b2 − y2. Therefore equation (4) becomes

(5)
√

b2 − y2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) =
√
b2 − y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (√
b2 − y2

)
dy

f(y) = y
√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x
√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 + y

√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x
√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 + y

√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2

Summary
The solution(s) found are the following

(1)y
√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 − x

√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 = c1

Verification of solutions

y
√
b2 − y2

2 +
b2 arctan

(
y√

b2−y2

)
2 − x

√
a2 − x2

2 −
a2 arctan

(
x√

a2−x2

)
2 = c1

Verified OK.

25.25.4 Maple step by step solution

Let’s solve
y′
√
b2 − y2 =

√
a2 − x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′
√
b2 − y2dx =

∫ √
a2 − x2dx+ c1

• Evaluate integral

y
√

b2−y2

2 +
b2 arctan

(
y√

b2−y2

)
2 = x

√
a2−x2

2 +
a2 arctan

(
x√

a2−x2

)
2 + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 75� �
dsolve(diff(y(x),x)*sqrt(b^2-y(x)^2) = sqrt(a^2-x^2),y(x), singsol=all)� �
x
√
a2 − x2

2 +
a2 arctan

(
x√

a2−x2

)
2 −

y(x)
√
b2 − y (x)2

2 −
b2 arctan

(
y(x)√

b2−y(x)2

)
2 + c1 = 0

3 Solution by Mathematica
Time used: 1.636 (sec). Leaf size: 97� �
DSolve[y'[x] Sqrt[b^2-y[x]^2]==Sqrt[a^2-x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
1
2b

2 arctan
(

#1√
b2 −#12

)

+ 1
2#1

√
b2 −#12&

] [
1
2

(
a2 arctan

(
x√

a2 − x2

)
+ x

√
a2 − x2 + 2c1

)]
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25.26 problem 723
25.26.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 7282
25.26.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 7284
25.26.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 7286
25.26.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7290
25.26.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7294

Internal problem ID [3969]
Internal file name [OUTPUT/3462_Sunday_June_05_2022_09_21_42_AM_86770587/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 723.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
y =

√
x

25.26.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
x

√
y

Where f(x) =
√
x and g(y) = 1√

y
. Integrating both sides gives

1
1√
y

dy =
√
x dx

∫ 1
1√
y

dy =
∫ √

x dx
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2y 3
2

3 = 2x 3
2

3 + c1

The solution is
2y 3

2

3 − 2x 3
2

3 − c1 = 0

Summary
The solution(s) found are the following

(1)2y 3
2

3 − 2x 3
2

3 − c1 = 0

Figure 1137: Slope field plot

Verification of solutions

2y 3
2

3 − 2x 3
2

3 − c1 = 0

Verified OK.
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25.26.2 Solving as differentialType ode

Writing the ode as

y′ =
√
x

√
y

(1)

Which becomes

(√y) dy =
(√

x
)
dx (2)

But the RHS is complete differential because(√
x
)
dx = d

(
2x 3

2

3

)
Hence (2) becomes

(√y) dy = d

(
2x 3

2

3

)
Integrating both sides gives gives these solutions

y =

(
8x 3

2 + 12c1
) 2

3

4 + c1

y =

−

(
8x 3

2 + 12c1
) 1

3

4 +
i
√
3
(
8x 3

2 + 12c1
) 1

3

4


2

+ c1

y =

−

(
8x 3

2 + 12c1
) 1

3

4 −
i
√
3
(
8x 3

2 + 12c1
) 1

3

4


2

+ c1

Summary
The solution(s) found are the following

(1)y =

(
8x 3

2 + 12c1
) 2

3

4 + c1

(2)y =

−

(
8x 3

2 + 12c1
) 1

3

4 +
i
√
3
(
8x 3

2 + 12c1
) 1

3

4


2

+ c1

(3)y =

−

(
8x 3

2 + 12c1
) 1

3

4 −
i
√
3
(
8x 3

2 + 12c1
) 1

3

4


2

+ c1
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Figure 1138: Slope field plot

Verification of solutions

y =

(
8x 3

2 + 12c1
) 2

3

4 + c1

Verified OK.

y =

−

(
8x 3

2 + 12c1
) 1

3

4 +
i
√
3
(
8x 3

2 + 12c1
) 1

3

4


2

+ c1

Verified OK.

y =

−

(
8x 3

2 + 12c1
) 1

3

4 −
i
√
3
(
8x 3

2 + 12c1
) 1

3

4


2

+ c1

Verified OK.
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25.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
x

√
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 976: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1√
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1√
x

dx

Which results in

S = 2x 3
2

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
x

√
y
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx =

√
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= √

y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

√
R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R 3
2

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2x 3
2

3 = 2y 3
2

3 + c1

Which simplifies to

2x 3
2

3 = 2y 3
2

3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√
x√
y

dS
dR

=
√
R

R = y

S = 2x 3
2

3

Summary
The solution(s) found are the following

(1)2x 3
2

3 = 2y 3
2

3 + c1

7289



Figure 1139: Slope field plot

Verification of solutions

2x 3
2

3 = 2y 3
2

3 + c1

Verified OK.

25.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(√y) dy =
(√

x
)
dx(

−
√
x
)
dx+(√y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
√
x

N(x, y) = √
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−
√
x
)

= 0

And
∂N

∂x
= ∂

∂x
(√y)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
√
x dx

(3)φ = −2x 3
2

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= √
y. Therefore equation (4) becomes

(5)√
y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = √
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(√y) dy

f(y) = 2y 3
2

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2x 3
2

3 + 2y 3
2

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −2x 3
2

3 + 2y 3
2

3

Summary
The solution(s) found are the following

(1)−2x 3
2

3 + 2y 3
2

3 = c1

Figure 1140: Slope field plot

Verification of solutions

−2x 3
2

3 + 2y 3
2

3 = c1

Verified OK.
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25.26.5 Maple step by step solution

Let’s solve
y′
√
y =

√
x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′
√
ydx =

∫ √
xdx+ c1

• Evaluate integral
2y

3
2

3 = 2x
3
2

3 + c1

• Solve for y

y =
(
8x

3
2+12c1

) 2
3

4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)*sqrt(y(x)) = sqrt(x),y(x), singsol=all)� �

y(x)
3
2 − x

3
2 − c1 = 0
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 20� �
DSolve[y'[x] Sqrt[Y]==Sqrt[X],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
√
X√
Y

+ c1
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25.27 problem 724
25.27.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7296

Internal problem ID [3970]
Internal file name [OUTPUT/3463_Sunday_June_05_2022_09_21_47_AM_89674775/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 724.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

(
1 +

√
y + x

)
y′ = −1

25.27.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 1
1 +√

y + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
b3 − a2

1 +√
y + x

− a3

(1 +√
y + x)2

− xa2 + ya3 + a1

2 (1 +√
y + x)2√y + x

− xb2 + yb3 + b1

2 (1 +√
y + x)2√y + x

= 0

Putting the above in normal form gives

2(y + x)
3
2 b2 + 2a2

√
y + x− 2a3

√
y + x+ 2b2

√
y + x− 2b3

√
y + x+ xa2 + 3xb2 − 2b3x+ 2a2y − ya3 + 4b2y − 3yb3 − a1 − b1

2 (1 +√
y + x)2√y + x

= 0

Setting the numerator to zero gives

(6E)2(y + x)
3
2 b2 + 2a2

√
y + x− 2a3

√
y + x+ 2b2

√
y + x− 2b3

√
y + x

+ xa2 + 3xb2 − 2b3x+ 2a2y − ya3 + 4b2y − 3yb3 − a1 − b1 = 0

Simplifying the above gives

(6E)2(y + x)
3
2 b2 + 2(y + x) a2 + 4(y + x) b2 − 2(y + x) b3 + 2a2

√
y + x

− 2a3
√
y + x+2b2

√
y + x− 2b3

√
y + x−xa2−xb2− ya3− yb3− a1− b1 = 0

Since the PDE has radicals, simplifying gives

2b2
√
y + xx+ 2b2

√
y + x y + xa2 + 3xb2 − 2b3x+ 2a2

√
y + x− 2a3

√
y + x

+ 2b2
√
y + x− 2b3

√
y + x+ 2a2y − ya3 + 4b2y − 3yb3 − a1 − b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y + x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y + x = v3

}
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The above PDE (6E) now becomes

(7E)2b2v3v1 + 2b2v3v2 + v1a2 + 2a2v2 + 2a2v3 − v2a3 − 2a3v3
+ 3v1b2 + 4b2v2 + 2b2v3 − 2b3v1 − 3v2b3 − 2b3v3 − a1 − b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2b2v3v1 + (a2 + 3b2 − 2b3) v1 + 2b2v3v2 + (2a2 − a3 + 4b2 − 3b3) v2
+ (2a2 − 2a3 + 2b2 − 2b3) v3 − a1 − b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2b2 = 0
−a1 − b1 = 0

a2 + 3b2 − 2b3 = 0
2a2 − 2a3 + 2b2 − 2b3 = 0
2a2 − a3 + 4b2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = −b1

a2 = 2b3
a3 = b3

b1 = b1

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
− 1
1 +√

y + x

)
(−1)

=
√
y + x

1 +√
y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

√
y+x

1+
√
y+x

dy

Which results in

S = 2
√
y + x+ y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 1
1 +√

y + x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1√
y + x

Sy =
1√
y + x

+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2
√
y + x+ y = c1

Which simplifies to

2
√
y + x+ y = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 1
1+

√
y+x

dS
dR

= 0

R = x

S = 2
√
y + x+ y

Summary
The solution(s) found are the following

(1)2
√
y + x+ y = c1
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Figure 1141: Slope field plot

Verification of solutions

2
√
y + x+ y = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve((1+sqrt(x+y(x)))*diff(y(x),x)+1 = 0,y(x), singsol=all)� �

−y(x)− 2
√

x+ y (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 39� �
DSolve[(1+Sqrt[x+y[x]])y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
√
x+ 1 + c1 + 2 + c1

y(x) → 2
√
x+ 1 + c1 + 2 + c1
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25.28 problem 725
25.28.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7304

Internal problem ID [3971]
Internal file name [OUTPUT/3464_Sunday_June_05_2022_09_22_02_AM_78160729/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 725.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
√
yx− y −√

yx = −x

25.28.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
−x+ y +√

xy
√
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x+ y +√

xy
)
(b3 − a2)√

xy
−
(
−x+ y +√

xy
)2

a3

xy

−

(
−1 + y

2√xy√
xy

−
(
−x+ y +√

xy
)
y

2 (xy)
3
2

)
(xa2 + ya3 + a1)

−

(
1 + x

2√xy√
xy

−
(
−x+ y +√

xy
)
x

2 (xy)
3
2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4yb2 + x3y2b2 − x2y3b3 − 4x3y2a3 + 2(xy)
3
2 xya2 − 4(xy)

3
2 xya3 − 2b2(xy)

3
2 xy − 2(xy)

3
2 xyb3 + x2y3a2 − x y4a3 − x2y2a1 + 2(xy)

3
2 x2a3 + 3x2y3a3 + 2(xy)

3
2 y2a3 + 3x3y2b3 + x2y2b1 + 2(xy)

5
2 a3 − 3x3y2a2 − x y3a1 + x3yb1

2 (xy)
3
2 xy

= 0

Setting the numerator to zero gives

(6E)−2(xy)
5
2 a3 − 2(xy)

3
2 x2a3 − 2(xy)

3
2 xya2 + 4(xy)

3
2 xya3 + 2b2(xy)

3
2 xy

+2(xy)
3
2 xyb3−2(xy)

3
2 y2a3−x4yb2+3x3y2a2+4x3y2a3−x3y2b2−3x3y2b3

−x2y3a2−3x2y3a3+x2y3b3+x y4a3−x3yb1+x2y2a1−x2y2b1+x y3a1 = 0

Since the PDE has radicals, simplifying gives

−xy
(
2√xy x2a3 + 2√xy xya2 − 2√xy xya3 − 2√xy xyb2 − 2√xy xyb3

+ 2√xy y2a3 + x3b2 − 3x2ya2 − 4x2ya3 + x2yb2 + 3x2yb3 + x y2a2
+ 3x y2a3 − x y2b3 − y3a3 + x2b1 − xya1 + xyb1 − y2a1

)
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y,√xy}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2,
√
xy = v3}
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The above PDE (6E) now becomes

(7E)−v1v2
(
−3v21v2a2 + v1v

2
2a2 + 2v3v1v2a2 − 4v21v2a3 + 2v3v21a3 + 3v1v22a3

− 2v3v1v2a3 − v32a3 + 2v3v22a3 + v31b2 + v21v2b2 − 2v3v1v2b2 + 3v21v2b3
− v1v

2
2b3 − 2v3v1v2b3 − v1v2a1 − v22a1 + v21b1 + v1v2b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v2b2v
4
1 + (3a2 + 4a3 − b2 − 3b3) v31v22 − 2a3v3v31v2 − b1v

3
1v2

+ (−a2 − 3a3 + b3) v21v32 + (−2a2 + 2a3 + 2b2 + 2b3) v3v21v22
+ (a1 − b1) v21v22 + a3v1v

4
2 − 2a3v3v1v32 + a1v1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0

−2a3 = 0
−b1 = 0
−b2 = 0

a1 − b1 = 0
−a2 − 3a3 + b3 = 0

−2a2 + 2a3 + 2b2 + 2b3 = 0
3a2 + 4a3 − b2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x+ y +√

xy
√
xy

)
(x)

=
x2 − x

√
xy − xy + y

√
xy

√
xy

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−x
√
xy−xy+y

√
xy

√
xy

dy

Which results in

S =
ln
(√

xy + x
)

2 +
3 ln

(
−x+√

xy
)

2 − x

−x+√
xy
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−x+ y +√

xy
√
xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
−2xy +

√
x y

3
2 − 2x 3

2
√
y + 2x2(

−x+
√
x
√
y
)2 (√

x
√
y + x

)
Sy =

x
3
2
√
y(

−x+
√
x
√
y
)2 (√

x
√
y + x

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

−x
3
2
√
y
√
xy − x

5
2
√
y + x

3
2y

3
2 +

√
x y

3
2
√
xy + 2x2√xy − 2xy√xy(

−x+
√
x
√
y
)2 (√

x
√
y + x

)√
xy

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in(
−3

√
x
√
y + 3x

)
ln
(
−x+

√
x
√
y
)
+
(
x−

√
x
√
y
)
ln
(√

x
√
y + x

)
+ 2x

−2
√
x
√
y + 2x

= ln (x) + c1
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Which simplifies to(
−3

√
x
√
y + 3x

)
ln
(
−x+

√
x
√
y
)
+
(
x−

√
x
√
y
)
ln
(√

x
√
y + x

)
+ 2x

−2
√
x
√
y + 2x

= ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x+y+√
xy

√
xy

dS
dR

= 1
R

R = x

S =
(
−3

√
x
√
y + 3x

)
ln
(
−x+

√
x
√
y
)
+
(
x−

√
x
√
y
)
ln
(√

x
√
y + x

)
+ 2x

−2
√
x
√
y + 2x

Summary
The solution(s) found are the following(
−3

√
x
√
y + 3x

)
ln
(
−x+

√
x
√
y
)
+
(
x−

√
x
√
y
)
ln
(√

x
√
y + x

)
+ 2x

−2
√
x
√
y + 2x

= ln (x) + c1

(1)
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Figure 1142: Slope field plot

Verification of solutions(
−3

√
x
√
y + 3x

)
ln
(
−x+

√
x
√
y
)
+
(
x−

√
x
√
y
)
ln
(√

x
√
y + x

)
+ 2x

−2
√
x
√
y + 2x

= ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 84� �
dsolve(diff(y(x),x)*sqrt(x*y(x))+x-y(x) = sqrt(x*y(x)),y(x), singsol=all)� �(
3x− 3

√
xy (x)

)
ln
(
−x+

√
xy (x)

)
+
(
x−

√
xy (x)

)
ln
(√

xy (x) + x
)
+ (2 ln (x) + c1)

√
xy (x)− x(c1 + 2 ln (x)− 2)

x−
√

xy (x)
= 0

3 Solution by Mathematica
Time used: 0.235 (sec). Leaf size: 62� �
DSolve[y'[x] Sqrt[x y[x]]+x -y[x]==Sqrt[x y[x]],y[x],x,IncludeSingularSolutions -> True]� �
Solve

 1

1−
√

y(x)
x

+ 3
2 log

(√
y(x)
x

− 1
)

+ 1
2 log

(√
y(x)
x

+ 1
)

= − log(x) + c1, y(x)
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25.29 problem 726
25.29.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7312

Internal problem ID [3972]
Internal file name [OUTPUT/3465_Sunday_June_05_2022_09_22_07_AM_2774070/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 726.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

(x− 2√yx) y′ − y = 0

25.29.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

−x+ 2√xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
−x+ 2√xy

− y2a3(
−x+ 2√xy

)2 −
y
(
−1 + y√

xy

)
(xa2 + ya3 + a1)(

−x+ 2√xy
)2

−

(
− 1
−x+ 2√xy

+ yx(
−x+ 2√xy

)2√
xy

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4(xy)
3
2 b2 − 3x2yb2 + x y2a2 − x y2b3 − y3a3 + xyb1 −

√
xy xb1 +

√
xy ya1 − y2a1(

−x+ 2√xy
)2√

xy
= 0

Setting the numerator to zero gives

(6E)4(xy)
3
2 b2−3x2yb2+x y2a2−x y2b3−y3a3+xyb1−

√
xy xb1+

√
xy ya1−y2a1 = 0

Since the PDE has radicals, simplifying gives

−3x2yb2 + 4xy√xy b2 + x y2a2 − x y2b3 − y3a3 −
√
xy xb1 + xyb1 +

√
xy ya1 − y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y,√xy}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2,
√
xy = v3}

The above PDE (6E) now becomes

(7E)v1v
2
2a2− v32a3− 3v21v2b2+4v1v2v3b2− v1v

2
2b3− v22a1+ v3v2a1+ v1v2b1− v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

7313



Equation (7E) now becomes

(8E)−3v21v2b2+(−b3+a2) v1v22+4v1v2v3b2+v1v2b1−v3v1b1−v32a3−v22a1+v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−a3 = 0
−b1 = 0
−3b2 = 0
4b2 = 0

−b3 + a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

−x+ 2√xy

)
(x)

=
2y√xy

−x+ 2√xy

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y√xy

−x+2√xy

dy

Which results in

S = ln (y) + x
√
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

−x+ 2√xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2
√
x
√
y

Sy = −
−2√y +

√
x

2y 3
2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

√
x
√
y −√

xy
√
x
√
y
(
x− 2√xy

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)√y +
√
x

√
y

= c1

Which simplifies to

ln (y)√y +
√
x

√
y

= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
−x+2√xy

dS
dR

= 0

R = x

S =
ln (y)√y +

√
x

√
y

Summary
The solution(s) found are the following

(1)
ln (y)√y +

√
x

√
y

= c1
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Figure 1143: Slope field plot

Verification of solutions

ln (y)√y +
√
x

√
y

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve((x-2*sqrt(x*y(x)))*diff(y(x),x) = y(x),y(x), singsol=all)� �

ln (y(x)) + x√
xy (x)

− c1 = 0

3 Solution by Mathematica
Time used: 0.354 (sec). Leaf size: 33� �
DSolve[(x-2 Sqrt[x y[x]])y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve

 2√
y(x)
x

+ 2 log
(
y(x)
x

)
= −2 log(x) + c1, y(x)
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25.30 problem 727
25.30.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 7320
25.30.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 7322
25.30.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7326
25.30.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7330

Internal problem ID [3973]
Internal file name [OUTPUT/3466_Sunday_June_05_2022_09_22_11_AM_75915998/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 727.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
y +

√
y2 + 1

) (
x2 + 1

) 3
2 y′ − y2 = 1

25.30.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

Where f(x) = 1
(x2+1)

3
2
and g(y) = y2+1

y+
√

y2+1
. Integrating both sides gives

1
y2+1

y+
√

y2+1

dy = 1
(x2 + 1)

3
2
dx
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∫ 1
y2+1

y+
√

y2+1

dy =
∫ 1

(x2 + 1)
3
2
dx

arcsinh (y) + ln (y2 + 1)
2 = x√

x2 + 1
+ c1

Which results in

y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1


Summary
The solution(s) found are the following

(1)y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1



Figure 1144: Slope field plot
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Verification of solutions

y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1


Warning, solution could not be verified

25.30.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 979: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
(
x2 + 1

) 3
2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

(x2 + 1)
3
2
dx

Which results in

S = x√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
(x2 + 1)

3
2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y +

√
y2 + 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R +

√
R2 + 1

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arcsinh (R) + ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1

Which simplifies to

x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1(
y+
√

y2+1
)
(x2+1)

3
2

dS
dR

= R+
√
R2+1

R2+1

R = y

S = x√
x2 + 1

Summary
The solution(s) found are the following

(1)x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1
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Figure 1145: Slope field plot

Verification of solutions

x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1

Verified OK.

25.30.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y +

√
y2 + 1

y2 + 1

)
dy =

(
1

(x2 + 1)
3
2

)
dx(

− 1
(x2 + 1)

3
2

)
dx+

(
y +

√
y2 + 1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(x2 + 1)

3
2

N(x, y) = y +
√
y2 + 1

y2 + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(x2 + 1)

3
2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y +

√
y2 + 1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(x2 + 1)

3
2
dx

(3)φ = − x√
x2 + 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y+
√

y2+1
y2+1 . Therefore equation (4) becomes

(5)y +
√
y2 + 1

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y +
√
y2 + 1

y2 + 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y +

√
y2 + 1

y2 + 1

)
dy

f(y) = arcsinh (y) + ln (y2 + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2

Summary
The solution(s) found are the following

(1)− x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2 = c1
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Figure 1146: Slope field plot

Verification of solutions

− x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2 = c1

Verified OK.

25.30.4 Maple step by step solution

Let’s solve(
y +

√
y2 + 1

)
(x2 + 1)

3
2 y′ − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
y+
√

y2+1
)

y2+1 = 1
(x2+1)

3
2

• Integrate both sides with respect to x∫ y′
(
y+
√

y2+1
)

y2+1 dx =
∫ 1

(x2+1)
3
2
dx+ c1
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• Evaluate integral

arcsinh(y) + ln
(
y2+1

)
2 = x√

x2+1 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 28� �
dsolve((y(x)+sqrt(1+y(x)^2))*(x^2+1)^(3/2)*diff(y(x),x) = 1+y(x)^2,y(x), singsol=all)� �

x√
x2 + 1

− arcsinh (y(x))−
ln
(
y(x)2 + 1

)
2 + c1 = 0

3 Solution by Mathematica
Time used: 16.191 (sec). Leaf size: 115� �
DSolve[(y[x]+Sqrt[1+y[x]^2])(1+x^2)^(3/2) y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
(
1 + e

x√
x2+1

+c1
)

√
1 + 2e

x√
x2+1

+c1

y(x) →
i
(
1 + e

x√
x2+1

+c1
)

√
1 + 2e

x√
x2+1

+c1

y(x) → −i
y(x) → i
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25.31 problem 728
25.31.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 7332
25.31.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 7334
25.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7338
25.31.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7342

Internal problem ID [3974]
Internal file name [OUTPUT/3467_Sunday_June_05_2022_09_22_16_AM_80033979/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 728.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
y +

√
y2 + 1

) (
x2 + 1

) 3
2 y′ − y2 = 1

25.31.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

Where f(x) = 1
(x2+1)

3
2
and g(y) = y2+1

y+
√

y2+1
. Integrating both sides gives

1
y2+1

y+
√

y2+1

dy = 1
(x2 + 1)

3
2
dx
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∫ 1
y2+1

y+
√

y2+1

dy =
∫ 1

(x2 + 1)
3
2
dx

arcsinh (y) + ln (y2 + 1)
2 = x√

x2 + 1
+ c1

Which results in

y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1


Summary
The solution(s) found are the following

(1)y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1



Figure 1147: Slope field plot
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Verification of solutions

y = RootOf

_Z2 − e
RootOf

(
− sinh

(
2c1x

2−x2_Z+2
√

x2+1 x+2c1−_Z
2x2+2

)2
+e_Z−1

)
+ 1


Warning, solution could not be verified

25.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 982: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) =
(
x2 + 1

) 3
2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

(x2 + 1)
3
2
dx

Which results in

S = x√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1(
y +

√
y2 + 1

)
(x2 + 1)

3
2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
(x2 + 1)

3
2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y +

√
y2 + 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R +

√
R2 + 1

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arcsinh (R) + ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1

Which simplifies to

x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1(
y+
√

y2+1
)
(x2+1)

3
2

dS
dR

= R+
√
R2+1

R2+1

R = y

S = x√
x2 + 1

Summary
The solution(s) found are the following

(1)x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1
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Figure 1148: Slope field plot

Verification of solutions

x√
x2 + 1

= arcsinh (y) + ln (y2 + 1)
2 + c1

Verified OK.

25.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y +

√
y2 + 1

y2 + 1

)
dy =

(
1

(x2 + 1)
3
2

)
dx(

− 1
(x2 + 1)

3
2

)
dx+

(
y +

√
y2 + 1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(x2 + 1)

3
2

N(x, y) = y +
√
y2 + 1

y2 + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(x2 + 1)

3
2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
y +

√
y2 + 1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(x2 + 1)

3
2
dx

(3)φ = − x√
x2 + 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y+
√

y2+1
y2+1 . Therefore equation (4) becomes

(5)y +
√
y2 + 1

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y +
√
y2 + 1

y2 + 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y +

√
y2 + 1

y2 + 1

)
dy

f(y) = arcsinh (y) + ln (y2 + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2

Summary
The solution(s) found are the following

(1)− x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2 = c1
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Figure 1149: Slope field plot

Verification of solutions

− x√
x2 + 1

+ arcsinh (y) + ln (y2 + 1)
2 = c1

Verified OK.

25.31.4 Maple step by step solution

Let’s solve(
y +

√
y2 + 1

)
(x2 + 1)

3
2 y′ − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
y+
√

y2+1
)

y2+1 = 1
(x2+1)

3
2

• Integrate both sides with respect to x∫ y′
(
y+
√

y2+1
)

y2+1 dx =
∫ 1

(x2+1)
3
2
dx+ c1
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• Evaluate integral

arcsinh(y) + ln
(
y2+1

)
2 = x√

x2+1 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve((y(x)+sqrt(1+y(x)^2))*(x^2+1)^(3/2)*diff(y(x),x) = 1+y(x)^2,y(x), singsol=all)� �

x√
x2 + 1

− arcsinh (y(x))−
ln
(
y(x)2 + 1

)
2 + c1 = 0

3 Solution by Mathematica
Time used: 0.775 (sec). Leaf size: 115� �
DSolve[(1+x^2)^(3/2) (y[x]+Sqrt[1+y[x]^2])y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
(
1 + e

x√
x2+1

+c1
)

√
1 + 2e

x√
x2+1

+c1

y(x) →
i
(
1 + e

x√
x2+1

+c1
)

√
1 + 2e

x√
x2+1

+c1

y(x) → −i
y(x) → i
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25.32 problem 729
25.32.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7344

Internal problem ID [3975]
Internal file name [OUTPUT/3468_Sunday_June_05_2022_09_22_21_AM_11661833/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 729.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
−
√

y2 + x2 + x
)
y′ − y = 0

25.32.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y√
x2 + y2 − x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)√
x2 + y2 − x

− y2a3(√
x2 + y2 − x

)2 −
y
(

x√
x2+y2

− 1
)
(xa2 + ya3 + a1)(√

x2 + y2 − x
)2

−

(
− 1√

x2 + y2 − x
+ y2(√

x2 + y2 − x
)2√

x2 + y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

(x2 + y2)
3
2 b2 − x3b2 − x y2a3 − 2x y2b2 + y3a2 − y3b3 −

√
x2 + y2 xb1 +

√
x2 + y2 ya1 + b1x

2 − xya1(√
x2 + y2 − x

)2√
x2 + y2

= 0

Setting the numerator to zero gives

(6E)(
x2 + y2

) 3
2 b2 − x3b2 − x y2a3 − 2x y2b2 + y3a2 − y3b3

−
√

x2 + y2 xb1 +
√
x2 + y2 ya1 + b1x

2 − xya1 = 0

Simplifying the above gives

(6E)(
x2 + y2

) 3
2 b2 −

(
x2 + y2

)
xb2 +

(
x2 + y2

)
ya2 − x2ya2 − x y2a3 − x y2b2

− y3b3 +
(
x2 + y2

)
b1 −

√
x2 + y2 xb1 +

√
x2 + y2 ya1 − xya1 − y2b1 = 0

Since the PDE has radicals, simplifying gives

−x3b2 +
√

x2 + y2 b2x
2 − x y2a3 − 2x y2b2 +

√
x2 + y2 b2y

2 + y3a2

− y3b3 + b1x
2 −

√
x2 + y2 xb1 − xya1 +

√
x2 + y2 ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
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The above PDE (6E) now becomes

(7E)v32a2 − v1v
2
2a3 − v31b2 + v3b2v

2
1 − 2v1v22b2 + v3b2v

2
2

− v32b3 − v1v2a1 + v3v2a1 + b1v
2
1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v31b2 + v3b2v
2
1 + b1v

2
1 + (−a3 − 2b2) v1v22 − v1v2a1

− v3v1b1 + (−b3 + a2) v32 + v3b2v
2
2 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0
b2 = 0

−a1 = 0
−b1 = 0
−b2 = 0

−a3 − 2b2 = 0
−b3 + a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y√

x2 + y2 − x

)
(x)

= y
√
x2 + y2√

x2 + y2 − x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
√

x2+y2√
x2+y2−x

dy

Which results in

S = ln (y) +
x ln

(
2x2+2

√
x2
√

x2+y2

y

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y√
x2 + y2 − x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
x2 + y2 + x

x
√
x2 + y2

Sy =
y√

x2 + y2
(√

x2 + y2 + x
)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y√
x2+y2−x

dS
dR

= 1
R

R = x

S = ln (2) + ln (x) + ln
(√

x2 + y2 + x
)

Summary
The solution(s) found are the following

(1)ln (2) + ln (x) + ln
(
x+

√
y2 + x2

)
= ln (x) + c1
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Figure 1150: Slope field plot

Verification of solutions

ln (2) + ln (x) + ln
(
x+

√
y2 + x2

)
= ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 18� �
dsolve((x-sqrt(x^2+y(x)^2))*diff(y(x),x) = y(x),y(x), singsol=all)� �

−c1 +
√

x2 + y (x)2 + x = 0

3 Solution by Mathematica
Time used: 0.818 (sec). Leaf size: 57� �
DSolve[(x-Sqrt[x^2+y[x]^2])y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e
c1
2
√
−2x+ ec1

y(x) → e
c1
2
√
−2x+ ec1

y(x) → 0
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25.33 problem 730
Internal problem ID [3976]
Internal file name [OUTPUT/3469_Sunday_June_05_2022_09_22_27_AM_55036887/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 730.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

x
(
1−

√
x2 − y2

)
y′ − y = 0

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`[0, (x^2-y^2)^(1/2)/(-1+(x^2-y^2)^(1/2))]� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 27� �
dsolve(x*(1-sqrt(x^2-y(x)^2))*diff(y(x),x) = y(x),y(x), singsol=all)� �

y(x)− arctan

 y(x)√
x2 − y (x)2

− c1 = 0

3 Solution by Mathematica
Time used: 0.84 (sec). Leaf size: 29� �
DSolve[x(1-Sqrt[x^2-y[x]^2])y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(√
x2 − y(x)2
y(x)

)
+ y(x) = c1, y(x)

]
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25.34 problem 731
25.34.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7354

Internal problem ID [3977]
Internal file name [OUTPUT/3470_Sunday_June_05_2022_09_22_31_AM_99638260/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 25
Problem number: 731.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _dAlembert]

x
(
x+

√
y2 + x2

)
y′ +

√
y2 + x2 y = 0

25.34.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −
√
x2 + y2 y

x
(√

x2 + y2 + x
)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
√
x2 + y2 y(b3 − a2)
x
(√

x2 + y2 + x
) − (x2 + y2) y2a3

x2
(√

x2 + y2 + x
)2

−

− y√
x2 + y2

(√
x2 + y2 + x

) + √
x2 + y2 y

x2
(√

x2 + y2 + x
)

+

√
x2 + y2 y

(
x√

x2+y2
+ 1
)

x
(√

x2 + y2 + x
)2

 (xa2 + ya3 + a1)

−

(
− y2√

x2 + y2 x
(√

x2 + y2 + x
) − √

x2 + y2

x
(√

x2 + y2 + x
)

+ y2

x
(√

x2 + y2 + x
)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2(x2 + y2)
3
2 x2b2 − (x2 + y2)

3
2 y2a3 +

√
x2 + y2 x4b2 − y2a3

√
x2 + y2 x2 − y4a3

√
x2 + y2 + 3x5b2 − x3y2a3 + 4x3y2b2 − x2y3a2 + x2y3b3 − 2x y4a3 + (x2 + y2)

3
2 xb1 − (x2 + y2)

3
2 ya1 + x4b1 − x3ya1 + 2x2y2b1 − 2x y3a1√

x2 + y2
(√

x2 + y2 + x
)2

x2

= 0

Setting the numerator to zero gives

(6E)2
(
x2 + y2

) 3
2 x2b2 −

(
x2 + y2

) 3
2 y2a3 +

√
x2 + y2 x4b2 − y2a3

√
x2 + y2 x2

− y4a3
√

x2 + y2 + 3x5b2 − x3y2a3 + 4x3y2b2 − x2y3a2 + x2y3b3 − 2x y4a3
+
(
x2 + y2

) 3
2 xb1 −

(
x2 + y2

) 3
2 ya1 + x4b1 − x3ya1 + 2x2y2b1 − 2x y3a1 = 0

Simplifying the above gives

(6E)
2
(
x2 + y2

) 3
2 x2b2 −

(
x2 + y2

) 3
2 y2a3 + 3

(
x2 + y2

)
x3b2 −

(
x2 + y2

)
x2ya2

− 2
(
x2 + y2

)
x y2a3 +

√
x2 + y2 x4b2 − y2a3

√
x2 + y2 x2 − y4a3

√
x2 + y2

+ x4ya2 + x3y2a3 + x3y2b2 + x2y3b3 +
(
x2 + y2

) 3
2 xb1 −

(
x2 + y2

) 3
2 ya1

+
(
x2 + y2

)
x2b1 − 2

(
x2 + y2

)
xya1 + x3ya1 + x2y2b1 = 0

7355



Since the PDE has radicals, simplifying gives

3x5b2+3
√

x2 + y2 x4b2−x3y2a3+4x3y2b2−2y2a3
√
x2 + y2 x2+2

√
x2 + y2 x2b2y

2

− x2y3a2 + x2y3b3 − 2x y4a3 − 2y4a3
√

x2 + y2 + x4b1 +
√
x2 + y2 x3b1 − x3ya1

−
√

x2 + y2 ya1x
2 + 2x2y2b1 +

√
x2 + y2 xb1y

2 − 2x y3a1 −
√

x2 + y2 y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−v21v
3
2a2 − v31v

2
2a3 − 2v22a3v3v21 − 2v1v42a3 − 2v42a3v3 + 3v51b2

+ 3v3v41b2 + 4v31v22b2 + 2v3v21b2v22 + v21v
3
2b3 − v31v2a1 − v3v2a1v

2
1

− 2v1v32a1 − v3v
3
2a1 + v41b1 + v3v

3
1b1 + 2v21v22b1 + v3v1b1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)3v51b2 + 3v3v41b2 + v41b1 + (−a3 + 4b2) v31v22 − v31v2a1 + v3v
3
1b1

+ (b3 − a2) v21v32 + (−2a3 + 2b2) v21v22v3 + 2v21v22b1 − v3v2a1v
2
1

− 2v1v42a3 − 2v1v32a1 + v3v1b1v
2
2 − 2v42a3v3 − v3v

3
2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a1 = 0
−a1 = 0
−2a3 = 0
2b1 = 0
3b2 = 0

−2a3 + 2b2 = 0
−a3 + 4b2 = 0

b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= y

x

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
x2 + y2 y

x
(√

x2 + y2 + x
)

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(
−
√
x2 + y2 − x

)
x

y
(
x+ 2

√
x2 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

√
R2 + 1− 1

R
(
2
√
R2 + 1 + 1

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (4R2 + 3)
12 − ln (R)

3 +
arctanh

(
1√

R2+1

)
3 −

arctanh
(
2
√
R2 + 1

)
6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = −
ln
(

4y2
x2 + 3

)
12 −

ln
(
y
x

)
3 +

arctanh
(

1√
y2
x2+1

)
3 −

arctanh
(
2
√

y2

x2 + 1
)

6 + c1

Which simplifies to

ln (x) = −
ln
(

4y2
x2 + 3

)
12 −

ln
(
y
x

)
3 +

arctanh
(

1√
y2
x2+1

)
3 −

arctanh
(
2
√

y2

x2 + 1
)

6 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
√

x2+y2 y

x
(√

x2+y2+x
) dS

dR
= −

√
R2+1−1

R
(
2
√
R2+1+1

)

R = y

x
S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) = −
ln
(

4y2
x2 + 3

)
12 −

ln
(
y
x

)
3 +

arctanh
(

1√
y2
x2+1

)
3 −

arctanh
(
2
√

y2

x2 + 1
)

6 + c1
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Figure 1151: Slope field plot

Verification of solutions

ln (x) = −
ln
(

4y2
x2 + 3

)
12 −

ln
(
y
x

)
3 +

arctanh
(

1√
y2
x2+1

)
3 −

arctanh
(
2
√

y2

x2 + 1
)

6 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 130� �
dsolve(x*(x+sqrt(x^2+y(x)^2))*diff(y(x),x)+y(x)*sqrt(x^2+y(x)^2) = 0,y(x), singsol=all)� �
−

∫ x

_b

√
_a2 + y (x)2

_a
(
2
√

_a2 + y (x)2 + _a
)d_a



+
∫ y(x)

_f2
(
2
√

_f2 + x2 + x
)∫ x

_b
1√

_a2+_f2
(
2
√
_a2+_f2+_a

)2d_a

− x−
√

_f2 + x2

_f
(
2
√
_f2 + x2 + x

) d_f

+ c1 = 0
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3 Solution by Mathematica
Time used: 60.36 (sec). Leaf size: 1457� �
DSolve[x(x+Sqrt[x^2+y[x]^2])y'[x] +y[x] Sqrt[x^2+y[x]^2]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−1
2

√√√√√√√√√
x6 − x4 3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6 + x2

(
−x12+20e6c1x6+8

√
e6c1

(
−x6+e6c1

)
3+8e12c1

x6

)
2/3 + 8e6c1

x2 3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6

y(x)

→ 1
2

√√√√√√√√√
x6 − x4 3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6 + x2

(
−x12+20e6c1x6+8

√
e6c1

(
−x6+e6c1

)
3+8e12c1

x6

)
2/3 + 8e6c1

x2 3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6

y(x) →

−

√√√√√√√√√√
i

(√3+i
)
x6+2ix4

3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6 −

(√
3−i

)
x2

−x12+20e6c1x6+8
√

e6c1
(
−x6+e6c1

)
3+8e12c1

x6

2/3+8
(√

3+i
)
e6c1



x2
3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6

2
√
2

y(x)

→

√√√√√√√√√√
i

(√3+i
)
x6+2ix4

3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6 −

(√
3−i

)
x2

−x12+20e6c1x6+8
√

e6c1
(
−x6+e6c1

)
3+8e12c1

x6

2/3+8
(√

3+i
)
e6c1



x2
3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6

2
√
2

y(x) →

−

√√√√√√√√√√
i

x2

x2+
3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6


(√3+i

) 3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6 −

(√
3−i

)
x2

−8
(√

3−i
)
e6c1



x2
3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6

2
√
2

y(x)

→

√√√√√√√√√√
i

x2

x2+
3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6


(√3+i

) 3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6 −

(√
3−i

)
x2

−8
(√

3−i
)
e6c1



x2
3

√
−x12 + 20e6c1x6 + 8

√
e6c1 (−x6 + e6c1) 3 + 8e12c1
x6

2
√
2
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26.1 problem 732
26.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7365

Internal problem ID [3978]
Internal file name [OUTPUT/3471_Sunday_June_05_2022_09_22_37_AM_87297364/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 732.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

xy
(
x+

√
x2 − y2

)
y′ − y2x+

(
x2 − y2

) 3
2 = 0

26.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x y2 − (x2 − y2)
3
2

xy
(
x+

√
x2 − y2

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

7365



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

(
x y2 − (x2 − y2)

3
2
)
(b3 − a2)

xy
(
x+

√
x2 − y2

) −

(
x y2 − (x2 − y2)

3
2
)2

a3

x2y2
(
x+

√
x2 − y2

)2
−

 y2 − 3x
√
x2 − y2

xy
(
x+

√
x2 − y2

) − x y2 − (x2 − y2)
3
2

x2y
(
x+

√
x2 − y2

)
−

(
x y2 − (x2 − y2)

3
2
)(

1 + x√
x2−y2

)
xy
(
x+

√
x2 − y2

)2
 (xa2 + ya3 + a1)

−

(
2xy + 3

√
x2 − y2 y

xy
(
x+

√
x2 − y2

) − x y2 − (x2 − y2)
3
2

x y2
(
x+

√
x2 − y2

)
+ x y2 − (x2 − y2)

3
2

x
(
x+

√
x2 − y2

)2√
x2 − y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−2x2y4b1 + (x2 − y2)
5
2 x2b2 + 2(x2 − y2)

5
2 xyb3 − 2(x2 − y2)

3
2 x3ya2 − 2(x2 − y2)

3
2 x2y2a3 + (x2 − y2)

3
2 x2y2b2 + 2(x2 − y2)

3
2 x y3b3 − 2(x2 − y2)

3
2 x2ya1 + 2(x2 − y2)

3
2 x y2b1 +

√
x2 − y2 x3y2b1 −

√
x2 − y2 x2y3a1 + 2x3y4a3 + (x2 − y2)

5
2 xb1 + (x2 − y2)

5
2 ya1 + (x2 − y2)

7
2 a3 + x7b2 + x6b1 + 2x4y2b1 + 2x y5a1 − x4y3b3 − x5ya1 + x4y3a2 − 2x3y3a1 + (x2 − y2)

5
2 y2a3 − 2x6ya2 + 2x6yb3 − 3x5y2a3

x2y2
(
x+

√
x2 − y2

)2√
x2 − y2

= 0

Setting the numerator to zero gives

(6E)

2x2y4b1 −
(
x2 − y2

) 5
2 x2b2 − 2

(
x2 − y2

) 5
2 xyb3 + 2

(
x2 − y2

) 3
2 x3ya2

+ 2
(
x2 − y2

) 3
2 x2y2a3 −

(
x2 − y2

) 3
2 x2y2b2 − 2

(
x2 − y2

) 3
2 x y3b3

+ 2
(
x2 − y2

) 3
2 x2ya1 − 2

(
x2 − y2

) 3
2 x y2b1 −

√
x2 − y2 x3y2b1

+
√

x2 − y2 x2y3a1 − 2x3y4a3 −
(
x2 − y2

) 5
2 xb1 −

(
x2 − y2

) 5
2 ya1

−
(
x2 − y2

) 7
2 a3 − x7b2 − x6b1 − 2x4y2b1 − 2x y5a1 + x4y3b3 + x5ya1

− x4y3a2 + 2x3y3a1 −
(
x2 − y2

) 5
2 y2a3 + 2x6ya2 − 2x6yb3 + 3x5y2a3 = 0
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Simplifying the above gives

(6E)

−x2y4b1 −
(
x2 − y2

) 5
2 x2b2 − 2

(
x2 − y2

) 5
2 xyb3 −

(
x2 − y2

)2
x2ya2

− 2
(
x2 − y2

)2
x2yb3 + 2

(
x2 − y2

) 3
2 x3ya2 + 2

(
x2 − y2

) 3
2 x2y2a3

−
(
x2 − y2

) 3
2 x2y2b2 − 2

(
x2 − y2

) 3
2 x y3b3 + 3

(
x2 − y2

)
x4ya2

+ 3
(
x2 − y2

)
x3y2a3 − 2

(
x2 − y2

)
x3y2b2 −

(
x2 − y2

)
x2y3a2

− 3
(
x2 − y2

)
x2y3b3 − 2

(
x2 − y2

)2
xya1 + 2

(
x2 − y2

) 3
2 x2ya1

− 2
(
x2 − y2

) 3
2 x y2b1 + 3

(
x2 − y2

)
x3ya1 − 4

(
x2 − y2

)
x2y2b1

−
√

x2 − y2 x3y2b1 +
√

x2 − y2 x2y3a1 + x3y4a3 − x3y4b2

−
(
x2 − y2

) 5
2 xb1 −

(
x2 − y2

) 5
2 ya1 −

(
x2 − y2

)2
x2b1 −

(
x2 − y2

) 7
2 a3

− x2y5b3 + x4y3a2 + x3y3a1 −
(
x2 − y2

) 5
2 y2a3 −

(
x2 − y2

)2
x3b2 = 0

Since the PDE has radicals, simplifying gives

2x2y4b1 + x4
√

x2 − y2 ya1 + x
√

x2 − y2 y4b1 + 2x5
√
x2 − y2 ya2

− 2x5
√

x2 − y2 yb3 + 4x4
√

x2 − y2 y2a3 + x4
√
x2 − y2 y2b2

− 2x3
√

x2 − y2 y3a2 + 2x3
√
x2 − y2 y3b3 − 3x2

√
x2 − y2 y4a3

−
√

x2 − y2 x3y2b1 +
√

x2 − y2 x2y3a1 − x6
√
x2 − y2 a3 − x5

√
x2 − y2 b1

− 2x3y4a3 − x7b2 − x6b1 − x6
√
x2 − y2 b2 −

√
x2 − y2 y5a1 − 2x4y2b1 − 2x y5a1

+ x4y3b3 + x5ya1 − x4y3a2 + 2x3y3a1 + 2x6ya2 − 2x6yb3 + 3x5y2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 − y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 − y2 = v3
}

The above PDE (6E) now becomes

(7E)
2v61v2a2 +2v51v3v2a2 − v41v

3
2a2 − 2v31v3v32a2 − v61v3a3 +3v51v22a3 +4v41v3v22a3

− 2v31v42a3 − 3v21v3v42a3 − v71b2 − v61v3b2 + v41v3v
2
2b2 − 2v61v2b3 − 2v51v3v2b3

+ v41v
3
2b3 + 2v31v3v32b3 + v51v2a1 + v41v3v2a1 + 2v31v32a1 + v3v

2
1v

3
2a1 − 2v1v52a1

− v3v
5
2a1 − v61b1 − v51v3b1 − 2v41v22b1 − v3v

3
1v

2
2b1 + 2v21v42b1 + v1v3v

4
2b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)
−v71b2 + (2a2 − 2b3) v61v2 + (−a3 − b2) v61v3 − v61b1 + 3v51v22a3
+ (2a2 − 2b3) v51v2v3 + v51v2a1 − v51v3b1 + (b3 − a2) v41v32 + (4a3 + b2) v41v22v3
−2v41v22b1+v41v3v2a1−2v31v42a3+(−2a2+2b3) v31v32v3+2v31v32a1−v3v

3
1v

2
2b1

− 3v21v3v42a3 + 2v21v42b1 + v3v
2
1v

3
2a1 − 2v1v52a1 + v1v3v

4
2b1 − v3v

5
2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−2a1 = 0
−a1 = 0
2a1 = 0

−3a3 = 0
−2a3 = 0
3a3 = 0

−2b1 = 0
−b1 = 0
2b1 = 0
−b2 = 0

−2a2 + 2b3 = 0
2a2 − 2b3 = 0
−a3 − b2 = 0
4a3 + b2 = 0
b3 − a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
x y2 − (x2 − y2)

3
2

xy
(
x+

√
x2 − y2

)) (x)

= x2√x2 − y2

xy +
√
x2 − y2 y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2
√

x2−y2

xy+
√

x2−y2 y

dy
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Which results in

S =
y2

2 − x
√
x2 − y2

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x y2 − (x2 − y2)
3
2

xy
(
x+

√
x2 − y2

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(
−x−

√
x2 − y2

)
y2

x3
√
x2 − y2

Sy =
y
(
1 + x√

x2−y2

)
x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)
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To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2x
√
x2 − y2 + y2

2x2 = − ln (x) + c1

Which simplifies to

−2x
√
x2 − y2 + y2

2x2 = − ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x y2−
(
x2−y2

) 3
2

xy
(
x+
√

x2−y2
) dS

dR
= − 1

R

R = x

S = −2x
√
x2 − y2 + y2

2x2

Summary
The solution(s) found are the following

(1)−2x
√
x2 − y2 + y2

2x2 = − ln (x) + c1
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Figure 1152: Slope field plot

Verification of solutions

−2x
√
x2 − y2 + y2

2x2 = − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 40� �
dsolve(x*y(x)*(x+sqrt(x^2-y(x)^2))*diff(y(x),x) = x*y(x)^2-(x^2-y(x)^2)^(3/2),y(x), singsol=all)� �

2 ln (x)x2 − c1x
2 + y(x)2 − 2x

√
x2 − y (x)2

x2 = 0

3 Solution by Mathematica
Time used: 26.912 (sec). Leaf size: 385� �
DSolve[x y[x](x+Sqrt[x^2-y[x]^2])y'[x]==x y[x]^2-(x^2-y[x]^2)^(3/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−2
√

−x4(−2 log(x)− 1 + 2c1)− 2x2 log(x) + (−1 + 2c1)x2

y(x) →
√

−2
√

−x4(−2 log(x)− 1 + 2c1)− 2x2 log(x) + (−1 + 2c1)x2

y(x) → −
√

2
√

−x4(−2 log(x)− 1 + 2c1)− 2x2 log(x) + (−1 + 2c1)x2

y(x) →
√

2
√

−x4(−2 log(x)− 1 + 2c1)− 2x2 log(x) + (−1 + 2c1)x2

y(x) → −
√

−2
√

x4(−2 log(x) + 1 + 2c1) + 2x2 log(x)− ((1 + 2c1)x2)

y(x) →
√

−2
√

x4(−2 log(x) + 1 + 2c1) + 2x2 log(x)− ((1 + 2c1)x2)

y(x) → −
√

2
√

x4(−2 log(x) + 1 + 2c1) + 2x2 log(x)− ((1 + 2c1)x2)

y(x) →
√

2
√

x4(−2 log(x) + 1 + 2c1) + 2x2 log(x)− ((1 + 2c1)x2)
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26.2 problem 734
26.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7374

Internal problem ID [3979]
Internal file name [OUTPUT/3472_Sunday_June_05_2022_09_22_42_AM_79968588/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 734.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

(
x
√

1 + x2 + y2 − y
(
y2 + x2)) y′ − x

(
y2 + x2)− y

√
1 + x2 + y2 = 0

26.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x3 + x y2 + y
√
x2 + y2 + 1

x2y + y3 − x
√
x2 + y2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
x3 + x y2 + y

√
x2 + y2 + 1

)
(b3 − a2)

x2y + y3 − x
√
x2 + y2 + 1

−
(
x3 + x y2 + y

√
x2 + y2 + 1

)2
a3(

x2y + y3 − x
√
x2 + y2 + 1

)2 −

−
3x2 + y2 + yx√

x2+y2+1

x2y + y3 − x
√
x2 + y2 + 1

+

(
x3 + x y2 + y

√
x2 + y2 + 1

) (
2xy −

√
x2 + y2 + 1− x2√

x2+y2+1

)
(
x2y + y3 − x

√
x2 + y2 + 1

)2
 (xa2

+ ya3 + a1)−

−
2xy +

√
x2 + y2 + 1 + y2√

x2+y2+1

x2y + y3 − x
√
x2 + y2 + 1

+

(
x3 + x y2 + y

√
x2 + y2 + 1

) (
x2 + 3y2 − yx√

x2+y2+1

)
(
x2y + y3 − x

√
x2 + y2 + 1

)2
 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−3x5ya3 + 3x5yb2 + 3x4y2a2 + 6x3y3a3 + 6x3y3b2 − 2
√
x2 + y2 + 1x5ya2 + 2

√
x2 + y2 + 1x5yb3 +

√
x2 + y2 + 1x4y2a3 +

√
x2 + y2 + 1x4y2b2 − 4

√
x2 + y2 + 1x3y3a2 + 4

√
x2 + y2 + 1x3y3b3 −

√
x2 + y2 + 1x2y4a3 −

√
x2 + y2 + 1x2y4b2 − 2

√
x2 + y2 + 1x y5a2 + 2

√
x2 + y2 + 1x y5b3 −

√
x2 + y2 + 1x4ya1 + 2

√
x2 + y2 + 1x3y2b1 − 2

√
x2 + y2 + 1x2y3a1 +

√
x2 + y2 + 1x y4b1 + 4x3ya3 + 4x3yb2 + 2x2y2a2 + 2x2y2b3 + 4x y3a3 + 4x y3b2 + 2x2yb1 + 2x y2a1 + 3x2y4b3 + 3x y5a3 + 3x y5b2 + x4yb1 + 2x3y2a1 + 2x2y3b1 + x y4a1 +

√
x2 + y2 + 1x6a3 +

√
x2 + y2 + 1x6b2 −

√
x2 + y2 + 1 y6a3 −

√
x2 + y2 + 1 y6b2 +

√
x2 + y2 + 1x5b1 −

√
x2 + y2 + 1 y5a1 + (x2 + y2 + 1)

3
2 xb1 − (x2 + y2 + 1)

3
2 ya1 + 3x4a2 − x4b3 − y4a2 + 3y4b3 + 2x3a1 + 2y3b1 + 2x6a2 + 2y6b3 + x5a1 + y5b1 − x6b3 − y6a2(

−x2y − y3 + x
√
x2 + y2 + 1

)2√
x2 + y2 + 1

= 0
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Setting the numerator to zero gives

(6E)

−3x5ya3 − 3x5yb2 − 3x4y2a2 − 6x3y3a3 − 6x3y3b2

+ 2
√

x2 + y2 + 1x5ya2 − 2
√
x2 + y2 + 1x5yb3

−
√

x2 + y2 + 1x4y2a3 −
√
x2 + y2 + 1x4y2b2

+ 4
√

x2 + y2 + 1x3y3a2 − 4
√

x2 + y2 + 1x3y3b3

+
√

x2 + y2 + 1x2y4a3 +
√
x2 + y2 + 1x2y4b2

+ 2
√

x2 + y2 + 1x y5a2 − 2
√
x2 + y2 + 1x y5b3

+
√

x2 + y2 + 1x4ya1 − 2
√
x2 + y2 + 1x3y2b1

+ 2
√

x2 + y2 + 1x2y3a1 −
√
x2 + y2 + 1x y4b1 − 4x3ya3

− 4x3yb2 − 2x2y2a2 − 2x2y2b3 − 4x y3a3 − 4x y3b2
− 2x2yb1 − 2x y2a1 − 3x2y4b3 − 3x y5a3 − 3x y5b2 − x4yb1

− 2x3y2a1 − 2x2y3b1 − x y4a1 −
√
x2 + y2 + 1x6a3

−
√

x2 + y2 + 1x6b2 +
√

x2 + y2 + 1 y6a3 +
√

x2 + y2 + 1 y6b2
−
√

x2 + y2 + 1x5b1 +
√

x2 + y2 + 1 y5a1 −
(
x2 + y2 + 1

) 3
2 xb1

+
(
x2 + y2 + 1

) 3
2 ya1 − 3x4a2 + x4b3 + y4a2 − 3y4b3 − 2x3a1

− 2y3b1 − 2x6a2 − 2y6b3 − x5a1 − y5b1 + x6b3 + y6a2 = 0
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Simplifying the above gives

(6E)

x5ya3 + x5yb2 + 2x4y2a2 + x4y2b3 + 2x3y3a3 + 2x3y3b2

+ 2
√
x2 + y2 + 1x5ya2 − 2

√
x2 + y2 + 1x5yb3

−
√

x2 + y2 + 1x4y2a3 −
√
x2 + y2 + 1x4y2b2

+ 4
√
x2 + y2 + 1x3y3a2 − 4

√
x2 + y2 + 1x3y3b3

+
√

x2 + y2 + 1 x2y4a3 +
√
x2 + y2 + 1 x2y4b2

+ 2
√
x2 + y2 + 1x y5a2 − 2

√
x2 + y2 + 1x y5b3

− 4
(
x2 + y2 + 1

)
x3ya3 − 4

(
x2 + y2 + 1

)
x3yb2

− 2
(
x2 + y2 + 1

)
x2y2a2 − 2

(
x2 + y2 + 1

)
x2y2b3

− 4
(
x2 + y2 + 1

)
x y3a3 − 4

(
x2 + y2 + 1

)
x y3b2

+
√

x2 + y2 + 1 x4ya1 − 2
√

x2 + y2 + 1x3y2b1

+ 2
√
x2 + y2 + 1x2y3a1 −

√
x2 + y2 + 1x y4b1

− 2
(
x2 + y2 + 1

)
x2yb1 − 2

(
x2 + y2 + 1

)
x y2a1 + x2y4a2

+ 2x2y4b3 + x y5a3 + x y5b2 + x4yb1 + 2x3y2a1 + 2x2y3b1

+ x y4a1 −
√

x2 + y2 + 1x6a3 −
√

x2 + y2 + 1x6b2

+
√

x2 + y2 + 1 y6a3+
√

x2 + y2 + 1 y6b2−3
(
x2+y2+1

)
x4a2

+
(
x2+ y2+1

)
x4b3+

(
x2+ y2+1

)
y4a2− 3

(
x2+ y2+1

)
y4b3

−
√

x2 + y2 + 1x5b1 +
√

x2 + y2 + 1 y5a1
−2
(
x2+y2+1

)
x3a1−2

(
x2+y2+1

)
y3b1−

(
x2+y2+1

) 3
2 xb1

+
(
x2 + y2 + 1

) 3
2 ya1 + x6a2 + y6b3 + x5a1 + y5b1 = 0
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Since the PDE has radicals, simplifying gives

−3x5ya3 − 3x5yb2 − 3x4y2a2 − 6x3y3a3 − 6x3y3b2

+ 2
√

x2 + y2 + 1x5ya2 − 2
√

x2 + y2 + 1 x5yb3

−
√

x2 + y2 + 1x4y2a3 −
√
x2 + y2 + 1x4y2b2

+ 4
√

x2 + y2 + 1x3y3a2 − 4
√

x2 + y2 + 1x3y3b3

+
√

x2 + y2 + 1x2y4a3 +
√
x2 + y2 + 1x2y4b2

+2
√

x2 + y2 + 1x y5a2−2
√

x2 + y2 + 1 x y5b3+
√

x2 + y2 + 1x4ya1

− 2
√
x2 + y2 + 1x3y2b1 + 2

√
x2 + y2 + 1x2y3a1

−
√

x2 + y2 + 1x y4b1 − 4x3ya3 − 4x3yb2 − 2x2y2a2 − 2x2y2b3

− 4x y3a3 − 4x y3b2 − 2x2yb1 − 2x y2a1 + x2
√

x2 + y2 + 1 ya1
−x
√

x2 + y2 + 1 y2b1−3x2y4b3−3x y5a3−3x y5b2−x4yb1−2x3y2a1

− 2x2y3b1 − x y4a1 −
√

x2 + y2 + 1x6a3 −
√

x2 + y2 + 1x6b2

+
√

x2 + y2 + 1 y6a3 +
√

x2 + y2 + 1 y6b2 −
√

x2 + y2 + 1x5b1

+
√

x2 + y2 + 1 y5a1 − 3x4a2 + x4b3 + y4a2 − 3y4b3 − 2x3a1 − 2y3b1
− x3

√
x2 + y2 + 1 b1 +

√
x2 + y2 + 1 y3a1 −

√
x2 + y2 + 1 xb1

+
√

x2 + y2 + 1 ya1 − 2x6a2 − 2y6b3 − x5a1 − y5b1 + x6b3 + y6a2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 + y2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 + y2 + 1 = v3
}

The above PDE (6E) now becomes

(7E)

2v3v51v2a2 + 4v3v31v32a2 + 2v3v1v52a2 − v3v
6
1a3 − v3v

4
1v

2
2a3 + v3v

2
1v

4
2a3

+ v3v
6
2a3 − v3v

6
1b2 − v3v

4
1v

2
2b2 + v3v

2
1v

4
2b2 + v3v

6
2b2 − 2v3v51v2b3

− 4v3v31v32b3 − 2v3v1v52b3 + v3v
4
1v2a1 + 2v3v21v32a1 + v3v

5
2a1 − 2v61a2

− 3v41v22a2 + v62a2 − 3v51v2a3 − 6v31v32a3 − 3v1v52a3 − v3v
5
1b1

− 2v3v31v22b1 − v3v1v
4
2b1 − 3v51v2b2 − 6v31v32b2 − 3v1v52b2 + v61b3

− 3v21v42b3 − 2v62b3 − v51a1 − 2v31v22a1 − v1v
4
2a1 − v41v2b1 − 2v21v32b1

− v52b1 + v21v3v2a1 + v3v
3
2a1 − 3v41a2 − 2v21v22a2 + v42a2 − 4v31v2a3

− 4v1v32a3 − v31v3b1 − v1v3v
2
2b1 − 4v31v2b2 − 4v1v32b2 + v41b3 − 2v21v22b3

− 3v42b3 − 2v31a1 − 2v1v22a1 − 2v21v2b1 − 2v32b1 + v3v2a1 − v3v1b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(2a2−2b3) v1v52v3−2v3v31v22b1+(−a3− b2) v41v22v3+(4a2−4b3) v31v32v3
+ (a3 + b2) v21v42v3 + (−4a3 − 4b2) v31v2 + (−2a2 − 2b3) v21v22
+ (−3a3 − 3b2) v1v52 + (−4a3 − 4b2) v1v32 + (a3 + b2) v62v3
+ (−a3 − b2) v61v3 + (−3a3 − 3b2) v51v2 + (−6a3 − 6b2) v31v32
+ 2v3v21v32a1 + (−2a2 + b3) v61 − v41v2b1 − 2v31v22a1 − 2v21v32b1
− v1v

4
2a1 − v3v

5
1b1 + v3v

5
2a1 − v31v3b1 + v3v

3
2a1 − v3v1b1 + v3v2a1

+ (−3a2 + b3) v41 − 3v41v22a2 − 2v21v2b1 − 2v1v22a1 − 3v21v42b3 − v3v1v
4
2b1

+ (a2 − 2b3) v62 + (a2 − 3b3) v42 + v3v
4
1v2a1 + (2a2 − 2b3) v51v2v3

− v1v3v
2
2b1 + v21v3v2a1 − 2v31a1 − 2v32b1 − v51a1 − v52b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−2a1 = 0
−a1 = 0
2a1 = 0

−3a2 = 0
−2b1 = 0
−b1 = 0
−3b3 = 0

−3a2 + b3 = 0
−2a2 − 2b3 = 0
−2a2 + b3 = 0
a2 − 3b3 = 0
a2 − 2b3 = 0
2a2 − 2b3 = 0
4a2 − 4b3 = 0

−6a3 − 6b2 = 0
−4a3 − 4b2 = 0
−3a3 − 3b2 = 0
−a3 − b2 = 0
a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = −b2

b1 = 0
b2 = b2

b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y

η = x
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
−x3 + x y2 + y

√
x2 + y2 + 1

x2y + y3 − x
√
x2 + y2 + 1

)
(−y)

= x2√x2 + y2 + 1 + y2
√
x2 + y2 + 1

−x2y − y3 + x
√
x2 + y2 + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2
√

x2+y2+1+y2
√

x2+y2+1
−x2y−y3+x

√
x2+y2+1

dy

Which results in

S = arctan
(y
x

)
−
√

x2 + y2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3 + x y2 + y
√
x2 + y2 + 1

x2y + y3 − x
√
x2 + y2 + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2 + y2
− x√

x2 + y2 + 1
Sy =

x

x2 + y2
− y√

x2 + y2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan
(y
x

)
−
√
1 + x2 + y2 = c1

Which simplifies to

arctan
(y
x

)
−
√
1 + x2 + y2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x3+x y2+y
√

x2+y2+1
x2y+y3−x

√
x2+y2+1

dS
dR

= 0

R = x

S = arctan
(y
x

)
−
√

x2 + y2 + 1

Summary
The solution(s) found are the following

(1)arctan
(y
x

)
−
√

1 + x2 + y2 = c1

7383



Figure 1153: Slope field plot

Verification of solutions

arctan
(y
x

)
−
√

1 + x2 + y2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 25� �
dsolve((x*sqrt(1+x^2+y(x)^2)-y(x)*(x^2+y(x)^2))*diff(y(x),x) = x*(x^2+y(x)^2)+y(x)*sqrt(1+x^2+y(x)^2),y(x), singsol=all)� �

arctan
(

x

y (x)

)
+
√

1 + x2 + y (x)2 − c1 = 0

3 Solution by Mathematica
Time used: 0.27 (sec). Leaf size: 27� �
DSolve[(x*Sqrt[1+x^2+y[x]^2]-y[x]*(x^2+y[x]^2))*y'[x]==x*(x^2+y[x]^2)+y[x]*Sqrt[1+x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[√

x2 + y(x)2 + 1 + tan−1
(

x

y(x)

)
= c1, y(x)

]
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26.3 problem 736
26.3.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7386
26.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7389

Internal problem ID [3980]
Internal file name [OUTPUT/3473_Sunday_June_05_2022_09_22_47_AM_53661238/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 736.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
unknown

y′ cos (y) (cos (y)− sin (A) sin (x)) + cos (x) (cos (x)− sin (A) sin (y)) = 0

26.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(cos (y) (cos (y)− sin (A) sin (x))) dy = (− cos (x) (cos (x)− sin (A) sin (y))) dx
(cos (x) (cos (x)− sin (A) sin (y))) dx+(cos (y) (cos (y)− sin (A) sin (x))) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = cos (x) (cos (x)− sin (A) sin (y))
N(x, y) = cos (y) (cos (y)− sin (A) sin (x))

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(cos (x) (cos (x)− sin (A) sin (y)))

= − cos (x) sin (A) cos (y)

And
∂N

∂x
= ∂

∂x
(cos (y) (cos (y)− sin (A) sin (x)))

= − cos (x) sin (A) cos (y)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) (cos (x)− sin (A) sin (y)) dx

(3)φ = sin (x) (−2 sin (A) sin (y) + cos (x))
2 + x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − cos (y) sin (A) sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (y) (cos (y)− sin (A) sin (x)). Therefore equation
(4) becomes

(5)cos (y) (cos (y)− sin (A) sin (x)) = − cos (y) sin (A) sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = cos (y)2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
cos (y)2

)
dy

f(y) = cos (y) sin (y)
2 + y

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = sin (x) (−2 sin (A) sin (y) + cos (x))
2 + x

2 + cos (y) sin (y)
2 + y

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
sin (x) (−2 sin (A) sin (y) + cos (x))

2 + x

2 + cos (y) sin (y)
2 + y

2

Summary
The solution(s) found are the following

(1)sin (x) (−2 sin (A) sin (y) + cos (x))
2 + x

2 + cos (y) sin (y)
2 + y

2 = c1

Verification of solutions

sin (x) (−2 sin (A) sin (y) + cos (x))
2 + x

2 + cos (y) sin (y)
2 + y

2 = c1

Verified OK.

26.3.2 Maple step by step solution

Let’s solve
y′ cos (y) (cos (y)− sin (A) sin (x)) + cos (x) (cos (x)− sin (A) sin (y)) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
− cos (x) sin (A) cos (y) = − cos (x) sin (A) cos (y)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x
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F (x, y) =
∫
cos (x) (cos (x)− sin (A) sin (y)) dx+ f1(y)

• Evaluate integral
F (x, y) = − sin (y) sin (A) sin (x) + sin(x) cos(x)

2 + x
2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
cos (y) (cos (y)− sin (A) sin (x)) = − cos (y) sin (A) sin (x) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = cos (y) (cos (y)− sin (A) sin (x)) + cos (y) sin (A) sin (x)

• Solve for f1(y)
f1(y) = cos(y) sin(y)

2 + y
2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = − sin (y) sin (A) sin (x) + sin(x) cos(x)

2 + x
2 +

cos(y) sin(y)
2 + y

2

• Substitute F (x, y) into the solution of the ODE
− sin (y) sin (A) sin (x) + sin(x) cos(x)

2 + x
2 +

cos(y) sin(y)
2 + y

2 = c1

• Solve for y
y = RootOf (2 sin (A) sin (x) sin (_Z)− sin (x) cos (x)− cos (_Z) sin (_Z) + 2c1 − x− _Z)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)*cos(y(x))*(cos(y(x))-sin(A)*sin(x))+cos(x)*(cos(x)-sin(A)*sin(y(x))) = 0,y(x), singsol=all)� �

(−2 sin (A) sin (x) + cos (y(x))) sin (y(x))
2 + cos (x) sin (x)

2 + x

2 + c1 +
y(x)
2 = 0

3 Solution by Mathematica
Time used: 0.649 (sec). Leaf size: 43� �
DSolve[y'[x] Cos[y[x]](Cos[y[x]]- Sin[A] Sin[x])+Cos[x](Cos[x]-Sin[A]Sin[y[x]])==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
4 sin(A) sin(x) sin(y(x))− 4

(
y(x)
2 + 1

4 sin(2y(x))
)
− 2x− sin(2x) = c1, y(x)

]
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26.4 problem 737
26.4.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7392
26.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7395

Internal problem ID [3981]
Internal file name [OUTPUT/3474_Sunday_June_05_2022_09_23_59_AM_8797218/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 737.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

(a cos (bx+ ya)− b sin (ax+ yb)) y′ + b cos (bx+ ya)− a sin (ax+ yb) = 0

26.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(a cos (ya+ bx)− b sin (ax+ by)) dy = (−b cos (ya+ bx) + a sin (ax+ by)) dx
(−a sin (ax+ by) + b cos (ya+ bx)) dx+(a cos (ya+ bx)− b sin (ax+ by)) dy = 0

(2A)

Comparing (1A) and (2A) shows that

M(x, y) = −a sin (ax+ by) + b cos (ya+ bx)
N(x, y) = a cos (ya+ bx)− b sin (ax+ by)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−a sin (ax+ by) + b cos (ya+ bx))

= ab(− sin (ya+ bx)− cos (ax+ by))

And
∂N

∂x
= ∂

∂x
(a cos (ya+ bx)− b sin (ax+ by))

= ab(− sin (ya+ bx)− cos (ax+ by))

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−a sin (ax+ by) + b cos (ya+ bx) dx

(3)φ = cos (ax+ by) + sin (ya+ bx) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= a cos (ya+ bx)− b sin (ax+ by) + f ′(y)

But equation (2) says that ∂φ
∂y

= a cos (ya+ bx) − b sin (ax+ by). Therefore equation
(4) becomes

(5)a cos (ya+ bx)− b sin (ax+ by) = a cos (ya+ bx)− b sin (ax+ by) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (ax+ by) + sin (ya+ bx) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (ax+ by) + sin (ya+ bx)

Summary
The solution(s) found are the following

(1)cos (ax+ yb) + sin (bx+ ya) = c1

Verification of solutions

cos (ax+ yb) + sin (bx+ ya) = c1

Verified OK.
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26.4.2 Maple step by step solution

Let’s solve
(a cos (bx+ ya)− b sin (ax+ yb)) y′ + b cos (bx+ ya)− a sin (ax+ yb) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−ab sin (ya+ bx)− ba cos (ax+ by) = −ab sin (ya+ bx)− ba cos (ax+ by)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−a sin (ax+ by) + b cos (ya+ bx)) dx+ f1(y)

• Evaluate integral
F (x, y) = cos (ax+ by) + sin (ya+ bx) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
a cos (ya+ bx)− b sin (ax+ by) = −b sin (ax+ by) + a cos (ya+ bx) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = cos (ax+ by) + sin (ya+ bx)
• Substitute F (x, y) into the solution of the ODE

cos (ax+ by) + sin (ya+ bx) = c1

• Solve for y

y =
−ax+RootOf

(
−x a2+b2x−arcsin

(
− cos

(
_Z

)
+c1

)
b+_Za

)
b

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 43� �
dsolve((a*cos(b*x+a*y(x))-b*sin(a*x+b*y(x)))*diff(y(x),x)+b*cos(b*x+a*y(x))-a*sin(a*x+b*y(x)) = 0,y(x), singsol=all)� �

y(x) = −bx+RootOf (2x a2 − 2b2x− πa− 2 arcsin (sin (_Z) + c1) a+ 2_Zb)
a

3 Solution by Mathematica
Time used: 1.106 (sec). Leaf size: 50� �
DSolve[(a Cos[b x+a y[x]]-b Sin[a x+ b y[x]])y'[x]+b Cos[b x+a y[x]]-a Sin[a x+b y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[sin(ax) sin(by(x))− cos(ax) cos(by(x))
− sin(bx) cos(ay(x))− cos(bx) sin(ay(x)) = c1, y(x)]
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26.5 problem 739
26.5.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7397

Internal problem ID [3982]
Internal file name [OUTPUT/3475_Sunday_June_05_2022_09_24_10_AM_50506844/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 739.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[NONE]

(x+ cos (x) sec (y)) y′ + tan (y)− y sin (x) sec (y) = 0

26.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x+ cos (x) sec (y)) dy = (− tan (y) + y sin (x) sec (y)) dx
(tan (y)− y sin (x) sec (y)) dx+(x+ cos (x) sec (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = tan (y)− y sin (x) sec (y)
N(x, y) = x+ cos (x) sec (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(tan (y)− y sin (x) sec (y))

= − sec (y)2 (−1 + sin (x) (y sin (y) + cos (y)))

And
∂N

∂x
= ∂

∂x
(x+ cos (x) sec (y))

= 1− sin (x) sec (y)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= cos (y)

x cos (y) + cos (x)
((
1 + tan (y)2 − sin (x) sec (y)− y sin (x) sec (y) tan (y)

)
− (1− sin (x) sec (y))

)
= (− sin (x) y + sin (y)) tan (y)

x cos (y) + cos (x)
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − cos (y)

sin (x) y − sin (y)
(
(1− sin (x) sec (y))−

(
1 + tan (y)2 − sin (x) sec (y)− y sin (x) sec (y) tan (y)

))
= − tan (y)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− tan(y) dy

The result of integrating gives

µ = eln(cos(y))

= cos (y)

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= cos (y) (tan (y)− y sin (x) sec (y))
= − sin (x) y + sin (y)

And

N = µN

= cos (y) (x+ cos (x) sec (y))
= x cos (y) + cos (x)

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(− sin (x) y + sin (y)) + (x cos (y) + cos (x)) dydx = 0

7399



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x) y + sin (y) dx

(3)φ = cos (x) y + x sin (y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x cos (y) + cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= x cos (y) + cos (x). Therefore equation (4) becomes

(5)x cos (y) + cos (x) = x cos (y) + cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x) y + x sin (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x) y + x sin (y)
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Summary
The solution(s) found are the following

(1)cos (x) y + x sin (y) = c1

Figure 1154: Slope field plot

Verification of solutions

cos (x) y + x sin (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve((x+cos(x)*sec(y(x)))*diff(y(x),x)+tan(y(x))-y(x)*sin(x)*sec(y(x)) = 0,y(x), singsol=all)� �

cos (x) y(x) + sin (y(x))x+ c1 = 0

3 Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 17� �
DSolve[(x+Cos[x] Sec[y[x]])y'[x]+Tan[y[x]]-y[x] Sin[x] Sec[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[x sin(y(x)) + y(x) cos(x) = c1, y(x)]
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26.6 problem 742
26.6.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7403
26.6.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7409

Internal problem ID [3983]
Internal file name [OUTPUT/3476_Sunday_June_05_2022_09_24_16_AM_61637892/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 742.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

(1 + tan (y) (y + x)) y′ = −1

26.6.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 1
tan (y)x+ tan (y) y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
b3 − a2

tan (y)x+ tan (y) y + 1 − a3

(tan (y)x+ tan (y) y + 1)2

− tan (y) (xa2 + ya3 + a1)
(tan (y)x+ tan (y) y + 1)2

−
((
1 + tan (y)2

)
x+

(
1 + tan (y)2

)
y + tan (y)

)
(xb2 + yb3 + b1)

(tan (y)x+ tan (y) y + 1)2
= 0

Putting the above in normal form gives

tan (y)2 xyb2 − tan (y)2 xyb3 + tan (y)2 y2b2 − tan (y)2 y2b3 − tan (y)2 xb1 − tan (y)2 yb1 + tan (y)xb2 − tan (y)xb3 + tan (y) ya2 − tan (y) ya3 + 2 tan (y) yb2 − 2 tan (y) yb3 − x2b2 − xyb2 − xyb3 − y2b3 − tan (y) a1 − tan (y) b1 − xb1 − yb1 + a2 − a3 + b2 − b3

(tan (y)x+ tan (y) y + 1)2
= 0

Setting the numerator to zero gives

(6E)
tan (y)2 xyb2 − tan (y)2 xyb3 + tan (y)2 y2b2 − tan (y)2 y2b3
− tan (y)2 xb1 − tan (y)2 yb1 + tan (y)xb2 − tan (y)xb3 + tan (y) ya2
− tan (y) ya3 + 2 tan (y) yb2 − 2 tan (y) yb3 − x2b2 − xyb2 − xyb3
− y2b3 − tan (y) a1 − tan (y) b1 − xb1 − yb1 + a2 − a3 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, tan (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, tan (y) = v3}

The above PDE (6E) now becomes

(7E)v23v1v2b2 + v23v
2
2b2 − v23v1v2b3 − v23v

2
2b3 − v23v1b1 − v23v2b1 + v3v2a2

− v3v2a3 − v21b2 − v1v2b2 + v3v1b2 + 2v3v2b2 − v1v2b3 − v3v1b3 − v22b3
− 2v3v2b3 − v3a1 − v1b1 − v2b1 − v3b1 + a2 − a3 + b2 − b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v21b2 + (b2 − b3) v1v2v23 + (−b2 − b3) v1v2 − v23v1b1
+ (b2 − b3) v1v3 − v1b1 + (b2 − b3) v22v23 − v22b3 − v23v2b1
+ (a2 − a3 + 2b2 − 2b3) v2v3 − v2b1 + (−a1 − b1) v3 + a2 − a3 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−b1 = 0
−b2 = 0
−b3 = 0

−a1 − b1 = 0
−b2 − b3 = 0
b2 − b3 = 0

a2 − a3 + b2 − b3 = 0
a2 − a3 + 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a3

a3 = a3

b1 = 0
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y + x

η = 0
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(
− 1
tan (y)x+ tan (y) y + 1

)
(y + x)

= y + x

tan (y)x+ tan (y) y + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y+x
tan(y)x+tan(y)y+1

dy

Which results in

S =
ln
(
1 + tan (y)2

)
2 + ln (y + x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 1
tan (y)x+ tan (y) y + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y + x

Sy = tan (y) + 1
y + x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (sec (y)) + ln (y + x) = c1

Which simplifies to

ln (sec (y)) + ln (y + x) = c1

7407



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 1
tan(y)x+tan(y)y+1

dS
dR

= 0

R = x

S = ln (sec (y)) + ln (y + x)

Summary
The solution(s) found are the following

(1)ln (sec (y)) + ln (y + x) = c1
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Figure 1155: Slope field plot

Verification of solutions

ln (sec (y)) + ln (y + x) = c1

Verified OK.

26.6.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(1 + tan (y) (y + x)) dy = (−1) dx
(1) dx+(1 + tan (y) (y + x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1
N(x, y) = 1 + tan (y) (y + x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(1)

= 0

And
∂N

∂x
= ∂

∂x
(1 + tan (y) (y + x))

= tan (y)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

1 + tan (y) (y + x)((0)− (tan (y)))

= − tan (y)
1 + tan (y) (y + x)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1((tan (y))− (0))
= tan (y)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
tan(y) dy

The result of integrating gives

µ = e− ln(cos(y))

= sec (y)

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= sec (y) (1)
= sec (y)

And

N = µN

= sec (y) (1 + tan (y) (y + x))
= (1 + tan (y) (y + x)) sec (y)
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(sec (y)) + ((1 + tan (y) (y + x)) sec (y)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sec (y) dx

(3)φ = sec (y)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x sec (y) tan (y) + f ′(y)

But equation (2) says that ∂φ
∂y

= (1 + tan (y) (y + x)) sec (y). Therefore equation (4)
becomes

(5)(1 + tan (y) (y + x)) sec (y) = x sec (y) tan (y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sec (y) tan (y) y + sec (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(sec (y) (1 + tan (y) y)) dy

f(y) = y

cos (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = sec (y)x+ y

cos (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sec (y)x+ y

cos (y)

Summary
The solution(s) found are the following

(1)x sec (y) + y

cos (y) = c1

Figure 1156: Slope field plot

Verification of solutions

x sec (y) + y

cos (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve((1+(x+y(x))*tan(y(x)))*diff(y(x),x)+1 = 0,y(x), singsol=all)� �

x− cos (y(x)) c1 + y(x) = 0

3 Solution by Mathematica
Time used: 0.473 (sec). Leaf size: 66� �
DSolve[(1+(x+y[x]) Tan[y[x]])y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = cos(y(x))

(
−y(x) sec(y(x))− coth−1(sin(y(x)))

− log
(
cos
(
y(x)
2

)
− sin

(
y(x)
2

))
+ log

(
sin
(
y(x)
2

)
+ cos

(
y(x)
2

)))
+ c1 cos(y(x)), y(x)

]
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26.7 problem 743
26.7.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 7415
26.7.2 Solving as first order ode lie symmetry calculated ode . . . . . . 7417
26.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7423

Internal problem ID [3984]
Internal file name [OUTPUT/3477_Sunday_June_05_2022_09_24_21_AM_34179714/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 743.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

x
(
x− y tan

(y
x

))
y′ +

(
x+ y tan

(y
x

))
y = 0

26.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(x− u(x)x tan (u(x))) (u′(x)x+ u(x)) + (x+ u(x)x tan (u(x)))u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u
(u tan (u)− 1)x
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Where f(x) = 2
x
and g(u) = u

u tan(u)−1 . Integrating both sides gives

1
u

u tan(u)−1
du = 2

x
dx

∫ 1
u

u tan(u)−1
du =

∫ 2
x
dx

− ln (cos (u))− ln (u) = 2 ln (x) + c2

Raising both side to exponential gives

e− ln(cos(u))−ln(u) = e2 ln(x)+c2

Which simplifies to

1
cos (u)u = c3x

2

Therefore the solution y is

y = xu

= xRootOf
(
_Zc3x2 cos (_Z)− 1

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
_Zc3x2 cos (_Z)− 1

)
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Figure 1157: Slope field plot

Verification of solutions

y = xRootOf
(
_Zc3x2 cos (_Z)− 1

)
Verified OK.

26.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
y
(
x+ tan

(
y
x

)
y
)

x
(
tan

(
y
x

)
y − x

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y
(
x+ tan

(
y
x

)
y
)
(b3 − a2)

x
(
tan

(
y
x

)
y − x

) −
y2
(
x+ tan

(
y
x

)
y
)2

a3

x2
(
tan

(
y
x

)
y − x

)2
−

y

(
1−

y2
(
1+tan

( y
x

)2)
x2

)
x
(
tan

(
y
x

)
y − x

) −
y
(
x+ tan

(
y
x

)
y
)

x2
(
tan

(
y
x

)
y − x

)

−
y
(
x+ tan

(
y
x

)
y
)(

−
y2
(
1+tan

( y
x

)2)
x2 − 1

)
x
(
tan

(
y
x

)
y − x

)2
 (xa2 + ya3 + a1)

−

 x+ tan
(
y
x

)
y

x
(
tan

(
y
x

)
y − x

) + y

((
1+tan

( y
x

)2)
y

x
+ tan

(
y
x

))
x
(
tan

(
y
x

)
y − x

)

−
y
(
x+ tan

(
y
x

)
y
)((1+tan

( y
x

)2)
y

x
+ tan

(
y
x

))
x
(
tan

(
y
x

)
y − x

)2
 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2 tan
(
y
x

)2
x2y2b2 − 2 tan

(
y
x

)2
x y3a2 + 2 tan

(
y
x

)2
x y3b3 − 2 tan

(
y
x

)2
y4a3 + tan

(
y
x

)2
x y2b1 − tan

(
y
x

)2
y3a1 − 2 tan

(
y
x

)
x2y2a2 + 2 tan

(
y
x

)
x2y2b3 − 4 tan

(
y
x

)
x y3a3 + 2 tan

(
y
x

)
x2yb1 − 2 tan

(
y
x

)
x y2a1 + 2x4b2 − 2x2y2a3 + 2x2y2b2 − 2x y3a2 + 2x y3b3 − 2y4a3 + x3b1 − x2ya1 + 2x y2b1 − 2y3a1

x2
(
tan

(
y
x

)
y − x

)2
= 0

Setting the numerator to zero gives

(6E)

2 tan
(y
x

)2
x2y2b2 − 2 tan

(y
x

)2
x y3a2 + 2 tan

(y
x

)2
x y3b3

− 2 tan
(y
x

)2
y4a3 + tan

(y
x

)2
x y2b1 − tan

(y
x

)2
y3a1

− 2 tan
(y
x

)
x2y2a2 + 2 tan

(y
x

)
x2y2b3 − 4 tan

(y
x

)
x y3a3

+ 2 tan
(y
x

)
x2yb1 − 2 tan

(y
x

)
x y2a1 + 2x4b2 − 2x2y2a3 + 2x2y2b2

− 2x y3a2 + 2x y3b3 − 2y4a3 + x3b1 − x2ya1 + 2x y2b1 − 2y3a1 = 0
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Simplifying the above gives

(6E)

x

(
2 tan

(y
x

)2
x2y2b2 − 2 tan

(y
x

)2
x y3a2 + 2 tan

(y
x

)2
x y3b3

− 2 tan
(y
x

)2
y4a3 + tan

(y
x

)2
x y2b1 − tan

(y
x

)2
y3a1

− 2 tan
(y
x

)
x2y2a2 + 2 tan

(y
x

)
x2y2b3 − 4 tan

(y
x

)
x y3a3

+ 2 tan
(y
x

)
x2yb1 − 2 tan

(y
x

)
x y2a1 + 2x4b2 − 2x2y2a3 + 2x2y2b2

− 2x y3a2 + 2x y3b3 − 2y4a3 + x3b1 − x2ya1 + 2x y2b1 − 2y3a1
)

= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, tan

(y
x

)}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, tan
(y
x

)
= v3

}
The above PDE (6E) now becomes

(7E)v1
(
−2v23v1v32a2 − 2v23v42a3 + 2v23v21v22b2 + 2v23v1v32b3 − v23v

3
2a1 − 2v3v21v22a2

−4v3v1v32a3+v23v1v
2
2b1+2v3v21v22b3−2v3v1v22a1−2v1v32a2−2v21v22a3−2v42a3

+2v3v21v2b1+2v41b2+2v21v22b2+2v1v32b3−v21v2a1−2v32a1+v31b1+2v1v22b1
)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2b2v51+b1v
4
1+2b2v22v23v31+(−2a2+2b3) v22v3v31+(−2a3+2b2) v22v31+2b1v2v3v31

− a1v2v
3
1 + (−2a2 +2b3) v32v23v21 − 4a3v32v3v21 + (−2a2 +2b3) v32v21 + b1v

2
2v

2
3v

2
1

− 2a1v22v3v21 + 2b1v22v21 − 2a3v42v23v1 − a1v
3
2v

2
3v1 − 2a3v42v1 − 2a1v32v1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a1 = 0
−a1 = 0
−4a3 = 0
−2a3 = 0
2b1 = 0
2b2 = 0

−2a2 + 2b3 = 0
−2a3 + 2b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
y
(
x+ tan

(
y
x

)
y
)

x
(
tan

(
y
x

)
y − x

)) (x)

= − 2yx
tan

(
y
x

)
y − x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 2yx
tan
( y
x

)
y−x

dy

Which results in

S =
ln
(
y
x

)
2 +

ln
(
cos
(
y
x

))
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
y
(
x+ tan

(
y
x

)
y
)

x
(
tan

(
y
x

)
y − x

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
tan

(
y
x

)
y − x

2x2

Sy =
1
2y −

tan
(
y
x

)
2x
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
x+tan

( y
x

)
y
)

x
(
tan
( y
x

)
y−x

) dS
dR

= − 1
R

R = x

S = ln (y)
2 − ln (x)

2 +
ln
(
cos
(
y
x

))
2

Summary
The solution(s) found are the following

(1)ln (y)
2 − ln (x)

2 +
ln
(
cos
(
y
x

))
2 = − ln (x) + c1
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Figure 1158: Slope field plot

Verification of solutions

ln (y)
2 − ln (x)

2 +
ln
(
cos
(
y
x

))
2 = − ln (x) + c1

Verified OK.

26.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

7423



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x− tan

(y
x

)
y
))

dy =
(
−y
(
x+ tan

(y
x

)
y
))

dx(
y
(
x+ tan

(y
x

)
y
))

dx+
(
x
(
x− tan

(y
x

)
y
))

dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
x+ tan

(y
x

)
y
)

N(x, y) = x
(
x− tan

(y
x

)
y
)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y
(
x+ tan

(y
x

)
y
))

=
x2 + 2 tan

(
y
x

)
xy + sec

(
y
x

)2
y2

x

7424



And

∂N

∂x
= ∂

∂x

(
x
(
x− tan

(y
x

)
y
))

=
− tan

(
y
x

)
xy + 2x2 + sec

(
y
x

)2
y2

x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M =

(
x+ y tan

(
y
x

))
y and N = x

(
x− y tan

(
y
x

))
by this

integrating factor the ode becomes exact. The new M,N are

M =
x+ y tan

(
y
x

)
x2

N =
x− y tan

(
y
x

)
xy

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x− tan
(
y
x

)
y

xy

)
dy =

(
−
x+ tan

(
y
x

)
y

x2

)
dx(

x+ tan
(
y
x

)
y

x2

)
dx+

(
x− tan

(
y
x

)
y

xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
x+ tan

(
y
x

)
y

x2

N(x, y) =
x− tan

(
y
x

)
y

xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x+ tan

(
y
x

)
y

x2

)

=
x tan

(
y
x

)
+ sec

(
y
x

)2
y

x3

And
∂N

∂x
= ∂

∂x

(
x− tan

(
y
x

)
y

xy

)

=
x tan

(
y
x

)
+ sec

(
y
x

)2
y

x3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
x+ tan

(
y
x

)
y

x2 dx

(3)φ = − ln
(
1
x

)
−

ln
(
sec
(
y
x

)2)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

tan
(
y
x

)
x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x−tan
( y
x

)
y

xy
. Therefore equation (4) becomes

(5)
x− tan

(
y
x

)
y

xy
= −

tan
(
y
x

)
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln
(
1
x

)
−

ln
(
sec
(
y
x

)2)
2 + ln (y) + c1

7427



But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln
(
1
x

)
−

ln
(
sec
(
y
x

)2)
2 + ln (y)

Summary
The solution(s) found are the following

(1)− ln
(
1
x

)
−

ln
(
sec
(
y
x

)2)
2 + ln (y) = c1

Figure 1159: Slope field plot

Verification of solutions

− ln
(
1
x

)
−

ln
(
sec
(
y
x

)2)
2 + ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 18� �
dsolve(x*(x-y(x)*tan(y(x)/x))*diff(y(x),x)+(x+y(x)*tan(y(x)/x))*y(x) = 0,y(x), singsol=all)� �

y(x) = xRootOf
(
_Z cos (_Z)x2 − c1

)
3 Solution by Mathematica
Time used: 0.54 (sec). Leaf size: 31� �
DSolve[x(x-y[x] Tan[y[x]/x])y'[x]+(x+y[x] Tan[y[x]/x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
− log

(
y(x)
x

)
− log

(
cos
(
y(x)
x

))
= 2 log(x) + c1, y(x)

]
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26.8 problem 744
26.8.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7430
26.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7433

Internal problem ID [3985]
Internal file name [OUTPUT/3478_Sunday_June_05_2022_09_24_27_AM_43871815/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 744.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

(ex + x ey) y′ + exy + ey = 0

26.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(ex + x ey) dy = (−exy − ey) dx
(exy + ey) dx+(ex + x ey) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = exy + ey

N(x, y) = ex + x ey

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(exy + ey)

= ex + ey

And
∂N

∂x
= ∂

∂x
(ex + x ey)

= ex + ey

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
exy + ey dx

(3)φ = exy + x ey + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex + x ey + f ′(y)

But equation (2) says that ∂φ
∂y

= ex + x ey. Therefore equation (4) becomes

(5)ex + x ey = ex + x ey + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = exy + x ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = exy + x ey

The solution becomes

y = −LambertW
(
x e−x+c1e−x

)
+ c1e−x
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Summary
The solution(s) found are the following

(1)y = −LambertW
(
x e−x+c1e−x

)
+ c1e−x

Figure 1160: Slope field plot

Verification of solutions

y = −LambertW
(
x e−x+c1e−x

)
+ c1e−x

Verified OK.

26.8.2 Maple step by step solution

Let’s solve
(ex + x ey) y′ + exy + ey = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
ex + ey = ex + ey

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(exy + ey) dx+ f1(y)

• Evaluate integral
F (x, y) = exy + x ey + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
ex + x ey = ex + x ey + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = exy + x ey

• Substitute F (x, y) into the solution of the ODE
exy + x ey = c1

• Solve for y

y = −
LambertW

(
x e−x+ c1

ex
)
ex−c1

ex
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 29� �
dsolve((exp(x)+x*exp(y(x)))*diff(y(x),x)+y(x)*exp(x)+exp(y(x)) = 0,y(x), singsol=all)� �

y(x) = −LambertW
(
x e−x−e−xc1

)
− e−xc1

3 Solution by Mathematica
Time used: 3.489 (sec). Leaf size: 33� �
DSolve[(Exp[x]+x Exp[y[x]])y'[x]+y[x] Exp[x]+Exp[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x −W

(
xe−x+c1e−x

)
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26.9 problem 745
26.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 7436
26.9.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7442

Internal problem ID [3986]
Internal file name [OUTPUT/3479_Sunday_June_05_2022_09_24_31_AM_50980621/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 745.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

(1− 2x− ln (y)) y′ + 2y = 0

26.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y
−1 + 2x+ ln (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
2y(b3 − a2)

−1 + 2x+ ln (y) −
4y2a3

(−1 + 2x+ ln (y))2
+ 4y(xa2 + ya3 + a1)

(−1 + 2x+ ln (y))2

−
(

2
−1 + 2x+ ln (y) −

2
(−1 + 2x+ ln (y))2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

ln (y)2 b2 + 2 ln (y)xb2 − 2 ln (y) ya2 − 2 ln (y) b1 − 2 ln (y) b2 − 4xb1 + 4ya1 + 2ya2 + 2yb3 + 4b1 + b2

(−1 + 2x+ ln (y))2
= 0

Setting the numerator to zero gives

(6E)ln (y)2 b2 + 2 ln (y)xb2 − 2 ln (y) ya2 − 2 ln (y) b1
− 2 ln (y) b2 − 4xb1 + 4ya1 + 2ya2 + 2yb3 + 4b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (y) = v3}

The above PDE (6E) now becomes

−2v3v2a2 +2v3v1b2 + v23b2 +4v2a1 +2v2a2 − 4v1b1 − 2v3b1 − 2v3b2 +2v2b3 +4b1 + b2 = 0
(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

2v3v1b2 − 4v1b1 − 2v3v2a2 + (4a1 + 2a2 + 2b3) v2 + v23b2 + (−2b1 − 2b2) v3 + 4b1 + b2 = 0
(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−2a2 = 0
−4b1 = 0
2b2 = 0

−2b1 − 2b2 = 0
4b1 + b2 = 0

4a1 + 2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = a3

b1 = 0
b2 = 0
b3 = −2a1

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(

2y
−1 + 2x+ ln (y)

)
(1)

= −4xy − 2 ln (y) y
−1 + 2x+ ln (y)

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4xy−2 ln(y)y
−1+2x+ln(y)

dy

Which results in

S = − ln (y)
2 + ln (2x+ ln (y))

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y
−1 + 2x+ ln (y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x+ ln (y)

Sy = − 1
2y + 1

2y (2x+ ln (y))
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
2 + ln (2x+ ln (y))

2 = c1

Which simplifies to

− ln (y)
2 + ln (2x+ ln (y))

2 = c1

Which gives

y = e−LambertW
(
−e−2x+2c1

)
−2x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y
−1+2x+ln(y)

dS
dR

= 0

R = x

S = − ln (y)
2 + ln (2x+ ln (y))

2

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
−e−2x+2c1

)
−2x
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Figure 1161: Slope field plot

Verification of solutions

y = e−LambertW
(
−e−2x+2c1

)
−2x

Verified OK.

26.9.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(1− 2x− ln (y)) dy = (−2y) dx
(2y) dx+(1− 2x− ln (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y
N(x, y) = 1− 2x− ln (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2y)

= 2

And
∂N

∂x
= ∂

∂x
(1− 2x− ln (y))

= −2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

1− 2x− ln (y)((2)− (−2))

= − 4
−1 + 2x+ ln (y)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2y ((−2)− (2))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(2y)

= 2
y
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And

N = µN

= 1
y2

(1− 2x− ln (y))

= 1− 2x− ln (y)
y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

2
y

)
+
(
1− 2x− ln (y)

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2
y
dx

(3)φ = 2x
y

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1−2x−ln(y)
y2

. Therefore equation (4) becomes

(5)1− 2x− ln (y)
y2

= −2x
y2

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −−1 + ln (y)
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1− ln (y)
y2

)
dy

f(y) = ln (y)
y

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 2x
y

+ ln (y)
y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
2x
y

+ ln (y)
y

The solution becomes
y = e−LambertW

(
−c1e−2x)−2x

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
−c1e−2x)−2x
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Figure 1162: Slope field plot

Verification of solutions

y = e−LambertW
(
−c1e−2x)−2x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �

7447



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve((1-2*x-ln(y(x)))*diff(y(x),x)+2*y(x) = 0,y(x), singsol=all)� �

y(x) = −LambertW (−2 e−2xc1)
2c1

3 Solution by Mathematica
Time used: 60.223 (sec). Leaf size: 23� �
DSolve[(1-2 x -Log[y[x]])y'[x]+2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W (−2c1e−2x)
2c1
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26.10 problem 746
26.10.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7449
26.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7452

Internal problem ID [3987]
Internal file name [OUTPUT/3480_Sunday_June_05_2022_09_24_36_AM_98343183/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 746.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

(sinh (x) + x cosh (y)) y′ + y cosh (x) + sinh (y) = 0

26.10.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(sinh (x) + x cosh (y)) dy = (−y cosh (x)− sinh (y)) dx
(y cosh (x) + sinh (y)) dx+(sinh (x) + x cosh (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cosh (x) + sinh (y)
N(x, y) = sinh (x) + x cosh (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cosh (x) + sinh (y))

= cosh (x) + cosh (y)

And
∂N

∂x
= ∂

∂x
(sinh (x) + x cosh (y))

= cosh (x) + cosh (y)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y cosh (x) + sinh (y) dx

(3)φ = y sinh (x) + x sinh (y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sinh (x) + x cosh (y) + f ′(y)

But equation (2) says that ∂φ
∂y

= sinh (x) + x cosh (y). Therefore equation (4) becomes

(5)sinh (x) + x cosh (y) = sinh (x) + x cosh (y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y sinh (x) + x sinh (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y sinh (x) + x sinh (y)

Summary
The solution(s) found are the following

(1)y sinh (x) + sinh (y)x = c1
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Figure 1163: Slope field plot

Verification of solutions

y sinh (x) + sinh (y)x = c1

Verified OK.

26.10.2 Maple step by step solution

Let’s solve
(sinh (x) + x cosh (y)) y′ + y cosh (x) + sinh (y) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
cosh (x) + cosh (y) = cosh (x) + cosh (y)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y cosh (x) + sinh (y)) dx+ f1(y)

• Evaluate integral
F (x, y) = y sinh (x) + x sinh (y) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
sinh (x) + x cosh (y) = sinh (x) + x cosh (y) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = y sinh (x) + x sinh (y)

• Substitute F (x, y) into the solution of the ODE
y sinh (x) + x sinh (y) = c1

• Solve for y

y =
2c1e

RootOf
(
−_Z e2x+_Z+x e2x+_Z−x

(
e_Z)2+2c1e

_Z+x+x
(
ex
)2+_Z e_Z−e_Zx

)
+x

+x(ex)2−x

(
e
RootOf

(
−_Z e2x+_Z+x e2x+_Z−x

(
e_Z)2+2c1e

_Z+x+x
(
ex
)2+_Z e_Z−e_Zx

))2

e
RootOf

(
−_Z e2x+_Z+x e2x+_Z−x

(
e_Z

)2
+2c1e_Z+x+x(ex)2+_Z e_Z−e_Zx

)(
(ex)2−1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.25 (sec). Leaf size: 180� �
dsolve((sinh(x)+x*cosh(y(x)))*diff(y(x),x)+y(x)*cosh(x)+sinh(y(x)) = 0,y(x), singsol=all)� �
y(x) =

−

(
2c1eRootOf

(
_Z e2x+_Z−x e2x+_Z+x e2_Z+2c1ex+_Z−e2xx−_Z e_Z+e_Zx

)
+x + x

(
e2RootOf

(
_Z e2x+_Z−x e2x+_Z+x e2_Z+2c1ex+_Z−e2xx−_Z e_Z+e_Zx

)
− e2x

))
e−RootOf

(
_Z e2x+_Z−x e2x+_Z+x e2_Z+2c1ex+_Z−e2xx−_Z e_Z+e_Zx

)
e2x − 1

3 Solution by Mathematica
Time used: 0.349 (sec). Leaf size: 17� �
DSolve[(Sinh[x]+x Cosh[y[x]])y'[x]+y[x] Cosh[x]+Sinh[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[x sinh(y(x)) + y(x) sinh(x) = c1, y(x)]
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26.11 problem 747
26.11.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 7455
26.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 7457
26.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 7461
26.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7465

Internal problem ID [3988]
Internal file name [OUTPUT/3481_Sunday_June_05_2022_09_24_46_AM_5525731/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 747.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′(1 + sinh (x)) sinh (y) + cosh (x) (cosh (y)− 1) = 0

26.11.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −cosh (x) (coth (y)− csch (y))
1 + sinh (x)

Where f(x) = − cosh(x)
1+sinh(x) and g(y) = coth (y)− csch (y). Integrating both sides gives

1
coth (y)− csch (y) dy = − cosh (x)

1 + sinh (x) dx∫ 1
coth (y)− csch (y) dy =

∫
− cosh (x)
1 + sinh (x) dx

ln (cosh (y)− 1) = − ln (1 + sinh (x)) + c1
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Raising both side to exponential gives

cosh (y)− 1 = e− ln(1+sinh(x))+c1

Which simplifies to

cosh (y)− 1 = c2
1 + sinh (x)

Summary
The solution(s) found are the following

(1)y = arccosh
(
ec1c2 + sinh (x) + 1

1 + sinh (x)

)

Figure 1164: Slope field plot

Verification of solutions

y = arccosh
(
ec1c2 + sinh (x) + 1

1 + sinh (x)

)
Verified OK.
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26.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −cosh (x) (cosh (y)− 1)
(1 + sinh (x)) sinh (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 989: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −1 + sinh (x)
cosh (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−1+sinh(x)
cosh(x)

dx

Which results in

S = − ln (1 + sinh (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −cosh (x) (cosh (y)− 1)
(1 + sinh (x)) sinh (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − cosh (x)
1 + sinh (x)

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sinh (y)

cosh (y)− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sinh (R)

cosh (R)− 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (cosh (R)− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (1 + sinh (x)) = ln (cosh (y)− 1) + c1

Which simplifies to

− ln (1 + sinh (x)) = ln (cosh (y)− 1) + c1

Which gives

y = arccosh
(
e2x + 2 ex + 2 ex−c1 − 1

e2x + 2 ex − 1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − cosh(x)(cosh(y)−1)
(1+sinh(x)) sinh(y)

dS
dR

= sinh(R)
cosh(R)−1

R = y

S = − ln (1 + sinh (x))

Summary
The solution(s) found are the following

(1)y = arccosh
(
e2x + 2 ex + 2 ex−c1 − 1

e2x + 2 ex − 1

)
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Figure 1165: Slope field plot

Verification of solutions

y = arccosh
(
e2x + 2 ex + 2 ex−c1 − 1

e2x + 2 ex − 1

)
Verified OK.

26.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− sinh (y)
cosh (y)− 1

)
dy =

(
cosh (x)

1 + sinh (x)

)
dx(

− cosh (x)
1 + sinh (x)

)
dx+

(
− sinh (y)
cosh (y)− 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cosh (x)
1 + sinh (x)

N(x, y) = − sinh (y)
cosh (y)− 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− cosh (x)
1 + sinh (x)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− sinh (y)
cosh (y)− 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cosh (x)
1 + sinh (x) dx

(3)φ = − ln (1 + sinh (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − sinh(y)
cosh(y)−1 . Therefore equation (4) becomes

(5)− sinh (y)
cosh (y)− 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − sinh (y)
cosh (y)− 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− sinh (y)
cosh (y)− 1

)
dy

f(y) = − ln (cosh (y)− 1) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (1 + sinh (x))− ln (cosh (y)− 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (1 + sinh (x))− ln (cosh (y)− 1)

The solution becomes

y = arccosh
(
e2x + 2 ex + 2 ex−c1 − 1

e2x + 2 ex − 1

)

Summary
The solution(s) found are the following

(1)y = arccosh
(
e2x + 2 ex + 2 ex−c1 − 1

e2x + 2 ex − 1

)

Figure 1166: Slope field plot
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Verification of solutions

y = arccosh
(
e2x + 2 ex + 2 ex−c1 − 1

e2x + 2 ex − 1

)
Verified OK.

26.11.4 Maple step by step solution

Let’s solve
y′(1 + sinh (x)) sinh (y) + cosh (x) (cosh (y)− 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(y′(1 + sinh (x)) sinh (y) + cosh (x) (cosh (y)− 1)) dx =

∫
0dx+ c1

• Evaluate integral
sinh(−y+x)

2 + sinh(y+x)
2 + cosh (y)− sinh (x) = c1

• Solve for y{
y = −2x+ ln

((
(ex)2+2c1ex−2

√
c1(ex)3+(ex)2c21−(ex)3−(ex)2−c1ex+ex−1

)
(ex)2

(ex)2+2 ex−1

)
, y = −2x+ ln

((
(ex)2+2c1ex+2

√
c1(ex)3+(ex)2c21−(ex)3−(ex)2−c1ex+ex−1

)
(ex)2

(ex)2+2 ex−1

)}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 123� �
dsolve(diff(y(x),x)*(1+sinh(x))*sinh(y(x))+cosh(x)*(cosh(y(x))-1) = 0,y(x), singsol=all)� �

y(x) = −2 arctanh

c1
√
2
√

−c1exe2x+(−2c1+2)e2x+exc1
c21

c1e2x + (2c1 − 2) ex − c1


y(x) = 2 arctanh

c1
√
2
√

−c1exe2x+(−2c1+2)e2x+exc1
c21

c1e2x + (2c1 − 2) ex − c1


3 Solution by Mathematica
Time used: 10.351 (sec). Leaf size: 32� �
DSolve[y'[x](1+Sinh[x])Sinh[y[x]]+Cosh[x](Cosh[y[x]]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0

y(x) → 2arcsinh
(

c1

4
√
sinh(x) + 1

)
y(x) → 0
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26.12 problem 748
26.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7468

Internal problem ID [3989]
Internal file name [OUTPUT/3482_Sunday_June_05_2022_09_24_52_AM_595773/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 748.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 = a xn

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
a xn (1)

y′ = −
√
a xn (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

a xn dx

= 2x
√
a xn

2 + n
+ c1

Summary
The solution(s) found are the following

(1)y = 2x
√
a xn

2 + n
+ c1
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Verification of solutions

y = 2x
√
a xn

2 + n
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
√
a xn dx

= −2x
√
a xn

2 + n
+ c2

Summary
The solution(s) found are the following

(1)y = −2x
√
a xn

2 + n
+ c2

Verification of solutions

y = −2x
√
a xn

2 + n
+ c2

Verified OK.

26.12.1 Maple step by step solution

Let’s solve
y′2 = a xn

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2dx =

∫
a xndx+ c1

• Cannot compute integral∫
y′2dx = a xn+1

n+1 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 51� �
dsolve(diff(y(x),x)^2 = a*x^n,y(x), singsol=all)� �

y(x) = 2x
√
a xn + c1(2 + n)

2 + n

y(x) = −2x
√
a xn + c1(2 + n)
2 + n

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 57� �
DSolve[(y'[x])^2 == a x^n,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
√
ax

n
2+1

n+ 2 + c1

y(x) → 2
√
ax

n
2+1

n+ 2 + c1
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26.13 problem 749
26.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7471

Internal problem ID [3990]
Internal file name [OUTPUT/3483_Sunday_June_05_2022_09_24_57_AM_65175101/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 749.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = √
y (1)

y′ = −√
y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
√
y
dy =

∫
dx

2√y = x+ c1

Summary
The solution(s) found are the following

(1)2√y = x+ c1
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Verification of solutions

2√y = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1
√
y
dy =

∫
dx

−2√y = x+ c2

Summary
The solution(s) found are the following

(1)−2√y = x+ c2

Verification of solutions

−2√y = x+ c2

Verified OK.

26.13.1 Maple step by step solution

Let’s solve
y′2 − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
y
= 1

• Integrate both sides with respect to x∫
y′√
y
dx =

∫
1dx+ c1

• Evaluate integral
2√y = x+ c1

• Solve for y
y = 1

4x
2 + 1

2c1x+ 1
4c

2
1
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)^2 = y(x),y(x), singsol=all)� �

y(x) = 0

y(x) = (−c1 + x)2

4

3 Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 36� �
DSolve[(y'[x])^2 == y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4(x− c1)2

y(x) → 1
4(x+ c1)2

y(x) → 0
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26.14 problem 750
26.14.1 Solving as first order nonlinear p but linear in x y ode . . . . . 7473
26.14.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7475

Internal problem ID [3991]
Internal file name [OUTPUT/3484_Sunday_June_05_2022_09_25_01_AM_44756729/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 750.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first_order_non-
linear_p_but_linear_in_x_y"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′
2 + y = x

26.14.1 Solving as first order nonlinear p but linear in x y ode

The ode has the form

(y′) n
m = ax+ by + c (1)

Where n = 2,m = 1, a = 1, b = −1, c = 0. Hence the ode is

(y′)2 = −y + x

Let

u = ax+ by + c

Hence

u′ = a+ by′

y′ = u′ − a

b
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Substituting the above in (1) gives(
u′ − a

b

) n
m

= u(
u′ − a

b

)n

= um

Plugging in the above the values for n,m, a, b, c gives

(−u′(x) + 1)2 = u

Therefore the solutions are

−u′(x) + 1 =
√
u

−u′(x) + 1 = −
√
u

Rewriting the above gives

u′(x) = −
√
u+ 1

u′(x) =
√
u+ 1

Each of the above is a separable ODE in u(x). This results in

du

−
√
u+ 1

= dx

du√
u+ 1

= dx

Integrating each of the above solutions gives∫
du

−
√
u+ 1

= x+ c1∫
du√
u+ 1

= x+ c1

But since

u = ax+ by + c

= −y + x

Then the solutions can be written as∫ −y+x 1
−
√
τ + 1

dτ = x+ c1∫ −y+x 1√
τ + 1

dτ = x+ c1
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Summary
The solution(s) found are the following

(1)
∫ −y+x 1

−
√
τ + 1

dτ = x+ c1

(2)
∫ −y+x 1√

τ + 1
dτ = x+ c1

Verification of solutions ∫ −y+x 1
−
√
τ + 1

dτ = x+ c1

Verified OK. ∫ −y+x 1√
τ + 1

dτ = x+ c1

Verified OK.

26.14.2 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 + y = x

Solving for y from the above results in

y = −p2 + x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = 1
g = −p2
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Hence (2) becomes

p− 1 = −2pp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = x− 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)− 1
2p (x) (3)

This ODE is now solved for p(x). Integrating both sides gives∫
− 2p
p− 1dp = x+ c1

−2p− 2 ln (p− 1) = x+ c1

Solving for p gives these solutions

p1 = LambertW
(
e−1−x

2−
c1
2

)
+ 1

= LambertW
(
c1e−1−x

2
)
+ 1

Substituing the above solution for p in (2A) gives

y = −
(
LambertW

(
c1e−1−x

2
)
+ 1
)2 + x

Summary
The solution(s) found are the following

(1)y = x− 1
(2)y = −

(
LambertW

(
c1e−1−x

2
)
+ 1
)2 + x
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Verification of solutions

y = x− 1

Verified OK.

y = −
(
LambertW

(
c1e−1−x

2
)
+ 1
)2 + x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 31� �
dsolve(diff(y(x),x)^2 = x-y(x),y(x), singsol=all)� �

y(x) = −LambertW
(
c1e−1−x

2
)2 − 2 LambertW

(
c1e−1−x

2
)
+ x− 1

3 Solution by Mathematica
Time used: 27.515 (sec). Leaf size: 98� �
DSolve[(y'[x])^2==x-y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W
(
e−

x
2−1− c1

2

)
2 − 2W

(
e−

x
2−1− c1

2

)
+ x− 1

y(x) → −W
(
−e

1
2 (−x−2+c1)

)
2 − 2W

(
−e

1
2 (−x−2+c1)

)
+ x− 1

y(x) → x− 1
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26.15 problem 751
Internal problem ID [3992]
Internal file name [OUTPUT/3485_Sunday_June_05_2022_09_25_09_AM_36603188/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 751.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 − y = x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
x2 + y (1)

y′ = −
√

x2 + y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
√
x2 + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
√

x2 + y (b3 − a2)−
(
x2 + y

)
a3 −

x(xa2 + ya3 + a1)√
x2 + y

− xb2 + yb3 + b1

2
√
x2 + y

= 0

Putting the above in normal form gives

−2
√
x2 + y x2a3 + 2

√
x2 + y ya3 + 4x2a2 − 2x2b3 + 2xya3 − 2b2

√
x2 + y + 2xa1 + xb2 + 2ya2 − yb3 + b1

2
√
x2 + y

= 0

Setting the numerator to zero gives

(6E)−2
√

x2 + y x2a3 − 2
√
x2 + y ya3 − 4x2a2 + 2x2b3 − 2xya3

+ 2b2
√

x2 + y − 2xa1 − xb2 − 2ya2 + yb3 − b1 = 0

Simplifying the above gives

(6E)−2
√
x2 + y x2a3 − 2

(
x2 + y

)
a2 + 2

(
x2 + y

)
b3 − 2

√
x2 + y ya3

− 2x2a2 − 2xya3 + 2b2
√

x2 + y − 2xa1 − xb2 − yb3 − b1 = 0

Since the PDE has radicals, simplifying gives

−2
√

x2 + y x2a3 − 2
√
x2 + y ya3 − 4x2a2 + 2x2b3 − 2xya3

+ 2b2
√

x2 + y − 2xa1 − xb2 − 2ya2 + yb3 − b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 + y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y = v3

}
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The above PDE (6E) now becomes

(7E)−2v3v21a3 − 4v21a2 − 2v1v2a3 − 2v3v2a3 + 2v21b3
− 2v1a1 − 2v2a2 − v1b2 + 2b2v3 + v2b3 − b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v3v21a3 + (−4a2 + 2b3) v21 − 2v1v2a3 + (−2a1 − b2) v1
− 2v3v2a3 + (−2a2 + b3) v2 + 2b2v3 − b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a3 = 0
−b1 = 0
2b2 = 0

−2a1 − b2 = 0
−4a2 + 2b3 = 0
−2a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(√

x2 + y
)
(x)

= −x
√
x2 + y + 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x
√
x2 + y + 2y

dy

Which results in

S =
ln
(
−x

√
x2 + y + 2y

)
4 −

√
17 arctanh

((
−x+4

√
x2+y

)√
17

17x

)
34 −

ln
(
x
√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34 + ln (−x4 − x2y + 4y2)

4 −

√
17 arctanh

( (
−x2+8y

)√
17

17x2

)
34

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
x2 + y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
x2 + y (x4 + x2y − 4y2)(

x
√
x2 + y + 2y

) (
x
√
x2 + y − 2y

)2
Sy = −

(x4 + x2y − 4y2)
(
2y

√
x2 + y + (x2 + y)x

)
√
x2 + y

(
x
√
x2 + y + 2y

)2 (
x
√
x2 + y − 2y

)2
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
−x

√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34 −

ln
(
x
√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34 + ln (−x4 − x2y + 4y2)

4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1

Which simplifies to

ln
(
−x

√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34 −

ln
(
x
√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34 + ln (−x4 − x2y + 4y2)

4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1
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Summary
The solution(s) found are the following

(1)

ln
(
−x

√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34

−
ln
(
x
√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34

+ ln (−x4 − x2y + 4y2)
4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1

Verification of solutions

ln
(
−x

√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34

−
ln
(
x
√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34

+ ln (−x4 − x2y + 4y2)
4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
√

x2 + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
√

x2 + y (b3 − a2)−
(
x2 + y

)
a3 +

x(xa2 + ya3 + a1)√
x2 + y

+ xb2 + yb3 + b1

2
√
x2 + y

= 0

Putting the above in normal form gives

−2a3
√
x2 + y x2 + 2a3

√
x2 + y y − 4x2a2 + 2b3x2 − 2xya3 − 2b2

√
x2 + y − 2xa1 − xb2 − 2a2y + yb3 − b1

2
√
x2 + y

= 0

Setting the numerator to zero gives

(6E)−2a3
√
x2 + y x2 − 2a3

√
x2 + y y + 4x2a2 − 2b3x2 + 2xya3

+ 2b2
√

x2 + y + 2xa1 + xb2 + 2a2y − yb3 + b1 = 0

Simplifying the above gives

(6E)−2a3
√

x2 + y x2 + 2
(
x2 + y

)
a2 − 2

(
x2 + y

)
b3 − 2a3

√
x2 + y y

+ 2x2a2 + 2xya3 + 2b2
√

x2 + y + 2xa1 + xb2 + yb3 + b1 = 0

Since the PDE has radicals, simplifying gives

−2a3
√
x2 + y x2 − 2a3

√
x2 + y y + 4x2a2 − 2b3x2 + 2xya3

+ 2b2
√

x2 + y + 2xa1 + xb2 + 2a2y − yb3 + b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 + y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y = v3

}
The above PDE (6E) now becomes

(7E)−2a3v3v21 + 4v21a2 + 2v1v2a3 − 2a3v3v2 − 2b3v21
+ 2v1a1 + 2a2v2 + v1b2 + 2b2v3 − v2b3 + b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2a3v3v21 + (4a2 − 2b3) v21 + 2v1v2a3 + (2a1 + b2) v1
− 2a3v3v2 + (2a2 − b3) v2 + 2b2v3 + b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a3 = 0
2a3 = 0
2b2 = 0

2a1 + b2 = 0
2a2 − b3 = 0
4a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−
√
x2 + y

)
(x)

= x
√
x2 + y + 2y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
√
x2 + y + 2y

dy

Which results in

S = −
ln
(
−x

√
x2 + y + 2y

)
4 +

√
17 arctanh

((
−x+4

√
x2+y

)√
17

17x

)
34 +

ln
(
x
√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34 + ln (−x4 − x2y + 4y2)

4 −

√
17 arctanh

( (
−x2+8y

)√
17

17x2

)
34

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√

x2 + y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
x2 + y (x4 + x2y − 4y2)(

x
√
x2 + y + 2y

)2 (
x
√
x2 + y − 2y

)
Sy =

(x4 + x2y − 4y2)
(
−2y

√
x2 + y + (x2 + y)x

)
√
x2 + y

(
x
√
x2 + y + 2y

)2 (
x
√
x2 + y − 2y

)2

7486



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
ln
(
−x

√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34 +

ln
(
x
√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34 + ln (−x4 − x2y + 4y2)

4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1

Which simplifies to

−
ln
(
−x

√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34 +

ln
(
x
√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34 + ln (−x4 − x2y + 4y2)

4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1

Summary
The solution(s) found are the following

(1)

−
ln
(
−x

√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34

+
ln
(
x
√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34

+ ln (−x4 − x2y + 4y2)
4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1
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Verification of solutions

−
ln
(
−x

√
x2 + y + 2y

)
4 −

√
17 arctanh

((
x−4

√
x2+y

)√
17

17x

)
34

+
ln
(
x
√
x2 + y + 2y

)
4 +

√
17 arctanh

((
x+4

√
x2+y

)√
17

17x

)
34

+ ln (−x4 − x2y + 4y2)
4 +

√
17 arctanh

( (
x2−8y

)√
17

17x2

)
34 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 271� �
dsolve(diff(y(x),x)^2 = x^2+y(x),y(x), singsol=all)� �

−17 ln
(
−x4 − x2y(x) + 4y(x)2

)
− 17 ln

(
−
√

y (x) + x2 x+ 2y(x)
)

+ 17 ln
(√

y (x) + x2 x+ 2y(x)
)
+

2 arctanh


(
4
√

y (x) + x2 + x
)√

17
17x


− 2 arctanh


(
x− 4

√
y (x) + x2

)√
17

17x


− 2 arctanh

(
(x2 − 8y(x))

√
17

17x2

)√
17− c1 = 0

17 ln
(
−x4 − x2y(x) + 4y(x)2

)
− 17 ln

(
−
√

y (x) + x2 x+ 2y(x)
)

+ 17 ln
(√

y (x) + x2 x+ 2y(x)
)
+

2 arctanh


(
4
√

y (x) + x2 + x
)√

17
17x


− 2 arctanh


(
x− 4

√
y (x) + x2

)√
17

17x


+ 2 arctanh

(
(x2 − 8y(x))

√
17

17x2

)√
17− c1 = 0
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3 Solution by Mathematica
Time used: 1.538 (sec). Leaf size: 215� �
DSolve[(y'[x])^2==x^2+y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
34

(
−34 log

(√
x2 + y(x)− x

)
−
(√

17− 17
)
log
(
2x
√
x2 + y(x)− 2x2 −

√
17y(x) + 3y(x)

)
+
(
17 +

√
17
)
log
(
2x
√

x2 + y(x)− 2x2 +
(
3 +

√
17
)
y(x)

))
= c1, y(x)

]
Solve

[
1
34

(
−34 log

(√
x2 + y(x)− x

)
+
(
17 +

√
17
)
log
(
2x
√

x2 + y(x)− 2x2 +
(√

17− 5
)
y(x)

)
−
(√

17− 17
)
log
(
2x
√
x2 + y(x)− 2x2 −

(
5 +

√
17
)
y(x)

))
= c1, y(x)

]
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26.16 problem 752
Internal problem ID [3993]
Internal file name [OUTPUT/3486_Sunday_June_05_2022_09_25_15_AM_16891672/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 752.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 − 4y = −x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

−x2 + 4y (1)
y′ = −

√
−x2 + 4y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
√
−x2 + 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2 +
√
−x2 + 4y (b3 − a2)−

(
−x2 +4y

)
a3 +

x(xa2 + ya3 + a1)√
−x2 + 4y

− 2(xb2 + yb3 + b1)√
−x2 + 4y

= 0

(5E)

Putting the above in normal form gives
√
−x2 + 4y x2a3 − 4

√
−x2 + 4y ya3 + 2x2a2 − x2b3 + xya3 + b2

√
−x2 + 4y + xa1 − 2xb2 − 4ya2 + 2yb3 − 2b1√

−x2 + 4y
= 0

Setting the numerator to zero gives

(6E)√
−x2 + 4y x2a3 − 4

√
−x2 + 4y ya3 + 2x2a2 − x2b3 + xya3

+ b2
√

−x2 + 4y + xa1 − 2xb2 − 4ya2 + 2yb3 − 2b1 = 0

Simplifying the above gives

(6E)
√

−x2 + 4y x2a3 −
(
−x2 + 4y

)
a2 +

(
−x2 + 4y

)
b3 − 4

√
−x2 + 4y ya3

+ x2a2 + xya3 + b2
√
−x2 + 4y + xa1 − 2xb2 − 2yb3 − 2b1 = 0

Since the PDE has radicals, simplifying gives√
−x2 + 4y x2a3 − 4

√
−x2 + 4y ya3 + 2x2a2 − x2b3 + xya3

+ b2
√

−x2 + 4y + xa1 − 2xb2 − 4ya2 + 2yb3 − 2b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−x2 + 4y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−x2 + 4y = v3

}
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The above PDE (6E) now becomes

v3v
2
1a3 +2v21a2 + v1v2a3 − 4v3v2a3 − v21b3 + v1a1 − 4v2a2 − 2v1b2 + b2v3 +2v2b3 − 2b1 = 0

(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v3v
2
1a3 + (2a2 − b3) v21 + v1v2a3 + (a1 − 2b2) v1

− 4v3v2a3 + (−4a2 + 2b3) v2 + b2v3 − 2b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b2 = 0

−4a3 = 0
−2b1 = 0

a1 − 2b2 = 0
−4a2 + 2b3 = 0

2a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

7494



Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(√

−x2 + 4y
)
(x)

= −x
√
−x2 + 4y + 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x
√
−x2 + 4y + 2y

dy

Which results in

S = − x

2
(√

−x2 + 4y + x
) − ln

(√
−x2 + 4y + x

)
2 − x

2
(
−x+

√
−x2 + 4y

) + ln
(
−x+

√
−x2 + 4y

)
2 + ln (−x2 + 2y)

2 − x2

2 (−x2 + 2y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
−x2 + 4y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(x2 − 4y)

(
x
√
−x2 + 4y + 2y

)
√
−x2 + 4y (x2 − 2y)2

Sy = −−2y
√
−x2 + 4y + x(x2 − 4y)

√
−x2 + 4y (x2 − 2y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x2 − 2y) ln
(
−x+

√
−x2 + 4y

)
+ (−x2 + 2y) ln

(√
−x2 + 4y + x

)
+ x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y = c1

Which simplifies to

(x2 − 2y) ln
(
−x+

√
−x2 + 4y

)
+ (−x2 + 2y) ln

(√
−x2 + 4y + x

)
+ x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y = c1

Summary
The solution(s) found are the following

(1)
(x2 − 2y) ln

(
−x+

√
−x2 + 4y

)
+ (−x2 + 2y) ln

(√
−x2 + 4y + x

)
+ x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y
= c1
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Verification of solutions

(x2 − 2y) ln
(
−x+

√
−x2 + 4y

)
+ (−x2 + 2y) ln

(√
−x2 + 4y + x

)
+ x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y
= c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
√

−x2 + 4y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2−
√

−x2 + 4y (b3− a2)−
(
−x2+4y

)
a3−

x(xa2 + ya3 + a1)√
−x2 + 4y

+ 2xb2 + 2yb3 + 2b1√
−x2 + 4y

= 0

(5E)

Putting the above in normal form gives

√
−x2 + 4y x2a3 − 4

√
−x2 + 4y ya3 − 2x2a2 + b3x

2 − xya3 + b2
√
−x2 + 4y − xa1 + 2xb2 + 4a2y − 2yb3 + 2b1√

−x2 + 4y
= 0
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Setting the numerator to zero gives

(6E)√
−x2 + 4y x2a3 − 4

√
−x2 + 4y ya3 − 2x2a2 + b3x

2 − xya3

+ b2
√

−x2 + 4y − xa1 + 2xb2 + 4a2y − 2yb3 + 2b1 = 0

Simplifying the above gives

(6E)
√

−x2 + 4y x2a3 +
(
−x2 + 4y

)
a2 −

(
−x2 + 4y

)
b3 − 4

√
−x2 + 4y ya3

− x2a2 − xya3 + b2
√

−x2 + 4y − xa1 + 2xb2 + 2yb3 + 2b1 = 0

Since the PDE has radicals, simplifying gives√
−x2 + 4y x2a3 − 4

√
−x2 + 4y ya3 − 2x2a2 + b3x

2 − xya3

+ b2
√

−x2 + 4y − xa1 + 2xb2 + 4a2y − 2yb3 + 2b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−x2 + 4y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−x2 + 4y = v3

}
The above PDE (6E) now becomes

v3v
2
1a3 − 2v21a2 − v1v2a3 − 4v3v2a3 + b3v

2
1 − v1a1 +4a2v2 +2v1b2 + b2v3 − 2v2b3 +2b1 = 0

(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v3v
2
1a3 + (−2a2 + b3) v21 − v1v2a3 + (−a1 + 2b2) v1

− 4v3v2a3 + (4a2 − 2b3) v2 + b2v3 + 2b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b2 = 0

−4a3 = 0
−a3 = 0
2b1 = 0

−a1 + 2b2 = 0
−2a2 + b3 = 0
4a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−
√
−x2 + 4y

)
(x)

= x
√
−x2 + 4y + 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
√
−x2 + 4y + 2y

dy

Which results in

S = x

2x+ 2
√
−x2 + 4y

+
ln
(√

−x2 + 4y + x
)

2 + x

−2x+ 2
√
−x2 + 4y

−
ln
(
−x+

√
−x2 + 4y

)
2 + ln (−x2 + 2y)

2 − x2

2 (−x2 + 2y)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√

−x2 + 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(x2 − 4y)

(
x
√
−x2 + 4y − 2y

)
√
−x2 + 4y (x2 − 2y)2

Sy =
x3 − 4xy + 2y

√
−x2 + 4y

√
−x2 + 4y (x2 − 2y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(−x2 + 2y) ln
(
−x+

√
−x2 + 4y

)
+ (x2 − 2y) ln

(√
−x2 + 4y + x

)
− x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y = c1

Which simplifies to

(−x2 + 2y) ln
(
−x+

√
−x2 + 4y

)
+ (x2 − 2y) ln

(√
−x2 + 4y + x

)
− x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y = c1

Summary
The solution(s) found are the following

(1)
(−x2 + 2y) ln

(
−x+

√
−x2 + 4y

)
+ (x2 − 2y) ln

(√
−x2 + 4y + x

)
− x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y
= c1

Verification of solutions

(−x2 + 2y) ln
(
−x+

√
−x2 + 4y

)
+ (x2 − 2y) ln

(√
−x2 + 4y + x

)
− x

√
−x2 + 4y + (x2 − 2y) ln (−x2 + 2y) + x2

2x2 − 4y
= c1

Verified OK.

7501



Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 136� �
dsolve(diff(y(x),x)^2+x^2 = 4*y(x),y(x), singsol=all)� �

y(x) =
x2
(
2 LambertW

(
x
√
2 e

c1
2

2

)2
+ 2LambertW

(
x
√
2 e

c1
2

2

)
+ 1
)

4 LambertW
(

x
√
2 e

c1
2

2

)2
y(x) =

x2
(
2 LambertW

(
−

√
2 c1x
2

)2
+ 2LambertW

(
−

√
2 c1x
2

)
+ 1
)

4 LambertW
(
−

√
2 c1x
2

)2
y(x) =

x2
(
2 LambertW

(√
2 c1x
2

)2
+ 2LambertW

(√
2 c1x
2

)
+ 1
)

4 LambertW
(√

2 c1x
2

)2
3 Solution by Mathematica
Time used: 2.887 (sec). Leaf size: 162� �
DSolve[(y'[x])^2+x^2==4 y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve

arctanh( x√
4y(x)− x2

)

+
x
(
−
√

4y(x)− x2
)
+ (x2 − 2y(x)) log (2y(x)− x2) + 2y(x)

2 (x2 − 2y(x)) = c1, y(x)


Solve

[
x
√

4y(x)− x2 + (x2 − 2y(x)) log (2y(x)− x2) + 2y(x)
2 (x2 − 2y(x))

− arctanh
(

x√
4y(x)− x2

)
= c1, y(x)

]
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26.17 problem 753
Internal problem ID [3994]
Internal file name [OUTPUT/3487_Sunday_June_05_2022_09_25_24_AM_58168396/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 753.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 − 8y = −3x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

−3x2 + 8y (1)
y′ = −

√
−3x2 + 8y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
√
−3x2 + 8y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
√
−3x2 + 8y (b3 − a2)−

(
−3x2 + 8y

)
a3

+ 3x(xa2 + ya3 + a1)√
−3x2 + 8y

− 4(xb2 + yb3 + b1)√
−3x2 + 8y

= 0

Putting the above in normal form gives

3
√
−3x2 + 8y x2a3 − 8

√
−3x2 + 8y ya3 + 6x2a2 − 3x2b3 + 3xya3 + b2

√
−3x2 + 8y + 3xa1 − 4xb2 − 8ya2 + 4yb3 − 4b1√

−3x2 + 8y
= 0

Setting the numerator to zero gives

(6E)3
√

−3x2 + 8y x2a3 − 8
√

−3x2 + 8y ya3 + 6x2a2 − 3x2b3 + 3xya3
+ b2

√
−3x2 + 8y + 3xa1 − 4xb2 − 8ya2 + 4yb3 − 4b1 = 0

Simplifying the above gives

(6E)3
√

−3x2 + 8y x2a3 −
(
−3x2 + 8y

)
a2 +

(
−3x2 + 8y

)
b3 − 8

√
−3x2 + 8y ya3

+ 3x2a2 + 3xya3 + b2
√

−3x2 + 8y + 3xa1 − 4xb2 − 4yb3 − 4b1 = 0

Since the PDE has radicals, simplifying gives

3
√

−3x2 + 8y x2a3 − 8
√

−3x2 + 8y ya3 + 6x2a2 − 3x2b3 + 3xya3
+ b2

√
−3x2 + 8y + 3xa1 − 4xb2 − 8ya2 + 4yb3 − 4b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−3x2 + 8y

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−3x2 + 8y = v3
}

The above PDE (6E) now becomes

(7E)3v3v21a3 + 6v21a2 + 3v1v2a3 − 8v3v2a3 − 3v21b3
+ 3v1a1 − 8v2a2 − 4v1b2 + b2v3 + 4v2b3 − 4b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)3v3v21a3 + (6a2 − 3b3) v21 + 3v1v2a3 + (3a1 − 4b2) v1
− 8v3v2a3 + (−8a2 + 4b3) v2 + b2v3 − 4b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−8a3 = 0
3a3 = 0

−4b1 = 0
3a1 − 4b2 = 0

−8a2 + 4b3 = 0
6a2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(√

−3x2 + 8y
)
(x)

= −x
√

−3x2 + 8y + 2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x
√
−3x2 + 8y + 2y

dy

Which results in

S =
ln
(√

−3x2 + 8y + x
)

4 −
ln
(√

−3x2 + 8y − x
)

4 +
3 ln

(√
−3x2 + 8y − 3x

)
4 −

3 ln
(√

−3x2 + 8y + 3x
)

4 + 3 ln (−3x2 + 2y)
4 − ln (−x2 + 2y)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√

−3x2 + 8y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(
−2

√
−3x2 + 8y − 8x

)
y + 3x3

3x4 − 8x2y + 4y2

Sy =
x
√
−3x2 + 8y + 2y

(3x2 − 2y) (x2 − 2y)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in
ln
(√

−3x2 + 8y + x
)

4 −
ln
(√

−3x2 + 8y − x
)

4 +
3 ln

(√
−3x2 + 8y − 3x

)
4 −

3 ln
(√

−3x2 + 8y + 3x
)

4 + 3 ln (−3x2 + 2y)
4 − ln (−x2 + 2y)

4 = c1

Which simplifies to
ln
(√

−3x2 + 8y + x
)

4 −
ln
(√

−3x2 + 8y − x
)

4 +
3 ln

(√
−3x2 + 8y − 3x

)
4 −

3 ln
(√

−3x2 + 8y + 3x
)

4 + 3 ln (−3x2 + 2y)
4 − ln (−x2 + 2y)

4 = c1

Summary
The solution(s) found are the following

(1)
ln
(√

−3x2 + 8y + x
)

4 −
ln
(√

−3x2 + 8y − x
)

4 +
3 ln

(√
−3x2 + 8y − 3x

)
4

−
3 ln

(√
−3x2 + 8y + 3x

)
4 + 3 ln (−3x2 + 2y)

4 − ln (−x2 + 2y)
4 = c1
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Verification of solutions

ln
(√

−3x2 + 8y + x
)

4 −
ln
(√

−3x2 + 8y − x
)

4 +
3 ln

(√
−3x2 + 8y − 3x

)
4

−
3 ln

(√
−3x2 + 8y + 3x

)
4 + 3 ln (−3x2 + 2y)

4 − ln (−x2 + 2y)
4 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
√
−3x2 + 8y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
√

−3x2 + 8y (b3 − a2)−
(
−3x2 + 8y

)
a3

− 3x(xa2 + ya3 + a1)√
−3x2 + 8y

+ 4xb2 + 4yb3 + 4b1√
−3x2 + 8y

= 0

Putting the above in normal form gives

3
√
−3x2 + 8y x2a3 − 8

√
−3x2 + 8y ya3 − 6x2a2 + 3b3x2 − 3xya3 + b2

√
−3x2 + 8y − 3xa1 + 4xb2 + 8a2y − 4yb3 + 4b1√

−3x2 + 8y
= 0
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Setting the numerator to zero gives

(6E)3
√

−3x2 + 8y x2a3 − 8
√
−3x2 + 8y ya3 − 6x2a2 + 3b3x2 − 3xya3

+ b2
√

−3x2 + 8y − 3xa1 + 4xb2 + 8a2y − 4yb3 + 4b1 = 0

Simplifying the above gives

(6E)3
√

−3x2 + 8y x2a3 +
(
−3x2 + 8y

)
a2 −

(
−3x2 + 8y

)
b3 − 8

√
−3x2 + 8y ya3

− 3x2a2 − 3xya3 + b2
√

−3x2 + 8y − 3xa1 + 4xb2 + 4yb3 + 4b1 = 0

Since the PDE has radicals, simplifying gives

3
√

−3x2 + 8y x2a3 − 8
√
−3x2 + 8y ya3 − 6x2a2 + 3b3x2 − 3xya3

+ b2
√

−3x2 + 8y − 3xa1 + 4xb2 + 8a2y − 4yb3 + 4b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−3x2 + 8y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−3x2 + 8y = v3
}

The above PDE (6E) now becomes

(7E)3v3v21a3 − 6v21a2 − 3v1v2a3 − 8v3v2a3 + 3b3v21
− 3v1a1 + 8a2v2 + 4v1b2 + b2v3 − 4v2b3 + 4b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)3v3v21a3 + (−6a2 + 3b3) v21 − 3v1v2a3 + (−3a1 + 4b2) v1
− 8v3v2a3 + (8a2 − 4b3) v2 + b2v3 + 4b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−8a3 = 0
−3a3 = 0
3a3 = 0
4b1 = 0

−3a1 + 4b2 = 0
−6a2 + 3b3 = 0
8a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−
√

−3x2 + 8y
)
(x)

= x
√

−3x2 + 8y + 2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
√
−3x2 + 8y + 2y

dy

Which results in

S = −
ln
(√

−3x2 + 8y + x
)

4 +
ln
(√

−3x2 + 8y − x
)

4 −
3 ln

(√
−3x2 + 8y − 3x

)
4 +

3 ln
(√

−3x2 + 8y + 3x
)

4 + 3 ln (−3x2 + 2y)
4 − ln (−x2 + 2y)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
−3x2 + 8y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3x3 + 2y
√
−3x2 + 8y − 8xy

(3x2 − 2y) (x2 − 2y)

Sy =
−x

√
−3x2 + 8y + 2y

(3x2 − 2y) (x2 − 2y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
ln
(√

−3x2 + 8y + x
)

4 +
ln
(√

−3x2 + 8y − x
)

4 −
3 ln

(√
−3x2 + 8y − 3x

)
4 +

3 ln
(√

−3x2 + 8y + 3x
)

4 + 3 ln (−3x2 + 2y)
4 − ln (−x2 + 2y)

4 = c1

Which simplifies to

−
ln
(√

−3x2 + 8y + x
)

4 +
ln
(√

−3x2 + 8y − x
)

4 −
3 ln

(√
−3x2 + 8y − 3x

)
4 +

3 ln
(√

−3x2 + 8y + 3x
)

4 + 3 ln (−3x2 + 2y)
4 − ln (−x2 + 2y)

4 = c1

Summary
The solution(s) found are the following

(1)
−
ln
(√

−3x2 + 8y + x
)

4 +
ln
(√

−3x2 + 8y − x
)

4 −
3 ln

(√
−3x2 + 8y − 3x

)
4

+
3 ln

(√
−3x2 + 8y + 3x

)
4 + 3 ln (−3x2 + 2y)

4 − ln (−x2 + 2y)
4 = c1

Verification of solutions

−
ln
(√

−3x2 + 8y + x
)

4 +
ln
(√

−3x2 + 8y − x
)

4 −
3 ln

(√
−3x2 + 8y − 3x

)
4

+
3 ln

(√
−3x2 + 8y + 3x

)
4 + 3 ln (−3x2 + 2y)

4 − ln (−x2 + 2y)
4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 153� �
dsolve(diff(y(x),x)^2+3*x^2 = 8*y(x),y(x), singsol=all)� �
y(x) = 3x2

8

+
RootOf

(
_Z6 − 18x_Z5 + 135x2_Z4 − 540x3_Z3 + (1215x4 − 16c1)_Z2 + (−1458x5 + 32c1x)_Z+ 729x6 − 16c1x2)2

8
y(x) = 3x2

8

+
RootOf

(
_Z6 + 18x_Z5 + 135x2_Z4 + 540x3_Z3 + (1215x4 − 16c1)_Z2 + (1458x5 − 32c1x)_Z+ 729x6 − 16c1x2)2

8
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3 Solution by Mathematica
Time used: 61.018 (sec). Leaf size: 1865� �
DSolve[(y'[x])^2+3 x^2==8 y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

96

144x2

−8 22/3 3
√

−729x4 cosh(2c1)− 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 − 4) cosh(c1)− (27x2 + 4) sinh(c1)) 3 + 2 cosh(6c1) + 2 sinh(6c1)

− 16 3
√
2(54x2 cosh(2c1) + 54x2 sinh(2c1) + cosh(4c1) + sinh(4c1))

3
√

−729x4 cosh(2c1)− 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 − 4) cosh(c1)− (27x2 + 4) sinh(c1)) 3 + 2 cosh(6c1) + 2 sinh(6c1)

+ 32 cosh(2c1) + 32 sinh(2c1)


y(x) → 1

192

288x2

+8 22/3
(
1−i

√
3
)

3
√
−729x4 cosh(2c1)− 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3

√
3
√
x2(cosh(7c1) + sinh(7c1)) ((27x2 − 4) cosh(c1)− (27x2 + 4) sinh(c1)) 3 + 2 cosh(6c1) + 2 sinh(6c1)

+
16 3

√
2
(
1 + i

√
3
)
(54x2 cosh(2c1) + 54x2 sinh(2c1) + cosh(4c1) + sinh(4c1))

3
√

−729x4 cosh(2c1)− 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√
x2(cosh(7c1) + sinh(7c1)) ((27x2 − 4) cosh(c1)− (27x2 + 4) sinh(c1)) 3 + 2 cosh(6c1) + 2 sinh(6c1)

+ 64 cosh(2c1) + 64 sinh(2c1)


y(x) → 1

192

288x2

+8 22/3
(
1+i

√
3
)

3
√

−729x4 cosh(2c1)− 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 − 4) cosh(c1)− (27x2 + 4) sinh(c1)) 3 + 2 cosh(6c1) + 2 sinh(6c1)

+
16 3

√
2
(
1− i

√
3
)
(54x2 cosh(2c1) + 54x2 sinh(2c1) + cosh(4c1) + sinh(4c1))

3
√

−729x4 cosh(2c1)− 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√
x2(cosh(7c1) + sinh(7c1)) ((27x2 − 4) cosh(c1)− (27x2 + 4) sinh(c1)) 3 + 2 cosh(6c1) + 2 sinh(6c1)

+ 64 cosh(2c1) + 64 sinh(2c1)


y(x) → 1

96

144x2

−8 22/3 3
√

729x4 cosh(2c1) + 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 + 4) cosh(c1) + (4− 27x2) sinh(c1)) 3 − 2 cosh(6c1)− 2 sinh(6c1)

+ 16 3
√
2(54x2 cosh(2c1) + 54x2 sinh(2c1)− cosh(4c1)− sinh(4c1))

3
√

729x4 cosh(2c1) + 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 + 4) cosh(c1) + (4− 27x2) sinh(c1)) 3 − 2 cosh(6c1)− 2 sinh(6c1)

− 32 cosh(2c1)− 32 sinh(2c1)


y(x) → 1

192

288x2

+8 22/3
(
1−i

√
3
)

3
√
729x4 cosh(2c1) + 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3

√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 + 4) cosh(c1) + (4− 27x2) sinh(c1)) 3 − 2 cosh(6c1)− 2 sinh(6c1)

−
16i 3

√
2
(√

3− i
)
(54x2 cosh(2c1) + 54x2 sinh(2c1)− cosh(4c1)− sinh(4c1))

3
√

729x4 cosh(2c1) + 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 + 4) cosh(c1) + (4− 27x2) sinh(c1)) 3 − 2 cosh(6c1)− 2 sinh(6c1)

− 64 cosh(2c1)− 64 sinh(2c1)


y(x) → 1

192

288x2

+8 22/3
(
1+i

√
3
)

3
√

729x4 cosh(2c1) + 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 + 4) cosh(c1) + (4− 27x2) sinh(c1)) 3 − 2 cosh(6c1)− 2 sinh(6c1)

+
16i 3

√
2
(√

3 + i
)
(54x2 cosh(2c1) + 54x2 sinh(2c1)− cosh(4c1)− sinh(4c1))

3
√

729x4 cosh(2c1) + 729x4 sinh(2c1)− 270x2 cosh(4c1)− 270x2 sinh(4c1) + 3
√
3
√

x2(cosh(7c1) + sinh(7c1)) ((27x2 + 4) cosh(c1) + (4− 27x2) sinh(c1)) 3 − 2 cosh(6c1)− 2 sinh(6c1)

− 64 cosh(2c1)− 64 sinh(2c1)
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26.18 problem 754
Internal problem ID [3995]
Internal file name [OUTPUT/3488_Sunday_June_05_2022_09_25_30_AM_76050534/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 754.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 + yb = −x2a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
−x2a− yb (1)

y′ = −
√
−x2a− yb (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
√

−x2a− by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

b2+
√

−x2a− by (b3−a2)−
(
−x2a−by

)
a3+

ax(xa2 + ya3 + a1)√
−x2a− by

+ b(xb2 + yb3 + b1)
2
√
−x2a− by

=0

(5E)

Putting the above in normal form gives

2
√
−x2a− by a x2a3 + 2

√
−x2a− by bya3 + 4a x2a2 − 2a x2b3 + 2axya3 + 2axa1 + bxb2 + 2bya2 − byb3 + 2b2

√
−x2a− by + bb1

2
√
−x2a− by

= 0

Setting the numerator to zero gives

(6E)2
√

−x2a− by a x2a3 + 2
√

−x2a− by bya3 + 4a x2a2 − 2a x2b3

+ 2axya3 + 2axa1 + bxb2 + 2bya2 − byb3 + 2b2
√

−x2a− by + bb1 = 0

Simplifying the above gives

(6E)2
√

−x2a− by a x2a3 + 2
√
−x2a− by bya3 + 2a x2a2

+ 2axya3 − 2
(
−x2a− by

)
a2 + 2

(
−x2a− by

)
b3

+ 2axa1 + bxb2 + byb3 + 2b2
√

−x2a− by + bb1 = 0

Since the PDE has radicals, simplifying gives

2
√

−x2a− by a x2a3 + 2
√

−x2a− by bya3 + 4a x2a2 − 2a x2b3

+ 2axya3 + 2axa1 + bxb2 + 2bya2 − byb3 + 2b2
√

−x2a− by + bb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−x2a− by

}

7518



The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−x2a− by = v3
}

The above PDE (6E) now becomes

(7E)2v3av21a3 + 4av21a2 + 2av1v2a3 − 2av21b3 + 2v3bv2a3
+ 2av1a1 + 2bv2a2 + bv1b2 − bv2b3 + bb1 + 2b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v3av21a3 + (4aa2 − 2ab3) v21 + 2av1v2a3 + (2aa1 + bb2) v1
+ 2v3bv2a3 + (2ba2 − bb3) v2 + 2b2v3 + bb1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

bb1 = 0
2b2 = 0

2aa3 = 0
2ba3 = 0

4aa2 − 2ab3 = 0
2ba2 − bb3 = 0
2aa1 + bb2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 2y
x

= 2y
x

This is easily solved to give

y = c1x
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x2

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√

−x2a− by

Evaluating all the partial derivatives gives

Rx = −2y
x3

Ry =
1
x2

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2

x
√
−x2a− by − 2y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

−Rb− a− 2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
ln
(
−2Rb−

√
−Rb− a b

)
4 −

b arctanh
(

4
√
−Rb−a−b√
b2−16a

)
2
√
b2 − 16a

−
ln
(
−2Rb+

√
−Rb− a b

)
4 −

b arctanh
(

b+4
√
−Rb−a√

b2−16a

)
2
√
b2 − 16a

− ln (4R2 +Rb+ a)
4 −

b arctanh
(

8R+b√
b2−16a

)
2
√
b2 − 16a

+ c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
ln
(
−2yb

x2 −
√
− yb

x2 − a b

)
4 −

b arctanh
(

4
√

− yb

x2−a−b
√
b2−16a

)
2
√
b2 − 16a

−
ln
(
−2yb

x2 +
√

− yb
x2 − a b

)
4 −

b arctanh
(

b+4
√

− yb

x2−a
√
b2−16a

)
2
√
b2 − 16a

−
ln
(

4y2
x4 + yb

x2 + a
)

4 −
b arctanh

(
8y
x2+b

√
b2−16a

)
2
√
b2 − 16a

+ c1
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Which simplifies to

ln (x) =
ln
(
−2yb

x2 −
√
− yb

x2 − a b

)
4 −

b arctanh
(

4
√

− yb

x2−a−b
√
b2−16a

)
2
√
b2 − 16a

−
ln
(
−2yb

x2 +
√

− yb
x2 − a b

)
4 −

b arctanh
(

b+4
√

− yb

x2−a
√
b2−16a

)
2
√
b2 − 16a

−
ln
(

4y2
x4 + yb

x2 + a
)

4 −
b arctanh

(
8y
x2+b

√
b2−16a

)
2
√
b2 − 16a

+ c1

Summary
The solution(s) found are the following

(1)

ln (x) =
ln
(
−2yb

x2 −
√

− yb
x2 − a b

)
4 −

b arctanh
(

4
√

− yb

x2−a−b
√
b2−16a

)
2
√
b2 − 16a

−
ln
(
−2yb

x2 +
√

− yb
x2 − a b

)
4 −

b arctanh
(

b+4
√

− yb

x2−a
√
b2−16a

)
2
√
b2 − 16a

−
ln
(

4y2
x4 + yb

x2 + a
)

4 −
b arctanh

(
8y
x2+b

√
b2−16a

)
2
√
b2 − 16a

+ c1

Verification of solutions

ln (x) =
ln
(
−2yb

x2 −
√

− yb
x2 − a b

)
4 −

b arctanh
(

4
√

− yb

x2−a−b
√
b2−16a

)
2
√
b2 − 16a

−
ln
(
−2yb

x2 +
√

− yb
x2 − a b

)
4 −

b arctanh
(

b+4
√

− yb

x2−a
√
b2−16a

)
2
√
b2 − 16a

−
ln
(

4y2
x4 + yb

x2 + a
)

4 −
b arctanh

(
8y
x2+b

√
b2−16a

)
2
√
b2 − 16a

+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
√
−x2a− by

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
√

−x2a− by (b3 − a2)−
(
−x2a− by

)
a3

− ax(xa2 + ya3 + a1)√
−x2a− by

− b(xb2 + yb3 + b1)
2
√
−x2a− by

= 0

Putting the above in normal form gives

2
√
−x2a− by a x2a3 + 2

√
−x2a− by bya3 − 4a x2a2 + 2a x2b3 − 2axya3 − 2axa1 − bxb2 − 2bya2 + byb3 + 2b2

√
−x2a− by − bb1

2
√
−x2a− by

= 0

Setting the numerator to zero gives

(6E)2
√

−x2a− by a x2a3 + 2
√

−x2a− by bya3 − 4a x2a2 + 2a x2b3 − 2axya3
− 2axa1 − bxb2 − 2bya2 + byb3 + 2b2

√
−x2a− by − bb1 = 0

Simplifying the above gives

(6E)2
√

−x2a− by a x2a3 + 2
√

−x2a− by bya3 − 2a x2a2
− 2axya3 + 2

(
−x2a− by

)
a2 − 2

(
−x2a− by

)
b3

− 2axa1 − bxb2 − byb3 + 2b2
√

−x2a− by − bb1 = 0

Since the PDE has radicals, simplifying gives

2
√

−x2a− by a x2a3 + 2
√

−x2a− by bya3 − 4a x2a2 + 2a x2b3 − 2axya3
− 2axa1 − bxb2 − 2bya2 + byb3 + 2b2

√
−x2a− by − bb1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−x2a− by

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−x2a− by = v3
}

The above PDE (6E) now becomes

(7E)2v3av21a3 − 4av21a2 − 2av1v2a3 + 2av21b3 + 2v3bv2a3
− 2av1a1 − 2bv2a2 − bv1b2 + bv2b3 − bb1 + 2b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v3av21a3 + (−4aa2 + 2ab3) v21 − 2av1v2a3 + (−2aa1 − bb2) v1
+ 2v3bv2a3 + (−2ba2 + bb3) v2 + 2b2v3 − bb1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2b2 = 0
−2aa3 = 0
2aa3 = 0
2ba3 = 0
−bb1 = 0

−4aa2 + 2ab3 = 0
−2ba2 + bb3 = 0
−2aa1 − bb2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

7 Solution by Maple� �
dsolve(diff(y(x),x)^2+a*x^2+b*y(x) = 0,y(x), singsol=all)� �

No solution found
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3 Solution by Mathematica
Time used: 1.739 (sec). Leaf size: 581� �
DSolve[(y'[x])^2+a x^2+b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

RootSum
#14 −#13b+ 2#12a+#1ab

+a2&,
2#13 log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
− 2#13 log(x)−#12b log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
+#12b log(x) + 2#1a log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
+ ab log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
− 2#1a log(x)− ab log(x)

4#13 − 3#12b+ 4#1a+ ab
&


− log

(√
−by(x)

√
−ax2 − by(x) + by(x)

)
+ 1

2 log(y(x)) + 2 log(x) = c1, y(x)


Solve

RootSum
#14 +#13b+ 2#12a−#1ab

+a2&,
−2#13 log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
+ 2#13 log(x)−#12b log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
+#12b log(x)− 2#1a log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
+ ab log

(
#1x−

√
−ax2 − by(x) +

√
−by(x)

)
+ 2#1a log(x)− ab log(x)

−4#13 − 3#12b− 4#1a+ ab
&


− log

(√
−by(x)

√
−ax2 − by(x) + by(x)

)
+ 1

2 log(y(x)) + 2 log(x) = c1, y(x)
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26.19 problem 755
26.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7528

Internal problem ID [3996]
Internal file name [OUTPUT/3489_Sunday_June_05_2022_09_27_49_AM_89550388/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 755.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − y2 = 1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
y2 + 1 (1)

y′ = −
√
y2 + 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
y2 + 1

dy = x+ c1

arcsinh (y) = x+ c1

Solving for y gives these solutions

y1 = sinh (x+ c1)

Summary
The solution(s) found are the following

(1)y = sinh (x+ c1)
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Verification of solutions

y = sinh (x+ c1)

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1√

y2 + 1
dy = x+ c2

− arcsinh (y) = x+ c2

Solving for y gives these solutions

y1 = − sinh (x+ c2)

Summary
The solution(s) found are the following

(1)y = − sinh (x+ c2)
Verification of solutions

y = − sinh (x+ c2)

Verified OK.

26.19.1 Maple step by step solution

Let’s solve
y′2 − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
y2+1

= 1

• Integrate both sides with respect to x∫
y′√
y2+1

dx =
∫
1dx+ c1

• Evaluate integral
arcsinh(y) = x+ c1
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• Solve for y
y = sinh (x+ c1)

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 31� �
dsolve(diff(y(x),x)^2 = 1+y(x)^2,y(x), singsol=all)� �

y(x) = −i
y(x) = i
y(x) = − sinh (c1 − x)
y(x) = sinh (c1 − x)

3 Solution by Mathematica
Time used: 0.284 (sec). Leaf size: 69� �
DSolve[(y'[x])^2==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
e−x+c1 − ex−c1

)
y(x) → 1

2
(
ex+c1 − e−x−c1

)
y(x) → −i
y(x) → i
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26.20 problem 756
26.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7531

Internal problem ID [3997]
Internal file name [OUTPUT/3490_Sunday_June_05_2022_09_27_54_AM_75196546/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 756.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + y2 = 1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

1− y2 (1)
y′ = −

√
1− y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
−y2 + 1

dy = x+ c1

arcsin (y) = x+ c1

Solving for y gives these solutions

y1 = sin (x+ c1)

Summary
The solution(s) found are the following

(1)y = sin (x+ c1)
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Verification of solutions

y = sin (x+ c1)

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1√

−y2 + 1
dy = x+ c2

− arcsin (y) = x+ c2

Solving for y gives these solutions

y1 = − sin (x+ c2)

Summary
The solution(s) found are the following

(1)y = − sin (x+ c2)
Verification of solutions

y = − sin (x+ c2)

Verified OK.

26.20.1 Maple step by step solution

Let’s solve
y′2 + y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
1−y2

= 1

• Integrate both sides with respect to x∫
y′√
1−y2

dx =
∫
1dx+ c1

• Evaluate integral
arcsin (y) = x+ c1
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• Solve for y
y = sin (x+ c1)

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x)^2 = 1-y(x)^2,y(x), singsol=all)� �

y(x) = −1
y(x) = 1
y(x) = − sin (c1 − x)
y(x) = sin (c1 − x)

3 Solution by Mathematica
Time used: 0.203 (sec). Leaf size: 39� �
DSolve[(y'[x])^2==1-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x+ c1)
y(x) → cos(x− c1)
y(x) → −1
y(x) → 1
y(x) → Interval[{−1, 1}]
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26.21 problem 757
26.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7534

Internal problem ID [3998]
Internal file name [OUTPUT/3491_Sunday_June_05_2022_09_28_00_AM_97622267/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 757.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + y2 = a2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

a2 − y2 (1)
y′ = −

√
a2 − y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
a2 − y2

dy =
∫

dx

arctan
(

y√
a2 − y2

)
= x+ c1

Summary
The solution(s) found are the following

(1)arctan
(

y√
a2 − y2

)
= x+ c1
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Verification of solutions

arctan
(

y√
a2 − y2

)
= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1√

a2 − y2
dy =

∫
dx

− arctan
(

y√
a2 − y2

)
= x+ c2

Summary
The solution(s) found are the following

(1)− arctan
(

y√
a2 − y2

)
= x+ c2

Verification of solutions

− arctan
(

y√
a2 − y2

)
= x+ c2

Verified OK.

26.21.1 Maple step by step solution

Let’s solve
y′2 + y2 = a2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

a2−y2
= 1

• Integrate both sides with respect to x∫
y′√

a2−y2
dx =

∫
1dx+ c1

• Evaluate integral

arctan
(

y√
a2−y2

)
= x+ c1
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• Solve for y

y = tan (x+ c1)
√

a2

1+tan(x+c1)2

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 60� �
dsolve(diff(y(x),x)^2 = a^2-y(x)^2,y(x), singsol=all)� �

y(x) = −a
y(x) = a

y(x) = − tan (c1 − x)
√
cos (c1 − x)2 a2

y(x) = tan (c1 − x)
√
cos (c1 − x)2 a2
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3 Solution by Mathematica
Time used: 5.305 (sec). Leaf size: 111� �
DSolve[(y'[x])^2==a^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − a tan(x− c1)√
sec2(x− c1)

y(x) → a tan(x− c1)√
sec2(x− c1)

y(x) → − a tan(x+ c1)√
sec2(x+ c1)

y(x) → a tan(x+ c1)√
sec2(x+ c1)

y(x) → −a
y(x) → a
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26.22 problem 758
26.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7538

Internal problem ID [3999]
Internal file name [OUTPUT/3492_Sunday_June_05_2022_09_28_05_AM_69444829/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 758.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − y2a2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = ya (1)
y′ = −ya (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
ya

dy =
∫

dx

ln (y)
a

= x+ c1

Raising both side to exponential gives

e
ln(y)
a = ex+c1

Which simplifies to

y
1
a = c2ex
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Summary
The solution(s) found are the following

(1)y = (c2ex)a

Verification of solutions

y = (c2ex)a

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1
ya

dy =
∫

dx

− ln (y)
a

= x+ c3

Raising both side to exponential gives

e−
ln(y)
a = ex+c3

Which simplifies to

y−
1
a = c4ex

Summary
The solution(s) found are the following

(1)y = (c4ex)−a

Verification of solutions

y = (c4ex)−a

Verified OK.

26.22.1 Maple step by step solution

Let’s solve
y′2 − y2a2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y
= a

• Integrate both sides with respect to x∫
y′

y
dx =

∫
adx+ c1

• Evaluate integral
ln (y) = ax+ c1

• Solve for y
y = eax+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2 = a^2*y(x)^2,y(x), singsol=all)� �

y(x) = c1eax
y(x) = c1e−ax
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3 Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 31� �
DSolve[(y'[x])^2==a^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−ax

y(x) → c1e
ax

y(x) → 0
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26.23 problem 759
26.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7543

Internal problem ID [4000]
Internal file name [OUTPUT/3493_Sunday_June_05_2022_09_28_10_AM_51939232/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 759.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − by2 = a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

a+ by2 (1)
y′ = −

√
a+ by2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
b y2 + a

dy =
∫

dx

ln
(
y
√
b+

√
b y2 + a

)
√
b

= x+ c1

Raising both side to exponential gives

e
ln
(
y
√
b+
√

b y2+a

)
√
b = ex+c1
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Which simplifies to (
y
√
b+

√
b y2 + a

) 1√
b = c2ex

Summary
The solution(s) found are the following

(1)y =

(
(c2ex)2

√
b − a

)
(c2ex)−

√
b

2
√
b

Verification of solutions

y =

(
(c2ex)2

√
b − a

)
(c2ex)−

√
b

2
√
b

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1√

b y2 + a
dy =

∫
dx

−
ln
(
y
√
b+

√
b y2 + a

)
√
b

= x+ c3

Raising both side to exponential gives

e−
ln
(
y
√
b+
√

b y2+a

)
√
b = ex+c3

Which simplifies to (
y
√
b+

√
b y2 + a

)− 1√
b = c4ex

Summary
The solution(s) found are the following

(1)y =

(
(c4ex)−2

√
b − a

)
(c4ex)

√
b

2
√
b

Verification of solutions

y =

(
(c4ex)−2

√
b − a

)
(c4ex)

√
b

2
√
b

Verified OK.
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26.23.1 Maple step by step solution

Let’s solve
y′2 − by2 = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
a+by2

= 1

• Integrate both sides with respect to x∫
y′√
a+by2

dx =
∫
1dx+ c1

• Evaluate integral
ln
(
y
√
b+
√

a+by2
)

√
b

= x+ c1

• Solve for y

y =
(
ec1

√
b+x

√
b
)2

−a

2
√
b ec1

√
b+x

√
b

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 99� �
dsolve(diff(y(x),x)^2 = a+b*y(x)^2,y(x), singsol=all)� �

y(x) =
√
−ab

b

y(x) = −
√
−ab

b

y(x) =
e−

√
b (c1+x)

(
−a e2c1

√
b + e2x

√
b
)

2
√
b

y(x) = −
e−

√
b (c1+x)

(
a e2x

√
b − e2c1

√
b
)

2
√
b

3 Solution by Mathematica
Time used: 60.109 (sec). Leaf size: 171� �
DSolve[(y'[x])^2==a+b y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
a tanh

(√
b(x− c1)

)
√
bsech2

(√
b(x− c1)

)
y(x) →

√
a tanh

(√
b(x− c1)

)
√

bsech2
(√

b(x− c1)
)

y(x) → −

√
a tanh

(√
b(x+ c1)

)
√
bsech2

(√
b(x+ c1)

)
y(x) →

√
a tanh

(√
b(x+ c1)

)
√

bsech2
(√

b(x+ c1)
)
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26.24 problem 760
26.24.1 Solving as first order nonlinear p but separable ode . . . . . . . 7545
26.24.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7547

Internal problem ID [4001]
Internal file name [OUTPUT/3494_Sunday_June_05_2022_09_28_15_AM_49005354/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 760.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2 − y2x2 = 0

26.24.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = x2, g = y2. Hence the ode is

(y′)2 = y2x2

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

x2 > 0
y2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives
1√
y2

dy =
(√

x2
)
dx

− 1√
y2

dy =
(√

x2
)
dx

Integrating now gives the solutions.∫ 1√
y2

dy =
∫ √

x2dx+ c1∫
− 1√

y2
dy =

∫ √
x2dx+ c1

Integrating gives
y ln (y)√

y2
= x

√
x2

2 + c1

−y ln (y)√
y2

= x
√
x2

2 + c1

Therefore
y ln (y)√

y2
= x

√
x2

2 + c1

−y ln (y)√
y2

= x
√
x2

2 + c1

Summary
The solution(s) found are the following

(1)y ln (y)√
y2

= x
√
x2

2 + c1

(2)−y ln (y)√
y2

= x
√
x2

2 + c1
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Verification of solutions

y ln (y)√
y2

= x
√
x2

2 + c1

Verified OK. {0 < x^2, 0 < y^2}

−y ln (y)√
y2

= x
√
x2

2 + c1

Verified OK. {0 < x^2, 0 < y^2}

26.24.2 Maple step by step solution

Let’s solve
y′2 − y2x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
xdx+ c1

• Evaluate integral
ln (y) = x2

2 + c1

• Solve for y

y = ex2
2 +c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)^2 = x^2*y(x)^2,y(x), singsol=all)� �

y(x) = ex2
2 c1

y(x) = e−x2
2 c1

3 Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 38� �
DSolve[(y'[x])^2==x^2 y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x2

2

y(x) → c1e
x2
2

y(x) → 0
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26.25 problem 761
26.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7550

Internal problem ID [4002]
Internal file name [OUTPUT/3495_Sunday_June_05_2022_09_28_21_AM_54039433/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 761.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − (y − 1) y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

y − 1 y (1)
y′ = −

√
y − 1 y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
y − 1 y

dy =
∫

dx

2 arctan
(√

y − 1
)
= x+ c1

Summary
The solution(s) found are the following

(1)2 arctan
(√

y − 1
)
= x+ c1
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Verification of solutions

2 arctan
(√

y − 1
)
= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1√

y − 1 y
dy =

∫
dx

−2 arctan
(√

y − 1
)
= x+ c2

Summary
The solution(s) found are the following

(1)−2 arctan
(√

y − 1
)
= x+ c2

Verification of solutions

−2 arctan
(√

y − 1
)
= x+ c2

Verified OK.

26.25.1 Maple step by step solution

Let’s solve
y′2 − (y − 1) y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
y−1 y = 1

• Integrate both sides with respect to x∫
y′√
y−1 ydx =

∫
1dx+ c1

• Evaluate integral
2 arctan

(√
y − 1

)
= x+ c1

• Solve for y
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y = tan
(
x
2 +

c1
2

)2 + 1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 22� �
dsolve(diff(y(x),x)^2 = (y(x)-1)*y(x)^2,y(x), singsol=all)� �

y(x) = 1
y(x) = 0

y(x) = sec
(c1
2 − x

2

)2
3 Solution by Mathematica
Time used: 1.652 (sec). Leaf size: 45� �
DSolve[(y'[x])^2==(y[x]-1)y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sec2
(
x− c1

2

)
y(x) → 1 + tan2

(
x+ c1

2

)
y(x) → 0
y(x) → 1
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26.26 problem 762
26.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7553

Internal problem ID [4003]
Internal file name [OUTPUT/3496_Sunday_June_05_2022_09_28_25_AM_16929261/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 762.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − (y − a) (y − b) (y − c) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc (1)
y′ = −

√
y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 1√
−abc+ aby + yac− a y2 + ybc− b y2 − y2c+ y3

dy =
∫

dx

2(b− a)
√

y−a
b−a

√
y−c
a−c

√
y−b
−b+a

EllipticF
(√

y−a
b−a

,
√

−b+a
a−c

)
√
y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc

= x+ c1

Summary
The solution(s) found are the following

(1)
2(b− a)

√
y−a
b−a

√
y−c
a−c

√
y−b
−b+a

EllipticF
(√

y−a
b−a

,
√

−b+a
a−c

)
√
y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc

= x+ c1
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Verification of solutions

2(b− a)
√

y−a
b−a

√
y−c
a−c

√
y−b
−b+a

EllipticF
(√

y−a
b−a

,
√

−b+a
a−c

)
√
y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives∫
− 1√

−abc+ aby + yac− a y2 + ybc− b y2 − y2c+ y3
dy =

∫
dx

−
2(b− a)

√
y−a
b−a

√
y−c
a−c

√
y−b
−b+a

EllipticF
(√

y−a
b−a

,
√

−b+a
a−c

)
√
y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc

= x+ c2

Summary
The solution(s) found are the following

(1)−
2(b− a)

√
y−a
b−a

√
y−c
a−c

√
y−b
−b+a

EllipticF
(√

y−a
b−a

,
√

−b+a
a−c

)
√
y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc

= x+ c2

Verification of solutions

−
2(b− a)

√
y−a
b−a

√
y−c
a−c

√
y−b
−b+a

EllipticF
(√

y−a
b−a

,
√

−b+a
a−c

)
√
y3 − ay2 − by2 − cy2 + aby + yac+ ybc− abc

= x+ c2

Verified OK.

26.26.1 Maple step by step solution

Let’s solve
y′2 − (y − a) (y − b) (y − c) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

y3−ay2−by2−cy2+aby+yac+ybc−abc
= 1

• Integrate both sides with respect to x
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∫
y′√

y3−ay2−by2−cy2+aby+yac+ybc−abc
dx =

∫
1dx+ c1

• Evaluate integral
2(b−a)

√
y−a
b−a

√
y−c
a−c

√
y−b
−b+a

EllipticF
(√

y−a
b−a

,
√

−b+a
a−c

)
√

y3−ay2−by2−cy2+aby+yac+ybc−abc
= x+ c1

• Solve for y

y = −JacobiSN
(√

−a+c (x+c1)
2 ,

√
−b+a
a−c

)2
a+ JacobiSN

(√
−a+c (x+c1)

2 ,
√

−b+a
a−c

)2
b+ a

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 75� �
dsolve(diff(y(x),x)^2 = (y(x)-a)*(y(x)-b)*(y(x)-c),y(x), singsol=all)� �

y(x) = a
y(x) = b
y(x) = c

x−

(∫ y(x) 1√
(−a+ _a) (_a− b) (_a− c)

d_a
)

− c1 = 0

x+
∫ y(x) 1√

(−a+ _a) (_a− b) (_a− c)
d_a− c1 = 0
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3 Solution by Mathematica
Time used: 48.497 (sec). Leaf size: 188� �
DSolve[(y'[x])^2==(y[x]-a)(y[x]-b)(y[x]-c),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ns
(
1
2
√
a− b(c1 − ix)|a− c

a− b

)
2
(
asn
(
1
2
√
a− b(c1 − ix)|a− c

a− b

)
2 − a+ b

)
y(x) → ns

(
1
2
√
a− b(ix+ c1)|

a− c

a− b

)
2
(
asn
(
1
2
√
a− b(ix+ c1)|

a− c

a− b

)
2 − a+ b

)
y(x) → a
y(x) → b
y(x) → c
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26.27 problem 763
26.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7557

Internal problem ID [4004]
Internal file name [OUTPUT/3497_Sunday_June_05_2022_09_28_30_AM_9637391/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 763.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − a2yn = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
yn a (1)

y′ = −
√
yn a (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
yn a

dy =
∫

dx

− 2y
(n− 2)√yn a

= x+ c1

Summary
The solution(s) found are the following

(1)− 2y
(n− 2)√yn a

= x+ c1
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Verification of solutions

− 2y
(n− 2)√yn a

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1√

yn a
dy =

∫
dx

2y
(n− 2)√yn a

= x+ c2

Summary
The solution(s) found are the following

(1)2y
(n− 2)√yn a

= x+ c2

Verification of solutions

2y
(n− 2)√yn a

= x+ c2

Verified OK.

26.27.1 Maple step by step solution

Let’s solve
y′2 − a2yn = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
yn

= a

• Integrate both sides with respect to x∫
y′√
yn
dx =

∫
adx+ c1

• Evaluate integral
− 2y√

yn (n−2) = ax+ c1
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• Solve for y

y = e
2 ln

(
− 2

axn+nc1−2ax−2c1

)
n−2

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 72� �
dsolve(diff(y(x),x)^2 = a^2*y(x)^n,y(x), singsol=all)� �

y(x) = 4
1

n−2

(
− 1
a (−c1 + x) (n− 2)

) 2
n−2

y(x) = 4
1

n−2

(
1

a (−c1 + x) (n− 2)

) 2
n−2

3 Solution by Mathematica
Time used: 3.27 (sec). Leaf size: 77� �
DSolve[(y'[x])^2==a^2 y[x]^n,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
2

n−2 (−((n− 2)(ax+ c1)))−
2

n−2

y(x) → 2
2

n−2 ((n− 2)(ax− c1))−
2

n−2

y(x) → 0 1
n
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26.28 problem 764
26.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7561

Internal problem ID [4005]
Internal file name [OUTPUT/3498_Sunday_June_05_2022_09_28_36_AM_1013119/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 764.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − a2

(
1− ln (y)2

)
y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
1− ln (y)2 ay (1)

y′ = −
√
1− ln (y)2 ay (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 1√
1− ln (y)2 ay

dy =
∫

dx

arcsin (ln (y))
a

= x+ c1

Raising both side to exponential gives

e
arcsin(ln(y))

a = ex+c1
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Which simplifies to

e
arcsin(ln(y))

a = c2ex

Summary
The solution(s) found are the following

(1)y = esin(a ln(c2)+ax)

Verification of solutions

y = esin(a ln(c2)+ax)

Verified OK.
Solving equation (2)

Integrating both sides gives∫
− 1√

1− ln (y)2 ay
dy =

∫
dx

−arcsin (ln (y))
a

= x+ c3

Raising both side to exponential gives

e−
arcsin(ln(y))

a = ex+c3

Which simplifies to

e−
arcsin(ln(y))

a = c4ex

Summary
The solution(s) found are the following

(1)y = e− sin((ln(c4)+x)a)

Verification of solutions

y = e− sin((ln(c4)+x)a)

Verified OK.
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26.28.1 Maple step by step solution

Let’s solve
y′2 − a2

(
1− ln (y)2

)
y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

1−ln(y)2 y
= a

• Integrate both sides with respect to x∫
y′√

1−ln(y)2 y
dx =

∫
adx+ c1

• Evaluate integral
arcsin (ln (y)) = ax+ c1

• Solve for y
y = esin(ax+c1)

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 45� �
dsolve(diff(y(x),x)^2 = a^2*(1-ln(y(x))^2)*y(x)^2,y(x), singsol=all)� �

y(x) = eRootOf
(
a2e2_Z(_Z2−1

))
y(x) = e− sin((c1−x)a)

y(x) = esin((c1−x)a)
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3 Solution by Mathematica
Time used: 16.422 (sec). Leaf size: 197� �
DSolve[(y'[x])^2==a^2(1-Log[y[x]]^2)y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → exp
(
−1
2
√
−e2iax−2c1 − e2c1−2iax + 2

)
y(x) → exp

(
1
2
√
−e2iax−2c1 − e2c1−2iax + 2

)
y(x) → exp

(
−1
2
√

−e−2iax−2c1 (−1 + e2iax+2c1) 2
)

y(x) → exp
(
1
2
√

−e−2iax−2c1 (−1 + e2iax+2c1) 2
)

y(x) → 1
e

y(x) → e
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26.29 problem 765
26.29.1 Solving as first order nonlinear p but separable ode . . . . . . . 7563

Internal problem ID [4006]
Internal file name [OUTPUT/3499_Sunday_June_05_2022_09_28_43_AM_10917432/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 26
Problem number: 765.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
2 + f(x) (y − a) (y − b) = 0

26.29.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = −f(x) , g = (a− y) (−y + b). Hence the ode is

(y′)2 = −f(x) (a− y) (−y + b)

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

−f(x) > 0
(a− y) (−y + b) > 0

7563



Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
(a− y) (−y + b)

dy =
(√

−f (x)
)
dx

− 1√
(a− y) (−y + b)

dy =
(√

−f (x)
)
dx

Integrating now gives the solutions.∫ 1√
(a− y) (−y + b)

dy =
∫ √

−f (x)dx+ c1∫
− 1√

(a− y) (−y + b)
dy =

∫ √
−f (x)dx+ c1

Integrating gives

ln
(
−a

2 − b

2 + y +
√

y2 + (−a− b) y + ab

)
=
∫ √

−f (x)dx+ c1

− ln
(
−a

2 − b

2 + y +
√

y2 + (−a− b) y + ab

)
=
∫ √

−f (x)dx+ c1

Therefore

y

=

(
4 e
∫
2
√

−f(x)dx+2c1 + 4 e
∫ √

−f(x)dx+c1a+ 4 e
∫ √

−f(x)dx+c1b+ a2 − 2ab+ b2
)
e
∫
−
√

−f(x)dx−c1

8
y

=

(
4 e
∫
−2
√

−f(x)dx−2c1 + 4 e−
(∫ √

−f(x)dx
)
−c1a+ 4 e−

(∫ √
−f(x)dx

)
−c1b+ a2 − 2ab+ b2

)
e
∫ √

−f(x)dx+c1

8

7564



Summary
The solution(s) found are the following

(1)y

=

(
4 e
∫
2
√

−f(x)dx+2c1 + 4 e
∫ √

−f(x)dx+c1a+ 4 e
∫ √

−f(x)dx+c1b+ a2 − 2ab+ b2
)
e
∫
−
√

−f(x)dx−c1

8
(2)y

=

(
4 e
∫
−2
√

−f(x)dx−2c1 + 4 e−
(∫ √

−f(x)dx
)
−c1a+ 4 e−

(∫ √
−f(x)dx

)
−c1b+ a2 − 2ab+ b2

)
e
∫ √

−f(x)dx+c1

8
Verification of solutions
y

=

(
4 e
∫
2
√

−f(x)dx+2c1 + 4 e
∫ √

−f(x)dx+c1a+ 4 e
∫ √

−f(x)dx+c1b+ a2 − 2ab+ b2
)
e
∫
−
√

−f(x)dx−c1

8

Verified OK. {0 < (a-y)*(-y+b), 0 < -f(x)}

y

=

(
4 e
∫
−2
√

−f(x)dx−2c1 + 4 e−
(∫ √

−f(x)dx
)
−c1a+ 4 e−

(∫ √
−f(x)dx

)
−c1b+ a2 − 2ab+ b2

)
e
∫ √

−f(x)dx+c1

8

Verified OK. {0 < (a-y)*(-y+b), 0 < -f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 220� �
dsolve(diff(y(x),x)^2+f(x)*(y(x)-a)*(y(x)-b) = 0,y(x), singsol=all)� �√

(y (x)− a) (y (x)− b)
(
− ln (2) + ln

(
−a− b+ 2y(x) + 2

√
(y (x)− a) (y (x)− b)

))
√

y (x)− b
√

y (x)− a

−
∫ x√−f (_a) (y (x)− a) (y (x)− b)d_a√

y (x)− b
√

y (x)− a
+ c1 = 0√

(y (x)− a) (y (x)− b)
(
− ln (2) + ln

(
−a− b+ 2y(x) + 2

√
(y (x)− a) (y (x)− b)

))
√

y (x)− b
√

y (x)− a

+
∫ x√−f (_a) (y (x)− a) (y (x)− b)d_a√

y (x)− b
√

y (x)− a
+ c1 = 0

3 Solution by Mathematica
Time used: 4.208 (sec). Leaf size: 89� �
DSolve[(y'[x])^2+ f[x](y[x]-a)(y[x]-b)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
(b− a) cosh

(∫ x

1
−i
√

f(K[2])dK[2] + c1

)
+ a+ b

)
y(x) → 1

2

(
(b− a) cosh

(∫ x

1
i
√

f(K[3])dK[3] + c1

)
+ a+ b

)
y(x) → a
y(x) → b
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27.1 problem 766
27.1.1 Solving as first order nonlinear p but separable ode . . . . . . . 7569

Internal problem ID [4007]
Internal file name [OUTPUT/3500_Sunday_June_05_2022_09_28_52_AM_75040802/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 766.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
2 + f(x) (y − a)2 (y − b) = 0

27.1.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = f(x) , g = (a− y)2 (−y + b). Hence the ode is

(y′)2 = f(x) (a− y)2 (−y + b)

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

f(x) > 0
(a− y)2 (−y + b) > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
(a− y)2 (−y + b)

dy =
(√

f (x)
)
dx

− 1√
(a− y)2 (−y + b)

dy =
(√

f (x)
)
dx

Integrating now gives the solutions.∫ 1√
(a− y)2 (−y + b)

dy =
∫ √

f (x)dx+ c1

∫
− 1√

(a− y)2 (−y + b)
dy =

∫ √
f (x)dx+ c1

Integrating gives ∫ y 1√
(a− y)2 (−y + b)

d_a =
∫ √

f (x)dx+ c1

∫ y

− 1√
(a− y)2 (−y + b)

d_a =
∫ √

f (x)dx+ c1

Therefore ∫ y 1√
(a− y)2 (−y + b)

d_a =
∫ √

f (x)dx+ c1

∫ y

− 1√
(a− y)2 (−y + b)

d_a =
∫ √

f (x)dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1√

(a− y)2 (−y + b)
d_a =

∫ √
f (x)dx+ c1

(2)
∫ y

− 1√
(a− y)2 (−y + b)

d_a =
∫ √

f (x)dx+ c1

Verification of solutions∫ y 1√
(a− y)2 (−y + b)

d_a =
∫ √

f (x)dx+ c1

Verified OK. {0 < (a-y)^2*(-y+b), 0 < f(x)}∫ y

− 1√
(a− y)2 (−y + b)

d_a =
∫ √

f (x)dx+ c1

Verified OK. {0 < (a-y)^2*(-y+b), 0 < f(x)}

7571



Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �

3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 112� �
dsolve(diff(y(x),x)^2+f(x)*(y(x)-a)^2*(y(x)-b) = 0,y(x), singsol=all)� �

2 arctan
(√

y(x)−b√
−a+b

)
√
−a+ b

+
∫ x√−f (_a) (y (x)− b)d_a√

y (x)− b
+ c1 = 0

2 arctan
(√

y(x)−b√
−a+b

)
√
−a+ b

−
∫ x√−f (_a) (y (x)− b)d_a√

y (x)− b
+ c1 = 0
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3 Solution by Mathematica
Time used: 60.157 (sec). Leaf size: 93� �
DSolve[(y'[x])^2+f[x](y[x]-a)^2 (y[x]-b)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → b+ (b− a) tan2
(
1
2
√
a− b

(∫ x

1
−
√
f(K[1])dK[1] + c1

))
y(x) → b+ (b− a) tan2

(
1
2
√
a− b

(∫ x

1

√
f(K[2])dK[2] + c1

))
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27.2 problem 767
27.2.1 Solving as first order nonlinear p but separable ode . . . . . . . 7574

Internal problem ID [4008]
Internal file name [OUTPUT/3501_Sunday_June_05_2022_09_29_02_AM_59390517/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 767.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
2 + f(x) (y − a) (y − b) (y − c) = 0

27.2.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = f(x) , g = (−y + c) (−y + b) (a− y). Hence the ode is

(y′)2 = f(x) (−y + c) (−y + b) (a− y)

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

f(x) > 0
(−y + c) (−y + b) (a− y) > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives
1√

(−y + c) (−y + b) (a− y)
dy =

(√
f (x)

)
dx

− 1√
(−y + c) (−y + b) (a− y)

dy =
(√

f (x)
)
dx

Integrating now gives the solutions.∫ 1√
(−y + c) (−y + b) (a− y)

dy =
∫ √

f (x)dx+ c1∫
− 1√

(−y + c) (−y + b) (a− y)
dy =

∫ √
f (x)dx+ c1

Integrating gives∫ y 1√
(−y + c) (−y + b) (a− y)

d_a =
∫ √

f (x)dx+ c1∫ y

− 1√
(−y + c) (−y + b) (a− y)

d_a =
∫ √

f (x)dx+ c1

Therefore ∫ y 1√
(−y + c) (−y + b) (a− y)

d_a =
∫ √

f (x)dx+ c1∫ y

− 1√
(−y + c) (−y + b) (a− y)

d_a =
∫ √

f (x)dx+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1√

(−y + c) (−y + b) (a− y)
d_a =

∫ √
f (x)dx+ c1

(2)
∫ y

− 1√
(−y + c) (−y + b) (a− y)

d_a =
∫ √

f (x)dx+ c1
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Verification of solutions∫ y 1√
(−y + c) (−y + b) (a− y)

d_a =
∫ √

f (x)dx+ c1

Verified OK. {0 < (-y+c)*(-y+b)*(a-y), 0 < f(x)}∫ y

− 1√
(−y + c) (−y + b) (a− y)

d_a =
∫ √

f (x)dx+ c1

Verified OK. {0 < (-y+c)*(-y+b)*(a-y), 0 < f(x)}

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.375 (sec). Leaf size: 156� �
dsolve(diff(y(x),x)^2+f(x)*(y(x)-a)*(y(x)-b)*(y(x)-c) = 0,y(x), singsol=all)� �∫ y(x) 1√

(−a+ _a) (_a− b) (_a− c)
d_a

−
∫ x√−f (_a) (y (x)− c) (y (x)− b) (y (x)− a)d_a√

(y (x)− a) (y (x)− b) (y (x)− c)
+ c1 = 0∫ y(x) 1√

(−a+ _a) (_a− b) (_a− c)
d_a

+
∫ x√−f (_a) (y (x)− c) (y (x)− b) (y (x)− a)d_a√

(y (x)− a) (y (x)− b) (y (x)− c)
+ c1 = 0

3 Solution by Mathematica
Time used: 39.221 (sec). Leaf size: 228� �
DSolve[(y'[x])^2+f[x](y[x]-a)(y[x]-b)(y[x]-c)==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → ns

(
1
2
√
a− b

(
c1 +

∫ x

1

−
√

f(K[1])dK[1]
)
|a− c

a− b

)
2
(
asn
(
1
2
√
a− b

(
c1+

∫ x

1
−
√

f(K[1])dK[1]
)
|a− c

a− b

)
2−a+b

)
y(x) → ns

(
1
2
√
a− b

(
c1

+
∫ x

1

√
f(K[2])dK[2]

)
|a− c

a− b

)
2
(
asn
(
1
2
√
a− b

(
c1+

∫ x

1

√
f(K[2])dK[2]

)
|a− c

a− b

)
2−a+b

)
y(x) → a
y(x) → b
y(x) → c
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27.3 problem 768
27.3.1 Solving as first order nonlinear p but separable ode . . . . . . . 7578

Internal problem ID [4009]
Internal file name [OUTPUT/3502_Sunday_June_05_2022_09_29_14_AM_86846232/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 768.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
2 + f(x) (y − a)2 (y − b) (y − c) = 0

27.3.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = −f(x) , g = (a− y)2 (−y + c) (−y + b). Hence the ode is

(y′)2 = −f(x) (a− y)2 (−y + c) (−y + b)

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

−f(x) > 0
(a− y)2 (−y + c) (−y + b) > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
(a− y)2 (−y + c) (−y + b)

dy =
(√

−f (x)
)
dx

− 1√
(a− y)2 (−y + c) (−y + b)

dy =
(√

−f (x)
)
dx

Integrating now gives the solutions.∫ 1√
(a− y)2 (−y + c) (−y + b)

dy =
∫ √

−f (x)dx+ c1

∫
− 1√

(a− y)2 (−y + c) (−y + b)
dy =

∫ √
−f (x)dx+ c1

Integrating gives∫ y 1√
(a− y)2 (−y + c) (−y + b)

d_a =
∫ √

−f (x)dx+ c1

∫ y

− 1√
(a− y)2 (−y + c) (−y + b)

d_a =
∫ √

−f (x)dx+ c1

Therefore ∫ y 1√
(a− y)2 (−y + c) (−y + b)

d_a =
∫ √

−f (x)dx+ c1

∫ y

− 1√
(a− y)2 (−y + c) (−y + b)

d_a =
∫ √

−f (x)dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1√

(a− y)2 (−y + c) (−y + b)
d_a =

∫ √
−f (x)dx+ c1

(2)
∫ y

− 1√
(a− y)2 (−y + c) (−y + b)

d_a =
∫ √

−f (x)dx+ c1

Verification of solutions∫ y 1√
(a− y)2 (−y + c) (−y + b)

d_a =
∫ √

−f (x)dx+ c1

Verified OK. {0 < (a-y)^2*(-y+c)*(-y+b), 0 < -f(x)}∫ y

− 1√
(a− y)2 (−y + c) (−y + b)

d_a =
∫ √

−f (x)dx+ c1

Verified OK. {0 < (a-y)^2*(-y+c)*(-y+b), 0 < -f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 342� �
dsolve(diff(y(x),x)^2+f(x)*(y(x)-a)^2*(y(x)-b)*(y(x)-c) = 0,y(x), singsol=all)� �
−
ln
(

−2
√

(y(x)−b)(y(x)−c)
√

(a−b)(a−c)+(−2a+b+c)y(x)+(b+c)a−2bc
−y(x)+a

)√
a2 − ab− ac+ bc

√
y (x)− b

√
y (x)− c

(a− c) (a− b)
√

bc− cy (x)− by (x) + y (x)2

+
∫ x√(b− y (x)) (y (x)− c) f (_a)d_a√

y (x)− c
√

y (x)− b
+ c1 = 0

−
ln
(

−2
√

(y(x)−b)(y(x)−c)
√

(a−b)(a−c)+(−2a+b+c)y(x)+(b+c)a−2bc
−y(x)+a

)√
a2 − ab− ac+ bc

√
y (x)− b

√
y (x)− c

(a− c) (a− b)
√

bc− cy (x)− by (x) + y (x)2

−
∫ x√(b− y (x)) (y (x)− c) f (_a)d_a√

y (x)− c
√

y (x)− b
+ c1 = 0

3 Solution by Mathematica
Time used: 60.323 (sec). Leaf size: 251� �
DSolve[(y'[x])^2+f[x](y[x]-a)^2 (y[x]-b) (y[x]-c)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
c(a− b) + b(a− c) tan2

(
1
2

√
a− b

√
c− a

(∫ x

1 −i
√

f(K[1])dK[1] + c1
))

(a− c) tan2
(

1
2

√
a− b

√
c− a

(∫ x

1 −i
√

f(K[1])dK[1] + c1
))

+ a− b

y(x) →
c(a− b) + b(a− c) tan2

(
1
2

√
a− b

√
c− a

(∫ x

1 i
√

f(K[2])dK[2] + c1
))

(a− c) tan2
(

1
2

√
a− b

√
c− a

(∫ x

1 i
√
f(K[2])dK[2] + c1

))
+ a− b
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27.4 problem 770
27.4.1 Solving as first order nonlinear p but separable ode . . . . . . . 7583
27.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7585

Internal problem ID [4010]
Internal file name [OUTPUT/3503_Sunday_June_05_2022_09_29_28_AM_21515390/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 770.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2 − f(x)2 (y − a) (y − b) (y − c)2 = 0

27.4.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = f(x)2 , g = (−y + c)2 (−y + b) (a− y). Hence the ode is

(y′)2 = f(x)2 (−y + c)2 (−y + b) (a− y)

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

f(x)2 > 0
(−y + c)2 (−y + b) (a− y) > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
(−y + c)2 (−y + b) (a− y)

dy =
(√

f (x)2
)

dx

− 1√
(−y + c)2 (−y + b) (a− y)

dy =
(√

f (x)2
)

dx

Integrating now gives the solutions.∫ 1√
(−y + c)2 (−y + b) (a− y)

dy =
∫ √

f (x)2dx+ c1

∫
− 1√

(−y + c)2 (−y + b) (a− y)
dy =

∫ √
f (x)2dx+ c1

Integrating gives∫ y 1√
(−y + c)2 (−y + b) (a− y)

d_a =
∫ √

f (x)2dx+ c1

∫ y

− 1√
(−y + c)2 (−y + b) (a− y)

d_a =
∫ √

f (x)2dx+ c1

Therefore ∫ y 1√
(−y + c)2 (−y + b) (a− y)

d_a =
∫ √

f (x)2dx+ c1

∫ y

− 1√
(−y + c)2 (−y + b) (a− y)

d_a =
∫ √

f (x)2dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1√

(−y + c)2 (−y + b) (a− y)
d_a =

∫ √
f (x)2dx+ c1

(2)
∫ y

− 1√
(−y + c)2 (−y + b) (a− y)

d_a =
∫ √

f (x)2dx+ c1

Verification of solutions∫ y 1√
(−y + c)2 (−y + b) (a− y)

d_a =
∫ √

f (x)2dx+ c1

Verified OK. {0 < f(x)^2, 0 < (-y+c)^2*(-y+b)*(a-y)}∫ y

− 1√
(−y + c)2 (−y + b) (a− y)

d_a =
∫ √

f (x)2dx+ c1

Verified OK. {0 < f(x)^2, 0 < (-y+c)^2*(-y+b)*(a-y)}

27.4.2 Maple step by step solution

Let’s solve
y′2 − f(x)2 (y − a) (y − b) (y − c)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

y2−ya−yb+ab (−y+c)
= f(x)

• Integrate both sides with respect to x∫
y′√

y2−ya−yb+ab (−y+c)
dx =

∫
f(x) dx+ c1

• Evaluate integral

ln
(

2ab−2ca−2cb+2c2+(−a−b+2c)(y−c)+2
√

ab−ca−cb+c2
√

(y−c)2+(−a−b+2c)(y−c)+ab−ca−cb+c2
y−c

)
√
ab−ca−cb+c2

=
∫
f(x) dx+ c1

• Solve for y

y =
a2c−2abc+4ab e(

∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2−2ac e(

∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2+b2c−2bc e(

∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2+c

(
e(
∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2

)2
a2−2ab+2a e(

∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2+b2+2b e(

∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2−4 e(

∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2c+

(
e(
∫
f(x)dx)

√
ab−ca−cb+c2+c1

√
ab−ca−cb+c2

)2
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 1.157 (sec). Leaf size: 284� �
dsolve(diff(y(x),x)^2 = f(x)^2*(y(x)-a)*(y(x)-b)*(y(x)-c)^2,y(x), singsol=all)� �
y(x) = c e2

(∫
f(x)dx+c1

)√
(a−c)(b−c) + ((4b− 2c) a− 2bc) e

(∫
f(x)dx+c1

)√
(a−c)(b−c) + c(a− b)2

e2
(∫

f(x)dx+c1
)√

(a−c)(b−c) + (2a+ 2b− 4c) e
(∫

f(x)dx+c1
)√

(a−c)(b−c) + a2 − 2ab+ b2

y(x)

=
((4b− 2c) a− 2bc) e−

(∫
f(x)dx+c1

)√
(a−c)(b−c) +

(
e−2

(∫
f(x)dx+c1

)√
(a−c)(b−c) + (a− b)2

)
c

(2a+ 2b− 4c) e−
(∫

f(x)dx+c1
)√

(a−c)(b−c) + a2 − 2ab+ b2 + e−2
(∫

f(x)dx+c1
)√

(a−c)(b−c)

3 Solution by Mathematica
Time used: 60.31 (sec). Leaf size: 223� �
DSolve[(y'[x])^2==f[x]^2 (y[x]-a)(y[x]-b)(y[x]-c)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
b(a− c) + a(b− c) tan2 (1

2
√
c− a

√
b− c

(∫ x

1 −f(K[1])dK[1] + c1
))

(b− c) tan2 (1
2
√
c− a

√
b− c

(∫ x

1 −f(K[1])dK[1] + c1
))

+ a− c

y(x) →
b(a− c) + a(b− c) tan2 (1

2
√
c− a

√
b− c

(∫ x

1 f(K[2])dK[2] + c1
))

(b− c) tan2 (1
2
√
c− a

√
b− c

(∫ x

1 f(K[2])dK[2] + c1
))

+ a− c
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27.5 problem 771
Internal problem ID [4011]
Internal file name [OUTPUT/3504_Sunday_June_05_2022_09_29_36_AM_4332474/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 771.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′
2 − f(x)2 (y − u(x))2 (y − a) (y − b) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

y2 − ya− yb+ ab (u(x)− y) f(x) (1)
y′ = −

√
y2 − ya− yb+ ab (u(x)− y) f(x) (2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.

7588



7 Solution by Maple� �
dsolve(diff(y(x),x)^2 = f(x)^2*(y(x)-u(x))^2*(y(x)-a)*(y(x)-b),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^2==f[x]^2 (y[x]-u[x])^2 (y[x]-a)(y[x]-b),y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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27.6 problem 772
27.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7591

Internal problem ID [4012]
Internal file name [OUTPUT/3505_Sunday_June_05_2022_09_30_51_AM_17992365/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 772.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + 2y′ = −x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −1 +
√
1− x (1)

y′ = −1−
√
1− x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

−1 +
√
1− x dx

= −x− 2(1− x)
3
2

3 + c1

Summary
The solution(s) found are the following

(1)y = −x− 2(1− x)
3
2

3 + c1
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Verification of solutions

y = −x− 2(1− x)
3
2

3 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−1−
√
1− x dx

= −x+ 2(1− x)
3
2

3 + c2

Summary
The solution(s) found are the following

(1)y = −x+ 2(1− x)
3
2

3 + c2

Verification of solutions

y = −x+ 2(1− x)
3
2

3 + c2

Verified OK.

27.6.1 Maple step by step solution

Let’s solve
y′2 + 2y′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + 2y′

)
dx =

∫
−xdx+ c1

• Cannot compute integral∫ (
y′2 + 2y′

)
dx = −x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 45� �
dsolve(diff(y(x),x)^2+2*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) = (−2x+ 2)
√
1− x

3 − x+ c1

y(x) = (2x− 2)
√
1− x

3 − x+ c1

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 47� �
DSolve[(y'[x])^2+2 y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
3(1− x)3/2 − x+ c1

y(x) → 2
3(1− x)3/2 − x+ c1
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27.7 problem 773
27.7.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7593

Internal problem ID [4013]
Internal file name [OUTPUT/3506_Sunday_June_05_2022_09_30_55_AM_19364294/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 773.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′
2 − 2y′ + a(−y + x) = 0

27.7.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − 2p+ a(−y + x) = 0

Solving for y from the above results in

y = x+ p2 − 2p
a

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1

g = p(p− 2)
a

Hence (2) becomes

p− 1 =
(
p− 2
a

+ p

a

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = ax− 1
a

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1
p(x)−2

a
+ p(x)

a

(3)

This ODE is now solved for p(x). Integrating both sides gives

p(x) =
∫

a

2 dx

= ax

2 + c1

Substituing the above solution for p in (2A) gives

y = x+
(
ax
2 + c1

) (
ax
2 + c1 − 2

)
a

Summary
The solution(s) found are the following

(1)y = ax− 1
a

(2)y = x+
(
ax
2 + c1

) (
ax
2 + c1 − 2

)
a
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Verification of solutions

y = ax− 1
a

Verified OK.

y = x+
(
ax
2 + c1

) (
ax
2 + c1 − 2

)
a

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 28� �
dsolve(diff(y(x),x)^2-2*diff(y(x),x)+a*(x-y(x)) = 0,y(x), singsol=all)� �

y(x) = ax− 1
a

y(x) = (−c1 + x)2 a
4 + c1
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3 Solution by Mathematica
Time used: 0.304 (sec). Leaf size: 84� �
DSolve[(y'[x])^2-2*y'[x]+a*(x-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4a
(
x2 − 2

√
2c1x+ 2c12

)
− 1

a
+ x

y(x) → 1
4a
(
x2 + 2

√
2c1x+ 2c12

)
− 1

a
+ x

y(x) → x− 1
a
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27.8 problem 774
27.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7598

Internal problem ID [4014]
Internal file name [OUTPUT/3507_Sunday_June_05_2022_09_31_02_AM_30893703/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 774.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 2y′ − y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 +
√

y2 + 1 (1)
y′ = 1−

√
y2 + 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
1 +

√
y2 + 1

dy =
∫

dx

−(y2 + 1)
3
2

y
+
√

y2 + 1 y + arcsinh (y) + 1
y
= x+ c1

Summary
The solution(s) found are the following

(1)−(y2 + 1)
3
2

y
+
√

y2 + 1 y + arcsinh (y) + 1
y
= x+ c1
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Verification of solutions

−(y2 + 1)
3
2

y
+
√

y2 + 1 y + arcsinh (y) + 1
y
= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
1−

√
y2 + 1

dy =
∫

dx

1
y
+ (y2 + 1)

3
2

y
−
√

y2 + 1 y − arcsinh (y) = x+ c2

Summary
The solution(s) found are the following

(1)1
y
+ (y2 + 1)

3
2

y
−
√

y2 + 1 y − arcsinh (y) = x+ c2

Verification of solutions

1
y
+ (y2 + 1)

3
2

y
−
√

y2 + 1 y − arcsinh (y) = x+ c2

Verified OK.

27.8.1 Maple step by step solution

Let’s solve
y′2 − 2y′ − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+
√

y2+1
= 1

• Integrate both sides with respect to x∫
y′

1+
√

y2+1
dx =

∫
1dx+ c1

• Evaluate integral
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−
(
y2+1

) 3
2

y
+
√
y2 + 1 y + arcsinh(y) + 1

y
= x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 66� �
dsolve(diff(y(x),x)^2-2*diff(y(x),x)-y(x)^2 = 0,y(x), singsol=all)� �

−
√

y (x)2 + 1 + arcsinh (y(x)) y(x)− 1 + (−c1 + x) y(x)
y (x) = 0√

y (x)2 + 1− arcsinh (y(x)) y(x)− 1 + (−c1 + x) y(x)
y (x) = 0

3 Solution by Mathematica
Time used: 1.359 (sec). Leaf size: 104� �
DSolve[(y'[x])^2-2 y'[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

−
√

#12 + 1 +#1 log
(√

#12 + 1−#1
)
+ 1

#1 &

 [−x+ c1]

y(x) → InverseFunction
[
−
√

#12 + 1
#1 − log

(√
#12 + 1−#1

)
+ 1

#1&
]
[x+ c1]

y(x) → 0
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27.9 problem 775
27.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7601

Internal problem ID [4015]
Internal file name [OUTPUT/3508_Sunday_June_05_2022_09_31_06_AM_72222744/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 775.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 5y′ = −6

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 3 (1)
y′ = 2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

3 dx

= 3x+ c1

Summary
The solution(s) found are the following

(1)y = 3x+ c1

Verification of solutions

y = 3x+ c1

Verified OK.
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Solving equation (2)

Integrating both sides gives

y =
∫

2 dx

= 2x+ c2

Summary
The solution(s) found are the following

(1)y = 2x+ c2

Verification of solutions

y = 2x+ c2

Verified OK.

27.9.1 Maple step by step solution

Let’s solve
y′2 − 5y′ = −6

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − 5y′

)
dx =

∫
(−6) dx+ c1

• Cannot compute integral∫ (
y′2 − 5y′

)
dx = −6x+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)^2-5*diff(y(x),x)+6 = 0,y(x), singsol=all)� �

y(x) = 3x+ c1
y(x) = 2x+ c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 21� �
DSolve[(y'[x])^2-5 y'[x]+6==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x+ c1
y(x) → 3x+ c1
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27.10 problem 776
27.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7604

Internal problem ID [4016]
Internal file name [OUTPUT/3509_Sunday_June_05_2022_09_31_10_AM_65558649/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 776.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 7y′ = −12

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 4 (1)
y′ = 3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

4 dx

= 4x+ c1

Summary
The solution(s) found are the following

(1)y = 4x+ c1

Verification of solutions

y = 4x+ c1

Verified OK.
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Solving equation (2)

Integrating both sides gives

y =
∫

3 dx

= 3x+ c2

Summary
The solution(s) found are the following

(1)y = 3x+ c2

Verification of solutions

y = 3x+ c2

Verified OK.

27.10.1 Maple step by step solution

Let’s solve
y′2 − 7y′ = −12

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − 7y′

)
dx =

∫
(−12) dx+ c1

• Cannot compute integral∫ (
y′2 − 7y′

)
dx = −12x+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)^2-7*diff(y(x),x)+12 = 0,y(x), singsol=all)� �

y(x) = 4x+ c1
y(x) = 3x+ c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 21� �
DSolve[(y'[x])^2-7 y'[x]+12==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x+ c1
y(x) → 4x+ c1
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27.11 problem 777
27.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7607

Internal problem ID [4017]
Internal file name [OUTPUT/3510_Sunday_June_05_2022_09_31_14_AM_30139570/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 777.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + y′a = −b

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
a2 − 4b
2 − a

2 (1)

y′ = −a

2 −
√
a2 − 4b
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

a2 − 4b
2 − a

2 dx

= x

(√
a2 − 4b
2 − a

2

)
+ c1

Summary
The solution(s) found are the following

(1)y = x

(√
a2 − 4b
2 − a

2

)
+ c1
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Verification of solutions

y = x

(√
a2 − 4b
2 − a

2

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−a

2 −
√
a2 − 4b
2 dx

= x

(
−a

2 −
√
a2 − 4b
2

)
+ c2

Summary
The solution(s) found are the following

(1)y = x

(
−a

2 −
√
a2 − 4b
2

)
+ c2

Verification of solutions

y = x

(
−a

2 −
√
a2 − 4b
2

)
+ c2

Verified OK.

27.11.1 Maple step by step solution

Let’s solve
y′2 + y′a = −b

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + y′a

)
dx =

∫
−bdx+ c1

• Cannot compute integral∫ (
y′2 + y′a

)
dx = −bx+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 43� �
dsolve(diff(y(x),x)^2+a*diff(y(x),x)+b = 0,y(x), singsol=all)� �

y(x) = −ax

2 − x
√
a2 − 4b
2 + c1

y(x) = −ax

2 + x
√
a2 − 4b
2 + c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 59� �
DSolve[(y'[x])^2+a y'[x]+b==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2x

√
a2 − 4b− ax

2 + c1

y(x) → 1
2x

√
a2 − 4b− ax

2 + c1
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27.12 problem 778
27.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7610

Internal problem ID [4018]
Internal file name [OUTPUT/3511_Sunday_June_05_2022_09_31_18_AM_2376767/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 778.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + y′a = −bx

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a

2 +
√
a2 − 4bx

2 (1)

y′ = −a

2 −
√
a2 − 4bx

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

−a

2 +
√
a2 − 4bx

2 dx

= −(a2 − 4bx)
3
2

12b − ax

2 + c1

Summary
The solution(s) found are the following

(1)y = −(a2 − 4bx)
3
2

12b − ax

2 + c1
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Verification of solutions

y = −(a2 − 4bx)
3
2

12b − ax

2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−a

2 −
√
a2 − 4bx

2 dx

= −ax

2 + (a2 − 4bx)
3
2

12b + c2

Summary
The solution(s) found are the following

(1)y = −ax

2 + (a2 − 4bx)
3
2

12b + c2

Verification of solutions

y = −ax

2 + (a2 − 4bx)
3
2

12b + c2

Verified OK.

27.12.1 Maple step by step solution

Let’s solve
y′2 + y′a = −bx

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + y′a

)
dx =

∫
−bxdx+ c1

• Cannot compute integral∫ (
y′2 + y′a

)
dx = − b x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 70� �
dsolve(diff(y(x),x)^2+a*diff(y(x),x)+b*x = 0,y(x), singsol=all)� �

y(x) = (a2 − 4bx)
3
2 − 6b(ax− 2c1)
12b

y(x) = (−a2 + 4bx)
√
a2 − 4bx− 6b(ax− 2c1)

12b

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 68� �
DSolve[(y'[x])^2+a y'[x]+b x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −(a2 − 4bx)3/2 + 6abx
12b + c1

y(x) → 1
2

(
(a2 − 4bx)3/2

6b − ax

)
+ c1
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27.13 problem 779
27.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7613

Internal problem ID [4019]
Internal file name [OUTPUT/3512_Sunday_June_05_2022_09_31_23_AM_97620919/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 779.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + y′a+ yb = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a

2 +
√
a2 − 4yb

2 (1)

y′ = −a

2 −
√
a2 − 4yb

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
−a

2 +
√

a2−4by
2

dy =
∫

dx

−a ln (y)
2b −

2
√
a2 − 4yb+ a ln

(
−a+

√
a2 − 4yb

)
− a ln

(
a+

√
a2 − 4yb

)
2b = x+ c1

Summary
The solution(s) found are the following

(1)−a ln (y)
2b −

2
√
a2 − 4yb+ a ln

(
−a+

√
a2 − 4yb

)
− a ln

(
a+

√
a2 − 4yb

)
2b = x+ c1
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Verification of solutions

−a ln (y)
2b −

2
√
a2 − 4yb+ a ln

(
−a+

√
a2 − 4yb

)
− a ln

(
a+

√
a2 − 4yb

)
2b = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
−a

2 −
√

a2−4by
2

dy =
∫

dx

−a ln (y)
2b +

2
√
a2 − 4yb+ a ln

(
−a+

√
a2 − 4yb

)
− a ln

(
a+

√
a2 − 4yb

)
2b = x+ c2

Summary
The solution(s) found are the following

(1)−a ln (y)
2b +

2
√
a2 − 4yb+ a ln

(
−a+

√
a2 − 4yb

)
− a ln

(
a+

√
a2 − 4yb

)
2b = x+ c2

Verification of solutions

−a ln (y)
2b +

2
√
a2 − 4yb+ a ln

(
−a+

√
a2 − 4yb

)
− a ln

(
a+

√
a2 − 4yb

)
2b = x+ c2

Verified OK.

27.13.1 Maple step by step solution

Let’s solve
y′2 + y′a+ yb = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−a
2+

√
a2−4yb

2

= 1

• Integrate both sides with respect to x∫
y′

−a
2+

√
a2−4yb

2

dx =
∫
1dx+ c1

• Evaluate integral
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−a ln(y)
2b −

2
√

a2−4yb+a ln
(
−a+

√
a2−4yb

)
−a ln

(
a+
√

a2−4yb
)

2b = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 245� �
dsolve(diff(y(x),x)^2+a*diff(y(x),x)+b*y(x) = 0,y(x), singsol=all)� �

y(x) = −
a2
(
LambertW

(
−2

√
−b e

(c1−x)b−a
a

a

)
+ 2
)
LambertW

(
−2

√
−b e

(c1−x)b−a
a

a

)
4b

y(x) = −
a2
(
LambertW

(
2
√
−b e

(c1−x)b−a
a

a

)
+ 2
)
LambertW

(
2
√
−b e

(c1−x)b−a
a

a

)
4b

y(x) = e
−aLambertW

 2 e
(c1−x)b−a

a

a
√

− 1
b

−a+(c1−x)b

a

a

√
−1
b
+ e

−aLambertW

 2 e
(c1−x)b−a

a

a
√

− 1
b

−a+(c1−x)b

a
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3 Solution by Mathematica
Time used: 1.204 (sec). Leaf size: 119� �
DSolve[(y'[x])^2+a y'[x]+b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

[
−
√
a2 − 4#1b+ a log

(
b
(
a−

√
a2 − 4#1b

))
2b &

] [x
2 + c1

]
y(x) → InverseFunction

[
−
√
a2 − 4#1b− a log

(
b
(√

a2 − 4#1b+ a
))

2b &
] [

−x

2 + c1
]

y(x) → 0
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27.14 problem 780
27.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7617

Internal problem ID [4020]
Internal file name [OUTPUT/3513_Sunday_June_05_2022_09_31_30_AM_45225174/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 780.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + xy′ = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −x

2 +
√
x2 − 4
2 (1)

y′ = −x

2 −
√
x2 − 4
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

−x

2 +
√
x2 − 4
2 dx

= x
√
x2 − 4
4 − ln

(
x+

√
x2 − 4

)
− x2

4 + c1

Summary
The solution(s) found are the following

(1)y = x
√
x2 − 4
4 − ln

(
x+

√
x2 − 4

)
− x2

4 + c1
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Verification of solutions

y = x
√
x2 − 4
4 − ln

(
x+

√
x2 − 4

)
− x2

4 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−x

2 −
√
x2 − 4
2 dx

= −x2

4 − x
√
x2 − 4
4 + ln

(
x+

√
x2 − 4

)
+ c2

Summary
The solution(s) found are the following

(1)y = −x2

4 − x
√
x2 − 4
4 + ln

(
x+

√
x2 − 4

)
+ c2

Verification of solutions

y = −x2

4 − x
√
x2 − 4
4 + ln

(
x+

√
x2 − 4

)
+ c2

Verified OK.

27.14.1 Maple step by step solution

Let’s solve
y′2 + xy′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + xy′

)
dx =

∫
(−1) dx+ c1

• Cannot compute integral∫ (
y′2 + xy′

)
dx = −x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 63� �
dsolve(diff(y(x),x)^2+x*diff(y(x),x)+1 = 0,y(x), singsol=all)� �

y(x) = −x2

4 − x
√
x2 − 4
4 + ln

(
x+

√
x2 − 4

)
+ c1

y(x) = x
√
x2 − 4
4 − ln

(
x+

√
x2 − 4

)
− x2

4 + c1

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 87� �
DSolve[(y'[x])^2+x y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2

4 − 1
4
√
x2 − 4x− log

(√
x2 − 4− x

)
+ c1

y(x) → −x2

4 + 1
4
√
x2 − 4x+ log

(√
x2 − 4− x

)
+ c1
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27.15 problem 781
27.15.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7619

Internal problem ID [4021]
Internal file name [OUTPUT/3514_Sunday_June_05_2022_09_31_34_AM_23487743/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 781.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 + xy′ − y = 0

27.15.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 + xp− y = 0

Solving for y from the above results in

y = p2 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = p2 + xp

= p2 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c21 + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p2, then the
above equation becomes

x+ g′(p) = x+ 2p
= 0
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Solving the above for p results in

p1 = −x

2

Substituting the above back in (1) results in

y1 = −x2

4

Summary
The solution(s) found are the following

(1)y = c21 + c1x

(2)y = −x2

4
Verification of solutions

y = c21 + c1x

Verified OK.

y = −x2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −x2

4
y(x) = c1(c1 + x)

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 23� �
DSolve[(y'[x])^2+x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x+ c1)

y(x) → −x2

4
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27.16 problem 782
27.16.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7623

Internal problem ID [4022]
Internal file name [OUTPUT/3515_Sunday_June_05_2022_09_31_41_AM_37779410/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 782.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − xy′ + y = 0

27.16.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − xp+ y = 0

Solving for y from the above results in

y = −p2 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p2 + xp

= −p2 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = −p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = −c21 + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2, then the
above equation becomes

x+ g′(p) = x− 2p
= 0
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Solving the above for p results in

p1 =
x

2

Substituting the above back in (1) results in

y1 =
x2

4

Summary
The solution(s) found are the following

(1)y = −c21 + c1x

(2)y = x2

4
Verification of solutions

y = −c21 + c1x

Verified OK.

y = x2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)^2-x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = x2

4
y(x) = c1(−c1 + x)

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 25� �
DSolve[(y'[x])^2-x y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− c1)

y(x) → x2

4
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27.17 problem 783
27.17.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7627

Internal problem ID [4023]
Internal file name [OUTPUT/3516_Sunday_June_05_2022_09_31_48_AM_97076119/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 783.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 − xy′ − y = 0

27.17.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − xp− y = 0

Solving for y from the above results in

y = p2 − xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p

g = p2

Hence (2) becomes

2p = (−x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)
−x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −x(p) + 2p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
2p

q(p) = 1
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Hence the ode is

d

dp
x(p) + x(p)

2p = 1

The integrating factor µ is

µ = e
∫ 1

2pdp

= √
p

The ode becomes
d
dp(µx) = µ

d
dp(

√
p x) = √

p

d(√p x) = √
pdp

Integrating gives

√
p x =

∫
√
p dp

√
p x = 2p 3

2

3 + c1

Dividing both sides by the integrating factor µ = √
p results in

x(p) = 2p
3 + c1√

p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x

2 +
√
x2 + 4y
2

p = x

2 −
√
x2 + 4y
2

Substituting the above in the solution for x found above gives

x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

(3)x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y

Verification of solutions

y = 0

Verified OK.

x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

Verified OK.

x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 77� �
dsolve(diff(y(x),x)^2-x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

c1√
2x− 2

√
x2 + 4y (x)

+ 2x
3 +

√
x2 + 4y (x)

3 = 0

c1√
2x+ 2

√
x2 + 4y (x)

+ 2x
3 −

√
x2 + 4y (x)

3 = 0
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3 Solution by Mathematica
Time used: 60.276 (sec). Leaf size: 1003� �
DSolve[(y'[x])^2-x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

(
x2 + 3

√
−x6 + 20e3c1x3 + 8

√
e3c1 (−x3 + e3c1) 3 + 8e6c1

)
2 + 8e3c1x

4 3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

y(x) → 1
8

4x2 −
i
(√

3− i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

+ i
(√

3 + i
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

8

4x2 +
i
(√

3 + i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

−
(
1 + i

√
3
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x)

→
2 3
√
2x4 + 22/3

(
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1

)
2/3 + 4x2 3

√
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1 − 4 3

√
2e3c1x

8 3
√
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1

y(x) → 1
16

8x2 +
2 3
√
2
(
1 + i

√
3
)
x(−x3 + 2e3c1)

3
√

−2x6 − 10e3c1x3 +
√

e3c1 (4x3 + e3c1) 3 + e6c1

+ i22/3
(√

3 + i
)

3
√

−2x6 − 10e3c1x3 +
√
e3c1 (4x3 + e3c1) 3 + e6c1


y(x) → 1

16

8x2 +
2i 3
√
2
(√

3 + i
)
x(x3 − 2e3c1)

3
√

−2x6 − 10e3c1x3 +
√

e3c1 (4x3 + e3c1) 3 + e6c1

− 22/3
(
1 + i

√
3
)

3
√

−2x6 − 10e3c1x3 +
√
e3c1 (4x3 + e3c1) 3 + e6c1
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27.18 problem 784
27.18.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7633

Internal problem ID [4024]
Internal file name [OUTPUT/3517_Sunday_June_05_2022_09_31_56_AM_16215329/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 784.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 + xy′ − y = −x

27.18.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 + xp− y = −x

Solving for y from the above results in

y = (p+ 1)x+ p2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p+ 1
g = p2

Hence (2) becomes

−1 = (x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−1 = 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 1
x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −x(p)− 2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
q(p) = −2p

Hence the ode is
d

dp
x(p) + x(p) = −2p

The integrating factor µ is

µ = e
∫
1dp

= ep
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The ode becomes

d
dp(µx) = (µ) (−2p)

d
dp(e

px) = (ep) (−2p)

d(epx) = (−2p ep) dp

Integrating gives

epx =
∫

−2p ep dp

epx = −2(p− 1) ep + c1

Dividing both sides by the integrating factor µ = ep results in

x(p) = −2 e−p(p− 1) ep + c1e−p

which simplifies to

x(p) = −2p+ 2 + c1e−p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x

2 +
√
x2 + 4y − 4x

2

p = −x

2 −
√
x2 + 4y − 4x

2

Substituting the above in the solution for x found above gives

x = x−
√

x2 + 4y − 4x+ 2 + c1e
x
2−

√
x2+4y−4x

2

x = x+
√

x2 + 4y − 4x+ 2 + c1e
x
2+

√
x2+4y−4x

2

Summary
The solution(s) found are the following

(1)x = x−
√

x2 + 4y − 4x+ 2 + c1e
x
2−

√
x2+4y−4x

2

(2)x = x+
√

x2 + 4y − 4x+ 2 + c1e
x
2+

√
x2+4y−4x

2
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Verification of solutions

x = x−
√

x2 + 4y − 4x+ 2 + c1e
x
2−

√
x2+4y−4x

2

Verified OK.

x = x+
√

x2 + 4y − 4x+ 2 + c1e
x
2+

√
x2+4y−4x

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 36� �
dsolve(diff(y(x),x)^2+x*diff(y(x),x)+x-y(x) = 0,y(x), singsol=all)� �

y(x) = x− x2

4 + LambertW
(
c1e−1+x

2

2

)2

+ 2LambertW
(
c1e−1+x

2

2

)
+ 1
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3 Solution by Mathematica
Time used: 3.196 (sec). Leaf size: 177� �
DSolve[(y'[x])^2+x y'[x]+x -y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−
√

x2 + 4y(x)− 4x+ 2 log
(√

x2 + 4y(x)− 4x− x+ 2
)

− 2 log
(
−x
√

x2 + 4y(x)− 4x+ x2 + 4y(x)− 2x− 4
)
+ x = c1, y(x)

]
Solve

[
−4arctanh

(
(x− 5)

√
x2 + 4y(x)− 4x− x2 − 4y(x) + 7x− 6

(x− 3)
√
x2 + 4y(x)− 4x− x2 − 4y(x) + 5x− 2

)

+
√

x2 + 4y(x)− 4x+ x = c1, y(x)
]
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27.19 problem 785
27.19.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7638

Internal problem ID [4025]
Internal file name [OUTPUT/3518_Sunday_June_05_2022_09_32_02_AM_53501429/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 785.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 + (1− x) y′ + y = 0

27.19.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 + (1− x) p+ y = 0

Solving for y from the above results in

y = −p2 + px− p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p2 + px− p

= −p2 + px− p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −p2 − p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = −c21 + c1x− c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2 − p, then
the above equation becomes

x+ g′(p) = x− 2p− 1
= 0
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Solving the above for p results in

p1 =
x

2 − 1
2

Substituting the above back in (1) results in

y1 =
(x− 1)2

4

Summary
The solution(s) found are the following

(1)y = −c21 + c1x− c1

(2)y = (x− 1)2

4
Verification of solutions

y = −c21 + c1x− c1

Verified OK.

y = (x− 1)2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve(diff(y(x),x)^2+(1-x)*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = (x− 1)2

4
y(x) = c1(−c1 + x− 1)

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 28� �
DSolve[(y'[x])^2+(1-x)y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− 1− c1)

y(x) → 1
4(x− 1)2
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27.20 problem 786
27.20.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7642

Internal problem ID [4026]
Internal file name [OUTPUT/3519_Sunday_June_05_2022_09_32_09_AM_58468801/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 786.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − (x+ 1) y′ + y = 0

27.20.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − (x+ 1) p+ y = 0

Solving for y from the above results in

y = −p2 + px+ p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p2 + px+ p

= −p2 + px+ p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −p2 + p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = −c21 + c1x+ c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2 + p, then
the above equation becomes

x+ g′(p) = x− 2p+ 1
= 0

7643



Solving the above for p results in

p1 =
x

2 + 1
2

Substituting the above back in (1) results in

y1 =
(x+ 1)2

4

Summary
The solution(s) found are the following

(1)y = −c21 + c1x+ c1

(2)y = (x+ 1)2

4
Verification of solutions

y = −c21 + c1x+ c1

Verified OK.

y = (x+ 1)2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve(diff(y(x),x)^2-(1+x)*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = (x+ 1)2

4
y(x) = c1(x+ 1− c1)

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 28� �
DSolve[(y'[x])^2-(1+x)y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x+ 1− c1)

y(x) → 1
4(x+ 1)2
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27.21 problem 787
27.21.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7646

Internal problem ID [4027]
Internal file name [OUTPUT/3520_Sunday_June_05_2022_09_32_16_AM_62603723/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 787.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − (−x+ 2) y′ − y = −1

27.21.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − (−x+ 2) p− y = −1

Solving for y from the above results in

y = p2 + px− 2p+ 1 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = p2 + px− 2p+ 1
= p2 + px− 2p+ 1
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = p2 − 2p+ 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c21 + c1x− 2c1 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p2 − 2p + 1,
then the above equation becomes

x+ g′(p) = x+ 2p− 2
= 0
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Solving the above for p results in

p1 = −x

2 + 1

Substituting the above back in (1) results in

y1 = −1
4x

2 + x

Summary
The solution(s) found are the following

(1)y = c21 + c1x− 2c1 + 1

(2)y = −1
4x

2 + x

Verification of solutions

y = c21 + c1x− 2c1 + 1

Verified OK.

y = −1
4x

2 + x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 24� �
dsolve(diff(y(x),x)^2-(2-x)*diff(y(x),x)+1-y(x) = 0,y(x), singsol=all)� �

y(x) = x− 1
4x

2

y(x) = 1 + c21 + c1(−2 + x)

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 29� �
DSolve[(y'[x])^2-(2-x)y'[x]+1-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− 2) + 1 + c1
2

y(x) → −1
4(x− 4)x
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27.22 problem 788
27.22.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7650

Internal problem ID [4028]
Internal file name [OUTPUT/3521_Sunday_June_05_2022_09_32_22_AM_90287706/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 788.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 + (x+ a) y′ − y = 0

27.22.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 + (x+ a) p− y = 0

Solving for y from the above results in

y = pa+ p2 + px (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = pa+ p2 + px

= pa+ p2 + px
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = pa+ p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = ac1 + c21 + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = pa+ p2, then
the above equation becomes

x+ g′(p) = x+ a+ 2p
= 0

7651



Solving the above for p results in

p1 = −x

2 − a

2

Substituting the above back in (1) results in

y1 = −(x+ a)2

4

Summary
The solution(s) found are the following

(1)y = ac1 + c21 + c1x

(2)y = −(x+ a)2

4
Verification of solutions

y = ac1 + c21 + c1x

Verified OK.

y = −(x+ a)2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2+(a+x)*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −(x+ a)2

4
y(x) = c1(c1 + a+ x)

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 26� �
DSolve[(y'[x])^2+(a+x)y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(a+ x+ c1)

y(x) → −1
4(a+ x)2
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27.23 problem 789
27.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7655

Internal problem ID [4029]
Internal file name [OUTPUT/3522_Sunday_June_05_2022_09_32_29_AM_88433717/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 789.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 2xy′ = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x+
√
x2 − 1 (1)

y′ = x−
√
x2 − 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

x+
√
x2 − 1 dx

= x2

2 + x
√
x2 − 1
2 −

ln
(
x+

√
x2 − 1

)
2 + c1

Summary
The solution(s) found are the following

(1)y = x2

2 + x
√
x2 − 1
2 −

ln
(
x+

√
x2 − 1

)
2 + c1
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Verification of solutions

y = x2

2 + x
√
x2 − 1
2 −

ln
(
x+

√
x2 − 1

)
2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

x−
√
x2 − 1 dx

= x2

2 − x
√
x2 − 1
2 +

ln
(
x+

√
x2 − 1

)
2 + c2

Summary
The solution(s) found are the following

(1)y = x2

2 − x
√
x2 − 1
2 +

ln
(
x+

√
x2 − 1

)
2 + c2

Verification of solutions

y = x2

2 − x
√
x2 − 1
2 +

ln
(
x+

√
x2 − 1

)
2 + c2

Verified OK.

27.23.1 Maple step by step solution

Let’s solve
y′2 − 2xy′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − 2xy′

)
dx =

∫
(−1) dx+ c1

• Cannot compute integral∫ (
y′2 − 2xy′

)
dx = −x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 65� �
dsolve(diff(y(x),x)^2-2*x*diff(y(x),x)+1 = 0,y(x), singsol=all)� �

y(x) = x2

2 −
√
x2 − 1x

2 +
ln
(
x+

√
x2 − 1

)
2 + c1

y(x) = x2

2 +
√
x2 − 1x

2 −
ln
(
x+

√
x2 − 1

)
2 + c1

3 Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 90� �
DSolve[(y'[x])^2-2 x y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−2arctanh

(√
x2 − 1
x− 1

)
+ x2 +

√
x2 − 1x+ 2c1

)

y(x) → arctanh
(√

x2 − 1
x− 1

)
+ x2

2 − 1
2
√
x2 − 1x+ c1
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27.24 problem 790
27.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7658

Internal problem ID [4030]
Internal file name [OUTPUT/3523_Sunday_June_05_2022_09_32_33_AM_53739559/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 790.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + 2xy′ = 3x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −3x (1)
y′ = x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

−3x dx

= −3x2

2 + c1

Summary
The solution(s) found are the following

(1)y = −3x2

2 + c1
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Verification of solutions

y = −3x2

2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

x dx

= x2

2 + c2

Summary
The solution(s) found are the following

(1)y = x2

2 + c2

Verification of solutions

y = x2

2 + c2

Verified OK.

27.24.1 Maple step by step solution

Let’s solve
y′2 + 2xy′ = 3x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + 2xy′

)
dx =

∫
3x2dx+ c1

• Cannot compute integral∫ (
y′2 + 2xy′

)
dx = x3 + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)^2+2*x*diff(y(x),x)-3*x^2 = 0,y(x), singsol=all)� �

y(x) = x2

2 + c1

y(x) = −3x2

2 + c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 29� �
DSolve[(y'[x])^2+2 x y'[x]-3 x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3x2

2 + c1

y(x) → x2

2 + c1
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27.25 problem 791
27.25.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7660

Internal problem ID [4031]
Internal file name [OUTPUT/3524_Sunday_June_05_2022_09_32_38_AM_82449407/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 791.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 + 2xy′ − y = 0

27.25.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 + 2xp− y = 0

Solving for y from the above results in

y = p2 + 2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p
g = p2

Hence (2) becomes

−p = (2x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
2x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −2x(p) + 2p

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = −2
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Hence the ode is

d

dp
x(p) + 2x(p)

p
= −2

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ) (−2)

d
dp
(
p2x
)
=
(
p2
)
(−2)

d
(
p2x
)
=
(
−2p2

)
dp

Integrating gives

p2x =
∫

−2p2 dp

p2x = −2p3
3 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) = −2p
3 + c1

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x+
√

x2 + y

p = −x−
√

x2 + y

Substituting the above in the solution for x found above gives

x = (−8x2 − 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x−

√
x2 + y

)2
x = (8x2 + 2y)

√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x+

√
x2 + y

)2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = (−8x2 − 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x−

√
x2 + y

)2
(3)x = (8x2 + 2y)

√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x+

√
x2 + y

)2
Verification of solutions

y = 0

Verified OK.

x = (−8x2 − 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x−

√
x2 + y

)2
Verified OK.

x = (8x2 + 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x+

√
x2 + y

)2
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 650� �
dsolve(diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �
y(x)

=

(
x2 − x

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 +
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3
)(

x2 + 3x
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 1
3 +

(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3
)

4
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3

y(x)

=

(
i
√
3
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3 − i
√
3x2 +

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3 + 2x
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 + x2
)(

i
√
3
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3 − i

√
3x2 +

(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3 − 6x

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 + x2
)

16
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3

y(x)

=

(
i
√
3x2 − i

√
3
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3 + x2 + 2x

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 +
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3
)(

i
√
3x2 − i

√
3
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3 + x2 − 6x
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 1
3 +

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3
)

16
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3
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3 Solution by Mathematica
Time used: 60.255 (sec). Leaf size: 931� �
DSolve[(y'[x])^2+2 x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4

−x2 + x(x3 + 8e3c1)
3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

+ 3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 −
9i
(√

3− i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

+ 9i
(√

3 + i
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 +
9i
(√

3 + i
)
x(x3 + 8e3c1)

3
√
−x6 + 20e3c1x3 + 8

√
e3c1 (−x3 + e3c1) 3 + 8e6c1

− 9
(
1 + i

√
3
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

4

−x2 + x(x3 − 8e3c1)
3
√

−x6 − 20e3c1x3 + 8
√

e3c1 (x3 + e3c1) 3 + 8e6c1

+ 3
√

−x6 − 20e3c1x3 + 8
√
e3c1 (x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 +
9
(
1 + i

√
3
)
x(−x3 + 8e3c1)

3
√
−x6 − 20e3c1x3 + 8

√
e3c1 (x3 + e3c1) 3 + 8e6c1

+ 9i
(√

3 + i
)

3
√

−x6 − 20e3c1x3 + 8
√
e3c1 (x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 +
9i
(√

3 + i
)
x(x3 − 8e3c1)

3
√
−x6 − 20e3c1x3 + 8

√
e3c1 (x3 + e3c1) 3 + 8e6c1

− 9
(
1 + i

√
3
)

3
√

−x6 − 20e3c1x3 + 8
√
e3c1 (x3 + e3c1) 3 + 8e6c1
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27.26 problem 792
27.26.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7666

Internal problem ID [4032]
Internal file name [OUTPUT/3525_Sunday_June_05_2022_09_32_46_AM_14455997/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 792.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 + 2xy′ − y = 0

27.26.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 + 2xp− y = 0

Solving for y from the above results in

y = p2 + 2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p
g = p2

Hence (2) becomes

−p = (2x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
2x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −2x(p) + 2p

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = −2
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Hence the ode is

d

dp
x(p) + 2x(p)

p
= −2

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ) (−2)

d
dp
(
p2x
)
=
(
p2
)
(−2)

d
(
p2x
)
=
(
−2p2

)
dp

Integrating gives

p2x =
∫

−2p2 dp

p2x = −2p3
3 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) = −2p
3 + c1

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x+
√

x2 + y

p = −x−
√

x2 + y

Substituting the above in the solution for x found above gives

x = (−8x2 − 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x−

√
x2 + y

)2
x = (8x2 + 2y)

√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x+

√
x2 + y

)2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = (−8x2 − 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x−

√
x2 + y

)2
(3)x = (8x2 + 2y)

√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x+

√
x2 + y

)2
Verification of solutions

y = 0

Verified OK.

x = (−8x2 − 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x−

√
x2 + y

)2
Verified OK.

x = (8x2 + 2y)
√
x2 + y + 8x3 + 6yx+ 3c1

3
(
x+

√
x2 + y

)2
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 650� �
dsolve(diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �
y(x)

=

(
x2 − x

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 +
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3
)(

x2 + 3x
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 1
3 +

(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3
)

4
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3

y(x)

=

(
i
√
3
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3 − i
√
3x2 +

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3 + 2x
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 + x2
)(

i
√
3
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3 − i

√
3x2 +

(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3 − 6x

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 + x2
)

16
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3

y(x)

=

(
i
√
3x2 − i

√
3
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3 + x2 + 2x

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 1

3 +
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 2
3
)(

i
√
3x2 − i

√
3
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3 + x2 − 6x
(
−x3 + 2

√
3
√
−c1 (x3 − 3c1) + 6c1

) 1
3 +

(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3
)

16
(
−x3 + 2

√
3
√

−c1 (x3 − 3c1) + 6c1
) 2

3
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3 Solution by Mathematica
Time used: 60.131 (sec). Leaf size: 931� �
DSolve[(y'[x])^2+2 x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4

−x2 + x(x3 + 8e3c1)
3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

+ 3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 −
9i
(√

3− i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

+ 9i
(√

3 + i
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 +
9i
(√

3 + i
)
x(x3 + 8e3c1)

3
√
−x6 + 20e3c1x3 + 8

√
e3c1 (−x3 + e3c1) 3 + 8e6c1

− 9
(
1 + i

√
3
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

4

−x2 + x(x3 − 8e3c1)
3
√

−x6 − 20e3c1x3 + 8
√

e3c1 (x3 + e3c1) 3 + 8e6c1

+ 3
√

−x6 − 20e3c1x3 + 8
√
e3c1 (x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 +
9
(
1 + i

√
3
)
x(−x3 + 8e3c1)

3
√
−x6 − 20e3c1x3 + 8

√
e3c1 (x3 + e3c1) 3 + 8e6c1

+ 9i
(√

3 + i
)

3
√

−x6 − 20e3c1x3 + 8
√
e3c1 (x3 + e3c1) 3 + 8e6c1


y(x) → 1

72

−18x2 +
9i
(√

3 + i
)
x(x3 − 8e3c1)

3
√
−x6 − 20e3c1x3 + 8

√
e3c1 (x3 + e3c1) 3 + 8e6c1

− 9
(
1 + i

√
3
)

3
√

−x6 − 20e3c1x3 + 8
√
e3c1 (x3 + e3c1) 3 + 8e6c1
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27.27 problem 793
27.27.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7672

Internal problem ID [4033]
Internal file name [OUTPUT/3526_Sunday_June_05_2022_09_32_54_AM_69641946/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 793.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − 2xy′ + 2y = 0

27.27.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − 2xp+ 2y = 0

Solving for y from the above results in

y = −1
2p

2 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −1
2p

2 + xp

= −1
2p

2 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = −p2

2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− 1
2c

2
1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2

2 , then the
above equation becomes

x+ g′(p) = x− p

= 0
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Solving the above for p results in

p1 = x

Substituting the above back in (1) results in

y1 =
x2

2

Summary
The solution(s) found are the following

(1)y = c1x− 1
2c

2
1

(2)y = x2

2
Verification of solutions

y = c1x− 1
2c

2
1

Verified OK.

y = x2

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2-2*x*diff(y(x),x)+2*y(x) = 0,y(x), singsol=all)� �

y(x) = x2

2
y(x) = −c1(−2x+ c1)

2

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 29� �
DSolve[(y'[x])^2-2 x y'[x]+2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x− c1
2

2
y(x) → x2

2
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27.28 problem 794
27.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7677

Internal problem ID [4034]
Internal file name [OUTPUT/3527_Sunday_June_05_2022_09_33_01_AM_83046396/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 794.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − (1 + 2x) y′ = x(1− x)

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1
2 + x+

√
8x+ 1
2 (1)

y′ = 1
2 + x−

√
8x+ 1
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1

2 + x+
√
8x+ 1
2 dx

= x

2 + (8x+ 1)
3
2

24 + x2

2 + c1

Summary
The solution(s) found are the following

(1)y = x

2 + (8x+ 1)
3
2

24 + x2

2 + c1
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Verification of solutions

y = x

2 + (8x+ 1)
3
2

24 + x2

2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫ 1

2 + x−
√
8x+ 1
2 dx

= x2

2 + x

2 − (8x+ 1)
3
2

24 + c2

Summary
The solution(s) found are the following

(1)y = x2

2 + x

2 − (8x+ 1)
3
2

24 + c2

Verification of solutions

y = x2

2 + x

2 − (8x+ 1)
3
2

24 + c2

Verified OK.

27.28.1 Maple step by step solution

Let’s solve
y′2 − (1 + 2x) y′ = x(1− x)

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − (1 + 2x) y′

)
dx =

∫
x(1− x) dx+ c1

• Cannot compute integral∫ (
y′2 − (1 + 2x) y′

)
dx = −1

3x
3 + 1

2x
2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 50� �
dsolve(diff(y(x),x)^2-(1+2*x)*diff(y(x),x)-x*(1-x) = 0,y(x), singsol=all)� �

y(x) = (−8x− 1)
√
8x+ 1

24 + x2

2 + x

2 + c1

y(x) = x

2 + (8x+ 1)
3
2

24 + x2

2 + c1

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 62� �
DSolve[(y'[x])^2-(1+2*x)*y'[x]-x*(1-x)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + x

2 − 1
24(8x+ 1)3/2 + c1

y(x) → 1
2

(
x2 + x+ 1

12(8x+ 1)3/2
)
+ c1
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27.29 problem 795
27.29.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7679

Internal problem ID [4035]
Internal file name [OUTPUT/3528_Sunday_June_05_2022_09_33_05_AM_74057115/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 795.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 + 2(1− x) y′ + 2y = 2x

27.29.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 + 2(1− x) p+ 2y = 2x

Solving for y from the above results in

y = (p+ 1)x− p2

2 − p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p+ 1

g = −1
2p

2 − p

Hence (2) becomes

−1 = (x− p− 1) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−1 = 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 1
x− p (x)− 1 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −x(p) + p+ 1 (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
q(p) = p+ 1

Hence the ode is
d

dp
x(p) + x(p) = p+ 1

The integrating factor µ is

µ = e
∫
1dp

= ep
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The ode becomes
d
dp(µx) = (µ) (p+ 1)

d
dp(e

px) = (ep) (p+ 1)

d(epx) = ((p+ 1) ep) dp

Integrating gives

epx =
∫

(p+ 1) ep dp

epx = p ep + c1

Dividing both sides by the integrating factor µ = ep results in

x(p) = e−pp ep + c1e−p

which simplifies to

x(p) = p+ c1e−p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x− 1 +
√

x2 − 2y + 1
p = x− 1−

√
x2 − 2y + 1

Substituting the above in the solution for x found above gives

x = x− 1 +
√

x2 − 2y + 1 + c1e−x+1−
√

x2−2y+1

x = x− 1−
√

x2 − 2y + 1 + c1e−x+1+
√

x2−2y+1

Summary
The solution(s) found are the following

(1)x = x− 1 +
√

x2 − 2y + 1 + c1e−x+1−
√

x2−2y+1

(2)x = x− 1−
√

x2 − 2y + 1 + c1e−x+1+
√

x2−2y+1

Verification of solutions

x = x− 1 +
√

x2 − 2y + 1 + c1e−x+1−
√

x2−2y+1

Verified OK.

x = x− 1−
√

x2 − 2y + 1 + c1e−x+1+
√

x2−2y+1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)^2+2*(1-x)*diff(y(x),x)-2*x+2*y(x) = 0,y(x), singsol=all)� �

y(x) = x2

2 − LambertW (−e−xc1)2

2 − LambertW
(
−e−xc1

)
3 Solution by Mathematica
Time used: 1.796 (sec). Leaf size: 171� �
DSolve[(y'[x])^2+2(1-x)y'[x]-2(x-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2arctanh

(
(x− 2)

√
x2 − 2y(x) + 1− x2 + 2y(x) + 2x− 1

x
√

x2 − 2y(x) + 1− x2 + 2y(x)− 1

)

−
√

x2 − 2y(x) + 1 + x = c1, y(x)
]

Solve
[
2arctanh

(
x
√

x2 − 2y(x) + 1− x2 + 2y(x)− 1
(x+ 2)

√
x2 − 2y(x) + 1− x2 + 2y(x)− 2x− 1

)

+
√

x2 − 2y(x) + 1 + x = c1, y(x)
]
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27.30 problem 796
27.30.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7683

Internal problem ID [4036]
Internal file name [OUTPUT/3529_Sunday_June_05_2022_09_33_11_AM_60550158/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 796.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 + 3xy′ − y = 0

27.30.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 + 3xp− y = 0

Solving for y from the above results in

y = p2 + 3xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p
g = p2

Hence (2) becomes

−2p = (3x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 2p(x)
3x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3x(p) + 2p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3
2p

q(p) = −1

7684



Hence the ode is
d

dp
x(p) + 3x(p)

2p = −1

The integrating factor µ is

µ = e
∫ 3

2pdp

= p
3
2

The ode becomes
d
dp(µx) = (µ) (−1)

d
dp

(
p

3
2x
)
=
(
p

3
2

)
(−1)

d
(
p

3
2x
)
=
(
−p

3
2

)
dp

Integrating gives

p
3
2x =

∫
−p

3
2 dp

p
3
2x = −2p 5

2

5 + c1

Dividing both sides by the integrating factor µ = p
3
2 results in

x(p) = −2p
5 + c1

p
3
2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3x
2 +

√
9x2 + 4y

2

p = −3x
2 −

√
9x2 + 4y

2
Substituting the above in the solution for x found above gives

x = 3x
5 −

√
9x2 + 4y

5 + 8c1(
−6x+ 2

√
9x2 + 4y

) 3
2

x = 3x
5 +

√
9x2 + 4y

5 + 8c1(
−6x− 2

√
9x2 + 4y

) 3
2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = 3x
5 −

√
9x2 + 4y

5 + 8c1(
−6x+ 2

√
9x2 + 4y

) 3
2

(3)x = 3x
5 +

√
9x2 + 4y

5 + 8c1(
−6x− 2

√
9x2 + 4y

) 3
2

Verification of solutions

y = 0

Verified OK.

x = 3x
5 −

√
9x2 + 4y

5 + 8c1(
−6x+ 2

√
9x2 + 4y

) 3
2

Verified OK.

x = 3x
5 +

√
9x2 + 4y

5 + 8c1(
−6x− 2

√
9x2 + 4y

) 3
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 85� �
dsolve(diff(y(x),x)^2+3*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

c1(
−6x− 2

√
9x2 + 4y (x)

) 3
2
+ 2x

5 −
√
9x2 + 4y (x)

5 = 0

c1(
−6x+ 2

√
9x2 + 4y (x)

) 3
2
+ 2x

5 +
√
9x2 + 4y (x)

5 = 0
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3 Solution by Mathematica
Time used: 21.387 (sec). Leaf size: 776� �
DSolve[(y'[x])^2+3 x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 1
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 2
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 3
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 4
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 5
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 1
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 2
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 3
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 4
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 5
]

y(x) → 0
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27.31 problem 797
27.31.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7689

Internal problem ID [4037]
Internal file name [OUTPUT/3530_Sunday_June_05_2022_09_33_19_AM_89331376/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 27
Problem number: 797.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − 4(x+ 1) y′ + 4y = 0

27.31.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − 4(x+ 1) p+ 4y = 0

Solving for y from the above results in

y = −1
4p

2 + px+ p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −1
4p

2 + px+ p

= −1
4p

2 + px+ p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −1
4p

2 + p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− 1
4c

2
1 + c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −1
4p

2 + p, then
the above equation becomes

x+ g′(p) = x− p

2 + 1

= 0
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Solving the above for p results in

p1 = 2 + 2x

Substituting the above back in (1) results in

y1 = (x+ 1)2

Summary
The solution(s) found are the following

(1)y = c1x− 1
4c

2
1 + c1

(2)y = (x+ 1)2

Verification of solutions

y = c1x− 1
4c

2
1 + c1

Verified OK.

y = (x+ 1)2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)^2-4*(1+x)*diff(y(x),x)+4*y(x) = 0,y(x), singsol=all)� �

y(x) = (x+ 1)2

y(x) = −c1(−4x+ c1 − 4)
4

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 27� �
DSolve[(y'[x])^2-4(1+x)y'[x]+4 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
4c1(−4x− 4 + c1)

y(x) → (x+ 1)2
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28.1 problem 798
28.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7695

Internal problem ID [4038]
Internal file name [OUTPUT/3531_Sunday_June_05_2022_09_33_26_AM_42777103/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 798.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + axy′ = bc x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−a

2 +
√
a2 + 4cb

2

)
x (1)

y′ =
(
−a

2 −
√
a2 + 4cb

2

)
x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ (

−a+
√
a2 + 4cb

)
x

2 dx

=
x2(−a+

√
a2 + 4cb

)
4 + c1

Summary
The solution(s) found are the following

(1)y =
x2(−a+

√
a2 + 4cb

)
4 + c1
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Verification of solutions

y =
x2(−a+

√
a2 + 4cb

)
4 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
(
a+

√
a2 + 4cb

)
x

2 dx

= −
x2(a+√

a2 + 4cb
)

4 + c2

Summary
The solution(s) found are the following

(1)y = −
x2(a+√

a2 + 4cb
)

4 + c2

Verification of solutions

y = −
x2(a+√

a2 + 4cb
)

4 + c2

Verified OK.

28.1.1 Maple step by step solution

Let’s solve
y′2 + axy′ = bc x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + axy′

)
dx =

∫
bc x2dx+ c1

• Cannot compute integral∫ (
y′2 + axy′

)
dx = bc x3

3 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 53� �
dsolve(diff(y(x),x)^2+a*x*diff(y(x),x) = b*c*x^2,y(x), singsol=all)� �

y(x) = x2
√
a2 + 4bc
4 − a x2

4 + c1

y(x) = −x2
√
a2 + 4bc
4 − a x2

4 + c1

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 59� �
DSolve[(y'[x])^2+a x y'[x]==b c x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4x

2
(√

a2 + 4bc− a
)
+ c1

y(x) → −1
4x

2
(√

a2 + 4bc+ a
)
+ c1
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28.2 problem 799
28.2.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7697

Internal problem ID [4039]
Internal file name [OUTPUT/3532_Sunday_June_05_2022_09_33_30_AM_67981635/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 799.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − axy′ + ya = 0

28.2.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

−axp+ ya+ p2 = 0

Solving for y from the above results in

y = p(ax− p)
a

(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px− p2

a

= px− p2

a
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −p2

a

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− c21
a

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2

a
, then the

above equation becomes

x+ g′(p) = x− 2p
a

= 0
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Solving the above for p results in

p1 =
ax

2

Substituting the above back in (1) results in

y1 =
x2a

4

Summary
The solution(s) found are the following

(1)y = c1x− c21
a

(2)y = x2a

4
Verification of solutions

y = c1x− c21
a

Verified OK.

y = x2a

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

7699



3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)^2-a*x*diff(y(x),x)+a*y(x) = 0,y(x), singsol=all)� �

y(x) = a x2

4
y(x) = c1(ax− c1)

a

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 29� �
DSolve[(y'[x])^2-a x y'[x]+a y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
(
x− c1

a

)
y(x) → ax2

4
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28.3 problem 800
Internal problem ID [4040]
Internal file name [OUTPUT/3533_Sunday_June_05_2022_09_33_37_AM_77717616/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 800.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 + axy′ + cy = −b x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −ax

2 +
√
a2x2 − 4b x2 − 4cy

2 (1)

y′ = −ax

2 −
√
a2x2 − 4b x2 − 4cy

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −ax

2 +
√
a2x2 − 4b x2 − 4cy

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−ax

2 +
√
a2x2 − 4b x2 − 4cy

2

)
(b3 − a2)

−
(
−ax

2 +
√
a2x2 − 4b x2 − 4cy

2

)2

a3

−
(
−a

2 +
2x a2 − 8bx

4
√
a2x2 − 4b x2 − 4cy

)
(xa2+ya3+a1)+

c(xb2 + yb3 + b1)√
a2x2 − 4b x2 − 4cy

= 0

Putting the above in normal form gives

−−2a3x3a3 +
√
a2x2 − 4b x2 − 4cy a2x2a3 + 8ab x3a3 + 4a2x2a2 − 2a2x2b3 + 2a2xya3 + 8acxya3 + (a2x2 − 4b x2 − 4cy)

3
2 a3 − 4

√
a2x2 − 4b x2 − 4cy axa2 + 2

√
a2x2 − 4b x2 − 4cy axb3 − 2

√
a2x2 − 4b x2 − 4cy aya3 + 2a2xa1 − 16b x2a2 + 8b x2b3 − 8bxya3 − 2

√
a2x2 − 4b x2 − 4cy aa1 − 8bxa1 − 4cxb2 − 8cya2 + 4cyb3 − 4b2

√
a2x2 − 4b x2 − 4cy − 4cb1

4
√
a2x2 − 4b x2 − 4cy

= 0

Setting the numerator to zero gives

(6E)

2a3x3a3 −
√
a2x2 − 4b x2 − 4cy a2x2a3 − 8ab x3a3 − 4a2x2a2

+ 2a2x2b3 − 2a2xya3 − 8acxya3 −
(
a2x2 − 4b x2 − 4cy

) 3
2 a3

+ 4
√

a2x2 − 4b x2 − 4cy axa2 − 2
√
a2x2 − 4b x2 − 4cy axb3

+ 2
√

a2x2 − 4b x2 − 4cy aya3 − 2a2xa1 + 16b x2a2 − 8b x2b3

+ 8bxya3 + 2
√

a2x2 − 4b x2 − 4cy aa1 + 8bxa1 + 4cxb2
+ 8cya2 − 4cyb3 + 4b2

√
a2x2 − 4b x2 − 4cy + 4cb1 = 0
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Simplifying the above gives

(6E)

−
√

a2x2 − 4b x2 − 4cy a2x2a3 + 2
(
a2x2 − 4b x2 − 4cy

)
axa3 − 2a2x2a2

− 2a2xya3 −
(
a2x2 − 4b x2 − 4cy

) 3
2 a3 + 4

√
a2x2 − 4b x2 − 4cy axa2

− 2
√

a2x2 − 4b x2 − 4cy axb3 + 2
√

a2x2 − 4b x2 − 4cy aya3
− 2a2xa1 + 8b x2a2 + 8bxya3 − 2

(
a2x2 − 4b x2 − 4cy

)
a2

+ 2
(
a2x2 − 4b x2 − 4cy

)
b3 + 2

√
a2x2 − 4b x2 − 4cy aa1

+ 8bxa1 + 4cxb2 + 4cyb3 + 4b2
√

a2x2 − 4b x2 − 4cy + 4cb1 = 0

Since the PDE has radicals, simplifying gives

2a3x3a3 − 2
√

a2x2 − 4b x2 − 4cy a2x2a3 − 8ab x3a3 − 4a2x2a2

+ 2a2x2b3 − 2a2xya3 − 8acxya3 + 4b x2
√
a2x2 − 4b x2 − 4cy a3

− 2a2xa1 + 4
√

a2x2 − 4b x2 − 4cy axa2 − 2
√
a2x2 − 4b x2 − 4cy axb3

+ 2
√

a2x2 − 4b x2 − 4cy aya3 + 16b x2a2 − 8b x2b3 + 8bxya3
+ 4c

√
a2x2 − 4b x2 − 4cy ya3 + 2

√
a2x2 − 4b x2 − 4cy aa1 + 8bxa1

+ 4cxb2 + 8cya2 − 4cyb3 + 4cb1 + 4b2
√
a2x2 − 4b x2 − 4cy = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
a2x2 − 4b x2 − 4cy

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

a2x2 − 4b x2 − 4cy = v3
}

The above PDE (6E) now becomes

(7E)
2a3v31a3 − 2v3a2v21a3 − 8abv31a3 − 4a2v21a2 − 2a2v1v2a3 + 2a2v21b3
− 8acv1v2a3 + 4bv21v3a3 − 2a2v1a1 + 4v3av1a2 + 2v3av2a3
− 2v3av1b3 + 16bv21a2 + 8bv1v2a3 − 8bv21b3 + 4cv3v2a3 + 2v3aa1
+ 8bv1a1 + 8cv2a2 + 4cv1b2 − 4cv2b3 + 4cb1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)

(
2a3a3 − 8aba3

)
v31 +

(
−2a2a3 + 4ba3

)
v21v3

+
(
−4a2a2 + 2a2b3 + 16ba2 − 8bb3

)
v21 +

(
−2a2a3 − 8aca3 + 8ba3

)
v1v2

+ (4aa2 − 2ab3) v1v3 +
(
−2a2a1 + 8ba1 + 4cb2

)
v1

+ (2aa3 + 4ca3) v2v3 + (8ca2 − 4cb3) v2 + (2aa1 + 4b2) v3 + 4cb1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4cb1 = 0
−2a2a3 + 4ba3 = 0
2a3a3 − 8aba3 = 0
2aa3 + 4ca3 = 0
2aa1 + 4b2 = 0

4aa2 − 2ab3 = 0
8ca2 − 4cb3 = 0

−2a2a3 − 8aca3 + 8ba3 = 0
−2a2a1 + 8ba1 + 4cb2 = 0

−4a2a2 + 2a2b3 + 16ba2 − 8bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 2y
x

= 2y
x

This is easily solved to give

y = c1x
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x2

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −ax

2 +
√
a2x2 − 4b x2 − 4cy

2
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Evaluating all the partial derivatives gives

Rx = −2y
x3

Ry =
1
x2

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x2

−x2a+
√

(a2 − 4b)x2 − 4cy x− 4y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2√

−4Rc+ a2 − 4b− 4R− a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 2√

−4Rc+ a2 − 4b− 4R− a
dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1

Which simplifies to

ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1
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Verification of solutions

ln (x) =
∫ y

x2 2√
−4_ac+ a2 − 4b− 4_a− a

d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −ax

2 −
√
a2x2 − 4b x2 − 4cy

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−ax

2 −
√
a2x2 − 4b x2 − 4cy

2

)
(b3 − a2)

−
(
−ax

2 −
√
a2x2 − 4b x2 − 4cy

2

)2

a3

−
(
−a

2−
2x a2 − 8bx

4
√
a2x2 − 4b x2 − 4cy

)
(xa2+ya3+a1)−

c(xb2 + yb3 + b1)√
a2x2 − 4b x2 − 4cy

= 0

Putting the above in normal form gives

−2a3x3a3 +
√
a2x2 − 4b x2 − 4cy a2x2a3 − 8ab x3a3 − 4a2x2a2 + 2a2x2b3 − 2a2xya3 − 8acxya3 + (a2x2 − 4b x2 − 4cy)

3
2 a3 − 4

√
a2x2 − 4b x2 − 4cy axa2 + 2

√
a2x2 − 4b x2 − 4cy axb3 − 2

√
a2x2 − 4b x2 − 4cy aya3 − 2a2xa1 + 16b x2a2 − 8b x2b3 + 8bxya3 − 2

√
a2x2 − 4b x2 − 4cy aa1 + 8bxa1 + 4cxb2 + 8cya2 − 4cyb3 − 4b2

√
a2x2 − 4b x2 − 4cy + 4cb1

4
√
a2x2 − 4b x2 − 4cy

= 0
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Setting the numerator to zero gives

(6E)

−2a3x3a3 −
√

a2x2 − 4b x2 − 4cy a2x2a3 + 8ab x3a3 + 4a2x2a2

− 2a2x2b3 + 2a2xya3 + 8acxya3 −
(
a2x2 − 4b x2 − 4cy

) 3
2 a3

+ 4
√

a2x2 − 4b x2 − 4cy axa2 − 2
√

a2x2 − 4b x2 − 4cy axb3
+ 2
√

a2x2 − 4b x2 − 4cy aya3 + 2a2xa1 − 16b x2a2 + 8b x2b3

− 8bxya3 + 2
√

a2x2 − 4b x2 − 4cy aa1 − 8bxa1 − 4cxb2
− 8cya2 + 4cyb3 + 4b2

√
a2x2 − 4b x2 − 4cy − 4cb1 = 0

Simplifying the above gives

(6E)

−
√

a2x2 − 4b x2 − 4cy a2x2a3 − 2
(
a2x2 − 4b x2 − 4cy

)
axa3 + 2a2x2a2

+ 2a2xya3 −
(
a2x2 − 4b x2 − 4cy

) 3
2 a3 + 4

√
a2x2 − 4b x2 − 4cy axa2

− 2
√

a2x2 − 4b x2 − 4cy axb3 + 2
√

a2x2 − 4b x2 − 4cy aya3
+ 2a2xa1 − 8b x2a2 − 8bxya3 + 2

(
a2x2 − 4b x2 − 4cy

)
a2

− 2
(
a2x2 − 4b x2 − 4cy

)
b3 + 2

√
a2x2 − 4b x2 − 4cy aa1

− 8bxa1 − 4cxb2 − 4cyb3 + 4b2
√

a2x2 − 4b x2 − 4cy − 4cb1 = 0

Since the PDE has radicals, simplifying gives

−2a3x3a3 − 2
√
a2x2 − 4b x2 − 4cy a2x2a3 + 8ab x3a3 + 4a2x2a2

− 2a2x2b3 + 2a2xya3 + 8acxya3 + 4b x2
√

a2x2 − 4b x2 − 4cy a3
+ 2a2xa1 + 4

√
a2x2 − 4b x2 − 4cy axa2 − 2

√
a2x2 − 4b x2 − 4cy axb3

+ 2
√

a2x2 − 4b x2 − 4cy aya3 − 16b x2a2 + 8b x2b3 − 8bxya3
+ 4c

√
a2x2 − 4b x2 − 4cy ya3 + 2

√
a2x2 − 4b x2 − 4cy aa1 − 8bxa1

− 4cxb2 − 8cya2 + 4cyb3 − 4cb1 + 4b2
√
a2x2 − 4b x2 − 4cy = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
a2x2 − 4b x2 − 4cy

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

a2x2 − 4b x2 − 4cy = v3
}
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The above PDE (6E) now becomes

(7E)
−2a3v31a3 − 2v3a2v21a3 + 8abv31a3 + 4a2v21a2 + 2a2v1v2a3 − 2a2v21b3
+ 8acv1v2a3 + 4bv21v3a3 + 2a2v1a1 + 4v3av1a2 + 2v3av2a3
− 2v3av1b3 − 16bv21a2 − 8bv1v2a3 + 8bv21b3 + 4cv3v2a3 + 2v3aa1
− 8bv1a1 − 8cv2a2 − 4cv1b2 + 4cv2b3 − 4cb1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(
−2a3a3 + 8aba3

)
v31 +

(
−2a2a3 + 4ba3

)
v21v3

+
(
4a2a2 − 2a2b3 − 16ba2 + 8bb3

)
v21 +

(
2a2a3 + 8aca3 − 8ba3

)
v1v2

+ (4aa2 − 2ab3) v1v3 +
(
2a2a1 − 8ba1 − 4cb2

)
v1 + (2aa3 + 4ca3) v2v3

+ (−8ca2 + 4cb3) v2 + (2aa1 + 4b2) v3 − 4cb1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4cb1 = 0
−2a2a3 + 4ba3 = 0

−2a3a3 + 8aba3 = 0
2aa3 + 4ca3 = 0
2aa1 + 4b2 = 0

4aa2 − 2ab3 = 0
−8ca2 + 4cb3 = 0

2a2a3 + 8aca3 − 8ba3 = 0
2a2a1 − 8ba1 − 4cb2 = 0

4a2a2 − 2a2b3 − 16ba2 + 8bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

7 Solution by Maple� �
dsolve(diff(y(x),x)^2+a*x*diff(y(x),x)+b*x^2+c*y(x) = 0,y(x), singsol=all)� �

No solution found

7710



3 Solution by Mathematica
Time used: 2.892 (sec). Leaf size: 1085� �
DSolve[(y'[x])^2+a x y'[x]+b x^2+c y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

RootSum
#14−2#13c−2#12a2−4#12ac+8#12b−2#1a2c+8#1bc+a4−8a2b

+16b2&,
−#13 log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+#13 log(x) + #12c log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
−#12c log(x) + #1a2 log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
− 4#1b log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+ 2#1ac log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+ a2c log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
− 4bc log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
−#1a2 log(x)− 2#1ac log(x) + 4#1b log(x)− a2c log(x) + 4bc log(x)

−2#13 + 3#12c+ 2#1a2 + 4#1ac− 8#1b+ a2c− 4bc
&


− log

(√
−cy(x)

√
x2 (a2 − 4b)− 4cy(x) + 2cy(x)

)
+ 1

2 log(y(x)) + 2 log(x) = c1, y(x)


Solve

RootSum
#14+2#13c−2#12a2−4#12ac+8#12b+2#1a2c−8#1bc+a4−8a2b

+16b2&,
#13 log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+#13(− log(x)) + #12c log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
−#12c log(x)−#1a2 log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+ 4#1b log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
− 2#1ac log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+ a2c log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
− 4bc log

(
#1x−

√
x2 (a2 − 4b)− 4cy(x) + 2

√
−cy(x)

)
+#1a2 log(x) + 2#1ac log(x)− 4#1b log(x)− a2c log(x) + 4bc log(x)

2#13 + 3#12c− 2#1a2 − 4#1ac+ 8#1b+ a2c− 4bc
&


− log

(√
−cy(x)

√
x2 (a2 − 4b)− 4cy(x) + 2cy(x)

)
+ 1

2 log(y(x)) + 2 log(x) = c1, y(x)
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28.4 problem 801
28.4.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7712

Internal problem ID [4041]
Internal file name [OUTPUT/3534_Sunday_June_05_2022_09_35_51_AM_40287496/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 801.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 + (bx+ a) y′ − yb = −c

28.4.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 + (bx+ a) p− by = −c

Solving for y from the above results in

y = pbx+ pa+ p2 + c

b
(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ pa+ p2 + c

b

= px+ pa+ p2 + c

b
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = pa+ p2 + c

b

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ ac1 + c21 + c

b

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = pa+p2+c
b

, then
the above equation becomes

x+ g′(p) = x+ a+ 2p
b

= 0
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Solving the above for p results in

p1 = −bx

2 − a

2

Substituting the above back in (1) results in

y1 =
−b2x2 − 2abx− a2 + 4c

4b

Summary
The solution(s) found are the following

(1)y = c1x+ ac1 + c21 + c

b

(2)y = −b2x2 − 2abx− a2 + 4c
4b

Verification of solutions

y = c1x+ ac1 + c21 + c

b

Verified OK.

y = −b2x2 − 2abx− a2 + 4c
4b

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 50� �
dsolve(diff(y(x),x)^2+(b*x+a)*diff(y(x),x)+c = b*y(x),y(x), singsol=all)� �

y(x) = −b2x2 − 2bxa− a2 + 4c
4b

y(x) = c21 + (bx+ a) c1 + c

b

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 51� �
DSolve[(y'[x])^2+(a+b x)y'[x]+c==b y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c+ c1(a+ bx+ c1)
b

y(x) → −a2 + 2abx+ b2x2 − 4c
4b
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28.5 problem 802
28.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7717

Internal problem ID [4042]
Internal file name [OUTPUT/3535_Sunday_June_05_2022_09_35_58_AM_32424933/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 802.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 2y′x2 + 2xy′ = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 0 (1)
y′ = 2x2 − 2x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1

Verification of solutions
y = c1

Verified OK.
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Solving equation (2)

Integrating both sides gives

y =
∫

2x2 − 2x dx

= 2
3x

3 − x2 + c2

Summary
The solution(s) found are the following

(1)y = 2
3x

3 − x2 + c2

Verification of solutions

y = 2
3x

3 − x2 + c2

Verified OK.

28.5.1 Maple step by step solution

Let’s solve
y′2 − 2y′x2 + 2xy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − 2y′x2 + 2xy′

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2 − 2y′x2 + 2xy′

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2-2*x^2*diff(y(x),x)+2*x*diff(y(x),x) = 0,y(x), singsol=all)� �

y(x) = 2
3x

3 − x2 + c1

y(x) = c1

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 26� �
DSolve[(y'[x])^2-2 x^2 y'[x]+2 x y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1

y(x) → 2x3

3 − x2 + c1
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28.6 problem 804
Internal problem ID [4043]
Internal file name [OUTPUT/3536_Sunday_June_05_2022_09_36_03_AM_34456961/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 804.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 + a x3y′ − 2ya x2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−x2a

2 +
√
a2x4 + 8ya

2

)
x (1)

y′ =
(
−x2a

2 −
√
a2x4 + 8ya

2

)
x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
−x2a+

√
a2x4 + 8ya

)
x

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x2a+

√
a2x4 + 8ya

)
x(b3 − a2)

2 −
(
−x2a+

√
a2x4 + 8ya

)2
x2a3

4

−


(
−2ax+ 2a2x3√

a2x4+8ya

)
x

2 − x2a

2 +
√
a2x4 + 8ya

2

 (xa2 + ya3 + a1)

− 2ax(xb2 + yb3 + b1)√
a2x4 + 8ya

= 0

Putting the above in normal form gives

−−2a3x8a3 +
√
a2x4 + 8ya a2x6a3 + 8a2x5a2 − 2a2x5b3 − 10a2x4ya3 + 6a2x4a1 + (a2x4 + 8ya)

3
2 x2a3 − 8

√
a2x4 + 8ya a x3a2 + 2

√
a2x4 + 8ya a x3b3 − 6

√
a2x4 + 8ya a x2ya3 − 6

√
a2x4 + 8ya a x2a1 + 8a x2b2 + 32axya2 − 8axyb3 + 16a y2a3 + 8axb1 + 16aya1 − 4b2

√
a2x4 + 8ya

4
√
a2x4 + 8ya

= 0

Setting the numerator to zero gives

(6E)
2a3x8a3−

√
a2x4 + 8ya a2x6a3−8a2x5a2+2a2x5b3+10a2x4ya3−6a2x4a1

−
(
a2x4 + 8ya

) 3
2 x2a3 + 8

√
a2x4 + 8ya a x3a2 − 2

√
a2x4 + 8ya a x3b3

+ 6
√

a2x4 + 8ya a x2ya3 + 6
√

a2x4 + 8ya a x2a1 − 8a x2b2 − 32axya2
+ 8axyb3 − 16a y2a3 − 8axb1 − 16aya1 + 4b2

√
a2x4 + 8ya = 0
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Simplifying the above gives

(6E)

−
√

a (a x4 + 8y) a2x6a3 + 2
(
a2x4 + 8ya

)
a x4a3

− 4a2x5a2 − 4a2x4ya3 − 4a2x4a1 −
(
a
(
a x4 + 8y

)) 3
2x2a3

+ 8
√

a (a x4 + 8y) a x3a2 − 2
√

a (a x4 + 8y) a x3b3

+6
√

a (a x4 + 8y) a x2ya3 +6
√

a (a x4 + 8y) a x2a1 − 4
(
a2x4 +8ya

)
xa2

+ 2
(
a2x4 + 8ya

)
xb3 − 2

(
a2x4 + 8ya

)
ya3 − 8a x2b2 − 8axyb3

− 2
(
a2x4 + 8ya

)
a1 − 8axb1 + 4b2

√
a (a x4 + 8y) = 0

Since the PDE has radicals, simplifying gives

2a3x8a3 − 2
√

a (a x4 + 8y) a2x6a3 − 8a2x5a2 + 2a2x5b3 + 10a2x4ya3

− 6a2x4a1 + 8
√

a (a x4 + 8y) a x3a2 − 2
√

a (a x4 + 8y) a x3b3

− 2
√

a (a x4 + 8y) a x2ya3 + 6
√

a (a x4 + 8y) a x2a1 − 8a x2b2 − 32axya2
+ 8axyb3 − 16a y2a3 − 8axb1 − 16aya1 + 4b2

√
a (a x4 + 8y) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
a (a x4 + 8y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
a (a x4 + 8y) = v3

}
The above PDE (6E) now becomes

(7E)2a3v81a3 − 2v3a2v61a3 − 8a2v51a2 + 10a2v41v2a3 + 2a2v51b3 − 6a2v41a1
+ 8v3av31a2 − 2v3av21v2a3 − 2v3av31b3 + 6v3av21a1 − 32av1v2a2
− 16av22a3 − 8av21b2 + 8av1v2b3 − 16av2a1 − 8av1b1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)2a3v81a3 − 2v3a2v61a3 +
(
−8a2a2 + 2a2b3

)
v51 + 10a2v41v2a3

− 6a2v41a1 + (8aa2 − 2ab3) v31v3 − 2v3av21v2a3 + 6v3av21a1 − 8av21b2
+ (−32aa2 + 8ab3) v1v2 − 8av1b1 − 16av22a3 − 16av2a1 + 4b2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4b2 = 0
−16aa1 = 0

6aa1 = 0
−16aa3 = 0
−2aa3 = 0
−8ab1 = 0
−8ab2 = 0
−6a2a1 = 0
−2a2a3 = 0
10a2a3 = 0
2a3a3 = 0

−32aa2 + 8ab3 = 0
8aa2 − 2ab3 = 0

−8a2a2 + 2a2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y −
((

−x2a+
√
a2x4 + 8ya

)
x

2

)
(x)

= a x4

2 − x2√a2x4 + 8ya
2 + 4y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a x4

2 − x2
√

a2x4+8ya
2 + 4y

dy

Which results in

S = ln (y)
4 +

ln
(
−x2a+

√
a2x4 + 8ya

)
4 −

ln
(
x2a+

√
a2x4 + 8ya

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−x2a+

√
a2x4 + 8ya

)
x

2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x
√
a√

a x4 + 8y

Sy =
x2√a+

√
a x4 + 8y

4
√
a x4 + 8y y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

((
−x2√a−

√
a x4 + 8y

)√
a (a x4 + 8y) + a

3
2x4 +

√
a x4 + 8y a x2 + 8

√
a y
)
x

8
√
a x4 + 8y y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 −

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1

Which simplifies to

ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 −

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1

Summary
The solution(s) found are the following

(1)ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 −

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1
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Verification of solutions

ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 −

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
x2a+

√
a2x4 + 8ya

)
x

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
x2a+

√
a2x4 + 8ya

)
x(b3 − a2)

2 −
(
x2a+

√
a2x4 + 8ya

)2
x2a3

4

−

−

(
2ax+ 2a2x3√

a2x4+8ya

)
x

2 − x2a

2 −
√
a2x4 + 8ya

2

 (xa2 + ya3 + a1)

+ 2ax(xb2 + yb3 + b1)√
a2x4 + 8ya

= 0

Putting the above in normal form gives

−2a3x8a3 +
√
a2x4 + 8ya a2x6a3 − 8a2x5a2 + 2a2x5b3 + 10a2x4ya3 − 6a2x4a1 + (a2x4 + 8ya)

3
2 x2a3 − 8

√
a2x4 + 8ya a x3a2 + 2

√
a2x4 + 8ya a x3b3 − 6

√
a2x4 + 8ya a x2ya3 − 6

√
a2x4 + 8ya a x2a1 − 8a x2b2 − 32axya2 + 8axyb3 − 16a y2a3 − 8axb1 − 16aya1 − 4b2

√
a2x4 + 8ya

4
√
a2x4 + 8ya

= 0
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Setting the numerator to zero gives

(6E)
−2a3x8a3 −

√
a2x4 + 8ya a2x6a3 + 8a2x5a2 − 2a2x5b3 − 10a2x4ya3

+ 6a2x4a1 −
(
a2x4 + 8ya

) 3
2 x2a3 + 8

√
a2x4 + 8ya a x3a2

− 2
√

a2x4 + 8ya a x3b3 + 6
√
a2x4 + 8ya a x2ya3

+ 6
√

a2x4 + 8ya a x2a1 + 8a x2b2 + 32axya2 − 8axyb3
+ 16a y2a3 + 8axb1 + 16aya1 + 4b2

√
a2x4 + 8ya = 0

Simplifying the above gives

(6E)

−
√

a (a x4 + 8y) a2x6a3 − 2
(
a2x4 + 8ya

)
a x4a3

+ 4a2x5a2 + 4a2x4ya3 + 4a2x4a1 −
(
a
(
a x4 + 8y

)) 3
2x2a3

+ 8
√

a (a x4 + 8y) a x3a2 − 2
√

a (a x4 + 8y) a x3b3

+ 6
√

a (a x4 + 8y) a x2ya3 + 6
√
a (a x4 + 8y) a x2a1 + 4

(
a2x4 + 8ya

)
xa2

− 2
(
a2x4 + 8ya

)
xb3 + 2

(
a2x4 + 8ya

)
ya3 + 8a x2b2 + 8axyb3

+ 2
(
a2x4 + 8ya

)
a1 + 8axb1 + 4b2

√
a (a x4 + 8y) = 0

Since the PDE has radicals, simplifying gives

−2a3x8a3 − 2
√

a (a x4 + 8y) a2x6a3 + 8a2x5a2 − 2a2x5b3 − 10a2x4ya3

+ 6a2x4a1 + 8
√

a (a x4 + 8y) a x3a2 − 2
√
a (a x4 + 8y) a x3b3

− 2
√

a (a x4 + 8y) a x2ya3 + 6
√

a (a x4 + 8y) a x2a1 + 8a x2b2 + 32axya2
− 8axyb3 + 16a y2a3 + 8axb1 + 16aya1 + 4b2

√
a (a x4 + 8y) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
a (a x4 + 8y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
a (a x4 + 8y) = v3

}
The above PDE (6E) now becomes

(7E)−2a3v81a3 − 2v3a2v61a3 + 8a2v51a2 − 10a2v41v2a3 − 2a2v51b3 + 6a2v41a1
+ 8v3av31a2 − 2v3av21v2a3 − 2v3av31b3 + 6v3av21a1 + 32av1v2a2
+ 16av22a3 + 8av21b2 − 8av1v2b3 + 16av2a1 + 8av1b1 + 4b2v3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2a3v81a3 − 2v3a2v61a3 +
(
8a2a2 − 2a2b3

)
v51 − 10a2v41v2a3

+ 6a2v41a1 + (8aa2 − 2ab3) v31v3 − 2v3av21v2a3 + 6v3av21a1 + 8av21b2
+ (32aa2 − 8ab3) v1v2 + 8av1b1 + 16av22a3 + 16av2a1 + 4b2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4b2 = 0
6aa1 = 0
16aa1 = 0
−2aa3 = 0
16aa3 = 0
8ab1 = 0
8ab2 = 0
6a2a1 = 0

−10a2a3 = 0
−2a2a3 = 0
−2a3a3 = 0

8aa2 − 2ab3 = 0
32aa2 − 8ab3 = 0
8a2a2 − 2a2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 4a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y −
(
−
(
x2a+

√
a2x4 + 8ya

)
x

2

)
(x)

= a x4

2 + x2√a2x4 + 8ya
2 + 4y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

a x4

2 + x2
√

a2x4+8ya
2 + 4y

dy

Which results in

S = ln (y)
4 −

ln
(
−x2a+

√
a2x4 + 8ya

)
4 +

ln
(
x2a+

√
a2x4 + 8ya

)
4
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
x2a+

√
a2x4 + 8ya

)
x

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x
√
a√

a x4 + 8y

Sy =
−x2√a+

√
a x4 + 8y

4
√
a x4 + 8y y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

((
−x2√a+

√
a x4 + 8y

)√
a (a x4 + 8y)− a

3
2x4 +

√
a x4 + 8y a x2 − 8

√
a y
)
x

8
√
a x4 + 8y y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 +

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1
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Which simplifies to

ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 +

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1

Summary
The solution(s) found are the following

(1)ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 +

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1

Verification of solutions

ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 + 8y

)
4 +

ln
(
x2a+

√
a
√
a x4 + 8y

)
4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.454 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)^2+a*x^3*diff(y(x),x)-2*a*x^2*y(x) = 0,y(x), singsol=all)� �

y(x) = −a x4

8
y(x) = c1(a x2 + 2c1)

a

3 Solution by Mathematica
Time used: 1.03 (sec). Leaf size: 78� �
DSolve[(y'[x])^2+a x^3 y'[x]-2 a x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8e

2c1
(
−2

√
ax2 + e2c1

)
y(x) → 2

√
ae2c1x2 + 8e4c1

y(x) → 0

y(x) → −ax4

8
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28.7 problem 805
Internal problem ID [4044]
Internal file name [OUTPUT/3537_Sunday_June_05_2022_09_36_11_AM_51519406/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 805.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 − 2a x3y′ + 4ya x2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2
(
x2a

2 +
√
a2x4 − 4ya

2

)
x (1)

y′ = 2
(
x2a

2 −
√
a2x4 − 4ya

2

)
x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
x2a+

√
a2x4 − 4ya

)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(
x2a+

√
a2x4 − 4ya

)
x(b3 − a2)−

(
x2a+

√
a2x4 − 4ya

)2
x2a3

−
((

2ax+ 2a2x3
√
a2x4 − 4ya

)
x+ x2a+

√
a2x4 − 4ya

)
(xa2 + ya3 + a1)

+ 2ax(xb2 + yb3 + b1)√
a2x4 − 4ya

= 0

Putting the above in normal form gives

−2a3x8a3 +
√
a2x4 − 4ya a2x6a3 + 4a2x5a2 − a2x5b3 − 5a2x4ya3 + 3a2x4a1 + (a2x4 − 4ya)

3
2 x2a3 + 4

√
a2x4 − 4ya a x3a2 −

√
a2x4 − 4ya a x3b3 + 3

√
a2x4 − 4ya a x2ya3 + 3

√
a2x4 − 4ya a x2a1 − 2a x2b2 − 8axya2 + 2axyb3 − 4a y2a3 − 2axb1 − 4aya1 − b2

√
a2x4 − 4ya√

a2x4 − 4ya
= 0

Setting the numerator to zero gives

(6E)
−2a3x8a3−

√
a2x4 − 4ya a2x6a3−4a2x5a2+a2x5b3+5a2x4ya3−3a2x4a1

−
(
a2x4 − 4ya

) 3
2 x2a3 − 4

√
a2x4 − 4ya a x3a2 +

√
a2x4 − 4ya a x3b3

− 3
√

a2x4 − 4ya a x2ya3 − 3
√

a2x4 − 4ya a x2a1 + 2a x2b2 + 8axya2
− 2axyb3 + 4a y2a3 + 2axb1 + 4aya1 + b2

√
a2x4 − 4ya = 0

Simplifying the above gives

(6E)

−
√
a (a x4 − 4y) a2x6a3 − 2

(
a2x4 − 4ya

)
a x4a3

− 2a2x5a2 − 2a2x4ya3 − 2a2x4a1 −
(
a
(
a x4 − 4y

)) 3
2x2a3

− 4
√

a (a x4 − 4y) a x3a2 +
√

a (a x4 − 4y) a x3b3

− 3
√

a (a x4 − 4y) a x2ya3 − 3
√

a (a x4 − 4y) a x2a1
− 2
(
a2x4 − 4ya

)
xa2 +

(
a2x4 − 4ya

)
xb3 −

(
a2x4 − 4ya

)
ya3 + 2a x2b2

+ 2axyb3 −
(
a2x4 − 4ya

)
a1 + 2axb1 + b2

√
a (a x4 − 4y) = 0
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Since the PDE has radicals, simplifying gives

−2a3x8a3 − 2
√

a (a x4 − 4y) a2x6a3 − 4a2x5a2 + a2x5b3 + 5a2x4ya3

− 3a2x4a1 − 4
√

a (a x4 − 4y) a x3a2 +
√
a (a x4 − 4y) a x3b3

+
√

a (a x4 − 4y) a x2ya3 − 3
√
a (a x4 − 4y) a x2a1 + 2a x2b2

+ 8axya2 − 2axyb3 + 4a y2a3 + 2axb1 + 4aya1 + b2
√

a (a x4 − 4y) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
a (a x4 − 4y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

a (a x4 − 4y) = v3
}

The above PDE (6E) now becomes

(7E)−2a3v81a3 − 2v3a2v61a3 − 4a2v51a2 + 5a2v41v2a3 + a2v51b3 − 3a2v41a1
− 4v3av31a2 + v3av

2
1v2a3 + v3av

3
1b3 − 3v3av21a1 + 8av1v2a2

+ 4av22a3 + 2av21b2 − 2av1v2b3 + 4av2a1 + 2av1b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2a3v81a3 − 2v3a2v61a3 +
(
−4a2a2 + a2b3

)
v51 + 5a2v41v2a3

− 3a2v41a1 + (−4aa2 + ab3) v31v3 + v3av
2
1v2a3 − 3v3av21a1 + 2av21b2

+ (8aa2 − 2ab3) v1v2 + 2av1b1 + 4av22a3 + 4av2a1 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
aa3 = 0

−3aa1 = 0
4aa1 = 0
4aa3 = 0
2ab1 = 0
2ab2 = 0

−3a2a1 = 0
−2a2a3 = 0
5a2a3 = 0

−2a3a3 = 0
−4aa2 + ab3 = 0
8aa2 − 2ab3 = 0

−4a2a2 + a2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y −
((

x2a+
√

a2x4 − 4ya
)
x
)
(x)

= −a x4 − x2
√

a2x4 − 4ya+ 4y
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a x4 − x2
√
a2x4 − 4ya+ 4y

dy

Which results in

S = ln (y)
4 −

ln
(
−x2a+

√
a2x4 − 4ya

)
4 +

ln
(
x2a+

√
a2x4 − 4ya

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
x2a+

√
a2x4 − 4ya

)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x
√
a√

a x4 − 4y

Sy =
−x2√a+

√
a x4 − 4y

4
√
a x4 − 4y y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

x
((

−x2√a+
√
a x4 − 4y

)√
a (a x4 − 4y)− a

3
2x4 +

√
a x4 − 4y a x2 + 4

√
a y
)

4
√
a x4 − 4y y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 +

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = ln (x) + c1

Which simplifies to

ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 +

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = ln (x) + c1

Summary
The solution(s) found are the following

(1)ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 +

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = ln (x) + c1

Verification of solutions

ln (y)
4 −

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 +

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = ln (x) + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
−x2a+

√
a2x4 − 4ya

)
x

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(
−x2a+

√
a2x4 − 4ya

)
x(b3 − a2)−

(
−x2a+

√
a2x4 − 4ya

)2
x2a3

−
(
−
(
−2ax+ 2a2x3

√
a2x4 − 4ya

)
x+ x2a−

√
a2x4 − 4ya

)
(xa2 + ya3 + a1)

− 2ax(xb2 + yb3 + b1)√
a2x4 − 4ya

= 0

Putting the above in normal form gives

−−2a3x8a3 +
√
a2x4 − 4ya a2x6a3 − 4a2x5a2 + a2x5b3 + 5a2x4ya3 − 3a2x4a1 + (a2x4 − 4ya)

3
2 x2a3 + 4

√
a2x4 − 4ya a x3a2 −

√
a2x4 − 4ya a x3b3 + 3

√
a2x4 − 4ya a x2ya3 + 3

√
a2x4 − 4ya a x2a1 + 2a x2b2 + 8axya2 − 2axyb3 + 4a y2a3 + 2axb1 + 4aya1 − b2

√
a2x4 − 4ya√

a2x4 − 4ya
= 0

Setting the numerator to zero gives

(6E)
2a3x8a3 −

√
a2x4 − 4ya a2x6a3 + 4a2x5a2 − a2x5b3 − 5a2x4ya3 + 3a2x4a1

−
(
a2x4 − 4ya

) 3
2 x2a3 − 4

√
a2x4 − 4ya a x3a2 +

√
a2x4 − 4ya a x3b3

− 3
√

a2x4 − 4ya a x2ya3 − 3
√

a2x4 − 4ya a x2a1 − 2a x2b2 − 8axya2
+ 2axyb3 − 4a y2a3 − 2axb1 − 4aya1 + b2

√
a2x4 − 4ya = 0
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Simplifying the above gives

(6E)

−
√

a (a x4 − 4y) a2x6a3 + 2
(
a2x4 − 4ya

)
a x4a3

+ 2a2x5a2 + 2a2x4ya3 + 2a2x4a1 −
(
a
(
a x4 − 4y

)) 3
2x2a3

− 4
√

a (a x4 − 4y) a x3a2 +
√

a (a x4 − 4y) a x3b3

− 3
√

a (a x4 − 4y) a x2ya3 − 3
√

a (a x4 − 4y) a x2a1
+ 2
(
a2x4 − 4ya

)
xa2 −

(
a2x4 − 4ya

)
xb3 +

(
a2x4 − 4ya

)
ya3 − 2a x2b2

− 2axyb3 +
(
a2x4 − 4ya

)
a1 − 2axb1 + b2

√
a (a x4 − 4y) = 0

Since the PDE has radicals, simplifying gives

2a3x8a3 − 2
√

a (a x4 − 4y) a2x6a3 + 4a2x5a2 − a2x5b3 − 5a2x4ya3

+ 3a2x4a1 − 4
√

a (a x4 − 4y) a x3a2 +
√

a (a x4 − 4y) a x3b3

+
√

a (a x4 − 4y) a x2ya3 − 3
√
a (a x4 − 4y) a x2a1 − 2a x2b2

− 8axya2 + 2axyb3 − 4a y2a3 − 2axb1 − 4aya1 + b2
√

a (a x4 − 4y) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
a (a x4 − 4y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

a (a x4 − 4y) = v3
}

The above PDE (6E) now becomes

(7E)2a3v81a3 − 2v3a2v61a3 + 4a2v51a2 − 5a2v41v2a3 − a2v51b3 + 3a2v41a1
− 4v3av31a2 + v3av

2
1v2a3 + v3av

3
1b3 − 3v3av21a1 − 8av1v2a2

− 4av22a3 − 2av21b2 + 2av1v2b3 − 4av2a1 − 2av1b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)2a3v81a3 − 2v3a2v61a3 +
(
4a2a2 − a2b3

)
v51 − 5a2v41v2a3 + 3a2v41a1

+ (−4aa2 + ab3) v31v3 + v3av
2
1v2a3 − 3v3av21a1 − 2av21b2

+ (−8aa2 + 2ab3) v1v2 − 2av1b1 − 4av22a3 − 4av2a1 + b2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
aa3 = 0

−4aa1 = 0
−3aa1 = 0
−4aa3 = 0
−2ab1 = 0
−2ab2 = 0
3a2a1 = 0

−5a2a3 = 0
−2a2a3 = 0
2a3a3 = 0

−8aa2 + 2ab3 = 0
−4aa2 + ab3 = 0
4a2a2 − a2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y −
(
−
(
−x2a+

√
a2x4 − 4ya

)
x
)
(x)

= −a x4 + x2
√

a2x4 − 4ya+ 4y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−a x4 + x2
√
a2x4 − 4ya+ 4y

dy

Which results in

S = ln (y)
4 +

ln
(
−x2a+

√
a2x4 − 4ya

)
4 −

ln
(
x2a+

√
a2x4 − 4ya

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
−x2a+

√
a2x4 − 4ya

)
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x
√
a√

a x4 − 4y

Sy =
x2√a+

√
a x4 − 4y

4
√
a x4 − 4y y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

((
−x2√a−

√
a x4 − 4y

)√
a (a x4 − 4y) + a

3
2x4 +

√
a x4 − 4y a x2 − 4

√
a y
)
x

4
√
a x4 − 4y y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 −

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = − ln (x) + c1

Which simplifies to

ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 −

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = − ln (x) + c1

Summary
The solution(s) found are the following

(1)ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 −

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = − ln (x) + c1
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Verification of solutions

ln (y)
4 +

ln
(
−x2a+

√
a
√
a x4 − 4y

)
4 −

ln
(
x2a+

√
a
√
a x4 − 4y

)
4 = − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.454 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)^2-2*a*x^3*diff(y(x),x)+4*a*x^2*y(x) = 0,y(x), singsol=all)� �

y(x) = a x4

4
y(x) = c1(a x2 − c1)

a

3 Solution by Mathematica
Time used: 6.101 (sec). Leaf size: 262� �
DSolve[(y'[x])^2-2 a x^3 y'[x]+4 a x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

1
4

( √
ax
√

ax4 − 4y(x)√
ax2 (ax4 − 4y(x))

+ 1
)
log(y(x))

−

√
ax
√

ax4 − 4y(x) log
(√

ax4 − 4y(x) +
√
ax2
)

2
√

ax2 (ax4 − 4y(x))
= c1, y(x)


Solve

√ax
√

ax4 − 4y(x) log
(√

ax4 − 4y(x) +
√
ax2
)

2
√

ax2 (ax4 − 4y(x))

+ 1
4

(
1−

√
ax
√

ax4 − 4y(x)√
ax2 (ax4 − 4y(x))

)
log(y(x)) = c1, y(x)


y(x) → ax4

4
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28.8 problem 806
Internal problem ID [4045]
Internal file name [OUTPUT/3538_Sunday_June_05_2022_09_36_20_AM_92616791/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 806.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 + 4x5y′ − 12yx4 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2
(
−x3 +

√
x6 + 3y

)
x2 (1)

y′ = 2
(
−x3 −

√
x6 + 3y

)
x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 2
(
−x3 +

√
x6 + 3y

)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 + 2

(
−x3 +

√
x6 + 3y

)
x2(b3 − a2)− 4

(
−x3 +

√
x6 + 3y

)2
x4a3

−
(
2
(
−3x2 + 3x5

√
x6 + 3y

)
x2 + 4

(
−x3 +

√
x6 + 3y

)
x

)
(xa2 + ya3 + a1)

− 3x2(xb2 + yb3 + b1)√
x6 + 3y

= 0

Putting the above in normal form gives

−−8x13a3 + 4
√
x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3 + 4(x6 + 3y)

3
2 x4a3 + 10x7a1 − 12

√
x6 + 3y x5a2 + 2

√
x6 + 3y x5b3 − 10

√
x6 + 3y x4ya3 − 10

√
x6 + 3y x4a1 + 3x3b2 + 18x2ya2 − 3x2yb3 + 12x y2a3 + 3x2b1 + 12xya1 − b2

√
x6 + 3y√

x6 + 3y
= 0

Setting the numerator to zero gives

(6E)
8x13a3 − 4

√
x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3

− 4
(
x6 + 3y

) 3
2 x4a3 − 10x7a1 + 12

√
x6 + 3y x5a2 − 2

√
x6 + 3y x5b3

+ 10
√

x6 + 3y x4ya3 + 10
√

x6 + 3y x4a1 − 3x3b2 − 18x2ya2

+ 3x2yb3 − 12x y2a3 − 3x2b1 − 12xya1 + b2
√
x6 + 3y = 0

Simplifying the above gives

(6E)
−4
√

x6 + 3y x10a3+8
(
x6+3y

)
x7a3− 6x8a2− 6x7ya3− 4

(
x6+3y

) 3
2 x4a3

− 6x7a1 + 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 + 10
√
x6 + 3y x4ya3

+10
√

x6 + 3y x4a1 − 6
(
x6 +3y

)
x2a2 +2

(
x6 +3y

)
x2b3 − 4

(
x6 +3y

)
xya3

− 4
(
x6 + 3y

)
xa1 − 3x3b2 − 3x2yb3 − 3x2b1 + b2

√
x6 + 3y = 0
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Since the PDE has radicals, simplifying gives

8x13a3 − 8
√

x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3 − 10x7a1

+ 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 − 2
√

x6 + 3y x4ya3 + 10
√
x6 + 3y x4a1

− 3x3b2 − 18x2ya2 + 3x2yb3 − 12x y2a3 − 3x2b1 − 12xya1 + b2
√
x6 + 3y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x6 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x6 + 3y = v3
}

The above PDE (6E) now becomes

(7E)8v131 a3 − 8v3v101 a3 − 12v81a2 + 14v71v2a3 + 2v81b3 − 10v71a1
+ 12v3v51a2 − 2v3v41v2a3 − 2v3v51b3 + 10v3v41a1 − 18v21v2a2
− 12v1v22a3 − 3v31b2 + 3v21v2b3 − 12v1v2a1 − 3v21b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)8v131 a3 − 8v3v101 a3 + (−12a2 + 2b3) v81 + 14v71v2a3 − 10v71a1
+ (12a2 − 2b3) v51v3 − 2v3v41v2a3 + 10v3v41a1 − 3v31b2
+ (−18a2 + 3b3) v21v2 − 3v21b1 − 12v1v22a3 − 12v1v2a1 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−12a1 = 0
−10a1 = 0
10a1 = 0

−12a3 = 0
−8a3 = 0
−2a3 = 0
8a3 = 0
14a3 = 0
−3b1 = 0
−3b2 = 0

−18a2 + 3b3 = 0
−12a2 + 2b3 = 0
12a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 6y −
(
2
(
−x3 +

√
x6 + 3y

)
x2
)
(x)

= 2x6 − 2
√

x6 + 3y x3 + 6y
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x6 − 2
√
x6 + 3y x3 + 6y

dy

Which results in

S = ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2
(
−x3 +

√
x6 + 3y

)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x2
√
x6 + 3y

Sy =
1√

x6 + 3y
(
−2x3 + 2

√
x6 + 3y

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Which simplifies to

ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Summary
The solution(s) found are the following

(1)ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verification of solutions

ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −2x2
(
x3 +

√
x6 + 3y

)
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 − 2x2

(
x3 +

√
x6 + 3y

)
(b3 − a2)− 4x4

(
x3 +

√
x6 + 3y

)2
a3

−
(
−4x

(
x3 +

√
x6 + 3y

)
− 2x2

(
3x2 + 3x5

√
x6 + 3y

))
(xa2 + ya3 + a1)

+ 3x2(xb2 + yb3 + b1)√
x6 + 3y

= 0

Putting the above in normal form gives

−8x13a3 + 4
√
x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3 + 4(x6 + 3y)

3
2 x4a3 − 10x7a1 − 12

√
x6 + 3y x5a2 + 2

√
x6 + 3y x5b3 − 10

√
x6 + 3y x4ya3 − 10

√
x6 + 3y x4a1 − 3x3b2 − 18x2a2y + 3x2yb3 − 12x y2a3 − 3x2b1 − 12xa1y − b2

√
x6 + 3y√

x6 + 3y
= 0

Setting the numerator to zero gives

(6E)
−8x13a3 − 4

√
x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3

− 4
(
x6 + 3y

) 3
2 x4a3 + 10x7a1 + 12

√
x6 + 3y x5a2 − 2

√
x6 + 3y x5b3

+ 10
√

x6 + 3y x4ya3 + 10
√

x6 + 3y x4a1 + 3x3b2 + 18x2a2y

− 3x2yb3 + 12x y2a3 + 3x2b1 + 12xa1y + b2
√

x6 + 3y = 0
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Simplifying the above gives

(6E)
−4
√

x6 + 3y x10a3− 8
(
x6+3y

)
x7a3+6x8a2+6x7ya3− 4

(
x6+3y

) 3
2 x4a3

+ 6x7a1 + 12
√

x6 + 3y x5a2 − 2
√
x6 + 3y x5b3 + 10

√
x6 + 3y x4ya3

+10
√

x6 + 3y x4a1 +6
(
x6 +3y

)
x2a2 − 2

(
x6 +3y

)
x2b3 +4

(
x6 +3y

)
xya3

+ 4
(
x6 + 3y

)
xa1 + 3x3b2 + 3x2yb3 + 3x2b1 + b2

√
x6 + 3y = 0

Since the PDE has radicals, simplifying gives

−8x13a3 − 8
√

x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3 + 10x7a1

+ 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 − 2
√

x6 + 3y x4ya3 + 10
√
x6 + 3y x4a1

+ 3x3b2 + 18x2a2y − 3x2yb3 + 12x y2a3 + 3x2b1 + 12xa1y + b2
√

x6 + 3y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x6 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x6 + 3y = v3
}

The above PDE (6E) now becomes

(7E)−8v131 a3 − 8v3v101 a3 + 12v81a2 − 14v71v2a3 − 2v81b3 + 10v71a1
+ 12v3v51a2 − 2v3v41v2a3 − 2v3v51b3 + 10v3v41a1 + 18v21a2v2
+ 12v1v22a3 + 3v31b2 − 3v21v2b3 + 12v1a1v2 + 3v21b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−8v131 a3 − 8v3v101 a3 + (12a2 − 2b3) v81 − 14v71v2a3 + 10v71a1
+ (12a2 − 2b3) v51v3 − 2v3v41v2a3 + 10v3v41a1 + 3v31b2
+ (18a2 − 3b3) v21v2 + 3v21b1 + 12v1v22a3 + 12v1a1v2 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
10a1 = 0
12a1 = 0

−14a3 = 0
−8a3 = 0
−2a3 = 0
12a3 = 0
3b1 = 0
3b2 = 0

12a2 − 2b3 = 0
18a2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 6y −
(
−2x2

(
x3 +

√
x6 + 3y

))
(x)

= 2x6 + 2
√

x6 + 3y x3 + 6y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x6 + 2
√
x6 + 3y x3 + 6y

dy

Which results in

S = ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x2
(
x3 +

√
x6 + 3y

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2
√
x6 + 3y

Sy =
1√

x6 + 3y
(
2x3 + 2

√
x6 + 3y

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Which simplifies to

ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Summary
The solution(s) found are the following

(1)ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verification of solutions

ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)-2*(diff(y(x), x))/x, y(x)` *** Sublevel 4 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- 1st order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.313 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x) = 0,y(x), singsol=all)� �

y(x) = −x6

3
y(x) = c1x

3 + 3
4c

2
1

3 Solution by Mathematica
Time used: 2.23 (sec). Leaf size: 217� �
DSolve[(y'[x])^2+4 x^5 y'[x]-12 x^4 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

1
6

(
log(y(x))− x2

√
x6 + 3y(x) log(y(x))√
x4 (x6 + 3y(x))

)

+
x2
√

x6 + 3y(x) log
(√

x6 + 3y(x) + x3
)

3
√

x4 (x6 + 3y(x))
= c1, y(x)


Solve

1
6

(
x2
√

x6 + 3y(x) log(y(x))√
x4 (x6 + 3y(x))

+ log(y(x))
)

−
x2
√
x6 + 3y(x) log

(√
x6 + 3y(x) + x3

)
3
√

x4 (x6 + 3y(x))
= c1, y(x)


y(x) → −x6

3
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28.9 problem 807
28.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7760

Internal problem ID [4046]
Internal file name [OUTPUT/3539_Sunday_June_05_2022_09_36_27_AM_28460476/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 807.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 2y′ cosh (x) = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = e−x (1)
y′ = ex (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

e−x dx

= −e−x + c1

Summary
The solution(s) found are the following

(1)y = −e−x + c1
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Verification of solutions

y = −e−x + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

ex dx

= ex + c2

Summary
The solution(s) found are the following

(1)y = ex + c2

Verification of solutions

y = ex + c2

Verified OK.

28.9.1 Maple step by step solution

Let’s solve
y′2 − 2y′ cosh (x) = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − 2y′ cosh (x)

)
dx =

∫
(−1) dx+ c1

• Cannot compute integral∫ (
y′2 − 2y′ cosh (x)

)
dx = −x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)^2-2*diff(y(x),x)*cosh(x)+1 = 0,y(x), singsol=all)� �

y(x) = −e−x + c1
y(x) = ex + c1

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 25� �
DSolve[(y'[x])^2-2 y'[x] Cosh[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sinh(x)− cosh(x) + c1
y(x) → sinh(x) + cosh(x) + c1
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28.10 problem 808
28.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7764

Internal problem ID [4047]
Internal file name [OUTPUT/3540_Sunday_June_05_2022_09_36_31_AM_89530523/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 808.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
2 + yy′ − x(y + x) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x (1)
y′ = −y − x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

x dx

= x2

2 + c1

Summary
The solution(s) found are the following

(1)y = x2

2 + c1
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Verification of solutions

y = x2

2 + c1

Verified OK.
Solving equation (2)

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = −x

Hence the ode is

y′ + y = −x

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µy) = (µ) (−x)
d
dx(e

xy) = (ex) (−x)

d(exy) = (−x ex) dx

Integrating gives

exy =
∫

−x ex dx

exy = −(x− 1) ex + c2

Dividing both sides by the integrating factor µ = ex results in

y = −e−x(x− 1) ex + c2e−x

which simplifies to

y = 1− x+ c2e−x
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Summary
The solution(s) found are the following

(1)y = 1− x+ c2e−x

Verification of solutions

y = 1− x+ c2e−x

Verified OK.

28.10.1 Maple step by step solution

Let’s solve
y′2 + yy′ − x(y + x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + yy′ − x(y + x)

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2 + yy′ − x(y + x)

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)^2+y(x)*diff(y(x),x) = x*(x+y(x)),y(x), singsol=all)� �

y(x) = x2

2 + c1

y(x) = 1 + e−xc1 − x

3 Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 32� �
DSolve[(y'[x])^2+y[x]*y'[x]==x*(x+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + c1

y(x) → −x+ c1e
−x + 1
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28.11 problem 809
Internal problem ID [4048]
Internal file name [OUTPUT/3541_Sunday_June_05_2022_09_36_38_AM_55907735/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 809.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 − yy′ = −ex

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y

2 +
√
y2 − 4 ex

2 (1)

y′ = y

2 −
√
y2 − 4 ex

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = y

2 +
√
y2 − 4 ex

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
y

2 +
√
y2 − 4 ex

2

)
(b3 − a2)−

(
y

2 +
√
y2 − 4 ex

2

)2

a3

+ ex(xa2 + ya3 + a1)√
y2 − 4 ex

−
(
1
2 + y

2
√
y2 − 4 ex

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(y2 − 4 ex)
3
2 a3 −

√
y2 − 4 ex y2a3 − 2y3a3 + 4 exxa2 + 12 exya3 − 2

√
y2 − 4 ex xb2 − 2

√
y2 − 4 ex ya2 − 2xyb2 − 2y2a2 + 4 exa1 + 8 exa2 − 8 exb3 − 2

√
y2 − 4 ex b1 + 4b2

√
y2 − 4 ex − 2yb1

4
√
y2 − 4 ex

= 0

Setting the numerator to zero gives

(6E)−
(
y2 − 4 ex

) 3
2 a3 −

√
y2 − 4 ex y2a3 − 2y3a3 + 4 exxa2 + 12 exya3

− 2
√

y2 − 4 ex xb2 − 2
√
y2 − 4 ex ya2 − 2xyb2 − 2y2a2 + 4 exa1

+ 8 exa2 − 8 exb3 − 2
√
y2 − 4 ex b1 + 4b2

√
y2 − 4 ex − 2yb1 = 0

Simplifying the above gives

(6E)−
(
y2 − 4 ex

) 3
2 a3 − 2

(
y2 − 4 ex

)
ya3 −

√
y2 − 4 ex y2a3 + 4 exxa2 + 4 exya3

− 2
(
y2 − 4 ex

)
a2 + 2

(
y2 − 4 ex

)
b3 − 2

√
y2 − 4 ex xb2 − 2

√
y2 − 4 ex ya2

− 2xyb2 − 2y2b3 + 4 exa1 − 2
√

y2 − 4 ex b1 + 4b2
√
y2 − 4 ex − 2yb1 = 0
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Since the PDE has radicals, simplifying gives

−2
√

y2 − 4 ex y2a3 − 2y3a3 + 4 exxa2 + 4 ex
√

y2 − 4 ex a3 + 12 exya3
− 2
√

y2 − 4 ex xb2 − 2xyb2 − 2
√
y2 − 4 ex ya2 − 2y2a2 + 4 exa1

+ 8 exa2 − 8 exb3 − 2
√

y2 − 4 ex b1 + 4b2
√

y2 − 4 ex − 2yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
y2 − 4 ex, ex

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y2 − 4 ex = v3, ex = v4
}

The above PDE (6E) now becomes

(7E)−2v32a3 − 2v3v22a3 + 4v4v1a2 − 2v22a2 − 2v3v2a2 + 12v4v2a3 + 4v4v3a3
− 2v1v2b2 − 2v3v1b2 + 4v4a1 + 8v4a2 − 2v2b1 − 2v3b1 + 4b2v3 − 8v4b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−2v1v2b2 − 2v3v1b2 + 4v4v1a2 − 2v32a3 − 2v3v22a3 − 2v22a2 − 2v3v2a2
+ 12v4v2a3 − 2v2b1 + 4v4v3a3 + (−2b1 + 4b2) v3 + (4a1 + 8a2 − 8b3) v4 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 = 0
4a2 = 0

−2a3 = 0
4a3 = 0
12a3 = 0
−2b1 = 0
−2b2 = 0

−2b1 + 4b2 = 0
4a1 + 8a2 − 8b3 = 0
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Solving the above equations for the unknowns gives

a1 = 2b3
a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y

2 +
√
y2 − 4 ex

2

)
(2)

= −
√
y2 − 4 ex

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
y2 − 4 ex

dy
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Which results in

S = − ln
(
y +

√
y2 − 4 ex

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

2 +
√
y2 − 4 ex

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2 ex√
y2 − 4 ex

(
y +

√
y2 − 4 ex

)
Sy = − 1√

y2 − 4 ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − y

√
y2 − 4 ex + y2 − 4 ex√

y2 − 4 ex
(
y +

√
y2 − 4 ex

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
y +

√
y2 − 4 ex

)
= c1
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Which simplifies to

− ln
(
y +

√
y2 − 4 ex

)
= c1

Which gives

y = (4 exe2c1 + 1) e−c1

2

Summary
The solution(s) found are the following

(1)y = (4 exe2c1 + 1) e−c1

2
Verification of solutions

y = (4 exe2c1 + 1) e−c1

2

Verified OK.
Solving equation (2)

Writing the ode as

y′ = y

2 −
√
y2 − 4 ex

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
y

2 −
√
y2 − 4 ex

2

)
(b3 − a2)−

(
y

2 −
√
y2 − 4 ex

2

)2

a3

− ex(xa2 + ya3 + a1)√
y2 − 4 ex

−
(
1
2 − y

2
√
y2 − 4 ex

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(y2 − 4 ex)
3
2 a3 +

√
y2 − 4 ex y2a3 − 2y3a3 + 4 exxa2 + 12 exya3 + 2

√
y2 − 4 ex xb2 + 2

√
y2 − 4 ex ya2 − 2xyb2 − 2y2a2 + 4 exa1 + 8 exa2 − 8 exb3 + 2

√
y2 − 4 ex b1 − 4b2

√
y2 − 4 ex − 2yb1

4
√
y2 − 4 ex

= 0

Setting the numerator to zero gives

(6E)−
(
y2 − 4 ex

) 3
2 a3 −

√
y2 − 4 ex y2a3 + 2y3a3 − 4 exxa2 − 12 exya3

− 2
√
y2 − 4 ex xb2 − 2

√
y2 − 4 ex ya2 + 2xyb2 + 2y2a2 − 4 exa1

− 8 exa2 + 8 exb3 − 2
√

y2 − 4 ex b1 + 4b2
√
y2 − 4 ex + 2yb1 = 0

Simplifying the above gives

(6E)−
(
y2 − 4 ex

) 3
2 a3 + 2

(
y2 − 4 ex

)
ya3 −

√
y2 − 4 ex y2a3 − 4 exxa2 − 4 exya3

+ 2
(
y2 − 4 ex

)
a2 − 2

(
y2 − 4 ex

)
b3 − 2

√
y2 − 4 ex xb2 − 2

√
y2 − 4 ex ya2

+ 2xyb2 + 2y2b3 − 4 exa1 − 2
√

y2 − 4 ex b1 + 4b2
√
y2 − 4 ex + 2yb1 = 0

Since the PDE has radicals, simplifying gives

−2
√

y2 − 4 ex y2a3 + 2y3a3 − 4 exxa2 + 4 ex
√

y2 − 4 ex a3 − 12 exya3
− 2
√

y2 − 4 ex xb2 + 2xyb2 − 2
√
y2 − 4 ex ya2 + 2y2a2 − 4 exa1

− 8 exa2 + 8 exb3 − 2
√

y2 − 4 ex b1 + 4b2
√
y2 − 4 ex + 2yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y2 − 4 ex, ex

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y2 − 4 ex = v3, ex = v4
}

The above PDE (6E) now becomes

(7E)2v32a3 − 2v3v22a3 − 4v4v1a2 + 2v22a2 − 2v3v2a2 − 12v4v2a3 + 4v4v3a3
+ 2v1v2b2 − 2v3v1b2 − 4v4a1 − 8v4a2 + 2v2b1 − 2v3b1 + 4b2v3 + 8v4b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)2v1v2b2 − 2v3v1b2 − 4v4v1a2 + 2v32a3 − 2v3v22a3 + 2v22a2 − 2v3v2a2 − 12v4v2a3
+ 2v2b1 + 4v4v3a3 + (−2b1 + 4b2) v3 + (−4a1 − 8a2 + 8b3) v4 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a2 = 0
−2a2 = 0
2a2 = 0

−12a3 = 0
−2a3 = 0
2a3 = 0
4a3 = 0
2b1 = 0

−2b2 = 0
2b2 = 0

−2b1 + 4b2 = 0
−4a1 − 8a2 + 8b3 = 0

7773



Solving the above equations for the unknowns gives

a1 = 2b3
a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y

2 −
√
y2 − 4 ex

2

)
(2)

=
√

y2 − 4 ex

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

y2 − 4 ex
dy
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Which results in

S = ln
(
y +

√
y2 − 4 ex

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

2 −
√
y2 − 4 ex

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2 ex√
y2 − 4 ex

(
y +

√
y2 − 4 ex

)
Sy =

1√
y2 − 4 ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
y +

√
y2 − 4 ex

)
= c1

7775



Which simplifies to

ln
(
y +

√
y2 − 4 ex

)
= c1

Which gives

y = (e2c1 + 4 ex) e−c1

2

Summary
The solution(s) found are the following

(1)y = (e2c1 + 4 ex) e−c1

2
Verification of solutions

y = (e2c1 + 4 ex) e−c1

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)-(diff(y(x), x)), y(x)` *** Sublevel 4 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful

<- 1st order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.609 (sec). Leaf size: 34� �
dsolve(diff(y(x),x)^2-y(x)*diff(y(x),x)+exp(x) = 0,y(x), singsol=all)� �

y(x) = −2 ex
2

y(x) = 2 ex
2

y(x) = c21ex + 1
c1

3 Solution by Mathematica
Time used: 60.35 (sec). Leaf size: 59� �
DSolve[(y'[x])^2-y[x] y'[x]+Exp[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−e−c1 (−ex + ec1) 2

y(x) →
√

−e−c1 (ex − ec1) 2
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28.12 problem 810
28.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7780

Internal problem ID [4049]
Internal file name [OUTPUT/3542_Sunday_June_05_2022_09_36_48_AM_17429707/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 810.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + (y + x) y′ + yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −x (1)
y′ = −y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

−x dx

= −x2

2 + c1

Summary
The solution(s) found are the following

(1)y = −x2

2 + c1
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Verification of solutions

y = −x2

2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
−1
y
dy =

∫
dx

− ln (y) = x+ c2

Raising both side to exponential gives

1
y
= ex+c2

Which simplifies to

1
y
= c3ex

Summary
The solution(s) found are the following

(1)y = e−x

c3

Verification of solutions

y = e−x

c3

Verified OK.

28.12.1 Maple step by step solution

Let’s solve
y′2 + (y + x) y′ + yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x
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∫ (
y′2 + (y + x) y′ + yx

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2 + (y + x) y′ + yx

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2+(x+y(x))*diff(y(x),x)+x*y(x) = 0,y(x), singsol=all)� �

y(x) = −x2

2 + c1

y(x) = e−xc1

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 32� �
DSolve[(y'[x])^2+(x+y[x])y'[x]+x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x

y(x) → −x2

2 + c1

y(x) → 0
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28.13 problem 811
28.13.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7782

Internal problem ID [4050]
Internal file name [OUTPUT/3543_Sunday_June_05_2022_09_36_54_AM_28143550/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 811.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_dAlembert]

y′
2 − 2yy′ = 2x

28.13.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − 2yp = 2x

Solving for y from the above results in

y = −x

p
+ p

2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1
p

g = p

2
Hence (2) becomes

p+ 1
p
=
(

x

p2
+ 1

2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
p
= 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −1
2i− ix

y = 1
2i+ ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

p(x)
x

p(x)2 +
1
2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
p2

+ 1
2

p+ 1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 1
(p2 + 1) p

q(p) = p

2p2 + 2

Hence the ode is

d

dp
x(p)− x(p)

(p2 + 1) p = p

2p2 + 2

The integrating factor µ is

µ = e
∫
− 1(

p2+1
)
p
dp

= e
ln
(
p2+1

)
2 −ln(p)

Which simplifies to

µ =
√
p2 + 1
p

The ode becomes

d
dp(µx) = (µ)

(
p

2p2 + 2

)
d
dp

(√
p2 + 1x
p

)
=
(√

p2 + 1
p

)(
p

2p2 + 2

)
d
(√

p2 + 1x
p

)
=
(

1
2
√
p2 + 1

)
dp

Integrating gives
√
p2 + 1x
p

=
∫ 1

2
√
p2 + 1

dp
√
p2 + 1x
p

= arcsinh (p)
2 + c1

Dividing both sides by the integrating factor µ =
√

p2+1
p

results in

x(p) = p arcsinh (p)
2
√
p2 + 1

+ c1p√
p2 + 1
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which simplifies to

x(p) = p(arcsinh (p) + 2c1)
2
√
p2 + 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y +
√
y2 + 2x

p = y −
√

y2 + 2x

Substituting the above in the solution for x found above gives

x =
(
y +

√
y2 + 2x

) (
arcsinh

(
y +

√
y2 + 2x

)
+ 2c1

)
2
√

2y2 + 2x+ 2y
√
y2 + 2x+ 1

x = −
(
−y +

√
y2 + 2x

) (
− arcsinh

(
−y +

√
y2 + 2x

)
+ 2c1

)
2
√
2y2 + 2x− 2y

√
y2 + 2x+ 1

Summary
The solution(s) found are the following

(1)y = −1
2i− ix

(2)y = 1
2i+ ix

(3)x =
(
y +

√
y2 + 2x

) (
arcsinh

(
y +

√
y2 + 2x

)
+ 2c1

)
2
√

2y2 + 2x+ 2y
√
y2 + 2x+ 1

(4)x = −
(
−y +

√
y2 + 2x

) (
− arcsinh

(
−y +

√
y2 + 2x

)
+ 2c1

)
2
√
2y2 + 2x− 2y

√
y2 + 2x+ 1
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Verification of solutions

y = −1
2i− ix

Verified OK.

y = 1
2i+ ix

Verified OK.

x =
(
y +

√
y2 + 2x

) (
arcsinh

(
y +

√
y2 + 2x

)
+ 2c1

)
2
√

2y2 + 2x+ 2y
√
y2 + 2x+ 1

Verified OK.

x = −
(
−y +

√
y2 + 2x

) (
− arcsinh

(
−y +

√
y2 + 2x

)
+ 2c1

)
2
√
2y2 + 2x− 2y

√
y2 + 2x+ 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 223� �
dsolve(diff(y(x),x)^2-2*y(x)*diff(y(x),x)-2*x = 0,y(x), singsol=all)� �
(
y(x)−

√
y(x)2+2x

)
arcsinh

(
−y(x)+

√
y(x)2+2x

)
2 + x

√
2y (x)2 + 2x− 2y (x)

√
y (x)2 + 2x+ 1− 2c1y(x) + 2c1

√
y (x)2 + 2x√

2y (x)2 + 2x− 2y (x)
√
y (x)2 + 2x+ 1

= 0(
−y(x)−

√
y(x)2+2x

)
arcsinh

(
y(x)+

√
y(x)2+2x

)
2 + x

√
2y (x)2 + 2x+ 2y (x)

√
y (x)2 + 2x+ 1 + 2c1y(x) + 2c1

√
y (x)2 + 2x√

2y (x)2 + 2x+ 2y (x)
√

y (x)2 + 2x+ 1
= 0

3 Solution by Mathematica
Time used: 0.995 (sec). Leaf size: 74� �
DSolve[(y'[x])^2-2 y[x] y'[x]-2 x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

x = −
K[1] log

(√
K[1]2 + 1−K[1]

)
2
√

K[1]2 + 1

+ c1K[1]√
K[1]2 + 1

, y(x) = K[1]
2 − x

K[1]

 , {y(x), K[1]}
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28.14 problem 812
28.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7790

Internal problem ID [4051]
Internal file name [OUTPUT/3544_Sunday_June_05_2022_09_37_00_AM_45017276/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 812.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + (2y + 1) y′ + y(y − 1) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −y − 1
2 +

√
8y + 1
2 (1)

y′ = −y − 1
2 −

√
8y + 1
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
−y − 1

2 +
√
8y+1
2

dy =
∫

dx

−3 ln (y − 1)
2 + ln (y)

2 +
3 ln

(√
8y + 1 + 3

)
2 −

ln
(√

8y + 1 + 1
)

2 −
3 ln

(√
8y + 1− 3

)
2 +

ln
(
−1 +

√
8y + 1

)
2 = x+ c1

The above can be written as
−3 ln (y − 1) + ln (y) + 3 ln

(√
8y + 1 + 3

)
− ln

(√
8y + 1 + 1

)
− 3 ln

(√
8y + 1− 3

)
+ ln

(
−1 +

√
8y + 1

)
2 = x+ c1

−3 ln (y − 1) + ln (y) + 3 ln
(√

8y + 1 + 3
)
− ln

(√
8y + 1 + 1

)
− 3 ln

(√
8y + 1− 3

)
+ ln

(
−1 +

√
8y + 1

)
= (2) (x+ c1)

= 2x+ 2c1
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Raising both side to exponential gives

e−3 ln(y−1)+ln(y)+3 ln
(√

8y+1+3
)
−ln

(√
8y+1+1

)
−3 ln

(√
8y+1−3

)
+ln

(
−1+

√
8y+1

)
= 2 e2xc1

Which simplifies to

y
(√

8y + 1 + 3
)3 (−1 +

√
8y + 1

)
(y − 1)3

(√
8y + 1 + 1

) (√
8y + 1− 3

)3 = c2e2x

Summary
The solution(s) found are the following

(1)y

=
RootOf

(
c2e2x_Z6 − 18_Z5e2xc2 + 135c2e2x_Z4 − 540_Z3e2xc2 + (1215c2e2x − 64)_Z2 + (−1458c2e2x + 128)_Z+ 729c2e2x − 64

)2
8

− 1
8

Verification of solutions
y

=
RootOf

(
c2e2x_Z6 − 18_Z5e2xc2 + 135c2e2x_Z4 − 540_Z3e2xc2 + (1215c2e2x − 64)_Z2 + (−1458c2e2x + 128)_Z+ 729c2e2x − 64

)2
8

− 1
8

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
−y − 1

2 −
√
8y+1
2

dy =
∫

dx

−3 ln (y − 1)
2 + ln (y)

2 −
3 ln

(√
8y + 1 + 3

)
2 +

ln
(√

8y + 1 + 1
)

2 +
3 ln

(√
8y + 1− 3

)
2 −

ln
(
−1 +

√
8y + 1

)
2 = x+ c3

The above can be written as
−3 ln (y − 1) + ln (y)− 3 ln

(√
8y + 1 + 3

)
+ ln

(√
8y + 1 + 1

)
+ 3 ln

(√
8y + 1− 3

)
− ln

(
−1 +

√
8y + 1

)
2 = x+ c3

−3 ln (y − 1) + ln (y)− 3 ln
(√

8y + 1 + 3
)
+ ln

(√
8y + 1 + 1

)
+ 3 ln

(√
8y + 1− 3

)
− ln

(
−1 +

√
8y + 1

)
= (2) (x+ c3)

= 2c3 + 2x

Raising both side to exponential gives

e−3 ln(y−1)+ln(y)−3 ln
(√

8y+1+3
)
+ln

(√
8y+1+1

)
+3 ln

(√
8y+1−3

)
−ln

(
−1+

√
8y+1

)
= 2c3e2x
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Which simplifies to

y
(√

8y + 1 + 1
) (√

8y + 1− 3
)3

(y − 1)3
(√

8y + 1 + 3
)3 (−1 +

√
8y + 1

) = e2xc4

Summary
The solution(s) found are the following

(1)y

=
RootOf

(
e2xc4_Z6 + 18 e2x_Z5c4 + 135 e2xc4_Z4 + 540 e2x_Z3c4 + (1215 e2xc4 − 64)_Z2 + (1458 e2xc4 − 128)_Z+ 729 e2xc4 − 64

)2
8

− 1
8

Verification of solutions
y

=
RootOf

(
e2xc4_Z6 + 18 e2x_Z5c4 + 135 e2xc4_Z4 + 540 e2x_Z3c4 + (1215 e2xc4 − 64)_Z2 + (1458 e2xc4 − 128)_Z+ 729 e2xc4 − 64

)2
8

− 1
8

Verified OK.

28.14.1 Maple step by step solution

Let’s solve
y′2 + (2y + 1) y′ + y(y − 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y− 1
2+

√
8y+1
2

= 1

• Integrate both sides with respect to x∫
y′

−y− 1
2+

√
8y+1
2

dx =
∫
1dx+ c1

• Evaluate integral

−3 ln(y−1)
2 + ln(y)

2 + 3 ln
(√

8y+1+3
)

2 − ln
(√

8y+1+1
)

2 − 3 ln
(√

8y+1−3
)

2 + ln
(
−1+

√
8y+1

)
2 = x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 143� �
dsolve(diff(y(x),x)^2+(1+2*y(x))*diff(y(x),x)+y(x)*(y(x)-1) = 0,y(x), singsol=all)� �

x+ 3 ln (y(x)− 1)
2 − ln (y(x))

2 −
3 ln

(√
8y (x) + 1− 3

)
2 −

ln
(√

8y (x) + 1 + 1
)

2

+
3 ln

(√
8y (x) + 1 + 3

)
2 +

ln
(√

8y (x) + 1− 1
)

2 − c1 = 0

x+ 3 ln (y(x)− 1)
2 − ln (y(x))

2 +
3 ln

(√
8y (x) + 1− 3

)
2 +

ln
(√

8y (x) + 1 + 1
)

2

−
3 ln

(√
8y (x) + 1 + 3

)
2 −

ln
(√

8y (x) + 1− 1
)

2 − c1 = 0
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3 Solution by Mathematica
Time used: 60.121 (sec). Leaf size: 1373� �
DSolve[(y'[x])^2+(1+2 y[x])y'[x]+y[x](y[x]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

e−2x

128ex(12ex + e2c1) + 64 3
√
24
√
3
√

−e7x+4c1 (−27ex + e2c1) 3 + 540e4(x+c1) + 5832e5x+2c1 − e3x+6c1 + 64e2(x+c1)
(
216ex+e2c1

)
3
√

24
√
3
√

−e7x+4c1 (−27ex + e2c1) 3 + 540e4(x+c1) + 5832e5x+2c1 − e3x+6c1


1536

y(x)

→

e−2x

256ex(12ex + e2c1) + 64i
(√

3 + i
) 3
√
24
√
3
√

−e7x+4c1 (−27ex + e2c1) 3 + 540e4(x+c1) + 5832e5x+2c1 − e3x+6c1 −
64i
(√

3−i
)
e2(x+c1)

(
216ex+e2c1

)
3
√
24
√
3
√

−e7x+4c1 (−27ex + e2c1) 3 + 540e4(x+c1) + 5832e5x+2c1 − e3x+6c1


3072

y(x)

→

e−2x

256ex(12ex + e2c1)− 64
(
1 + i

√
3
) 3
√
24
√
3
√
−e7x+4c1 (−27ex + e2c1) 3 + 540e4(x+c1) + 5832e5x+2c1 − e3x+6c1 +

64i
(√

3+i
)
e2(x+c1)

(
216ex+e2c1

)
3
√
24
√
3
√
−e7x+4c1 (−27ex + e2c1) 3 + 540e4(x+c1) + 5832e5x+2c1 − e3x+6c1


3072

y(x)

→

e−2(x+2c1)

128ex+2c1(1 + 12ex+2c1) + 64 3

√
24
√
3
√
e7(x+2c1) (−1 + 27ex+2c1) 3 + 5832e5(x+2c1) − e3x+6c1 + 540e4x+8c1 + 64e2x+4c1

(
1+216ex+2c1

)
3

√
24
√
3
√

e7(x+2c1) (−1 + 27ex+2c1) 3 + 5832e5(x+2c1) − e3x+6c1 + 540e4x+8c1


1536

y(x)

→

e−2(x+2c1)

256ex+2c1(1 + 12ex+2c1) + 64i
(√

3 + i
) 3

√
24
√
3
√
e7(x+2c1) (−1 + 27ex+2c1) 3 + 5832e5(x+2c1) − e3x+6c1 + 540e4x+8c1 −

64i
(√

3−i
)
e2x+4c1

(
1+216ex+2c1

)
3

√
24
√
3
√

e7(x+2c1) (−1 + 27ex+2c1) 3 + 5832e5(x+2c1) − e3x+6c1 + 540e4x+8c1


3072

y(x)

→

e−2(x+2c1)

256ex+2c1(1 + 12ex+2c1)− 64
(
1 + i

√
3
) 3

√
24
√
3
√
e7(x+2c1) (−1 + 27ex+2c1) 3 + 5832e5(x+2c1) − e3x+6c1 + 540e4x+8c1 +

64i
(√

3+i
)
e2x+4c1

(
1+216ex+2c1

)
3

√
24
√
3
√
e7(x+2c1) (−1 + 27ex+2c1) 3 + 5832e5(x+2c1) − e3x+6c1 + 540e4x+8c1


3072
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28.15 problem 813
28.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7794

Internal problem ID [4052]
Internal file name [OUTPUT/3545_Sunday_June_05_2022_09_37_06_AM_12870771/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 813.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 2(−y + x) y′ − 4yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2x (1)
y′ = −2y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

2x dx

= x2 + c1

Summary
The solution(s) found are the following

(1)y = x2 + c1
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Verification of solutions

y = x2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1
2ydy =

∫
dx

− ln (y)
2 = x+ c2

Raising both side to exponential gives

1
√
y
= ex+c2

Which simplifies to

1
√
y
= c3ex

Summary
The solution(s) found are the following

(1)y = e−2x

c23

Verification of solutions

y = e−2x

c23

Verified OK.

28.15.1 Maple step by step solution

Let’s solve
y′2 − 2(−y + x) y′ − 4yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x
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∫ (
y′2 − 2(−y + x) y′ − 4yx

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2 − 2(−y + x) y′ − 4yx

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)^2-2*(x-y(x))*diff(y(x),x)-4*x*y(x) = 0,y(x), singsol=all)� �

y(x) = x2 + c1
y(x) = e−2xc1

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 28� �
DSolve[(y'[x])^2-2(x-y[x])y'[x]-4 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−2x

y(x) → x2 + c1
y(x) → 0
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28.16 problem 814
28.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7797

Internal problem ID [4053]
Internal file name [OUTPUT/3546_Sunday_June_05_2022_09_37_12_AM_16758717/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 814.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − (4y + 1) y′ + (4y + 1) y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2y + 1
2 +

√
4y + 1
2 (1)

y′ = 2y + 1
2 −

√
4y + 1
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
2y + 1

2 +
√
1+4y
2

dy =
∫

dx

ln (y)
2 + arctanh

(√
4y + 1

)
= x+ c1

Summary
The solution(s) found are the following

(1)ln (y)
2 + arctanh

(√
4y + 1

)
= x+ c1
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Verification of solutions

ln (y)
2 + arctanh

(√
4y + 1

)
= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
2y + 1

2 −
√
1+4y
2

dy =
∫

dx

ln (y)
2 − arctanh

(√
4y + 1

)
= x+ c2

Summary
The solution(s) found are the following

(1)ln (y)
2 − arctanh

(√
4y + 1

)
= x+ c2

Verification of solutions

ln (y)
2 − arctanh

(√
4y + 1

)
= x+ c2

Verified OK.

28.16.1 Maple step by step solution

Let’s solve
y′2 − (4y + 1) y′ + (4y + 1) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

2y+ 1
2+

√
4y+1
2

= 1

• Integrate both sides with respect to x∫
y′

2y+ 1
2+

√
4y+1
2

dx =
∫
1dx+ c1

• Evaluate integral
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ln(y)
2 + arctanh

(√
4y + 1

)
= x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 137� �
dsolve(diff(y(x),x)^2-(1+4*y(x))*diff(y(x),x)+(1+4*y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = −1
4

y(x) = −
√
−e−2xc1 e2x + c1

c1
√
−e−2xc1

y(x) = −
√
−e−2xc1 e2x + c1√
−e−2xc1 c1

y(x) = −
√
−e−2xc1 e2x + c1√
−e−2xc1 c1

y(x) = −
√
−e−2xc1 e2x + c1

c1
√
−e−2xc1
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3 Solution by Mathematica
Time used: 0.23 (sec). Leaf size: 67� �
DSolve[(y'[x])^2-(1+4 y[x])y'[x]+(1+4 y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

x−4c1
(
ex + 2e2c1

)
y(x) → 1

4e
x+2c1

(
−2 + ex+2c1

)
y(x) → −1

4
y(x) → 0
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28.17 problem 815
28.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7802

Internal problem ID [4054]
Internal file name [OUTPUT/3547_Sunday_June_05_2022_09_37_18_AM_8632152/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 815.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 2(1− 3y) y′ − (4− 9y) y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1− 3y +
√

−2y + 1 (1)
y′ = 1− 3y −

√
−2y + 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
1− 3y +

√
−2y + 1

dy =
∫

dx

− ln (9y − 4)
12 − ln (y)

4 +
ln
(√

−2y + 1− 1
)

4 −
ln
(
3
√
−2y + 1− 1

)
12 −

ln
(√

−2y + 1 + 1
)

4 +
ln
(
3
√
−2y + 1 + 1

)
12 = x+ c1

Raising both side to exponential gives

e−
ln(9y−4)

12 − ln(y)
4 + ln

(√
−2y+1−1

)
4 − ln

(
3
√
−2y+1−1

)
12 − ln

(√
−2y+1+1

)
4 + ln

(
3
√
−2y+1+1

)
12 = ex+c1
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Which simplifies to (√
−2y + 1− 1

) 1
4
(
3
√
−2y + 1 + 1

) 1
12

(9y − 4)
1
12 y

1
4
(
3
√
−2y + 1− 1

) 1
12
(√

−2y + 1 + 1
) 1

4
= c2ex

Summary
The solution(s) found are the following

(1)
(√

−2y + 1− 1
) 1

4
(
3
√
−2y + 1 + 1

) 1
12

(9y − 4)
1
12 y

1
4
(
3
√
−2y + 1− 1

) 1
12
(√

−2y + 1 + 1
) 1

4
= c2ex

Verification of solutions(√
−2y + 1− 1

) 1
4
(
3
√
−2y + 1 + 1

) 1
12

(9y − 4)
1
12 y

1
4
(
3
√
−2y + 1− 1

) 1
12
(√

−2y + 1 + 1
) 1

4
= c2ex

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
1− 3y −

√
−2y + 1

dy =
∫

dx

− ln (9y − 4)
12 − ln (y)

4 −
ln
(√

−2y + 1− 1
)

4 +
ln
(
3
√
−2y + 1− 1

)
12 +

ln
(√

−2y + 1 + 1
)

4 −
ln
(
3
√
−2y + 1 + 1

)
12 = x+ c3

Raising both side to exponential gives

e−
ln(9y−4)

12 − ln(y)
4 − ln

(√
−2y+1−1

)
4 + ln

(
3
√
−2y+1−1

)
12 + ln

(√
−2y+1+1

)
4 − ln

(
3
√
−2y+1+1

)
12 = ex+c3

Which simplifies to (
3
√
−2y + 1− 1

) 1
12
(√

−2y + 1 + 1
) 1

4

(9y − 4)
1
12 y

1
4
(√

−2y + 1− 1
) 1

4
(
3
√
−2y + 1 + 1

) 1
12

= c4ex

Summary
The solution(s) found are the following

(1)
(
3
√
−2y + 1− 1

) 1
12
(√

−2y + 1 + 1
) 1

4

(9y − 4)
1
12 y

1
4
(√

−2y + 1− 1
) 1

4
(
3
√
−2y + 1 + 1

) 1
12

= c4ex
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Verification of solutions(
3
√
−2y + 1− 1

) 1
12
(√

−2y + 1 + 1
) 1

4

(9y − 4)
1
12 y

1
4
(√

−2y + 1− 1
) 1

4
(
3
√
−2y + 1 + 1

) 1
12

= c4ex

Verified OK.

28.17.1 Maple step by step solution

Let’s solve
y′2 − 2(1− 3y) y′ − (4− 9y) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1−3y+
√
−2y+1 = 1

• Integrate both sides with respect to x∫
y′

1−3y+
√
−2y+1dx =

∫
1dx+ c1

• Evaluate integral

− ln(9y−4)
12 − ln(y)

4 + ln
(√

−2y+1−1
)

4 − ln
(
3
√
−2y+1−1

)
12 − ln

(√
−2y+1+1

)
4 + ln

(
3
√
−2y+1+1

)
12 = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 123� �
dsolve(diff(y(x),x)^2-2*(1-3*y(x))*diff(y(x),x)-(4-9*y(x))*y(x) = 0,y(x), singsol=all)� �
y(x) = 4

9
y(x)

=
RootOf

(
_Z8e24x + 24_Z7e24x + 240_Z6e24x + 1280_Z5e24x + (3840 e24x − 1458 e12xc1)_Z4 + (6144 e24x + 75816 e12xc1)_Z3 + (4096 e24x − 209952 e12xc1)_Z2 − 23328_Z e12xc1 − 11664 e12xc1 + 531441c21

)
9

+ 4
9

3 Solution by Mathematica
Time used: 60.291 (sec). Leaf size: 4769� �
DSolve[(y'[x])^2-2(1-3 y[x])y'[x]-(4-9 y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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28.18 problem 816
28.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7806

Internal problem ID [4055]
Internal file name [OUTPUT/3548_Sunday_June_05_2022_09_37_25_AM_64535805/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 816.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + (a+ 6y) y′ + y(3a+ b+ 9y) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a

2 − 3y +
√
a2 − 4yb

2 (1)

y′ = −a

2 − 3y −
√
a2 − 4yb

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
−a

2 − 3y +
√

a2−4by
2

dy =
∫

dx

− ln (3a+ b+ 9y)
3 + a ln (3a+ b+ 9y)

6a+ 2b − a ln (y)
2 (3a+ b) − 4b

(
(3a+ 2b) ln

(
3
√
a2 − 4by + 3a+ 2b

)
24b (3a+ b) +

(−3a− 2b) ln
(
3
√
a2 − 4by − 3a− 2b

)
24b (3a+ b) +

a ln
(
−a+

√
a2 − 4by

)
8b (3a+ b) −

a ln
(
a+

√
a2 − 4by

)
8b (3a+ b)

)
= x+ c1

Raising both side to exponential gives

e
− ln(3a+b+9y)

3 +a ln(3a+b+9y)
6a+2b − a ln(y)

2(3a+b)−4b

 (3a+2b) ln
(
3
√

a2−4by+3a+2b
)

24b(3a+b) +
(−3a−2b) ln

(
3
√

a2−4by−3a−2b
)

24b(3a+b) +
a ln

(
−a+

√
a2−4by

)
8b(3a+b) −

a ln
(
a+
√

a2−4by
)

8b(3a+b)


= ex+c1
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Which simplifies to

e
(3a+2b) ln

(
3
√

a2−4by−3a−2b
)
+(−3a−2b) ln

(
3
√

a2−4by+3a+2b
)
−3a ln

(
−a+

√
a2−4by

)
+3a ln

(
a+
√

a2−4by
)
+(−3a−2b) ln(3a+b+9y)−3a ln(y)

18a+6b = c2ex

Summary
The solution(s) found are the following

(1)y =

−

e
RootOf

(
18a ln(c2)+6 ln(c2)b+3a ln

(
− 1

4b
)
+3 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
a+2 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
b+6_Za+18ax+6bx

)e
RootOf

(
18a ln(c2)+6 ln(c2)b+3a ln

(
− 1

4b
)
+3 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
a+2 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
b+6_Za+18ax+6bx

)
+ 2a


4b

Verification of solutions
y =

−

e
RootOf

(
18a ln(c2)+6 ln(c2)b+3a ln

(
− 1

4b
)
+3 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
a+2 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
b+6_Za+18ax+6bx

)e
RootOf

(
18a ln(c2)+6 ln(c2)b+3a ln

(
− 1

4b
)
+3 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
a+2 ln

(
−
(
3 e_Z+6a+2b

)2
4b

)
b+6_Za+18ax+6bx

)
+ 2a


4b

Warning, solution could not be verified
Solving equation (2)

Integrating both sides gives ∫ 1
−a

2 − 3y −
√

a2−4by
2

dy =
∫

dx

− ln (3a+ b+ 9y)
3 + a ln (3a+ b+ 9y)

6a+ 2b − a ln (y)
2 (3a+ b) + 4b

(
(3a+ 2b) ln

(
3
√
a2 − 4by + 3a+ 2b

)
24b (3a+ b) +

(−3a− 2b) ln
(
3
√
a2 − 4by − 3a− 2b

)
24b (3a+ b) +

a ln
(
−a+

√
a2 − 4by

)
8b (3a+ b) −

a ln
(
a+

√
a2 − 4by

)
8b (3a+ b)

)
= x+ c3

Raising both side to exponential gives

e
− ln(3a+b+9y)

3 +a ln(3a+b+9y)
6a+2b − a ln(y)

2(3a+b)+4b

 (3a+2b) ln
(
3
√

a2−4by+3a+2b
)

24b(3a+b) +
(−3a−2b) ln

(
3
√

a2−4by−3a−2b
)

24b(3a+b) +
a ln

(
−a+

√
a2−4by

)
8b(3a+b) −

a ln
(
a+
√

a2−4by
)

8b(3a+b)


= ex+c3

Which simplifies to

e
(−3a−2b) ln

(
3
√

a2−4by−3a−2b
)
+(3a+2b) ln

(
3
√

a2−4by+3a+2b
)
+3a ln

(
−a+

√
a2−4by

)
−3a ln

(
a+
√

a2−4by
)
+(−3a−2b) ln(3a+b+9y)−3a ln(y)

18a+6b = c4ex
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Summary
The solution(s) found are the following

(1)y =

−
RootOf

(
−3 ln

(
− 4b(

3_Z−2b
)2
)
a− 2 ln

(
− 4b(

3_Z−2b
)2
)
b+ 3a ln

(
−
(
_Z+2a

)2
4b

)
+ 18a ln (c4) + 6 ln (c4) b+ 18ax+ 6bx

)(
RootOf

(
−3 ln

(
− 4b(

3_Z−2b
)2
)
a− 2 ln

(
− 4b(

3_Z−2b
)2
)
b+ 3a ln

(
−
(
_Z+2a

)2
4b

)
+ 18a ln (c4) + 6 ln (c4) b+ 18ax+ 6bx

)
+ 2a

)
4b

Verification of solutions
y =

−
RootOf

(
−3 ln

(
− 4b(

3_Z−2b
)2
)
a− 2 ln

(
− 4b(

3_Z−2b
)2
)
b+ 3a ln

(
−
(
_Z+2a

)2
4b

)
+ 18a ln (c4) + 6 ln (c4) b+ 18ax+ 6bx

)(
RootOf

(
−3 ln

(
− 4b(

3_Z−2b
)2
)
a− 2 ln

(
− 4b(

3_Z−2b
)2
)
b+ 3a ln

(
−
(
_Z+2a

)2
4b

)
+ 18a ln (c4) + 6 ln (c4) b+ 18ax+ 6bx

)
+ 2a

)
4b

Verified OK.

28.18.1 Maple step by step solution

Let’s solve
y′2 + (a+ 6y) y′ + y(3a+ b+ 9y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−a
2−3y+

√
a2−4yb

2

= 1

• Integrate both sides with respect to x∫
y′

−a
2−3y+

√
a2−4yb

2

dx =
∫
1dx+ c1

• Evaluate integral

− ln(3a+b+9y)
3 + a ln(3a+b+9y)

2(3a+b) − a ln(y)
2(3a+b) − 4b

(
(3a+2b) ln

(
3
√

a2−4yb+3a+2b
)

24b(3a+b) +
(−3a−2b) ln

(
−3a+3

√
a2−4yb−2b

)
24b(3a+b) +

a ln
(
−a+

√
a2−4yb

)
8b(3a+b) −

a ln
(
a+
√

a2−4yb
)

8b(3a+b)

)
= x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 349� �
dsolve(diff(y(x),x)^2+(a+6*y(x))*diff(y(x),x)+y(x)*(3*a+b+9*y(x)) = 0,y(x), singsol=all)� �
y(x) =

−
RootOf

(
3a ln

(
− b(

3_Z−2b
)2
)

+ 2b ln
(
− b(

3_Z−2b
)2
)

+ 12a ln (2) + 4b ln (2)− 3a ln
(
−
(
_Z+2a

)2
b

)
+ 18c1a+ 6c1b− 18ax− 6bx

)(
RootOf

(
3a ln

(
− b(

3_Z−2b
)2
)

+ 2b ln
(
− b(

3_Z−2b
)2
)

+ 12a ln (2) + 4b ln (2)− 3a ln
(
−
(
_Z+2a

)2
b

)
+ 18c1a+ 6c1b− 18ax− 6bx

)
+ 2a

)
4b

y(x) =

−

e
RootOf

(
−3a ln

(
−
(
3 e_Z+6a+2b

)2
b

)
−2b ln

(
−
(
3 e_Z+6a+2b

)2
b

)
−3a ln

(
− 1

b

)
+12a ln(2)+4b ln(2)+18c1a+6c1b−6a_Z−18ax−6bx

)e
RootOf

(
−3a ln

(
−
(
3 e_Z+6a+2b

)2
b

)
−2b ln

(
−
(
3 e_Z+6a+2b

)2
b

)
−3a ln

(
− 1

b

)
+12a ln(2)+4b ln(2)+18c1a+6c1b−6a_Z−18ax−6bx

)
+ 2a


4b
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3 Solution by Mathematica
Time used: 0.634 (sec). Leaf size: 175� �
DSolve[(y'[x])^2+(a+6 y[x])y'[x]+y[x](3 a+b+9 y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction
[
(3a+ 2b) log

(
−3

√
a2 − 4#1b+ 3a+ 2b

)
+ 3a log

(√
a2 − 4#1b+ a

)
6(3a+ b) &

] [
−x

2

+ c1
]

y(x)

→ InverseFunction
[
−
3a log

(
a−

√
a2 − 4#1b

)
+ (3a+ 2b) log

(
3
√
a2 − 4#1b+ 3a+ 2b

)
6(3a+ b) &

] [x
2

+ c1
]

y(x) → 0

y(x) → 1
9(−3a− b)
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28.19 problem 817
28.19.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7809

Internal problem ID [4056]
Internal file name [OUTPUT/3549_Sunday_June_05_2022_09_37_31_AM_1308620/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 817.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_dAlembert]

y′
2 + ayy′ = ax

28.19.1 Solving as dAlembert ode

Let p = y′ the ode becomes

ayp+ p2 = ax

Solving for y from the above results in

y = x

p
− p

a
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1
p

g = −p

a

Hence (2) becomes

p− 1
p
=
(
− x

p2
− 1

a

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1
p
= 0

Solving for p from the above gives

p = 1
p = −1

Substituting these in (1A) gives

y = −ax− 1
a

y = ax− 1
a

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 1

p(x)

− x
p(x)2 −

1
a

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−x(p)
p2

− 1
a

p− 1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = 1
p3 − p

q(p) = − p

a (p2 − 1)

Hence the ode is

d

dp
x(p) + x(p)

p3 − p
= − p

a (p2 − 1)

The integrating factor µ is

µ = e
∫ 1

p3−p
dp

= e
ln(p+1)

2 + ln(p−1)
2 −ln(p)

Which simplifies to

µ =
√
p+ 1

√
p− 1

p

The ode becomes

d
dp(µx) = (µ)

(
− p

a (p2 − 1)

)
d
dp

(√
p+ 1

√
p− 1x

p

)
=
(√

p+ 1
√
p− 1

p

)(
− p

a (p2 − 1)

)
d
(√

p+ 1
√
p− 1x

p

)
=
(
−
√
p+ 1

√
p− 1

a (p2 − 1)

)
dp

Integrating gives
√
p+ 1

√
p− 1x

p
=
∫

−
√
p+ 1

√
p− 1

a (p2 − 1) dp
√
p+ 1

√
p− 1x

p
= −

√
p− 1

√
p+ 1 ln

(
p+

√
p2 − 1

)
a
√
p2 − 1

+ c1

Dividing both sides by the integrating factor µ =
√
p+1

√
p−1

p
results in

x(p) = −
p ln

(
p+

√
p2 − 1

)
a
√
p2 − 1

+ c1p√
p+ 1

√
p− 1
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −ya

2 +
√
y2a2 + 4ax

2

p = −ya

2 −
√
y2a2 + 4ax

2

Substituting the above in the solution for x found above gives

x =
(
−ya

+
√

a (ay2 + 4x)
) ln (2)− ln

(
−ya+

√
a (ay2 + 4x) +

√
2y2a2 − 2ya

√
a (ay2 + 4x) + 4ax− 4

)
√
2y2a2 − 2ya

√
a (ay2 + 4x) + 4ax− 4 a

+ 2c1√
−2ya+ 2

√
a (ay2 + 4x) + 4

√
−2ya+ 2

√
a (ay2 + 4x)− 4


x =

(
ya

+
√

a (ay2 + 4x)
)−

ln (2)− ln
(
−ya−

√
a (ay2 + 4x) +

√
2y2a2 + 2ya

√
a (ay2 + 4x) + 4ax− 4

)
√

2y2a2 + 2ya
√

a (ay2 + 4x) + 4ax− 4 a

− 2c1√
−2ya− 2

√
a (ay2 + 4x) + 4

√
−2ya− 2

√
a (ay2 + 4x)− 4
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Summary
The solution(s) found are the following

(1)y = −ax− 1
a

(2)y = ax− 1
a

(3)x =
(
−ya

+
√

a (ay2 + 4x)
) ln (2)− ln

(
−ya+

√
a (ay2 + 4x) +

√
2y2a2 − 2ya

√
a (ay2 + 4x) + 4ax− 4

)
√
2y2a2 − 2ya

√
a (ay2 + 4x) + 4ax− 4 a

+ 2c1√
−2ya+ 2

√
a (ay2 + 4x) + 4

√
−2ya+ 2

√
a (ay2 + 4x)− 4


(4)x =

(
ya

+
√

a (ay2 + 4x)
)−

ln (2)− ln
(
−ya−

√
a (ay2 + 4x) +

√
2y2a2 + 2ya

√
a (ay2 + 4x) + 4ax− 4

)
√

2y2a2 + 2ya
√

a (ay2 + 4x) + 4ax− 4 a

− 2c1√
−2ya− 2

√
a (ay2 + 4x) + 4

√
−2ya− 2

√
a (ay2 + 4x)− 4
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Verification of solutions

y = −ax− 1
a

Verified OK.

y = ax− 1
a

Verified OK.

x =
(
−ya

+
√

a (ay2 + 4x)
) ln (2)− ln

(
−ya+

√
a (ay2 + 4x) +

√
2y2a2 − 2ya

√
a (ay2 + 4x) + 4ax− 4

)
√
2y2a2 − 2ya

√
a (ay2 + 4x) + 4ax− 4 a

+ 2c1√
−2ya+ 2

√
a (ay2 + 4x) + 4

√
−2ya+ 2

√
a (ay2 + 4x)− 4


Verified OK.

x =
(
ya

+
√

a (ay2 + 4x)
)−

ln (2)− ln
(
−ya−

√
a (ay2 + 4x) +

√
2y2a2 + 2ya

√
a (ay2 + 4x) + 4ax− 4

)
√

2y2a2 + 2ya
√

a (ay2 + 4x) + 4ax− 4 a

− 2c1√
−2ya− 2

√
a (ay2 + 4x) + 4

√
−2ya− 2

√
a (ay2 + 4x)− 4


Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 398� �
dsolve(diff(y(x),x)^2+a*y(x)*diff(y(x),x)-a*x = 0,y(x), singsol=all)� �(

−ay(x) +
√
a
(
ay (x)2 + 4x

))
c1√

−2ay (x) + 2
√

a
(
ay (x)2 + 4x

)
+ 4

√
−2ay (x) + 2

√
a
(
ay (x)2 + 4x

)
− 4

+ x

+

(
−ay(x) +

√
a
(
ay (x)2 + 4x

))(
− ln (2) + ln

(
−ay(x) +

√
a
(
ay (x)2 + 4x

)
+
√
2a2y (x)2 − 2

√
a
(
ay (x)2 + 4x

)
ay (x) + 4ax− 4

))

a

√
2a2y (x)2 − 2

√
a
(
ay (x)2 + 4x

)
ay (x) + 4ax− 4

= 0 (
ay(x) +

√
a
(
ay (x)2 + 4x

))
c1√

−2ay (x)− 2
√

a
(
ay (x)2 + 4x

)
+ 4

√
−2ay (x)− 2

√
a
(
ay (x)2 + 4x

)
− 4

+ x

−

(
ay(x) +

√
a
(
ay (x)2 + 4x

))(
− ln (2) + ln

(
−ay(x)−

√
a
(
ay (x)2 + 4x

)
+
√
2a2y (x)2 + 2

√
a
(
ay (x)2 + 4x

)
ay (x) + 4ax− 4

))

a

√
2a2y (x)2 + 2

√
a
(
ay (x)2 + 4x

)
ay (x) + 4ax− 4

= 0
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3 Solution by Mathematica
Time used: 0.633 (sec). Leaf size: 83� �
DSolve[(y'[x])^2+a y[x] y'[x]-a x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

x = −
2K[1] arctan

(√
1−K[1]2
K[1]+1

)
a
√

1−K[1]2

+ c1K[1]√
1−K[1]2

, y(x) = x

K[1] −
K[1]
a

 , {y(x), K[1]}
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28.20 problem 818
28.20.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7817

Internal problem ID [4057]
Internal file name [OUTPUT/3550_Sunday_June_05_2022_09_37_42_AM_11731142/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 818.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_dAlembert]

y′
2 − ayy′ = ax

28.20.1 Solving as dAlembert ode

Let p = y′ the ode becomes

−ayp+ p2 = ax

Solving for y from the above results in

y = −x

p
+ p

a
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1
p

g = p

a

Hence (2) becomes

p+ 1
p
=
(

x

p2
+ 1

a

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1
p
= 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −iax− i

a

y = iax+ i

a

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + 1

p(x)
x

p(x)2 +
1
a

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
p2

+ 1
a

p+ 1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 1
p (p2 + 1)

q(p) = p

a (p2 + 1)

Hence the ode is

d

dp
x(p)− x(p)

p (p2 + 1) = p

a (p2 + 1)

The integrating factor µ is

µ = e
∫
− 1

p
(
p2+1

)dp

= e
ln
(
p2+1

)
2 −ln(p)

Which simplifies to

µ =
√
p2 + 1
p

The ode becomes

d
dp(µx) = (µ)

(
p

a (p2 + 1)

)
d
dp

(√
p2 + 1 x
p

)
=
(√

p2 + 1
p

)(
p

a (p2 + 1)

)
d
(√

p2 + 1 x
p

)
=
(

1
a
√
p2 + 1

)
dp

Integrating gives
√
p2 + 1x
p

=
∫ 1

a
√
p2 + 1

dp
√
p2 + 1x
p

= arcsinh (p)
a

+ c1

Dividing both sides by the integrating factor µ =
√

p2+1
p

results in

x(p) = p arcsinh (p)√
p2 + 1 a

+ c1p√
p2 + 1
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which simplifies to

x(p) = p(c1a+ arcsinh (p))
a
√
p2 + 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = ya

2 +
√
y2a2 + 4ax

2

p = ya

2 −
√
y2a2 + 4ax

2

Substituting the above in the solution for x found above gives

x =

(
ya+

√
a (ay2 + 4x)

)(
c1a+ arcsinh

(
ya
2 +

√
a(ay2+4x)

2

))
√

2y2a2 + 2ya
√
a (ay2 + 4x) + 4ax+ 4 a

x =

(
ya−

√
a (ay2 + 4x)

)(
c1a+ arcsinh

(
ya
2 −

√
a(ay2+4x)

2

))
√

2y2a2 − 2ya
√

a (ay2 + 4x) + 4ax+ 4 a

Summary
The solution(s) found are the following

(1)y = −iax− i

a

(2)y = iax+ i

a

(3)x =

(
ya+

√
a (ay2 + 4x)

)(
c1a+ arcsinh

(
ya
2 +

√
a(ay2+4x)

2

))
√

2y2a2 + 2ya
√
a (ay2 + 4x) + 4ax+ 4 a

(4)x =

(
ya−

√
a (ay2 + 4x)

)(
c1a+ arcsinh

(
ya
2 −

√
a(ay2+4x)

2

))
√

2y2a2 − 2ya
√

a (ay2 + 4x) + 4ax+ 4 a
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Verification of solutions

y = −iax− i

a

Verified OK.

y = iax+ i

a

Verified OK.

x =

(
ya+

√
a (ay2 + 4x)

)(
c1a+ arcsinh

(
ya
2 +

√
a(ay2+4x)

2

))
√

2y2a2 + 2ya
√
a (ay2 + 4x) + 4ax+ 4 a

Verified OK.

x =

(
ya−

√
a (ay2 + 4x)

)(
c1a+ arcsinh

(
ya
2 −

√
a(ay2+4x)

2

))
√

2y2a2 − 2ya
√

a (ay2 + 4x) + 4ax+ 4 a

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 183� �
dsolve(diff(y(x),x)^2-a*y(x)*diff(y(x),x)-a*x = 0,y(x), singsol=all)� �

x+

(
−ay(x) +

√
a
(
ay (x)2 + 4x

))c1a+ arcsinh

ay(x)
2 −

√
a
(
ay(x)2+4x

)
2


√

2a2y (x)2 − 2
√

a
(
ay (x)2 + 4x

)
ay (x) + 4ax+ 4 a

= 0

x−

(
ay(x) +

√
a
(
ay (x)2 + 4x

))c1a+ arcsinh

ay(x)
2 +

√
a
(
ay(x)2+4x

)
2


√

2a2y (x)2 + 2
√

a
(
ay (x)2 + 4x

)
ay (x) + 4ax+ 4 a

= 0

3 Solution by Mathematica
Time used: 0.91 (sec). Leaf size: 75� �
DSolve[(y'[x])^2-a y[x] y'[x]-a x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

x = −
K[1] log

(√
K[1]2 + 1−K[1]

)
a
√

K[1]2 + 1

+ c1K[1]√
K[1]2 + 1

, y(x) = K[1]
a

− x

K[1]

 , {y(x), K[1]}
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28.21 problem 819
28.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7824

Internal problem ID [4058]
Internal file name [OUTPUT/3551_Sunday_June_05_2022_09_37_50_AM_52256281/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 819.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 + (ax+ yb) y′ + abxy = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −ax (1)
y′ = −yb (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

−ax dx

= −x2a

2 + c1

Summary
The solution(s) found are the following

(1)y = −x2a

2 + c1
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Verification of solutions

y = −x2a

2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1
by

dy =
∫

dx

− ln (y)
b

= x+ c2

Raising both side to exponential gives

e−
ln(y)

b = ex+c2

Which simplifies to

y−
1
b = c3ex

Summary
The solution(s) found are the following

(1)y = (c3ex)−b

Verification of solutions

y = (c3ex)−b

Verified OK.

28.21.1 Maple step by step solution

Let’s solve
y′2 + (ax+ yb) y′ + abxy = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 + (ax+ yb) y′ + abxy

)
dx =

∫
0dx+ c1

• Cannot compute integral
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∫ (
y′2 + (ax+ yb) y′ + abxy

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x)^2+(a*x+b*y(x))*diff(y(x),x)+a*b*x*y(x) = 0,y(x), singsol=all)� �

y(x) = −a x2

2 + c1

y(x) = c1e−bx

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 34� �
DSolve[(y'[x])^2+(a x+b y[x])y'[x]+a b x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−bx

y(x) → −ax2

2 + c1

y(x) → 0
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28.22 problem 820
Internal problem ID [4059]
Internal file name [OUTPUT/3552_Sunday_June_05_2022_09_37_56_AM_26892832/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 820.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`]]

y′
2 − xyy′ + y2 ln (ya) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
x

2 +
√

x2 − 4 ln (ya)
2

)
y (1)

y′ =
(
x

2 −
√
x2 − 4 ln (ya)

2

)
y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =

(
x+

√
x2 − 4 ln (ya)

)
y

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

+

(
x+

√
x2 − 4 ln (ya)

)
y(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

2

−

(
x+

√
x2 − 4 ln (ya)

)2
y2(xa5 + 2ya6 + a3)

4

−

(
1 + x√

x2−4 ln(ya)

)
y(x2a4 + xya5 + y2a6 + xa2 + ya3 + a1)

2

−

(
− 1√

x2 − 4 ln (ya)
+ x

2 +
√
x2 − 4 ln (ya)

2

)(
x2b4

+ xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−
6x3ya4 + 4x2y2a5 + 2x y3a6 − 8 ln (ya)xb2 − 8 ln (ya) ya2 +

√
x2 − 4 ln (ya)x2y2a3 + 4

√
x2 − 4 ln (ya)xya2 − 8 ln (ya)x2y2a5 − 16 ln (ya)x y3a6 − 4b1 +

√
x2 − 4 ln (ya)x3y2a5 + 2

√
x2 − 4 ln (ya)x2y3a6 + (x2 − 4 ln (ya))

3
2 x y2a5 − 16 ln (ya)xya4 − 8 ln (ya)x y2a3 + 2(x2 − 4 ln (ya))

3
2 y3a6 + 2

√
x2 − 4 ln (ya)x3b4 + 2

√
x2 − 4 ln (ya) y3a6 − 8xb4

√
x2 − 4 ln (ya)− 4yb5

√
x2 − 4 ln (ya) + 2x4y2a5 + 4x3y3a6 − 2x2y2b6 + 6

√
x2 − 4 ln (ya)x2ya4 + 4

√
x2 − 4 ln (ya)x y2a5 − 2

√
x2 − 4 ln (ya)x y2b6 − 8 ln (ya)x2b4 − 8 ln (ya) y2a5 + 8 ln (ya) y2b6 − 4xyb5 + 4x2ya2 + 2x y2a3 + 2xya1 + (x2 − 4 ln (ya))

3
2 y2a3 + 2

√
x2 − 4 ln (ya)x2b2 + 2y2a3

√
x2 − 4 ln (ya) + 2

√
x2 − 4 ln (ya)xb1 + 2

√
x2 − 4 ln (ya) ya1 + 2x3y2a3 − 4b2

√
x2 − 4 ln (ya) + 2x3b2 + 2x2b1 − 8 ln (ya) b1 + 2x4b4 − 4xb2 − 4yb3 − 4x2b4 − 4y2b6

4
√
x2 − 4 ln (ya)

= 0
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Setting the numerator to zero gives

(6E)

−6x3ya4 − 4x2y2a5 − 2x y3a6 + 8 ln (ya)xb2 + 8 ln (ya) ya2
−
√

x2 − 4 ln (ya)x2y2a3 − 4
√

x2 − 4 ln (ya)xya2
+ 8 ln (ya)x2y2a5 + 16 ln (ya)x y3a6 + 4b1
−
√

x2 − 4 ln (ya)x3y2a5 − 2
√

x2 − 4 ln (ya)x2y3a6

−
(
x2 − 4 ln (ya)

) 3
2 x y2a5 + 16 ln (ya)xya4 + 8 ln (ya)x y2a3

− 2
(
x2 − 4 ln (ya)

) 3
2 y3a6 − 2

√
x2 − 4 ln (ya)x3b4

− 2
√

x2 − 4 ln (ya) y3a6 + 8xb4
√

x2 − 4 ln (ya)
+ 4yb5

√
x2 − 4 ln (ya)− 2x4y2a5 − 4x3y3a6 + 2x2y2b6

− 6
√

x2 − 4 ln (ya)x2ya4 − 4
√
x2 − 4 ln (ya)x y2a5

+ 2
√

x2 − 4 ln (ya)x y2b6 + 8 ln (ya)x2b4 + 8 ln (ya) y2a5
− 8 ln (ya) y2b6 + 4xyb5 − 4x2ya2 − 2x y2a3 − 2xya1
−
(
x2 − 4 ln (ya)

) 3
2 y2a3 − 2

√
x2 − 4 ln (ya)x2b2

− 2y2a3
√

x2 − 4 ln (ya)− 2
√

x2 − 4 ln (ya)xb1
− 2
√

x2 − 4 ln (ya) ya1 − 2x3y2a3 + 4b2
√

x2 − 4 ln (ya)− 2x3b2
− 2x2b1 + 8 ln (ya) b1 − 2x4b4 + 4xb2 + 4yb3 + 4x2b4 + 4y2b6 = 0
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Simplifying the above gives

(6E)

−2x3ya4 − 2x2y2a5 − 2x y3a6 − 2
(
x2 − 4 ln (ya)

)
x y2a3

−
√

x2 − 4 ln (ya)x2y2a3 − 4
√

x2 − 4 ln (ya)xya2 + 4b1
−
√

x2 − 4 ln (ya)x3y2a5 − 2
√

x2 − 4 ln (ya)x2y3a6

−
(
x2 − 4 ln (ya)

) 3
2 x y2a5 − 2

(
x2 − 4 ln (ya)

)
x2y2a5

− 4
(
x2 − 4 ln (ya)

)
x y3a6 − 2

(
x2 − 4 ln (ya)

) 3
2 y3a6

− 2
(
x2 − 4 ln (ya)

)
x2b4 − 2

(
x2 − 4 ln (ya)

)
y2a5

+ 2
(
x2 − 4 ln (ya)

)
y2b6 − 2

√
x2 − 4 ln (ya)x3b4

− 2
√

x2 − 4 ln (ya) y3a6 + 8xb4
√
x2 − 4 ln (ya)

+ 4yb5
√

x2 − 4 ln (ya)− 4
(
x2 − 4 ln (ya)

)
xya4

− 6
√

x2 − 4 ln (ya)x2ya4 − 4
√
x2 − 4 ln (ya)x y2a5

+ 2
√

x2 − 4 ln (ya)x y2b6 + 4xyb5 − 2x2ya2 − 2x y2a3
− 2xya1 −

(
x2 − 4 ln (ya)

) 3
2 y2a3 − 2

(
x2 − 4 ln (ya)

)
xb2

− 2
(
x2 − 4 ln (ya)

)
ya2 − 2

√
x2 − 4 ln (ya)x2b2

− 2y2a3
√

x2 − 4 ln (ya)− 2
√

x2 − 4 ln (ya)xb1
− 2
√

x2 − 4 ln (ya) ya1 − 2
(
x2 − 4 ln (ya)

)
b1

+ 4b2
√

x2 − 4 ln (ya) + 4xb2 + 4yb3 + 4x2b4 + 4y2b6 = 0

Since the PDE has radicals, simplifying gives

−6x3ya4 − 4x2y2a5 − 2x y3a6 + 8 ln (ya)xb2 + 8 ln (ya) ya2
− 2
√

x2 − 4 ln (ya)x2y2a3 − 4
√

x2 − 4 ln (ya)xya2
+ 8 ln (ya)x2y2a5 + 16 ln (ya)x y3a6 + 4b1 − 2

√
x2 − 4 ln (ya)x3y2a5

− 4
√

x2 − 4 ln (ya)x2y3a6 + 8 ln (ya)
√
x2 − 4 ln (ya) y3a6

+ 16 ln (ya)xya4 + 8 ln (ya)x y2a3 + 4 ln (ya)
√
x2 − 4 ln (ya) y2a3

− 2
√

x2 − 4 ln (ya)x3b4 − 2
√

x2 − 4 ln (ya) y3a6
+ 8xb4

√
x2 − 4 ln (ya) + 4yb5

√
x2 − 4 ln (ya)− 2x4y2a5 − 4x3y3a6

+ 2x2y2b6 − 6
√

x2 − 4 ln (ya)x2ya4 − 4
√

x2 − 4 ln (ya)x y2a5
+2
√
x2 − 4 ln (ya)x y2b6+8 ln (ya)x2b4+8 ln (ya) y2a5−8 ln (ya) y2b6

+ 4 ln (ya)x
√

x2 − 4 ln (ya) y2a5 + 4xyb5 − 4x2ya2 − 2x y2a3 − 2xya1
−2
√

x2 − 4 ln (ya)x2b2−2y2a3
√
x2 − 4 ln (ya)−2

√
x2 − 4 ln (ya)xb1

− 2
√

x2 − 4 ln (ya) ya1 − 2x3y2a3 + 4b2
√

x2 − 4 ln (ya)− 2x3b2
− 2x2b1 + 8 ln (ya) b1 − 2x4b4 + 4xb2 + 4yb3 + 4x2b4 + 4y2b6 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 − 4 ln (ya), ln (ya)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 − 4 ln (ya) = v3, ln (ya) = v4

}
The above PDE (6E) now becomes

(7E)

−2v41v22a5 − 2v3v31v22a5 − 4v31v32a6 − 4v3v21v32a6 − 2v31v22a3 − 2v3v21v22a3
+ 8v4v21v22a5 + 4v4v1v3v22a5 + 16v4v1v32a6 + 8v4v3v32a6 + 8v4v1v22a3
+ 4v4v3v22a3 − 6v31v2a4 − 6v3v21v2a4 − 4v21v22a5 − 4v3v1v22a5
− 2v1v32a6 − 2v3v32a6 − 2v41b4 − 2v3v31b4 + 2v21v22b6 + 2v3v1v22b6
− 4v21v2a2 − 4v3v1v2a2 − 2v1v22a3 − 2v22a3v3 + 16v4v1v2a4 + 8v4v22a5
− 2v31b2 − 2v3v21b2 + 8v4v21b4 − 8v4v22b6 − 2v1v2a1 − 2v3v2a1
+ 8v4v2a2 − 2v21b1 − 2v3v1b1 + 8v4v1b2 + 4v21b4 + 8v1b4v3 + 4v1v2b5
+ 4v2b5v3 + 4v22b6 + 8v4b1 + 4v1b2 + 4b2v3 + 4v2b3 + 4b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

4b1 + (−4a5 + 2b6) v21v22 + (−2a1 + 4b5) v1v2 + (−2b1 + 8b4) v1v3
+ (8a5 − 8b6) v22v4 + (−2a1 + 4b5) v2v3 − 2v3v21v22a3 − 4v3v1v2a2
+ 8v4v21v22a5 + 16v4v1v32a6 − 2v3v31v22a5 − 4v3v21v32a6 + 8v4v3v32a6
+ 16v4v1v2a4 + 8v4v1v22a3 + 4v4v3v22a3 − 6v3v21v2a4 + 4v4v1v3v22a5
+ (−4a5 + 2b6) v1v22v3 + (−2b1 + 4b4) v21 + 4b2v3 − 2v31b2 + 8v4b1
− 2v41b4 + 4v1b2 + 4v2b3 + 4v22b6 − 6v31v2a4 − 2v1v32a6 + 8v4v1b2
+ 8v4v2a2 − 2v3v31b4 − 2v3v32a6 − 2v41v22a5 − 4v31v32a6 + 8v4v21b4
− 4v21v2a2 − 2v1v22a3 − 2v3v21b2 − 2v22a3v3 − 2v31v22a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a2 = 0
8a2 = 0

−2a3 = 0
4a3 = 0
8a3 = 0

−6a4 = 0
16a4 = 0
−2a5 = 0
4a5 = 0
8a5 = 0

−4a6 = 0
−2a6 = 0
8a6 = 0
16a6 = 0
4b1 = 0
8b1 = 0

−2b2 = 0
4b2 = 0
8b2 = 0
4b3 = 0

−2b4 = 0
8b4 = 0
4b6 = 0

−2a1 + 4b5 = 0
−4a5 + 2b6 = 0
8a5 − 8b6 = 0

−2b1 + 4b4 = 0
−2b1 + 8b4 = 0
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Solving the above equations for the unknowns gives

a1 = 2b5
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = b5

b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = xy

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= xy −


(
x+

√
x2 − 4 ln (ya)

)
y

2

 (2)

= −y
√

x2 − 4 ln (ya)
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y
√

x2 − 4 ln (ya)
dy

Which results in

S =
√

x2 − 4 ln (ya)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =

(
x+

√
x2 − 4 ln (ya)

)
y

2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

2
√
x2 − 4 ln (y)− 4 ln (a)

Sy = − 1√
x2 − 4 ln (y)− 4 ln (a) y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

√
x2 − 4 ln (ya)

2
√
x2 − 4 ln (y)− 4 ln (a)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in √

x2 − 4 ln (y)− 4 ln (a)
2 = −x

2 + c1

Which simplifies to √
x2 − 4 ln (y)− 4 ln (a)

2 = −x

2 + c1

Which gives

y = e−c21+c1x

a

Summary
The solution(s) found are the following

(1)y = e−c21+c1x

a

Verification of solutions

y = e−c21+c1x

a

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −

(
−x+

√
x2 − 4 ln (ya)

)
y

2
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

−

(
−x+

√
x2 − 4 ln (ya)

)
y(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

2

−

(
−x+

√
x2 − 4 ln (ya)

)2
y2(xa5 + 2ya6 + a3)

4

+

(
−1 + x√

x2−4 ln(ya)

)
y(x2a4 + xya5 + y2a6 + xa2 + ya3 + a1)

2

−

(
1√

x2 − 4 ln (ya)
+ x

2 −
√
x2 − 4 ln (ya)

2

)(
x2b4

+ xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−
−6x3ya4 − 4x2y2a5 − 2x y3a6 + 2(x2 − 4 ln (ya))

3
2 y3a6 + 2

√
x2 − 4 ln (ya)x3b4 + 2

√
x2 − 4 ln (ya) y3a6 + 8 ln (ya)x y2a3 +

√
x2 − 4 ln (ya)x2y2a3 + 4

√
x2 − 4 ln (ya)xya2 + (x2 − 4 ln (ya))

3
2 x y2a5 +

√
x2 − 4 ln (ya)x3y2a5 + 2

√
x2 − 4 ln (ya)x2y3a6 + 6

√
x2 − 4 ln (ya)x2ya4 + 4

√
x2 − 4 ln (ya)x y2a5 − 2

√
x2 − 4 ln (ya)x y2b6 + 8 ln (ya)x2y2a5 + 16 ln (ya)x y3a6 + 16 ln (ya)xya4 + 4b1 − 2x4b4 + 4x2b4 + 4y2b6 − 2x3b2 − 2x2b1 + 8 ln (ya) b1 − 4x2ya2 − 2x y2a3 − 2xya1 + (x2 − 4 ln (ya))

3
2 y2a3 + 2

√
x2 − 4 ln (ya)x2b2 + 2y2a3

√
x2 − 4 ln (ya) + 2

√
x2 − 4 ln (ya)xb1 + 2

√
x2 − 4 ln (ya) ya1 − 4b2

√
x2 − 4 ln (ya)− 2x3y2a3 + 8 ln (ya)xb2 + 8 ln (ya) ya2 + 4xyb5 − 8xb4

√
x2 − 4 ln (ya)− 4yb5

√
x2 − 4 ln (ya)− 2x4y2a5 − 4x3y3a6 + 2x2y2b6 + 8 ln (ya)x2b4 + 8 ln (ya) y2a5 − 8 ln (ya) y2b6 + 4xb2 + 4yb3

4
√

x2 − 4 ln (ya)
= 0
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Setting the numerator to zero gives

(6E)

6x3ya4 + 4x2y2a5 + 2x y3a6 − 2
(
x2 − 4 ln (ya)

) 3
2 y3a6

− 2
√

x2 − 4 ln (ya)x3b4 − 2
√
x2 − 4 ln (ya) y3a6

− 8 ln (ya)x y2a3 −
√

x2 − 4 ln (ya)x2y2a3

− 4
√

x2 − 4 ln (ya)xya2 −
(
x2 − 4 ln (ya)

) 3
2 x y2a5

−
√

x2 − 4 ln (ya)x3y2a5 − 2
√

x2 − 4 ln (ya)x2y3a6

− 6
√

x2 − 4 ln (ya)x2ya4 − 4
√
x2 − 4 ln (ya)x y2a5

+ 2
√

x2 − 4 ln (ya)x y2b6 − 8 ln (ya)x2y2a5 − 16 ln (ya)x y3a6
− 16 ln (ya)xya4 − 4b1 + 2x4b4 − 4x2b4 − 4y2b6 + 2x3b2
+ 2x2b1 − 8 ln (ya) b1 + 4x2ya2 + 2x y2a3 + 2xya1
−
(
x2 − 4 ln (ya)

) 3
2 y2a3 − 2

√
x2 − 4 ln (ya)x2b2

− 2y2a3
√

x2 − 4 ln (ya)− 2
√

x2 − 4 ln (ya)xb1
− 2
√

x2 − 4 ln (ya) ya1 + 4b2
√

x2 − 4 ln (ya) + 2x3y2a3

− 8 ln (ya)xb2 − 8 ln (ya) ya2 − 4xyb5 + 8xb4
√
x2 − 4 ln (ya)

+ 4yb5
√

x2 − 4 ln (ya) + 2x4y2a5 + 4x3y3a6 − 2x2y2b6
− 8 ln (ya)x2b4− 8 ln (ya) y2a5+8 ln (ya) y2b6− 4xb2− 4yb3 = 0
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Simplifying the above gives

(6E)

2x3ya4 + 2x2y2a5 + 2x y3a6 − 2
(
x2 − 4 ln (ya)

) 3
2 y3a6

+ 2
(
x2 − 4 ln (ya)

)
x2b4 + 2

(
x2 − 4 ln (ya)

)
y2a5

− 2
(
x2 − 4 ln (ya)

)
y2b6 − 2

√
x2 − 4 ln (ya)x3b4

− 2
√

x2 − 4 ln (ya) y3a6 + 2
(
x2 − 4 ln (ya)

)
x y2a3

−
√

x2 − 4 ln (ya)x2y2a3 − 4
√

x2 − 4 ln (ya)xya2
−
(
x2 − 4 ln (ya)

) 3
2 x y2a5 + 2

(
x2 − 4 ln (ya)

)
x2y2a5

+ 4
(
x2 − 4 ln (ya)

)
x y3a6 −

√
x2 − 4 ln (ya)x3y2a5

− 2
√

x2 − 4 ln (ya)x2y3a6 + 4
(
x2 − 4 ln (ya)

)
xya4

− 6
√

x2 − 4 ln (ya)x2ya4 − 4
√
x2 − 4 ln (ya)x y2a5

+ 2
√

x2 − 4 ln (ya)x y2b6 − 4b1 − 4x2b4 − 4y2b6
+ 2x2ya2 + 2x y2a3 + 2xya1 −

(
x2 − 4 ln (ya)

) 3
2 y2a3

+ 2
(
x2 − 4 ln (ya)

)
xb2 + 2

(
x2 − 4 ln (ya)

)
ya2

− 2
√

x2 − 4 ln (ya)x2b2 − 2y2a3
√

x2 − 4 ln (ya)
− 2
√

x2 − 4 ln (ya)xb1 − 2
√

x2 − 4 ln (ya) ya1
+ 2
(
x2 − 4 ln (ya)

)
b1 + 4b2

√
x2 − 4 ln (ya)− 4xyb5

+ 8xb4
√

x2 − 4 ln (ya) + 4yb5
√

x2 − 4 ln (ya)− 4xb2 − 4yb3 = 0

Since the PDE has radicals, simplifying gives

6x3ya4 + 4x2y2a5 + 2x y3a6 − 2
√
x2 − 4 ln (ya)x3b4

− 2
√

x2 − 4 ln (ya) y3a6 − 8 ln (ya)x y2a3 − 2
√
x2 − 4 ln (ya)x2y2a3

− 4
√

x2 − 4 ln (ya)xya2 − 2
√

x2 − 4 ln (ya)x3y2a5

− 4
√

x2 − 4 ln (ya)x2y3a6 − 6
√

x2 − 4 ln (ya)x2ya4

− 4
√

x2 − 4 ln (ya)x y2a5 + 2
√

x2 − 4 ln (ya)x y2b6
+ 4 ln (ya)

√
x2 − 4 ln (ya) y2a3 − 8 ln (ya)x2y2a5

− 16 ln (ya)x y3a6 − 16 ln (ya)xya4 + 8 ln (ya)
√

x2 − 4 ln (ya) y3a6
+ 4 ln (ya)x

√
x2 − 4 ln (ya) y2a5 − 4b1 + 2x4b4 − 4x2b4

− 4y2b6 + 2x3b2 + 2x2b1 − 8 ln (ya) b1 + 4x2ya2 + 2x y2a3
+ 2xya1 − 2

√
x2 − 4 ln (ya)x2b2 − 2y2a3

√
x2 − 4 ln (ya)

− 2
√

x2 − 4 ln (ya)xb1 − 2
√

x2 − 4 ln (ya) ya1 + 4b2
√

x2 − 4 ln (ya)
+ 2x3y2a3 − 8 ln (ya)xb2 − 8 ln (ya) ya2 − 4xyb5 + 8xb4

√
x2 − 4 ln (ya)

+ 4yb5
√

x2 − 4 ln (ya) + 2x4y2a5 + 4x3y3a6 − 2x2y2b6
− 8 ln (ya)x2b4 − 8 ln (ya) y2a5 + 8 ln (ya) y2b6 − 4xb2 − 4yb3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 − 4 ln (ya), ln (ya)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 − 4 ln (ya) = v3, ln (ya) = v4

}
The above PDE (6E) now becomes

(7E)

2v41v22a5 − 2v3v31v22a5 + 4v31v32a6 − 4v3v21v32a6 + 2v31v22a3 − 2v3v21v22a3
− 8v4v21v22a5 + 4v4v1v3v22a5 − 16v4v1v32a6 + 8v4v3v32a6 − 8v4v1v22a3
+ 4v4v3v22a3 + 6v31v2a4 − 6v3v21v2a4 + 4v21v22a5 − 4v3v1v22a5
+ 2v1v32a6 − 2v3v32a6 + 2v41b4 − 2v3v31b4 − 2v21v22b6 + 2v3v1v22b6
+ 4v21v2a2 − 4v3v1v2a2 + 2v1v22a3 − 2v22a3v3 − 16v4v1v2a4 − 8v4v22a5
+ 2v31b2 − 2v3v21b2 − 8v4v21b4 + 8v4v22b6 + 2v1v2a1 − 2v3v2a1
− 8v4v2a2 + 2v21b1 − 2v3v1b1 − 8v4v1b2 − 4v21b4 + 8v1b4v3 − 4v1v2b5
+ 4v2b5v3 − 4v22b6 − 8v4b1 − 4v1b2 + 4b2v3 − 4v2b3 − 4b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)

4v4v1v3v22a5 − 8v4v1v22a3 + (4a5 − 2b6) v21v22 − 2v3v21v22a3
− 4v3v1v2a2 − 2v3v31v22a5 − 4v3v21v32a6 − 6v3v21v2a4 + 4v4v3v22a3
− 8v4v21v22a5 − 16v4v1v32a6 − 16v4v1v2a4 + 8v4v3v32a6 − 2v22a3v3
+ 2v31v22a3 − 8v4v1b2 − 8v4v2a2 + 2v41v22a5 + 4v31v32a6 − 8v4v21b4
+ (2a1 − 4b5) v1v2 + (−2b1 + 8b4) v1v3 + (−8a5 + 8b6) v22v4
+ (−2a1 + 4b5) v2v3 − 4b1 + (2b1 − 4b4) v21 + 2v41b4 − 4v22b6 + 2v31b2
− 8v4b1 + 4b2v3 − 4v1b2 − 4v2b3 + 6v31v2a4 + 2v1v32a6 − 2v3v31b4
− 2v3v32a6 + 4v21v2a2 + 2v1v22a3 − 2v3v21b2 + (−4a5 + 2b6) v1v22v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−8a2 = 0
−4a2 = 0
4a2 = 0

−8a3 = 0
−2a3 = 0
2a3 = 0
4a3 = 0

−16a4 = 0
−6a4 = 0
6a4 = 0

−8a5 = 0
−2a5 = 0
2a5 = 0
4a5 = 0

−16a6 = 0
−4a6 = 0
−2a6 = 0
2a6 = 0
4a6 = 0
8a6 = 0

−8b1 = 0
−4b1 = 0
−8b2 = 0
−4b2 = 0
−2b2 = 0
2b2 = 0
4b2 = 0

−4b3 = 0
−8b4 = 0
−2b4 = 0
2b4 = 0

−4b6 = 0
−2a1 + 4b5 = 0
2a1 − 4b5 = 0

−8a5 + 8b6 = 0
−4a5 + 2b6 = 0
4a5 − 2b6 = 0

−2b1 + 8b4 = 0
2b1 − 4b4 = 0
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Solving the above equations for the unknowns gives

a1 = 2b5
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = b5

b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = xy

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= xy −

−

(
−x+

√
x2 − 4 ln (ya)

)
y

2

 (2)

= y
√

x2 − 4 ln (ya)
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
√

x2 − 4 ln (ya)
dy

Which results in

S = −
√
x2 − 4 ln (ya)

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −

(
−x+

√
x2 − 4 ln (ya)

)
y

2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x

2
√
x2 − 4 ln (y)− 4 ln (a)

Sy =
1√

x2 − 4 ln (y)− 4 ln (a) y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

√
x2 − 4 ln (ya)

2
√
x2 − 4 ln (y)− 4 ln (a)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
√

x2 − 4 ln (y)− 4 ln (a)
2 = −x

2 + c1

Which simplifies to

−
√

x2 − 4 ln (y)− 4 ln (a)
2 = −x

2 + c1

Which gives

y = e−c21+c1x

a

Summary
The solution(s) found are the following

(1)y = e−c21+c1x

a

Verification of solutions

y = e−c21+c1x

a

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[1, 1/2*y*x]� �
3 Solution by Maple
Time used: 0.203 (sec). Leaf size: 43� �
dsolve(diff(y(x),x)^2-x*diff(y(x),x)*y(x)+y(x)^2*ln(a*y(x)) = 0,y(x), singsol=all)� �

y(x) = ex2
4

a

y(x) = ec1(−c1+x)

a

y(x) = e−c1(c1+x)

a
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3 Solution by Mathematica
Time used: 0.324 (sec). Leaf size: 30� �
DSolve[(y'[x])^2-x y'[x] y[x]+y[x]^2 Log[a y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
1
4 c1(2x−c1)

a
y(x) → 0
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28.23 problem 821
28.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7846

Internal problem ID [4060]
Internal file name [OUTPUT/3553_Sunday_June_05_2022_09_38_09_AM_1798262/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 821.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
2 − (2yx+ 1) y′ + 2yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 (1)
y′ = 2yx (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

1 dx

= x+ c1

Summary
The solution(s) found are the following

(1)y = x+ c1
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Verification of solutions

y = x+ c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= 2xy

Where f(x) = 2x and g(y) = y. Integrating both sides gives

1
y
dy = 2x dx∫ 1

y
dy =

∫
2x dx

ln (y) = x2 + c2

y = ex2+c2

= c2ex
2

Summary
The solution(s) found are the following

(1)y = c2ex
2

Verification of solutions

y = c2ex
2

Verified OK.

28.23.1 Maple step by step solution

Let’s solve
y′2 − (2yx+ 1) y′ + 2yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x
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∫ (
y′2 − (2yx+ 1) y′ + 2yx

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2 − (2yx+ 1) y′ + 2yx

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)^2-(1+2*x*y(x))*diff(y(x),x)+2*x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1 + x

y(x) = ex2
c1

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 21� �
DSolve[(y'[x])^2-(1+2 x y[x])y'[x]+2 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x2

y(x) → x+ c1
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28.24 problem 822
Internal problem ID [4061]
Internal file name [OUTPUT/3554_Sunday_June_05_2022_09_38_14_AM_45511259/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 28
Problem number: 822.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 −

(
4 + y2

)
y′ + y2 = −4

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y2

2 + 2 +
√
y4 + 4y2

2 (1)

y′ = y2

2 + 2−
√
y4 + 4y2

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
y2

2 + 2 +
√

y4+4y2
2

dy =
∫

dx∫ y 1
_a2

2 + 2 +
√_a4+4_a2

2

d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

_a2

2 + 2 +
√_a4+4_a2

2

d_a = x+ c1
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Verification of solutions∫ y 1
_a2

2 + 2 +
√_a4+4_a2

2

d_a = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
y2

2 + 2−
√

y4+4y2
2

dy =
∫

dx∫ y 1
_a2

2 + 2−
√_a4+4_a2

2

d_a = x+ c2

Summary
The solution(s) found are the following

(1)
∫ y 1

_a2

2 + 2−
√_a4+4_a2

2

d_a = x+ c2

Verification of solutions∫ y 1
_a2

2 + 2−
√_a4+4_a2

2

d_a = x+ c2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 77� �
dsolve(diff(y(x),x)^2-(4+y(x)^2)*diff(y(x),x)+4+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −2i
y(x) = 2i

x+ 2
(∫ y(x) 1

−_a2 +
√
_a2 (_a2 + 4)− 4

d_a
)

− c1 = 0

x− 2
(∫ y(x) 1

_a2 +
√
_a2 (_a2 + 4) + 4

d_a
)

− c1 = 0

3 Solution by Mathematica
Time used: 0.463 (sec). Leaf size: 73� �
DSolve[(y'[x])^2-(4+y[x]^2)y'[x]+4+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − 4c1x− 1 + 4c12
x− 2c1

y(x) → x2 + 4c1x− 1 + 4c12
x+ 2c1

y(x) → −2i
y(x) → 2i
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29.1 problem 823
29.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7854

Internal problem ID [4062]
Internal file name [OUTPUT/3555_Sunday_June_05_2022_09_38_19_AM_37848521/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 823.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2 − (−y + x) yy′ − xy3 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = yx (1)
y′ = −y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy
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Where f(x) = x and g(y) = y. Integrating both sides gives

1
y
dy = x dx∫ 1

y
dy =

∫
x dx

ln (y) = x2

2 + c1

y = ex2
2 +c1

= c1e
x2
2

Summary
The solution(s) found are the following

(1)y = c1e
x2
2

Verification of solutions

y = c1e
x2
2

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 1
y2

dy = x+ c2

1
y
= x+ c2

Solving for y gives these solutions

y1 =
1

x+ c2

Summary
The solution(s) found are the following

(1)y = 1
x+ c2

Verification of solutions

y = 1
x+ c2

Verified OK.
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29.1.1 Maple step by step solution

Let’s solve
y′2 − (−y + x) yy′ − xy3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
xdx+ c1

• Evaluate integral
ln (y) = x2

2 + c1

• Solve for y

y = ex2
2 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2-(x-y(x))*y(x)*diff(y(x),x)-x*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = 1
c1 + x

y(x) = ex2
2 c1

3 Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 34� �
DSolve[(y'[x])^2-(x-y[x])y[x] y'[x]-x y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
x− c1

y(x) → c1e
x2
2

y(x) → 0
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29.2 problem 824
Internal problem ID [4063]
Internal file name [OUTPUT/3556_Sunday_June_05_2022_09_38_25_AM_45729777/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 824.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 + xy2y′ + y3 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−yx

2 +
√
y2x2 − 4y

2

)
y (1)

y′ =
(
−yx

2 −
√
y2x2 − 4y

2

)
y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −
(
xy −

√
y2x2 − 4y

)
y

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
xy −

√
y2x2 − 4y

)
y(b3 − a2)

2 −
(
xy −

√
y2x2 − 4y

)2
y2a3

4

+

(
y − x y2√

y2x2−4y

)
y(xa2 + ya3 + a1)
2

−

−

(
x− 2x2y−4

2
√

y2x2−4y

)
y

2 − xy

2 +
√
y2x2 − 4y

2

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−2x3y5a3 +
√
y2x2 − 4y x2y4a3 + (y2x2 − 4y)

3
2 y2a3 + 4x3y2b2 + 4x2y3a2 + 2x2y3b3 + 10x y4a3 − 4

√
y2x2 − 4y x2yb2 − 4

√
y2x2 − 4y x y2a2 − 2

√
y2x2 − 4y x y2b3 − 2

√
y2x2 − 4y y3a3 + 4x2y2b1 + 2x y3a1 − 4

√
y2x2 − 4y xyb1 − 2

√
y2x2 − 4y y2a1 − 12xyb2 − 8y2a2 − 4y2b3 − 4b2

√
y2x2 − 4y − 12yb1

4
√
y2x2 − 4y

= 0

Setting the numerator to zero gives

(6E)

2x3y5a3 −
√

y2x2 − 4y x2y4a3 −
(
y2x2 − 4y

) 3
2 y2a3 − 4x3y2b2

− 4x2y3a2 − 2x2y3b3 − 10x y4a3 + 4
√
y2x2 − 4y x2yb2

+ 4
√
y2x2 − 4y x y2a2 + 2

√
y2x2 − 4y x y2b3 + 2

√
y2x2 − 4y y3a3

− 4x2y2b1 − 2x y3a1 + 4
√
y2x2 − 4y xyb1 + 2

√
y2x2 − 4y y2a1

+ 12xyb2 + 8y2a2 + 4y2b3 + 4b2
√

y2x2 − 4y + 12yb1 = 0
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Simplifying the above gives

(6E)

−
√

y2x2 − 4y x2y4a3 + 2
(
y2x2 − 4y

)
x y3a3 −

(
y2x2 − 4y

) 3
2 y2a3

− 2x3y2b2 − 2x2y3a2 − 2x2y3b3 − 2x y4a3 + 4
√

y2x2 − 4y x2yb2

+ 4
√
y2x2 − 4y x y2a2 + 2

√
y2x2 − 4y x y2b3 + 2

√
y2x2 − 4y y3a3

− 2x2y2b1 − 2x y3a1 − 2
(
y2x2 − 4y

)
xb2 − 2

(
y2x2 − 4y

)
ya2

+ 4
√
y2x2 − 4y xyb1 + 2

√
y2x2 − 4y y2a1 − 2

(
y2x2 − 4y

)
b1

+ 4xyb2 + 4y2b3 + 4b2
√

y2x2 − 4y + 4yb1 = 0

Since the PDE has radicals, simplifying gives

2x3y5a3 − 2
√

y (x2y − 4)x2y4a3 − 4x3y2b2 − 4x2y3a2 − 2x2y3b3

− 10x y4a3 + 4
√

y (x2y − 4)x2yb2 − 4x2y2b1 + 4
√
y (x2y − 4)x y2a2

+ 2
√
y (x2y − 4)x y2b3 − 2x y3a1 + 6

√
y (x2y − 4) y3a3 + 4

√
y (x2y − 4)xyb1

+ 2
√

y (x2y − 4) y2a1 + 12xyb2 + 8y2a2 + 4y2b3 + 4b2
√
y (x2y − 4) + 12yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y (x2y − 4)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y (x2y − 4) = v3
}

The above PDE (6E) now becomes

(7E)2v31v52a3 − 2v3v21v42a3 − 4v21v32a2 − 10v1v42a3 − 4v31v22b2 − 2v21v32b3
− 2v1v32a1 + 4v3v1v22a2 + 6v3v32a3 − 4v21v22b1 + 4v3v21v2b2 + 2v3v1v22b3
+ 2v3v22a1 + 4v3v1v2b1 + 8v22a2 + 12v1v2b2 + 4v22b3 + 12v2b1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)2v31v52a3 − 4v31v22b2 − 2v3v21v42a3 + (−4a2 − 2b3) v21v32 − 4v21v22b1
+ 4v3v21v2b2 − 10v1v42a3 − 2v1v32a1 + (4a2 + 2b3) v1v22v3 + 4v3v1v2b1
+ 12v1v2b2 + 6v3v32a3 + 2v3v22a1 + (8a2 + 4b3) v22 + 12v2b1 + 4b2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0

−10a3 = 0
−2a3 = 0
2a3 = 0
6a3 = 0

−4b1 = 0
4b1 = 0
12b1 = 0
−4b2 = 0
4b2 = 0
12b2 = 0

−4a2 − 2b3 = 0
4a2 + 2b3 = 0
8a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −2y
x

= −2y
x

This is easily solved to give

y = c1
x2

Where now the coordinate R is taken as the constant of integration. Hence

R = x2y

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
xy −

√
y2x2 − 4y

)
y

2

Evaluating all the partial derivatives gives

Rx = 2xy
Ry = x2

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

x2y
(
−x2y + x

√
y (x2y − 4) + 4

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R
(
−
√
R
√
R− 4 +R− 4

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 +

√
R (R− 4) ln

(
R− 2 +

√
R2 − 4R

)
2
√
R
√
R− 4

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = ln (x2y)
2 +

√
y (−4 + x2y)x2 ln

(
x2y − 2 +

√
y2x4 − 4x2y

)
2
√
x2y

√
−4 + x2y

+ c1

Which simplifies to

− ln (y)
2 −

ln
(
x2y + x

√
y
√
−4 + x2y − 2

)
2 − c1 = 0
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Summary
The solution(s) found are the following

(1)− ln (y)
2 −

ln
(
x2y + x

√
y
√
−4 + x2y − 2

)
2 − c1 = 0

Verification of solutions

− ln (y)
2 −

ln
(
x2y + x

√
y
√
−4 + x2y − 2

)
2 − c1 = 0

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
xy +

√
y2x2 − 4y

)
y

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
xy +

√
y2x2 − 4y

)
y(b3 − a2)

2 −
(
xy +

√
y2x2 − 4y

)2
y2a3

4

+

(
y + x y2√

y2x2−4y

)
y(xa2 + ya3 + a1)
2

−

−

(
x+ 2x2y−4

2
√

y2x2−4y

)
y

2 − xy

2 −
√
y2x2 − 4y

2

 (xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−2x3y5a3 +
√
y2x2 − 4y x2y4a3 + (y2x2 − 4y)

3
2 y2a3 − 4x3y2b2 − 4x2y3a2 − 2x2y3b3 − 10x y4a3 − 4

√
y2x2 − 4y x2yb2 − 4

√
y2x2 − 4y x y2a2 − 2

√
y2x2 − 4y x y2b3 − 2

√
y2x2 − 4y y3a3 − 4x2y2b1 − 2x y3a1 − 4

√
y2x2 − 4y xyb1 − 2

√
y2x2 − 4y y2a1 + 12xyb2 + 8y2a2 + 4y2b3 − 4b2

√
y2x2 − 4y + 12yb1

4
√
y2x2 − 4y

= 0

Setting the numerator to zero gives

(6E)

−2x3y5a3 −
√
y2x2 − 4y x2y4a3 −

(
y2x2 − 4y

) 3
2 y2a3 + 4x3y2b2

+ 4x2y3a2 + 2x2y3b3 + 10x y4a3 + 4
√

y2x2 − 4y x2yb2

+ 4
√
y2x2 − 4y x y2a2 + 2

√
y2x2 − 4y x y2b3 + 2

√
y2x2 − 4y y3a3

+ 4x2y2b1 + 2x y3a1 + 4
√

y2x2 − 4y xyb1 + 2
√

y2x2 − 4y y2a1
− 12xyb2 − 8y2a2 − 4y2b3 + 4b2

√
y2x2 − 4y − 12yb1 = 0

Simplifying the above gives

(6E)

−
√

y2x2 − 4y x2y4a3 − 2
(
y2x2 − 4y

)
x y3a3 −

(
y2x2 − 4y

) 3
2 y2a3

+ 2x3y2b2 + 2x2y3a2 + 2x2y3b3 + 2x y4a3 + 4
√
y2x2 − 4y x2yb2

+ 4
√
y2x2 − 4y x y2a2 + 2

√
y2x2 − 4y x y2b3 + 2

√
y2x2 − 4y y3a3

+ 2x2y2b1 + 2x y3a1 + 2
(
y2x2 − 4y

)
xb2 + 2

(
y2x2 − 4y

)
ya2

+ 4
√
y2x2 − 4y xyb1 + 2

√
y2x2 − 4y y2a1 + 2

(
y2x2 − 4y

)
b1

− 4xyb2 − 4y2b3 + 4b2
√

y2x2 − 4y − 4yb1 = 0

Since the PDE has radicals, simplifying gives

−2x3y5a3 − 2
√

y (x2y − 4)x2y4a3 + 4x3y2b2 + 4x2y3a2 + 2x2y3b3

+ 10x y4a3 + 4
√

y (x2y − 4)x2yb2 + 4x2y2b1 + 4
√
y (x2y − 4)x y2a2

+ 2
√
y (x2y − 4)x y2b3 + 2x y3a1 + 6

√
y (x2y − 4) y3a3 + 4

√
y (x2y − 4)xyb1

+ 2
√
y (x2y − 4) y2a1 − 12xyb2 − 8y2a2 − 4y2b3 + 4b2

√
y (x2y − 4)− 12yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y (x2y − 4)

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y (x2y − 4) = v3
}

The above PDE (6E) now becomes

(7E)−2v31v52a3 − 2v3v21v42a3 + 4v21v32a2 + 10v1v42a3 + 4v31v22b2 + 2v21v32b3
+ 2v1v32a1 + 4v3v1v22a2 + 6v3v32a3 + 4v21v22b1 + 4v3v21v2b2 + 2v3v1v22b3
+ 2v3v22a1 + 4v3v1v2b1 − 8v22a2 − 12v1v2b2 − 4v22b3 − 12v2b1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v31v52a3 + 4v31v22b2 − 2v3v21v42a3 + (4a2 + 2b3) v21v32 + 4v21v22b1 + 4v3v21v2b2
+ 10v1v42a3 + 2v1v32a1 + (4a2 + 2b3) v1v22v3 + 4v3v1v2b1 − 12v1v2b2
+ 6v3v32a3 + 2v3v22a1 + (−8a2 − 4b3) v22 − 12v2b1 + 4b2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2a3 = 0
6a3 = 0
10a3 = 0

−12b1 = 0
4b1 = 0

−12b2 = 0
4b2 = 0

−8a2 − 4b3 = 0
4a2 + 2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.296 (sec). Leaf size: 124� �
dsolve(diff(y(x),x)^2+x*y(x)^2*diff(y(x),x)+y(x)^3 = 0,y(x), singsol=all)� �

y(x) = 4
x2

y(x) = 0

y(x) = 2
√
2x− 2c1

c1 (c21 − 2x2)

y(x) = −2
√
2x− 2c1

c1 (c21 − 2x2)

y(x) = −
(√

2 c1x− 2
)
c21

2c21x2 − 4

y(x) =
(√

2 c1x+ 2
)
c21

2c21x2 − 4

3 Solution by Mathematica
Time used: 0.914 (sec). Leaf size: 71� �
DSolve[(y'[x])^2+x y[x]^2 y'[x]+y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cosh(c1)− sinh(c1)
−ix+ cosh(c1) + sinh(c1)

y(x) → cosh(c1)− sinh(c1)
ix+ cosh(c1) + sinh(c1)

y(x) → 0

y(x) → 4
x2
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29.3 problem 825
Internal problem ID [4064]
Internal file name [OUTPUT/3557_Sunday_June_05_2022_09_38_32_AM_87606295/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 825.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 − 2y′y2x3 − 4y3x2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2
(
x2y

2 +
√
y2x4 + 4y

2

)
xy (1)

y′ = 2
(
x2y

2 −
√
y2x4 + 4y

2

)
xy (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = xy
(
x2y +

√
x4y2 + 4y

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 + xy

(
x2y +

√
x4y2 + 4y

)
(b3 − a2)− x2y2

(
x2y +

√
x4y2 + 4y

)2
a3

−
((

x2y +
√

x4y2 + 4y
)
y + xy

(
2xy + 2x3y2√

x4y2 + 4y

))
(xa2 + ya3 + a1)

−
(
x
(
x2y+

√
x4y2 + 4y

)
+xy

(
x2+ 2x4y + 4

2
√
x4y2 + 4y

))
(xb2+ yb3+ b1) = 0

Putting the above in normal form gives

−2x8y5a3 +
√
x4y2 + 4y x6y4a3 + 2x6y2b2 + 4x5y3a2 + x5y3b3 + 11x4y4a3 + (x4y2 + 4y)

3
2 x2y2a3 + 2x5y2b1 + 3x4y3a1 + 2

√
x4y2 + 4y x4yb2 + 4

√
x4y2 + 4y x3y2a2 +

√
x4y2 + 4y x3y2b3 + 3

√
x4y2 + 4y x2y3a3 + 2

√
x4y2 + 4y x3yb1 + 3

√
x4y2 + 4y x2y2a1 + 6x2yb2 + 8x y2a2 + 2x y2b3 + 4y3a3 + 6xyb1 + 4y2a1 − b2

√
x4y2 + 4y√

x4y2 + 4y
= 0

Setting the numerator to zero gives

(6E)

−2x8y5a3 −
√

x4y2 + 4y x6y4a3 − 2x6y2b2 − 4x5y3a2 − x5y3b3 − 11x4y4a3

−
(
x4y2 + 4y

) 3
2 x2y2a3 − 2x5y2b1 − 3x4y3a1 − 2

√
x4y2 + 4y x4yb2

− 4
√

x4y2 + 4y x3y2a2 −
√

x4y2 + 4y x3y2b3 − 3
√

x4y2 + 4y x2y3a3

− 2
√

x4y2 + 4y x3yb1 − 3
√
x4y2 + 4y x2y2a1 − 6x2yb2 − 8x y2a2

− 2x y2b3 − 4y3a3 − 6xyb1 − 4y2a1 + b2
√

x4y2 + 4y = 0
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Simplifying the above gives

(6E)

−
√

x4y2 + 4y x6y4a3− 2
(
x4y2+4y

)
x4y3a3−x6y2b2− 2x5y3a2−x5y3b3

−2x4y4a3−
(
x4y2+4y

) 3
2 x2y2a3−x5y2b1−2x4y3a1−2

√
x4y2 + 4y x4yb2

− 4
√

x4y2 + 4y x3y2a2 −
√

x4y2 + 4y x3y2b3 − 3
√

x4y2 + 4y x2y3a3

− 2
√

x4y2 + 4y x3yb1 − 3
√
x4y2 + 4y x2y2a1 −

(
x4y2 + 4y

)
x2b2

− 2
(
x4y2 + 4y

)
xya2 −

(
x4y2 + 4y

)
y2a3 −

(
x4y2 + 4y

)
xb1

−
(
x4y2 + 4y

)
ya1 − 2x2yb2 − 2x y2b3 − 2xyb1 + b2

√
x4y2 + 4y = 0

Since the PDE has radicals, simplifying gives

−2x8y5a3 − 2
√

y (x4y + 4)x6y4a3 − 2x6y2b2 − 4x5y3a2 − x5y3b3

− 11x4y4a3 − 2x5y2b1 − 3x4y3a1 − 2
√
y (x4y + 4)x4yb2

− 4
√
y (x4y + 4)x3y2a2 −

√
y (x4y + 4)x3y2b3 − 7

√
y (x4y + 4)x2y3a3

− 2
√
y (x4y + 4)x3yb1 − 3

√
y (x4y + 4)x2y2a1 − 6x2yb2 − 8x y2a2

− 2x y2b3 − 4y3a3 − 6xyb1 − 4y2a1 + b2
√
y (x4y + 4) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y (x4y + 4)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y (x4y + 4) = v3

}
The above PDE (6E) now becomes

(7E)−2v81v52a3 − 2v3v61v42a3 − 4v51v32a2 − 11v41v42a3 − 2v61v22b2 − v51v
3
2b3 − 3v41v32a1

− 2v51v22b1 − 4v3v31v22a2 − 7v3v21v32a3 − 2v3v41v2b2 − v3v
3
1v

2
2b3 − 3v3v21v22a1

−2v3v31v2b1−8v1v22a2−4v32a3−6v21v2b2−2v1v22b3−4v22a1−6v1v2b1+b2v3 =0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)−2v81v52a3 − 2v3v61v42a3 − 2v61v22b2 + (−4a2 − b3) v51v32 − 2v51v22b1 − 11v41v42a3
− 3v41v32a1 − 2v3v41v2b2 + (−4a2 − b3) v31v22v3 − 2v3v31v2b1 − 7v3v21v32a3
−3v3v21v22a1−6v21v2b2+(−8a2−2b3) v1v22−6v1v2b1−4v32a3−4v22a1+b2v3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−4a1 = 0
−3a1 = 0
−11a3 = 0
−7a3 = 0
−4a3 = 0
−2a3 = 0
−6b1 = 0
−2b1 = 0
−6b2 = 0
−2b2 = 0

−8a2 − 2b3 = 0
−4a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −4y
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −4y
x

= −4y
x

This is easily solved to give

y = c1
x4

Where now the coordinate R is taken as the constant of integration. Hence

R = x4y

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy
(
x2y +

√
x4y2 + 4y

)
Evaluating all the partial derivatives gives

Rx = 4x3y

Ry = x4

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x4y
(
x4y + x2

√
y (x4y + 4) + 4

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
(
R +

√
R
√
R + 4 + 4

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
4 −

√
R (R + 4) ln

(
R + 2 +

√
R2 + 4R

)
4
√
R
√
R + 4

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = ln (yx4)
4 −

√
x4y (4 + yx4) ln

(
yx4 + 2 +

√
y2x8 + 4yx4

)
4
√
yx4

√
4 + yx4 + c1

Which simplifies to

− ln (y)
4 +

ln
(
yx4 + x2√y

√
4 + yx4 + 2

)
4 − c1 = 0

7873



Summary
The solution(s) found are the following

(1)− ln (y)
4 +

ln
(
yx4 + x2√y

√
4 + yx4 + 2

)
4 − c1 = 0

Verification of solutions

− ln (y)
4 +

ln
(
yx4 + x2√y

√
4 + yx4 + 2

)
4 − c1 = 0

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
(
x2y −

√
x4y2 + 4y

)
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(
x2y −

√
x4y2 + 4y

)
xy(b3 − a2)−

(
x2y −

√
x4y2 + 4y

)2
x2y2a3

−
((

2xy − 2x3y2√
x4y2 + 4y

)
xy +

(
x2y −

√
x4y2 + 4y

)
y

)
(xa2 + ya3 + a1)

−
((

x2− 2x4y + 4
2
√
x4y2 + 4y

)
xy+

(
x2y−

√
x4y2 + 4y

)
x

)
(xb2+yb3+ b1) = 0
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Putting the above in normal form gives

−−2x8y5a3 +
√
x4y2 + 4y x6y4a3 − 2x6y2b2 − 4x5y3a2 − x5y3b3 − 11x4y4a3 + (x4y2 + 4y)

3
2 x2y2a3 − 2x5y2b1 − 3x4y3a1 + 2

√
x4y2 + 4y x4yb2 + 4

√
x4y2 + 4y x3y2a2 +

√
x4y2 + 4y x3y2b3 + 3

√
x4y2 + 4y x2y3a3 + 2

√
x4y2 + 4y x3yb1 + 3

√
x4y2 + 4y x2y2a1 − 6x2yb2 − 8x y2a2 − 2x y2b3 − 4y3a3 − 6xyb1 − 4y2a1 − b2

√
x4y2 + 4y√

x4y2 + 4y
= 0

Setting the numerator to zero gives

(6E)

2x8y5a3 −
√
x4y2 + 4y x6y4a3 + 2x6y2b2 + 4x5y3a2 + x5y3b3 + 11x4y4a3

−
(
x4y2 + 4y

) 3
2 x2y2a3 + 2x5y2b1 + 3x4y3a1 − 2

√
x4y2 + 4y x4yb2

− 4
√

x4y2 + 4y x3y2a2 −
√
x4y2 + 4y x3y2b3 − 3

√
x4y2 + 4y x2y3a3

− 2
√

x4y2 + 4y x3yb1 − 3
√

x4y2 + 4y x2y2a1 + 6x2yb2 + 8x y2a2
+ 2x y2b3 + 4y3a3 + 6xyb1 + 4y2a1 + b2

√
x4y2 + 4y = 0

Simplifying the above gives

(6E)

−
√

x4y2 + 4y x6y4a3 + 2
(
x4y2 + 4y

)
x4y3a3 + x6y2b2 + 2x5y3a2

+ x5y3b3 + 2x4y4a3 −
(
x4y2 + 4y

) 3
2 x2y2a3 + x5y2b1 + 2x4y3a1

− 2
√

x4y2 + 4y x4yb2 − 4
√
x4y2 + 4y x3y2a2 −

√
x4y2 + 4y x3y2b3

− 3
√

x4y2 + 4y x2y3a3 − 2
√
x4y2 + 4y x3yb1 − 3

√
x4y2 + 4y x2y2a1

+
(
x4y2+4y

)
x2b2+2

(
x4y2+4y

)
xya2+

(
x4y2+4y

)
y2a3+

(
x4y2+4y

)
xb1

+
(
x4y2 + 4y

)
ya1 + 2x2yb2 + 2x y2b3 + 2xyb1 + b2

√
x4y2 + 4y = 0

Since the PDE has radicals, simplifying gives

2x8y5a3 − 2
√

y (x4y + 4)x6y4a3 + 2x6y2b2 + 4x5y3a2 + x5y3b3

+ 11x4y4a3 + 2x5y2b1 + 3x4y3a1 − 2
√

y (x4y + 4)x4yb2

− 4
√

y (x4y + 4)x3y2a2 −
√
y (x4y + 4)x3y2b3 − 7

√
y (x4y + 4)x2y3a3

− 2
√

y (x4y + 4)x3yb1 − 3
√

y (x4y + 4)x2y2a1 + 6x2yb2 + 8x y2a2
+ 2x y2b3 + 4y3a3 + 6xyb1 + 4y2a1 + b2

√
y (x4y + 4) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y (x4y + 4)

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y (x4y + 4) = v3

}
The above PDE (6E) now becomes

(7E)2v81v52a3 − 2v3v61v42a3 + 4v51v32a2 + 11v41v42a3 + 2v61v22b2 + v51v
3
2b3 + 3v41v32a1

+ 2v51v22b1 − 4v3v31v22a2 − 7v3v21v32a3 − 2v3v41v2b2 − v3v
3
1v

2
2b3 − 3v3v21v22a1

−2v3v31v2b1+8v1v22a2+4v32a3+6v21v2b2+2v1v22b3+4v22a1+6v1v2b1+b2v3 =0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v81v52a3 − 2v3v61v42a3 + 2v61v22b2 + (4a2 + b3) v51v32 + 2v51v22b1 + 11v41v42a3
+ 3v41v32a1 − 2v3v41v2b2 + (−4a2 − b3) v31v22v3 − 2v3v31v2b1 − 7v3v21v32a3
−3v3v21v22a1+6v21v2b2+(8a2+2b3) v1v22+6v1v2b1+4v32a3+4v22a1+b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−3a1 = 0
3a1 = 0
4a1 = 0

−7a3 = 0
−2a3 = 0
2a3 = 0
4a3 = 0
11a3 = 0
−2b1 = 0
2b1 = 0
6b1 = 0

−2b2 = 0
2b2 = 0
6b2 = 0

−4a2 − b3 = 0
4a2 + b3 = 0
8a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −4y

The next step is to determine the canonical coordinates R,S. The canonical coordinates

7877



map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[-1/4*x, y]� �
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3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 132� �
dsolve(diff(y(x),x)^2-2*x^3*y(x)^2*diff(y(x),x)-4*x^2*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = − 4
x4

y(x) = 0

y(x) =
(√

2x2c1 − 2
)
c21

2c21x4 − 4

y(x) = −
(√

2x2c1 + 2
)
c21

2c21x4 − 4

y(x) = −2
√
2x2 + 2c1

c1 (−2x4 + c21)

y(x) = 2
√
2x2 + 2c1

c1 (−2x4 + c21)

3 Solution by Mathematica
Time used: 1.481 (sec). Leaf size: 177� �
DSolve[(y'[x])^2-2 x^3 y[x]^2 y'[x]-4 x^2 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

−x
√

x4y(x) + 4y(x)3/2 log
(√

x4y(x) + 4 + x2
√
y(x)

)
2
√
x2y(x)3 (x4y(x) + 4)

− 1
4 log(y(x)) = c1, y(x)


Solve

xy(x)3/2√x4y(x) + 4 log
(√

x4y(x) + 4 + x2
√
y(x)

)
2
√

x2y(x)3 (x4y(x) + 4)
− 1

4 log(y(x)) = c1, y(x)


y(x) → 0

y(x) → − 4
x4
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29.4 problem 826
29.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7882

Internal problem ID [4065]
Internal file name [OUTPUT/3558_Sunday_June_05_2022_09_38_40_AM_14170509/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 826.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2 − xy

(
y2 + x2) y′ + y4x4 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = xy3 (1)
y′ = yx3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x y3
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Where f(x) = x and g(y) = y3. Integrating both sides gives

1
y3

dy = x dx∫ 1
y3

dy =
∫

x dx

− 1
2y2 = x2

2 + c1

Which results in

y = − 1√
−x2 − 2c1

y = 1√
−x2 − 2c1

Summary
The solution(s) found are the following

(1)y = − 1√
−x2 − 2c1

(2)y = 1√
−x2 − 2c1

Verification of solutions

y = − 1√
−x2 − 2c1

Verified OK.

y = 1√
−x2 − 2c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x3y
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Where f(x) = x3 and g(y) = y. Integrating both sides gives

1
y
dy = x3 dx∫ 1

y
dy =

∫
x3 dx

ln (y) = x4

4 + c2

y = ex4
4 +c2

= c2e
x4
4

Summary
The solution(s) found are the following

(1)y = c2e
x4
4

Verification of solutions

y = c2e
x4
4

Verified OK.

29.4.1 Maple step by step solution

Let’s solve
y′2 − xy(y2 + x2) y′ + y4x4 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x3

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x3dx+ c1

• Evaluate integral
ln (y) = x4

4 + c1

• Solve for y

y = ex4
4 +c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x)^2-x*y(x)*(x^2+y(x)^2)*diff(y(x),x)+x^4*y(x)^4 = 0,y(x), singsol=all)� �

y(x) = 1√
−x2 + c1

y(x) = − 1√
−x2 + c1

y(x) = c1e
x4
4

3 Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 60� �
DSolve[(y'[x])^2-x y[x](x^2+y[x]^2)y'[x]+x^4 y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
−x2 − 2c1

y(x) → 1√
−x2 − 2c1

y(x) → c1e
x4
4

y(x) → 0
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29.5 problem 827
Internal problem ID [4066]
Internal file name [OUTPUT/3559_Sunday_June_05_2022_09_38_47_AM_78875155/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 827.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2 + 2xy3y′ + y4 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−yx+

√
y2x2 − 1

)
y2 (1)

y′ =
(
−yx−

√
y2x2 − 1

)
y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −
(
xy −

√
y2x2 − 1

)
y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(
xy −

√
y2x2 − 1

)
y2(b3 − a2)−

(
xy −

√
y2x2 − 1

)2
y4a3

+
(
y − x y2√

y2x2 − 1

)
y2(xa2 + ya3 + a1)

−
(
−
(
x− x2y√

y2x2 − 1

)
y2 − 2

(
xy −

√
y2x2 − 1

)
y

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−2x3y7a3 +
√
y2x2 − 1x2y6a3 + (y2x2 − 1)

3
2 y4a3 + 3x3y3b2 + 2x2y4a2 + 2x2y4b3 + 3x y5a3 − 3

√
y2x2 − 1x2y2b2 − 2

√
y2x2 − 1x y3a2 − 2

√
y2x2 − 1x y3b3 − y4a3

√
y2x2 − 1 + 3x2y3b1 + x y4a1 − 3

√
y2x2 − 1x y2b1 −

√
y2x2 − 1 y3a1 − 2xyb2 − y2a2 − y2b3 − b2

√
y2x2 − 1− 2yb1√

y2x2 − 1
= 0

Setting the numerator to zero gives

(6E)

2x3y7a3 −
√

y2x2 − 1x2y6a3 −
(
y2x2 − 1

) 3
2 y4a3 − 3x3y3b2

− 2x2y4a2 − 2x2y4b3 − 3x y5a3 + 3
√

y2x2 − 1x2y2b2

+ 2
√

y2x2 − 1x y3a2 + 2
√
y2x2 − 1x y3b3 + y4a3

√
y2x2 − 1

− 3x2y3b1 − x y4a1 + 3
√

y2x2 − 1x y2b1 +
√

y2x2 − 1 y3a1
+ 2xyb2 + y2a2 + y2b3 + b2

√
y2x2 − 1 + 2yb1 = 0

Simplifying the above gives

(6E)

−
√
y2x2 − 1x2y6a3 + 2

(
y2x2 − 1

)
x y5a3 −

(
y2x2 − 1

) 3
2 y4a3

− x3y3b2 − x2y4a2 − x2y4b3 − x y5a3 + 3
√

y2x2 − 1x2y2b2

+ 2
√

y2x2 − 1x y3a2 + 2
√

y2x2 − 1x y3b3 + y4a3
√
y2x2 − 1− x2y3b1

− x y4a1 − 2
(
y2x2 − 1

)
xyb2 −

(
y2x2 − 1

)
y2a2 −

(
y2x2 − 1

)
y2b3

+3
√

y2x2 − 1x y2b1+
√
y2x2 − 1 y3a1−2

(
y2x2−1

)
yb1+b2

√
y2x2 − 1= 0
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Since the PDE has radicals, simplifying gives

2x3y7a3 − 2
√
y2x2 − 1x2y6a3 − 3x3y3b2 − 2x2y4a2 − 2x2y4b3

− 3x y5a3 + 3
√

y2x2 − 1x2y2b2 − 3x2y3b1 + 2
√

y2x2 − 1x y3a2
+ 2
√

y2x2 − 1x y3b3 − x y4a1 + 2y4a3
√

y2x2 − 1 + 3
√

y2x2 − 1x y2b1
+
√

y2x2 − 1 y3a1 + 2xyb2 + y2a2 + y2b3 + b2
√
y2x2 − 1 + 2yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y2x2 − 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y2x2 − 1 = v3
}

The above PDE (6E) now becomes

(7E)2v31v72a3 − 2v3v21v62a3 − 2v21v42a2 − 3v1v52a3 − 3v31v32b2 − 2v21v42b3
− v1v

4
2a1 + 2v3v1v32a2 + 2v42a3v3 − 3v21v32b1 + 3v3v21v22b2 + 2v3v1v32b3

+ v3v
3
2a1 + 3v3v1v22b1 + v22a2 + 2v1v2b2 + v22b3 + 2v2b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v31v72a3 − 3v31v32b2 − 2v3v21v62a3 + (−2a2 − 2b3) v21v42 − 3v21v32b1
+ 3v3v21v22b2 − 3v1v52a3 − v1v

4
2a1 + (2a2 + 2b3) v1v32v3 + 3v3v1v22b1

+ 2v1v2b2 + 2v42a3v3 + v3v
3
2a1 + (a2 + b3) v22 + 2v2b1 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−a1 = 0
−3a3 = 0
−2a3 = 0
2a3 = 0

−3b1 = 0
2b1 = 0
3b1 = 0

−3b2 = 0
2b2 = 0
3b2 = 0

−2a2 − 2b3 = 0
a2 + b3 = 0

2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
(
xy −

√
y2x2 − 1

)
y2
)
(−x)

= −y3x2 +
√
y2x2 − 1x y2 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y3x2 +
√
y2x2 − 1x y2 + y

dy

Which results in

S =
x ln

(
x2y√
x2 +

√
y2x2 − 1

)
√
x2

+ ln (y2x2 − 1)
2 − ln (xy + 1)

2 − ln (xy − 1)
2 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
xy −

√
y2x2 − 1

)
y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y√
y2x2 − 1

Sy =
xy +

√
y2x2 − 1

y
√
y2x2 − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
yx+

√
y2x2 − 1

)
+ ln (y) = c1

Which simplifies to

ln
(
yx+

√
y2x2 − 1

)
+ ln (y) = c1

Summary
The solution(s) found are the following

(1)ln
(
yx+

√
y2x2 − 1

)
+ ln (y) = c1

Verification of solutions

ln
(
yx+

√
y2x2 − 1

)
+ ln (y) = c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −y2
(
xy +

√
y2x2 − 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 − y2

(
xy +

√
y2x2 − 1

)
(b3 − a2)− y4

(
xy +

√
y2x2 − 1

)2
a3

+ y2
(
y + x y2√

y2x2 − 1

)
(xa2 + ya3 + a1)

−
(
−2y

(
xy +

√
y2x2 − 1

)
− y2

(
x+ x2y√

y2x2 − 1

))
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x3y7a3 +
√
y2x2 − 1x2y6a3 + (y2x2 − 1)

3
2 y4a3 − 3x3y3b2 − 2x2y4a2 − 2x2y4b3 − 3x y5a3 − 3

√
y2x2 − 1x2y2b2 − 2

√
y2x2 − 1x y3a2 − 2

√
y2x2 − 1x y3b3 − y4a3

√
y2x2 − 1− 3x2y3b1 − x y4a1 − 3

√
y2x2 − 1x y2b1 −

√
y2x2 − 1 y3a1 + 2xyb2 + y2a2 + y2b3 − b2

√
y2x2 − 1 + 2yb1√

y2x2 − 1
= 0

Setting the numerator to zero gives

(6E)

−2x3y7a3 −
√

y2x2 − 1x2y6a3 −
(
y2x2 − 1

) 3
2 y4a3 + 3x3y3b2

+ 2x2y4a2 + 2x2y4b3 + 3x y5a3 + 3
√

y2x2 − 1x2y2b2

+ 2
√

y2x2 − 1x y3a2 + 2
√
y2x2 − 1x y3b3 + y4a3

√
y2x2 − 1

+ 3x2y3b1 + x y4a1 + 3
√
y2x2 − 1x y2b1 +

√
y2x2 − 1 y3a1

− 2xyb2 − y2a2 − y2b3 + b2
√
y2x2 − 1− 2yb1 = 0
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Simplifying the above gives

(6E)

−
√
y2x2 − 1x2y6a3 − 2

(
y2x2 − 1

)
x y5a3 −

(
y2x2 − 1

) 3
2 y4a3

+ x3y3b2 + x2y4a2 + x2y4b3 + x y5a3 + 3
√

y2x2 − 1x2y2b2

+ 2
√

y2x2 − 1x y3a2 + 2
√

y2x2 − 1x y3b3 + y4a3
√
y2x2 − 1 + x2y3b1

+ x y4a1 + 2
(
y2x2 − 1

)
xyb2 +

(
y2x2 − 1

)
y2a2 +

(
y2x2 − 1

)
y2b3

+3
√

y2x2 − 1x y2b1+
√

y2x2 − 1 y3a1+2
(
y2x2−1

)
yb1+b2

√
y2x2 − 1= 0

Since the PDE has radicals, simplifying gives

−2x3y7a3 − 2
√

y2x2 − 1x2y6a3 + 3x3y3b2 + 2x2y4a2 + 2x2y4b3

+ 3x y5a3 + 3
√

y2x2 − 1x2y2b2 + 3x2y3b1 + 2
√

y2x2 − 1x y3a2
+ 2
√

y2x2 − 1x y3b3 + x y4a1 + 2y4a3
√

y2x2 − 1 + 3
√
y2x2 − 1x y2b1

+
√

y2x2 − 1 y3a1 − 2xyb2 − y2a2 − y2b3 + b2
√

y2x2 − 1− 2yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
y2x2 − 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y2x2 − 1 = v3
}

The above PDE (6E) now becomes

(7E)−2v31v72a3 − 2v3v21v62a3 + 2v21v42a2 + 3v1v52a3 + 3v31v32b2 + 2v21v42b3
+ v1v

4
2a1 + 2v3v1v32a2 + 2v42a3v3 + 3v21v32b1 + 3v3v21v22b2 + 2v3v1v32b3

+ v3v
3
2a1 + 3v3v1v22b1 − v22a2 − 2v1v2b2 − v22b3 − 2v2b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v31v72a3 + 3v31v32b2 − 2v3v21v62a3 + (2a2 + 2b3) v21v42 + 3v21v32b1
+ 3v3v21v22b2 + 3v1v52a3 + v1v

4
2a1 + (2a2 + 2b3) v1v32v3 + 3v3v1v22b1

− 2v1v2b2 + 2v42a3v3 + v3v
3
2a1 + (−a2 − b3) v22 − 2v2b1 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−2a3 = 0
2a3 = 0
3a3 = 0

−2b1 = 0
3b1 = 0

−2b2 = 0
3b2 = 0

−a2 − b3 = 0
2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y2

(
xy +

√
y2x2 − 1

))
(−x)

= −y3x2 −
√

y2x2 − 1x y2 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y3x2 −
√
y2x2 − 1x y2 + y

dy

Which results in

S = − ln (xy + 1)
2 − ln (xy − 1)

2 + ln (y)−
x ln

(
x2y√
x2 +

√
y2x2 − 1

)
√
x2

+ ln (y2x2 − 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2
(
xy +

√
y2x2 − 1

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y√
y2x2 − 1

Sy =
−xy +

√
y2x2 − 1

y
√
y2x2 − 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)− ln
(
yx+

√
y2x2 − 1

)
= c1

Which simplifies to

ln (y)− ln
(
yx+

√
y2x2 − 1

)
= c1

Summary
The solution(s) found are the following

(1)ln (y)− ln
(
yx+

√
y2x2 − 1

)
= c1

Verification of solutions

ln (y)− ln
(
yx+

√
y2x2 − 1

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 48� �
dsolve(diff(y(x),x)^2+2*x*y(x)^3*diff(y(x),x)+y(x)^4 = 0,y(x), singsol=all)� �

y(x) = −1
x

y(x) = 1
x

y(x) = 0

y(x) = 1√
−c1 (−2x+ c1)

y(x) = − 1√
c1 (−c1 + 2x)

3 Solution by Mathematica
Time used: 0.852 (sec). Leaf size: 161� �
DSolve[(y'[x])^2+2 x y[x]^3 y'[x]+y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−
√

x2y(x)2 − 1y(x)2arctanh
(

xy(x)√
x2y(x)2−1

)
√

y(x)4 (x2y(x)2 − 1)
− log(y(x)) = c1, y(x)


Solve

y(x)2√x2y(x)2 − 1arctanh
(

xy(x)√
x2y(x)2−1

)
√

y(x)4 (x2y(x)2 − 1)
− log(y(x)) = c1, y(x)


y(x) → 0

y(x) → −1
x

y(x) → 1
x
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29.6 problem 828
29.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7899

Internal problem ID [4067]
Internal file name [OUTPUT/3560_Sunday_June_05_2022_09_38_54_AM_62107032/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 828.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2 + 2yy′ cot (x)− y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

(
−1 +

√
1 + tan (x)2

)
y

tan (x) (1)

y′ = −

(
1 +

√
1 + tan (x)2

)
y

tan (x) (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=

(
−1 +

√
1 + tan (x)2

)
y

tan (x)
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Where f(x) = −1+
√

1+tan(x)2

tan(x) and g(y) = y. Integrating both sides gives

1
y
dy =

−1 +
√

1 + tan (x)2

tan (x) dx

∫ 1
y
dy =

∫ −1 +
√

1 + tan (x)2

tan (x) dx

ln (y) = ln (csc (x)− cot (x))
√

sec (x)2 cos (x)− ln (csc (x)− cot (x)) + ln
(

2
cos (x) + 1

)
+ c1

y = eln(csc(x)−cot(x))
√

sec(x)2 cos(x)−ln(csc(x)−cot(x))+ln
(

2
cos(x)+1

)
+c1

= c1eln(csc(x)−cot(x))
√

sec(x)2 cos(x)−ln(csc(x)−cot(x))+ln
(

2
cos(x)+1

)

Which simplifies to

y = 2c1(csc (x)− cot (x))
√

sec(x)2 cos(x)

(csc (x)− cot (x)) (cos (x) + 1)

Summary
The solution(s) found are the following

(1)y = 2c1(csc (x)− cot (x))
√

sec(x)2 cos(x)

(csc (x)− cot (x)) (cos (x) + 1)
Verification of solutions

y = 2c1(csc (x)− cot (x))
√

sec(x)2 cos(x)

(csc (x)− cot (x)) (cos (x) + 1)

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −

(
1 +

√
1 + tan (x)2

)
y

tan (x)
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Where f(x) = −1+
√

1+tan(x)2

tan(x) and g(y) = y. Integrating both sides gives

1
y
dy = −

1 +
√

1 + tan (x)2

tan (x) dx

∫ 1
y
dy =

∫
−
1 +

√
1 + tan (x)2

tan (x) dx

ln (y) = − ln (csc (x)− cot (x))
√
sec (x)2 cos (x)− ln (csc (x)− cot (x)) + ln

(
2

cos (x) + 1

)
+ c2

y = e− ln(csc(x)−cot(x))
√

sec(x)2 cos(x)−ln(csc(x)−cot(x))+ln
(

2
cos(x)+1

)
+c2

= c2e− ln(csc(x)−cot(x))
√

sec(x)2 cos(x)−ln(csc(x)−cot(x))+ln
(

2
cos(x)+1

)

Which simplifies to

y = 2c2(csc (x)− cot (x))−
√

sec(x)2 cos(x)

(csc (x)− cot (x)) (cos (x) + 1)

Summary
The solution(s) found are the following

(1)y = 2c2(csc (x)− cot (x))−
√

sec(x)2 cos(x)

(csc (x)− cot (x)) (cos (x) + 1)
Verification of solutions

y = 2c2(csc (x)− cot (x))−
√

sec(x)2 cos(x)

(csc (x)− cot (x)) (cos (x) + 1)

Verified OK.

29.6.1 Maple step by step solution

Let’s solve
y′2 + 2yy′ cot (x)− y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y
= −1+

√
1+tan(x)2

tan(x)

• Integrate both sides with respect to x∫
y′

y
dx =

∫ −1+
√

1+tan(x)2

tan(x) dx+ c1

• Evaluate integral

ln (y) = −arctanh
(

1√
1+tan(x)2

)
+

ln
(
1+tan(x)2

)
2 − ln (tan (x)) + c1

• Solve for y

y =
ec1 cos(x)

(
−1+

√
1

cos(x)2

)
√

sin(x)2 sin(x)

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)^2+2*y(x)*diff(y(x),x)*cot(x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 0

y(x) = csgn (sin (x)) c1
cos (x) + csgn (sec (x))

y(x) = csc (x)2 (cos (x) + csgn (sec (x))) csgn (sin (x)) c1
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3 Solution by Mathematica
Time used: 0.158 (sec). Leaf size: 36� �
DSolve[(y'[x])^2+2 y[x] y'[x] Cot[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 csc2
(x
2

)
y(x) → c1 sec2

(x
2

)
y(x) → 0
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29.7 problem 829
Internal problem ID [4068]
Internal file name [OUTPUT/3561_Sunday_June_05_2022_09_39_04_AM_67946921/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 829.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 − 3xy 2

3y′ + 9y 5
3 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 3y 2
3x

2 +
3
√

y
4
3x2 − 4y 5

3

2 (1)

y′ = 3y 2
3x

2 −
3
√
y

4
3x2 − 4y 5

3

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 3y 2
3x

2 +
3
√
y

4
3x2 − 4y 5

3

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2+

3y 2
3x

2 +
3
√

y
4
3x2 − 4y 5

3

2

 (b3−a2)−

3y 2
3x

2 +
3
√

y
4
3x2 − 4y 5

3

2

2

a3

−

3y 2
3

2 + 3y 4
3x

2
√

y
4
3x2 − 4y 5

3

 (xa2 + ya3 + a1)

−

 x

y
1
3
+ y

1
3x2 − 5y 2

3√
y

4
3x2 − 4y 5

3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−
−66y 8

3xa3 + 9
√
y

4
3x2 − 4y 5

3 y
5
3x2a3 + 18y 7

3x3a3 + 12y 5
3x2a2 − 2y 5

3x2b3 − 24y2a2 + 4y2b3 + 6y 5
3xa1 + 4y 2

3x3b2 + 9
(
y

4
3x2 − 4y 5

3

) 3
2
y

1
3a3 + 4y 2

3x2b1 + 4
√

y
4
3x2 − 4y 5

3 x2b2 + 12
√

y
4
3x2 − 4y 5

3 yxa2 − 2
√

y
4
3x2 − 4y 5

3 yxb3 + 6
√
y

4
3x2 − 4y 5

3 y2a3 − 4b2y
1
3

√
y

4
3x2 − 4y 5

3 + 4
√
y

4
3x2 − 4y 5

3 xb1 + 6
√
y

4
3x2 − 4y 5

3 ya1 − 20yxb2 − 20yb1

4y 1
3

√
y

4
3x2 − 4y 5

3

= 0

Setting the numerator to zero gives

(6E)

−18y 7
3x3a3 + 66y 8

3xa3 − 9
√
y

4
3x2 − 4y 5

3 y
5
3x2a3 − 12y 5

3x2a2

+ 2y 5
3x2b3 − 6y 5

3xa1 − 4y 2
3x3b2 − 9

(
y

4
3x2 − 4y 5

3

) 3
2
y

1
3a3 − 4y 2

3x2b1

− 4
√

y
4
3x2 − 4y 5

3 x2b2 − 12
√

y
4
3x2 − 4y 5

3 yxa2 + 2
√

y
4
3x2 − 4y 5

3 yxb3

− 6
√

y
4
3x2 − 4y 5

3 y2a3 + 4b2y
1
3

√
y

4
3x2 − 4y 5

3 − 4
√

y
4
3x2 − 4y 5

3 xb1

− 6
√

y
4
3x2 − 4y 5

3 ya1 + 20yxb2 + 24y2a2 − 4y2b3 + 20yb1 = 0
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Simplifying the above gives

(6E)

−9
√

y
4
3x2 − 4y 5

3 y
5
3x2a3 − 6y 5

3x2a2 − 6y 8
3xa3 − 18

(
y

4
3x2 − 4y 5

3

)
yxa3

− 6y 5
3xa1 − 12

√
y

4
3x2 − 4y 5

3 yxa2 + 2
√

y
4
3x2 − 4y 5

3 yxb3

− 6
√

y
4
3x2 − 4y 5

3 y2a3 − 4y 2
3x3b2 − 4y 5

3x2b3 − 9
(
y

4
3x2 − 4y 5

3

) 3
2
y

1
3a3

− 6
√

y
4
3x2 − 4y 5

3 ya1 + 20yxb2 + 20y2b3 − 4y 2
3x2b1

− 6
(
y

4
3x2 − 4y 5

3

)
y

1
3a2 + 6

(
y

4
3x2 − 4y 5

3

)
y

1
3 b3 − 4

√
y

4
3x2 − 4y 5

3 x2b2

+ 20yb1 + 4b2y
1
3

√
y

4
3x2 − 4y 5

3 − 4
√

y
4
3x2 − 4y 5

3 xb1 = 0

Since the PDE has radicals, simplifying gives

−18y 7
3x3a3 − 18

√
−y

4
3

(
−x2 + 4y 1

3

)
y

5
3x2a3 − 4y 2

3x3b2 − 12y 5
3x2a2

+ 2y 5
3x2b3 + 66y 8

3xa3 + 30
√

−y
4
3

(
−x2 + 4y 1

3

)
y2a3

− 4y 2
3x2b1 − 6y 5

3xa1 − 4
√

−y
4
3

(
−x2 + 4y 1

3

)
x2b2

− 12
√

−y
4
3

(
−x2 + 4y 1

3

)
yxa2 + 2

√
−y

4
3

(
−x2 + 4y 1

3

)
yxb3

− 4
√

−y
4
3

(
−x2 + 4y 1

3

)
xb1 + 20yxb2 + 4b2y

1
3

√
−y

4
3

(
−x2 + 4y 1

3

)
− 6
√

−y
4
3

(
−x2 + 4y 1

3

)
ya1 + 24y2a2 − 4y2b3 + 20yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, y

1
3 , y

2
3 , y

4
3 , y

5
3 , y

7
3 , y

8
3 ,

√
−y

4
3

(
−x2 + 4y 1

3

)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2, y

1
3 = v3, y

2
3 = v4, y

4
3 = v5, y

5
3 = v6, y

7
3 = v7, y

8
3 = v8,

√
−y

4
3

(
−x2 + 4y 1

3

)
= v9

}
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The above PDE (6E) now becomes

(7E)−18v7v31a3 − 18v9v6v21a3 − 4v4v31b2 − 12v6v21a2 − 12v9v2v1a2 + 30v9v22a3
− 4v4v21b1 − 4v9v21b2 + 2v6v21b3 + 2v9v2v1b3 − 6v6v1a1 − 6v9v2a1 + 24v22a2
+ 66v8v1a3 − 4v9v1b1 + 20v2v1b2 + 4b2v3v9 − 4v22b3 + 20v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6, v7, v8, v9}

Equation (7E) now becomes

(8E)−4v4v31b2 − 18v7v31a3 − 4v4v21b1 − 18v9v6v21a3 + (−12a2 + 2b3) v21v6
− 4v9v21b2 + (−12a2 + 2b3) v1v2v9 + 20v2v1b2 − 6v6v1a1 + 66v8v1a3
− 4v9v1b1 + 30v9v22a3 + (24a2 − 4b3) v22 − 6v9v2a1 + 20v2b1 + 4b2v3v9 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
−18a3 = 0
30a3 = 0
66a3 = 0
−4b1 = 0
20b1 = 0
−4b2 = 0
4b2 = 0
20b2 = 0

−12a2 + 2b3 = 0
24a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 6y
x

= 6y
x

This is easily solved to give

y = c1x
6

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x6

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3y 2
3x

2 +
3
√
y

4
3x2 − 4y 5

3

2
Evaluating all the partial derivatives gives

Rx = −6y
x7

Ry =
1
x6

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x6

3y 2
3x2 + 3x

√
y

4
3

(
x2 − 4y 1

3

)
− 12y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

3iR 2
3

√
4R 1

3 − 1 + 3R 2
3 − 12R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −i arctan
(√

4R 1
3 − 1

)
− ln (R)

6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = −i arctan
(√

4
( y

x6

) 1
3 − 1

)
−

ln
(

y
x6

)
6 + c1
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Which simplifies to

ln (x) = −i arctan
(√

4
( y

x6

) 1
3 − 1

)
−

ln
(

y
x6

)
6 + c1

Summary
The solution(s) found are the following

(1)ln (x) = −i arctan
(√

4
( y

x6

) 1
3 − 1

)
−

ln
(

y
x6

)
6 + c1

Verification of solutions

ln (x) = −i arctan
(√

4
( y

x6

) 1
3 − 1

)
−

ln
(

y
x6

)
6 + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = 3y 2
3x

2 −
3
√
y

4
3x2 − 4y 5

3

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2+

3y 2
3x

2 −
3
√

y
4
3x2 − 4y 5

3

2

 (b3−a2)−

3y 2
3x

2 −
3
√

y
4
3x2 − 4y 5

3

2

2

a3

−

3y 2
3

2 − 3y 4
3x

2
√

y
4
3x2 − 4y 5

3

 (xa2 + ya3 + a1)

−

 x

y
1
3
−

3
(

4y
1
3 x2

3 − 20y
2
3

3

)
4
√

y
4
3x2 − 4y 5

3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−
66y 8

3xa3 + 9
√

y
4
3x2 − 4y 5

3 y
5
3x2a3 − 18y 7

3x3a3 − 12y 5
3x2a2 + 2y 5

3x2b3 + 24y2a2 − 4y2b3 − 6y 5
3xa1 − 4y 2

3x3b2 + 9
(
y

4
3x2 − 4y 5

3

) 3
2
y

1
3a3 − 4y 2

3x2b1 + 4
√

y
4
3x2 − 4y 5

3 x2b2 + 12
√

y
4
3x2 − 4y 5

3 yxa2 − 2
√
y

4
3x2 − 4y 5

3 yxb3 + 6
√

y
4
3x2 − 4y 5

3 y2a3 − 4b2y
1
3

√
y

4
3x2 − 4y 5

3 + 4
√
y

4
3x2 − 4y 5

3 xb1 + 6
√
y

4
3x2 − 4y 5

3 ya1 + 20yxb2 + 20yb1

4y 1
3

√
y

4
3x2 − 4y 5

3

= 0

Setting the numerator to zero gives

(6E)

18y 7
3x3a3 − 66y 8

3xa3 − 9
√

y
4
3x2 − 4y 5

3 y
5
3x2a3 + 12y 5

3x2a2

− 2y 5
3x2b3 + 6y 5

3xa1 + 4y 2
3x3b2 − 9

(
y

4
3x2 − 4y 5

3

) 3
2
y

1
3a3 + 4y 2

3x2b1

− 4
√

y
4
3x2 − 4y 5

3 x2b2 − 12
√

y
4
3x2 − 4y 5

3 yxa2 + 2
√

y
4
3x2 − 4y 5

3 yxb3

− 6
√

y
4
3x2 − 4y 5

3 y2a3 + 4b2y
1
3

√
y

4
3x2 − 4y 5

3 − 4
√

y
4
3x2 − 4y 5

3 xb1

− 6
√

y
4
3x2 − 4y 5

3 ya1 − 20yxb2 − 24y2a2 + 4y2b3 − 20yb1 = 0
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Simplifying the above gives

(6E)

−9
√

y
4
3x2 − 4y 5

3 y
5
3x2a3 + 6y 5

3x2a2 + 6y 8
3xa3 + 18

(
y

4
3x2 − 4y 5

3

)
yxa3

+ 6y 5
3xa1 − 12

√
y

4
3x2 − 4y 5

3 yxa2 + 2
√
y

4
3x2 − 4y 5

3 yxb3

− 6
√

y
4
3x2 − 4y 5

3 y2a3 + 4y 2
3x3b2 + 4y 5

3x2b3 − 9
(
y

4
3x2 − 4y 5

3

) 3
2
y

1
3a3

− 6
√

y
4
3x2 − 4y 5

3 ya1 − 20yxb2 − 20y2b3 + 4y 2
3x2b1

+ 6
(
y

4
3x2 − 4y 5

3

)
y

1
3a2 − 6

(
y

4
3x2 − 4y 5

3

)
y

1
3 b3 − 4

√
y

4
3x2 − 4y 5

3 x2b2

− 20yb1 + 4b2y
1
3

√
y

4
3x2 − 4y 5

3 − 4
√

y
4
3x2 − 4y 5

3 xb1 = 0

Since the PDE has radicals, simplifying gives

18y 7
3x3a3 − 18

√
−y

4
3

(
−x2 + 4y 1

3

)
y

5
3x2a3 + 4y 2

3x3b2 + 12y 5
3x2a2

− 2y 5
3x2b3 − 66y 8

3xa3 + 30
√
−y

4
3

(
−x2 + 4y 1

3

)
y2a3

+ 4y 2
3x2b1 + 6y 5

3xa1 − 4
√
−y

4
3

(
−x2 + 4y 1

3

)
x2b2

− 12
√

−y
4
3

(
−x2 + 4y 1

3

)
yxa2 + 2

√
−y

4
3

(
−x2 + 4y 1

3

)
yxb3

− 4
√

−y
4
3

(
−x2 + 4y 1

3

)
xb1 − 20yxb2 + 4b2y

1
3

√
−y

4
3

(
−x2 + 4y 1

3

)
− 6
√

−y
4
3

(
−x2 + 4y 1

3

)
ya1 − 24y2a2 + 4y2b3 − 20yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, y

1
3 , y

2
3 , y

4
3 , y

5
3 , y

7
3 , y

8
3 ,

√
−y

4
3

(
−x2 + 4y 1

3

)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2, y

1
3 = v3, y

2
3 = v4, y

4
3 = v5, y

5
3 = v6, y

7
3 = v7, y

8
3 = v8,

√
−y

4
3

(
−x2 + 4y 1

3

)
= v9

}

7910



The above PDE (6E) now becomes

(7E)18v7v31a3 − 18v9v6v21a3 + 4v4v31b2 + 12v6v21a2 − 12v9v2v1a2 + 30v9v22a3
+ 4v4v21b1 − 4v9v21b2 − 2v6v21b3 + 2v9v2v1b3 + 6v6v1a1 − 6v9v2a1 − 24v22a2
− 66v8v1a3 − 4v9v1b1 − 20v2v1b2 + 4b2v3v9 + 4v22b3 − 20v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6, v7, v8, v9}

Equation (7E) now becomes

(8E)4v4v31b2 + 18v7v31a3 + 4v4v21b1 − 18v9v6v21a3 + (12a2 − 2b3) v21v6 − 4v9v21b2
+ (−12a2 + 2b3) v1v2v9 − 20v2v1b2 + 6v6v1a1 − 66v8v1a3 − 4v9v1b1
+ 30v9v22a3 + (−24a2 + 4b3) v22 − 6v9v2a1 − 20v2b1 + 4b2v3v9 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6a1 = 0

−66a3 = 0
−18a3 = 0
18a3 = 0
30a3 = 0

−20b1 = 0
−4b1 = 0
4b1 = 0

−20b2 = 0
−4b2 = 0
4b2 = 0

−24a2 + 4b3 = 0
−12a2 + 2b3 = 0
12a2 − 2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[1/6*x, y]� �

3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 149� �
dsolve(diff(y(x),x)^2-3*x*y(x)^(2/3)*diff(y(x),x)+9*y(x)^(5/3) = 0,y(x), singsol=all)� �

y(x) = x6

64
y(x) = 0

ln (x)+

√
−

y(x)
(

y(x)
x6

) 1
3
(
4
(

y(x)
x6

) 1
3−1

)
x6 arctanh

(√
−4
(

y(x)
x6

) 1
3 + 1

)
(

y(x)
x6

) 2
3

√
−4
(

y(x)
x6

) 1
3 + 1

+
ln
(

64y(x)
x6 − 1

)
6

−
ln
(
4
(

y(x)
x6

) 1
3 − 1

)
6 −

ln
(
16
(

y(x)
x6

) 2
3 + 4

(
y(x)
x6

) 1
3 + 1

)
6 +

ln
(

y(x)
x6

)
6 − c1 = 0
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3 Solution by Mathematica
Time used: 17.485 (sec). Leaf size: 701� �
DSolve[(y'[x])^2-3 x y[x]^(2/3) y'[x]+9 y[x]^(5/3)==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


8x2 log(y(x))− 6

√
x4 log

(
x2
√
x2 − 4 3

√
y(x)

)
− 3

√
x4 log

(
4 3
√

y(x)− x2
)
+ 6
(√

x4 − x2
)
log
(
16x2

√
x2y(x)4/3 − 4y(x)5/3 + x6

(
−
√

x2 − 4 3
√
y(x)

)
−

√
x4
√

x2 − 4 3
√

y(x)
(
x4 − 16y(x)2/3

))
+ 6
(√

x4 + x2
)
log
(
16x2

√
x2y(x)4/3 − 4y(x)5/3 + x6

√
x2 − 4 3

√
y(x)−

√
x4
√
x2 − 4 3

√
y(x)

(
x4 − 16y(x)2/3

))
48x2

−

√(
x2 − 4 3

√
y(x)

)
y(x)4/3 log

(√
x2 − 4 3

√
y(x)− x

)
√

x2 − 4 3
√

y(x)y(x)2/3
= c1, y(x)



Solve


√(

x2 − 4 3
√

y(x)
)
y(x)4/3 log

(√
x2 − 4 3

√
y(x)− x

)
√

x2 − 4 3
√

y(x)y(x)2/3

+
8x2 log(y(x)) + 6

√
x4 log

(
x2
√

x2 − 4 3
√

y(x)
)
+ 3

√
x4 log

(
4 3
√

y(x)− x2
)
+ 6
(
x2 −

√
x4
)
log
(
16x2

√
x2y(x)4/3 − 4y(x)5/3 + x6

(
−
√

x2 − 4 3
√

y(x)
)
−

√
x4
√
x2 − 4 3

√
y(x)

(
x4 − 16y(x)2/3

))
− 6
(√

x4 + x2
)
log
(
16x2

√
x2y(x)4/3 − 4y(x)5/3 + x6

√
x2 − 4 3

√
y(x)−

√
x4
√

x2 − 4 3
√
y(x)

(
x4 − 16y(x)2/3

))
48x2 = c1, y(x)


y(x) → 0
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29.8 problem 830
29.8.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7915

Internal problem ID [4069]
Internal file name [OUTPUT/3562_Sunday_June_05_2022_09_39_32_AM_69985300/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 830.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′
2 − e4x−2y(y′ − 1) = 0

29.8.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − e4x−2y(p− 1) = 0

Solving for y from the above results in

y = 2x−
ln
(

p2

p−1

)
2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2

g = −
ln
(

p2

p−1

)
2

Hence (2) becomes

p− 2 = −

(
2p
p−1 −

p2

(p−1)2

)
(p− 1) p′(x)

2p2 (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 2 = 0

Solving for p from the above gives

p = 2

Substituting these in (1A) gives

y = 2x− ln (2)

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 2(p(x)− 2) p(x)2(
2p(x)
p(x)−1 −

p(x)2

(p(x)−1)2

)
(p (x)− 1)

(3)

This ODE is now solved for p(x). Integrating both sides gives∫
− 1
2p (p− 1)dp =

∫
dx

− ln (p− 1)
2 + ln (p)

2 = x+ c1

The above can be written as(
−1
2

)
(ln (p− 1)− ln (p)) = x+ c1

ln (p− 1)− ln (p) = (−2) (x+ c1)
= −2x− 2c1
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Raising both side to exponential gives

eln(p−1)−ln(p) = −2c1e−2x

Which simplifies to

p− 1
p

= c2e−2x

Substituing the above solution for p in (2A) gives

y = 2x−
ln
(

1
(−1+c2e−2x)2

(
− 1

−1+c2e−2x−1
)
)

2

Summary
The solution(s) found are the following

(1)y = 2x− ln (2)

(2)y = 2x−
ln
(

1
(−1+c2e−2x)2

(
− 1

−1+c2e−2x−1
)
)

2
Verification of solutions

y = 2x− ln (2)

Verified OK.

y = 2x−
ln
(

1
(−1+c2e−2x)2

(
− 1

−1+c2e−2x−1
)
)

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 1.969 (sec). Leaf size: 307� �
dsolve(diff(y(x),x)^2 = exp(4*x-2*y(x))*(diff(y(x),x)-1),y(x), singsol=all)� �
−

√
−4 e−4y(x)+8xe−4x+2y(x)+e−4y(x)+8x e−4x+2y(x) arctanh

(
1√

−4 e−4x+2y(x)+1

)
2 +

√
−4 e−4x+2y(x) + 1

(
x− ln

(
2 e−2x+y(x)+1

)
4 − c1 + ln

(
e−2x+y(x))

2 + ln
(
4 e−4x+2y(x)−1

)
4 − ln

(
2 e−2x+y(x)−1

)
4

)
√
−4 e−4x+2y(x) + 1

= 0√
−4 e−4y(x)+8xe−4x+2y(x)+e−4y(x)+8x e−4x+2y(x) arctanh

(
1√

−4 e−4x+2y(x)+1

)
2 +

√
−4 e−4x+2y(x) + 1

(
x− ln

(
2 e−2x+y(x)+1

)
4 − c1 + ln

(
e−2x+y(x))

2 + ln
(
4 e−4x+2y(x)−1

)
4 − ln

(
2 e−2x+y(x)−1

)
4

)
√
−4 e−4x+2y(x) + 1

= 0

3 Solution by Mathematica
Time used: 2.551 (sec). Leaf size: 383� �
DSolve[(y'[x])^2==Exp[4 x -2 y[x]] (y'[x]-1),y[x],x,IncludeSingularSolutions -> True]� �

Solve

−e−2x
√
e8x − 4e2y(x)+4xarctanh

(
−
√

e4x−4e2y(x)+e2x+1√
e4x−4e2y(x)−e2x+1

)
√
e4x − 4e2y(x)

− e−2x
√
e8x − 4e2y(x)+4xy(x)
2
√
e4x − 4e2y(x)

+ y(x)
2 = c1, y(x)


Solve

e−2x
√
e8x − 4e2y(x)+4xarctanh

(
−
√

e4x−4e2y(x)+e2x+1√
e4x−4e2y(x)−e2x+1

)
√
e4x − 4e2y(x)

+

(√
e4x − 4e2y(x)

√
e8x − 4e2y(x)+4x − 4e2(y(x)+x) + e6x

)
y(x)

2e6x − 8e2(y(x)+x) = c1, y(x)


y(x) → 1

2

(
log
(
e8x

4

)
− 4x

)
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29.9 problem 831
29.9.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7920

Internal problem ID [4070]
Internal file name [OUTPUT/3563_Sunday_June_05_2022_09_39_45_AM_52299999/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 831.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

2y′2 + xy′ − 2y = 0

29.9.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2p2 + xp− 2y = 0

Solving for y from the above results in

y = p2 + 1
2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2
g = p2

Hence (2) becomes
p

2 =
(x
2 + 2p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)
x+ 4p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p) + 4p

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −1
p

q(p) = 4
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Hence the ode is
d

dp
x(p)− x(p)

p
= 4

The integrating factor µ is

µ = e
∫
− 1

p
dp

= 1
p

The ode becomes
d
dp(µx) = (µ) (4)

d
dp

(
x

p

)
=
(
1
p

)
(4)

d
(
x

p

)
=
(
4
p

)
dp

Integrating gives
x

p
=
∫ 4

p
dp

x

p
= 4 ln (p) + c1

Dividing both sides by the integrating factor µ = 1
p
results in

x(p) = 4p ln (p) + c1p

which simplifies to

x(p) = p(4 ln (p) + c1)

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x

4 +
√
x2 + 16y

4

p = −x

4 −
√
x2 + 16y

4
Substituting the above in the solution for x found above gives

x =
(
−x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x+

√
x2 + 16y

)
+ c1

)
4

x = −
(
x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x−

√
x2 + 16y

)
+ c1

)
4
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Summary
The solution(s) found are the following

(1)y = 0

(2)x =
(
−x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x+

√
x2 + 16y

)
+ c1

)
4

(3)x = −
(
x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x−

√
x2 + 16y

)
+ c1

)
4

Verification of solutions

y = 0

Verified OK.

x =
(
−x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x+

√
x2 + 16y

)
+ c1

)
4

Verified OK.

x = −
(
x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x−

√
x2 + 16y

)
+ c1

)
4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 31� �
dsolve(2*diff(y(x),x)^2+x*diff(y(x),x)-2*y(x) = 0,y(x), singsol=all)� �

y(x) =
x2
(
1 + 2LambertW

(
x e

c1
4

4

))
16 LambertW

(
x e

c1
4

4

)2
3 Solution by Mathematica
Time used: 1.193 (sec). Leaf size: 130� �
DSolve[2 (y'[x])^2+x y'[x]-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

− 1
2x
√

x2 + 16y(x)− 8y(x) log
(√

x2 + 16y(x)− x
)
+ x2

2

8y(x) = c1, y(x)


Solve

 1
2x
√

x2 + 16y(x)− 8y(x) log
(√

x2 + 16y(x)− x
)
− x2

2

8y(x) + log(y(x)) = c1, y(x)


y(x) → 0
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29.10 problem 832
29.10.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 7925

Internal problem ID [4071]
Internal file name [OUTPUT/3564_Sunday_June_05_2022_09_39_56_AM_48343621/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 832.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

2y′2 − (1− x) y′ − y = 0

29.10.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

2p2 − (1− x) p− y = 0

Solving for y from the above results in

y = 2p2 + px− p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = 2p2 + px− p

= 2p2 + px− p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = 2p2 − p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = 2c21 + c1x− c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 2p2 − p, then
the above equation becomes

x+ g′(p) = x+ 4p− 1
= 0
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Solving the above for p results in

p1 =
1
4 − x

4

Substituting the above back in (1) results in

y1 = −(x− 1)2

8

Summary
The solution(s) found are the following

(1)y = 2c21 + c1x− c1

(2)y = −(x− 1)2

8
Verification of solutions

y = 2c21 + c1x− c1

Verified OK.

y = −(x− 1)2

8

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 22� �
dsolve(2*diff(y(x),x)^2-(1-x)*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −(x− 1)2

8
y(x) = c1(2c1 + x− 1)

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 28� �
DSolve[2 (y'[x])^2-(1-x)y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− 1 + 2c1)

y(x) → −1
8(x− 1)2

7928



29.11 problem 833
Internal problem ID [4072]
Internal file name [OUTPUT/3565_Sunday_June_05_2022_09_40_05_AM_86996839/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 833.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

2y′2 − 2y′x2 + 3yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x2

2 +
√
x4 − 6yx

2 (1)

y′ = x2

2 −
√
x4 − 6yx

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = x2

2 +
√
x4 − 6xy

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x2

2 +
√
x4 − 6xy

2

)
(b3 − a2)−

(
x2

2 +
√
x4 − 6xy

2

)2

a3

−
(
x+ 4x3 − 6y

4
√
x4 − 6xy

)
(xa2 + ya3 + a1) +

3x(xb2 + yb3 + b1)
2
√
x4 − 6xy

= 0

Putting the above in normal form gives

−2x6a3 +
√
x4 − 6xy x4a3 + 6x4a2 − 2x4b3 − 8x3ya3 + (x4 − 6xy)

3
2 a3 + 6

√
x4 − 6xy x2a2 − 2

√
x4 − 6xy x2b3 + 4

√
x4 − 6xy xya3 + 4x3a1 + 4

√
x4 − 6xy xa1 − 6x2b2 − 18xya2 + 6xyb3 − 6y2a3 − 4b2

√
x4 − 6xy − 6xb1 − 6ya1

4
√
x4 − 6xy

= 0

Setting the numerator to zero gives

(6E)
−2x6a3 −

√
x4 − 6xy x4a3 − 6x4a2 + 2x4b3 + 8x3ya3

−
(
x4 − 6xy

) 3
2 a3 − 6

√
x4 − 6xy x2a2 + 2

√
x4 − 6xy x2b3

− 4
√

x4 − 6xy xya3 − 4x3a1 − 4
√

x4 − 6xy xa1 + 6x2b2

+ 18xya2 − 6xyb3 + 6y2a3 + 4b2
√
x4 − 6xy + 6xb1 + 6ya1 = 0

Simplifying the above gives

(6E)

−
√
x (x3 − 6y)x4a3 − 2

(
x4 − 6xy

)
x2a3 − 4x4a2 − 4x3ya3

−
(
x
(
x3 − 6y

)) 3
2a3 − 6

√
x (x3 − 6y)x2a2 + 2

√
x (x3 − 6y)x2b3

− 4
√

x (x3 − 6y)xya3 − 4x3a1 − 2
(
x4 − 6xy

)
a2

+ 2
(
x4 − 6xy

)
b3 − 4

√
x (x3 − 6y)xa1 + 6x2b2 + 6xya2

+ 6xyb3 + 6y2a3 + 4b2
√

x (x3 − 6y) + 6xb1 + 6ya1 = 0
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Since the PDE has radicals, simplifying gives

−2x6a3 − 2
√
x (x3 − 6y)x4a3 − 6x4a2 + 2x4b3 + 8x3ya3 − 4x3a1

− 6
√

x (x3 − 6y)x2a2 + 2
√
x (x3 − 6y)x2b3 + 2

√
x (x3 − 6y)xya3 + 6x2b2

−4
√

x (x3 − 6y)xa1+18xya2−6xyb3+6y2a3+6xb1+4b2
√
x (x3 − 6y)+6ya1 =0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x (x3 − 6y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x (x3 − 6y) = v3
}

The above PDE (6E) now becomes

(7E)−2v61a3 − 2v3v41a3 − 6v41a2 + 8v31v2a3 + 2v41b3 − 4v31a1
− 6v3v21a2 + 2v3v1v2a3 + 2v3v21b3 − 4v3v1a1 + 18v1v2a2
+ 6v22a3 + 6v21b2 − 6v1v2b3 + 6v2a1 + 6v1b1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v61a3 − 2v3v41a3 + (−6a2 + 2b3) v41 + 8v31v2a3 − 4v31a1
+ (−6a2 + 2b3) v21v3 + 6v21b2 + 2v3v1v2a3 + (18a2 − 6b3) v1v2
− 4v3v1a1 + 6v1b1 + 6v22a3 + 6v2a1 + 4b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
6a1 = 0

−2a3 = 0
2a3 = 0
6a3 = 0
8a3 = 0
6b1 = 0
4b2 = 0
6b2 = 0

−6a2 + 2b3 = 0
18a2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(
x2

2 +
√
x4 − 6xy

2

)
(x)

= −x3

2 − x
√
x4 − 6xy
2 + 3y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3

2 − x
√

x4−6xy
2 + 3y

dy

Which results in

S = ln (y)
3 +

ln
(
x2 +

√
x4 − 6xy

)
3 −

ln
(
−x2 +

√
x4 − 6xy

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2

2 +
√
x4 − 6xy

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
x√

x3 − 6y

Sy =
−x

3
2 +

√
x3 − 6y

3
√
x3 − 6y y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
−x

3
2 +

√
x3 − 6y

)√
x (x3 − 6y) +

√
x3 − 6y x2 + 6

√
x y − x

7
2

6
√
x3 − 6y y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
3 +

ln
(
x2 +

√
x
√
x3 − 6y

)
3 −

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Which simplifies to

ln (y)
3 +

ln
(
x2 +

√
x
√
x3 − 6y

)
3 −

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Summary
The solution(s) found are the following

(1)ln (y)
3 +

ln
(
x2 +

√
x
√
x3 − 6y

)
3 −

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Verification of solutions

ln (y)
3 +

ln
(
x2 +

√
x
√
x3 − 6y

)
3 −

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = x2

2 −
√
x4 − 6xy

2
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x2

2 −
√
x4 − 6xy

2

)
(b3 − a2)−

(
x2

2 −
√
x4 − 6xy

2

)2

a3

−
(
x− 4x3 − 6y

4
√
x4 − 6xy

)
(xa2 + ya3 + a1)−

3x(xb2 + yb3 + b1)
2
√
x4 − 6xy

= 0

Putting the above in normal form gives

−−2x6a3 +
√
x4 − 6xy x4a3 − 6x4a2 + 2x4b3 + 8x3ya3 + (x4 − 6xy)

3
2 a3 + 6

√
x4 − 6xy x2a2 − 2

√
x4 − 6xy x2b3 + 4

√
x4 − 6xy xya3 − 4x3a1 + 4

√
x4 − 6xy xa1 + 6x2b2 + 18xya2 − 6xyb3 + 6y2a3 − 4b2

√
x4 − 6xy + 6xb1 + 6ya1

4
√
x4 − 6xy

= 0

Setting the numerator to zero gives

(6E)
2x6a3 −

√
x4 − 6xy x4a3 + 6x4a2 − 2x4b3 − 8x3ya3

−
(
x4 − 6xy

) 3
2 a3 − 6

√
x4 − 6xy x2a2 + 2

√
x4 − 6xy x2b3

− 4
√

x4 − 6xy xya3 + 4x3a1 − 4
√

x4 − 6xy xa1 − 6x2b2

− 18xya2 + 6xyb3 − 6y2a3 + 4b2
√
x4 − 6xy − 6xb1 − 6ya1 = 0

Simplifying the above gives

(6E)
−
√

x (x3 − 6y)x4a3 + 2
(
x4 − 6xy

)
x2a3 + 4x4a2 + 4x3ya3

−
(
x
(
x3 − 6y

)) 3
2a3 − 6

√
x (x3 − 6y)x2a2 + 2

√
x (x3 − 6y)x2b3

− 4
√

x (x3 − 6y)xya3 + 4x3a1 + 2
(
x4 − 6xy

)
a2

− 2
(
x4 − 6xy

)
b3 − 4

√
x (x3 − 6y)xa1 − 6x2b2 − 6xya2

− 6xyb3 − 6y2a3 + 4b2
√

x (x3 − 6y)− 6xb1 − 6ya1 = 0
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Since the PDE has radicals, simplifying gives

2x6a3−2
√

x (x3 − 6y)x4a3+6x4a2−2x4b3−8x3ya3+4x3a1−6
√
x (x3 − 6y)x2a2

+ 2
√
x (x3 − 6y)x2b3 + 2

√
x (x3 − 6y)xya3 − 6x2b2 − 4

√
x (x3 − 6y)xa1

− 18xya2 + 6xyb3 − 6y2a3 − 6xb1 + 4b2
√
x (x3 − 6y)− 6ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x (x3 − 6y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x (x3 − 6y) = v3
}

The above PDE (6E) now becomes

(7E)2v61a3 − 2v3v41a3 + 6v41a2 − 8v31v2a3 − 2v41b3 + 4v31a1
− 6v3v21a2 + 2v3v1v2a3 + 2v3v21b3 − 4v3v1a1 − 18v1v2a2
− 6v22a3 − 6v21b2 + 6v1v2b3 − 6v2a1 − 6v1b1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v61a3−2v3v41a3+(6a2−2b3) v41−8v31v2a3+4v31a1+(−6a2+2b3) v21v3−6v21b2
+2v3v1v2a3+(−18a2+6b3) v1v2−4v3v1a1−6v1b1−6v22a3−6v2a1+4b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
−4a1 = 0
4a1 = 0

−8a3 = 0
−6a3 = 0
−2a3 = 0
2a3 = 0

−6b1 = 0
−6b2 = 0
4b2 = 0

−18a2 + 6b3 = 0
−6a2 + 2b3 = 0
6a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(
x2

2 −
√
x4 − 6xy

2

)
(x)

= −x3

2 + x
√
x4 − 6xy
2 + 3y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3

2 + x
√

x4−6xy
2 + 3y

dy

Which results in

S = ln (y)
3 −

ln
(
x2 +

√
x4 − 6xy

)
3 +

ln
(
−x2 +

√
x4 − 6xy

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2

2 −
√
x4 − 6xy

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
√
x√

x3 − 6y

Sy =
x

3
2 +

√
x3 − 6y

3y
√
x3 − 6y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
−x

3
2 −

√
x3 − 6y

)√
x (x3 − 6y) +

√
x3 − 6y x2 − 6

√
x y + x

7
2

6
√
x3 − 6y y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
3 −

ln
(
x2 +

√
x
√
x3 − 6y

)
3 +

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Which simplifies to

ln (y)
3 −

ln
(
x2 +

√
x
√
x3 − 6y

)
3 +

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Summary
The solution(s) found are the following

(1)ln (y)
3 −

ln
(
x2 +

√
x
√
x3 − 6y

)
3 +

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Verification of solutions

ln (y)
3 −

ln
(
x2 +

√
x
√
x3 − 6y

)
3 +

ln
(
−x2 +

√
x
√
x3 − 6y

)
3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 77� �
dsolve(2*diff(y(x),x)^2-2*x^2*diff(y(x),x)+3*x*y(x) = 0,y(x), singsol=all)� �

y(x) = x3

6

y(x) =
√
6
√
−c1xx

3 + c1

y(x) = −
√
6
√
−c1xx

3 + c1

y(x) = −
√
6
√
−c1xx

3 + c1

y(x) =
√
6
√
−c1xx

3 + c1

3 Solution by Mathematica
Time used: 2.615 (sec). Leaf size: 213� �
DSolve[2 (y'[x])^2-2 x^2 y'[x]+3 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

1
3

(
1−

√
x4 − 6xy(x)

√
x
√

x3 − 6y(x)

)
log(y(x))

+
2
√

x4 − 6xy(x) log
(
x3/2 +

√
x3 − 6y(x)

)
3
√
x
√
x3 − 6y(x)

= c1, y(x)


Solve

1
3

( √
x4 − 6xy(x)

√
x
√

x3 − 6y(x)
+ 1
)
log(y(x))

−
2
√

x4 − 6xy(x) log
(
x3/2 +

√
x3 − 6y(x)

)
3
√
x
√
x3 − 6y(x)

= c1, y(x)


y(x) → x3

6
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29.12 problem 834
29.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7943

Internal problem ID [4073]
Internal file name [OUTPUT/3566_Sunday_June_05_2022_09_40_13_AM_91438383/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 834.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

2y′2 + 2(6y − 1) y′ + 3y(6y − 1) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −3y + 1
2 +

√
−6y + 1

2 (1)

y′ = −3y + 1
2 −

√
−6y + 1

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
−3y + 1

2 +
√
−6y+1
2

dy =
∫

dx

− ln (y)
3 −

2 arctanh
(√

−6y + 1
)

3 = x+ c1

Summary
The solution(s) found are the following

(1)− ln (y)
3 −

2 arctanh
(√

−6y + 1
)

3 = x+ c1
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Verification of solutions

− ln (y)
3 −

2 arctanh
(√

−6y + 1
)

3 = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
−3y + 1

2 −
√
−6y+1
2

dy =
∫

dx

− ln (y)
3 +

2 arctanh
(√

−6y + 1
)

3 = x+ c2

Summary
The solution(s) found are the following

(1)− ln (y)
3 +

2 arctanh
(√

−6y + 1
)

3 = x+ c2

Verification of solutions

− ln (y)
3 +

2 arctanh
(√

−6y + 1
)

3 = x+ c2

Verified OK.

29.12.1 Maple step by step solution

Let’s solve
2y′2 + 2(6y − 1) y′ + 3y(6y − 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−3y+ 1
2+

√
−6y+1

2
= 1

• Integrate both sides with respect to x∫
y′

−3y+ 1
2+

√
−6y+1

2
dx =

∫
1dx+ c1

• Evaluate integral
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− ln(y)
3 − 2 arctanh

(√
−6y+1

)
3 = x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 61� �
dsolve(2*diff(y(x),x)^2+2*(6*y(x)-1)*diff(y(x),x)+3*y(x)*(6*y(x)-1) = 0,y(x), singsol=all)� �

y(x) = 1
6

y(x) = −

(√
6 e 3x

2 + 3c1
2 + 3 e3c1

)
e−3x

3

y(x) =

(√
6 e 3x

2 + 3c1
2 − 3 e3c1

)
e−3x

3

3 Solution by Mathematica
Time used: 0.275 (sec). Leaf size: 81� �
DSolve[2 (y'[x])^2+2(6 y[x]-1)y'[x]+3 y[x](6 y[x]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
6e

−3x+3c1
(
2e3x/2 + e3c1

)
y(x) → 1

6e
−3(x+2c1)

(
−1 + 2e 3x

2 +3c1
)

y(x) → 0

y(x) → 1
6
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29.13 problem 835
29.13.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7945

Internal problem ID [4074]
Internal file name [OUTPUT/3567_Sunday_June_05_2022_09_40_21_AM_54511790/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 835.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

3y′2 − 2xy′ + y = 0

29.13.1 Solving as dAlembert ode

Let p = y′ the ode becomes

3p2 − 2xp+ y = 0

Solving for y from the above results in

y = −3p2 + 2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p
g = −3p2

Hence (2) becomes

−p = (2x− 6p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
2x− 6p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −2x(p)− 6p

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = 6
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Hence the ode is

d

dp
x(p) + 2x(p)

p
= 6

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ) (6)

d
dp
(
p2x
)
=
(
p2
)
(6)

d
(
p2x
)
=
(
6p2
)
dp

Integrating gives

p2x =
∫

6p2 dp

p2x = 2p3 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) = 2p+ c1
p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x

3 +
√
x2 − 3y
3

p = x

3 −
√
x2 − 3y
3

Substituting the above in the solution for x found above gives

x = (8x2 − 6y)
√
x2 − 3y + 8x3 − 18yx+ 27c1

3
(
x+

√
x2 − 3y

)2
x = (−8x2 + 6y)

√
x2 − 3y + 8x3 − 18yx+ 27c1

3
(
x−

√
x2 − 3y

)2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = (8x2 − 6y)
√
x2 − 3y + 8x3 − 18yx+ 27c1

3
(
x+

√
x2 − 3y

)2
(3)x = (−8x2 + 6y)

√
x2 − 3y + 8x3 − 18yx+ 27c1

3
(
x−

√
x2 − 3y

)2
Verification of solutions

y = 0

Verified OK.

x = (8x2 − 6y)
√
x2 − 3y + 8x3 − 18yx+ 27c1

3
(
x+

√
x2 − 3y

)2
Verified OK.

x = (−8x2 + 6y)
√
x2 − 3y + 8x3 − 18yx+ 27c1

3
(
x−

√
x2 − 3y

)2
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 611� �
dsolve(3*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �
y(x) =

−

(
x2 + x

(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 1

3 +
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 2

3
)(

x2 − 3x
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 1

3 +
(
x3 + 6

√
3
√
−c1 (x3 − 27c1)− 54c1

) 2
3
)

12
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 2

3

y(x) =

−

(
i
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 2

3 √3− i
√
3x2 +

(
x3 + 6

√
3
√
−c1 (x3 − 27c1)− 54c1

) 2
3 − 2x

(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 1

3 + x2
)(

i
(
x3 + 6

√
3
√
−c1 (x3 − 27c1)− 54c1

) 2
3 √3− i

√
3x2 +

(
x3 + 6

√
3
√
−c1 (x3 − 27c1)− 54c1

) 2
3 + 6x

(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 1

3 + x2
)

48
(
x3 + 6

√
3
√
−c1 (x3 − 27c1)− 54c1

) 2
3

y(x) =

−

(
i
√
3x2 − i

(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 2

3 √3 + x2 − 2x
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 1

3 +
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 2

3
)(

i
√
3x2 − i

(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 2

3 √3 + x2 + 6x
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 1

3 +
(
x3 + 6

√
3
√

−c1 (x3 − 27c1)− 54c1
) 2

3
)

48
(
x3 + 6

√
3
√
−c1 (x3 − 27c1)− 54c1

) 2
3
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3 Solution by Mathematica
Time used: 60.138 (sec). Leaf size: 995� �
DSolve[3 (y'[x])^2-2 x y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

12

x2 + x(x3 + 216e3c1)
3
√
x6 − 540e3c1x3 + 24

√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1

+ 3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1


y(x) → 1

24

2x2 −
i
(√

3− i
)
x(x3 + 216e3c1)

3
√

x6 − 540e3c1x3 + 24
√
3
√
e3c1 (−x3 + 27e3c1) 3 − 5832e6c1

+ i
(√

3 + i
)

3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1


y(x) → 1

24

2x2 +
i
(√

3 + i
)
x(x3 + 216e3c1)

3
√

x6 − 540e3c1x3 + 24
√
3
√
e3c1 (−x3 + 27e3c1) 3 − 5832e6c1

−
(
1 + i

√
3
)

3
√

x6 − 540e3c1x3 + 24
√
3
√

e3c1 (−x3 + 27e3c1) 3 − 5832e6c1


y(x)

→
x4 +

(
x6 + 20e3c1x3 + 8

√
e3c1 (x3 + e3c1) 3 − 8e6c1

)
2/3 + x2 3

√
x6 + 20e3c1x3 + 8

√
e3c1 (x3 + e3c1) 3 − 8e6c1 − 8e3c1x

12 3
√
x6 + 20e3c1x3 + 8

√
e3c1 (x3 + e3c1) 3 − 8e6c1

y(x) → 1
24

2x2 +
(
1 + i

√
3
)
x(−x3 + 8e3c1)

3
√

x6 + 20e3c1x3 + 8
√

e3c1 (x3 + e3c1) 3 − 8e6c1

+ i
(√

3 + i
)

3
√

x6 + 20e3c1x3 + 8
√

e3c1 (x3 + e3c1) 3 − 8e6c1


y(x) → 1

24

2x2 +
i
(√

3 + i
)
x(x3 − 8e3c1)

3
√

x6 + 20e3c1x3 + 8
√

e3c1 (x3 + e3c1) 3 − 8e6c1

−
(
1 + i

√
3
)

3
√

x6 + 20e3c1x3 + 8
√

e3c1 (x3 + e3c1) 3 − 8e6c1
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29.14 problem 836
Internal problem ID [4075]
Internal file name [OUTPUT/3568_Sunday_June_05_2022_09_40_32_AM_8161006/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 836.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

3y′2 + 4xy′ − y = −x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −2x
3 +

√
x2 + 3y
3 (1)

y′ = −2x
3 −

√
x2 + 3y
3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −2x
3 +

√
x2 + 3y
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−2x

3 +
√
x2 + 3y
3

)
(b3 − a2)−

(
−2x

3 +
√
x2 + 3y
3

)2

a3

−
(
−2
3 + x

3
√
x2 + 3y

)
(xa2 + ya3 + a1)−

xb2 + yb3 + b1

2
√
x2 + 3y

= 0

Putting the above in normal form gives

−2(x2 + 3y)
3
2 a3 + 8

√
x2 + 3y x2a3 − 8x3a3 − 24

√
x2 + 3y xa2 + 12

√
x2 + 3y xb3 − 12

√
x2 + 3y ya3 + 12x2a2 − 6x2b3 − 18xya3 − 12

√
x2 + 3y a1 − 18b2

√
x2 + 3y + 6xa1 + 9xb2 + 18ya2 − 9yb3 + 9b1

18
√
x2 + 3y

= 0

Setting the numerator to zero gives

(6E)−2
(
x2 + 3y

) 3
2 a3 − 8

√
x2 + 3y x2a3 + 8x3a3 + 24

√
x2 + 3y xa2

− 12
√

x2 + 3y xb3 + 12
√

x2 + 3y ya3 − 12x2a2 + 6x2b3 + 18xya3
+ 12

√
x2 + 3y a1 + 18b2

√
x2 + 3y − 6xa1 − 9xb2 − 18ya2 + 9yb3 − 9b1 = 0

Simplifying the above gives

(6E)
−2
(
x2 + 3y

) 3
2 a3 + 8

(
x2 + 3y

)
xa3 − 8

√
x2 + 3y x2a3

− 6
(
x2 + 3y

)
a2 + 6

(
x2 + 3y

)
b3 + 24

√
x2 + 3y xa2

− 12
√

x2 + 3y xb3 + 12
√

x2 + 3y ya3 − 6x2a2 − 6xya3
+ 12

√
x2 + 3y a1 + 18b2

√
x2 + 3y − 6xa1 − 9xb2 − 9yb3 − 9b1 = 0
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Since the PDE has radicals, simplifying gives

8x3a3 − 10
√

x2 + 3y x2a3 − 12x2a2 + 6x2b3 + 24
√

x2 + 3y xa2
− 12

√
x2 + 3y xb3 + 18xya3 + 6

√
x2 + 3y ya3 − 6xa1 − 9xb2

+ 12
√

x2 + 3y a1 + 18b2
√
x2 + 3y − 18ya2 + 9yb3 − 9b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 + 3y = v3
}

The above PDE (6E) now becomes

(7E)8v31a3 − 10v3v21a3 − 12v21a2 + 24v3v1a2 + 18v1v2a3 + 6v3v2a3 + 6v21b3
− 12v3v1b3 − 6v1a1 + 12v3a1 − 18v2a2 − 9v1b2 + 18b2v3 + 9v2b3 − 9b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)8v31a3 − 10v3v21a3 + (−12a2 + 6b3) v21 + 18v1v2a3 + (24a2 − 12b3) v1v3
+ (−6a1 − 9b2) v1 + 6v3v2a3 + (−18a2 + 9b3) v2 + (12a1 + 18b2) v3 − 9b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−10a3 = 0
6a3 = 0
8a3 = 0
18a3 = 0
−9b1 = 0

−6a1 − 9b2 = 0
12a1 + 18b2 = 0
−18a2 + 9b3 = 0
−12a2 + 6b3 = 0
24a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = −3b2
2

a2 = a2

a3 = 0
b1 = 0
b2 = b2

b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3
2

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
−2x

3 +
√
x2 + 3y
3

)(
−3
2

)
=

√
x2 + 3y
2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2+3y
2

dy

Which results in

S = 4
√
x2 + 3y
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x
3 +

√
x2 + 3y
3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4x
3
√
x2 + 3y

Sy =
2√

x2 + 3y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

4
√
x2 + 3y
3 = 2x

3 + c1

Which simplifies to

4
√
x2 + 3y
3 = 2x

3 + c1

Which gives

y = 3
16c

2
1 +

1
4c1x− 1

4x
2

Summary
The solution(s) found are the following

(1)y = 3
16c

2
1 +

1
4c1x− 1

4x
2

Verification of solutions

y = 3
16c

2
1 +

1
4c1x− 1

4x
2

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −2x
3 −

√
x2 + 3y
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−2x

3 −
√
x2 + 3y
3

)
(b3 − a2)−

(
−2x

3 −
√
x2 + 3y
3

)2

a3

−
(
−2
3 − x

3
√
x2 + 3y

)
(xa2 + ya3 + a1) +

xb2 + yb3 + b1

2
√
x2 + 3y

= 0

Putting the above in normal form gives

−2(x2 + 3y)
3
2 a3 + 8

√
x2 + 3y x2a3 + 8x3a3 − 24

√
x2 + 3y xa2 + 12

√
x2 + 3y xb3 − 12

√
x2 + 3y ya3 − 12x2a2 + 6x2b3 + 18xya3 − 12

√
x2 + 3y a1 − 18b2

√
x2 + 3y − 6xa1 − 9xb2 − 18ya2 + 9yb3 − 9b1

18
√
x2 + 3y

= 0

Setting the numerator to zero gives

(6E)−2
(
x2 + 3y

) 3
2 a3 − 8

√
x2 + 3y x2a3 − 8x3a3 + 24

√
x2 + 3y xa2

− 12
√

x2 + 3y xb3 + 12
√

x2 + 3y ya3 + 12x2a2 − 6x2b3 − 18xya3
+ 12

√
x2 + 3y a1 + 18b2

√
x2 + 3y + 6xa1 + 9xb2 + 18ya2 − 9yb3 + 9b1 = 0
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Simplifying the above gives

(6E)
−2
(
x2 + 3y

) 3
2 a3 − 8

(
x2 + 3y

)
xa3 − 8

√
x2 + 3y x2a3

+ 6
(
x2 + 3y

)
a2 − 6

(
x2 + 3y

)
b3 + 24

√
x2 + 3y xa2

− 12
√

x2 + 3y xb3 + 12
√
x2 + 3y ya3 + 6x2a2 + 6xya3

+ 12
√

x2 + 3y a1 + 18b2
√
x2 + 3y + 6xa1 + 9xb2 + 9yb3 + 9b1 = 0

Since the PDE has radicals, simplifying gives

−8x3a3 − 10
√

x2 + 3y x2a3 + 12x2a2 − 6x2b3 + 24
√
x2 + 3y xa2

− 12
√

x2 + 3y xb3 − 18xya3 + 6
√

x2 + 3y ya3 + 6xa1 + 9xb2
+ 12

√
x2 + 3y a1 + 18b2

√
x2 + 3y + 18ya2 − 9yb3 + 9b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 + 3y = v3
}

The above PDE (6E) now becomes

(7E)−8v31a3 − 10v3v21a3 + 12v21a2 + 24v3v1a2 − 18v1v2a3 + 6v3v2a3 − 6v21b3
− 12v3v1b3 + 6v1a1 + 12v3a1 + 18v2a2 + 9v1b2 + 18b2v3 − 9v2b3 + 9b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−8v31a3 − 10v3v21a3 + (12a2 − 6b3) v21 − 18v1v2a3 + (24a2 − 12b3) v1v3
+ (6a1 + 9b2) v1 + 6v3v2a3 + (18a2 − 9b3) v2 + (12a1 + 18b2) v3 + 9b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−18a3 = 0
−10a3 = 0
−8a3 = 0
6a3 = 0
9b1 = 0

6a1 + 9b2 = 0
12a1 + 18b2 = 0
12a2 − 6b3 = 0
18a2 − 9b3 = 0
24a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = −3b2
2

a2 = a2

a3 = 0
b1 = 0
b2 = b2

b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3
2

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
−2x

3 −
√
x2 + 3y
3

)(
−3
2

)
= −

√
x2 + 3y
2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√

x2+3y
2

dy

Which results in

S = −4
√
x2 + 3y
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x
3 −

√
x2 + 3y
3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x
3
√
x2 + 3y

Sy = − 2√
x2 + 3y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−4
√
x2 + 3y
3 = 2x

3 + c1

Which simplifies to

−4
√
x2 + 3y
3 = 2x

3 + c1

Which gives

y = 3
16c

2
1 +

1
4c1x− 1

4x
2

Summary
The solution(s) found are the following

(1)y = 3
16c

2
1 +

1
4c1x− 1

4x
2

Verification of solutions

y = 3
16c

2
1 +

1
4c1x− 1

4x
2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 93� �
dsolve(3*diff(y(x),x)^2+4*x*diff(y(x),x)+x^2-y(x) = 0,y(x), singsol=all)� �

y(x) = −x2

3

y(x) = −x2

4 +
√
3 c1x
6 + c21

4

y(x) = −x2

4 −
√
3 c1x
6 + c21

4

y(x) = −x2

4 −
√
3 c1x
6 + c21

4

y(x) = −x2

4 +
√
3 c1x
6 + c21

4

3 Solution by Mathematica
Time used: 4.13 (sec). Leaf size: 121� �
DSolve[3 (y'[x])^2+4 x y'[x]+x^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12
(
−3x2 + 2x− 2ec1(x+ 1) + 1 + e2c1

)
y(x) →

−3x2 − 3x2 tanh2 ( c1
2

)
+ 4x+ 2(3x− 2)x tanh

(
c1
2

)
+ 4

12
(
−1 + tanh

(
c1
2

))
2

y(x) → −x2

3
y(x) → 1

12
(
−3x2 + 2x+ 1

)
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29.15 problem 837
29.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7965

Internal problem ID [4076]
Internal file name [OUTPUT/3569_Sunday_June_05_2022_09_40_41_AM_61661293/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 837.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

4y′2 = 9x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 3
√
x

2 (1)

y′ = −3
√
x

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 3

√
x

2 dx

= x
3
2 + c1

Summary
The solution(s) found are the following

(1)y = x
3
2 + c1
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Verification of solutions

y = x
3
2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−3
√
x

2 dx

= −x
3
2 + c2

Summary
The solution(s) found are the following

(1)y = −x
3
2 + c2

Verification of solutions

y = −x
3
2 + c2

Verified OK.

29.15.1 Maple step by step solution

Let’s solve
4y′2 = 9x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
4y′2dx =

∫
9xdx+ c1

• Cannot compute integral∫
4y′2dx = 9x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 19� �
dsolve(4*diff(y(x),x)^2 = 9*x,y(x), singsol=all)� �

y(x) = −x
3
2 + c1

y(x) = x
3
2 + c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 27� �
DSolve[4 (y'[x])^2==9 x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3/2 + c1
y(x) → x3/2 + c1
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29.16 problem 838
Internal problem ID [4077]
Internal file name [OUTPUT/3570_Sunday_June_05_2022_09_40_47_AM_44840587/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 838.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

4y′2 + 2x e−2yy′ − e−2y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −x e−2y

4 +
√
x2e−4y + 4 e−2y

4 (1)

y′ = −x e−2y

4 −
√
x2e−4y + 4 e−2y

4 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −x e−2y

4 +
√
x2e−4y + 4 e−2y

4
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x e−2y

4 +
√
x2e−4y + 4 e−2y

4

)
(b3 − a2)

−

(
−x e−2y

4 +
√
x2e−4y + 4 e−2y

4

)2

a3

−
(
−e−2y

4 + x e−4y

4
√
x2e−4y + 4 e−2y

)
(xa2 + ya3 + a1)

−
(
x e−2y

2 + −4x2e−4y − 8 e−2y

8
√
x2e−4y + 4 e−2y

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2 e−6yx3a3 − e−4y
√
x2e−4y + 4 e−2y x2a3 + 8 e−4yx3b2 + 8 e−4yx2yb3 − 8 e−4yx2a2 + 8 e−4yx2b1 + 4 e−4yx2b3 − 4 e−4yxya3 − 8 e−2y

√
x2e−4y + 4 e−2y x2b2 − 8 e−2y

√
x2e−4y + 4 e−2y xyb3 − 4 e−4yxa1 + 8 e−4yxa3 + 8 e−2y

√
x2e−4y + 4 e−2y xa2 − 8 e−2y

√
x2e−4y + 4 e−2y xb1 − 4 e−2y

√
x2e−4y + 4 e−2y xb3 + 4 e−2y

√
x2e−4y + 4 e−2y ya3 − (x2e−4y + 4 e−2y)

3
2 a3 + 4 e−2y

√
x2e−4y + 4 e−2y a1 + 16 e−2yxb2 + 16 e−2yyb3 − 16 e−2ya2 + 16 e−2yb1 + 16 e−2yb3 + 16b2

√
x2e−4y + 4 e−2y

16
√
x2e−4y + 4 e−2y

= 0

Setting the numerator to zero gives

(6E)

2 e−6yx3a3 − e−4y
√
x2e−4y + 4 e−2y x2a3 + 8 e−4yx3b2 + 8 e−4yx2yb3

− 8 e−4yx2a2 + 8 e−4yx2b1 + 4 e−4yx2b3 − 4 e−4yxya3
− 8 e−2y

√
x2e−4y + 4 e−2y x2b2 − 8 e−2y

√
x2e−4y + 4 e−2y xyb3

− 4 e−4yxa1 + 8 e−4yxa3 + 8 e−2y
√
x2e−4y + 4 e−2y xa2

− 8 e−2y
√
x2e−4y + 4 e−2y xb1 − 4 e−2y

√
x2e−4y + 4 e−2y xb3

+ 4 e−2y
√
x2e−4y + 4 e−2y ya3 −

(
x2e−4y + 4 e−2y) 3

2 a3

+ 4 e−2y
√
x2e−4y + 4 e−2y a1 + 16 e−2yxb2 + 16 e−2yyb3

− 16 e−2ya2 + 16 e−2yb1 + 16 e−2yb3 + 16b2
√
x2e−4y + 4 e−2y = 0

7968



Simplifying the above gives

(6E)

−e−4y
√
x2e−4y + 4 e−2y x2a3 + 8 e−4yx3b2 + 8 e−4yx2yb3 − 4 e−4yx2a2

+ 8 e−4yx2b1 − 4 e−4yxya3 + 2 e−2y(x2e−4y + 4 e−2y)xa3
− 8 e−2y

√
x2e−4y + 4 e−2y x2b2 − 8 e−2y

√
x2e−4y + 4 e−2y xyb3

− 4 e−4yxa1 +8 e−2y
√
x2e−4y + 4 e−2y xa2 − 8 e−2y

√
x2e−4y + 4 e−2y xb1

− 4 e−2y
√
x2e−4y + 4 e−2y xb3 + 4 e−2y

√
x2e−4y + 4 e−2y ya3

−
(
x2e−4y + 4 e−2y) 3

2 a3 + 4 e−2y
√
x2e−4y + 4 e−2y a1

+ 16 e−2yxb2 + 16 e−2yyb3 − 4
(
x2e−4y + 4 e−2y) a2

+ 4
(
x2e−4y + 4 e−2y) b3 + 16 e−2yb1 + 16b2

√
x2e−4y + 4 e−2y = 0

Since the PDE has radicals, simplifying gives

16b2
√

e−2y (4 + x2e−2y) + 8 e−4yx2yb3 − 4 e−4yxya3

− 8 e−2y
√

e−2y (4 + x2e−2y)x2b2 + 8 e−2y
√
e−2y (4 + x2e−2y)xa2

− 8 e−2y
√

e−2y (4 + x2e−2y)xb1 − 4 e−2y
√
e−2y (4 + x2e−2y)xb3

+ 4 e−2y
√

e−2y (4 + x2e−2y) ya3 + 2 e−4ye−2yx3a3

− 2 e−4y
√

e−2y (4 + x2e−2y)x2a3 − 8 e−2y
√

e−2y (4 + x2e−2y)xyb3
+ 4 e−2y

√
e−2y (4 + x2e−2y) a1 − 16 e−2ya2 + 16 e−2yb3 + 8 e−4yx3b2

− 8 e−4yx2a2 + 8 e−4yx2b1 + 4 e−4yx2b3 − 4 e−4yxa1 + 8 e−4yxa3
+ 16 e−2yb1 + 16 e−2yxb2 + 16 e−2yyb3 − 4 e−2y

√
e−2y (4 + x2e−2y) a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
e−2y (4 + x2e−2y), e−4y, e−2y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

e−2y (4 + x2e−2y) = v3, e−4y = v4, e−2y = v5
}

The above PDE (6E) now becomes

(7E)
2v4v5v31a3 − v25v

2
1v3a3 − v4v3v

2
1a3 + 8v4v31b2 − 8v5v3v21b2 + 8v4v21v2b3

− 8v5v3v1v2b3 − 8v4v21a2 + 8v5v3v1a2 − 4v4v1v2a3 + 8v25v1a3 + 4v5v3v2a3
+ 8v4v21b1 − 8v5v3v1b1 + 4v4v21b3 − 4v5v3v1b3 − 4v4v1a1 + 4v5v3a1
− 4v5v3a3 + 16v5v1b2 + 16v5v2b3 − 16v5a2 + 16v5b1 + 16b2v3 + 16v5b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)
2v4v5v31a3 + 8v4v31b2 + 8v4v21v2b3 − v4v3v

2
1a3 − v25v

2
1v3a3

− 8v5v3v21b2 + (−8a2 + 8b1 + 4b3) v21v4 − 8v5v3v1v2b3 − 4v4v1v2a3
+ (8a2 − 8b1 − 4b3) v1v3v5 − 4v4v1a1 + 8v25v1a3 + 16v5v1b2 + 4v5v3v2a3
+ 16v5v2b3 + (4a1 − 4a3) v3v5 + 16b2v3 + (−16a2 + 16b1 + 16b3) v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−4a3 = 0
−a3 = 0
2a3 = 0
4a3 = 0
8a3 = 0

−8b2 = 0
8b2 = 0
16b2 = 0
−8b3 = 0
8b3 = 0
16b3 = 0

4a1 − 4a3 = 0
−16a2 + 16b1 + 16b3 = 0

−8a2 + 8b1 + 4b3 = 0
8a2 − 8b1 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b1

a3 = 0
b1 = b1

b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
−x e−2y

4 +
√
x2e−4y + 4 e−2y

4

)
(x)

= x2e−2y

4 − x
√
x2e−4y + 4 e−2y

4 + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2e−2y

4 − x
√
x2e−4y+4 e−2y

4 + 1
dy

Which results in

S =

x2
√

(4 e2y + x2) e−4y e2y

√(4 e2y + x2) e−4y ln (−4 e2y)
√
x2 e2y − ln

−
4

2 ey

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

+
√
x2

√
4 e2y+x2+x2


−2 ey+

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

√
4 e2y + x2 x− ln

−
4

2 ey

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

−
√
x2

√
4 e2y+x2−x2


2 ey+

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

√
4 e2y + x2 x


2 (4 e2y + x2)

(√
x2
(√

(4 e2y+x2)e−4y e2y−
√
4 e2y+x2

)(√
(4 e2y+x2)e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2 −

√
−x2

)(√
x2
(√

(4 e2y+x2)e−4y e2y−
√
4 e2y+x2

)(√
(4 e2y+x2)e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2 +

√
−x2

)
√
x2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x e−2y

4 +
√
x2e−4y + 4 e−2y

4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
√
4 e2y + x2 + x

x
√
4 e2y + x2

Sy =
2x

√
4 e2y + x2 + 2x2 + 4 e2y√

4 e2y + x2
(√

4 e2y + x2 + x
)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

−x
(
x
√
4 e2y + x2 + x2 + 2 e2y

)√
(4 e2y + x2) e−4y + (e−2yx3 + 4x)

√
4 e2y + x2 + e−2yx4 + 6x2 + 8 e2y

2
√
4 e2y + x2 x

(√
4 e2y + x2 + x

)
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −32 e3S(R) − e−S(R) + 36 eS(R) − 56ie2S(R) + 10i

2 (6ieS(R) + 8 e2S(R) − 1)R (i+ 2 eS(R))

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln

tan
(
RootOf

(
i ln
(

2R2

1+cos
(
2_Z

)
)
+ 2ic1 + 2_Z

))
2

 (4)
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To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

iπ

2 − ln (x)− ln
(√

4 e2y + x2 + x
)
+ 2y = ln

tan
(
RootOf

(
i ln
(

2x2

1+cos
(
2_Z

)
)
+ 2ic1 + 2_Z

))
2


Which simplifies to

iπ

2 − ln (x)− ln
(√

4 e2y + x2 + x
)
+ 2y = ln

tan
(
RootOf

(
i ln
(

2x2

1+cos
(
2_Z

)
)
+ 2ic1 + 2_Z

))
2


Summary
The solution(s) found are the following

(1)

iπ

2 − ln (x)− ln
(√

4 e2y + x2 + x
)
+ 2y

= ln

tan
(
RootOf

(
i ln
(

2x2

1+cos
(
2_Z

)
)
+ 2ic1 + 2_Z

))
2


Verification of solutions

iπ

2 − ln (x)− ln
(√

4 e2y + x2 + x
)
+ 2y

= ln

tan
(
RootOf

(
i ln
(

2x2

1+cos
(
2_Z

)
)
+ 2ic1 + 2_Z

))
2


Warning, solution could not be verified
Solving equation (2)

Writing the ode as

y′ = −x e−2y

4 −
√
x2e−4y + 4 e−2y

4
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x e−2y

4 −
√
x2e−4y + 4 e−2y

4

)
(b3 − a2)

−

(
−x e−2y

4 −
√
x2e−4y + 4 e−2y

4

)2

a3

−
(
−e−2y

4 − x e−4y

4
√
x2e−4y + 4 e−2y

)
(xa2 + ya3 + a1)

−
(
x e−2y

2 − −4x2e−4y − 8 e−2y

8
√
x2e−4y + 4 e−2y

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2 e−6yx3a3 + e−4y
√
x2e−4y + 4 e−2y x2a3 + 8 e−4yx3b2 + 8 e−4yx2yb3 − 8 e−4yx2a2 + 8 e−4yx2b1 + 4 e−4yx2b3 − 4 e−4yxya3 + 8 e−2y

√
x2e−4y + 4 e−2y x2b2 + 8 e−2y

√
x2e−4y + 4 e−2y xyb3 − 4 e−4yxa1 + 8 e−4yxa3 − 8 e−2y

√
x2e−4y + 4 e−2y xa2 + 8 e−2y

√
x2e−4y + 4 e−2y xb1 + 4 e−2y

√
x2e−4y + 4 e−2y xb3 − 4 e−2y

√
x2e−4y + 4 e−2y ya3 + (x2e−4y + 4 e−2y)

3
2 a3 − 4 e−2y

√
x2e−4y + 4 e−2y a1 + 16 e−2yxb2 + 16 e−2yyb3 − 16 e−2ya2 + 16 e−2yb1 + 16 e−2yb3 − 16b2

√
x2e−4y + 4 e−2y

16
√
x2e−4y + 4 e−2y

= 0

Setting the numerator to zero gives

(6E)

−2 e−6yx3a3 − e−4y
√
x2e−4y + 4 e−2y x2a3 − 8 e−4yx3b2

− 8 e−4yx2yb3 + 8 e−4yx2a2 − 8 e−4yx2b1 − 4 e−4yx2b3 + 4 e−4yxya3
− 8 e−2y

√
x2e−4y + 4 e−2y x2b2 − 8 e−2y

√
x2e−4y + 4 e−2y xyb3

+ 4 e−4yxa1 − 8 e−4yxa3 + 8 e−2y
√
x2e−4y + 4 e−2y xa2

− 8 e−2y
√
x2e−4y + 4 e−2y xb1 − 4 e−2y

√
x2e−4y + 4 e−2y xb3

+ 4 e−2y
√
x2e−4y + 4 e−2y ya3 −

(
x2e−4y + 4 e−2y) 3

2 a3

+ 4 e−2y
√
x2e−4y + 4 e−2y a1 − 16 e−2yxb2 − 16 e−2yyb3

+ 16 e−2ya2 − 16 e−2yb1 − 16 e−2yb3 + 16b2
√
x2e−4y + 4 e−2y = 0
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Simplifying the above gives

(6E)

−e−4y
√
x2e−4y + 4 e−2y x2a3 − 8 e−4yx3b2 − 8 e−4yx2yb3 + 4 e−4yx2a2

− 8 e−4yx2b1 + 4 e−4yxya3 − 2 e−2y(x2e−4y + 4 e−2y)xa3
− 8 e−2y

√
x2e−4y + 4 e−2y x2b2 − 8 e−2y

√
x2e−4y + 4 e−2y xyb3

+ 4 e−4yxa1 + 8 e−2y
√
x2e−4y + 4 e−2y xa2 − 8 e−2y

√
x2e−4y + 4 e−2y xb1

− 4 e−2y
√
x2e−4y + 4 e−2y xb3 + 4 e−2y

√
x2e−4y + 4 e−2y ya3

−
(
x2e−4y + 4 e−2y) 3

2 a3 + 4 e−2y
√
x2e−4y + 4 e−2y a1

− 16 e−2yxb2 − 16 e−2yyb3 + 4
(
x2e−4y + 4 e−2y) a2

− 4
(
x2e−4y + 4 e−2y) b3 − 16 e−2yb1 + 16b2

√
x2e−4y + 4 e−2y = 0

Since the PDE has radicals, simplifying gives

−8 e−2y
√

e−2y (4 + x2e−2y)x2b2 + 8 e−2y
√

e−2y (4 + x2e−2y)xa2
− 8 e−2y

√
e−2y (4 + x2e−2y)xb1 − 4 e−2y

√
e−2y (4 + x2e−2y)xb3

+ 4 e−2y
√

e−2y (4 + x2e−2y) ya3 − 8 e−4yx2yb3 + 4 e−4yxya3 − 2 e−4ye−2yx3a3

− 8 e−2y
√

e−2y (4 + x2e−2y)xyb3 − 4 e−2y
√
e−2y (4 + x2e−2y) a3 − 16 e−2yxb2

− 16 e−2yyb3 + 4 e−2y
√

e−2y (4 + x2e−2y) a1 − 8 e−4yx3b2 + 8 e−4yx2a2
− 8 e−4yx2b1 − 4 e−4yx2b3 + 4 e−4yxa1 − 8 e−4yxa3 − 16 e−2yb1 + 16 e−2ya2
− 16 e−2yb3 + 16b2

√
e−2y (4 + x2e−2y)− 2 e−4y

√
e−2y (4 + x2e−2y)x2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
e−2y (4 + x2e−2y), e−4y, e−2y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

e−2y (4 + x2e−2y) = v3, e−4y = v4, e−2y = v5
}

The above PDE (6E) now becomes

(7E)
−2v4v5v31a3 − v25v

2
1v3a3 − v4v3v

2
1a3 − 8v4v31b2 − 8v5v3v21b2 − 8v4v21v2b3

− 8v5v3v1v2b3 + 8v4v21a2 + 8v5v3v1a2 + 4v4v1v2a3 − 8v25v1a3 + 4v5v3v2a3
− 8v4v21b1 − 8v5v3v1b1 − 4v4v21b3 − 4v5v3v1b3 + 4v4v1a1 + 4v5v3a1
− 4v5v3a3 − 16v5v1b2 − 16v5v2b3 + 16v5a2 − 16v5b1 + 16b2v3 − 16v5b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)
−2v4v5v31a3 − 8v4v31b2 − 8v4v21v2b3 − v4v3v

2
1a3 − v25v

2
1v3a3

− 8v5v3v21b2 + (8a2 − 8b1 − 4b3) v21v4 − 8v5v3v1v2b3 + 4v4v1v2a3
+ (8a2 − 8b1 − 4b3) v1v3v5 + 4v4v1a1 − 8v25v1a3 − 16v5v1b2 + 4v5v3v2a3
− 16v5v2b3 + (4a1 − 4a3) v3v5 + 16b2v3 + (16a2 − 16b1 − 16b3) v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 = 0
−8a3 = 0
−2a3 = 0
−a3 = 0
4a3 = 0

−16b2 = 0
−8b2 = 0
16b2 = 0

−16b3 = 0
−8b3 = 0

4a1 − 4a3 = 0
8a2 − 8b1 − 4b3 = 0

16a2 − 16b1 − 16b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b1

a3 = 0
b1 = b1

b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
−x e−2y

4 −
√
x2e−4y + 4 e−2y

4

)
(x)

= x2e−2y

4 + x
√
x2e−4y + 4 e−2y

4 + 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2e−2y

4 + x
√
x2e−4y+4 e−2y

4 + 1
dy

Which results in

S =

x2
√

(4 e2y + x2) e−4y e2y

√(4 e2y + x2) e−4y ln (−4 e2y)
√
x2 e2y + ln

−
4

2 ey

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

+
√
x2

√
4 e2y+x2+x2


−2 ey+

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

√
4 e2y + x2 x+ ln

−
4

2 ey

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

−
√
x2

√
4 e2y+x2−x2


2 ey+

√
x2
(√(

4 e2y+x2
)
e−4y e2y−

√
4 e2y+x2

)(√(
4 e2y+x2

)
e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2

√
4 e2y + x2 x


2 (4 e2y + x2)

(√
x2
(√

(4 e2y+x2)e−4y e2y−
√
4 e2y+x2

)(√
(4 e2y+x2)e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2 −

√
−x2

)(√
x2
(√

(4 e2y+x2)e−4y e2y−
√
4 e2y+x2

)(√
(4 e2y+x2)e−4y e2y+

√
4 e2y+x2

)
4 e2y+x2 +

√
−x2

)
√
x2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x e−2y

4 −
√
x2e−4y + 4 e−2y

4
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
4 e2y + x2 + x

x
√
4 e2y + x2

Sy =
4 e2y√

4 e2y + x2
(√

4 e2y + x2 + x
)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2 − e2y

√
(4 e2y + x2) e−4y x+ 4 e2y + 2x

√
4 e2y + x2

x
√
4 e2y + x2

(√
4 e2y + x2 + x

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2048 e−S(R)R8 − 32R4eS(R) + 768iR6 − e3S(R) + 12iR2e2S(R)

(−8iR2 + eS(R))R (12ieS(R)R2 + 32R4 − e2S(R))
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

2i arctan
(
eS(R)(192R4 + e2S(R))

1024R6

)
+ 2i arctan

(
eS(R)

16R2

)
− 4 ln (R) + ln

((
64R4 + e2S(R))2)− c1 = 0

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2i arctan

e
iπ
2 +2 ln(2)+ln(x)+ln

(√
4 e2y+x2+x

)(
192x4 − e4 ln(2)+2 ln(x)+2 ln

(√
4 e2y+x2+x

))
1024x6

+ 2i arctan

e
iπ
2 +2 ln(2)+ln(x)+ln

(√
4 e2y+x2+x

)
16x2

− 4 ln (x) + ln
((

64x4 − e4 ln(2)+2 ln(x)+2 ln
(√

4 e2y+x2+x
))2

)
− c1 = 0
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Which simplifies to

2 arctanh
((√

4 e2y + x2 + x
) (√

4 e2y + x2 x− 5x2 + 2 e2y
)

8x3

)
− 2 arctanh

(√
4 e2y + x2 + x

4x

)
+ 10 ln (2) + 2 ln

(√
4 e2y + x2 x− x2 + 2 e2y

)
− c1 = 0

Summary
The solution(s) found are the following

(1)

2 arctanh
((√

4 e2y + x2 + x
) (√

4 e2y + x2 x− 5x2 + 2 e2y
)

8x3

)

− 2 arctanh
(√

4 e2y + x2 + x

4x

)
+ 10 ln (2)

+ 2 ln
(√

4 e2y + x2 x− x2 + 2 e2y
)
− c1 = 0

Verification of solutions

2 arctanh
((√

4 e2y + x2 + x
) (√

4 e2y + x2 x− 5x2 + 2 e2y
)

8x3

)

− 2 arctanh
(√

4 e2y + x2 + x

4x

)
+ 10 ln (2)

+ 2 ln
(√

4 e2y + x2 x− x2 + 2 e2y
)
− c1 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[x, 1]� �
3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 103� �
dsolve(4*diff(y(x),x)^2+2*x*exp(-2*y(x))*diff(y(x),x)-exp(-2*y(x)) = 0,y(x), singsol=all)� �

y(x) = − ln (2)−
ln
(
− 1

x2

)
2

y(x) = c1 − arctanh

 x

RootOf
(
_Z2 − x2 − 4 e

RootOf
(
4 e_Z sinh

(
−_Z

2 +c1
)2

−x2
))


y(x) = c1 + arctanh

 x

RootOf
(
_Z2 − x2 − 4 e

RootOf
(
4 e_Z sinh

(
−_Z

2 +c1
)2

−x2
))
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3 Solution by Mathematica
Time used: 10.24 (sec). Leaf size: 119� �
DSolve[4 (y'[x])^2+2 x Exp[-2 y[x]] y'[x]-Exp[-2 y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
−e

c1
2
√
−x+ ec1

)
y(x) → log

(
e

c1
2
√
−x+ ec1

)
y(x) → log

(
−e

c1
2
√
x+ ec1

)
y(x) → log

(
e

c1
2
√
x+ ec1

)
y(x) → 1

2 log
(
−x2

4

)
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29.17 problem 839
29.17.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7982

Internal problem ID [4078]
Internal file name [OUTPUT/3571_Sunday_June_05_2022_09_41_01_AM_2304295/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 839.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

4y′2 + 2 e−2y+2xy′ − e−2y+2x = 0

29.17.1 Solving as dAlembert ode

Let p = y′ the ode becomes

4p2 + 2 e−2y+2xp− e−2y+2x = 0

Solving for y from the above results in

y = x−
ln
(
− 4p2

2p−1

)
2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1

g = − ln (2)−
ln
(
− p2

2p−1

)
2

Hence (2) becomes

p− 1 =

(
− 2p

2p−1 +
2p2

(2p−1)2

)
(2p− 1) p′(x)

2p2 (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = x− ln (2)− iπ

2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2(p(x)− 1) p(x)2(
− 2p(x)

2p(x)−1 +
2p(x)2

(2p(x)−1)2

)
(2p (x)− 1)

(3)

This ODE is now solved for p(x). Integrating both sides gives∫
− 1
p (2p− 1)dp =

∫
dx

− ln (2p− 1) + ln (p) = x+ c1

Raising both side to exponential gives

e− ln(2p−1)+ln(p) = ex+c1

Which simplifies to
p

2p− 1 = c2ex
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Substituing the above solution for p in (2A) gives

y = x− ln (2)−
ln
(
− c22e2x

(−1+2c2ex)2
(

2c2ex
−1+2c2ex

−1
)
)

2

Summary
The solution(s) found are the following

(1)y = x− ln (2)− iπ

2

(2)y = x− ln (2)−
ln
(
− c22e2x

(−1+2c2ex)2
(

2c2ex
−1+2c2ex

−1
)
)

2
Verification of solutions

y = x− ln (2)− iπ

2

Verified OK.

y = x− ln (2)−
ln
(
− c22e2x

(−1+2c2ex)2
(

2c2ex
−1+2c2ex

−1
)
)

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 2.485 (sec). Leaf size: 115� �
dsolve(4*diff(y(x),x)^2+2*exp(2*x-2*y(x))*diff(y(x),x)-exp(2*x-2*y(x)) = 0,y(x), singsol=all)� �
y(x) = c1

−arctanh

 1

RootOf
(
_Z2 − 4 e

RootOf
(
4 e_Z cosh

(
−_Z

2 −x+c1
)2

+16 e2_Z sinh
(
−_Z

2 −x+c1
)2

−8 e_Z−1
)
− 1
)


y(x) = c1

+arctanh

 1

RootOf
(
_Z2 − 4 e

RootOf
(
4 e_Z cosh

(
−_Z

2 −x+c1
)2

+16 e2_Z sinh
(
−_Z

2 −x+c1
)2

−8 e_Z−1
)
− 1
)


3 Solution by Mathematica
Time used: 1.709 (sec). Leaf size: 332� �
DSolve[4 (y'[x])^2+2 Exp[2 x-2 y[x]] y'[x]-Exp[2 x-2 y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−2e−x
√
4e2(y(x)+x) + e4xarctanh

(
−
√

4e2y(x)+e2x+ex+1√
4e2y(x)+e2x−ex+1

)
√
4e2y(x) + e2x

− e−x
√
4e2(y(x)+x) + e4xy(x)√
4e2y(x) + e2x

+ y(x) = c1, y(x)


Solve

2e−x
√
4e2(y(x)+x) + e4xarctanh

(
−
√

4e2y(x)+e2x+ex+1√
4e2y(x)+e2x−ex+1

)
√
4e2y(x) + e2x

+ e−x
√
4e2(y(x)+x) + e4xy(x)√
4e2y(x) + e2x

+ y(x) = c1, y(x)


y(x) → 1

2

(
log
(
−e4x

4

)
− 2x

)
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29.18 problem 840
29.18.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7987

Internal problem ID [4079]
Internal file name [OUTPUT/3572_Sunday_June_05_2022_09_41_17_AM_3254972/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 840.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

5y′2 + 3xy′ − y = 0

29.18.1 Solving as dAlembert ode

Let p = y′ the ode becomes

5p2 + 3xp− y = 0

Solving for y from the above results in

y = 5p2 + 3xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p
g = 5p2

Hence (2) becomes

−2p = (3x+ 10p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 2p(x)
3x+ 10p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3x(p) + 10p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3
2p

q(p) = −5

7988



Hence the ode is

d

dp
x(p) + 3x(p)

2p = −5

The integrating factor µ is

µ = e
∫ 3

2pdp

= p
3
2

The ode becomes
d
dp(µx) = (µ) (−5)

d
dp

(
p

3
2x
)
=
(
p

3
2

)
(−5)

d
(
p

3
2x
)
=
(
−5p 3

2

)
dp

Integrating gives

p
3
2x =

∫
−5p 3

2 dp

p
3
2x = −2p 5

2 + c1

Dividing both sides by the integrating factor µ = p
3
2 results in

x(p) = −2p+ c1

p
3
2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3x
10 +

√
9x2 + 20y

10

p = −3x
10 −

√
9x2 + 20y

10

Substituting the above in the solution for x found above gives

x = 3x
5 −

√
9x2 + 20y

5 + 1000c1(
−30x+ 10

√
9x2 + 20y

) 3
2

x = 3x
5 +

√
9x2 + 20y

5 + 1000c1(
−30x− 10

√
9x2 + 20y

) 3
2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = 3x
5 −

√
9x2 + 20y

5 + 1000c1(
−30x+ 10

√
9x2 + 20y

) 3
2

(3)x = 3x
5 +

√
9x2 + 20y

5 + 1000c1(
−30x− 10

√
9x2 + 20y

) 3
2

Verification of solutions

y = 0

Verified OK.

x = 3x
5 −

√
9x2 + 20y

5 + 1000c1(
−30x+ 10

√
9x2 + 20y

) 3
2

Verified OK.

x = 3x
5 +

√
9x2 + 20y

5 + 1000c1(
−30x− 10

√
9x2 + 20y

) 3
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 85� �
dsolve(5*diff(y(x),x)^2+3*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

c1(
−30x− 10

√
9x2 + 20y (x)

) 3
2
+ 2x

5 −
√

9x2 + 20y (x)
5 = 0

c1(
−30x+ 10

√
9x2 + 20y (x)

) 3
2
+ 2x

5 +
√

9x2 + 20y (x)
5 = 0
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3 Solution by Mathematica
Time used: 14.84 (sec). Leaf size: 771� �
DSolve[5 (y'[x])^2+3 x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 1
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 2
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 3
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 4
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 5
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 1
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 2
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 3
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 4
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 5
]

y(x) → 0
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29.19 problem 841
29.19.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 7993

Internal problem ID [4080]
Internal file name [OUTPUT/3573_Sunday_June_05_2022_09_41_28_AM_95410150/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 841.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

5y′2 + 6xy′ − 2y = 0

29.19.1 Solving as dAlembert ode

Let p = y′ the ode becomes

5p2 + 6xp− 2y = 0

Solving for y from the above results in

y = 5
2p

2 + 3xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p

g = 5p2
2

Hence (2) becomes

−2p = (3x+ 5p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 2p(x)
3x+ 5p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3x(p) + 5p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3
2p

q(p) = −5
2
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Hence the ode is
d

dp
x(p) + 3x(p)

2p = −5
2

The integrating factor µ is

µ = e
∫ 3

2pdp

= p
3
2

The ode becomes

d
dp(µx) = (µ)

(
−5
2

)
d
dp

(
p

3
2x
)
=
(
p

3
2

)(
−5
2

)
d
(
p

3
2x
)
=
(
−5p 3

2

2

)
dp

Integrating gives

p
3
2x =

∫
−5p 3

2

2 dp

p
3
2x = −p

5
2 + c1

Dividing both sides by the integrating factor µ = p
3
2 results in

x(p) = −p+ c1

p
3
2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3x
5 +

√
9x2 + 10y

5

p = −3x
5 −

√
9x2 + 10y

5
Substituting the above in the solution for x found above gives

x = 3x
5 −

√
9x2 + 10y

5 + 125c1(
−15x+ 5

√
9x2 + 10y

) 3
2

x = 3x
5 +

√
9x2 + 10y

5 + 125c1(
−15x− 5

√
9x2 + 10y

) 3
2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = 3x
5 −

√
9x2 + 10y

5 + 125c1(
−15x+ 5

√
9x2 + 10y

) 3
2

(3)x = 3x
5 +

√
9x2 + 10y

5 + 125c1(
−15x− 5

√
9x2 + 10y

) 3
2

Verification of solutions

y = 0

Verified OK.

x = 3x
5 −

√
9x2 + 10y

5 + 125c1(
−15x+ 5

√
9x2 + 10y

) 3
2

Verified OK.

x = 3x
5 +

√
9x2 + 10y

5 + 125c1(
−15x− 5

√
9x2 + 10y

) 3
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 85� �
dsolve(5*diff(y(x),x)^2+6*x*diff(y(x),x)-2*y(x) = 0,y(x), singsol=all)� �

c1(
−15x− 5

√
9x2 + 10y (x)

) 3
2
+ 2x

5 −
√

9x2 + 10y (x)
5 = 0

c1(
−15x+ 5

√
9x2 + 10y (x)

) 3
2
+ 2x

5 +
√

9x2 + 10y (x)
5 = 0
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3 Solution by Mathematica
Time used: 15.032 (sec). Leaf size: 771� �
DSolve[5 (y'[x])^2+6 x y'[x]-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 1
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 2
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 3
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 4
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 5
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 1
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 2
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 3
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 4
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 5
]

y(x) → 0
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29.20 problem 842
Internal problem ID [4081]
Internal file name [OUTPUT/3574_Sunday_June_05_2022_09_41_39_AM_51315128/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 842.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

9y′2 + 3xy4y′ + y5 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

(
−y2x

2 +
√

y4x2−4y
2

)
y2

3 (1)

y′ =

(
−y2x

2 −
√

y4x2−4y
2

)
y2

3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −
(
x y2 −

√
y4x2 − 4y

)
y2

6
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
x y2 −

√
y4x2 − 4y

)
y2(b3 − a2)

6 −
(
x y2 −

√
y4x2 − 4y

)2
y4a3

36

+

(
y2 − x y4√

y4x2−4y

)
y2(xa2 + ya3 + a1)
6

−

−

(
2yx− 4y3x2−4

2
√

y4x2−4y

)
y2

6 −
(
x y2 −

√
y4x2 − 4y

)
y

3

 (xb2+yb3+b1) = 0

Putting the above in normal form gives

−−2x3y10a3 +
√
y4x2 − 4y x2y8a3 + 24x3y5b2 + 12x2y6a2 + 18x2y6b3 + 14x y7a3 + (y4x2 − 4y)

3
2 y4a3 + 24x2y5b1 + 6x y6a1 − 24

√
y4x2 − 4y x2y3b2 − 12

√
y4x2 − 4y x y4a2 − 18

√
y4x2 − 4y x y4b3 − 6

√
y4x2 − 4y y5a3 − 24

√
y4x2 − 4y x y3b1 − 6

√
y4x2 − 4y y4a1 − 60x y2b2 − 24y3a2 − 36y3b3 − 60y2b1 − 36b2

√
y4x2 − 4y

36
√
y4x2 − 4y

= 0

Setting the numerator to zero gives

(6E)

2x3y10a3 −
√

y4x2 − 4y x2y8a3 − 24x3y5b2 − 12x2y6a2 − 18x2y6b3

− 14x y7a3 −
(
y4x2 − 4y

) 3
2 y4a3 − 24x2y5b1 − 6x y6a1

+ 24
√

y4x2 − 4y x2y3b2 + 12
√

y4x2 − 4y x y4a2 + 18
√

y4x2 − 4y x y4b3
+ 6
√

y4x2 − 4y y5a3 + 24
√
y4x2 − 4y x y3b1 + 6

√
y4x2 − 4y y4a1

+ 60x y2b2 + 24y3a2 + 36y3b3 + 60y2b1 + 36b2
√
y4x2 − 4y = 0
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Simplifying the above gives

(6E)

−
√

y4x2 − 4y x2y8a3 + 2
(
y4x2 − 4y

)
x y6a3 − 12x3y5b2 − 6x2y6a2

− 12x2y6b3 − 6x y7a3 −
(
y4x2 − 4y

) 3
2 y4a3 − 12x2y5b1 − 6x y6a1

+ 24
√

y4x2 − 4y x2y3b2 + 12
√
y4x2 − 4y x y4a2 + 18

√
y4x2 − 4y x y4b3

+ 6
√

y4x2 − 4y y5a3 + 24
√
y4x2 − 4y x y3b1 + 6

√
y4x2 − 4y y4a1

− 12
(
y4x2 − 4y

)
xyb2 − 6

(
y4x2 − 4y

)
y2a2 − 6

(
y4x2 − 4y

)
y2b3

− 12
(
y4x2− 4y

)
yb1+12x y2b2+12y3b3+12y2b1+36b2

√
y4x2 − 4y = 0

Since the PDE has radicals, simplifying gives

2x3y10a3 − 2
√

y (y3x2 − 4)x2y8a3 − 24x3y5b2 − 12x2y6a2 − 18x2y6b3

− 14x y7a3 − 24x2y5b1 − 6x y6a1 + 24
√
y (y3x2 − 4)x2y3b2

+ 12
√

y (y3x2 − 4)x y4a2 + 18
√
y (y3x2 − 4)x y4b3 + 10

√
y (y3x2 − 4) y5a3

+ 24
√

y (y3x2 − 4)x y3b1 + 6
√

y (y3x2 − 4) y4a1 + 60x y2b2
+ 24y3a2 + 36y3b3 + 60y2b1 + 36b2

√
y (y3x2 − 4) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y (y3x2 − 4)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y (y3x2 − 4) = v3
}

The above PDE (6E) now becomes

(7E)2v31v102 a3 − 2v3v21v82a3 − 12v21v62a2 − 14v1v72a3 − 24v31v52b2 − 18v21v62b3
− 6v1v62a1 − 24v21v52b1 + 12v3v1v42a2 + 10v3v52a3 + 24v3v21v32b2 + 18v3v1v42b3
+ 6v3v42a1 + 24v3v1v32b1 + 24v32a2 + 60v1v22b2 + 36v32b3 + 60v22b1 + 36b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)2v31v102 a3 − 24v31v52b2 − 2v3v21v82a3 + (−12a2 − 18b3) v21v62 − 24v21v52b1
+ 24v3v21v32b2 − 14v1v72a3 − 6v1v62a1 + (12a2 + 18b3) v1v42v3 + 24v3v1v32b1
+ 60v1v22b2 + 10v3v52a3 + 6v3v42a1 + (24a2 + 36b3) v32 + 60v22b1 + 36b2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6a1 = 0

−14a3 = 0
−2a3 = 0
2a3 = 0
10a3 = 0

−24b1 = 0
24b1 = 0
60b1 = 0

−24b2 = 0
24b2 = 0
36b2 = 0
60b2 = 0

−12a2 − 18b3 = 0
12a2 + 18b3 = 0
24a2 + 36b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 = −3b3
2

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3x
2

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
−
(
x y2 −

√
y4x2 − 4y

)
y2

6

)(
−3x

2

)
= −y4x2

4 +
√
y4x2 − 4y x y2

4 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y4x2

4 +
√

y4x2−4y x y2

4 + y
dy

Which results in

S = ln (y) +
ln
(

x y2+
√

y(y3x2−4)
y2

)
3 −

ln
(

−x y2+
√

y(y3x2−4)
y2

)
3
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
x y2 −

√
y4x2 − 4y

)
y2

6
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y 3
2

3
√
y3x2 − 4

Sy = − 4
√
y
√
y3x2 − 4

(
−x y2 +√

y
√
y3x2 − 4

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2y 3
2

(√
y
√
y3x2 − 4−

√
y (y3x2 − 4)

)
√
y3x2 − 4

(
3x y2 − 3√y

√
y3x2 − 4

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) +
ln
(
y2x+√

y
√
−4 + y3x2

)
3 −

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1
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Which simplifies to

ln (y) +
ln
(
y2x+√

y
√
−4 + y3x2

)
3 −

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1

Summary
The solution(s) found are the following

(1)ln (y) +
ln
(
y2x+√

y
√
−4 + y3x2

)
3 −

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1

Verification of solutions

ln (y) +
ln
(
y2x+√

y
√
−4 + y3x2

)
3 −

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
y2
(
x y2 +

√
y4x2 − 4y

)
6

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y2
(
x y2 +

√
y4x2 − 4y

)
(b3 − a2)

6 −
y4
(
x y2 +

√
y4x2 − 4y

)2
a3

36

+
y2
(
y2 + x y4√

y4x2−4y

)
(xa2 + ya3 + a1)

6

−

−
y
(
x y2 +

√
y4x2 − 4y

)
3 −

y2
(
2yx+ 4y3x2−4

2
√

y4x2−4y

)
6

 (xb2+ yb3+ b1) = 0

Putting the above in normal form gives

−2x3y10a3 +
√
y4x2 − 4y x2y8a3 − 24x3y5b2 − 12x2y6a2 − 18x2y6b3 − 14x y7a3 + (y4x2 − 4y)

3
2 y4a3 − 24x2y5b1 − 6x y6a1 − 24

√
y4x2 − 4y x2y3b2 − 12

√
y4x2 − 4y x y4a2 − 18

√
y4x2 − 4y x y4b3 − 6

√
y4x2 − 4y y5a3 − 24

√
y4x2 − 4y x y3b1 − 6

√
y4x2 − 4y y4a1 + 60x y2b2 + 24y3a2 + 36y3b3 + 60y2b1 − 36b2

√
y4x2 − 4y

36
√
y4x2 − 4y

= 0

Setting the numerator to zero gives

(6E)

−2x3y10a3 −
√

y4x2 − 4y x2y8a3 + 24x3y5b2 + 12x2y6a2

+ 18x2y6b3 + 14x y7a3 −
(
y4x2 − 4y

) 3
2 y4a3 + 24x2y5b1 + 6x y6a1

+ 24
√

y4x2 − 4y x2y3b2 + 12
√

y4x2 − 4y x y4a2 + 18
√

y4x2 − 4y x y4b3
+ 6
√

y4x2 − 4y y5a3 + 24
√
y4x2 − 4y x y3b1 + 6

√
y4x2 − 4y y4a1

− 60x y2b2 − 24y3a2 − 36y3b3 − 60y2b1 + 36b2
√

y4x2 − 4y = 0

Simplifying the above gives

(6E)

−
√

y4x2 − 4y x2y8a3 − 2
(
y4x2 − 4y

)
x y6a3 + 12x3y5b2 + 6x2y6a2

+ 12x2y6b3 + 6x y7a3 −
(
y4x2 − 4y

) 3
2 y4a3 + 12x2y5b1 + 6x y6a1

+ 24
√

y4x2 − 4y x2y3b2 + 12
√
y4x2 − 4y x y4a2 + 18

√
y4x2 − 4y x y4b3

+ 6
√

y4x2 − 4y y5a3 + 24
√
y4x2 − 4y x y3b1 + 6

√
y4x2 − 4y y4a1

+ 12
(
y4x2 − 4y

)
xyb2 + 6

(
y4x2 − 4y

)
y2a2 + 6

(
y4x2 − 4y

)
y2b3

+12
(
y4x2 − 4y

)
yb1 − 12x y2b2 − 12y3b3 − 12y2b1 +36b2

√
y4x2 − 4y = 0
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Since the PDE has radicals, simplifying gives

−2x3y10a3 − 2
√

y (y3x2 − 4)x2y8a3 + 24x3y5b2 + 12x2y6a2

+ 18x2y6b3 + 14x y7a3 + 24x2y5b1 + 6x y6a1 + 24
√
y (y3x2 − 4)x2y3b2

+ 12
√

y (y3x2 − 4)x y4a2 + 18
√

y (y3x2 − 4)x y4b3 + 10
√

y (y3x2 − 4) y5a3
+ 24

√
y (y3x2 − 4)x y3b1 + 6

√
y (y3x2 − 4) y4a1 − 60x y2b2

− 24y3a2 − 36y3b3 − 60y2b1 + 36b2
√

y (y3x2 − 4) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y (y3x2 − 4)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y (y3x2 − 4) = v3
}

The above PDE (6E) now becomes

(7E)−2v31v102 a3 − 2v3v21v82a3 + 12v21v62a2 + 14v1v72a3 + 24v31v52b2 + 18v21v62b3
+ 6v1v62a1 + 24v21v52b1 + 12v3v1v42a2 + 10v3v52a3 + 24v3v21v32b2 + 18v3v1v42b3
+ 6v3v42a1 + 24v3v1v32b1 − 24v32a2 − 60v1v22b2 − 36v32b3 − 60v22b1 + 36b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v31v102 a3 + 24v31v52b2 − 2v3v21v82a3 + (12a2 + 18b3) v21v62 + 24v21v52b1
+ 24v3v21v32b2 + 14v1v72a3 + 6v1v62a1 + (12a2 + 18b3) v1v42v3 + 24v3v1v32b1
− 60v1v22b2 +10v3v52a3 +6v3v42a1 + (−24a2 − 36b3) v32 − 60v22b1 +36b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
−2a3 = 0
10a3 = 0
14a3 = 0

−60b1 = 0
24b1 = 0

−60b2 = 0
24b2 = 0
36b2 = 0

−24a2 − 36b3 = 0
12a2 + 18b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 = −3b3
2

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3x
2

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
−
y2
(
x y2 +

√
y4x2 − 4y

)
6

)(
−3x

2

)
= −y4x2

4 −
√
y4x2 − 4y x y2

4 + y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y4x2

4 −
√

y4x2−4y x y2

4 + y
dy

Which results in

S = ln (y)−
ln
(

x y2+
√

y(y3x2−4)
y2

)
3 +

ln
(

−x y2+
√

y(y3x2−4)
y2

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
y2
(
x y2 +

√
y4x2 − 4y

)
6

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2y 3
2

3
√
y3x2 − 4

Sy = − 4(
x y2 +√

y
√
y3x2 − 4

)√
y3x2 − 4√y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2y 3
2

(√
y
√
y3x2 − 4−

√
y (y3x2 − 4)

)
√
y3x2 − 4

(
3x y2 + 3√y

√
y3x2 − 4

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)−
ln
(
y2x+√

y
√
−4 + y3x2

)
3 +

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1

Which simplifies to

ln (y)−
ln
(
y2x+√

y
√
−4 + y3x2

)
3 +

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1

Summary
The solution(s) found are the following

(1)ln (y)−
ln
(
y2x+√

y
√
−4 + y3x2

)
3 +

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1

Verification of solutions

ln (y)−
ln
(
y2x+√

y
√
−4 + y3x2

)
3 +

ln
(
−y2x+√

y
√
−4 + y3x2

)
3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[-3/2*x, y]� �

3 Solution by Maple
Time used: 0.265 (sec). Leaf size: 102� �
dsolve(9*diff(y(x),x)^2+3*x*y(x)^4*diff(y(x),x)+y(x)^5 = 0,y(x), singsol=all)� �

y(x) = 2 2
3

x
2
3

y(x) = −
2 2

3
(
1 + i

√
3
)

2x 2
3

y(x) =
2 2

3
(
i
√
3− 1

)
2x 2

3

y(x) = 0

y(x) =
RootOf

(
−2 ln (x) + 3

(∫ _Z _a3+
√
_a3(_a3−4

)
−4

_a(_a3−4
) d_a

)
+ 2c1

)
x

2
3
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3 Solution by Mathematica
Time used: 1.075 (sec). Leaf size: 212� �
DSolve[9 (y'[x])^2+3 x y[x]^4 y'[x]+y[x]^5==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−
√
x2y(x)3 − 4y(x)5/2arctanh

(
xy(x)3/2√
x2y(x)3−4

)
√

y(x)5 (x2y(x)3 − 4)
− 3

2 log(y(x)) = c1, y(x)


Solve

y(x)5/2√x2y(x)3 − 4arctanh
(

xy(x)3/2√
x2y(x)3−4

)
√

y(x)5 (x2y(x)3 − 4)
− 3

2 log(y(x)) = c1, y(x)


y(x) → 0

y(x) → (−2)2/3
x2/3

y(x) → 22/3
x2/3

y(x) → −
3
√
−122/3
x2/3
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29.21 problem 843
29.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8014

Internal problem ID [4082]
Internal file name [OUTPUT/3575_Sunday_June_05_2022_09_41_49_AM_96141376/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 843.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2
x = a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
ax

x
(1)

y′ = −
√
ax

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

ax

x
dx

= 2
√
ax+ c1

Summary
The solution(s) found are the following

(1)y = 2
√
ax+ c1

8013



Verification of solutions

y = 2
√
ax+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
√
ax

x
dx

= −2
√
ax+ c2

Summary
The solution(s) found are the following

(1)y = −2
√
ax+ c2

Verification of solutions

y = −2
√
ax+ c2

Verified OK.

29.21.1 Maple step by step solution

Let’s solve
y′2x = a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2xdx =

∫
adx+ c1

• Cannot compute integral∫
y′2xdx = ax+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 25� �
dsolve(x*diff(y(x),x)^2 = a,y(x), singsol=all)� �

y(x) = 2
√
ax+ c1

y(x) = −2
√
ax+ c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 39� �
DSolve[x (y'[x])^2==a,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
√
a
√
x+ c1

y(x) → 2
√
a
√
x+ c1
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29.22 problem 844
29.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8017

Internal problem ID [4083]
Internal file name [OUTPUT/3576_Sunday_June_05_2022_09_41_55_AM_28486336/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 844.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2
x = −x2 + a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

x (−x2 + a)
x

(1)

y′ = −
√
x (−x2 + a)

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

x (−x2 + a)
x

dx

= 2
√
−x3 + ax

3 +
2a 3

2

√
x+

√
a√

a

√
−2

(
x−

√
a
)

√
a

√
− x√

a
EllipticF

(√
x+

√
a√

a
,
√
2
2

)
3
√
−x3 + ax

+ c1

Summary
The solution(s) found are the following

(1)y = 2
√
−x3 + ax

3 +
2a 3

2

√
x+

√
a√

a

√
−2

(
x−

√
a
)

√
a

√
− x√

a
EllipticF

(√
x+

√
a√

a
,
√
2
2

)
3
√
−x3 + ax

+ c1

8016



Verification of solutions

y = 2
√
−x3 + ax

3 +
2a 3

2

√
x+

√
a√

a

√
−2

(
x−

√
a
)

√
a

√
− x√

a
EllipticF

(√
x+

√
a√

a
,
√
2
2

)
3
√
−x3 + ax

+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
√

x (−x2 + a)
x

dx

= −2
√
−x3 + ax

3 −
2a 3

2

√
x+

√
a√

a

√
−2

(
x−

√
a
)

√
a

√
− x√

a
EllipticF

(√
x+

√
a√

a
,
√
2
2

)
3
√
−x3 + ax

+ c2

Summary
The solution(s) found are the following

(1)y = −2
√
−x3 + ax

3 −
2a 3

2

√
x+

√
a√

a

√
−2

(
x−

√
a
)

√
a

√
− x√

a
EllipticF

(√
x+

√
a√

a
,
√
2
2

)
3
√
−x3 + ax

+ c2

Verification of solutions

y = −2
√
−x3 + ax

3 −
2a 3

2

√
x+

√
a√

a

√
−2

(
x−

√
a
)

√
a

√
− x√

a
EllipticF

(√
x+

√
a√

a
,
√
2
2

)
3
√
−x3 + ax

+ c2

Verified OK.

29.22.1 Maple step by step solution

Let’s solve
y′2x = −x2 + a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2xdx =

∫
(−x2 + a) dx+ c1

• Cannot compute integral∫
y′2xdx = −1

3x
3 + ax+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 47� �
dsolve(x*diff(y(x),x)^2 = -x^2+a,y(x), singsol=all)� �

y(x) =
∫ √

x (−x2 + a)
x

dx+ c1

y(x) = −

(∫ √
x (−x2 + a)

x
dx

)
+ c1

3 Solution by Mathematica
Time used: 5.7 (sec). Leaf size: 113� �
DSolve[x (y'[x])^2==(a-x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
2
√
x
√
a− x2Hypergeometric2F1

(
−1

2 ,
1
4 ,

5
4 ,

x2

a

)
√
1− x2

a

+ c1

y(x) →
2
√
x
√
a− x2Hypergeometric2F1

(
−1

2 ,
1
4 ,

5
4 ,

x2

a

)
√

1− x2

a

+ c1
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29.23 problem 845
29.23.1 Solving as first order nonlinear p but separable ode . . . . . . . 8019
29.23.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8021

Internal problem ID [4084]
Internal file name [OUTPUT/3577_Sunday_June_05_2022_09_42_01_AM_58650166/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 845.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first_order_non-
linear_p_but_separable"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x− y = 0

29.23.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x
, g = y. Hence the ode is

(y′)2 = y

x

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x
> 0

y > 0

8019



Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1
√
y
dy =

(√
1
x

)
dx

− 1
√
y
dy =

(√
1
x

)
dx

Integrating now gives the solutions.∫ 1
√
y
dy =

∫ √1
x
dx+ c1∫

− 1
√
y
dy =

∫ √1
x
dx+ c1

Integrating gives

2√y = 2x
√

1
x
+ c1

−2√y = 2x
√

1
x
+ c1

Therefore

y = x

√
1
x
c1 +

c21
4 + x

y = x

√
1
x
c1 +

c21
4 + x
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Summary
The solution(s) found are the following

(1)y = x

√
1
x
c1 +

c21
4 + x

(2)y = x

√
1
x
c1 +

c21
4 + x

Verification of solutions

y = x

√
1
x
c1 +

c21
4 + x

Verified OK. {0 < y, 0 < 1/x}

y = x

√
1
x
c1 +

c21
4 + x

Verified OK. {0 < y, 0 < 1/x}

29.23.2 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− y = 0

Solving for y from the above results in

y = p2x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p2

g = 0
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Hence (2) becomes

−p2 + p = 2xpp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2xp (x) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
2x

q(x) = 1
2x

Hence the ode is

p′(x) + p(x)
2x = 1

2x

The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x

8022



The ode becomes
d
dx(µp) = (µ)

(
1
2x

)
d
dx
(√

x p
)
=
(√

x
)( 1

2x

)
d
(√

x p
)
=
(

1
2
√
x

)
dx

Integrating gives
√
x p =

∫ 1
2
√
x
dx

√
x p =

√
x+ c1

Dividing both sides by the integrating factor µ =
√
x results in

p(x) = 1 + c1√
x

Substituing the above solution for p in (2A) gives

y =
(
1 + c1√

x

)2

x

Summary
The solution(s) found are the following

(1)y = 0
(2)y = x

(3)y =
(
1 + c1√

x

)2

x

Verification of solutions

y = 0

Verified OK. {0 < y, 0 < 1/x}

y = x

Verified OK. {0 < y, 0 < 1/x}

y =
(
1 + c1√

x

)2

x

Verified OK. {0 < y, 0 < 1/x}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 39� �
dsolve(x*diff(y(x),x)^2 = y(x),y(x), singsol=all)� �

y(x) = 0

y(x) =
(
x+√

c1x
)2

x

y(x) =
(
−x+√

c1x
)2

x

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 46� �
DSolve[x (y'[x])^2==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
−2

√
x+ c1

) 2

y(x) → 1
4
(
2
√
x+ c1

) 2

y(x) → 0
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29.24 problem 846
29.24.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8025

Internal problem ID [4085]
Internal file name [OUTPUT/3578_Sunday_June_05_2022_09_42_09_AM_89997817/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 846.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x− 2y = −x

29.24.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− 2y = −x

Solving for y from the above results in

y =
(
p2

2 + 1
2

)
x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

8025



Comparing the form y = xf + g to (1A) shows that

f = p2

2 + 1
2

g = 0

Hence (2) becomes

p− 1
2p

2 − 1
2 = xpp′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1
2p

2 − 1
2 = 0

Solving for p from the above gives

p = 1
p = 1

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)2

2 − 1
2

xp (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p) p

p− 1
2p

2 − 1
2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = 2p
(p− 1)2

q(p) = 0

Hence the ode is

d

dp
x(p) + 2x(p) p

(p− 1)2
= 0

The integrating factor µ is

µ = e
∫ 2p

(p−1)2
dp

= e2 ln(p−1)− 2
p−1

Which simplifies to

µ = (p− 1)2 e−
2

p−1

The ode becomes

d
dpµx = 0

d
dp

(
(p− 1)2 e−

2
p−1x

)
= 0

Integrating gives

(p− 1)2 e−
2

p−1x = c2

Dividing both sides by the integrating factor µ = (p− 1)2 e−
2

p−1 results in

x(p) = c2e
2

p−1

(p− 1)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
√

−x (x− 2y)
x

p = −
√
−x (x− 2y)

x
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Substituting the above in the solution for x found above gives

x = c2e
2x√

−x(x−2y)−xx2(√
−x (x− 2y)− x

)2
x = c2e

− 2x√
−x(x−2y)+xx2(√

−x (x− 2y) + x
)2

Summary
The solution(s) found are the following

(1)y = x

(2)x = c2e
2x√

−x(x−2y)−xx2(√
−x (x− 2y)− x

)2
(3)x = c2e

− 2x√
−x(x−2y)+xx2(√

−x (x− 2y) + x
)2

Verification of solutions
y = x

Verified OK.

x = c2e
2x√

−x(x−2y)−xx2(√
−x (x− 2y)− x

)2
Verified OK.

x = c2e
− 2x√

−x(x−2y)+xx2(√
−x (x− 2y) + x

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 96� �
dsolve(x*diff(y(x),x)^2+x-2*y(x) = 0,y(x), singsol=all)� �

y(x) =

(
2 LambertW

(√
c1x
c1

)2
+ 2LambertW

(√
c1x
c1

)
+ 1
)
x

2 LambertW
(√

c1x
c1

)2
y(x) =

(
2 LambertW

(
−

√
c1x
c1

)2
+ 2LambertW

(
−

√
c1x
c1

)
+ 1
)
x

2 LambertW
(
−

√
c1x
c1

)2
3 Solution by Mathematica
Time used: 0.642 (sec). Leaf size: 97� �
DSolve[x (y'[x])^2+x-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

 2√
2y(x)
x

− 1− 1
− 2 log

(√
2y(x)
x

− 1− 1
)

= log(x) + c1, y(x)


Solve

 2√
2y(x)
x

− 1 + 1
+ 2 log

(√
2y(x)
x

− 1 + 1
)

= − log(x) + c1, y(x)
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29.25 problem 847
29.25.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8030

Internal problem ID [4086]
Internal file name [OUTPUT/3579_Sunday_June_05_2022_09_42_17_AM_53472682/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 847.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_rational , _dAlembert]

y′
2
x+ y′ − y = 0

29.25.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x+ p− y = 0

Solving for y from the above results in

y = p2x+ p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

8030



Comparing the form y = xf + g to (1A) shows that

f = p2

g = p

Hence (2) becomes

−p2 + p = (2xp+ 1) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = x+ 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2p (x)x+ 1 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = 2x(p) p+ 1

−p2 + p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p− 1

q(p) = − 1
p (p− 1)

8031



Hence the ode is

d

dp
x(p) + 2x(p)

p− 1 = − 1
p (p− 1)

The integrating factor µ is

µ = e
∫ 2

p−1dp

= (p− 1)2

The ode becomes

d
dp(µx) = (µ)

(
− 1
p (p− 1)

)
d
dp
(
(p− 1)2 x

)
=
(
(p− 1)2

)(
− 1
p (p− 1)

)
d
(
(p− 1)2 x

)
=
(
−p+ 1

p

)
dp

Integrating gives

(p− 1)2 x =
∫

−p+ 1
p

dp

(p− 1)2 x = −p+ ln (p) + c1

Dividing both sides by the integrating factor µ = (p− 1)2 results in

x(p) = −p+ ln (p)
(p− 1)2

+ c1

(p− 1)2

which simplifies to

x(p) = −p+ ln (p) + c1

(p− 1)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −1 +
√
1 + 4yx

2x

p = −1 +
√
1 + 4yx
2x
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Substituting the above in the solution for x found above gives

x = −
2
(
−2 ln

(
−1+

√
1+4yx
x

)
x+ 2x ln (2)− 2c1x+

√
1 + 4yx− 1

)
x(

−1 +
√
1 + 4yx− 2x

)2
x =

2
(
2 ln

(
−1−

√
1+4yx
x

)
x− 2x ln (2) + 2c1x+

√
1 + 4yx+ 1

)
x(

1 +
√
1 + 4yx+ 2x

)2
Summary
The solution(s) found are the following

(1)y = 0
(2)y = x+ 1

(3)x = −
2
(
−2 ln

(
−1+

√
1+4yx
x

)
x+ 2x ln (2)− 2c1x+

√
1 + 4yx− 1

)
x(

−1 +
√
1 + 4yx− 2x

)2
(4)x =

2
(
2 ln

(
−1−

√
1+4yx
x

)
x− 2x ln (2) + 2c1x+

√
1 + 4yx+ 1

)
x(

1 +
√
1 + 4yx+ 2x

)2
Verification of solutions

y = 0

Verified OK.
y = x+ 1

Verified OK.

x = −
2
(
−2 ln

(
−1+

√
1+4yx
x

)
x+ 2x ln (2)− 2c1x+

√
1 + 4yx− 1

)
x(

−1 +
√
1 + 4yx− 2x

)2
Verified OK.

x =
2
(
2 ln

(
−1−

√
1+4yx
x

)
x− 2x ln (2) + 2c1x+

√
1 + 4yx+ 1

)
x(

1 +
√
1 + 4yx+ 2x

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 59� �
dsolve(x*diff(y(x),x)^2+diff(y(x),x) = y(x),y(x), singsol=all)� �

y(x) = 2 eRootOf
(
−x e2_Z+2 e_Zx+_Z+c1−x−e_Z)

x

+RootOf
(
−x e2_Z + 2 e_Zx+ _Z+ c1 − x− e_Z)+ c1 − x

3 Solution by Mathematica
Time used: 0.918 (sec). Leaf size: 46� �
DSolve[x (y'[x])^2+y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �
Solve

[{
x = log(K[1])−K[1]

(K[1]− 1)2 + c1
(K[1]− 1)2 , y(x) = xK[1]2 +K[1]

}
, {y(x), K[1]}

]
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29.26 problem 848
29.26.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8035

Internal problem ID [4087]
Internal file name [OUTPUT/3580_Sunday_June_05_2022_09_42_31_AM_33166813/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 848.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_rational , _dAlembert]

y′
2
x+ 2y′ − y = 0

29.26.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x+ 2p− y = 0

Solving for y from the above results in

y = p2x+ 2p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2

g = 2p

Hence (2) becomes

−p2 + p = (2xp+ 2) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = x+ 2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2p (x)x+ 2 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = 2x(p) p+ 2

−p2 + p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p− 1

q(p) = − 2
p (p− 1)
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Hence the ode is

d

dp
x(p) + 2x(p)

p− 1 = − 2
p (p− 1)

The integrating factor µ is

µ = e
∫ 2

p−1dp

= (p− 1)2

The ode becomes

d
dp(µx) = (µ)

(
− 2
p (p− 1)

)
d
dp
(
(p− 1)2 x

)
=
(
(p− 1)2

)(
− 2
p (p− 1)

)
d
(
(p− 1)2 x

)
=
(
−2p+ 2

p

)
dp

Integrating gives

(p− 1)2 x =
∫

−2p+ 2
p

dp

(p− 1)2 x = −2p+ 2 ln (p) + c1

Dividing both sides by the integrating factor µ = (p− 1)2 results in

x(p) = −2p+ 2 ln (p)
(p− 1)2

+ c1

(p− 1)2

which simplifies to

x(p) = −2p+ 2 ln (p) + c1

(p− 1)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −1 +
√
1 + yx

x

p = −1 +
√
1 + yx

x
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Substituting the above in the solution for x found above gives

x =

(
2 ln

(
−1+

√
1+yx

x

)
x+ c1x− 2

√
1 + yx+ 2

)
x(

1−
√
1 + yx+ x

)2
x =

(
2 ln

(
−1−

√
1+yx

x

)
x+ c1x+ 2

√
1 + yx+ 2

)
x(

1 +
√
1 + yx+ x

)2
Summary
The solution(s) found are the following

(1)y = 0
(2)y = x+ 2

(3)x =

(
2 ln

(
−1+

√
1+yx

x

)
x+ c1x− 2

√
1 + yx+ 2

)
x(

1−
√
1 + yx+ x

)2
(4)x =

(
2 ln

(
−1−

√
1+yx

x

)
x+ c1x+ 2

√
1 + yx+ 2

)
x(

1 +
√
1 + yx+ x

)2
Verification of solutions

y = 0

Verified OK.
y = x+ 2

Verified OK.

x =

(
2 ln

(
−1+

√
1+yx

x

)
x+ c1x− 2

√
1 + yx+ 2

)
x(

1−
√
1 + yx+ x

)2
Verified OK.

x =

(
2 ln

(
−1−

√
1+yx

x

)
x+ c1x+ 2

√
1 + yx+ 2

)
x(

1 +
√
1 + yx+ x

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 65� �
dsolve(x*diff(y(x),x)^2+2*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = 2 eRootOf
(
−x e2_Z+2 e_Zx−2 e_Z+c1+2_Z−x

)
x

+ 2RootOf
(
−x e2_Z + 2 e_Zx− 2 e_Z + c1 + 2_Z− x

)
+ c1 − x

3 Solution by Mathematica
Time used: 13.72 (sec). Leaf size: 50� �
DSolve[x (y'[x])^2+2 y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[{
x = 2 log(K[1])− 2K[1]

(K[1]− 1)2 + c1
(K[1]− 1)2 , y(x) = xK[1]2+2K[1]

}
, {y(x), K[1]}

]
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29.27 problem 849
29.27.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8040

Internal problem ID [4088]
Internal file name [OUTPUT/3581_Sunday_June_05_2022_09_42_45_AM_86837327/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 849.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_rational , _dAlembert]

y′
2
x− 2y′ − y = 0

29.27.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− 2p− y = 0

Solving for y from the above results in

y = p2x− 2p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2

g = −2p

Hence (2) becomes

−p2 + p = (2xp− 2) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = x− 2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2p (x)x− 2 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = 2x(p) p− 2

−p2 + p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p− 1

q(p) = 2
(p− 1) p
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Hence the ode is

d

dp
x(p) + 2x(p)

p− 1 = 2
(p− 1) p

The integrating factor µ is

µ = e
∫ 2

p−1dp

= (p− 1)2

The ode becomes

d
dp(µx) = (µ)

(
2

(p− 1) p

)
d
dp
(
(p− 1)2 x

)
=
(
(p− 1)2

)( 2
(p− 1) p

)
d
(
(p− 1)2 x

)
=
(
2p− 2

p

)
dp

Integrating gives

(p− 1)2 x =
∫ 2p− 2

p
dp

(p− 1)2 x = 2p− 2 ln (p) + c1

Dividing both sides by the integrating factor µ = (p− 1)2 results in

x(p) = 2p− 2 ln (p)
(p− 1)2

+ c1

(p− 1)2

which simplifies to

x(p) = 2p− 2 ln (p) + c1

(p− 1)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = 1 +
√
1 + yx

x

p = −−1 +
√
1 + yx

x
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Substituting the above in the solution for x found above gives

x =

(
−2 ln

(
1+

√
1+yx
x

)
x+ c1x+ 2

√
1 + yx+ 2

)
x(

1 +
√
1 + yx− x

)2
x =

(
−2 ln

(
1−

√
1+yx
x

)
x+ c1x− 2

√
1 + yx+ 2

)
x(

−1 +
√
1 + yx+ x

)2
Summary
The solution(s) found are the following

(1)y = 0
(2)y = x− 2

(3)x =

(
−2 ln

(
1+

√
1+yx
x

)
x+ c1x+ 2

√
1 + yx+ 2

)
x(

1 +
√
1 + yx− x

)2
(4)x =

(
−2 ln

(
1−

√
1+yx
x

)
x+ c1x− 2

√
1 + yx+ 2

)
x(

−1 +
√
1 + yx+ x

)2
Verification of solutions

y = 0

Verified OK.
y = x− 2

Verified OK.

x =

(
−2 ln

(
1+

√
1+yx
x

)
x+ c1x+ 2

√
1 + yx+ 2

)
x(

1 +
√
1 + yx− x

)2
Verified OK.

x =

(
−2 ln

(
1−

√
1+yx
x

)
x+ c1x− 2

√
1 + yx+ 2

)
x(

−1 +
√
1 + yx+ x

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 65� �
dsolve(x*diff(y(x),x)^2-2*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = 2 eRootOf
(
−x e2_Z+2 e_Zx+2 e_Z+c1−2_Z−x

)
x

− 2RootOf
(
−x e2_Z + 2 e_Zx+ 2 e_Z + c1 − 2_Z− x

)
+ c1 − x

3 Solution by Mathematica
Time used: 1.475 (sec). Leaf size: 50� �
DSolve[x (y'[x])^2-2 y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[{
x = 2K[1]− 2 log(K[1])

(K[1]− 1)2 + c1
(K[1]− 1)2 , y(x) = xK[1]2− 2K[1]

}
, {y(x), K[1]}

]
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29.28 problem 850
29.28.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8045

Internal problem ID [4089]
Internal file name [OUTPUT/3582_Sunday_June_05_2022_09_42_59_AM_87813183/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 850.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_rational , _dAlembert]

y′
2
x+ 4y′ − 2y = 0

29.28.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x+ 4p− 2y = 0

Solving for y from the above results in

y = 1
2p

2x+ 2p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2

2
g = 2p

Hence (2) becomes

p− 1
2p

2 = (xp+ 2) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1
2p

2 = 0

Solving for p from the above gives

p = 0
p = 2

Substituting these in (1A) gives

y = 0
y = 2x+ 4

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)2

2
p (x)x+ 2 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p) p+ 2

p− 1
2p

2 (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = 2
−2 + p

q(p) = − 4
p (−2 + p)

Hence the ode is
d

dp
x(p) + 2x(p)

−2 + p
= − 4

p (−2 + p)
The integrating factor µ is

µ = e
∫ 2

−2+p
dp

= (−2 + p)2

The ode becomes
d
dp(µx) = (µ)

(
− 4
p (−2 + p)

)
d
dp
(
(−2 + p)2 x

)
=
(
(−2 + p)2

)(
− 4
p (−2 + p)

)
d
(
(−2 + p)2 x

)
=
(
8− 4p

p

)
dp

Integrating gives

(−2 + p)2 x =
∫ 8− 4p

p
dp

(−2 + p)2 x = −4p+ 8 ln (p) + c1

Dividing both sides by the integrating factor µ = (−2 + p)2 results in

x(p) = −4p+ 8 ln (p)
(−2 + p)2

+ c1

(−2 + p)2

which simplifies to

x(p) = −4p+ 8 ln (p) + c1

(−2 + p)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −2 +
√
4 + 2yx
x

p = −2 +
√
4 + 2yx
x

8047



Substituting the above in the solution for x found above gives

x =

(
8 ln

(
−2+

√
4+2yx
x

)
x+ c1x− 4

√
4 + 2yx+ 8

)
x(

2x+ 2−
√
4 + 2yx

)2
x =

(
8 ln

(
−2−

√
4+2yx
x

)
x+ c1x+ 4

√
4 + 2yx+ 8

)
x(

2x+ 2 +
√
4 + 2yx

)2
Summary
The solution(s) found are the following

(1)y = 0
(2)y = 2x+ 4

(3)x =

(
8 ln

(
−2+

√
4+2yx
x

)
x+ c1x− 4

√
4 + 2yx+ 8

)
x(

2x+ 2−
√
4 + 2yx

)2
(4)x =

(
8 ln

(
−2−

√
4+2yx
x

)
x+ c1x+ 4

√
4 + 2yx+ 8

)
x(

2x+ 2 +
√
4 + 2yx

)2
Verification of solutions

y = 0

Verified OK.
y = 2x+ 4

Verified OK.

x =

(
8 ln

(
−2+

√
4+2yx
x

)
x+ c1x− 4

√
4 + 2yx+ 8

)
x(

2x+ 2−
√
4 + 2yx

)2
Verified OK.

x =

(
8 ln

(
−2−

√
4+2yx
x

)
x+ c1x+ 4

√
4 + 2yx+ 8

)
x(

2x+ 2 +
√
4 + 2yx

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 67� �
dsolve(x*diff(y(x),x)^2+4*diff(y(x),x)-2*y(x) = 0,y(x), singsol=all)� �

y(x) = 2 eRootOf
(
−x e2_Z+4 e_Zx−4 e_Z+c1+8_Z−4x

)
x

+ 4RootOf
(
−x e2_Z + 4 e_Zx− 4 e_Z + c1 + 8_Z− 4x

)
+ c1

2 − 2x

3 Solution by Mathematica
Time used: 30.862 (sec). Leaf size: 90� �
DSolve[x (y'[x])^2+4 y'[x]-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[{
x =

−2(2K[1]− y(K[1]))
K[1]2 , y(x)= 4

(
2

K[1]+log(K[1])
)
exp

(
−4
(
1
2 log(2−K[1])− 1

2 log(K[1])
))

+ c1 exp
(
−4
(
1
2 log(2−K[1])− 1

2 log(K[1])
))}

, {y(x), K[1]}
]
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29.29 problem 851
29.29.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8050

Internal problem ID [4090]
Internal file name [OUTPUT/3583_Sunday_June_05_2022_09_43_12_AM_93577155/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 851.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x+ xy′ − y = 0

29.29.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x+ xp− y = 0

Solving for y from the above results in

y =
(
p2 + p

)
x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

8050



Comparing the form y = xf + g to (1A) shows that

f = p2 + p

g = 0

Hence (2) becomes

−p2 = x(2p+ 1) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 = 0

Solving for p from the above gives

p = 0
p = 0

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)2

x (2p (x) + 1) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −x(p) (2p+ 1)

p2
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −−2p− 1
p2

q(p) = 0
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Hence the ode is
d

dp
x(p)− (−2p− 1)x(p)

p2
= 0

The integrating factor µ is

µ = e
∫
−−2p−1

p2 dp

= e−
1
p
+2 ln(p)

Which simplifies to

µ = p2e−
1
p

The ode becomes
d
dpµx = 0

d
dp

(
p2e−

1
px
)
= 0

Integrating gives

p2e−
1
px = c2

Dividing both sides by the integrating factor µ = p2e−
1
p results in

x(p) = c2e
1
p

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x+
√
x2 + 4yx
2x

p = −x+
√
x2 + 4yx
2x

Substituting the above in the solution for x found above gives

x = 4c2x2e
2x

−x+
√

x(4y+x)(
−x+

√
x (4y + x)

)2
x = 4c2x2e−

2x
x+
√

x(4y+x)(
x+

√
x (4y + x)

)2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = 4c2x2e
2x

−x+
√

x(4y+x)(
−x+

√
x (4y + x)

)2
(3)x = 4c2x2e−

2x
x+
√

x(4y+x)(
x+

√
x (4y + x)

)2
Verification of solutions

y = 0

Verified OK.

x = 4c2x2e
2x

−x+
√

x(4y+x)(
−x+

√
x (4y + x)

)2
Verified OK.

x = 4c2x2e−
2x

x+
√

x(4y+x)(
x+

√
x (4y + x)

)2
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 65� �
dsolve(x*diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) =

(
1 + 2LambertW

(
− 1

2
√

c1
x

))
x

4 LambertW
(
− 1

2
√

c1
x

)2

y(x) =

(
1 + 2LambertW

(
1

2
√

c1
x

))
x

4 LambertW
(

1
2
√

c1
x

)2

3 Solution by Mathematica
Time used: 0.58 (sec). Leaf size: 102� �
DSolve[x (y'[x])^2+x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

 1√
4y(x)
x

+ 1− 1
− log

(√
4y(x)
x

+ 1− 1
)

= log(x)
2 + c1, y(x)


Solve

 1√
4y(x)
x

+ 1 + 1
+ log

(√
4y(x)
x

+ 1 + 1
)

= − log(x)
2 + c1, y(x)


y(x) → 0
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29.30 problem 852
29.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8056

Internal problem ID [4091]
Internal file name [OUTPUT/3584_Sunday_June_05_2022_09_43_20_AM_2007886/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 852.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2
x−

(
x2 + 1

)
y′ = −x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1
x

(1)

y′ = x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1

x
dx

= ln (x) + c1

Summary
The solution(s) found are the following

(1)y = ln (x) + c1
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Verification of solutions

y = ln (x) + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

x dx

= x2

2 + c2

Summary
The solution(s) found are the following

(1)y = x2

2 + c2

Verification of solutions

y = x2

2 + c2

Verified OK.

29.30.1 Maple step by step solution

Let’s solve
y′2x− (x2 + 1) y′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2x− (x2 + 1) y′

)
dx =

∫
−xdx+ c1

• Cannot compute integral∫ (
y′2x− (x2 + 1) y′

)
dx = −x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*diff(y(x),x)^2-(x^2+1)*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) = ln (x) + c1

y(x) = x2

2 + c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24� �
DSolve[x (y'[x])^2-(1+x^2)y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + c1

y(x) → log(x) + c1
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29.31 problem 853
29.31.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8058

Internal problem ID [4092]
Internal file name [OUTPUT/3585_Sunday_June_05_2022_09_43_26_AM_74692692/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 853.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _dAlembert]

y′
2
x+ yy′ = −a

29.31.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x+ yp = −a

Solving for y from the above results in

y = −px− a

p
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p

g = −a

p

Hence (2) becomes

2p =
(
−x+ a

p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p = 0

Solving for p from the above gives

p = 0

None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)
−x+ a

p(x)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−x(p) + a
p2

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
2p

q(p) = a

2p3
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Hence the ode is
d

dp
x(p) + x(p)

2p = a

2p3

The integrating factor µ is

µ = e
∫ 1

2pdp

= √
p

The ode becomes
d
dp(µx) = (µ)

(
a

2p3

)
d
dp(

√
p x) = (√p)

(
a

2p3

)
d(√p x) =

(
a

2p 5
2

)
dp

Integrating gives
√
p x =

∫
a

2p 5
2
dp

√
p x = − a

3p 3
2
+ c1

Dividing both sides by the integrating factor µ = √
p results in

x(p) = − a

3p2 + c1√
p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −y +
√
y2 − 4ax
2x

p = −y +
√
y2 − 4ax
2x

Substituting the above in the solution for x found above gives

x = − 4a x2

3
(
−y +

√
y2 − 4ax

)2 + c1
√
2√

−y+
√

y2−4ax
x

x = − 4a x2

3
(
y +

√
y2 − 4ax

)2 + c1
√
2√

−y−
√

y2−4ax
x
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Summary
The solution(s) found are the following

(1)x = − 4a x2

3
(
−y +

√
y2 − 4ax

)2 + c1
√
2√

−y+
√

y2−4ax
x

(2)x = − 4a x2

3
(
y +

√
y2 − 4ax

)2 + c1
√
2√

−y−
√

y2−4ax
x

Verification of solutions

x = − 4a x2

3
(
−y +

√
y2 − 4ax

)2 + c1
√
2√

−y+
√

y2−4ax
x

Verified OK.

x = − 4a x2

3
(
y +

√
y2 − 4ax

)2 + c1
√
2√

−y−
√

y2−4ax
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 177� �
dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)+a = 0,y(x), singsol=all)� �

−

8

−
3c1
(
y(x)−

√
−4ax+y(x)2

)√
−y(x)+

√
−4ax+y(x)2

x

8 + ax− 3y(x)2
4 + 3y(x)

√
−4ax+y(x)2

4

x

3
(
y (x)−

√
−4ax+ y (x)2

)2 = 0

−

8x

3c1
(
y(x)+

√
−4ax+y(x)2

)√
−2y(x)−2

√
−4ax+y(x)2

x

4 + ax− 3y(x)2
4 − 3y(x)

√
−4ax+y(x)2

4


3
(
y (x) +

√
−4ax+ y (x)2

)2 = 0

3 Solution by Mathematica
Time used: 60.29 (sec). Leaf size: 4845� �
DSolve[x (y'[x])^2+y[x] y'[x]+a==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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29.32 problem 854
29.32.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8063

Internal problem ID [4093]
Internal file name [OUTPUT/3586_Sunday_June_05_2022_09_43_35_AM_8597564/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 854.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Clairaut]

y′
2
x− yy′ = −a

29.32.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2x− yp = −a

Solving for y from the above results in

y = p2x+ a

p
(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ a

p

= px+ a

p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = a

p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ a

c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = a
p
, then the

above equation becomes

x+ g′(p) = x− a

p2

= 0
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Solving the above for p results in

p1 =
√
ax

x

p2 = −
√
ax

x

Substituting the above back in (1) results in

y1 =
2ax√
ax

y2 = − 2ax√
ax

Summary
The solution(s) found are the following

(1)y = c1x+ a

c1

(2)y = 2ax√
ax

(3)y = − 2ax√
ax

Verification of solutions

y = c1x+ a

c1

Verified OK.

y = 2ax√
ax

Verified OK.

y = − 2ax√
ax

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 35� �
dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a = 0,y(x), singsol=all)� �

y(x) = −2
√
ax

y(x) = 2
√
ax

y(x) = x c21 + a

c1

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 53� �
DSolve[x (y'[x])^2-y[x] y'[x]+a==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a

c1
+ c1x

y(x) → Indeterminate
y(x) → −2

√
a
√
x

y(x) → 2
√
a
√
x
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29.33 problem 855
29.33.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8067

Internal problem ID [4094]
Internal file name [OUTPUT/3587_Sunday_June_05_2022_09_43_47_AM_29338334/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 855.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x− yy′ = −ax

29.33.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− yp = −ax

Solving for y from the above results in

y = x(p2 + a)
p

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + a

p

g = 0

Hence (2) becomes

p− p2 + a

p
= x

(
2− p2 + a

p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p2 + a

p
= 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)2+a

p(x)

x
(
2− p(x)2+a

p(x)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
2− p2+a

p2

)
p− p2+a

p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −−p2 + a

pa

q(p) = 0

Hence the ode is
d

dp
x(p)− x(p) (−p2 + a)

pa
= 0
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The integrating factor µ is

µ = e
∫
−−p2+a

pa
dp

= e
p2
2a−ln(p)

Which simplifies to

µ = e p2
2a

p

The ode becomes
d
dpµx = 0

d
dp

(
e p2

2ax

p

)
= 0

Integrating gives

e p2
2ax

p
= c2

Dividing both sides by the integrating factor µ = e
p2
2a
p

results in

x(p) = c2p e−
p2
2a

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y +
√
y2 − 4x2a

2x

p = −−y +
√
y2 − 4x2a

2x

Substituting the above in the solution for x found above gives

x =
c2
(
y +

√
y2 − 4x2a

)
e−

(
y+
√

y2−4x2a
)2

8a x2

2x

x = −
c2
(
−y +

√
y2 − 4x2a

)
e−

(
−y+

√
y2−4x2a

)2
8a x2

2x
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Summary
The solution(s) found are the following

(1)x =
c2
(
y +

√
y2 − 4x2a

)
e−

(
y+
√

y2−4x2a
)2

8a x2

2x

(2)x = −
c2
(
−y +

√
y2 − 4x2a

)
e−

(
−y+

√
y2−4x2a

)2
8a x2

2x
Verification of solutions

x =
c2
(
y +

√
y2 − 4x2a

)
e−

(
y+
√

y2−4x2a
)2

8a x2

2x

Verified OK.

x = −
c2
(
−y +

√
y2 − 4x2a

)
e−

(
−y+

√
y2−4x2a

)2
8a x2

2x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 50� �
dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*x = 0,y(x), singsol=all)� �

y(x) =
(
−LambertW

(
− x2

c21a

)
+ 1
)
ac1

√√√√− x2

c21aLambertW
(
− x2

c21a

)
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3 Solution by Mathematica
Time used: 0.924 (sec). Leaf size: 167� �
DSolve[x (y'[x])^2-y[x] y'[x]+a x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


4a arctan

 y(x)

x

√
4a− y(x)2

x2

+
y(x)

(√
4a− y(x)2

x2 − iy(x)
x

)
x

8a = 1
2i log(x) + c1, y(x)



Solve


4a arctan

 y(x)

x

√
4a− y(x)2

x2

+
y(x)

(√
4a− y(x)2

x2 + iy(x)
x

)
x

8a = c1 −
1
2i log(x), y(x)
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29.34 problem 857
Internal problem ID [4095]
Internal file name [OUTPUT/3588_Sunday_June_05_2022_09_43_55_AM_32376984/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 857.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2
x+ yy′ = −x3

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −y −
√
y2 − 4x4

2x (1)

y′ = −y +
√
y2 − 4x4

2x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −y −
√
−4x4 + y2

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
y −

√
−4x4 + y2

)
(b3 − a2)

2x −
(
y −

√
−4x4 + y2

)2
a3

4x2

−
(
− 4x2
√
−4x4 + y2

+ y −
√
−4x4 + y2

2x2

)
(xa2 + ya3 + a1)

+

(
1− y√

−4x4+y2

)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−−16x5a2 + 8x5b3 − 8x4a1 + (−4x4 + y2)
3
2 a3 − 6b2

√
−4x4 + y2 x2 + 3

√
−4x4 + y2 y2a3 + 2x2yb2 − 4y3a3 − 2

√
−4x4 + y2 xb1 + 2

√
−4x4 + y2 ya1 + 2xyb1 − 2y2a1

4
√
−4x4 + y2 x2

= 0

Setting the numerator to zero gives

(6E)16x5a2 − 8x5b3 + 8x4a1 −
(
−4x4 + y2

) 3
2 a3 + 6b2

√
−4x4 + y2 x2

− 3
√

−4x4 + y2 y2a3 − 2x2yb2 + 4y3a3 + 2
√

−4x4 + y2 xb1

− 2
√

−4x4 + y2 ya1 − 2xyb1 + 2y2a1 = 0

Simplifying the above gives

(6E)
16x5a2 + 16x4ya3 + 16x4a1 −

(
−4x4 + y2

) 3
2 a3

+ 2
(
−4x4 + y2

)
xb3 + 4

(
−4x4 + y2

)
ya3 + 6b2

√
−4x4 + y2 x2

− 3
√

−4x4 + y2 y2a3 − 2x2yb2 − 2x y2b3 + 2
(
−4x4 + y2

)
a1

+ 2
√

−4x4 + y2 xb1 − 2
√
−4x4 + y2 ya1 − 2xyb1 = 0
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Since the PDE has radicals, simplifying gives

16x5a2 − 8x5b3 + 4x4
√
−4x4 + y2 a3 + 8x4a1

+ 6b2
√

−4x4 + y2 x2 − 2x2yb2 − 4
√

−4x4 + y2 y2a3 + 4y3a3
+ 2
√

−4x4 + y2 xb1 − 2xyb1 − 2
√
−4x4 + y2 ya1 + 2y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4x4 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4x4 + y2 = v3

}
The above PDE (6E) now becomes

(7E)16v51a2 + 4v41v3a3 − 8v51b3 + 8v41a1 + 4v32a3 − 4v3v22a3 − 2v21v2b2
+ 6b2v3v21 + 2v22a1 − 2v3v2a1 − 2v1v2b1 + 2v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(16a2 − 8b3) v51 + 4v41v3a3 + 8v41a1 − 2v21v2b2 + 6b2v3v21
− 2v1v2b1 + 2v3v1b1 + 4v32a3 − 4v3v22a3 + 2v22a1 − 2v3v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0
8a1 = 0

−4a3 = 0
4a3 = 0

−2b1 = 0
2b1 = 0

−2b2 = 0
6b2 = 0

16a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−y −

√
−4x4 + y2

2x

)
(x)

= 5y
2 −

√
−4x4 + y2

2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

5y
2 −

√
−4x4+y2

2

dy

Which results in

S =

√
36
(
y −

√
−6x4

6

)2
+ 12

√
−6x4

(
y −

√
−6x4

6

)
− 150x4

24
√
−6x4

+

ln

y +

√(
y −

√
−6x4

6

)2
+

√
−6x4

(
y−

√
−6x4
6

)
3 − 25x4

6


24 −

5 ln

− 25x4
3 +

√
−6x4

(
y−

√
−6x4
6

)
3 +

5
√

−6x4
√

36
(
y−

√
−6x4
6

)2
+12

√
−6x4

(
y−

√
−6x4
6

)
−150x4

18

y−
√

−6x4
6


24 −

√
36
(
y +

√
−6x4

6

)2
− 12

√
−6x4

(
y +

√
−6x4

6

)
− 150x4

24
√
−6x4

+

ln

y +

√(
y +

√
−6x4

6

)2
−

√
−6x4

(
y+

√
−6x4
6

)
3 − 25x4

6


24 +

5 ln

− 25x4
3 −

√
−6x4

(
y+
√

−6x4
6

)
3 +

5
√

−6x4
√

36
(
y+
√

−6x4
6

)2
−12

√
−6x4

(
y+
√

−6x4
6

)
−150x4

18

y+
√

−6x4
6


24 + 5 ln (x4 + 6y2)

24

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y −
√
−4x4 + y2

2x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
24x3(40i√6x6√−4x4 + y2 + 200i

√
6x6y − 196x8 − 10i

√
6x2√−4x4 + y2 y2 − 50i

√
6x2y3 + 245x4√−4x4 + y2 y + 73x4y2 − 30y3

√
−4x4 + y2 − 6y4

)(
5
√
6
√
−4x4 + y2 −

√
6 y + 24ix2

) (
5
√
6
√
−4x4 + y2 +

√
6 y + 24ix2

)√
−4x4 + y2

(
y +

√
−4x4 + y2

)
(x4 + 6y2)

Sy =
120ix2(4x4 − y2)

(√
−4x4 + y2 + 5y

)√
6 + 12(49x4 − 6y2)

(
−4x4 + y

(
5
√
−4x4 + y2 + y

))(
−5

√
6
√
−4x4 + y2 +

√
6 y − 24ix2

)√
−4x4 + y2 (x4 + 6y2)

(
5
√
6
√
−4x4 + y2 +

√
6 y + 24ix2

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in
ln
(
y +

√
y2 − 4x4

)
12 −

5 ln
(
−5

√
6
√
y2 − 4x4 −

√
6 y − 24ix2)

24 +
5 ln

(
x2√6 + 6iy

)
24 +

5 ln
(
−5

√
6
√
y2 − 4x4 +

√
6 y − 24ix2)

24 −
5 ln

(
−x2√6 + 6iy

)
24 + 5 ln (x4 + 6y2)

24 = c1

Which simplifies to

ln
(
y +

√
y2 − 4x4

)
12 −

5 ln
(
−5

√
6
√
y2 − 4x4 −

√
6 y − 24ix2)

24 +
5 ln

(
x2√6 + 6iy

)
24 +

5 ln
(
−5

√
6
√
y2 − 4x4 +

√
6 y − 24ix2)

24 −
5 ln

(
−x2√6 + 6iy

)
24 + 5 ln (x4 + 6y2)

24 = c1

Summary
The solution(s) found are the following

(1)

ln
(
y +

√
y2 − 4x4

)
12 −

5 ln
(
−5

√
6
√
y2 − 4x4 −

√
6 y − 24ix2)

24

+
5 ln

(
x2√6 + 6iy

)
24 +

5 ln
(
−5

√
6
√
y2 − 4x4 +

√
6 y − 24ix2)

24

−
5 ln

(
−x2√6 + 6iy

)
24 + 5 ln (x4 + 6y2)

24 = c1

Verification of solutions

ln
(
y +

√
y2 − 4x4

)
12 −

5 ln
(
−5

√
6
√
y2 − 4x4 −

√
6 y − 24ix2)

24

+
5 ln

(
x2√6 + 6iy

)
24 +

5 ln
(
−5

√
6
√
y2 − 4x4 +

√
6 y − 24ix2)

24

−
5 ln

(
−x2√6 + 6iy

)
24 + 5 ln (x4 + 6y2)

24 = c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −y +
√
−4x4 + y2

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
y +

√
−4x4 + y2

)
(b3 − a2)

2x −
(
y +

√
−4x4 + y2

)2
a3

4x2

−
(

4x2
√
−4x4 + y2

+ y +
√
−4x4 + y2

2x2

)
(xa2 + ya3 + a1)

+

(
1 + y√

−4x4+y2

)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−16x5a2 − 8x5b3 + 8x4a1 + (−4x4 + y2)
3
2 a3 − 6b2

√
−4x4 + y2 x2 + 3

√
−4x4 + y2 y2a3 − 2x2yb2 + 4y3a3 − 2

√
−4x4 + y2 xb1 + 2

√
−4x4 + y2 ya1 − 2xyb1 + 2a1y2

4
√
−4x4 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−16x5a2 + 8x5b3 − 8x4a1 −
(
−4x4 + y2

) 3
2 a3

+ 6b2
√

−4x4 + y2 x2 − 3
√

−4x4 + y2 y2a3 + 2x2yb2 − 4y3a3
+ 2
√

−4x4 + y2 xb1 − 2
√
−4x4 + y2 ya1 + 2xyb1 − 2a1y2 = 0
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Simplifying the above gives

(6E)
−16x5a2 − 16x4ya3 − 16x4a1 −

(
−4x4 + y2

) 3
2 a3

− 2
(
−4x4 + y2

)
xb3 − 4

(
−4x4 + y2

)
ya3 + 6b2

√
−4x4 + y2 x2

− 3
√

−4x4 + y2 y2a3 + 2x2yb2 + 2x y2b3 − 2
(
−4x4 + y2

)
a1

+ 2
√
−4x4 + y2 xb1 − 2

√
−4x4 + y2 ya1 + 2xyb1 = 0

Since the PDE has radicals, simplifying gives

−16x5a2 + 8x5b3 + 4
√
−4x4 + y2 a3x

4 − 8x4a1

+ 6b2
√

−4x4 + y2 x2 + 2x2yb2 − 4
√
−4x4 + y2 y2a3 − 4y3a3

+ 2
√

−4x4 + y2 xb1 + 2xyb1 − 2
√

−4x4 + y2 ya1 − 2a1y2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4x4 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4x4 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−16v51a2 + 4v3a3v41 + 8v51b3 − 8v41a1 − 4v32a3 − 4v3v22a3
+ 2v21v2b2 + 6b2v3v21 − 2a1v22 − 2v3v2a1 + 2v1v2b1 + 2v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−16a2 + 8b3) v51 + 4v3a3v41 − 8v41a1 + 2v21v2b2 + 6b2v3v21
+ 2v1v2b1 + 2v3v1b1 − 4v32a3 − 4v3v22a3 − 2a1v22 − 2v3v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−8a1 = 0
−2a1 = 0
−4a3 = 0
4a3 = 0
2b1 = 0
2b2 = 0
6b2 = 0

−16a2 + 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 272� �
dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)+x^3 = 0,y(x), singsol=all)� �
−

∫ x

_b

y(x)−
√

−4_a4 + y (x)2

_a
(
5y (x)−

√
−4_a4 + y (x)2

)d_a



−2


∫ y(x)

1 +
(
40_f− 8

√
−4x4 + _f2

)∫ x

_b
_a3(

−5_f+
√

−4_a4+_f2
)2√

−4_a4+_f2
d_a


5_f−

√
−4x4 + _f2

d_f


+ c1 = 0

−

∫ x

_b

y(x) +
√

−4_a4 + y (x)2(√
−4_a4 + y (x)2 + 5y (x)

)
_a

d_a



+2


∫ y(x)

−1 + 8
(√

−4x4 + _f2 + 5_f
)∫ x

_b
_a3(√

−4_a4+_f2+5_f
)2√

−4_a4+_f2
d_a


√

−4x4 + _f2 + 5_f
d_f


+ c1 = 0

3 Solution by Mathematica
Time used: 0.825 (sec). Leaf size: 107� �
DSolve[x (y'[x])^2+y[x] y'[x]+x^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ x2InverseFunction

[∫ #1

1

1
5K[2] +

√
K[2]2 − 4

dK[2]&
] [∫ x

1
− 1
2K[3]dK[3]+c1

]
y(x) → x2InverseFunction

[∫ #1

1

1√
K[4]2 − 4− 5K[4]

dK[4]&
] [∫ x

1

1
2K[5]dK[5] + c1

]
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29.35 problem 858
29.35.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8083

Internal problem ID [4096]
Internal file name [OUTPUT/3589_Sunday_June_05_2022_09_44_03_AM_50804648/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 29
Problem number: 858.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x− yy′ + ya = 0

29.35.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x+ ya− yp = 0

Solving for y from the above results in

y = − p2x

a− p
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = − p2

a− p

g = 0

Hence (2) becomes

p+ p2

a− p
= x

(
− 2p
a− p

− p2

(a− p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p2

a− p
= 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)2

a−p(x)

x
(
− 2p(x)

a−p(x) −
p(x)2

(a−p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 2p

a−p
− p2

(a−p)2

)
p+ p2

a−p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = −−2a+ p

a (a− p)
q(p) = 0

Hence the ode is

d

dp
x(p)− (−2a+ p)x(p)

a (a− p) = 0

The integrating factor µ is

µ = e
∫
−−2a+p

a(a−p)dp

= e− ln(−a+p)+ p
a

Which simplifies to

µ = − e p
a

a− p

The ode becomes

d
dpµx = 0

d
dp

(
− e p

ax

a− p

)
= 0

Integrating gives

− e p
ax

a− p
= c2

Dividing both sides by the integrating factor µ = − e
p
a

a−p
results in

x(p) = −c2(a− p) e−
p
a

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y +
√
y2 − 4axy
2x

p = −−y +
√
y2 − 4axy
2x
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Substituting the above in the solution for x found above gives

x =
c2
(
−2ax+ y +

√
y2 − 4axy

)
e−

y+
√

y2−4axy
2ax

2x

x = −
c2
(
2ax− y +

√
y2 − 4axy

)
e

−y+
√

y2−4axy
2ax

2x

Summary
The solution(s) found are the following

(1)y = 0

(2)x =
c2
(
−2ax+ y +

√
y2 − 4axy

)
e−

y+
√

y2−4axy
2ax

2x

(3)x = −
c2
(
2ax− y +

√
y2 − 4axy

)
e

−y+
√

y2−4axy
2ax

2x
Verification of solutions

y = 0

Verified OK.

x =
c2
(
−2ax+ y +

√
y2 − 4axy

)
e−

y+
√

y2−4axy
2ax

2x

Verified OK.

x = −
c2
(
2ax− y +

√
y2 − 4axy

)
e

−y+
√

y2−4axy
2ax

2x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 42� �
dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*y(x) = 0,y(x), singsol=all)� �

y(x) = 0

y(x) = −

(
LambertW

(
− x e

c1a

)
− 1
)2

ax

LambertW
(
− x e

c1a

)
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3 Solution by Mathematica
Time used: 2.921 (sec). Leaf size: 173� �
DSolve[x (y'[x])^2-y[x] y'[x]+a y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−
√

y(x)
x

√
y(x)
x

− 4a− 4a log
(√

y(x)
x

− 4a−
√

y(x)
x

)
+ y(x)

x

4a =

− log(x)
2 + c1, y(x)



Solve

−
√

y(x)
x

√
y(x)
x

− 4a+ 4a log
(√

y(x)
x

− 4a−
√

y(x)
x

)
+ y(x)

x

4a = log(x)
2 + c1, y(x)


y(x) → 0
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30.1 problem 859
Internal problem ID [4097]
Internal file name [OUTPUT/3590_Sunday_June_05_2022_09_44_11_AM_73676000/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 859.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2
x+ yy′ − y4 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−1 +

√
1 + 4y2x

)
y

2x (1)

y′ = −
(
1 +

√
1 + 4y2x

)
y

2x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
−1 +

√
4x y2 + 1

)
y

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−1 +

√
4x y2 + 1

)
y(b3 − a2)

2x −
(
−1 +

√
4x y2 + 1

)2
y2a3

4x2

−

(
−
(
−1 +

√
4x y2 + 1

)
y

2x2 + y3

x
√
4x y2 + 1

)
(xa2 + ya3 + a1)

−
(

2y2√
4x y2 + 1

+ −1 +
√
4x y2 + 1
2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(4x y2 + 1)
3
2 y2a3 + 16x3y2b2 + 4x2y3a2 + 8x2y3b3 − 12x y4a3 + 16x2y2b1 − 4x y3a1 − 6b2x2√4x y2 + 1 + 3y2a3

√
4x y2 + 1− 2

√
4x y2 + 1xb1 + 2

√
4x y2 + 1 ya1 + 2x2b2 − 4y2a3 + 2xb1 − 2ya1

4x2
√
4x y2 + 1

= 0

Setting the numerator to zero gives

(6E)−
(
4x y2 + 1

) 3
2 y2a3 − 16x3y2b2 − 4x2y3a2 − 8x2y3b3 + 12x y4a3

− 16x2y2b1 + 4x y3a1 + 6b2x2
√
4x y2 + 1− 3y2a3

√
4x y2 + 1

+ 2
√

4x y2 + 1xb1 − 2
√

4x y2 + 1 ya1 − 2x2b2 + 4y2a3 − 2xb1 + 2ya1 = 0

Simplifying the above gives

(6E)
−
(
4x y2 + 1

) 3
2 y2a3 − 8x3y2b2 − 4x2y3a2 − 8x2y3b3 − 4x y4a3

− 2
(
4x y2 + 1

)
x2b2 + 4

(
4x y2 + 1

)
y2a3 − 8x2y2b1 − 4x y3a1

− 2
(
4x y2 + 1

)
xb1 + 2

(
4x y2 + 1

)
ya1 + 6b2x2

√
4x y2 + 1

− 3y2a3
√

4x y2 + 1 + 2
√
4x y2 + 1xb1 − 2

√
4x y2 + 1 ya1 = 0
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Since the PDE has radicals, simplifying gives

−4x
√

4x y2 + 1 y4a3 − 16x3y2b2 − 4x2y3a2 − 8x2y3b3 + 12x y4a3
− 16x2y2b1 + 4x y3a1 + 6b2x2

√
4x y2 + 1− 4y2a3

√
4x y2 + 1− 2x2b2

+ 2
√

4x y2 + 1xb1 − 2
√

4x y2 + 1 ya1 + 4y2a3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x y2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x y2 + 1 = v3

}
The above PDE (6E) now becomes

(7E)−4v1v3v42a3 − 4v21v32a2 + 12v1v42a3 − 16v31v22b2 − 8v21v32b3 + 4v1v32a1 − 16v21v22b1
− 4v22a3v3 +6b2v21v3 − 2v3v2a1 +4v22a3 +2v3v1b1 − 2v21b2 +2v2a1 − 2v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−16v31v22b2 + (−4a2 − 8b3) v21v32 − 16v21v22b1 + 6b2v21v3 − 2v21b2 − 4v1v3v42a3
+12v1v42a3+4v1v32a1+2v3v1b1−2v1b1−4v22a3v3+4v22a3−2v3v2a1+2v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0
4a1 = 0

−4a3 = 0
4a3 = 0
12a3 = 0

−16b1 = 0
−2b1 = 0
2b1 = 0

−16b2 = 0
−2b2 = 0
6b2 = 0

−4a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

((
−1 +

√
4x y2 + 1

)
y

2x

)
(−2x)

= y
√

4x y2 + 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
√
4x y2 + 1

dy

Which results in

S = − arctanh
(

1√
4x y2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−1 +

√
4x y2 + 1

)
y

2x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x

√
4x y2 + 1

Sy =
1

y
√
4x y2 + 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Which simplifies to

− arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Summary
The solution(s) found are the following

(1)− arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Verification of solutions

− arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
1 +

√
4x y2 + 1

)
y

2x
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
1 +

√
4x y2 + 1

)
y(b3 − a2)

2x −
(
1 +

√
4x y2 + 1

)2
y2a3

4x2

−

(
− y3

x
√
4x y2 + 1

+
(
1 +

√
4x y2 + 1

)
y

2x2

)
(xa2 + ya3 + a1)

−
(
− 2y2√

4x y2 + 1
− 1 +

√
4x y2 + 1
2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(4x y2 + 1)
3
2 y2a3 − 16x3y2b2 − 4x2y3a2 − 8x2y3b3 + 12x y4a3 − 16x2y2b1 + 4x y3a1 − 6b2x2√4x y2 + 1 + 3y2a3

√
4x y2 + 1− 2

√
4x y2 + 1xb1 + 2

√
4x y2 + 1 ya1 − 2x2b2 + 4y2a3 − 2xb1 + 2ya1

4x2
√
4x y2 + 1

= 0

Setting the numerator to zero gives

(6E)−
(
4x y2 + 1

) 3
2 y2a3 + 16x3y2b2 + 4x2y3a2 + 8x2y3b3 − 12x y4a3

+ 16x2y2b1 − 4x y3a1 + 6b2x2
√

4x y2 + 1− 3y2a3
√

4x y2 + 1
+ 2
√

4x y2 + 1xb1 − 2
√

4x y2 + 1 ya1 + 2x2b2 − 4y2a3 + 2xb1 − 2ya1 = 0
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Simplifying the above gives

(6E)
−
(
4x y2 + 1

) 3
2 y2a3 + 8x3y2b2 + 4x2y3a2 + 8x2y3b3 + 4x y4a3

+ 2
(
4x y2 + 1

)
x2b2 − 4

(
4x y2 + 1

)
y2a3 + 8x2y2b1 + 4x y3a1

+ 2
(
4x y2 + 1

)
xb1 − 2

(
4x y2 + 1

)
ya1 + 6b2x2

√
4x y2 + 1

− 3y2a3
√

4x y2 + 1 + 2
√
4x y2 + 1xb1 − 2

√
4x y2 + 1 ya1 = 0

Since the PDE has radicals, simplifying gives

−4x
√

4x y2 + 1 y4a3 + 16x3y2b2 + 4x2y3a2 + 8x2y3b3 − 12x y4a3
+ 16x2y2b1 − 4x y3a1 + 6b2x2

√
4x y2 + 1− 4y2a3

√
4x y2 + 1 + 2x2b2

+ 2
√

4x y2 + 1xb1 − 2
√

4x y2 + 1 ya1 − 4y2a3 + 2xb1 − 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x y2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x y2 + 1 = v3

}
The above PDE (6E) now becomes

(7E)−4v1v3v42a3 + 4v21v32a2 − 12v1v42a3 + 16v31v22b2 + 8v21v32b3 − 4v1v32a1 + 16v21v22b1
− 4v22a3v3 +6b2v21v3 − 2v3v2a1 − 4v22a3 +2v3v1b1 +2v21b2 − 2v2a1 +2v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)16v31v22b2+(4a2+8b3) v21v32+16v21v22b1+6b2v21v3+2v21b2−4v1v3v42a3−12v1v42a3
− 4v1v32a1 + 2v3v1b1 + 2v1b1 − 4v22a3v3 − 4v22a3 − 2v3v2a1 − 2v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−2a1 = 0
−12a3 = 0
−4a3 = 0
2b1 = 0
16b1 = 0
2b2 = 0
6b2 = 0
16b2 = 0

4a2 + 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
−
(
1 +

√
4x y2 + 1

)
y

2x

)
(−2x)

= −y
√

4x y2 + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y
√
4x y2 + 1

dy

Which results in

S = arctanh
(

1√
4x y2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
1 +

√
4x y2 + 1

)
y

2x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
2x

√
4x y2 + 1

Sy = − 1
y
√
4x y2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Which simplifies to

arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Summary
The solution(s) found are the following

(1)arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Verification of solutions

arctanh
(

1√
1 + 4y2x

)
= ln (x)

2 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 89� �
dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)-y(x)^4 = 0,y(x), singsol=all)� �

y(x) = − 1
2
√
−x

y(x) = 1
2
√
−x

y(x) = 0

y(x) = −
coth

(
− ln(x)

2 + c1
2

)√
sech

(
− ln(x)

2 + c1
2

)2
x

2x

y(x) =
coth

(
− ln(x)

2 + c1
2

)√
sech

(
− ln(x)

2 + c1
2

)2
x

2x

3 Solution by Mathematica
Time used: 0.63 (sec). Leaf size: 84� �
DSolve[x (y'[x])^2+y[x] y'[x]-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2e
c1
2

−4x+ ec1

y(x) → 2e
c1
2

−4x+ ec1

y(x) → 0

y(x) → − i

2
√
x

y(x) → i

2
√
x
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30.2 problem 860
30.2.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8104

Internal problem ID [4098]
Internal file name [OUTPUT/3591_Sunday_June_05_2022_09_44_19_AM_71428155/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 860.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Clairaut]

y′
2
x+ (a− y) y′ = −b

30.2.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2x+ (a− y) p = −b

Solving for y from the above results in

y = p2x+ ap+ b

p
(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ ap+ b

p

= px+ ap+ b

p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = ap+ b

p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ ac1 + b

c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = ap+b
p

, then the
above equation becomes

x+ g′(p) = x+ a

p
− ap+ b

p2

= 0
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Solving the above for p results in

p1 =
√
bx

x

p2 = −
√
bx

x

Substituting the above back in (1) results in

y1 =
2bx+

√
bx a√

bx

y2 =
√
bx a− 2bx√

bx

Summary
The solution(s) found are the following

(1)y = c1x+ ac1 + b

c1

(2)y = 2bx+
√
bx a√

bx

(3)y =
√
bx a− 2bx√

bx

Verification of solutions

y = c1x+ ac1 + b

c1

Verified OK.

y = 2bx+
√
bx a√

bx

Verified OK.

y =
√
bx a− 2bx√

bx

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 42� �
dsolve(x*diff(y(x),x)^2+(a-y(x))*diff(y(x),x)+b = 0,y(x), singsol=all)� �

y(x) = a− 2
√
bx

y(x) = a+ 2
√
bx

y(x) = x c21 + c1a+ b

c1

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58� �
DSolve[x (y'[x])^2+(a-y[x])y'[x]+b==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a+ b

c1
+ c1x

y(x) → Indeterminate
y(x) → a− 2

√
b
√
x

y(x) → a+ 2
√
b
√
x
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30.3 problem 861
30.3.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8108

Internal problem ID [4099]
Internal file name [OUTPUT/3592_Sunday_June_05_2022_09_44_32_AM_25796296/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 861.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _dAlembert]

y′
2
x+ (−y + x) y′ − y = −1

30.3.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2x+ (−y + x) p− y = −1

Solving for y from the above results in

y = p2x+ xp+ 1
p+ 1 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ 1
p+ 1

= xp+ 1
p+ 1
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = 1
p+ 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ 1
c1 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 1
p+1 , then the

above equation becomes

x+ g′(p) = x− 1
(p+ 1)2

= 0
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Solving the above for p results in

p1 = −
√
x− 1√
x

p2 = −
√
x+ 1√
x

Substituting the above back in (1) results in

y1 = 2
√
x− x

y2 = −x− 2
√
x

Summary
The solution(s) found are the following

(1)y = c1x+ 1
c1 + 1

(2)y = 2
√
x− x

(3)y = −x− 2
√
x

Verification of solutions

y = c1x+ 1
c1 + 1

Verified OK.

y = 2
√
x− x

Verified OK.

y = −x− 2
√
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x) = 0,y(x), singsol=all)� �

y(x) = −x− 2
√
x

y(x) = −x+ 2
√
x

y(x) = x c21 + c1x+ 1
c1 + 1

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 46� �
DSolve[x (y'[x])^2+(x-y[x])y'[x]+1-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x+ 1
1 + c1

y(x) → −x− 2
√
x

y(x) → 2
√
x− x
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30.4 problem 862
30.4.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8112

Internal problem ID [4100]
Internal file name [OUTPUT/3593_Sunday_June_05_2022_09_44_39_AM_62432174/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 862.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _dAlembert]

y′
2
x+ (a+ x− y) y′ − y = 0

30.4.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2x+ (a+ x− y) p− y = 0

Solving for y from the above results in

y = p(px+ a+ x)
p+ 1 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ pa

p+ 1
= px+ pa

p+ 1
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = pa

p+ 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ c1a

c1 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = pa
p+1 , then the

above equation becomes

x+ g′(p) = x+ a

p+ 1 − pa

(p+ 1)2

= 0
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Solving the above for p results in

p1 =
−x+

√
−ax

x

p2 = −x+
√
−ax

x

Substituting the above back in (1) results in

y1 =
−x

√
−ax− 2ax+

√
−ax a√

−ax

y2 =
(−x+ a)

√
−ax+ 2ax√

−ax

Summary
The solution(s) found are the following

(1)y = c1x+ c1a

c1 + 1

(2)y = −x
√
−ax− 2ax+

√
−ax a√

−ax

(3)y = (−x+ a)
√
−ax+ 2ax√

−ax

Verification of solutions

y = c1x+ c1a

c1 + 1

Verified OK.

y = −x
√
−ax− 2ax+

√
−ax a√

−ax

Verified OK.

y = (−x+ a)
√
−ax+ 2ax√

−ax

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 49� �
dsolve(x*diff(y(x),x)^2+(a+x-y(x))*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = a− x− 2
√
−ax

y(x) = a− x+ 2
√
−ax

y(x) = c1(c1x+ a+ x)
c1 + 1

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 60� �
DSolve[x (y'[x])^2+(a+x-y[x])y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1

(
x+ a

1 + c1

)
y(x) →

(√
a− i

√
x
)2

y(x) →
(√

a+ i
√
x
)2
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30.5 problem 863
30.5.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8116

Internal problem ID [4101]
Internal file name [OUTPUT/3594_Sunday_June_05_2022_09_44_51_AM_62512358/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 863.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′
2
x− (3x− y) y′ + y = 0

30.5.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− (−y + 3x) p+ y = 0

Solving for y from the above results in

y = −xp(p− 3)
p+ 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p(p− 3)
p+ 1

g = 0

Hence (2) becomes

p+ p(p− 3)
p+ 1 = x

(
−p− 3
p+ 1 − p

p+ 1 + p(p− 3)
(p+ 1)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p(p− 3)
p+ 1 = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)(p(x)−3)

p(x)+1

x
(
−p(x)−3

p(x)+1 −
p(x)

p(x)+1 +
p(x)(p(x)−3)
(p(x)+1)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
−p−3

p+1 −
p

p+1 +
p(p−3)
(p+1)2

)
p+ p(p−3)

p+1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − −p− 3
2p (p+ 1)

q(p) = 0

Hence the ode is
d

dp
x(p)− (−p− 3)x(p)

2p (p+ 1) = 0

The integrating factor µ is

µ = e
∫
− −p−3

2p(p+1)dp

= e− ln(p+1)+ 3 ln(p)
2

Which simplifies to

µ = p
3
2

p+ 1

The ode becomes
d
dpµx = 0

d
dp

(
p

3
2x

p+ 1

)
= 0

Integrating gives

p
3
2x

p+ 1 = c3

Dividing both sides by the integrating factor µ = p
3
2

p+1 results in

x(p) = c3(p+ 1)
p

3
2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = 3x− y +
√
y2 − 10yx+ 9x2

2x

p = −−3x+ y +
√
y2 − 10yx+ 9x2

2x
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Substituting the above in the solution for x found above gives

x =
c3
(
5x− y +

√
y2 − 10yx+ 9x2

)√
2(

3x− y +
√
y2 − 10yx+ 9x2

)√3x−y+
√

y2−10yx+9x2

x

x =
c3
(
−5x+ y +

√
y2 − 10yx+ 9x2

)√
2(

−3x+ y +
√
y2 − 10yx+ 9x2

)√3x−y−
√

y2−10yx+9x2

x

Summary
The solution(s) found are the following

(1)y = 0
(2)y = x

(3)x =
c3
(
5x− y +

√
y2 − 10yx+ 9x2

)√
2(

3x− y +
√
y2 − 10yx+ 9x2

)√3x−y+
√

y2−10yx+9x2

x

(4)x =
c3
(
−5x+ y +

√
y2 − 10yx+ 9x2

)√
2(

−3x+ y +
√
y2 − 10yx+ 9x2

)√3x−y−
√

y2−10yx+9x2

x

Verification of solutions

y = 0

Verified OK.
y = x

Verified OK.

x =
c3
(
5x− y +

√
y2 − 10yx+ 9x2

)√
2(

3x− y +
√
y2 − 10yx+ 9x2

)√3x−y+
√

y2−10yx+9x2

x

Verified OK.

x =
c3
(
−5x+ y +

√
y2 − 10yx+ 9x2

)√
2(

−3x+ y +
√
y2 − 10yx+ 9x2

)√3x−y−
√

y2−10yx+9x2

x

Verified OK.

8119



Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 139� �
dsolve(x*diff(y(x),x)^2-(3*x-y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = x

c1

(
−5x+ y(x)−

√
9x2 − 10xy (x) + y (x)2

)
x

(
3x−y(x)+

√
9x2−10xy(x)+y(x)2

x

) 3
2

+ x = 0

(
−5x+ y(x) +

√
9x2 − 10xy (x) + y (x)2

)
c1
√
2

4x
(

3x−y(x)−
√

9x2−10xy(x)+y(x)2

x

) 3
2

+ x = 0
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3 Solution by Mathematica
Time used: 60.322 (sec). Leaf size: 1225� �
DSolve[x (y'[x])^2-(3 x-y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
384


4e8c1
x2 − 6912e4c1

3

√
−
−373248e4c1x4 + 4320e8c1x2 − 48

√
6x
√

e8c1 (216x2 + e4c1) 3 + e12c1

x3

+ 4
3

√
373248e4c1x4 − 4320e8c1x2 + 48

√
6x
√

e8c1 (216x2 + e4c1) 3 − e12c1

x3

− 4e4c1
x



y(x) → 1
768


(
1 + i

√
3
) (

6912e4c1 − 4e8c1
x2

)
3

√
−
−373248e4c1x4 + 4320e8c1x2 − 48

√
6x
√

e8c1 (216x2 + e4c1) 3 + e12c1

x3

+ 4i
(√

3

+ i
)

3

√
−
−373248e4c1x4 + 4320e8c1x2 − 48

√
6x
√

e8c1 (216x2 + e4c1) 3 + e12c1

x3

− 8e4c1
x



y(x) → 1
768


(
1− i

√
3
) (

6912e4c1 − 4e8c1
x2

)
3

√
−
−373248e4c1x4 + 4320e8c1x2 − 48

√
6x
√

e8c1 (216x2 + e4c1) 3 + e12c1

x3

− 4
(
1

+ i
√
3
)

3

√
−
−373248e4c1x4 + 4320e8c1x2 − 48

√
6x
√

e8c1 (216x2 + e4c1) 3 + e12c1

x3

− 8e4c1
x



y(x) → 1
3

 4− 108e4c1x2

x2 3

√
729e20c1x4 − 540e16c1x2 + 3

√
3x
√

e28c1 (8 + 27e4c1x2) 3 − 8e12c1
x3

+ e−8c1 3

√
729e20c1x4 − 540e16c1x2 + 3

√
3x
√

e28c1 (8 + 27e4c1x2) 3 − 8e12c1
x3

− 2e−4c1

x



y(x) → 1
6e

−8c1


(
1 + i

√
3
) (

108e12c1 − 4e8c1
x2

)
3

√
729e20c1x4 − 540e16c1x2 + 3

√
3x
√

e28c1 (8 + 27e4c1x2) 3 − 8e12c1
x3

+ i
(√

3 + i
)

3

√
729e20c1x4 − 540e16c1x2 + 3

√
3x
√

e28c1 (8 + 27e4c1x2) 3 − 8e12c1
x3

− 4e4c1
x



y(x) → 1
6e

−8c1


(
1− i

√
3
) (

108e12c1 − 4e8c1
x2

)
3

√
729e20c1x4 − 540e16c1x2 + 3

√
3x
√

e28c1 (8 + 27e4c1x2) 3 − 8e12c1
x3

−
(
1 + i

√
3
)

3

√
729e20c1x4 − 540e16c1x2 + 3

√
3x
√

e28c1 (8 + 27e4c1x2) 3 − 8e12c1
x3

− 4e4c1
x



8121



30.6 problem 864
30.6.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8122

Internal problem ID [4102]
Internal file name [OUTPUT/3595_Sunday_June_05_2022_09_44_59_AM_580997/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 864.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , _dAlembert]

y′
2
x− y − yb = −bx− a

30.6.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− by − y = −bx− a

Solving for y from the above results in

y = (p2 + b)x
b+ 1 + a

b+ 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + b

b+ 1
g = a

b+ 1

Hence (2) becomes

p− p2 + b

b+ 1 = 2xpp′(x)
b+ 1 (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p2 + b

b+ 1 = 0

Solving for p from the above gives

p = 1
p = b

Substituting these in (1A) gives

y = bx+ a+ x

b+ 1

y = b2x+ bx+ a

b+ 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =

(
p(x)− p(x)2+b

b+1

)
(b+ 1)

2xp (x) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= (p− 1) (−p+ b)
2px
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Where f(x) = − 1
2x and g(p) = − (p−1)(−p+b)

p
. Integrating both sides gives

1
− (p−1)(−p+b)

p

dp = − 1
2x dx

∫ 1
− (p−1)(−p+b)

p

dp =
∫

− 1
2x dx

b ln (p− b)
b− 1 − ln (p− 1)

b− 1 = − ln (x)
2 + c1

The above can be written as

b ln (p− b)− ln (p− 1)
b− 1 = − ln (x)

2 + c1

b ln (p− b)− ln (p− 1) = (b− 1)
(
− ln (x)

2 + c1

)
= (b− 1)

(
− ln (x)

2 + c1

)
Raising both side to exponential gives

eb ln(p−b)−ln(p−1) = e(b−1)
(
− ln(x)

2 +c1
)

Which simplifies to

(p− b)b

p− 1 = c1(b− 1) e−
(b−1) ln(x)

2

= c2e−
(b−1) ln(x)

2

Substituing the above solution for p in (2A) gives

y =

(
RootOf

(
c2e−

(b−1)(ln(x)−2c1)
2 _Z− c2e−

(b−1)(ln(x)−2c1)
2 − (_Z− b)b

)2
+ b

)
x

b+ 1 + a

b+ 1
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Summary
The solution(s) found are the following

(1)y = bx+ a+ x

b+ 1

(2)y = b2x+ bx+ a

b+ 1

y =

(
RootOf

(
c2e−

(b−1)(ln(x)−2c1)
2 _Z− c2e−

(b−1)(ln(x)−2c1)
2 − (_Z− b)b

)2
+ b

)
x

b+ 1 + a

b+ 1
(3)

Verification of solutions

y = bx+ a+ x

b+ 1

Verified OK.

y = b2x+ bx+ a

b+ 1

Verified OK.

y =

(
RootOf

(
c2e−

(b−1)(ln(x)−2c1)
2 _Z− c2e−

(b−1)(ln(x)−2c1)
2 − (_Z− b)b

)2
+ b

)
x

b+ 1 + a

b+ 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 48� �
dsolve(x*diff(y(x),x)^2+a+b*x-y(x)-b*y(x) = 0,y(x), singsol=all)� �

y(x) =

((
RootOf

(
_Z− _Z 1

b

(
c1
x

) b−1
2b − b+ 1

)
+ 1
)2

+ b

)
x+ a

b+ 1

3 Solution by Mathematica
Time used: 91.9 (sec). Leaf size: 1197� �
DSolve[x (y'[x])^2+(a+b x-y[x])-b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

2(b+ 1)
(
− log

(√
−a+ by(x)− bx+ y(x) +

√
x
)
+ b log

(√
−a+ by(x)− bx+ y(x) + b

√
x
)
+ b log

(√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− (b+ 1)y(x)

)
− log

(√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− (b+ 1)y(x)

)
+ log

(√
x
√
−a+ by(x) + y(x)−

√
x
√
−a+ by(x)− bx+ y(x) +

√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− by(x) + bx− y(x)

)
− b log

(
b
(√

x
(√

−a+ by(x) + y(x)−
√

−a+ by(x)− bx+ y(x)
)
− y(x) + x

)
+
√

−a+ by(x) + y(x)
√
−a+ by(x)− bx+ y(x) + a− y(x)

))
b2 − 1

−
2(b+ 1)

(
(b− 1) log

(√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− (b+ 1)y(x)

)
+ log

(√
x
√

−a+ by(x) + y(x)−
√
x
√
−a+ by(x)− bx+ y(x) +

√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− by(x) + bx− y(x)

)
− b log

(
b
(√

x
(√

−a+ by(x) + y(x)−
√

−a+ by(x)− bx+ y(x)
)
− y(x) + x

)
+
√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− y(x)

))
b2 − 1 = c1, y(x)


Solve

2(b+ 1)
(
− log

(√
−a+ by(x)− bx+ y(x)−

√
x
)
+ b log

(√
−a+ by(x)− bx+ y(x)− b

√
x
)
+ b log

(√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− (b+ 1)y(x)

)
− log

(√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− (b+ 1)y(x)

)
+ log

(
−
√
x
√

−a+ by(x) + y(x) +
√
x
√

−a+ by(x)− bx+ y(x) +
√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− by(x) + bx− y(x)

)
− b log

(
b
(√

x
(√

−a+ by(x)− bx+ y(x)−
√

−a+ by(x) + y(x)
)
− y(x) + x

)
+
√

−a+ by(x) + y(x)
√

−a+ by(x)− bx+ y(x) + a− y(x)
))

b2 − 1

−
2(b+ 1)

(
(b− 1) log

(√
−a+ by(x) + y(x)

√
−a+ by(x)− bx+ y(x) + a− (b+ 1)y(x)

)
+ log

(
−
√
x
√

−a+ by(x) + y(x) +
√
x
√

−a+ by(x)− bx+ y(x) +
√

−a+ by(x) + y(x)
√

−a+ by(x)− bx+ y(x) + a− by(x) + bx− y(x)
)
− b log

(
b
(√

x
(√

−a+ by(x) + y(x)−
√

−a+ by(x)− bx+ y(x)
)
+ y(x)− x

)
−
√

−a+ by(x) + y(x)
√
−a+ by(x)− bx+ y(x)− a+ y(x)

))
b2 − 1 = c1, y(x)
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30.7 problem 865
30.7.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8127

Internal problem ID [4103]
Internal file name [OUTPUT/3596_Sunday_June_05_2022_09_45_22_AM_24695925/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 865.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _dAlembert]

y′
2
x− 2yy′ = −a

30.7.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− 2yp = −a

Solving for y from the above results in

y = px

2 + a

2p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2
g = a

2p

Hence (2) becomes

p

2 =
(
x

2 − a

2p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 = 0

Solving for p from the above gives

p = 0

None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)
x− a

p(x)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)− a
p2

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −1
p

q(p) = − a

p3
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Hence the ode is
d

dp
x(p)− x(p)

p
= − a

p3

The integrating factor µ is

µ = e
∫
− 1

p
dp

= 1
p

The ode becomes
d
dp(µx) = (µ)

(
− a

p3

)
d
dp

(
x

p

)
=
(
1
p

)(
− a

p3

)
d
(
x

p

)
=
(
− a

p4

)
dp

Integrating gives

x

p
=
∫

− a

p4
dp

x

p
= a

3p3 + c1

Dividing both sides by the integrating factor µ = 1
p
results in

x(p) = a

3p2 + c1p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y +
√
y2 − ax

x

p = −−y +
√
y2 − ax

x

Substituting the above in the solution for x found above gives

x = −3c1(ax− 4y2)
√
y2 − ax+ (−9axy + 12y3) c1 + a x3

3
(
y +

√
y2 − ax

)2
x

x = 3c1(ax− 4y2)
√
y2 − ax+ (−9axy + 12y3) c1 + a x3

3
(
y −

√
y2 − ax

)2
x

8129



Summary
The solution(s) found are the following

(1)x = −3c1(ax− 4y2)
√
y2 − ax+ (−9axy + 12y3) c1 + a x3

3
(
y +

√
y2 − ax

)2
x

(2)x = 3c1(ax− 4y2)
√
y2 − ax+ (−9axy + 12y3) c1 + a x3

3
(
y −

√
y2 − ax

)2
x

Verification of solutions

x = −3c1(ax− 4y2)
√
y2 − ax+ (−9axy + 12y3) c1 + a x3

3
(
y +

√
y2 − ax

)2
x

Verified OK.

x = 3c1(ax− 4y2)
√
y2 − ax+ (−9axy + 12y3) c1 + a x3

3
(
y −

√
y2 − ax

)2
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 796� �
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+a = 0,y(x), singsol=all)� �
y(x)

=

(
4x2(

−36c21a+8x3+12
√

a
(
9c21a−4x3

)
c1
) 1

3
+ 2x+

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3

)
x

12c1

+
3ac1

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 2
3 + 2x

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3 + 4x2

y(x) =

−
x

((
1 + i

√
3
) (

−36c21a+ 8x3 + 12
√
a (9c21a− 4x3) c1

) 2
3 − 4x

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3 − 4x2(i√3− 1

))
24
(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3
c1

+
6ac1

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3

4i
√
3x2 − i

√
3
(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 2
3 − 4x2 + 4x

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3 −

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 2
3

y(x)

=

((
i
√
3− 1

) (
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 2
3 + 4x

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3 − 4x2(1 + i

√
3
))

x

24
(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3
c1

−
6ac1

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3

4i
√
3x2 − i

√
3
(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 2
3 + 4x2 − 4x

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 1
3 +

(
−36c21a+ 8x3 + 12

√
a (9c21a− 4x3) c1

) 2
3
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3 Solution by Mathematica
Time used: 60.165 (sec). Leaf size: 1553� �
DSolve[x (y'[x])^2-2 y[x] y'[x]+a==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
e−

3c1
2

(
a4x4 +

(
−a6x6 + 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1

)
2/3 − a2x2 3

√
−a6x6 + 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1 + 8ae3c1x

)
4 3
√

−a6x6 + 20a3e3c1x3 + 8
√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1

y(x)

→
ie−

3c1
2

(
−
((√

3− i
)
a4x4)+ (√3 + i

) (
−a6x6 + 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1

)
2/3 + 2ia2x2 3

√
−a6x6 + 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1 − 8

(√
3− i

)
ae3c1x

)
8 3
√

−a6x6 + 20a3e3c1x3 + 8
√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1

y(x)

→
e−

3c1
2

(
i
(√

3 + i
)
a4x4 − i

(√
3− i

) (
−a6x6 + 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1

)
2/3 − 2a2x2 3

√
−a6x6 + 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 + 8e6c1 + 8i

(√
3 + i

)
ae3c1x

)
8 3
√

−a6x6 + 20a3e3c1x3 + 8
√

e3c1 (−a3x3 + e3c1) 3 + 8e6c1
y(x)

→
e−

3c1
2

(
a4x4 +

(
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1

)
2/3 + a2x2 3

√
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1 + 8ae3c1x

)
4 3
√

a6x6 − 20a3e3c1x3 + 8
√

e3c1 (−a3x3 + e3c1) 3 − 8e6c1
y(x)

→
e−

3c1
2

((
−1− i

√
3
)
a4x4 + i

(√
3 + i

) (
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1

)
2/3 + 2a2x2 3

√
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1 − 8i

(√
3− i

)
ae3c1x

)
8 3
√
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1

y(x)

→
e−

3c1
2

(
i
(√

3 + i
)
a4x4 − i

(√
3− i

) (
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1

)
2/3 + 2a2x2 3

√
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1 + 8i

(√
3 + i

)
ae3c1x

)
8 3
√
a6x6 − 20a3e3c1x3 + 8

√
e3c1 (−a3x3 + e3c1) 3 − 8e6c1
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30.8 problem 867
30.8.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8133

Internal problem ID [4104]
Internal file name [OUTPUT/3597_Sunday_June_05_2022_09_45_32_AM_68194120/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 867.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x− 2yy′ = −ax

30.8.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− 2yp = −ax

Solving for y from the above results in

y = x(p2 + a)
2p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + a

2p
g = 0

Hence (2) becomes

p− p2 + a

2p = x

(
1− p2 + a

2p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p2 + a

2p = 0

Solving for p from the above gives

p =
√
a

p = −
√
a

Substituting these in (1A) gives

y = x
√
a

y = −x
√
a

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)2+a

2p(x)

x
(
1− p(x)2+a

2p(x)2

) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = −1
x

q(x) = 0
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Hence the ode is

p′(x)− p(x)
x

= 0

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dxµp = 0

d
dx

(p
x

)
= 0

Integrating gives
p

x
= c1

Dividing both sides by the integrating factor µ = 1
x
results in

p(x) = c1x

Substituing the above solution for p in (2A) gives

y = c21x
2 + a

2c1

Summary
The solution(s) found are the following

(1)y = x
√
a

(2)y = −x
√
a

(3)y = c21x
2 + a

2c1
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Verification of solutions

y = x
√
a

Verified OK.

y = −x
√
a

Verified OK.

y = c21x
2 + a

2c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 33� �
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+a*x = 0,y(x), singsol=all)� �

y(x) = x
√
a

y(x) = −x
√
a

y(x) =

(
x2

c21
+ a
)
c1

2
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3 Solution by Mathematica
Time used: 16.916 (sec). Leaf size: 400� �
DSolve[x (y'[x])^2-2 y[x] y'[x]+a x==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −

√
ax tan(c1 − i log(x))√
sec2(c1 − i log(x))

y(x) →
√
ax tan(c1 − i log(x))√
sec2(c1 − i log(x))

y(x) → −
√
ax tan(i log(x) + c1)√
sec2(i log(x) + c1)

y(x) →
√
ax tan(i log(x) + c1)√
sec2(i log(x) + c1)

y(x) → −
√
ax

y(x) →
√
ax

y(x)

→
i
√
ae2iInterval[{0,π}]

(
e2iInterval[{0,π}]

√
x2e2iInterval[{0,π}](

x2+e2iInterval[{0,π}]
)2 − x4

√
x2e2iInterval[{0,π}](

x2+e2iInterval[{0,π}]
)2
)

2x
y(x)

→
i
√
ae2iInterval[{0,π}]

(
x4
√

x2e2iInterval[{0,π}](
x2+e2iInterval[{0,π}]

)2 − e2iInterval[{0,π}]
√

x2e2iInterval[{0,π}](
x2+e2iInterval[{0,π}]

)2
)

2x
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30.9 problem 868
30.9.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8138

Internal problem ID [4105]
Internal file name [OUTPUT/3598_Sunday_June_05_2022_09_45_40_AM_9763423/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 868.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x− 2yy′ + 2y = −x

30.9.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x− 2yp+ 2y = −x

Solving for y from the above results in

y = x(p2 + 1)
2p− 2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + 1
2p− 2

g = 0

Hence (2) becomes

p− p2 + 1
2p− 2 = x

(
2p

2p− 2 − 2(p2 + 1)
(2p− 2)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p2 + 1
2p− 2 = 0

Solving for p from the above gives

p = 1 +
√
2

p = −
√
2 + 1

Substituting these in (1A) gives

y = x+
√
2x

y = x−
√
2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)2+1

2p(x)−2

x

(
2p(x)

2p(x)−2 −
2
(
p(x)2+1

)
(2p(x)−2)2

) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = −1
x

q(x) = −1
x
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Hence the ode is

p′(x)− p(x)
x

= −1
x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µp) = (µ)

(
−1
x

)
d
dx

(p
x

)
=
(
1
x

)(
−1
x

)
d
(p
x

)
=
(
− 1
x2

)
dx

Integrating gives

p

x
=
∫

− 1
x2 dx

p

x
= 1

x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

p(x) = c1x+ 1

Substituing the above solution for p in (2A) gives

y = (c1x+ 1)2 + 1
2c1

Summary
The solution(s) found are the following

(1)y = x+
√
2x

(2)y = x−
√
2x

(3)y = (c1x+ 1)2 + 1
2c1
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Verification of solutions

y = x+
√
2x

Verified OK.

y = x−
√
2x

Verified OK.

y = (c1x+ 1)2 + 1
2c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+x+2*y(x) = 0,y(x), singsol=all)� �

y(x) =
(
1−

√
2
)
x

y(x) = x
(
1 +

√
2
)

y(x) = 2c21 + 2c1x+ x2

2c1
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3 Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 78� �
DSolve[x (y'[x])^2-2 y[x] y'[x]+x +2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2e

−c1x2 + x− ec1

y(x) → −ec1x2 + x− e−c1

2
y(x) → x−

√
2x

y(x) →
(
1 +

√
2
)
x
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30.10 problem 869
Internal problem ID [4106]
Internal file name [OUTPUT/3599_Sunday_June_05_2022_09_45_47_AM_8572646/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 869.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y′
2
x− 3yy′ = −9x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
3y
2 + 3

√
y2−4x3

2
x

(1)

y′ =
3y
2 − 3

√
y2−4x3

2
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
3y
2 + 3

√
−4x3+y2

2
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
3
(
y +

√
−4x3 + y2

)
(b3 − a2)

2x −
9
(
y +

√
−4x3 + y2

)2
a3

4x2

−

(
−
3
(
y +

√
−4x3 + y2

)
2x2 − 9x√

−4x3 + y2

)
(xa2 + ya3 + a1)

−
3
(
1 + y√

−4x3+y2

)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−−36x4a2 + 24x4b3 − 84x3ya3 + 9(−4x3 + y2)
3
2 a3 + 2b2x2√−4x3 + y2 + 3

√
−4x3 + y2 y2a3 − 12x3a1 + 6x2yb2 + 12y3a3 + 6

√
−4x3 + y2 xb1 − 6

√
−4x3 + y2 ya1 + 6xyb1 − 6y2a1

4x2
√
−4x3 + y2

= 0

Setting the numerator to zero gives

(6E)36x4a2 − 24x4b3 + 84x3ya3 − 9
(
−4x3 + y2

) 3
2 a3 − 2b2x2

√
−4x3 + y2

− 3
√

−4x3 + y2 y2a3 + 12x3a1 − 6x2yb2 − 12y3a3
− 6
√

−4x3 + y2 xb1 + 6
√
−4x3 + y2 ya1 − 6xyb1 + 6y2a1 = 0

Simplifying the above gives

(6E)36x4a2+36x3ya3−9
(
−4x3+y2

) 3
2 a3+6

(
−4x3+y2

)
xb3−12

(
−4x3+y2

)
ya3

− 2b2x2
√

−4x3 + y2 − 3
√

−4x3 + y2 y2a3 + 36x3a1 − 6x2yb2 − 6x y2b3
+ 6
(
−4x3 + y2

)
a1 − 6

√
−4x3 + y2 xb1 + 6

√
−4x3 + y2 ya1 − 6xyb1 = 0
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Since the PDE has radicals, simplifying gives

36x4a2 − 24x4b3 + 36x3
√

−4x3 + y2 a3 + 84x3ya3 + 12x3a1

− 2b2x2
√

−4x3 + y2 − 6x2yb2 − 12
√
−4x3 + y2 y2a3 − 12y3a3

− 6
√

−4x3 + y2 xb1 − 6xyb1 + 6
√
−4x3 + y2 ya1 + 6y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−4x3 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4x3 + y2 = v3

}
The above PDE (6E) now becomes

(7E)36v41a2 + 84v31v2a3 + 36v31v3a3 − 24v41b3 + 12v31a1 − 12v32a3 − 12v3v22a3
− 6v21v2b2 − 2b2v21v3 + 6v22a1 + 6v3v2a1 − 6v1v2b1 − 6v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(36a2 − 24b3) v41 + 84v31v2a3 + 36v31v3a3 + 12v31a1 − 6v21v2b2 − 2b2v21v3
− 6v1v2b1 − 6v3v1b1 − 12v32a3 − 12v3v22a3 + 6v22a1 + 6v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
12a1 = 0

−12a3 = 0
36a3 = 0
84a3 = 0
−6b1 = 0
−6b2 = 0
−2b2 = 0

36a2 − 24b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y
2 −

(
3y
2 + 3

√
−4x3+y2

2
x

)
(x)

= −3
√
−4x3 + y2

2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−3
√

−4x3+y2

2

dy

Which results in

S = −
2 ln

(
y +

√
−4x3 + y2

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
3y
2 + 3

√
−4x3+y2

2
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4x2
√
−4x3 + y2

(
y +

√
−4x3 + y2

)
Sy = − 2

3
√
−4x3 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 8x3 − 2y2 − 2

√
−4x3 + y2 y

x
√
−4x3 + y2

(
y +

√
−4x3 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
2 ln

(
y +

√
y2 − 4x3

)
3 = −2 ln (x) + c1

Which simplifies to

−
2 ln

(
y +

√
y2 − 4x3

)
3 = −2 ln (x) + c1

Which gives

y = (x3 + 4 e3c1) e−
3c1
2

2

Summary
The solution(s) found are the following

(1)y = (x3 + 4 e3c1) e−
3c1
2

2
Verification of solutions

y = (x3 + 4 e3c1) e−
3c1
2

2

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
−3

√
−4x3+y2

2 + 3y
2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
3
(
−
√
−4x3 + y2 + y

)
(b3 − a2)

2x −
9
(
−
√
−4x3 + y2 + y

)2
a3

4x2

−

(
−
3
(
−
√
−4x3 + y2 + y

)
2x2 + 9x√

−4x3 + y2

)
(xa2 + ya3 + a1)

−
3
(
− y√

−4x3+y2
+ 1
)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−36x4a2 − 24x4b3 + 84x3ya3 + 9(−4x3 + y2)
3
2 a3 + 2b2x2√−4x3 + y2 + 3

√
−4x3 + y2 y2a3 + 12x3a1 − 6x2yb2 − 12y3a3 + 6

√
−4x3 + y2 xb1 − 6

√
−4x3 + y2 ya1 − 6xyb1 + 6y2a1

4x2
√
−4x3 + y2

= 0

Setting the numerator to zero gives

(6E)−36x4a2 + 24x4b3 − 84x3ya3 − 9
(
−4x3 + y2

) 3
2 a3 − 2b2x2

√
−4x3 + y2

− 3
√

−4x3 + y2 y2a3 − 12x3a1 + 6x2yb2 + 12y3a3
− 6
√

−4x3 + y2 xb1 + 6
√

−4x3 + y2 ya1 + 6xyb1 − 6y2a1 = 0

Simplifying the above gives

(6E)
−36x4a2 − 36x3ya3 − 9

(
−4x3 + y2

) 3
2 a3 − 6

(
−4x3 + y2

)
xb3

+ 12
(
−4x3 + y2

)
ya3 − 2b2x2

√
−4x3 + y2 − 3

√
−4x3 + y2 y2a3

− 36x3a1 + 6x2yb2 + 6x y2b3 − 6
(
−4x3 + y2

)
a1

− 6
√

−4x3 + y2 xb1 + 6
√
−4x3 + y2 ya1 + 6xyb1 = 0
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Since the PDE has radicals, simplifying gives

−36x4a2 + 24x4b3 + 36x3
√

−4x3 + y2 a3 − 84x3ya3 − 12x3a1

− 2b2x2
√

−4x3 + y2 + 6x2yb2 − 12
√
−4x3 + y2 y2a3 + 12y3a3

− 6
√

−4x3 + y2 xb1 + 6xyb1 + 6
√
−4x3 + y2 ya1 − 6y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4x3 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4x3 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−36v41a2 − 84v31v2a3 + 36v31v3a3 + 24v41b3 − 12v31a1 + 12v32a3 − 12v3v22a3
+ 6v21v2b2 − 2b2v21v3 − 6v22a1 + 6v3v2a1 + 6v1v2b1 − 6v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−36a2 + 24b3) v41 − 84v31v2a3 + 36v31v3a3 − 12v31a1 + 6v21v2b2 − 2b2v21v3
+ 6v1v2b1 − 6v3v1b1 + 12v32a3 − 12v3v22a3 − 6v22a1 + 6v3v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−12a1 = 0
−6a1 = 0
6a1 = 0

−84a3 = 0
−12a3 = 0
12a3 = 0
36a3 = 0
−6b1 = 0
6b1 = 0

−2b2 = 0
6b2 = 0

−36a2 + 24b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y
2 −

(
−3

√
−4x3+y2

2 + 3y
2

x

)
(x)

= 3
√
−4x3 + y2

2
ξ = 0

8151



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3
√

−4x3+y2

2

dy

Which results in

S =
2 ln

(
y +

√
−4x3 + y2

)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−3

√
−4x3+y2

2 + 3y
2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x2
√
−4x3 + y2

(
y +

√
−4x3 + y2

)
Sy =

2
3
√
−4x3 + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln
(
y +

√
y2 − 4x3

)
3 = c1

Which simplifies to

2 ln
(
y +

√
y2 − 4x3

)
3 = c1

Which gives

y = (4x3 + e3c1) e−
3c1
2

2

Summary
The solution(s) found are the following

(1)y = (4x3 + e3c1) e−
3c1
2

2
Verification of solutions

y = (4x3 + e3c1) e−
3c1
2

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 51� �
dsolve(x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+9*x^2 = 0,y(x), singsol=all)� �

y(x) = −2x 3
2

y(x) = 2x 3
2

y(x) = 4x3 + c21
2c1

y(x) = c21x
3 + 4
2c1

3 Solution by Mathematica
Time used: 0.31 (sec). Leaf size: 79� �
DSolve[x (y'[x])^2-3 y[x] y'[x]+9 x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2e

− 3c1
2
(
4x3 + e3c1

)
y(x) → 1

2e
− 3c1

2
(
4x3 + e3c1

)
y(x) → −2x3/2

y(x) → 2x3/2
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30.11 problem 870
30.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8157

Internal problem ID [4107]
Internal file name [OUTPUT/3600_Sunday_June_05_2022_09_45_57_AM_97979976/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 870.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
2
x− (2x+ 3y) y′ + 6y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2 (1)

y′ = 3y
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

2 dx

= 2x+ c1

Summary
The solution(s) found are the following

(1)y = 2x+ c1
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Verification of solutions

y = 2x+ c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3y
x

Where f(x) = 3
x
and g(y) = y. Integrating both sides gives

1
y
dy = 3

x
dx∫ 1

y
dy =

∫ 3
x
dx

ln (y) = 3 ln (x) + c2

y = e3 ln(x)+c2

= c2x
3

Summary
The solution(s) found are the following

(1)y = c2x
3

Verification of solutions

y = c2x
3

Verified OK.

30.11.1 Maple step by step solution

Let’s solve
y′2x− (2x+ 3y) y′ + 6y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x
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∫ (
y′2x− (2x+ 3y) y′ + 6y

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2x− (2x+ 3y) y′ + 6y

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x)^2-(2*x+3*y(x))*diff(y(x),x)+6*y(x) = 0,y(x), singsol=all)� �

y(x) = c1x
3

y(x) = 2x+ c1

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 26� �
DSolve[x (y'[x])^2-(2 x+3 y[x])y'[x]+6 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
3

y(x) → 2x+ c1
y(x) → 0
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30.12 problem 871
30.12.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8159

Internal problem ID [4108]
Internal file name [OUTPUT/3601_Sunday_June_05_2022_09_46_04_AM_76575108/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 871.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _dAlembert]

y′
2
x− ayy′ = −b

30.12.1 Solving as dAlembert ode

Let p = y′ the ode becomes

−ayp+ p2x = −b

Solving for y from the above results in

y = px

a
+ b

ap
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

a

g = b

ap

Hence (2) becomes

p− p

a
=
(
x

a
− b

a p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p

a
= 0

Solving for p from the above gives

p = 0

None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)

a
x
a
− b

ap(x)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
a

− b
a p2

p− p
a

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1
p (a− 1)

q(p) = − b

p3 (a− 1)
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Hence the ode is
d

dp
x(p)− x(p)

p (a− 1) = − b

p3 (a− 1)
The integrating factor µ is

µ = e
∫
− 1

p(a−1)dp

= e−
ln(p)
a−1

Which simplifies to

µ = p−
1

a−1

The ode becomes
d
dp(µx) = (µ)

(
− b

p3 (a− 1)

)
d
dp

(
p−

1
a−1x

)
=
(
p−

1
a−1

)(
− b

p3 (a− 1)

)
d
(
p−

1
a−1x

)
=
(
−b p

−3a+2
a−1

a− 1

)
dp

Integrating gives

p−
1

a−1x =
∫

−b p
−3a+2
a−1

a− 1 dp

p−
1

a−1x = b p1−
3a−2
a−1

2a− 1 + c1

Dividing both sides by the integrating factor µ = p−
1

a−1 results in

x(p) = p
1

a−1 b p1−
3a−2
a−1

2a− 1 + c1p
1

a−1

which simplifies to

x(p) = b

(2a− 1) p2 + c1p
1

a−1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = ya+
√
y2a2 − 4bx
2x

p = −−ya+
√
y2a2 − 4bx
2x
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Substituting the above in the solution for x found above gives

x

=
2c1
(
ya
(
a2

a−2
a−1 − 2−

1
a−1

)√
y2a2 − 4bx+ (a3y2 + bx) 2

a−2
a−1 − a2−

1
a−1 (ay2 + 4bx)

)(
ya+

√
y2a2−4bx
x

) 1
a−1 + 4b x2

(2a− 1)
(
ya+

√
y2a2 − 4bx

)2
x =

4
(
a− 1

2

) (
y2a2 − ay

√
y2a2 − 4bx− 2bx

)
c1
(
−−ya+

√
y2a2−4bx
2x

) 1
a−1 + 4b x2

(2a− 1)
(
ya−

√
y2a2 − 4bx

)2
Summary
The solution(s) found are the following

(1)x

=
2c1
(
ya
(
a2

a−2
a−1 − 2−

1
a−1

)√
y2a2 − 4bx+ (a3y2 + bx) 2

a−2
a−1 − a2−

1
a−1 (ay2 + 4bx)

)(
ya+

√
y2a2−4bx
x

) 1
a−1 + 4b x2

(2a− 1)
(
ya+

√
y2a2 − 4bx

)2
(2)x =

4
(
a− 1

2

) (
y2a2 − ay

√
y2a2 − 4bx− 2bx

)
c1
(
−−ya+

√
y2a2−4bx
2x

) 1
a−1 + 4b x2

(2a− 1)
(
ya−

√
y2a2 − 4bx

)2
Verification of solutions
x

=
2c1
(
ya
(
a2

a−2
a−1 − 2−

1
a−1

)√
y2a2 − 4bx+ (a3y2 + bx) 2

a−2
a−1 − a2−

1
a−1 (ay2 + 4bx)

)(
ya+

√
y2a2−4bx
x

) 1
a−1 + 4b x2

(2a− 1)
(
ya+

√
y2a2 − 4bx

)2
Warning, solution could not be verified

x =
4
(
a− 1

2

) (
y2a2 − ay

√
y2a2 − 4bx− 2bx

)
c1
(
−−ya+

√
y2a2−4bx
2x

) 1
a−1 + 4b x2

(2a− 1)
(
ya−

√
y2a2 − 4bx

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 381� �
dsolve(x*diff(y(x),x)^2-a*y(x)*diff(y(x),x)+b = 0,y(x), singsol=all)� �
4
(
2−

1
a−1y(x)

(
a− 1

2

)2
a
√

a2y (x)2 − 4bx− bx2
a−2
a−1

4 + 2−
1

a−1

((
a− 1

2

)2
ay(x)2 − 2bx(a− 1)

)
a

)
c1

(
ay(x)+

√
a2y(x)2−4bx
x

) 1
a−1

+ 4x
(
y(x)

(
a− 1

2

)√
a2y (x)2 − 4bx+

(
a2 − 1

2a
)
y(x)2 − 2bx

)
a

(2a− 1)
(
ay (x) +

√
a2y (x)2 − 4bx

)2

= 0

−4c1
(
−2−

1
a−1y(x)

(
a− 1

2

)2
a
√

a2y (x)2 − 4bx− bx2
a−2
a−1

4 + 2−
1

a−1

((
a− 1

2

)2
ay(x)2 − 2bx(a− 1)

)
a

)(
ay(x)−

√
a2y(x)2−4bx
x

) 1
a−1

+ 4
(
−y(x)

(
a− 1

2

)√
a2y (x)2 − 4bx+

(
a2 − 1

2a
)
y(x)2 − 2bx

)
xa

(2a− 1)
(
ay (x)−

√
a2y (x)2 − 4bx

)2

= 0
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3 Solution by Mathematica
Time used: 0.712 (sec). Leaf size: 143� �
DSolve[x (y'[x])^2-a y[x] y'[x]+b==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

2
(
(a− 1) log

(√
a2y(x)2 − 4bx+ (a− 1)y(x)

)
+ a log

(√
a2y(x)2 − 4bx− ay(x)

))
2a− 1 = c1, y(x)


Solve

2
(
(a− 1) log

(√
a2y(x)2 − 4bx− ay(x) + y(x)

)
+ a log

(√
a2y(x)2 − 4bx+ ay(x)

))
2a− 1 = c1, y(x)
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30.13 problem 872
30.13.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8165

Internal problem ID [4109]
Internal file name [OUTPUT/3602_Sunday_June_05_2022_09_46_13_AM_7394976/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 872.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′
2
x+ ayy′ = −bx

30.13.1 Solving as dAlembert ode

Let p = y′ the ode becomes

ayp+ p2x = −bx

Solving for y from the above results in

y = −x(p2 + b)
ap

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p2 − b

ap

g = 0

Hence (2) becomes

p− −p2 − b

ap
= x

(
−2
a
− −p2 − b

a p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −p2 − b

ap
= 0

Solving for p from the above gives

p =
√

− (1 + a) b
1 + a

p = −
√
− (1 + a) b
1 + a

Substituting these in (1A) gives

y = − bx√
−ab− b

y = bx√
−ab− b

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −p(x)2−b

ap(x)

x
(
− 2

a
− −p(x)2−b

ap(x)2

) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= ((1 + a) p2 + b) p
x (−p2 + b)
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Where f(x) = − 1
x
and g(p) = −

(
(1+a)p2+b

)
p

−p2+b
. Integrating both sides gives

1
− ((1+a)p2+b)p

−p2+b

dp = −1
x
dx

∫ 1
− ((1+a)p2+b)p

−p2+b

dp =
∫

−1
x
dx

−(−a− 2) ln (a p2 + p2 + b)
2 (1 + a) − ln (p) = − ln (x) + c1

Raising both side to exponential gives

e−
(−a−2) ln

(
a p2+p2+b

)
2(1+a) −ln(p) = e− ln(x)+c1

Which simplifies to

((1 + a) p2 + b)
2+a
2a+2

p
= c2

x

Substituing the above solution for p in (2A) gives

y =
x

(
−RootOf

(
−
(
_Z2a+ _Z2 + b

) 2+a
2a+2 x+ c2_Z

)2
− b

)
aRootOf

(
−
(
_Z2a+ _Z2 + b

) 2+a
2a+2 x+ c2_Z

)

Summary
The solution(s) found are the following

(1)y = − bx√
−ab− b

(2)y = bx√
−ab− b

(3)y =
x

(
−RootOf

(
−
(
_Z2a+ _Z2 + b

) 2+a
2a+2 x+ c2_Z

)2
− b

)
aRootOf

(
−
(
_Z2a+ _Z2 + b

) 2+a
2a+2 x+ c2_Z

)
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Verification of solutions

y = − bx√
−ab− b

Verified OK.

y = bx√
−ab− b

Verified OK.

y =
x

(
−RootOf

(
−
(
_Z2a+ _Z2 + b

) 2+a
2a+2 x+ c2_Z

)2
− b

)
aRootOf

(
−
(
_Z2a+ _Z2 + b

) 2+a
2a+2 x+ c2_Z

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 217� �
dsolve(x*diff(y(x),x)^2+a*y(x)*diff(y(x),x)+b*x = 0,y(x), singsol=all)� �
−c12

2+a
2+2a

(
ay(x)−

√
a2y (x)2 − 4b x2

)(
a

(
−y(x)(a+1)

√
a2y(x)2−4b x2+

(
a2+a

)
y(x)2−2b x2

)
x2

)−a−2
2+2a

+ x2

x
= 0

c12
2+a
2+2a

(
ay(x) +

√
a2y (x)2 − 4b x2

)(
a

(
y(x)(a+1)

√
a2y(x)2−4b x2+

(
a2+a

)
y(x)2−2b x2

)
x2

)−a−2
2+2a

+ x2

x
= 0
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3 Solution by Mathematica
Time used: 2.082 (sec). Leaf size: 423� �
DSolve[x (y'[x])^2+a y[x] y'[x]+b x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−
i

2 log
(
−i
√

4b− a2y(x)2
x2 + ay(x)

x
+ 2i

√
b

)
+ 2(a+ 1) log

(
i
√

4b− a2y(x)2
x2 + ay(x)

x
− 2i

√
b

)
− (a+ 2) log

 i(a+2)y(x)
√

4b−a2y(x)2
x2

x
+ 2

√
b

(√
4b− a2y(x)2

x2 − i(a+2)y(x)
x

)
+ a2y(x)2

x2 − 4b


4(a+ 1) = c1

− 1
2i log(x), y(x)



Solve


i

2(a+ 1) log
(
−i
√

4b− a2y(x)2
x2 + ay(x)

x
+ 2i

√
b

)
+ 2 log

(
i
√
4b− a2y(x)2

x2 + ay(x)
x

− 2i
√
b

)
− (a+ 2) log

−
i(a+2)y(x)

√
4b−a2y(x)2

x2

x
+ 2

√
b

(√
4b− a2y(x)2

x2 + i(a+2)y(x)
x

)
+ a2y(x)2

x2 − 4b


4(a+ 1) = 1

2i log(x)

+ c1, y(x)
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30.14 problem 873
30.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8172

Internal problem ID [4110]
Internal file name [OUTPUT/3603_Sunday_June_05_2022_09_46_24_AM_76701834/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 873.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2
x− (1 + yx) y′ + y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y (1)

y′ = 1
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
y
dy = x+ c1

ln (y) = x+ c1

y = ex+c1

y = c1ex

Summary
The solution(s) found are the following

(1)y = c1ex
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Verification of solutions

y = c1ex

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫ 1

x
dx

= ln (x) + c2

Summary
The solution(s) found are the following

(1)y = ln (x) + c2

Verification of solutions

y = ln (x) + c2

Verified OK.

30.14.1 Maple step by step solution

Let’s solve
y′2x− (1 + yx) y′ + y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2x− (1 + yx) y′ + y

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2x− (1 + yx) y′ + y

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)^2-(1+x*y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = ln (x) + c1
y(x) = exc1

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 20� �
DSolve[x (y'[x])^2-(1+x y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → log(x) + c1
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30.15 problem 874
30.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8176

Internal problem ID [4111]
Internal file name [OUTPUT/3604_Sunday_June_05_2022_09_46_32_AM_11056201/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 874.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
2
x+ (1− x) yy′ − y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y (1)

y′ = −y

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
y
dy = x+ c1

ln (y) = x+ c1

y = ex+c1

y = c1ex
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Summary
The solution(s) found are the following

(1)y = c1ex

Verification of solutions

y = c1ex

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y

x

Where f(x) = − 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = −1

x
dx∫ 1

y
dy =

∫
−1
x
dx

ln (y) = − ln (x) + c2

y = e− ln(x)+c2

= c2
x

Summary
The solution(s) found are the following

(1)y = c2
x

Verification of solutions

y = c2
x

Verified OK.
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30.15.1 Maple step by step solution

Let’s solve
y′2x+ (1− x) yy′ − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
1dx+ c1

• Evaluate integral
ln (y) = x+ c1

• Solve for y
y = ex+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)^2+(1-x)*y(x)*diff(y(x),x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1
x

y(x) = exc1
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3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 26� �
DSolve[x (y'[x])^2+(1-x)y[x] y'[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → c1
x

y(x) → 0
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30.16 problem 875
30.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8180

Internal problem ID [4112]
Internal file name [OUTPUT/3605_Sunday_June_05_2022_09_46_39_AM_89849220/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 875.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
2
x+

(
1− x2y

)
y′ − yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = yx (1)

y′ = −1
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy
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Where f(x) = x and g(y) = y. Integrating both sides gives

1
y
dy = x dx∫ 1

y
dy =

∫
x dx

ln (y) = x2

2 + c1

y = ex2
2 +c1

= c1e
x2
2

Summary
The solution(s) found are the following

(1)y = c1e
x2
2

Verification of solutions

y = c1e
x2
2

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−1
x
dx

= − ln (x) + c2

Summary
The solution(s) found are the following

(1)y = − ln (x) + c2

Verification of solutions

y = − ln (x) + c2

Verified OK.
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30.16.1 Maple step by step solution

Let’s solve
y′2x+ (1− x2y) y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2x+ (1− x2y) y′ − yx

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2x+ (1− x2y) y′ − yx

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(x*diff(y(x),x)^2+(1-x^2*y(x))*diff(y(x),x)-x*y(x) = 0,y(x), singsol=all)� �

y(x) = ex2
2 c1

y(x) = − ln (x) + c1
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 28� �
DSolve[x (y'[x])^2+(1-x^2 y[x])y'[x]-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x2
2

y(x) → − log(x) + c1
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30.17 problem 876
30.17.1 Solving as first order nonlinear p but separable ode . . . . . . . 8182
30.17.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8184

Internal problem ID [4113]
Internal file name [OUTPUT/3606_Sunday_June_05_2022_09_46_46_AM_26354368/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 876.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert", "first_order_non-
linear_p_but_separable"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , _dAlembert]

(x+ 1) y′2 − y = 0

30.17.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x+1 , g = y. Hence the ode is

(y′)2 = y

x+ 1
Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1

x+ 1 > 0

y > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1
√
y
dy =

(√
1

x+ 1

)
dx

− 1
√
y
dy =

(√
1

x+ 1

)
dx

Integrating now gives the solutions.∫ 1
√
y
dy =

∫ √ 1
x+ 1dx+ c1∫

− 1
√
y
dy =

∫ √ 1
x+ 1dx+ c1

Integrating gives

2√y = 2(x+ 1)
√

1
x+ 1 + c1

−2√y = 2(x+ 1)
√

1
x+ 1 + c1

Therefore

y =
√

1
x+ 1 xc1 +

√
1

x+ 1 c1 +
c21
4 + x+ 1

y =
√

1
x+ 1 xc1 +

√
1

x+ 1 c1 +
c21
4 + x+ 1
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Summary
The solution(s) found are the following

(1)y =
√

1
x+ 1 xc1 +

√
1

x+ 1 c1 +
c21
4 + x+ 1

(2)y =
√

1
x+ 1 xc1 +

√
1

x+ 1 c1 +
c21
4 + x+ 1

Verification of solutions

y =
√

1
x+ 1 xc1 +

√
1

x+ 1 c1 +
c21
4 + x+ 1

Verified OK. {0 < y, 0 < 1/(x+1)}

y =
√

1
x+ 1 xc1 +

√
1

x+ 1 c1 +
c21
4 + x+ 1

Verified OK. {0 < y, 0 < 1/(x+1)}

30.17.2 Solving as dAlembert ode

Let p = y′ the ode becomes

(x+ 1) p2 − y = 0

Solving for y from the above results in

y = p2x+ p2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p2

g = p2
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Hence (2) becomes

−p2 + p = (2xp+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = x+ 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2p (x)x+ 2p (x) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
2 + 2x

q(x) = 1
2 + 2x

Hence the ode is

p′(x) + p(x)
2 + 2x = 1

2 + 2x

The integrating factor µ is

µ = e
∫ 1

2+2xdx

=
√
x+ 1
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The ode becomes
d
dx(µp) = (µ)

(
1

2 + 2x

)
d
dx

(√
x+ 1 p

)
=
(√

x+ 1
)( 1

2 + 2x

)
d
(√

x+ 1 p
)
=
(

1
2
√
x+ 1

)
dx

Integrating gives
√
x+ 1 p =

∫ 1
2
√
x+ 1

dx
√
x+ 1 p =

√
x+ 1 + c1

Dividing both sides by the integrating factor µ =
√
x+ 1 results in

p(x) = 1 + c1√
x+ 1

Substituing the above solution for p in (2A) gives

y =
(
1 + c1√

x+ 1

)2

x+
(
1 + c1√

x+ 1

)2

Summary
The solution(s) found are the following

(1)y = 0
(2)y = x+ 1

(3)y =
(
1 + c1√

x+ 1

)2

x+
(
1 + c1√

x+ 1

)2

Verification of solutions

y = 0

Verified OK. {0 < y, 0 < 1/(x+1)}

y = x+ 1

Verified OK. {0 < y, 0 < 1/(x+1)}

y =
(
1 + c1√

x+ 1

)2

x+
(
1 + c1√

x+ 1

)2

Verified OK. {0 < y, 0 < 1/(x+1)}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 53� �
dsolve((1+x)*diff(y(x),x)^2 = y(x),y(x), singsol=all)� �

y(x) = 0

y(x) =

(
x+ 1 +

√
(x+ 1) (c1 + 1)

)2
x+ 1

y(x) =

(
−x− 1 +

√
(x+ 1) (c1 + 1)

)2
x+ 1

3 Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 57� �
DSolve[(1+x) (y'[x])^2==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− c1
√
x+ 1 + 1 + c1

2

4
y(x) → x+ c1

√
x+ 1 + 1 + c1

2

4
y(x) → 0
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30.18 problem 877
30.18.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8188

Internal problem ID [4114]
Internal file name [OUTPUT/3607_Sunday_June_05_2022_09_47_31_AM_6266746/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 877.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _dAlembert]

(x+ 1) y′2 − (y + x) y′ + y = 0

30.18.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

(x+ 1) p2 − (y + x) p+ y = 0

Solving for y from the above results in

y = p(xp+ p− x)
p− 1 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ p2

p− 1

= xp+ p2

p− 1
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = p2

p− 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ c21
c1 − 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p2

p−1 , then the
above equation becomes

x+ g′(p) = x+ 2p
p− 1 − p2

(p− 1)2

= 0

8189



Solving the above for p results in

p1 =
√
x+ 1 + 1√
x+ 1

p2 =
√
x+ 1− 1√
x+ 1

Substituting the above back in (1) results in

y1 =
(x+ 2)

√
x+ 1 + 2x+ 2√
x+ 1

y2 =
(x+ 2)

√
x+ 1− 2x− 2√
x+ 1

Summary
The solution(s) found are the following

(1)y = c1x+ c21
c1 − 1

(2)y = (x+ 2)
√
x+ 1 + 2x+ 2√
x+ 1

(3)y = (x+ 2)
√
x+ 1− 2x− 2√
x+ 1

Verification of solutions

y = c1x+ c21
c1 − 1

Verified OK.

y = (x+ 2)
√
x+ 1 + 2x+ 2√
x+ 1

Verified OK.

y = (x+ 2)
√
x+ 1− 2x− 2√
x+ 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 45� �
dsolve((1+x)*diff(y(x),x)^2-(x+y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = x+ 2− 2
√
x+ 1

y(x) = x+ 2 + 2
√
x+ 1

y(x) = c1(c1x+ c1 − x)
c1 − 1

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 51� �
DSolve[(1+x) (y'[x])^2-(x+y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1

(
x+ c1

−1 + c1

)
y(x) → x− 2

√
x+ 1 + 2

y(x) → x+ 2
√
x+ 1 + 2

8191



30.19 problem 878
30.19.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8192

Internal problem ID [4115]
Internal file name [OUTPUT/3608_Sunday_June_05_2022_09_47_43_AM_86786510/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 878.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

(−x+ a) y′2 + yy′ = b

30.19.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

(−x+ a) p2 + yp = b

Solving for y from the above results in

y = −p2a− p2x− b

p
(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px− p2a− b

p

= px− p2a− b

p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −p2a− b

p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− a c21 − b

c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2a−b
p

, then
the above equation becomes

x+ g′(p) = x− 2a+ p2a− b

p2

= 0
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Solving the above for p results in

p1 =
√

− (−x+ a) b
−x+ a

p2 = −
√

− (−x+ a) b
−x+ a

Substituting the above back in (1) results in

y1 =
2(−x+ a) b√
− (−x+ a) b

y2 = − 2(−x+ a) b√
− (−x+ a) b

Summary
The solution(s) found are the following

(1)y = c1x− a c21 − b

c1

(2)y = 2(−x+ a) b√
− (−x+ a) b

(3)y = − 2(−x+ a) b√
− (−x+ a) b

Verification of solutions

y = c1x− a c21 − b

c1

Verified OK.

y = 2(−x+ a) b√
− (−x+ a) b

Verified OK.

y = − 2(−x+ a) b√
− (−x+ a) b

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 49� �
dsolve((a-x)*diff(y(x),x)^2+y(x)*diff(y(x),x)-b = 0,y(x), singsol=all)� �

y(x) = −2
√

−b (a− x)
y(x) = 2

√
−b (a− x)

y(x) = (x− a) c21 + b

c1

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 59� �
DSolve[(a-x) (y'[x])^2+y[x] y'[x]-b==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− a) + b

c1
y(x) → Indeterminate
y(x) → −2

√
b(x− a)

y(x) → 2
√

b(x− a)
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30.20 problem 880
30.20.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8196

Internal problem ID [4116]
Internal file name [OUTPUT/3609_Sunday_June_05_2022_09_47_55_AM_34380465/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 880.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_rational , _dAlembert]

2y′2x+ (2x− y) y′ − y = −1

30.20.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2p2x+ (2x− y) p− y = −1

Solving for y from the above results in

y = (2p2 + 2p)x
p+ 1 + 1

p+ 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p

g = 1
p+ 1

Hence (2) becomes

−p =
(
2x− 1

(p+ 1)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
2x− 1

(p(x)+1)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

2x(p)− 1
(p+1)2

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = 1
p (p+ 1)2

8197



Hence the ode is

d

dp
x(p) + 2x(p)

p
= 1

p (p+ 1)2

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ)

(
1

p (p+ 1)2
)

d
dp
(
p2x
)
=
(
p2
)( 1

p (p+ 1)2
)

d
(
p2x
)
=
(

p

(p+ 1)2
)

dp

Integrating gives

p2x =
∫

p

(p+ 1)2
dp

p2x = ln (p+ 1) + 1
p+ 1 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) =
ln (p+ 1) + 1

p+1

p2
+ c1

p2

which simplifies to

x(p) =
ln (p+ 1) + 1

p+1 + c1

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −2x+ y +
√
y2 + 4yx+ 4x2 − 8x
4x

p = −2x− y +
√
y2 + 4yx+ 4x2 − 8x

4x

8198



Substituting the above in the solution for x found above gives

x

=
32
((

x+ y
2 +

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y+
√

4x2+(4y−8)x+y2

x

)
+
(
c1
2 − ln (2)

)√
4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (2 + c1)x+ yc1

2

)
x2(

2x+ y +
√
4x2 + (4y − 8)x+ y2

)(
2x− y −

√
4x2 + (4y − 8)x+ y2

)2
x

=
32
((

x+ y
2 −

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y−
√

4x2+(4y−8)x+y2

x

)
+
(
− c1

2 + ln (2)
)√

4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (2 + c1)x+ yc1
2

)
x2(

2x+ y −
√
4x2 + (4y − 8)x+ y2

)(
2x− y +

√
4x2 + (4y − 8)x+ y2

)2
Summary
The solution(s) found are the following

(1)y = 1
(2)x

=
32
((

x+ y
2 +

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y+
√

4x2+(4y−8)x+y2

x

)
+
(
c1
2 − ln (2)

)√
4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (2 + c1)x+ yc1

2

)
x2(

2x+ y +
√
4x2 + (4y − 8)x+ y2

)(
2x− y −

√
4x2 + (4y − 8)x+ y2

)2
(3)x

=
32
((

x+ y
2 −

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y−
√

4x2+(4y−8)x+y2

x

)
+
(
− c1

2 + ln (2)
)√

4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (2 + c1)x+ yc1
2

)
x2(

2x+ y −
√
4x2 + (4y − 8)x+ y2

)(
2x− y +

√
4x2 + (4y − 8)x+ y2

)2
Verification of solutions

y = 1

Verified OK.
x

=
32
((

x+ y
2 +

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y+
√

4x2+(4y−8)x+y2

x

)
+
(
c1
2 − ln (2)

)√
4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (2 + c1)x+ yc1

2

)
x2(

2x+ y +
√
4x2 + (4y − 8)x+ y2

)(
2x− y −

√
4x2 + (4y − 8)x+ y2

)2
Verified OK.
x

=
32
((

x+ y
2 −

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y−
√

4x2+(4y−8)x+y2

x

)
+
(
− c1

2 + ln (2)
)√

4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (2 + c1)x+ yc1
2

)
x2(

2x+ y −
√
4x2 + (4y − 8)x+ y2

)(
2x− y +

√
4x2 + (4y − 8)x+ y2

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 110� �
dsolve(2*x*diff(y(x),x)^2+(2*x-y(x))*diff(y(x),x)+1-y(x) = 0,y(x), singsol=all)� �

y(x) = −2
(
x eRootOf

(
−x e3_Z+2x e2_Z+c1e_Z+_Z e_Z−e_Zx+1

)

− e2RootOf
(
−x e3_Z+2x e2_Z+c1e_Z+_Z e_Z−e_Zx+1

)
x

− 1
2

)
e−RootOf

(
−x e3_Z+2x e2_Z+c1e_Z+_Z e_Z−e_Zx+1

)

3 Solution by Mathematica
Time used: 1.438 (sec). Leaf size: 49� �
DSolve[2 x (y'[x])^2+(2 x-y[x])y'[x]+1-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[{
x=

1
K[1]+1 + log(K[1] + 1)

K[1]2 + c1
K[1]2 , y(x) = 2xK[1]+ 1

K[1] + 1

}
, {y(x), K[1]}

]
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30.21 problem 881
30.21.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8201

Internal problem ID [4117]
Internal file name [OUTPUT/3610_Sunday_June_05_2022_09_48_06_AM_81972137/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 881.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

3y′2x− 6yy′ + 2y = −x

30.21.1 Solving as dAlembert ode

Let p = y′ the ode becomes

3p2x− 6yp+ 2y = −x

Solving for y from the above results in

y = x(3p2 + 1)
6p− 2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p2 + 1
6p− 2

g = 0

Hence (2) becomes

p− 3p2 + 1
6p− 2 = x

(
6p

6p− 2 − 6(3p2 + 1)
(6p− 2)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 3p2 + 1
6p− 2 = 0

Solving for p from the above gives

p = 1

p = −1
3

Substituting these in (1A) gives

y = x

y = −x

3

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 3p(x)2+1

6p(x)−2

x

(
6p(x)

6p(x)−2 −
6
(
3p(x)2+1

)
(6p(x)−2)2

) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = −1
x

q(x) = − 1
3x
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Hence the ode is

p′(x)− p(x)
x

= − 1
3x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µp) = (µ)

(
− 1
3x

)
d
dx

(p
x

)
=
(
1
x

)(
− 1
3x

)
d
(p
x

)
=
(
− 1
3x2

)
dx

Integrating gives

p

x
=
∫

− 1
3x2 dx

p

x
= 1

3x + c1

Dividing both sides by the integrating factor µ = 1
x
results in

p(x) = 1
3 + c1x

Substituing the above solution for p in (2A) gives

y =
3
(1
3 + c1x

)2 + 1
6c1

Summary
The solution(s) found are the following

(1)y = x

(2)y = −x

3

(3)y =
3
(1
3 + c1x

)2 + 1
6c1
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Verification of solutions
y = x

Verified OK.

y = −x

3

Verified OK.

y =
3
(1
3 + c1x

)2 + 1
6c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 32� �
dsolve(3*x*diff(y(x),x)^2-6*y(x)*diff(y(x),x)+x+2*y(x) = 0,y(x), singsol=all)� �

y(x) = x

y(x) = −x

3
y(x) = 4c21 + 2c1x+ x2

6c1
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3 Solution by Mathematica
Time used: 0.314 (sec). Leaf size: 67� �
DSolve[3 x (y'[x])^2- 6 y[x] y'[x]+x +2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
3x
(
−1 + 2 cosh

(
− log(x) +

√
3c1
))

y(x) → −1
3x
(
−1 + 2 cosh

(
log(x) +

√
3c1
))

y(x) → −x

3
y(x) → x
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30.22 problem 882
30.22.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8206

Internal problem ID [4118]
Internal file name [OUTPUT/3611_Sunday_June_05_2022_09_48_14_AM_82416477/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 882.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

(3x+ 1) y′2 − 3(y + 2) y′ = −9

30.22.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

(3x+ 1) p2 − 3(y + 2) p = −9

Solving for y from the above results in

y = 3p2x+ p2 − 6p+ 9
3p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ p2 − 6p+ 9
3p

= px+ p2 − 6p+ 9
3p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = p2 − 6p+ 9
3p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ c21 − 6c1 + 9
3c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p2−6p+9
3p , then

the above equation becomes

x+ g′(p) = x+ 2p− 6
3p − p2 − 6p+ 9

3p2
= 0
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Solving the above for p results in

p1 =
3√

3x+ 1

p2 = − 3√
3x+ 1

Substituting the above back in (1) results in

y1 =
−2

√
3x+ 1 + 6x+ 2√

3x+ 1

y2 =
−2

√
3x+ 1− 6x− 2√

3x+ 1

Summary
The solution(s) found are the following

(1)y = c1x+ c21 − 6c1 + 9
3c1

(2)y = −2
√
3x+ 1 + 6x+ 2√

3x+ 1

(3)y = −2
√
3x+ 1− 6x− 2√

3x+ 1
Verification of solutions

y = c1x+ c21 − 6c1 + 9
3c1

Verified OK.

y = −2
√
3x+ 1 + 6x+ 2√

3x+ 1

Verified OK.

y = −2
√
3x+ 1− 6x− 2√

3x+ 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 51� �
dsolve((1+3*x)*diff(y(x),x)^2-3*(2+y(x))*diff(y(x),x)+9 = 0,y(x), singsol=all)� �

y(x) = −2− 2
√
3x+ 1

y(x) = −2 + 2
√
3x+ 1

y(x) = 9 + (3x+ 1) c21 − 6c1
3c1

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 60� �
DSolve[(1+3 x) (y'[x])^2-3(2+y[x])y'[x]+9==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1

(
x+ 1

3

)
− 2 + 3

c1
y(x) → Indeterminate
y(x) → −2

(√
3x+ 1 + 1

)
y(x) → 2

(√
3x+ 1− 1

)
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30.23 problem 883
30.23.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8210

Internal problem ID [4119]
Internal file name [OUTPUT/3612_Sunday_June_05_2022_09_48_27_AM_27518663/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 883.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_rational , _dAlembert]

(5 + 3x) y′2 − (3 + 3y) y′ + y = 0

30.23.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(5 + 3x) p2 − (3 + 3y) p+ y = 0

Solving for y from the above results in

y = 3p2x
3p− 1 + p(5p− 3)

3p− 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p2
3p− 1

g = p(5p− 3)
3p− 1

Hence (2) becomes

p− 3p2
3p− 1 =

(
x

(
6p

3p− 1 − 9p2

(3p− 1)2
)
+ 5p− 3

3p− 1 + 5p
3p− 1 − 3p(5p− 3)

(3p− 1)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 3p2
3p− 1 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 3p(x)2

3p(x)−1

x
(

6p(x)
3p(x)−1 −

9p(x)2

(3p(x)−1)2

)
+ 5p(x)−3

3p(x)−1 +
5p(x)

3p(x)−1 −
3p(x)(5p(x)−3)
(3p(x)−1)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

6p
3p−1 −

9p2
(3p−1)2

)
+ 5p−3

3p−1 +
5p

3p−1 −
3p(5p−3)
(3p−1)2

p− 3p2
3p−1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = −−9p+ 6
3p− 1

q(p) = −15p2 + 10p− 3
p (3p− 1)

Hence the ode is
d

dp
x(p)− (−9p+ 6)x(p)

3p− 1 = −15p2 + 10p− 3
p (3p− 1)

The integrating factor µ is

µ = e
∫
−−9p+6

3p−1 dp

= e3p−ln(3p−1)

Which simplifies to

µ = e3p
3p− 1

The ode becomes

d
dp(µx) = (µ)

(
−15p2 + 10p− 3

p (3p− 1)

)
d
dp

(
e3px
3p− 1

)
=
(

e3p
3p− 1

)(
−15p2 + 10p− 3

p (3p− 1)

)
d
(

e3px
3p− 1

)
=
(
(−15p2 + 10p− 3) e3p

p (3p− 1)2
)

dp

Integrating gives

e3px
3p− 1 =

∫ (−15p2 + 10p− 3) e3p

p (3p− 1)2
dp

e3px
3p− 1 = 4 e3p

3 (3p− 1) + 3 expIntegral1 (−3p) + c1

Dividing both sides by the integrating factor µ = e3p
3p−1 results in

x(p) = (3p− 1) e−3p
(

4 e3p
3 (3p− 1) + 3 expIntegral1 (−3p)

)
+ c1(3p− 1) e−3p

which simplifies to

x(p) = 4
3 + 3(3p− 1) e−3p expIntegral1 (−3p) + c1(3p− 1) e−3p
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = 3 + 3y +
√
9y2 − 12yx− 2y + 9
6x+ 10

p = −−3y − 3 +
√
9y2 − 12yx− 2y + 9

2 (5 + 3x)

Substituting the above in the solution for x found above gives

x

=
−18

(
c1 + 3 expIntegral1

(
−9−9y−3

√
9+9y2+(−12x−2)y
6x+10

))(
x− 3y

2 −
√

9+9y2+(−12x−2)y
2 + 1

6

)
e

−9−9y−3
√

9+9y2+(−12x−2)y
6x+10 + 24x+ 40

30 + 18x
x

=
−18

(
x− 3y

2 +
√

9+9y2+(−12x−2)y
2 + 1

6

)(
c1 + 3 expIntegral1

(
−9y−9+3

√
9+9y2+(−12x−2)y
6x+10

))
e

−9y−9+3
√

9+9y2+(−12x−2)y
6x+10 + 24x+ 40

30 + 18x

Summary
The solution(s) found are the following

(1)y = 0
(2)x

=
−18

(
c1 + 3 expIntegral1

(
−9−9y−3

√
9+9y2+(−12x−2)y
6x+10

))(
x− 3y

2 −
√

9+9y2+(−12x−2)y
2 + 1

6

)
e

−9−9y−3
√

9+9y2+(−12x−2)y
6x+10 + 24x+ 40

30 + 18x
(3)x

=
−18

(
x− 3y

2 +
√

9+9y2+(−12x−2)y
2 + 1

6

)(
c1 + 3 expIntegral1

(
−9y−9+3

√
9+9y2+(−12x−2)y
6x+10

))
e

−9y−9+3
√

9+9y2+(−12x−2)y
6x+10 + 24x+ 40

30 + 18x
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Verification of solutions

y = 0

Verified OK.
x

=
−18

(
c1 + 3 expIntegral1

(
−9−9y−3

√
9+9y2+(−12x−2)y
6x+10

))(
x− 3y

2 −
√

9+9y2+(−12x−2)y
2 + 1

6

)
e

−9−9y−3
√

9+9y2+(−12x−2)y
6x+10 + 24x+ 40

30 + 18x

Verified OK.
x

=
−18

(
x− 3y

2 +
√

9+9y2+(−12x−2)y
2 + 1

6

)(
c1 + 3 expIntegral1

(
−9y−9+3

√
9+9y2+(−12x−2)y
6x+10

))
e

−9y−9+3
√

9+9y2+(−12x−2)y
6x+10 + 24x+ 40

30 + 18x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 249� �
dsolve((5+3*x)*diff(y(x),x)^2-(3+3*y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �
−108

(
x− 3y(x)

2 −
√

9+9y(x)2+(−12x−2)y(x)
2 + 1

6

)c1 −
expIntegral1

(
−9y(x)−9−3

√
9+9y(x)2+(−12x−2)y(x)

10+6x

)
2

 e
−9y(x)−9−3

√
9+9y(x)2+(−12x−2)y(x)

10+6x + 18x2 + 6x− 40

30 + 18x
= 0

108
(
x− 3y(x)

2 +
√

9+9y(x)2+(−12x−2)y(x)
2 + 1

6

)c1 +
expIntegral1

(
−9y(x)−9+3

√
9+9y(x)2+(−12x−2)y(x)

10+6x

)
2

 e
−9y(x)−9+3

√
9+9y(x)2+(−12x−2)y(x)

10+6x + 18x2 + 6x− 40

30 + 18x
= 0

3 Solution by Mathematica
Time used: 1.709 (sec). Leaf size: 106� �
DSolve[(5+3 x) (y'[x])^2-(3+3 y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[{

x =
e−3K[1](3K[1]− 1)

(
(9− 27K[1]) ExpIntegralEi(3K[1]) + 4e3K[1])

9K[1]− 3

+ c1e
−3K[1](3K[1]− 1), y(x) = 3xK[1]2

3K[1]− 1 + 5K[1]2 − 3K[1]
3K[1]− 1

}
, {y(x), K[1]}

]
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30.24 problem 884
30.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8217

Internal problem ID [4120]
Internal file name [OUTPUT/3613_Sunday_June_05_2022_09_48_39_AM_63257291/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 884.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

4y′2x = (a− 3x)2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = a− 3x
2
√
x

(1)

y′ = −a− 3x
2
√
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

a− 3x
2
√
x

dx

=
√
x (−x+ a) + c1

Summary
The solution(s) found are the following

(1)y =
√
x (−x+ a) + c1
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Verification of solutions

y =
√
x (−x+ a) + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−a− 3x
2
√
x

dx

= −
√
x (−x+ a) + c2

Summary
The solution(s) found are the following

(1)y = −
√
x (−x+ a) + c2

Verification of solutions

y = −
√
x (−x+ a) + c2

Verified OK.

30.24.1 Maple step by step solution

Let’s solve
4y′2x = (a− 3x)2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
4y′2xdx =

∫
(a− 3x)2 dx+ c1

• Cannot compute integral∫
4y′2xdx = − (a−3x)3

9 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 30� �
dsolve(4*x*diff(y(x),x)^2 = (a-3*x)^2,y(x), singsol=all)� �

y(x) = −
√
x (a− x) + c1

y(x) =
√
x (a− x) + c1

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 37� �
DSolve[4 x (y'[x])^2==(a-3 x)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
x(a− x) + c1

y(x) →
√
x(x− a) + c1
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30.25 problem 885
30.25.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8219

Internal problem ID [4121]
Internal file name [OUTPUT/3614_Sunday_June_05_2022_09_48_45_AM_91016772/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 885.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

4y′2x+ 2xy′ − y = 0

30.25.1 Solving as dAlembert ode

Let p = y′ the ode becomes

4p2x+ 2xp− y = 0

Solving for y from the above results in

y =
(
4p2 + 2p

)
x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 4p2 + 2p
g = 0

Hence (2) becomes

−4p2 − p = x(8p+ 2) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−4p2 − p = 0

Solving for p from the above gives

p = 0

p = −1
4

Substituting these in (1A) gives

y = 0

y = −x

4

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −4p(x)2 − p(x)
x (8p (x) + 2) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
2x

q(x) = 0

Hence the ode is

p′(x) + p(x)
2x = 0
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The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x

The ode becomes
d
dxµp = 0

d
dx
(√

x p
)
= 0

Integrating gives
√
x p = c1

Dividing both sides by the integrating factor µ =
√
x results in

p(x) = c1√
x

Substituing the above solution for p in (2A) gives

y =
(
4c21
x

+ 2c1√
x

)
x

Summary
The solution(s) found are the following

(1)y = 0
(2)y = −x

4
(3)y =

(
4c21
x

+ 2c1√
x

)
x

Verification of solutions

y = 0

Verified OK.

y = −x

4

Verified OK.

y =
(
4c21
x

+ 2c1√
x

)
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(4*x*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −x

4
y(x) = 4c1 + 2√c1x

y(x) = 4c1 − 2√c1x

3 Solution by Mathematica
Time used: 0.138 (sec). Leaf size: 72� �
DSolve[4 x (y'[x])^2+2 x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

2c1
(
−2

√
x+ e2c1

)
y(x) → 1

4e
−4c1

(
1 + 2e2c1

√
x
)

y(x) → 0
y(x) → −x

4
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30.26 problem 886
30.26.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8223

Internal problem ID [4122]
Internal file name [OUTPUT/3615_Sunday_June_05_2022_09_48_53_AM_99397970/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 886.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _dAlembert]

4y′2x− 3yy′ = −3

30.26.1 Solving as dAlembert ode

Let p = y′ the ode becomes

4p2x− 3yp = −3

Solving for y from the above results in

y = 4px
3 + 1

p
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 4p
3

g = 1
p

Hence (2) becomes

−p

3 =
(
4x
3 − 1

p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p

3 = 0

Solving for p from the above gives

p = 0

None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
3
(

4x
3 − 1

p(x)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

3
(

4x(p)
3 − 1

p2

)
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 4
p

q(p) = 3
p3
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Hence the ode is

d

dp
x(p) + 4x(p)

p
= 3

p3

The integrating factor µ is

µ = e
∫ 4

p
dp

= p4

The ode becomes

d
dp(µx) = (µ)

(
3
p3

)
d
dp
(
p4x
)
=
(
p4
)( 3

p3

)
d
(
p4x
)
= (3p) dp

Integrating gives

p4x =
∫

3p dp

p4x = 3p2
2 + c1

Dividing both sides by the integrating factor µ = p4 results in

x(p) = 3
2p2 + c1

p4

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = 3y +
√
9y2 − 48x
8x

p = −−3y +
√
9y2 − 48x
8x

Substituting the above in the solution for x found above gives

x =
64x2(64c1x2 + 9y

√
9y2 − 48x+ 27y2 − 72x

)(
3y +

√
9y2 − 48x

)4
x = −

64x2(−64c1x2 + 9y
√
9y2 − 48x− 27y2 + 72x

)(
−3y +

√
9y2 − 48x

)4
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Summary
The solution(s) found are the following

(1)x =
64x2(64c1x2 + 9y

√
9y2 − 48x+ 27y2 − 72x

)(
3y +

√
9y2 − 48x

)4
(2)x = −

64x2(−64c1x2 + 9y
√
9y2 − 48x− 27y2 + 72x

)(
−3y +

√
9y2 − 48x

)4
Verification of solutions

x =
64x2(64c1x2 + 9y

√
9y2 − 48x+ 27y2 − 72x

)(
3y +

√
9y2 − 48x

)4
Verified OK.

x = −
64x2(−64c1x2 + 9y

√
9y2 − 48x− 27y2 + 72x

)(
−3y +

√
9y2 − 48x

)4
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 123� �
dsolve(4*x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+3 = 0,y(x), singsol=all)� �

y(x) = −
2x
(
6 +

√
16c1x+ 9

)
3
√

x
(
3 +

√
16c1x+ 9

)
y(x) =

2x
(
6 +

√
16c1x+ 9

)
3
√

x
(
3 +

√
16c1x+ 9

)
y(x) =

2x
(
−6 +

√
16c1x+ 9

)
3
√

−x
(
−3 +

√
16c1x+ 9

)
y(x) = −

2x
(
−6 +

√
16c1x+ 9

)
3
√

−x
(
−3 +

√
16c1x+ 9

)
3 Solution by Mathematica
Time used: 27.786 (sec). Leaf size: 187� �
DSolve[4 x (y'[x])^2-3 y[x] y'[x]+3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
432x− e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3

y(x) →

√
432x− e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3

y(x) → −

√
432x+ e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3

y(x) →

√
432x+ e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3

8227



30.27 problem 887
30.27.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8228

Internal problem ID [4123]
Internal file name [OUTPUT/3616_Sunday_June_05_2022_09_49_07_AM_24388391/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 887.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _dAlembert]

4y′2x+ 4yy′ = 1

30.27.1 Solving as dAlembert ode

Let p = y′ the ode becomes

4p2x+ 4yp = 1

Solving for y from the above results in

y = −px+ 1
4p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p

g = 1
4p

Hence (2) becomes

2p =
(
−x− 1

4p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p = 0

Solving for p from the above gives

p = 0

None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)
−x− 1

4p(x)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−x(p)− 1
4p2

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
2p

q(p) = − 1
8p3
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Hence the ode is
d

dp
x(p) + x(p)

2p = − 1
8p3

The integrating factor µ is

µ = e
∫ 1

2pdp

= √
p

The ode becomes
d
dp(µx) = (µ)

(
− 1
8p3

)
d
dp(

√
p x) = (√p)

(
− 1
8p3

)
d(√p x) =

(
− 1
8p 5

2

)
dp

Integrating gives
√
p x =

∫
− 1
8p 5

2
dp

√
p x = 1

12p 3
2
+ c1

Dividing both sides by the integrating factor µ = √
p results in

x(p) = 1
12p2 + c1√

p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −y +
√
x+ y2

2x

p = −y +
√
x+ y2

2x
Substituting the above in the solution for x found above gives

x = x2

3
(
−y +

√
x+ y2

)2 + c1
√
2√

−y+
√

x+y2

x

x = x2

3
(
y +

√
x+ y2

)2 + c1
√
2√

−y−
√

x+y2

x
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Summary
The solution(s) found are the following

(1)x = x2

3
(
−y +

√
x+ y2

)2 + c1
√
2√

−y+
√

x+y2

x

(2)x = x2

3
(
y +

√
x+ y2

)2 + c1
√
2√

−y−
√

x+y2

x

Verification of solutions

x = x2

3
(
−y +

√
x+ y2

)2 + c1
√
2√

−y+
√

x+y2

x

Verified OK.

x = x2

3
(
y +

√
x+ y2

)2 + c1
√
2√

−y−
√

x+y2

x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 149� �
dsolve(4*x*diff(y(x),x)^2+4*y(x)*diff(y(x),x) = 1,y(x), singsol=all)� �

2

3c1
(
y(x)−

√
x+y(x)2

)√
−y(x)+

√
x+y(x)2

x

2 + 3y(x)2 − 3y(x)
√

x+ y (x)2 + x

x

3
(
y (x)−

√
x+ y (x)2

)2

= 0

2
(
−3c1

(
y(x) +

√
x+ y (x)2

)√
−2y(x)−2

√
x+y(x)2

x
+ 3y(x)2 + 3y(x)

√
x+ y (x)2 + x

)
x

3
(
y (x) +

√
x+ y (x)2

)2

= 0

3 Solution by Mathematica
Time used: 60.239 (sec). Leaf size: 4057� �
DSolve[4 x (y'[x])^2+4 y[x] y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display

8232



30.28 problem 888
Internal problem ID [4124]
Internal file name [OUTPUT/3617_Sunday_June_05_2022_09_49_16_AM_19082337/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 888.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

4y′2x+ 4yy′ − y4 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−1 +

√
1 + y2x

)
y

2x (1)

y′ = −
(
1 +

√
1 + y2x

)
y

2x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
−1 +

√
x y2 + 1

)
y

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−1 +

√
x y2 + 1

)
y(b3 − a2)

2x −
(
−1 +

√
x y2 + 1

)2
y2a3

4x2

−

(
y3

4
√
x y2 + 1x

−
(
−1 +

√
x y2 + 1

)
y

2x2

)
(xa2 + ya3 + a1)

−
(

y2

2
√
x y2 + 1

+ −1 +
√
x y2 + 1

2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(x y2 + 1)
3
2 y2a3 + 4x3y2b2 + x2y3a2 + 2x2y3b3 − 3x y4a3 + 4x2y2b1 − x y3a1 − 6b2

√
x y2 + 1x2 + 3y2a3

√
x y2 + 1− 2

√
x y2 + 1xb1 + 2

√
x y2 + 1 ya1 + 2x2b2 − 4y2a3 + 2xb1 − 2ya1

4
√
x y2 + 1x2

= 0

Setting the numerator to zero gives

(6E)−
(
x y2 + 1

) 3
2 y2a3 − 4x3y2b2 − x2y3a2 − 2x2y3b3 + 3x y4a3

− 4x2y2b1 + x y3a1 + 6b2
√

x y2 + 1x2 − 3y2a3
√
x y2 + 1

+ 2
√

x y2 + 1xb1 − 2
√

x y2 + 1 ya1 − 2x2b2 + 4y2a3 − 2xb1 + 2ya1 = 0

Simplifying the above gives

(6E)−
(
x y2 +1

) 3
2 y2a3 − 2x3y2b2 − x2y3a2 − 2x2y3b3 − x y4a3 − 2

(
x y2 +1

)
x2b2

+ 4
(
x y2 + 1

)
y2a3 − 2x2y2b1 − x y3a1 − 2

(
x y2 + 1

)
xb1 + 2

(
x y2 + 1

)
ya1

+6b2
√

x y2 + 1x2−3y2a3
√
x y2 + 1+2

√
x y2 + 1 xb1−2

√
x y2 + 1 ya1 = 0
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Since the PDE has radicals, simplifying gives

−x
√

x y2 + 1 y4a3 − 4x3y2b2 − x2y3a2 − 2x2y3b3 + 3x y4a3
− 4x2y2b1 + x y3a1 + 6b2

√
x y2 + 1 x2 − 4y2a3

√
x y2 + 1− 2x2b2

+ 2
√

x y2 + 1xb1 − 2
√

x y2 + 1 ya1 + 4y2a3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x y2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x y2 + 1 = v3
}

The above PDE (6E) now becomes

(7E)−v1v3v
4
2a3 − v21v

3
2a2 + 3v1v42a3 − 4v31v22b2 − 2v21v32b3 + v1v

3
2a1 − 4v21v22b1

− 4v22a3v3 +6b2v3v21 − 2v3v2a1 +4v22a3 +2v3v1b1 − 2v21b2 +2v2a1 − 2v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−4v31v22b2 + (−a2 − 2b3) v21v32 − 4v21v22b1 + 6b2v3v21 − 2v21b2 − v1v3v
4
2a3

+3v1v42a3+ v1v
3
2a1+2v3v1b1− 2v1b1− 4v22a3v3+4v22a3− 2v3v2a1+2v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−2a1 = 0
2a1 = 0

−4a3 = 0
−a3 = 0
3a3 = 0
4a3 = 0

−4b1 = 0
−2b1 = 0
2b1 = 0

−4b2 = 0
−2b2 = 0
6b2 = 0

−a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

((
−1 +

√
x y2 + 1

)
y

2x

)
(−2x)

= y
√

x y2 + 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
√
x y2 + 1

dy

Which results in

S = − arctanh
(

1√
x y2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−1 +

√
x y2 + 1

)
y

2x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x

√
x y2 + 1

Sy =
1

y
√
x y2 + 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Which simplifies to

− arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Summary
The solution(s) found are the following

(1)− arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Verification of solutions

− arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
1 +

√
x y2 + 1

)
y

2x
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
1 +

√
x y2 + 1

)
y(b3 − a2)

2x −
(
1 +

√
x y2 + 1

)2
y2a3

4x2

−

(
− y3

4
√
x y2 + 1x

+
(
1 +

√
x y2 + 1

)
y

2x2

)
(xa2 + ya3 + a1)

−
(
− y2

2
√
x y2 + 1

− 1 +
√
x y2 + 1
2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(x y2 + 1)
3
2 y2a3 − 4x3y2b2 − x2y3a2 − 2x2y3b3 + 3x y4a3 − 4x2y2b1 + x y3a1 − 6b2

√
x y2 + 1x2 + 3y2a3

√
x y2 + 1− 2

√
x y2 + 1xb1 + 2

√
x y2 + 1 ya1 − 2x2b2 + 4y2a3 − 2xb1 + 2ya1

4
√
x y2 + 1x2

= 0

Setting the numerator to zero gives

(6E)−
(
x y2 + 1

) 3
2 y2a3 + 4x3y2b2 + x2y3a2 + 2x2y3b3 − 3x y4a3

+ 4x2y2b1 − x y3a1 + 6b2
√

x y2 + 1x2 − 3y2a3
√
x y2 + 1

+ 2
√

x y2 + 1xb1 − 2
√

x y2 + 1 ya1 + 2x2b2 − 4y2a3 + 2xb1 − 2ya1 = 0
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Simplifying the above gives

(6E)−
(
x y2 + 1

) 3
2 y2a3 + 2x3y2b2 + x2y3a2 + 2x2y3b3 + x y4a3 + 2

(
x y2 + 1

)
x2b2

− 4
(
x y2 + 1

)
y2a3 + 2x2y2b1 + x y3a1 + 2

(
x y2 + 1

)
xb1 − 2

(
x y2 + 1

)
ya1

+6b2
√

x y2 + 1x2−3y2a3
√
x y2 + 1+2

√
x y2 + 1 xb1−2

√
x y2 + 1 ya1 = 0

Since the PDE has radicals, simplifying gives

−x
√

x y2 + 1 y4a3 + 4x3y2b2 + x2y3a2 + 2x2y3b3 − 3x y4a3
+ 4x2y2b1 − x y3a1 + 6b2

√
x y2 + 1x2 − 4y2a3

√
x y2 + 1 + 2x2b2

+ 2
√

x y2 + 1xb1 − 2
√

x y2 + 1 ya1 − 4y2a3 + 2xb1 − 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x y2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x y2 + 1 = v3
}

The above PDE (6E) now becomes

(7E)−v1v3v
4
2a3 + v21v

3
2a2 − 3v1v42a3 + 4v31v22b2 + 2v21v32b3 − v1v

3
2a1 + 4v21v22b1

− 4v22a3v3 +6b2v3v21 − 2v3v2a1 − 4v22a3 +2v3v1b1 +2v21b2 − 2v2a1 +2v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4v31v22b2 + (a2 + 2b3) v21v32 + 4v21v22b1 + 6b2v3v21 + 2v21b2 − v1v3v
4
2a3 − 3v1v42a3

− v1v
3
2a1 + 2v3v1b1 + 2v1b1 − 4v22a3v3 − 4v22a3 − 2v3v2a1 − 2v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−a1 = 0
−4a3 = 0
−3a3 = 0
−a3 = 0
2b1 = 0
4b1 = 0
2b2 = 0
4b2 = 0
6b2 = 0

a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
−
(
1 +

√
x y2 + 1

)
y

2x

)
(−2x)

= −y
√

x y2 + 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y
√
x y2 + 1

dy

Which results in

S = arctanh
(

1√
x y2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
1 +

√
x y2 + 1

)
y

2x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
2x

√
x y2 + 1

Sy = − 1
y
√
x y2 + 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Which simplifies to

arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Summary
The solution(s) found are the following

(1)arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Verification of solutions

arctanh
(

1√
1 + y2x

)
= ln (x)

2 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 86� �
dsolve(4*x*diff(y(x),x)^2+4*y(x)*diff(y(x),x)-y(x)^4 = 0,y(x), singsol=all)� �

y(x) = 1√
−x

y(x) = − 1√
−x

y(x) = 0

y(x) =
coth

(
− ln(x)

2 + c1
2

)√
sech

(
− ln(x)

2 + c1
2

)2
x

x

y(x) = −
coth

(
− ln(x)

2 + c1
2

)√
sech

(
− ln(x)

2 + c1
2

)2
x

x

3 Solution by Mathematica
Time used: 0.61 (sec). Leaf size: 80� �
DSolve[4 x (y'[x])^2+4 y[x] y'[x]-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2e
c1
2

−x+ ec1

y(x) → 2e
c1
2

−x+ ec1

y(x) → 0

y(x) → − i√
x

y(x) → i√
x
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30.29 problem 889
30.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8247

Internal problem ID [4125]
Internal file name [OUTPUT/3618_Sunday_June_05_2022_09_49_23_AM_17124741/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 889.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

4(−x+ 2) y′2 = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1
2
√
x− 2

(1)

y′ = − 1
2
√
x− 2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1

2
√
x− 2

dx

=
√
x− 2 + c1

Summary
The solution(s) found are the following

(1)y =
√
x− 2 + c1
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Verification of solutions

y =
√
x− 2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− 1
2
√
x− 2

dx

= −
√
x− 2 + c2

Summary
The solution(s) found are the following

(1)y = −
√
x− 2 + c2

Verification of solutions

y = −
√
x− 2 + c2

Verified OK.

30.29.1 Maple step by step solution

Let’s solve
4(−x+ 2) y′2 = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
4(−x+ 2) y′2dx =

∫
(−1) dx+ c1

• Cannot compute integral∫
4(−x+ 2) y′2dx = −x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 23� �
dsolve(4*(2-x)*diff(y(x),x)^2+1 = 0,y(x), singsol=all)� �

y(x) = −
√
−2 + x+ c1

y(x) =
√
−2 + x+ c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 31� �
DSolve[4(2-x) (y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x− 2 + c1

y(x) →
√
x− 2 + c1
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30.30 problem 890
Internal problem ID [4126]
Internal file name [OUTPUT/3619_Sunday_June_05_2022_09_49_30_AM_33903193/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 890.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

16y′2x+ 8yy′ + y6 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−1 +

√
1− y4x

)
y

4x (1)

y′ = −
(
1 +

√
1− y4x

)
y

4x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
−1 +

√
−y4x+ 1

)
y

4x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−1 +

√
−y4x+ 1

)
y(b3 − a2)

4x −
(
−1 +

√
−y4x+ 1

)2
y2a3

16x2

−

(
− y5

8
√
−y4x+ 1x

−
(
−1 +

√
−y4x+ 1

)
y

4x2

)
(xa2 + ya3 + a1)

−
(
− y4

2
√
−y4x+ 1

+ −1 +
√
−y4x+ 1
4x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−12x3y4b2 − 2x2y5a2 − 8x2y5b3 + 4x y6a3 − 12x2y4b1 + 2x y5a1 + (−y4x+ 1)
3
2 y2a3 − 20b2

√
−y4x+ 1x2 + 5y2a3

√
−y4x+ 1− 4

√
−y4x+ 1xb1 + 4

√
−y4x+ 1 ya1 + 4x2b2 − 6y2a3 + 4xb1 − 4ya1

16
√
−y4x+ 1x2

= 0

Setting the numerator to zero gives

(6E)
12x3y4b2 + 2x2y5a2 + 8x2y5b3 − 4x y6a3 + 12x2y4b1 − 2x y5a1
−
(
−y4x+ 1

) 3
2 y2a3 + 20b2

√
−y4x+ 1x2 − 5y2a3

√
−y4x+ 1

+ 4
√

−y4x+ 1xb1 − 4
√

−y4x+ 1 ya1 − 4x2b2 + 6y2a3 − 4xb1 + 4ya1 = 0

Simplifying the above gives

(6E)
8x3y4b2 + 2x2y5a2 + 8x2y5b3 + 2x y6a3 + 8x2y4b1 + 2x y5a1
−
(
−y4x+ 1

) 3
2 y2a3 − 4

(
−y4x+ 1

)
x2b2 + 6

(
−y4x+ 1

)
y2a3

− 4
(
−y4x+ 1

)
xb1 + 4

(
−y4x+ 1

)
ya1 + 20b2

√
−y4x+ 1x2

− 5y2a3
√

−y4x+ 1 + 4
√

−y4x+ 1xb1 − 4
√
−y4x+ 1 ya1 = 0
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Since the PDE has radicals, simplifying gives

x
√

−y4x+ 1 y6a3 + 12x3y4b2 + 2x2y5a2 + 8x2y5b3 − 4x y6a3 + 12x2y4b1

− 2x y5a1 + 20b2
√

−y4x+ 1x2 − 6y2a3
√

−y4x+ 1− 4x2b2

+ 4
√

−y4x+ 1xb1 − 4
√

−y4x+ 1 ya1 + 6y2a3 − 4xb1 + 4ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y4x+ 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−y4x+ 1 = v3

}
The above PDE (6E) now becomes

(7E)v1v3v
6
2a3 + 2v21v52a2 − 4v1v62a3 + 12v31v42b2 + 8v21v52b3 − 2v1v52a1 + 12v21v42b1

− 6v22a3v3+20b2v3v21 − 4v3v2a1+6v22a3+4v3v1b1− 4v21b2+4v2a1− 4v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)12v31v42b2+(2a2+8b3) v21v52+12v21v42b1+20b2v3v21−4v21b2+v1v3v
6
2a3−4v1v62a3

− 2v1v52a1 + 4v3v1b1 − 4v1b1 − 6v22a3v3 + 6v22a3 − 4v3v2a1 + 4v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
−4a1 = 0
−2a1 = 0
4a1 = 0

−6a3 = 0
−4a3 = 0
6a3 = 0

−4b1 = 0
4b1 = 0
12b1 = 0
−4b2 = 0
12b2 = 0
20b2 = 0

2a2 + 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −4b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −4x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

((
−1 +

√
−y4x+ 1

)
y

4x

)
(−4x)

= y
√

−y4x+ 1
ξ = 0

8252



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y
√
−y4x+ 1

dy

Which results in

S = −
arctanh

(
1√

−y4x+1

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−1 +

√
−y4x+ 1

)
y

4x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
4x

√
−y4x+ 1

Sy =
1

y
√
−y4x+ 1

8253



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
arctanh

(
1√

1−y4x

)
2 = ln (x)

4 + c1

Which simplifies to

−
arctanh

(
1√

1−y4x

)
2 = ln (x)

4 + c1

Summary
The solution(s) found are the following

(1)−
arctanh

(
1√

1−y4x

)
2 = ln (x)

4 + c1

Verification of solutions

−
arctanh

(
1√

1−y4x

)
2 = ln (x)

4 + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
1 +

√
−y4x+ 1

)
y

4x
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
1 +

√
−y4x+ 1

)
y(b3 − a2)

4x −
(
1 +

√
−y4x+ 1

)2
y2a3

16x2

−

(
y5

8
√
−y4x+ 1x

+
(
1 +

√
−y4x+ 1

)
y

4x2

)
(xa2 + ya3 + a1)

−
(

y4

2
√
−y4x+ 1

− 1 +
√
−y4x+ 1
4x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−12x3y4b2 + 2x2y5a2 + 8x2y5b3 − 4x y6a3 + 12x2y4b1 − 2x y5a1 + (−y4x+ 1)
3
2 y2a3 − 20b2

√
−y4x+ 1x2 + 5y2a3

√
−y4x+ 1− 4

√
−y4x+ 1xb1 + 4

√
−y4x+ 1 ya1 − 4x2b2 + 6y2a3 − 4xb1 + 4ya1

16
√
−y4x+ 1x2

= 0

Setting the numerator to zero gives

(6E)
−12x3y4b2 − 2x2y5a2 − 8x2y5b3 + 4x y6a3 − 12x2y4b1 + 2x y5a1
−
(
−y4x+ 1

) 3
2 y2a3 + 20b2

√
−y4x+ 1x2 − 5y2a3

√
−y4x+ 1

+ 4
√

−y4x+ 1xb1 − 4
√

−y4x+ 1 ya1 + 4x2b2 − 6y2a3 + 4xb1 − 4ya1 = 0
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Simplifying the above gives

(6E)
−8x3y4b2 − 2x2y5a2 − 8x2y5b3 − 2x y6a3 − 8x2y4b1 − 2x y5a1
−
(
−y4x+ 1

) 3
2 y2a3 + 4

(
−y4x+ 1

)
x2b2 − 6

(
−y4x+ 1

)
y2a3

+ 4
(
−y4x+ 1

)
xb1 − 4

(
−y4x+ 1

)
ya1 + 20b2

√
−y4x+ 1x2

− 5y2a3
√

−y4x+ 1 + 4
√

−y4x+ 1xb1 − 4
√
−y4x+ 1 ya1 = 0

Since the PDE has radicals, simplifying gives

x
√

−y4x+ 1 y6a3 − 12x3y4b2 − 2x2y5a2 − 8x2y5b3 + 4x y6a3
− 12x2y4b1 + 2x y5a1 + 20b2

√
−y4x+ 1x2 − 6y2a3

√
−y4x+ 1 + 4x2b2

+ 4
√

−y4x+ 1xb1 − 4
√

−y4x+ 1 ya1 − 6y2a3 + 4xb1 − 4ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y4x+ 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−y4x+ 1 = v3

}
The above PDE (6E) now becomes

(7E)v1v3v
6
2a3 − 2v21v52a2 + 4v1v62a3 − 12v31v42b2 − 8v21v52b3 + 2v1v52a1 − 12v21v42b1

− 6v22a3v3+20b2v3v21 − 4v3v2a1− 6v22a3+4v3v1b1+4v21b2− 4v2a1+4v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−12v31v42b2 + (−2a2 − 8b3) v21v52 − 12v21v42b1 + 20b2v3v21 + 4v21b2 + v1v3v
6
2a3

+4v1v62a3+2v1v52a1+4v3v1b1+4v1b1−6v22a3v3−6v22a3−4v3v2a1−4v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
−4a1 = 0
2a1 = 0

−6a3 = 0
4a3 = 0

−12b1 = 0
4b1 = 0

−12b2 = 0
4b2 = 0
20b2 = 0

−2a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −4b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −4x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
−
(
1 +

√
−y4x+ 1

)
y

4x

)
(−4x)

= −y
√

−y4x+ 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y
√
−y4x+ 1

dy

Which results in

S =
arctanh

(
1√

−y4x+1

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
1 +

√
−y4x+ 1

)
y

4x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
4x

√
−y4x+ 1

Sy = − 1
y
√
−y4x+ 1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctanh
(

1√
1−y4x

)
2 = ln (x)

4 + c1

Which simplifies to

arctanh
(

1√
1−y4x

)
2 = ln (x)

4 + c1

Summary
The solution(s) found are the following

(1)
arctanh

(
1√

1−y4x

)
2 = ln (x)

4 + c1

Verification of solutions

arctanh
(

1√
1−y4x

)
2 = ln (x)

4 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 103� �
dsolve(16*x*diff(y(x),x)^2+8*y(x)*diff(y(x),x)+y(x)^6 = 0,y(x), singsol=all)� �

y(x) = 1
x

1
4

y(x) = − 1
x

1
4

y(x) = − i

x
1
4

y(x) = i

x
1
4

y(x) = 0

y(x) =
RootOf

(
− ln (x) + c1 + 4

(∫ _Z 1
_a√−_a4+1

d_a
))

x
1
4

y(x) =
RootOf

(
− ln (x) + c1 − 4

(∫ _Z 1
_a√−_a4+1

d_a
))

x
1
4
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3 Solution by Mathematica
Time used: 0.705 (sec). Leaf size: 171� �
DSolve[16 x(y'[x])^2+8 y[x] y'[x]+y[x]^6==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2e

c1
4

√
x+ ec1

y(x) → − i
√
2e

c1
4

√
x+ ec1

y(x) → i
√
2e

c1
4

√
x+ ec1

y(x) →
√
2e

c1
4

√
x+ ec1

y(x) → 0

y(x) → − 1
4
√
x

y(x) → − i
4
√
x

y(x) → i
4
√
x

y(x) → 1
4
√
x
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30.31 problem 891
30.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8264

Internal problem ID [4127]
Internal file name [OUTPUT/3620_Sunday_June_05_2022_09_49_37_AM_89150540/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 891.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2
x2 = a2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = a

x
(1)

y′ = −a

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

a

x
dx

= a ln (x) + c1

Summary
The solution(s) found are the following

(1)y = a ln (x) + c1
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Verification of solutions

y = a ln (x) + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−a

x
dx

= −a ln (x) + c2

Summary
The solution(s) found are the following

(1)y = −a ln (x) + c2

Verification of solutions

y = −a ln (x) + c2

Verified OK.

30.31.1 Maple step by step solution

Let’s solve
y′2x2 = a2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′2x2dx =

∫
a2dx+ c1

• Cannot compute integral∫
y′2x2dx = x a2 + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x)^2 = a^2,y(x), singsol=all)� �

y(x) = a ln (x) + c1
y(x) = −a ln (x) + c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24� �
DSolve[x^2 (y'[x])^2==a^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a log(x) + c1
y(x) → a log(x) + c1
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30.32 problem 892
30.32.1 Solving as first order nonlinear p but separable ode . . . . . . . 8266
30.32.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8268

Internal problem ID [4128]
Internal file name [OUTPUT/3621_Sunday_June_05_2022_09_49_43_AM_85850166/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 892.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2
x2 − y2 = 0

30.32.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x2 , g = y2. Hence the ode is

(y′)2 = y2

x2

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x2 > 0

y2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
y2

dy =
(√

1
x2

)
dx

− 1√
y2

dy =
(√

1
x2

)
dx

Integrating now gives the solutions.∫ 1√
y2

dy =
∫ √ 1

x2dx+ c1∫
− 1√

y2
dy =

∫ √ 1
x2dx+ c1

Integrating gives

y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Therefore
y ln (y)√

y2
=
√

1
x2 x ln (x) + c1

−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1
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Summary
The solution(s) found are the following

(1)y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

(2)−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Verification of solutions

y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < y^2}

−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < y^2}

30.32.2 Maple step by step solution

Let’s solve
y′2x2 − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = ec1x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x)^2 = y(x)^2,y(x), singsol=all)� �

y(x) = c1x

y(x) = c1
x

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 24� �
DSolve[x^2 (y'[x])^2==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x

y(x) → c1x
y(x) → 0
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30.33 problem 893
30.33.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8270

Internal problem ID [4129]
Internal file name [OUTPUT/3622_Sunday_June_05_2022_09_49_50_AM_38211561/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 893.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x2 − y2 = −x2

30.33.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x2 − y2 = −x2

Solving for y from the above results in

y =
√
p2 + 1x (1A)

y = −
√

p2 + 1x (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

8270



Comparing the form y = xf + g to (1A) shows that

f =
√
p2 + 1

g = 0

Hence (2) becomes

p−
√
p2 + 1 = xpp′(x)√

p2 + 1
(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
√
p2 + 1 = 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =

(
p(x)−

√
p (x)2 + 1

)√
p (x)2 + 1

xp (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p) p√

p2 + 1
(
p−

√
p2 + 1

) (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − p(
p−

√
p2 + 1

)√
p2 + 1

q(p) = 0

Hence the ode is

d

dp
x(p)− x(p) p√

p2 + 1
(
p−

√
p2 + 1

) = 0
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The integrating factor µ is

µ = e
∫
− p(

p−
√

p2+1
)√

p2+1
dp

= e
√

p2+1 p

2 − arcsinh(p)
2 + p2

2

The ode becomes
d
dpµx = 0

d
dp

(
e
√

p2+1 p

2 − arcsinh(p)
2 + p2

2 x

)
= 0

Integrating gives

e
√

p2+1 p

2 − arcsinh(p)
2 + p2

2 x = c2

Dividing both sides by the integrating factor µ = e
√

p2+1 p

2 − arcsinh(p)
2 + p2

2 results in

x(p) = c2e−
√

p2+1 p

2 + arcsinh(p)
2 − p2

2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
√
y2 − x2

x

p = −
√
y2 − x2

x

Substituting the above in the solution for x found above gives

x = c2e
arcsinh


√

y2−x2
x

x2−
√

y2
x2

√
y2−x2 x+x2−y2

2x2

x = c2e

√
y2
x2

√
y2−x2 x−arcsinh


√

y2−x2
x

x2+x2−y2

2x2

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −
√

p2 + 1
g = 0

Hence (2) becomes

p+
√
p2 + 1 = − xpp′(x)√

p2 + 1
(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+
√

p2 + 1 = 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −

(
p(x) +

√
p (x)2 + 1

)√
p (x)2 + 1

xp (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = − x(p) p√

p2 + 1
(
p+

√
p2 + 1

) (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = p(
p+

√
p2 + 1

)√
p2 + 1

q(p) = 0

Hence the ode is

d

dp
x(p) + x(p) p√

p2 + 1
(
p+

√
p2 + 1

) = 0
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The integrating factor µ is

µ = e
∫ p(

p+
√

p2+1
)√

p2+1
dp

= e−
√

p2+1 p

2 + arcsinh(p)
2 + p2

2

The ode becomes

d
dpµx = 0

d
dp

(
e−

√
p2+1 p

2 + arcsinh(p)
2 + p2

2 x

)
= 0

Integrating gives

e−
√

p2+1 p

2 + arcsinh(p)
2 + p2

2 x = c4

Dividing both sides by the integrating factor µ = e−
√

p2+1 p

2 + arcsinh(p)
2 + p2

2 results in

x(p) = c4e
√

p2+1 p

2 − arcsinh(p)
2 − p2

2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
√
y2 − x2

x

p = −
√
y2 − x2

x

Substituting the above in the solution for x found above gives

x = c4e

√
y2
x2

√
y2−x2 x−arcsinh


√

y2−x2
x

x2+x2−y2

2x2

x = c4e
arcsinh


√

y2−x2
x

x2−
√

y2
x2

√
y2−x2 x+x2−y2

2x2
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Summary
The solution(s) found are the following

(1)x = c2e
arcsinh


√

y2−x2
x

x2−
√

y2
x2

√
y2−x2 x+x2−y2

2x2

(2)x = c2e

√
y2
x2

√
y2−x2 x−arcsinh


√

y2−x2
x

x2+x2−y2

2x2

(3)x = c4e

√
y2
x2

√
y2−x2 x−arcsinh


√

y2−x2
x

x2+x2−y2

2x2

(4)x = c4e
arcsinh


√

y2−x2
x

x2−
√

y2
x2

√
y2−x2 x+x2−y2

2x2

Verification of solutions

x = c2e
arcsinh


√

y2−x2
x

x2−
√

y2
x2

√
y2−x2 x+x2−y2

2x2

Verified OK.

x = c2e

√
y2
x2

√
y2−x2 x−arcsinh


√

y2−x2
x

x2+x2−y2

2x2

Verified OK.

x = c4e

√
y2
x2

√
y2−x2 x−arcsinh


√

y2−x2
x

x2+x2−y2

2x2

Verified OK.

x = c4e
arcsinh


√

y2−x2
x

x2−
√

y2
x2

√
y2−x2 x+x2−y2

2x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 44� �
dsolve(x^2*diff(y(x),x)^2+x^2-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = x(LambertW (−ec1x4)− 1)
2 LambertW (−ec1x4)

√
− 1

LambertW(−ec1x4)

3 Solution by Mathematica
Time used: 2.792 (sec). Leaf size: 172� �
DSolve[x^2 (y'[x])^2+x^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

1
2

−y(x)2
x2 −

√
y(x)
x

− 1
√

y(x)
x

+ 1y(x)
x

− 2 log
(√

y(x)
x

− 1−
√

y(x)
x

+ 1
)

+ 1

 = log(x) + c1, y(x)


Solve

1
2

y(x)2
x2 −

√
y(x)
x

− 1
√

y(x)
x

+ 1y(x)
x

− 2 log
(√

y(x)
x

− 1−
√

y(x)
x

+ 1
)

− 1

 = − log(x) + c1, y(x)
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30.34 problem 894
30.34.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8280

Internal problem ID [4130]
Internal file name [OUTPUT/3623_Sunday_June_05_2022_09_50_00_AM_43254056/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 894.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′
2
x2 − (−y + x)2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y − x

x
(1)

y′ = −y − x

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = −1
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Hence the ode is

y′ − y

x
= −1

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ) (−1)

d
dx

(y
x

)
=
(
1
x

)
(−1)

d
(y
x

)
=
(
−1
x

)
dx

Integrating gives

y

x
=
∫

−1
x
dx

y

x
= − ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x− ln (x)x

which simplifies to

y = x(− ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = x(− ln (x) + c1)
Verification of solutions

y = x(− ln (x) + c1)

Verified OK.
Solving equation (2)
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = 1

Hence the ode is

y′ + y

x
= 1

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µy) = µ

d
dx(xy) = x

d(xy) = xdx

Integrating gives

xy =
∫

x dx

xy = x2

2 + c2

Dividing both sides by the integrating factor µ = x results in

y = x

2 + c2
x

Summary
The solution(s) found are the following

(1)y = x

2 + c2
x

Verification of solutions

y = x

2 + c2
x

Verified OK.
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30.34.1 Maple step by step solution

Let’s solve
y′2x2 − (−y + x)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
− 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= −1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= −µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) dx+ c1

• Solve for y

y =
∫
−µ(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

− 1
x
dx+ c1

)
• Evaluate the integrals on the rhs

y = x(− ln (x) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(x^2*diff(y(x),x)^2 = (x-y(x))^2,y(x), singsol=all)� �

y(x) = x(− ln (x) + c1)
y(x) = x

2 + c1
x

3 Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 30� �
DSolve[x^2 (y'[x])^2==(x-y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

2 + c1
x

y(x) → x(− log(x) + c1)
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30.35 problem 895
30.35.1 Solving as first order nonlinear p but separable ode . . . . . . . 8282
30.35.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8284

Internal problem ID [4131]
Internal file name [OUTPUT/3624_Sunday_June_05_2022_09_50_08_AM_96497582/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 895.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2
x2 + y2 − y4 = 0

30.35.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x2 , g = y4 − y2. Hence the ode is

(y′)2 = y4 − y2

x2

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x2 > 0

y4 − y2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
y4 − y2

dy =
(√

1
x2

)
dx

− 1√
y4 − y2

dy =
(√

1
x2

)
dx

Integrating now gives the solutions.∫ 1√
y4 − y2

dy =
∫ √ 1

x2dx+ c1∫
− 1√

y4 − y2
dy =

∫ √ 1
x2dx+ c1

Integrating gives

−
y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1

y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1

Therefore

−
y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1

y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1
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Summary
The solution(s) found are the following

(1)−
y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1

(2)
y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1

Verification of solutions

−
y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < y^4-y^2}

y
√
y2 − 1 arctan

(
1√
y2−1

)
√
y4 − y2

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < y^4-y^2}

30.35.2 Maple step by step solution

Let’s solve
y′2x2 + y2 − y4 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√

y2−1 y
= 1

x

• Integrate both sides with respect to x∫
y′√

y2−1 y
dx =

∫ 1
x
dx+ c1

• Evaluate integral

− arctan
(

1√
y2−1

)
= ln (x) + c1

• Solve for y{
y =

√
tan(ln(x)+c1)2+1
tan(ln(x)+c1) , y = −

√
tan(ln(x)+c1)2+1
tan(ln(x)+c1)

}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 52� �
dsolve(x^2*diff(y(x),x)^2+y(x)^2-y(x)^4 = 0,y(x), singsol=all)� �

y(x) = −1
y(x) = 1
y(x) = 0
y(x) = csc (− ln (x) + c1) csgn (sec (− ln (x) + c1))
y(x) = − csc (− ln (x) + c1) csgn (sec (− ln (x) + c1))

3 Solution by Mathematica
Time used: 1.724 (sec). Leaf size: 88� �
DSolve[x^2 (y'[x])^2+y[x]^2-y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

sec2(− log(x) + c1)
y(x) →

√
sec2(− log(x) + c1)

y(x) → −
√

sec2(log(x) + c1)
y(x) →

√
sec2(log(x) + c1)

y(x) → −1
y(x) → 0
y(x) → 1
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30.36 problem 896
30.36.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8288

Internal problem ID [4132]
Internal file name [OUTPUT/3625_Sunday_June_05_2022_09_50_15_AM_30951881/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 896.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "dif-
ferentialType", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2
x2 − xy′ + y(1− y) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y

x
(1)

y′ = −y − 1
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x
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Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c1

y = eln(x)+c1

= c1x

Summary
The solution(s) found are the following

(1)y = c1x

Verification of solutions
y = c1x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 1− y

x

Where f(x) = 1
x
and g(y) = 1− y. Integrating both sides gives

1
1− y

dy = 1
x
dx∫ 1

1− y
dy =

∫ 1
x
dx

− ln (y − 1) = ln (x) + c2

Raising both side to exponential gives
1

y − 1 = eln(x)+c2

Which simplifies to
1

y − 1 = c3x
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Which simplifies to

y = (1 + c3ec2x) e−c2

c3x

Summary
The solution(s) found are the following

(1)y = (1 + c3ec2x) e−c2

c3x

Verification of solutions

y = (1 + c3ec2x) e−c2

c3x

Verified OK.

30.36.1 Maple step by step solution

Let’s solve
y′2x2 − xy′ + y(1− y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = ec1x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x)^2-x*diff(y(x),x)+y(x)*(1-y(x)) = 0,y(x), singsol=all)� �

y(x) = c1x

y(x) = c1 + x

x

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 31� �
DSolve[x^2 (y'[x])^2-x y'[x]+y[x](1-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x

y(x) → x+ c1
x

y(x) → 0
y(x) → 1
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30.37 problem 897
Internal problem ID [4133]
Internal file name [OUTPUT/3626_Sunday_June_05_2022_09_50_22_AM_5947529/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 897.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

y′
2
x2 + 2axy′ − 2ya = −a2 − x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a+
√
2ya− x2

x
(1)

y′ = −a−
√
2ya− x2

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = a*x*(2*y(x)*x^3-(a*(2*y(x)*x^2-a+2*y(x)))^(1/2)*x^2+2*y(x)*x-2*a*x+(a*(2*y(x)*x^2-

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)+(diff(y(x), x))*(x^2-2)/((x^2+1)*x)-a^7*((-a^2)^(1/2)*x^16+16*a*x^15-120

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(16*a^7*_b(_a)*_a^17-(-a^2)^(1/2)*_a^17*a^7+4*(-a^2)^(7/2)*_b(_a)*_a^16-

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful
-> Calling odsolve with the ODE`, diff(y(x), x) = (-y(x)*x-a)/(x^2+1), y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 78� �
dsolve(x^2*diff(y(x),x)^2+2*a*x*diff(y(x),x)+a^2+x^2-2*a*y(x) = 0,y(x), singsol=all)� �
y(x)

− RootOf

−x

√
a
(
−2RootOf

(
−2ay (x) + a2 + x2 + 2a_Z+ _Z2)+ 2_Z− a

)
x2

− a arcsinh
(
RootOf

(
−2ay(x) + a2 + x2 + 2a_Z+ _Z2)

x

)
+ c1

 = 0

3 Solution by Mathematica
Time used: 0.943 (sec). Leaf size: 82� �
DSolve[x^2 (y'[x])^2+2 a x y'[x]+a^2+x^2-2 a y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

y(x) = 2axK[1] + x2K[1]2 + a2 + x2

2a , x =
a log

(√
K[1]2 + 1−K[1]

)
√
K[1]2 + 1

+ c1√
K[1]2 + 1

 , {y(x), K[1]}
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30.38 problem 898
Internal problem ID [4134]
Internal file name [OUTPUT/3627_Sunday_June_05_2022_09_50_46_AM_58872670/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 898.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

y′
2
x2 − 2xyy′ + y(y + 1) = x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y +
√
−y + x

x
(1)

y′ = y −
√
−y + x

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = y +
√
−y + x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(y +

√
−y + x) (b3 − a2)

x
− (y +

√
−y + x)2 a3
x2

−
(

1
2
√
−y + xx

− y +
√
−y + x

x2

)
(xa2 + ya3 + a1)

−

(
1− 1

2
√
−y+x

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−2(−y + x)
3
2 a3 + 2

√
−y + xxb1 − 2

√
−y + x ya1 + x2a2 − x2b2 − 2x2b3 + 3xya3 + xyb3 − 2y2a3 − xa1 − xb1 + 2a1y

2
√
−y + xx2

= 0

Setting the numerator to zero gives

(6E)−2(−y + x)
3
2 a3 − 2

√
−y + xxb1 + 2

√
−y + x ya1 − x2a2 + x2b2

+ 2x2b3 − 3xya3 − xyb3 + 2y2a3 + xa1 + xb1 − 2a1y = 0

Simplifying the above gives

(6E)−2(−y + x)
3
2 a3 + 2(−y + x)xb3 − 2(−y + x) ya3 + 2(−y + x) a1

−2
√
−y + xxb1+2

√
−y + x ya1−x2a2+x2b2−xya3+xyb3−xa1+xb1 = 0
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Since the PDE has radicals, simplifying gives

−x2a2 + x2b2 + 2x2b3 − 2
√
−y + x a3x− 2

√
−y + xxb1 − 3xya3 − xyb3

+ 2
√
−y + x ya1 + 2

√
−y + x a3y + 2y2a3 + xa1 + xb1 − 2a1y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y + x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−y + x = v3

}
The above PDE (6E) now becomes

(7E)2v3v2a1 − v21a2 − 3v1v2a3 − 2v3a3v1 + 2v22a3 + 2v3a3v2
− 2v3v1b1 + v21b2 + 2v21b3 − v1v2b3 + v1a1 − 2a1v2 + v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−a2 + b2 + 2b3) v21 + (−3a3 − b3) v1v2 + (−2a3 − 2b1) v1v3
+ (a1 + b1) v1 + 2v22a3 + (2a1 + 2a3) v2v3 − 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a3 = 0

a1 + b1 = 0
2a1 + 2a3 = 0
−3a3 − b3 = 0
−2a3 − 2b1 = 0

−a2 + b2 + 2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b2

a3 = 0
b1 = 0
b2 = b2

b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
y +

√
−y + x

x

)
(x)

= −y −
√
−y + x+ x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y −
√
−y + x+ x

dy
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Which results in

S = 2 arctanh
(√

−y + x
)
− ln (y + 1− x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y +
√
−y + x

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
−1− 1√

−y+x

−1 + x− y

Sy =
1 + 1√

−y+x

−1 + x− y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (1 +

√
−y + x) (y +

√
−y + x− x)

(−1 + x− y)
√
−y + xx

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 arctanh
(√

−y + x
)
− ln (y + 1− x) = − ln (x) + c1
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Which simplifies to

2 arctanh
(√

−y + x
)
− ln (y + 1− x) = − ln (x) + c1

Summary
The solution(s) found are the following

(1)2 arctanh
(√

−y + x
)
− ln (y + 1− x) = − ln (x) + c1

Verification of solutions

2 arctanh
(√

−y + x
)
− ln (y + 1− x) = − ln (x) + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = y −
√
−y + x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(y −

√
−y + x) (b3 − a2)

x
− (y −

√
−y + x)2 a3
x2

−
(
− 1
2
√
−y + xx

− y −
√
−y + x

x2

)
(xa2 + ya3 + a1)

−

(
1 + 1

2
√
−y+x

)
(xb2 + yb3 + b1)
x

= 0
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Putting the above in normal form gives

−2(−y + x)
3
2 a3 + 2

√
−y + xxb1 − 2

√
−y + x ya1 − x2a2 + x2b2 + 2x2b3 − 3xya3 − xyb3 + 2y2a3 + xa1 + xb1 − 2a1y

2
√
−y + xx2

= 0

Setting the numerator to zero gives

(6E)−2(−y + x)
3
2 a3 − 2

√
−y + xxb1 + 2

√
−y + x ya1 + x2a2 − x2b2

− 2x2b3 + 3xya3 + xyb3 − 2y2a3 − xa1 − xb1 + 2a1y = 0

Simplifying the above gives

(6E)−2(−y + x)
3
2 a3 − 2(−y + x)xb3 + 2(−y + x) ya3 − 2(−y + x) a1

−2
√
−y + xxb1+2

√
−y + x ya1+x2a2−x2b2+xya3−xyb3+xa1−xb1 = 0

Since the PDE has radicals, simplifying gives

x2a2 − x2b2 − 2x2b3 − 2
√
−y + x a3x− 2

√
−y + xxb1 + 3xya3 + xyb3

+ 2
√
−y + x ya1 + 2

√
−y + x a3y − 2y2a3 − xa1 − xb1 + 2a1y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−y + x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−y + x = v3

}
The above PDE (6E) now becomes

(7E)2v3v2a1 + v21a2 + 3v1v2a3 − 2v3a3v1 − 2v22a3 + 2v3a3v2
− 2v3v1b1 − v21b2 − 2v21b3 + v1v2b3 − v1a1 + 2a1v2 − v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)(a2 − b2 − 2b3) v21 + (3a3 + b3) v1v2 + (−2a3 − 2b1) v1v3
+ (−a1 − b1) v1 − 2v22a3 + (2a1 + 2a3) v2v3 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2a3 = 0

−a1 − b1 = 0
2a1 + 2a3 = 0

−2a3 − 2b1 = 0
3a3 + b3 = 0

a2 − b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b2

a3 = 0
b1 = 0
b2 = b2

b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
y −

√
−y + x

x

)
(x)

= −y +
√
−y + x+ x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y +
√
−y + x+ x

dy

Which results in

S = − ln (y + 1− x)− 2 arctanh
(√

−y + x
)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y −
√
−y + x

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
−1 + 1√

−y+x

−1 + x− y

Sy =
1− 1√

−y+x

−1 + x− y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (−

√
−y + x+ 1) (−y +

√
−y + x+ x)

(−1 + x− y)
√
−y + xx

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y + 1− x)− 2 arctanh
(√

−y + x
)
= − ln (x) + c1

Which simplifies to

− ln (y + 1− x)− 2 arctanh
(√

−y + x
)
= − ln (x) + c1

Summary
The solution(s) found are the following

(1)− ln (y + 1− x)− 2 arctanh
(√

−y + x
)
= − ln (x) + c1

Verification of solutions

− ln (y + 1− x)− 2 arctanh
(√

−y + x
)
= − ln (x) + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)+(1/2)*(-(diff(y(x), x))*x+y(x))/x^2+(1/2)/x^2, y(x)` *** Subl

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful

<- 1st order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 22� �
dsolve(x^2*diff(y(x),x)^2-2*x*diff(y(x),x)*y(x)-x+y(x)*(1+y(x)) = 0,y(x), singsol=all)� �

y(x) = x

y(x) = c1
√
x− x c21

4 + x− 1

3 Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 55� �
DSolve[x^2 (y'[x])^2-2 x y[x] y'[x]-x+y[x](1+y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1
2x

4 − ic1
√
x− 1

y(x) → x+ c1
2x

4 + ic1
√
x− 1
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30.39 problem 899
Internal problem ID [4135]
Internal file name [OUTPUT/3628_Sunday_June_05_2022_09_50_58_AM_60146305/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 30
Problem number: 899.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

y′
2
x2 − 2xyy′ +

(
−x2 + 1

)
y2 = x4

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y +
√
y2x2 + x4

x
(1)

y′ = y −
√
y2x2 + x4

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[1, y/x]� �

3 Solution by Maple
Time used: 0.453 (sec). Leaf size: 58� �
dsolve(x^2*diff(y(x),x)^2-2*x*diff(y(x),x)*y(x)-x^4+(-x^2+1)*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −ix
y(x) = ix

y(x) = −x(ex − c21e−x)
2c1

y(x) = x(c21ex − e−x)
2c1
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3 Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 60� �
DSolve[x^2 (y'[x])^2-2 x y[x] y'[x]-x^4+(1-x^2)y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2xe

−x−c1
(
−1 + e2(x+c1)

)
y(x) → 1

2
(
xe−x+c1 − xex−c1

)
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31 Various 31
31.1 problem 900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8309
31.2 problem 901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8315
31.3 problem 902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8321
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31.12problem 911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8394
31.13problem 912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8401
31.14problem 913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8408
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31.19problem 918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8442
31.20problem 919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8445
31.21problem 920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8448
31.22problem 921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8464
31.23problem 922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8468
31.24problem 924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8475
31.25problem 925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8481
31.26problem 926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8490
31.27problem 927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8501
31.28problem 928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8504
31.29problem 929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8516
31.30problem 931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8530
31.31problem 932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8533
31.32problem 933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8537
31.33problem 934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8550
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31.1 problem 900
31.1.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8309

Internal problem ID [4136]
Internal file name [OUTPUT/3629_Sunday_June_05_2022_09_51_18_AM_19168923/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 900.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Clairaut]

y′
2
x2 − (2yx+ 1) y′ + y2 = −1

31.1.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2x2 − (2xy + 1) p+ y2 = −1

Solving for y from the above results in

y = px+
√
p− 1 (1A)

y = px−
√

p− 1 (2A)

Each of the above ode’s is a Clairaut ode which is now solved. Solving ode 1A We start
by replacing y′ by p which gives

y = px+
√
p− 1

= px+
√
p− 1
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g =
√
p− 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+
√
c1 − 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g =
√
p− 1, then

the above equation becomes

x+ g′(p) = x+ 1
2
√
p− 1

= 0
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Solving the above for p results in

p1 =
4x2 + 1
4x2

Substituting the above back in (1) results in

y1 =
2 csgn

( 1
x

)
+ 4x2 + 1

4x

Solving ode 2A We start by replacing y′ by p which gives

y = px−
√

p− 1
= px−

√
p− 1

Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −
√
p− 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1
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Substituting this in (1) gives the general solution as

y = c2x−
√
c2 − 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −
√
p− 1, then

the above equation becomes

x+ g′(p) = x− 1
2
√
p− 1

= 0

Solving the above for p results in

p1 =
4x2 + 1
4x2

Substituting the above back in (1) results in

y1 =
4x2 − 2 csgn

( 1
x

)
+ 1

4x

Simplifying the solution y = 2 csgn
( 1
x

)
+4x2+1

4x to y = 4x2+3
4x Simplifying the solution y =

4x2−2 csgn
( 1
x

)
+1

4x to y = 4x2−1
4x

Summary
The solution(s) found are the following

(1)y = c1x+
√
c1 − 1

(2)y = 4x2 + 3
4x

(3)y = c2x−
√
c2 − 1

(4)y = 4x2 − 1
4x
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Verification of solutions

y = c1x+
√
c1 − 1

Verified OK.

y = 4x2 + 3
4x

Verified OK.

y = c2x−
√
c2 − 1

Verified OK.

y = 4x2 − 1
4x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 42� �
dsolve(x^2*diff(y(x),x)^2-(1+2*x*y(x))*diff(y(x),x)+1+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 4x2 − 1
4x

y(x) = c1x−
√
c1 − 1

y(x) = c1x+
√
c1 − 1
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3 Solution by Mathematica
Time used: 1.522 (sec). Leaf size: 66� �
DSolve[x^2 (y'[x])^2-(1+2 x y[x])y'[x]+1+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ e−2c1x+ e−c1

y(x) → x+ 1
4e

−2c1x+ e−c1

2
y(x) → x

y(x) → x− 1
4x
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31.2 problem 901
31.2.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8315

Internal problem ID [4137]
Internal file name [OUTPUT/3630_Sunday_June_05_2022_09_51_38_AM_63229332/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 901.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Clairaut]

y′
2
x2 − (a+ 2yx) y′ + y2 = 0

31.2.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2x2 − (2xy + a) p+ y2 = 0

Solving for y from the above results in

y = px+√
ap (1A)

y = px−√
ap (2A)

Each of the above ode’s is a Clairaut ode which is now solved. Solving ode 1A We start
by replacing y′ by p which gives

y = px+√
ap

= px+√
ap
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = √
ap

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+√
c1a

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = √
ap, then the

above equation becomes

x+ g′(p) = x+ a

2√ap

= 0

8316



Solving the above for p results in

p1 =
a

4x2

Substituting the above back in (1) results in

y1 =
2
√

a2

x2 x+ a

4x

Solving ode 2A We start by replacing y′ by p which gives

y = px−√
ap

= px−√
ap

Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −√
ap

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1
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Substituting this in (1) gives the general solution as

y = c2x−
√
ac2

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −√
ap, then

the above equation becomes

x+ g′(p) = x− a

2√ap

= 0

Solving the above for p results in

p1 =
a

4x2

Substituting the above back in (1) results in

y1 =
−2
√

a2

x2 x+ a

4x

Summary
The solution(s) found are the following

(1)y = c1x+√
c1a

(2)y =
2
√

a2

x2 x+ a

4x
(3)y = c2x−

√
ac2

(4)y =
−2
√

a2

x2 x+ a

4x
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Verification of solutions

y = c1x+√
c1a

Verified OK.

y =
2
√

a2

x2 x+ a

4x

Verified OK.

y = c2x−
√
ac2

Verified OK.

y =
−2
√

a2

x2 x+ a

4x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 36� �
dsolve(x^2*diff(y(x),x)^2-(a+2*x*y(x))*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = − a

4x
y(x) = c1x−

√
c1a

y(x) = c1x+√
c1a

3 Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 64� �
DSolve[x^2 (y'[x])^2-(a+2 x y[x])y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− 2
√
ac1

4c12

y(x) → x+ 2
√
ac1

4c12
y(x) → 0
y(x) → − a

4x
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31.3 problem 902
31.3.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8321

Internal problem ID [4138]
Internal file name [OUTPUT/3631_Sunday_June_05_2022_09_51_59_AM_94456927/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 902.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′
2
x2 − x(x− 2y) y′ + y2 = 0

31.3.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x2 − x(x− 2y) p+ y2 = 0

Solving for y from the above results in

y = (−p+√
p)x (1A)

y = (−p−√
p)x (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p+√
p

g = 0

Hence (2) becomes

2p−√
p = x

(
−1 + 1

2√p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p−√
p = 0

Solving for p from the above gives

p = 0

p = 1
4

Substituting these in (1A) gives

y = 0

y = x

4

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)−
√
p (x)

x
(
−1 + 1

2
√

p(x)

) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −
2
(
2p−√

p
)√

p

x
(
2√p− 1

)
Where f(x) = − 2

x
and g(p) =

(
2p−√

p
)√

p

2√p−1 . Integrating both sides gives

1(
2p−√

p
)√

p

2√p−1

dp = −2
x
dx

∫ 1(
2p−√

p
)√

p

2√p−1

dp =
∫

−2
x
dx

ln (p) = −2 ln (x) + c1
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Raising both side to exponential gives

p = e−2 ln(x)+c1

Which simplifies to

p = c2
x2

Which simplifies to

p(x) = c2ec1
x2

Substituing the above solution for p in (2A) gives

y =
(
−c2ec1

x2 +
√

c2ec1
x2

)
x

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −p−√
p

g = 0

Hence (2) becomes

2p+√
p = x

(
−1− 1

2√p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p+√
p = 0

Solving for p from the above gives

p = 0
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Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x) +
√

p (x)
x
(
−1− 1

2
√

p(x)

) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −
2√p

(
2p+√

p
)

x
(
2√p+ 1

)
Where f(x) = − 2

x
and g(p) =

√
p
(
2p+√

p
)

2√p+1 . Integrating both sides gives

1
√
p
(
2p+√

p
)

2√p+1

dp = −2
x
dx

∫ 1
√
p
(
2p+√

p
)

2√p+1

dp =
∫

−2
x
dx

ln (p) = −2 ln (x) + c3

Raising both side to exponential gives

p = e−2 ln(x)+c3

Which simplifies to

p = c4
x2

Which simplifies to

p(x) = c4ec3
x2

Substituing the above solution for p in (2A) gives

y =
(
−c4ec3

x2 −
√

c4ec3
x2

)
x
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Summary
The solution(s) found are the following

(1)y = 0
(2)y = x

4

(3)y =
(
−c2ec1

x2 +
√

c2ec1
x2

)
x

(4)y = 0

(5)y =
(
−c4ec3

x2 −
√

c4ec3
x2

)
x

Verification of solutions

y = 0

Verified OK.

y = x

4

Verified OK.

y =
(
−c2ec1

x2 +
√

c2ec1
x2

)
x

Verified OK.
y = 0

Verified OK.

y =
(
−c4ec3

x2 −
√

c4ec3
x2

)
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 32� �
dsolve(x^2*diff(y(x),x)^2-x*(x-2*y(x))*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = x

4
y(x) = c1(−c1 + x)

x

y(x) = −c1(c1 + x)
x

3 Solution by Mathematica
Time used: 0.217 (sec). Leaf size: 64� �
DSolve[x^2 (y'[x])^2-x(x-2 y[x])y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−4c1 − 2ie−2c1x

4x
y(x) → 2ie−2c1x+ e−4c1

4x
y(x) → 0
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31.4 problem 903
Internal problem ID [4139]
Internal file name [OUTPUT/3632_Sunday_June_05_2022_09_52_12_AM_9778114/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 903.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`]]

y′
2
x2 + 2x(y + 2x) y′ + y2 = 4a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −2x− y + 2
√
x2 + yx+ a

x
(1)

y′ = −2x− y − 2
√
x2 + yx+ a

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −2x+ y − 2
√
x2 + xy + a

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

−
(
2x+ y − 2

√
x2 + xy + a

)
(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x

−
(
2x+ y − 2

√
x2 + xy + a

)2 (xa5 + 2ya6 + a3)
x2 −

(
−
2− 2x+y√

x2+xy+a

x

+ 2x+ y − 2
√
x2 + xy + a

x2

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
+

(
1− x√

x2+xy+a

)
(x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

x
= 0

Putting the above in normal form gives

−3x3ya4 − 10x3ya5 − x3yb5 − 3x2y2a5 − 24x2y2a6 − 3x2y2b6 − 9x y3a6 + 4(x2 + xy + a)
3
2 xa5 + 8(x2 + xy + a)

3
2 ya6 − 4

√
x2 + xy + a x3a4 + 4

√
x2 + xy + a x3a5 − 3x3b4

√
x2 + xy + a+ 2

√
x2 + xy + a x3b5 + 3

√
x2 + xy + a y3a6 − 4axya5 − 16axya6 − 4axyb6 + 4

√
x2 + xy + a xya3 −

√
x2 + xy + a x2ya4 + 2

√
x2 + xy + a x2ya5 + 8

√
x2 + xy + a x2ya6 − yb5

√
x2 + xy + a x2 + 4

√
x2 + xy + a x2yb6 +

√
x2 + xy + a x y2a5 + 8

√
x2 + xy + a x y2a6 +

√
x2 + xy + a x y2b6 − 16x3ya6 − 4x3yb6 + 2a x2a4 − 8x4a5 − 2x4b5 + 2x3a2 + x3b2 + x2b1 + 4(x2 + xy + a)

3
2 a3 − 8x3a3 − 2x3b3 − 2aa1 − 8a x2a5 − 2a x2b5 − 10a y2a6 − 8axa3 − 2axb3 − 6aya3 + x2ya2 − 12x2ya3 − x2yb3 − 5x y2a3 − xya1 − 2

√
x2 + xy + a x2a2 + 4

√
x2 + xy + a x2a3 − 2b2

√
x2 + xy + a x2 + 2

√
x2 + xy + a x2b3 + 2

√
x2 + xy + a y2a3 −

√
x2 + xy + a xb1 +

√
x2 + xy + a ya1 + 4x4a4 + x4b4√

x2 + xy + a x2

= 0
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Setting the numerator to zero gives

(6E)

−3x3ya4 + 10x3ya5 + x3yb5 + 3x2y2a5 + 24x2y2a6 + 3x2y2b6

+ 9x y3a6 − 4
(
x2 + xy + a

) 3
2 xa5 − 8

(
x2 + xy + a

) 3
2 ya6

+ 4
√

x2 + xy + a x3a4 − 4
√
x2 + xy + a x3a5

+ 3x3b4
√

x2 + xy + a− 2
√
x2 + xy + a x3b5

− 3
√

x2 + xy + a y3a6 + 4axya5 + 16axya6 + 4axyb6
− 4
√

x2 + xy + a xya3 +
√
x2 + xy + a x2ya4

− 2
√

x2 + xy + a x2ya5 − 8
√
x2 + xy + a x2ya6

+ yb5
√
x2 + xy + a x2 − 4

√
x2 + xy + a x2yb6

−
√
x2 + xy + a x y2a5 − 8

√
x2 + xy + a x y2a6

−
√
x2 + xy + a x y2b6 + 16x3ya6 + 4x3yb6 − 2a x2a4

+ 8x4a5 + 2x4b5 − 2x3a2 − x3b2 − x2b1 − 4
(
x2 + xy + a

) 3
2 a3

+ 8x3a3 + 2x3b3 + 2aa1 + 8a x2a5 + 2a x2b5 + 10a y2a6
+ 8axa3 + 2axb3 + 6aya3 − x2ya2 + 12x2ya3

+ x2yb3 + 5x y2a3 + xya1 + 2
√
x2 + xy + a x2a2

− 4
√

x2 + xy + a x2a3 + 2b2
√

x2 + xy + a x2

− 2
√

x2 + xy + a x2b3 − 2
√

x2 + xy + a y2a3

+
√

x2 + xy + a xb1 −
√

x2 + xy + a ya1 − 4x4a4 − x4b4 = 0

8329



Simplifying the above gives

(6E)

−x3ya4 − 2x3ya5 − x3yb5 − x2y2a5 − 2x2y2a6 − x2y2b6

− x y3a6 − 4
(
x2 + xy + a

) 3
2 xa5 − 8

(
x2 + xy + a

) 3
2 ya6

− 2
(
x2 + xy + a

)
x2a4 + 8

(
x2 + xy + a

)
x2a5

+ 2
(
x2 + xy + a

)
x2b5 + 10

(
x2 + xy + a

)
y2a6

+ 4
√
x2 + xy + a x3a4 − 4

√
x2 + xy + a x3a5

+ 3x3b4
√

x2 + xy + a− 2
√

x2 + xy + a x3b5

− 3
√

x2 + xy + a y3a6 − 4
√
x2 + xy + a xya3

+ 4
(
x2 + xy + a

)
xya5 + 16

(
x2 + xy + a

)
xya6

+ 4
(
x2 + xy + a

)
xyb6 +

√
x2 + xy + a x2ya4

− 2
√

x2 + xy + a x2ya5 − 8
√

x2 + xy + a x2ya6

+ yb5
√

x2 + xy + a x2 − 4
√

x2 + xy + a x2yb6

−
√

x2 + xy + a x y2a5 − 8
√
x2 + xy + a x y2a6

−
√

x2 + xy + a x y2b6 − 2x3a2 − x3b2 − 2x2a1 − x2b1

− 4
(
x2 + xy + a

) 3
2 a3 + 2

(
x2 + xy + a

)
a1 − x2ya2

− 2x2ya3 − x2yb3 − x y2a3 − xya1 + 8
(
x2 + xy + a

)
xa3

+2
(
x2+xy+a

)
xb3+6

(
x2+xy+a

)
ya3+2

√
x2 + xy + a x2a2

− 4
√

x2 + xy + a x2a3 + 2b2
√

x2 + xy + a x2

− 2
√

x2 + xy + a x2b3 − 2
√

x2 + xy + a y2a3

+
√

x2 + xy + a xb1 −
√

x2 + xy + a ya1 − 2x4a4 − x4b4 = 0
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Since the PDE has radicals, simplifying gives

−3x3ya4 + 10x3ya5 + x3yb5 + 3x2y2a5 + 24x2y2a6 + 3x2y2b6

+ 9x y3a6 + 4
√

x2 + xy + a x3a4 − 8
√

x2 + xy + a x3a5

+ 3x3b4
√
x2 + xy + a− 2

√
x2 + xy + a x3b5 − 3

√
x2 + xy + a y3a6

+ 4axya5 + 16axya6 + 4axyb6 − 8
√
x2 + xy + a xya3

− 4ax
√
x2 + xy + a a5 − 8a

√
x2 + xy + a ya6 +

√
x2 + xy + a x2ya4

− 6
√
x2 + xy + a x2ya5 − 16

√
x2 + xy + a x2ya6

+ yb5
√

x2 + xy + a x2− 4
√

x2 + xy + a x2yb6−
√
x2 + xy + a x y2a5

− 16
√

x2 + xy + a x y2a6 −
√

x2 + xy + a x y2b6 + 16x3ya6

+ 4x3yb6 − 2a x2a4 + 8x4a5 + 2x4b5 − 4a
√

x2 + xy + a a3 − 2x3a2
− x3b2 − x2b1 + 8x3a3 + 2x3b3 + 2aa1 + 8a x2a5 + 2a x2b5
+ 10a y2a6 + 8axa3 + 2axb3 + 6aya3 − x2ya2 + 12x2ya3 + x2yb3

+ 5x y2a3 + xya1 + 2
√

x2 + xy + a x2a2 − 8
√
x2 + xy + a x2a3

+ 2b2
√

x2 + xy + a x2 − 2
√

x2 + xy + a x2b3 − 2
√
x2 + xy + a y2a3

+
√

x2 + xy + a xb1 −
√

x2 + xy + a ya1 − 4x4a4 − x4b4 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + xy + a

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 + xy + a = v3
}

The above PDE (6E) now becomes

(7E)

−4v41a4 − 3v31v2a4 + 4v3v31a4 + v3v
2
1v2a4 + 8v41a5 + 10v31v2a5

− 8v3v31a5 + 3v21v22a5 − 6v3v21v2a5 − v3v1v
2
2a5 + 16v31v2a6 + 24v21v22a6

− 16v3v21v2a6 + 9v1v32a6 − 16v3v1v22a6 − 3v3v32a6 − v41b4 + 3v31b4v3
+2v41b5+v31v2b5−2v3v31b5+v2b5v3v

2
1+4v31v2b6+3v21v22b6−4v3v21v2b6

− v3v1v
2
2b6 − 2av21a4 + 8av21a5 + 4av1v2a5 − 4av1v3a5 + 16av1v2a6

+10av22a6−8av3v2a6+2av21b5+4av1v2b6−2v31a2−v21v2a2+2v3v21a2
+ 8v31a3 + 12v21v2a3 − 8v3v21a3 + 5v1v22a3 − 8v3v1v2a3 − 2v3v22a3
− v31b2 + 2b2v3v21 + 2v31b3 + v21v2b3 − 2v3v21b3 + 8av1a3 + 6av2a3
− 4av3a3 + 2av1b3 + v1v2a1 − v3v2a1 − v21b1 + v3v1b1 + 2aa1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(−4a4 + 8a5 − b4 + 2b5) v41 + (−3a4 + 10a5 + 16a6 + b5 + 4b6) v31v2
+ (4a4 − 8a5 + 3b4 − 2b5) v31v3 + (−2a2 + 8a3 − b2 + 2b3) v31
+ (3a5 + 24a6 + 3b6) v21v22 + (a4 − 6a5 − 16a6 + b5 − 4b6) v21v2v3
+ (−a2 + 12a3 + b3) v21v2 + (2a2 − 8a3 + 2b2 − 2b3) v21v3
+ (−2aa4 + 8aa5 + 2ab5 − b1) v21 + 9v1v32a6 + (−a5 − 16a6 − b6) v1v22v3
+ 5v1v22a3 − 8v3v1v2a3 + (4aa5 + 16aa6 + 4ab6 + a1) v1v2
+ (−4aa5 + b1) v1v3 + (8aa3 + 2ab3) v1 − 3v3v32a6 − 2v3v22a3
+ 10av22a6 + (−8aa6 − a1) v2v3 + 6av2a3 − 4av3a3 + 2aa1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−8a3 = 0
−2a3 = 0
5a3 = 0

−3a6 = 0
9a6 = 0

2aa1 = 0
−4aa3 = 0
6aa3 = 0
10aa6 = 0

−a2 + 12a3 + b3 = 0
−a5 − 16a6 − b6 = 0
3a5 + 24a6 + 3b6 = 0

−2a2 + 8a3 − b2 + 2b3 = 0
2a2 − 8a3 + 2b2 − 2b3 = 0
−4a4 + 8a5 − b4 + 2b5 = 0
4a4 − 8a5 + 3b4 − 2b5 = 0

−3a4 + 10a5 + 16a6 + b5 + 4b6 = 0
a4 − 6a5 − 16a6 + b5 − 4b6 = 0

−8aa6 − a1 = 0
8aa3 + 2ab3 = 0
−4aa5 + b1 = 0

4aa5 + 16aa6 + 4ab6 + a1 = 0
−2aa4 + 8aa5 + 2ab5 − b1 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = −2b6
a5 = −b6

a6 = 0
b1 = −4ab6
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x2 − xy

η = y2 − 4a

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y2 − 4a−
(
−2x+ y − 2

√
x2 + xy + a

x

)(
−2x2 − xy

)
= 4x2√x2 + xy + a+ 2

√
x2 + xy + a xy − 4x3 − 4x2y − 4ax

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2
√

x2+xy+a+2
√

x2+xy+a xy−4x3−4x2y−4ax
x

dy

Which results in

S =
x ln

(
xy + 2x2 + 2

√
x2 + xy + a x

)
−4x2 + 4a −

√
a arctanh

(
2
√

x2+xy+a+2x
2
√
a

)
−2x2 + 2a −

x ln
(
xy + 2x2 − 2

√
x2 + xy + a x

)
2 (−2x2 + 2a) −

√
a arctanh

(
2
√

x2+xy+a−2x
2
√
a

)
−2x2 + 2a +

√
a arctanh

(
y

2
√
a

)
x2

(−x2 + a)2
−

a
3
2 arctanh

(
y

2
√
a

)
2 (−x2 + a)2

−
x4 arctanh

(
y

2
√
a

)
2 (−x2 + a)2

√
a

−
x ln

(
xy + 2x2 + 2

√
x2 + xy + a x

)
4 (−x2 + a) +

x2 arctanh
(

2
√

x2+xy+a+2x
2
√
a

)
2 (−x2 + a)

√
a

+
x ln

(
xy + 2x2 − 2

√
x2 + xy + a x

)
−4x2 + 4a +

x2 arctanh
(

2
√

x2+xy+a−2x
2
√
a

)
2 (−x2 + a)

√
a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ y − 2
√
x2 + xy + a

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2
√
x2 + xy + a x

Sy =
1√

x2 + xy + a
(
4x+ 2y − 4

√
x2 + xy + a

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
arctanh

(
x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
+ arctanh

(
y

2
√
a

)
2
√
a

= c1

Which simplifies to

−
arctanh

(
x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
+ arctanh

(
y

2
√
a

)
2
√
a

= c1

Summary
The solution(s) found are the following

(1)−
arctanh

(
x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
+ arctanh

(
y

2
√
a

)
2
√
a

= c1

Verification of solutions

−
arctanh

(
x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
+ arctanh

(
y

2
√
a

)
2
√
a

= c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −2
√
x2 + xy + a+ 2x+ y

x
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

−
(
2
√
x2 + xy + a+ 2x+ y

)
(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x

−
(
2
√
x2 + xy + a+ 2x+ y

)2 (xa5 + 2ya6 + a3)
x2 −

(
−

2x+y√
x2+xy+a

+ 2
x

+ 2
√
x2 + xy + a+ 2x+ y

x2

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
+

(
1 + x√

x2+xy+a

)
(x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

x
= 0

Putting the above in normal form gives

−−3x3ya4 + 10x3ya5 + x3yb5 + 3x2y2a5 + 24x2y2a6 + 3x2y2b6 + 9x y3a6 + 4(x2 + xy + a)
3
2 xa5 + 8(x2 + xy + a)

3
2 ya6 − 2x3a2 − x3b2 − x2b1 + 4(x2 + xy + a)

3
2 a3 + 8x3a3 + 4

√
x2 + xy + a xya3 −

√
x2 + xy + a x2ya4 + 2

√
x2 + xy + a x2ya5 + 8

√
x2 + xy + a x2ya6 − yb5

√
x2 + xy + a x2 + 4

√
x2 + xy + a x2yb6 +

√
x2 + xy + a x y2a5 + 8

√
x2 + xy + a x y2a6 +

√
x2 + xy + a x y2b6 + 4xya5a+ 16xya6a+ 4xyb6a+ 2x3b3 + 2a1a− 4

√
x2 + xy + a x3a4 + 4

√
x2 + xy + a x3a5 − 3x3b4

√
x2 + xy + a+ 2

√
x2 + xy + a x3b5 + 3

√
x2 + xy + a y3a6 + 16x3ya6 + 4x3yb6 − 2x2a4a+ 8x2a5a− x2ya2 + 12x2ya3 + x2yb3 + 5x y2a3 + xya1 − 2

√
x2 + xy + a x2a2 + 4

√
x2 + xy + a x2a3 − 2b2

√
x2 + xy + a x2 + 2

√
x2 + xy + a x2b3 + 2

√
x2 + xy + a y2a3 −

√
x2 + xy + a xb1 +

√
x2 + xy + a ya1 + 8xa3a+ 2xb3a+ 6ya3a− 4x4a4 − x4b4 + 8x4a5 + 2x4b5 + 2x2b5a+ 10y2a6a√

x2 + xy + a x2

= 0
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Setting the numerator to zero gives

(6E)

3x3ya4 − 10x3ya5 − x3yb5 − 3x2y2a5 − 24x2y2a6 − 3x2y2b6

− 9x y3a6− 4
(
x2+xy+ a

) 3
2 xa5− 8

(
x2+xy+ a

) 3
2 ya6+2x3a2

+x3b2+x2b1−4
(
x2+xy+a

) 3
2 a3−8x3a3−4

√
x2 + xy + a xya3

+
√

x2 + xy + a x2ya4 − 2
√
x2 + xy + a x2ya5

− 8
√

x2 + xy + a x2ya6 + yb5
√

x2 + xy + a x2

− 4
√

x2 + xy + a x2yb6 −
√
x2 + xy + a x y2a5

− 8
√

x2 + xy + a x y2a6 −
√

x2 + xy + a x y2b6 − 4xya5a
− 16xya6a− 4xyb6a− 2x3b3 − 2a1a+ 4

√
x2 + xy + a x3a4

− 4
√

x2 + xy + a x3a5 + 3x3b4
√
x2 + xy + a

− 2
√

x2 + xy + a x3b5 − 3
√
x2 + xy + a y3a6 − 16x3ya6

− 4x3yb6 + 2x2a4a− 8x2a5a+ x2ya2 − 12x2ya3

− x2yb3 − 5x y2a3 − xya1 + 2
√
x2 + xy + a x2a2

− 4
√

x2 + xy + a x2a3 + 2b2
√

x2 + xy + a x2

− 2
√

x2 + xy + a x2b3 − 2
√
x2 + xy + a y2a3

+
√

x2 + xy + a xb1 −
√

x2 + xy + a ya1 − 8xa3a− 2xb3a
−6ya3a+4x4a4+x4b4−8x4a5−2x4b5−2x2b5a−10y2a6a= 0
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Simplifying the above gives

(6E)

x3ya4 +2x3ya5 + x3yb5 + x2y2a5 +2x2y2a6 + x2y2b6 + x y3a6

− 4
(
x2 + xy + a

) 3
2 xa5 − 8

(
x2 + xy + a

) 3
2 ya6 + 2x3a2 + x3b2

+ 2x2a1 + x2b1 − 4
(
x2 + xy + a

) 3
2 a3 − 2

(
x2 + xy + a

)
a1

− 4
√

x2 + xy + a xya3 − 4
(
x2 + xy + a

)
xya5

− 16
(
x2 + xy + a

)
xya6 − 4

(
x2 + xy + a

)
xyb6

+
√

x2 + xy + a x2ya4 − 2
√

x2 + xy + a x2ya5

− 8
√

x2 + xy + a x2ya6 + yb5
√
x2 + xy + a x2

− 4
√

x2 + xy + a x2yb6 −
√
x2 + xy + a x y2a5

− 8
√

x2 + xy + a x y2a6 −
√
x2 + xy + a x y2b6

+ 2
(
x2 + xy + a

)
x2a4 − 8

(
x2 + xy + a

)
x2a5

− 2
(
x2 + xy + a

)
x2b5 − 10

(
x2 + xy + a

)
y2a6

+ 4
√
x2 + xy + a x3a4 − 4

√
x2 + xy + a x3a5

+ 3x3b4
√

x2 + xy + a− 2
√

x2 + xy + a x3b5

− 3
√

x2 + xy + a y3a6 + x2ya2 + 2x2ya3 + x2yb3 + x y2a3
+ xya1 − 8

(
x2 + xy + a

)
xa3 − 2

(
x2 + xy + a

)
xb3

− 6
(
x2 + xy + a

)
ya3 + 2

√
x2 + xy + a x2a2

− 4
√

x2 + xy + a x2a3 + 2b2
√

x2 + xy + a x2

− 2
√

x2 + xy + a x2b3 − 2
√

x2 + xy + a y2a3

+
√

x2 + xy + a xb1 −
√

x2 + xy + a ya1 + 2x4a4 + x4b4 = 0
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Since the PDE has radicals, simplifying gives

3x3ya4 − 10x3ya5 − x3yb5 − 3x2y2a5 − 24x2y2a6 − 3x2y2b6

− 9x y3a6 + 2x3a2 + x3b2 + x2b1 − 8x3a3 − 8
√

x2 + xy + a ya6a

− 4
√

x2 + xy + a xa5a− 8
√

x2 + xy + a xya3+
√
x2 + xy + a x2ya4

− 6
√
x2 + xy + a x2ya5 − 16

√
x2 + xy + a x2ya6

+ yb5
√

x2 + xy + a x2− 4
√

x2 + xy + a x2yb6−
√
x2 + xy + a x y2a5

− 16
√

x2 + xy + a x y2a6 −
√

x2 + xy + a x y2b6 − 4xya5a
− 16xya6a− 4xyb6a− 2x3b3 − 2a1a+ 4

√
x2 + xy + a x3a4

− 8
√
x2 + xy + a x3a5 + 3x3b4

√
x2 + xy + a− 2

√
x2 + xy + a x3b5

− 3
√
x2 + xy + a y3a6 − 16x3ya6 − 4x3yb6 + 2x2a4a

− 8x2a5a+ x2ya2 − 12x2ya3 − x2yb3 − 5x y2a3 − xya1

+ 2
√

x2 + xy + a x2a2 − 8
√
x2 + xy + a x2a3 + 2b2

√
x2 + xy + a x2

− 2
√
x2 + xy + a x2b3 − 2

√
x2 + xy + a y2a3 +

√
x2 + xy + a xb1

−
√

x2 + xy + a ya1 − 8xa3a− 2xb3a− 6ya3a− 4
√
x2 + xy + a a3a

+ 4x4a4 + x4b4 − 8x4a5 − 2x4b5 − 2x2b5a− 10y2a6a = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + xy + a

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 + xy + a = v3
}

The above PDE (6E) now becomes

(7E)

4v41a4 +3v31v2a4 +4v3v31a4 + v3v
2
1v2a4 − 8v41a5 − 10v31v2a5 − 8v3v31a5

−3v21v22a5−6v3v21v2a5−v3v1v
2
2a5−16v31v2a6−24v21v22a6−16v3v21v2a6

− 9v1v32a6 − 16v3v1v22a6 − 3v3v32a6 + v41b4 +3v31b4v3 − 2v41b5 − v31v2b5
− 2v3v31b5 + v2b5v3v

2
1 − 4v31v2b6 − 3v21v22b6 − 4v3v21v2b6 − v3v1v

2
2b6

+ 2v21a4a− 8v21a5a− 4v1v2a5a− 4v3v1a5a− 16v1v2a6a− 10v22a6a
− 8v3v2a6a− 2v21b5a− 4v1v2b6a+ 2v31a2 + v21v2a2 + 2v3v21a2
− 8v31a3 − 12v21v2a3 − 8v3v21a3 − 5v1v22a3 − 8v3v1v2a3 − 2v3v22a3
+ v31b2 + 2b2v3v21 − 2v31b3 − v21v2b3 − 2v3v21b3 − 8v1a3a− 6v2a3a
− 4v3a3a− 2v1b3a− v1v2a1 − v3v2a1 + v21b1 + v3v1b1 − 2a1a = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(4a4 − 8a5 + b4 − 2b5) v41 + (3a4 − 10a5 − 16a6 − b5 − 4b6) v31v2
+ (4a4 − 8a5 + 3b4 − 2b5) v31v3 + (2a2 − 8a3 + b2 − 2b3) v31
+ (−3a5 − 24a6 − 3b6) v21v22 + (a4 − 6a5 − 16a6 + b5 − 4b6) v21v2v3
+ (a2 − 12a3 − b3) v21v2 + (2a2 − 8a3 + 2b2 − 2b3) v21v3
+ (2aa4 − 8aa5 − 2ab5 + b1) v21 − 9v1v32a6 + (−a5 − 16a6 − b6) v1v22v3
− 5v1v22a3 − 8v3v1v2a3 + (−4aa5 − 16aa6 − 4ab6 − a1) v1v2
+ (−4aa5 + b1) v1v3 + (−8aa3 − 2ab3) v1 − 3v3v32a6 − 2v3v22a3
− 10v22a6a+ (−8aa6 − a1) v2v3 − 6v2a3a− 4v3a3a− 2a1a = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−8a3 = 0
−5a3 = 0
−2a3 = 0
−9a6 = 0
−3a6 = 0

−6aa3 = 0
−4aa3 = 0
−10aa6 = 0
−2a1a = 0

a2 − 12a3 − b3 = 0
−3a5 − 24a6 − 3b6 = 0
−a5 − 16a6 − b6 = 0

2a2 − 8a3 + b2 − 2b3 = 0
2a2 − 8a3 + 2b2 − 2b3 = 0
4a4 − 8a5 + b4 − 2b5 = 0
4a4 − 8a5 + 3b4 − 2b5 = 0

a4 − 6a5 − 16a6 + b5 − 4b6 = 0
3a4 − 10a5 − 16a6 − b5 − 4b6 = 0

−8aa6 − a1 = 0
−8aa3 − 2ab3 = 0

−4aa5 + b1 = 0
−4aa5 − 16aa6 − 4ab6 − a1 = 0

2aa4 − 8aa5 − 2ab5 + b1 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = −2b6
a5 = −b6

a6 = 0
b1 = −4ab6
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x2 − xy

η = y2 − 4a

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y2 − 4a−
(
−2

√
x2 + xy + a+ 2x+ y

x

)(
−2x2 − xy

)
= −4x2√x2 + xy + a− 2

√
x2 + xy + a xy − 4x3 − 4x2y − 4ax

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x2
√

x2+xy+a−2
√

x2+xy+a xy−4x3−4x2y−4ax
x

dy

Which results in

S = −
x ln

(
xy + 2x2 + 2

√
x2 + xy + a x

)
2 (−2x2 + 2a) +

√
a arctanh

(
2
√

x2+xy+a+2x
2
√
a

)
−2x2 + 2a +

x ln
(
xy + 2x2 − 2

√
x2 + xy + a x

)
−4x2 + 4a +

√
a arctanh

(
2
√

x2+xy+a−2x
2
√
a

)
−2x2 + 2a +

√
a arctanh

(
y

2
√
a

)
x2

(−x2 + a)2
−

a
3
2 arctanh

(
y

2
√
a

)
2 (−x2 + a)2

−
x4 arctanh

(
y

2
√
a

)
2 (−x2 + a)2

√
a

+
x ln

(
xy + 2x2 + 2

√
x2 + xy + a x

)
−4x2 + 4a −

x2 arctanh
(

2
√

x2+xy+a+2x
2
√
a

)
2 (−x2 + a)

√
a

−
x ln

(
xy + 2x2 − 2

√
x2 + xy + a x

)
4 (−x2 + a) −

x2 arctanh
(

2
√

x2+xy+a−2x
2
√
a

)
2 (−x2 + a)

√
a

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2
√
x2 + xy + a+ 2x+ y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
2
√
x2 + xy + a x

Sy = − 1√
x2 + xy + a

(
4
√
x2 + xy + a+ 4x+ 2y

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctanh
(

x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
− arctanh

(
y

2
√
a

)
2
√
a

= c1

Which simplifies to

arctanh
(

x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
− arctanh

(
y

2
√
a

)
2
√
a

= c1

Summary
The solution(s) found are the following

(1)
arctanh

(
x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
− arctanh

(
y

2
√
a

)
2
√
a

= c1

Verification of solutions

arctanh
(

x+
√

x2+yx+a√
a

)
+ arctanh

(√
x2+yx+a−x√

a

)
− arctanh

(
y

2
√
a

)
2
√
a

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)+2*(diff(y(x), x))/x, y(x)` *** Sublevel 4 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- 1st order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 36� �
dsolve(x^2*diff(y(x),x)^2+2*x*(2*x+y(x))*diff(y(x),x)-4*a+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −x2 − a

x

y(x) = c21 + 4c1x− 4a
4x

3 Solution by Mathematica
Time used: 1.286 (sec). Leaf size: 44� �
DSolve[x^2 (y'[x])^2+2 x(2 x+y[x])y'[x]-4 a+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −a+ c1(−2x+ c1)
x

y(x) → −2
√
a

y(x) → 2
√
a
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31.5 problem 904
Internal problem ID [4140]
Internal file name [OUTPUT/3633_Sunday_June_05_2022_09_52_23_AM_41374065/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 904.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y′
2
x2 + x

(
−2y + x3) y′ − (2x3 − y

)
y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
y − x3

2 +
√

x6+4yx3

2
x

(1)

y′ =
y − x3

2 −
√

x6+4yx3

2
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −x3 +
√
x6 + 4x3y + 2y
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x3 +

√
x6 + 4x3y + 2y

)
(b3 − a2)

2x −
(
−x3 +

√
x6 + 4x3y + 2y

)2
a3

4x2

−

−3x2 + 6x5+12x2y

2
√

x6+4x3y

2x − −x3 +
√
x6 + 4x3y + 2y
2x2

 (xa2 + ya3 + a1)

−

(
2x3√

x6+4x3y
+ 2
)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−−2x9a3 +
√
x6 + 4x3y x6a3 + 6x7a2 − 2x7b3 + 4x6a1 − 6

√
x6 + 4x3y x4a2 + 2

√
x6 + 4x3y x4b3 − 8

√
x6 + 4x3y x3ya3 + 4x5b2 + 12x4ya2 − 4x4yb3 + 20x3y2a3 − 4

√
x6 + 4x3y x3a1 + 4x4b1 + 4x3ya1 + (x6 + 4x3y)

3
2 a3 + 4

√
x6 + 4x3y xb1 − 4

√
x6 + 4x3y ya1

4x2
√
x6 + 4x3y

= 0

Setting the numerator to zero gives

(6E)
2x9a3 −

√
x6 + 4x3y x6a3 − 6x7a2 + 2x7b3 − 4x6a1 + 6

√
x6 + 4x3y x4a2

− 2
√

x6 + 4x3y x4b3 + 8
√
x6 + 4x3y x3ya3 − 4x5b2 − 12x4ya2

+ 4x4yb3 − 20x3y2a3 + 4
√
x6 + 4x3y x3a1 − 4x4b1 − 4x3ya1

−
(
x6 + 4x3y

) 3
2 a3 − 4

√
x6 + 4x3y xb1 + 4

√
x6 + 4x3y ya1 = 0
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Simplifying the above gives

(6E)

−
√

x3 (x3 + 4y)x6a3 − 6x7a2 − 6x6ya3 − 6x6a1 + 2
(
x6 + 4x3y

)
x3a3

+ 6
√

x3 (x3 + 4y)x4a2 − 2
√
x3 (x3 + 4y)x4b3 + 8

√
x3 (x3 + 4y)x3ya3

− 4x5b2 − 12x4ya2 − 4x4yb3 − 12x3y2a3 + 4
√
x3 (x3 + 4y)x3a1 − 4x4b1

− 12x3ya1 −
(
x3(x3 + 4y

)) 3
2 a3 + 2

(
x6 + 4x3y

)
xb3 − 2

(
x6 + 4x3y

)
ya3

+ 2
(
x6 + 4x3y

)
a1 − 4

√
x3 (x3 + 4y)xb1 + 4

√
x3 (x3 + 4y) ya1 = 0

Since the PDE has radicals, simplifying gives

2x9a3 − 6x7a2 + 2x7b3 − 2
√

x3 (x3 + 4y)x6a3 − 4x6a1 − 4x5b2

+ 6
√

x3 (x3 + 4y)x4a2 − 2
√
x3 (x3 + 4y)x4b3 − 12x4ya2 + 4x4yb3

+ 4
√

x3 (x3 + 4y)x3ya3 − 20x3y2a3 − 4x4b1 + 4
√

x3 (x3 + 4y)x3a1

− 4x3ya1 − 4
√

x3 (x3 + 4y)xb1 + 4
√

x3 (x3 + 4y) ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x3 (x3 + 4y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x3 (x3 + 4y) = v3

}
The above PDE (6E) now becomes

(7E)2v91a3 − 6v71a2 − 2v3v61a3 + 2v71b3 − 4v61a1 − 12v41v2a2 + 6v3v41a2
− 20v31v22a3 + 4v3v31v2a3 − 4v51b2 + 4v41v2b3 − 2v3v41b3
− 4v31v2a1 + 4v3v31a1 − 4v41b1 + 4v3v2a1 − 4v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v91a3 + (−6a2 + 2b3) v71 − 2v3v61a3 − 4v61a1 − 4v51b2
+ (−12a2 + 4b3) v41v2 + (6a2 − 2b3) v41v3 − 4v41b1 − 20v31v22a3
+ 4v3v31v2a3 − 4v31v2a1 + 4v3v31a1 − 4v3v1b1 + 4v3v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
4a1 = 0

−20a3 = 0
−2a3 = 0
2a3 = 0
4a3 = 0

−4b1 = 0
−4b2 = 0

−12a2 + 4b3 = 0
−6a2 + 2b3 = 0
6a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(
−x3 +

√
x6 + 4x3y + 2y
2x

)
(x)

= 2y + x3

2 −
√
x6 + 4x3y

2
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y + x3

2 −
√

x6+4x3y
2

dy

Which results in

S = ln (y)
2 −

ln
(
x3 +

√
x6 + 4x3y

)
2 +

ln
(
−x3 +

√
x6 + 4x3y

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3 +
√
x6 + 4x3y + 2y
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3
√
x

2
√
x3 + 4y

Sy =
x

3
2 +

√
x3 + 4y

2y
√
x3 + 4y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
−x3 +

√
x3 (x3 + 4y) + 2y

)√
x3 + 4y +

(√
x3 (x3 + 4y)− 4y

)
x

3
2 − x

9
2

4
√
x3 + 4y xy

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
2 −

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 +

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Which simplifies to

ln (y)
2 −

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 +

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Summary
The solution(s) found are the following

(1)ln (y)
2 −

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 +

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Verification of solutions

ln (y)
2 −

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 +

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −x3 −
√
x6 + 4x3y + 2y
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x3 −

√
x6 + 4x3y + 2y

)
(b3 − a2)

2x −
(
−x3 −

√
x6 + 4x3y + 2y

)2
a3

4x2

−

−3x2 − 6x5+12x2y

2
√

x6+4x3y

2x − −x3 −
√
x6 + 4x3y + 2y
2x2

 (xa2 + ya3 + a1)

−

(
− 2x3√

x6+4x3y
+ 2
)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−2x9a3 +
√
x6 + 4x3y x6a3 − 6x7a2 + 2x7b3 − 4x6a1 − 6

√
x6 + 4x3y x4a2 + 2

√
x6 + 4x3y x4b3 − 8

√
x6 + 4x3y x3ya3 − 4x5b2 − 12x4ya2 + 4x4yb3 − 20x3y2a3 − 4

√
x6 + 4x3y x3a1 − 4x4b1 − 4x3ya1 + (x6 + 4x3y)

3
2 a3 + 4

√
x6 + 4x3y xb1 − 4

√
x6 + 4x3y ya1

4x2
√
x6 + 4x3y

= 0

Setting the numerator to zero gives

(6E)
−2x9a3 −

√
x6 + 4x3y x6a3 + 6x7a2 − 2x7b3 + 4x6a1 + 6

√
x6 + 4x3y x4a2

− 2
√

x6 + 4x3y x4b3 + 8
√

x6 + 4x3y x3ya3 + 4x5b2 + 12x4ya2

− 4x4yb3 + 20x3y2a3 + 4
√

x6 + 4x3y x3a1 + 4x4b1 + 4x3ya1

−
(
x6 + 4x3y

) 3
2 a3 − 4

√
x6 + 4x3y xb1 + 4

√
x6 + 4x3y ya1 = 0

8354



Simplifying the above gives

(6E)

−
√

x3 (x3 + 4y)x6a3 + 6x7a2 + 6x6ya3 + 6x6a1 − 2
(
x6 + 4x3y

)
x3a3

+ 6
√

x3 (x3 + 4y)x4a2 − 2
√
x3 (x3 + 4y)x4b3 + 8

√
x3 (x3 + 4y)x3ya3

+ 4x5b2 + 12x4ya2 + 4x4yb3 + 12x3y2a3 + 4
√
x3 (x3 + 4y)x3a1 + 4x4b1

+ 12x3ya1 −
(
x3(x3 + 4y

)) 3
2 a3 − 2

(
x6 + 4x3y

)
xb3 + 2

(
x6 + 4x3y

)
ya3

− 2
(
x6 + 4x3y

)
a1 − 4

√
x3 (x3 + 4y)xb1 + 4

√
x3 (x3 + 4y) ya1 = 0

Since the PDE has radicals, simplifying gives

−2x9a3 + 6x7a2 − 2x7b3 − 2
√
x3 (x3 + 4y)x6a3 + 4x6a1 + 4x5b2

+ 6
√

x3 (x3 + 4y)x4a2 − 2
√
x3 (x3 + 4y)x4b3 + 12x4ya2 − 4x4yb3

+ 4
√

x3 (x3 + 4y)x3ya3 + 20x3y2a3 + 4x4b1 + 4
√

x3 (x3 + 4y)x3a1

+ 4x3ya1 − 4
√

x3 (x3 + 4y)xb1 + 4
√
x3 (x3 + 4y) ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x3 (x3 + 4y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x3 (x3 + 4y) = v3

}
The above PDE (6E) now becomes

(7E)−2v91a3 + 6v71a2 − 2v3v61a3 − 2v71b3 + 4v61a1 + 12v41v2a2
+ 6v3v41a2 + 20v31v22a3 + 4v3v31v2a3 + 4v51b2 − 4v41v2b3 − 2v3v41b3
+ 4v31v2a1 + 4v3v31a1 + 4v41b1 + 4v3v2a1 − 4v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v91a3 + (6a2 − 2b3) v71 − 2v3v61a3 + 4v61a1 + 4v51b2
+ (12a2 − 4b3) v41v2 + (6a2 − 2b3) v41v3 + 4v41b1 + 20v31v22a3
+ 4v3v31v2a3 + 4v31v2a1 + 4v3v31a1 − 4v3v1b1 + 4v3v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 = 0
−2a3 = 0
4a3 = 0
20a3 = 0
−4b1 = 0
4b1 = 0
4b2 = 0

6a2 − 2b3 = 0
12a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(
−x3 −

√
x6 + 4x3y + 2y
2x

)
(x)

= 2y + x3

2 +
√
x6 + 4x3y

2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y + x3

2 +
√

x6+4x3y
2

dy

Which results in

S = ln (y)
2 +

ln
(
x3 +

√
x6 + 4x3y

)
2 −

ln
(
−x3 +

√
x6 + 4x3y

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3 −
√
x6 + 4x3y + 2y
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
√
x

2
√
x3 + 4y

Sy =
−x

3
2 +

√
x3 + 4y

2
√
x3 + 4y y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
−x3 −

√
x3 (x3 + 4y) + 2y

)√
x3 + 4y +

(√
x3 (x3 + 4y) + 4y

)
x

3
2 + x

9
2

4
√
x3 + 4y xy

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
2 +

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 −

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Which simplifies to

ln (y)
2 +

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 −

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Summary
The solution(s) found are the following

(1)ln (y)
2 +

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 −

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Verification of solutions

ln (y)
2 +

ln
(
x3 + x

3
2
√
x3 + 4y

)
2 −

ln
(
−x3 + x

3
2
√
x3 + 4y

)
2 = ln (x)

2 + c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 49� �
dsolve(x^2*diff(y(x),x)^2+x*(x^3-2*y(x))*diff(y(x),x)-(2*x^3-y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = −x3

4
y(x) = c1x(c1 + x)
y(x) = c1x(c1 − x)
y(x) = c1x(c1 − x)
y(x) = c1x(c1 + x)

3 Solution by Mathematica
Time used: 1.874 (sec). Leaf size: 58� �
DSolve[x^2 (y'[x])^2+x(x^3-2 y[x])y'[x]-(2 x^3-y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x(cosh(c1) + sinh(c1))(−ix+ cosh(c1) + sinh(c1))
y(x) → −x(cosh(c1) + sinh(c1))(ix+ cosh(c1) + sinh(c1))
y(x) → 0
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31.6 problem 905
31.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8363

Internal problem ID [4141]
Internal file name [OUTPUT/3634_Sunday_June_05_2022_09_52_32_AM_34699434/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 905.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

y′
2
x2 + 3xyy′ + 2y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −y

x
(1)

y′ = −2y
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y

x
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Where f(x) = − 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = −1

x
dx∫ 1

y
dy =

∫
−1
x
dx

ln (y) = − ln (x) + c1

y = e− ln(x)+c1

= c1
x

Summary
The solution(s) found are the following

(1)y = c1
x

Verification of solutions

y = c1
x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −2y
x

Where f(x) = − 2
x
and g(y) = y. Integrating both sides gives

1
y
dy = −2

x
dx∫ 1

y
dy =

∫
−2
x
dx

ln (y) = −2 ln (x) + c2

y = e−2 ln(x)+c2

= c2
x2

Summary
The solution(s) found are the following

(1)y = c2
x2
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Verification of solutions

y = c2
x2

Verified OK.

31.6.1 Maple step by step solution

Let’s solve
y′2x2 + 3xyy′ + 2y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 1

x
dx+ c1

• Evaluate integral
ln (y) = − ln (x) + c1

• Solve for y
y = ec1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �

8363



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x)^2+3*x*diff(y(x),x)*y(x)+2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1
x

y(x) = c1
x2

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 26� �
DSolve[x^2 (y'[x])^2+3 x y[x] y'[x]+2 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x2

y(x) → c1
x

y(x) → 0
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31.7 problem 906
Internal problem ID [4142]
Internal file name [OUTPUT/3635_Sunday_June_05_2022_09_52_39_AM_84212236/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 906.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y′
2
x2 − 3xyy′ + 2y2 = −x3

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
3y
2 +

√
y2−4x3

2
x

(1)

y′ =
3y
2 −

√
y2−4x3

2
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 3y +
√
−4x3 + y2

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
3y +

√
−4x3 + y2

)
(b3 − a2)

2x −
(
3y +

√
−4x3 + y2

)2
a3

4x2

−
(
− 3x√

−4x3 + y2
− 3y +

√
−4x3 + y2

2x2

)
(xa2 + ya3 + a1)

−

(
3 + y√

−4x3+y2

)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−−12x4a2 + 8x4b3 − 28x3ya3 + (−4x3 + y2)
3
2 a3 + 2b2

√
−4x3 + y2 x2 + 3

√
−4x3 + y2 y2a3 − 4x3a1 + 2x2yb2 + 4y3a3 + 6

√
−4x3 + y2 xb1 − 6

√
−4x3 + y2 ya1 + 2xyb1 − 2y2a1

4
√
−4x3 + y2 x2

= 0

Setting the numerator to zero gives

(6E)12x4a2 − 8x4b3 + 28x3ya3 −
(
−4x3 + y2

) 3
2 a3 − 2b2

√
−4x3 + y2 x2

− 3
√

−4x3 + y2 y2a3 + 4x3a1 − 2x2yb2 − 4y3a3
− 6
√

−4x3 + y2 xb1 + 6
√
−4x3 + y2 ya1 − 2xyb1 + 2y2a1 = 0

Simplifying the above gives

(6E)12x4a2+12x3ya3−
(
−4x3+ y2

) 3
2 a3+2

(
−4x3+ y2

)
xb3− 4

(
−4x3+ y2

)
ya3

− 2b2
√

−4x3 + y2 x2 − 3
√
−4x3 + y2 y2a3 + 12x3a1 − 2x2yb2 − 2x y2b3

+ 2
(
−4x3 + y2

)
a1 − 6

√
−4x3 + y2 xb1 + 6

√
−4x3 + y2 ya1 − 2xyb1 = 0
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Since the PDE has radicals, simplifying gives

12x4a2 − 8x4b3 + 4x3
√
−4x3 + y2 a3 + 28x3ya3 + 4x3a1

− 2b2
√

−4x3 + y2 x2 − 2x2yb2 − 4
√

−4x3 + y2 y2a3 − 4y3a3
− 6
√
−4x3 + y2 xb1 − 2xyb1 + 6

√
−4x3 + y2 ya1 + 2y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4x3 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4x3 + y2 = v3

}
The above PDE (6E) now becomes

(7E)12v41a2 + 28v31v2a3 + 4v31v3a3 − 8v41b3 + 4v31a1 − 4v32a3 − 4v3v22a3
− 2v21v2b2 − 2b2v3v21 + 2v22a1 + 6v3v2a1 − 2v1v2b1 − 6v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(12a2 − 8b3) v41 + 28v31v2a3 + 4v31v3a3 + 4v31a1 − 2v21v2b2 − 2b2v3v21
− 2v1v2b1 − 6v3v1b1 − 4v32a3 − 4v3v22a3 + 2v22a1 + 6v3v2a1 = 0

8367



Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
4a1 = 0
6a1 = 0

−4a3 = 0
4a3 = 0
28a3 = 0
−6b1 = 0
−2b1 = 0
−2b2 = 0

12a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y
2 −

(
3y +

√
−4x3 + y2

2x

)
(x)

= −
√
−4x3 + y2

2
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√

−4x3+y2

2

dy

Which results in

S = −2 ln
(
y +

√
−4x3 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3y +
√
−4x3 + y2

2x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 12x2
√
−4x3 + y2

(
y +

√
−4x3 + y2

)
Sy = − 2√

−4x3 + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 16x3 − 4y2 − 4

√
−4x3 + y2 y√

−4x3 + y2
(
y +

√
−4x3 + y2

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 4

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −4 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln
(
y +

√
y2 − 4x3

)
= −4 ln (x) + c1

Which simplifies to

−2 ln
(
y +

√
y2 − 4x3

)
= −4 ln (x) + c1

Which gives

y = x(x+ 4 ec1) e−
c1
2

2

Summary
The solution(s) found are the following

(1)y = x(x+ 4 ec1) e−
c1
2

2
Verification of solutions

y = x(x+ 4 ec1) e−
c1
2

2

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = 3y −
√
−4x3 + y2

2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
3y −

√
−4x3 + y2

)
(b3 − a2)

2x −
(
3y −

√
−4x3 + y2

)2
a3

4x2

−
(

3x√
−4x3 + y2

− 3y −
√
−4x3 + y2

2x2

)
(xa2 + ya3 + a1)

−

(
3− y√

−4x3+y2

)
(xb2 + yb3 + b1)

2x = 0

Putting the above in normal form gives

−12x4a2 − 8x4b3 + 28x3ya3 + (−4x3 + y2)
3
2 a3 + 2b2

√
−4x3 + y2 x2 + 3

√
−4x3 + y2 y2a3 + 4x3a1 − 2x2yb2 − 4y3a3 + 6

√
−4x3 + y2 xb1 − 6

√
−4x3 + y2 ya1 − 2xyb1 + 2y2a1

4
√
−4x3 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−12x4a2 + 8x4b3 − 28x3ya3 −
(
−4x3 + y2

) 3
2 a3 − 2b2

√
−4x3 + y2 x2

− 3
√

−4x3 + y2 y2a3 − 4x3a1 + 2x2yb2 + 4y3a3
− 6
√

−4x3 + y2 xb1 + 6
√

−4x3 + y2 ya1 + 2xyb1 − 2y2a1 = 0
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Simplifying the above gives

(6E)−12x4a2−12x3ya3−
(
−4x3+y2

) 3
2 a3−2

(
−4x3+y2

)
xb3+4

(
−4x3+y2

)
ya3

− 2b2
√

−4x3 + y2 x2 − 3
√
−4x3 + y2 y2a3 − 12x3a1 + 2x2yb2 + 2x y2b3

− 2
(
−4x3 + y2

)
a1 − 6

√
−4x3 + y2 xb1 + 6

√
−4x3 + y2 ya1 + 2xyb1 = 0

Since the PDE has radicals, simplifying gives

−12x4a2 + 8x4b3 + 4x3
√
−4x3 + y2 a3 − 28x3ya3 − 4x3a1

− 2b2
√

−4x3 + y2 x2 + 2x2yb2 − 4
√
−4x3 + y2 y2a3 + 4y3a3

− 6
√
−4x3 + y2 xb1 + 2xyb1 + 6

√
−4x3 + y2 ya1 − 2y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4x3 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4x3 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−12v41a2 − 28v31v2a3 + 4v31v3a3 + 8v41b3 − 4v31a1 + 4v32a3 − 4v3v22a3
+ 2v21v2b2 − 2b2v3v21 − 2v22a1 + 6v3v2a1 + 2v1v2b1 − 6v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−12a2 + 8b3) v41 − 28v31v2a3 + 4v31v3a3 − 4v31a1 + 2v21v2b2 − 2b2v3v21
+ 2v1v2b1 − 6v3v1b1 + 4v32a3 − 4v3v22a3 − 2v22a1 + 6v3v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−2a1 = 0
6a1 = 0

−28a3 = 0
−4a3 = 0
4a3 = 0

−6b1 = 0
2b1 = 0

−2b2 = 0
2b2 = 0

−12a2 + 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y
2 −

(
3y −

√
−4x3 + y2

2x

)
(x)

=
√
−4x3 + y2

2
ξ = 0

8373



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

−4x3+y2

2

dy

Which results in

S = 2 ln
(
y +

√
−4x3 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3y −
√
−4x3 + y2

2x
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 12x2
√
−4x3 + y2

(
y +

√
−4x3 + y2

)
Sy =

2√
−4x3 + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −8x3 + 2y2 + 2

√
−4x3 + y2 y√

−4x3 + y2
(
y +

√
−4x3 + y2

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln
(
y +

√
y2 − 4x3

)
= 2 ln (x) + c1

Which simplifies to

2 ln
(
y +

√
y2 − 4x3

)
= 2 ln (x) + c1

Which gives

y = x(4x e−c1 + 1) e
c1
2

2

Summary
The solution(s) found are the following

(1)y = x(4x e−c1 + 1) e
c1
2

2
Verification of solutions

y = x(4x e−c1 + 1) e
c1
2

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 49� �
dsolve(x^2*diff(y(x),x)^2-3*x*diff(y(x),x)*y(x)+x^3+2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −2x 3
2

y(x) = 2x 3
2

y(x) = x(c21 + 4x)
2c1

y(x) = x(x c21 + 4)
2c1

8377



3 Solution by Mathematica
Time used: 60.287 (sec). Leaf size: 961� �
DSolve[x^2 (y'[x])^2-3 x y[x] y'[x]+x^3+2 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

e−
3c1
2

(
2 3
√
2e3c1x3 +

(
−4e3c1x6 − e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

)
2/3
)

22/3 3
√
−4e3c1x6 − e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

y(x)

→
ie−

3c1
2

((√
3 + i

) (
−4e3c1x6 − e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

)
2/3 − 2 3

√
2
(√

3− i
)
e3c1x3

)
2 22/3 3

√
−4e3c1x6 − e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

y(x) →

−
ie−

3c1
2

((√
3− i

) (
−4e3c1x6 − e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

)
2/3 − 2 3

√
2
(√

3 + i
)
e3c1x3

)
2 22/3 3

√
−4e3c1x6 − e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

y(x) →
e−

3c1
2

(
2 3
√
2e3c1x3 +

(
4e3c1x6 + e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

)
2/3
)

22/3 3
√
4e3c1x6 + e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

y(x)

→
ie−

3c1
2

((√
3 + i

) (
4e3c1x6 + e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

)
2/3 − 2 3

√
2
(√

3− i
)
e3c1x3

)
2 22/3 3

√
4e3c1x6 + e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

y(x) →

−
ie−

3c1
2

((√
3− i

) (
4e3c1x6 + e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2

)
2/3 − 2 3

√
2
(√

3 + i
)
e3c1x3

)
2 22/3 3

√
4e3c1x6 + e6c1x3 +

√
e6c1x6 (−4x3 + e3c1) 2
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31.8 problem 907
31.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8381

Internal problem ID [4143]
Internal file name [OUTPUT/3636_Sunday_June_05_2022_09_52_49_AM_51234384/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 907.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2
x2 + 4xyy′ − 5y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −5y
x

(1)

y′ = y

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −5y
x
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Where f(x) = − 5
x
and g(y) = y. Integrating both sides gives

1
y
dy = −5

x
dx∫ 1

y
dy =

∫
−5
x
dx

ln (y) = −5 ln (x) + c1

y = e−5 ln(x)+c1

= c1
x5

Summary
The solution(s) found are the following

(1)y = c1
x5

Verification of solutions

y = c1
x5

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x

Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c2

y = eln(x)+c2

= c2x

Summary
The solution(s) found are the following

(1)y = c2x
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Verification of solutions
y = c2x

Verified OK.

31.8.1 Maple step by step solution

Let’s solve
y′2x2 + 4xyy′ − 5y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = ec1x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x)^2+4*x*diff(y(x),x)*y(x)-5*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1x

y(x) = c1
x5

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 24� �
DSolve[x^2 (y'[x])^2+4 x y[x] y'[x]-5 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x5

y(x) → c1x
y(x) → 0
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31.9 problem 908
31.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8386

Internal problem ID [4144]
Internal file name [OUTPUT/3637_Sunday_June_05_2022_09_52_56_AM_44472173/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 908.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2
x2 − 4x(y + 2) y′ + 4(y + 2) y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2y + 4 + 2
√
2y + 4

x
(1)

y′ = 2y + 4− 2
√
2y + 4

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y + 4 + 2
√
2y + 4

x
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Where f(x) = 1
x
and g(y) = 2y + 4 + 2

√
2y + 4. Integrating both sides gives

1
2y + 4 + 2

√
2y + 4

dy = 1
x
dx∫ 1

2y + 4 + 2
√
2y + 4

dy =
∫ 1

x
dx

ln
(
2 +

√
2y + 4

)
2 −

ln
(√

2y + 4− 2
)

2 + ln (y)
2 = ln (x) + c1

The above can be written as(
1
2

)(
ln
(
2 +

√
2y + 4

)
− ln

(√
2y + 4− 2

)
+ ln (y)

)
= ln (x) + 2c1

ln
(
2 +

√
2y + 4

)
− ln

(√
2y + 4− 2

)
+ ln (y) = (2) (ln (x) + 2c1)

= 2 ln (x) + 4c1

Raising both side to exponential gives

eln
(
2+

√
2y+4

)
−ln

(√
2y+4−2

)
+ln(y) = e2 ln(x)+2c1

Which simplifies to (
2 +

√
2y + 4

)
y

√
2y + 4− 2

= 2c1x2

= c2x
2

The solution is (
2 +

√
2y + 4

)
y

√
2y + 4− 2

= c2x
2

Summary
The solution(s) found are the following

(1)
(
2 +

√
2y + 4

)
y

√
2y + 4− 2

= c2x
2

Verification of solutions (
2 +

√
2y + 4

)
y

√
2y + 4− 2

= c2x
2

Verified OK.
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Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y + 4− 2
√
2y + 4

x

Where f(x) = 1
x
and g(y) = 2y + 4− 2

√
2y + 4. Integrating both sides gives

1
2y + 4− 2

√
2y + 4

dy = 1
x
dx∫ 1

2y + 4− 2
√
2y + 4

dy =
∫ 1

x
dx

−
ln
(
2 +

√
2y + 4

)
2 +

ln
(√

2y + 4− 2
)

2 + ln (y)
2 = ln (x) + c3

The above can be written as(
−1
2

)(
ln
(
2 +

√
2y + 4

)
− ln

(√
2y + 4− 2

)
− ln (y)

)
= ln (x) + 2c3

ln
(
2 +

√
2y + 4

)
− ln

(√
2y + 4− 2

)
− ln (y) = (−2) (ln (x) + 2c3)

= −2 ln (x)− 4c3

Raising both side to exponential gives

eln
(
2+

√
2y+4

)
−ln

(√
2y+4−2

)
−ln(y) = e−2 ln(x)−2c3

Which simplifies to

2 +
√
2y + 4(√

2y + 4− 2
)
y
= −2c3

x2

= c4
x2

The solution is
2 +

√
2y + 4(√

2y + 4− 2
)
y
= c4

x2
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Summary
The solution(s) found are the following

(1)2 +
√
2y + 4(√

2y + 4− 2
)
y
= c4

x2

Verification of solutions

2 +
√
2y + 4(√

2y + 4− 2
)
y
= c4

x2

Verified OK.

31.9.1 Maple step by step solution

Let’s solve
y′2x2 − 4x(y + 2) y′ + 4(y + 2) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

2y+4+2
√
2y+4 = 1

x

• Integrate both sides with respect to x∫
y′

2y+4+2
√
2y+4dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln
(
2+

√
2y+4

)
2 − ln

(√
2y+4−2

)
2 + ln(y)

2 = ln (x) + c1

• Solve for yy =
(ec1 )2x2

(
−2

√
2
√

x2(ec1 )2+x2(ec1 )2+ 16
√
2
√

x2
(
ec1

)2(
ec1

)2x2 −8
)

−4
√
2
√

x2(ec1 )2+x2(ec1 )2+8
, y =

(ec1 )2x2

(
2
√
2
√

x2(ec1 )2+x2(ec1 )2− 16
√
2
√

x2
(
ec1

)2(
ec1

)2x2 −8
)

4
√
2
√

x2(ec1 )2+x2(ec1 )2+8
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 137� �
dsolve(x^2*diff(y(x),x)^2-4*x*(2+y(x))*diff(y(x),x)+4*(2+y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = −2

y(x) = 2
√
2
√
c1x2 + x2

c1

y(x) = −2
√
2
√
c1x2 + x2

c1

y(x) =
(−8c21 + x2)

(
−2

√
2 c1 + x

)
x(

−4
√
2 c1x+ 8c21 + x2

)
c21

y(x) =
(−8c21 + x2)

(
2
√
2 c1 + x

)
x(

4
√
2 c1x+ 8c21 + x2

)
c21

3 Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 69� �
DSolve[x^2 (y'[x])^2-4 x(2+y[x])y'[x]+4(2+y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−c1x
(
x− 2

√
2e

c1
2

)
y(x) → ec1x2 − 2

√
2e

c1
2 x

y(x) → −2
y(x) → 0
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31.10 problem 909
31.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8390

Internal problem ID [4145]
Internal file name [OUTPUT/3638_Sunday_June_05_2022_09_53_06_AM_40300687/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 909.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2
x2 − 5xyy′ + 6y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2y
x

(1)

y′ = 3y
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y
x
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Where f(x) = 2
x
and g(y) = y. Integrating both sides gives

1
y
dy = 2

x
dx∫ 1

y
dy =

∫ 2
x
dx

ln (y) = 2 ln (x) + c1

y = e2 ln(x)+c1

= c1x
2

Summary
The solution(s) found are the following

(1)y = c1x
2

Verification of solutions

y = c1x
2

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3y
x

Where f(x) = 3
x
and g(y) = y. Integrating both sides gives

1
y
dy = 3

x
dx∫ 1

y
dy =

∫ 3
x
dx

ln (y) = 3 ln (x) + c2

y = e3 ln(x)+c2

= c2x
3

Summary
The solution(s) found are the following

(1)y = c2x
3
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Verification of solutions

y = c2x
3

Verified OK.

31.10.1 Maple step by step solution

Let’s solve
y′2x2 − 5xyy′ + 6y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 3

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 3
x
dx+ c1

• Evaluate integral
ln (y) = 3 ln (x) + c1

• Solve for y
y = ec1x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x)^2-5*x*y(x)*diff(y(x),x)+6*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1x
2

y(x) = c1x
3

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 26� �
DSolve[x^2 (y'[x])^2-5 x y[x] y'[x]+6 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
2

y(x) → c1x
3

y(x) → 0
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31.11 problem 910
Internal problem ID [4146]
Internal file name [OUTPUT/3639_Sunday_June_05_2022_09_53_13_AM_94420098/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 910.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

y′
2
x2 + x

(
x2 + yx− 2y

)
y′ + (1− x)

(
x2 − y

)
y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
−x2

2 − yx
2 + y +

√
y2x2+6yx3+x4−8y2x−8x2y+8y2

2
x

(1)

y′ =
−x2

2 − yx
2 + y −

√
y2x2+6yx3+x4−8y2x−8x2y+8y2

2
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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7 Solution by Maple� �
dsolve(x^2*diff(y(x),x)^2+x*(x^2+x*y(x)-2*y(x))*diff(y(x),x)+(1-x)*(x^2-y(x))*y(x) = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x^2 (y'[x])^2+x(x^2+x y[x]-2 y[x])y'[x]+(1-x)(x^2-y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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31.12 problem 911
31.12.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8394

Internal problem ID [4147]
Internal file name [OUTPUT/3640_Sunday_June_05_2022_09_55_54_AM_29875905/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 911.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′
2
x2 + (y + 2x) yy′ + y2 = 0

31.12.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x2 + (2x+ y) yp+ y2 = 0

Solving for y from the above results in

y = (−1 +
√
−p)xp

p+ 1 (1A)

y = −(1 +
√
−p)xp

p+ 1 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = (−1 +
√
−p) p

p+ 1
g = 0

Hence (2) becomes

p− (−1 +
√
−p) p

p+ 1 = x

(
− p

2
√
−p (p+ 1) −

(−1 +
√
−p) p

(p+ 1)2
+ −1 +

√
−p

p+ 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− (−1 +
√
−p) p

p+ 1 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

(
−1+

√
−p(x)

)
p(x)

p(x)+1

x

(
− p(x)

2
√

−p(x) (p(x)+1) −
(
−1+

√
−p(x)

)
p(x)

(p(x)+1)2 + −1+
√

−p(x)
p(x)+1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− p

2
√
−p (p+1) −

(−1+
√
−p)p

(p+1)2 + −1+
√
−p

p+1

)
p− (−1+

√
−p)p

p+1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 3p+ p2 + 2
√
−p

2 (−p)
3
2 (p+ 1) (p+ 2−

√
−p)

q(p) = 0

Hence the ode is
d

dp
x(p)− (3p+ p2 + 2

√
−p)x(p)

2 (−p)
3
2 (p+ 1) (p+ 2−

√
−p)

= 0

The integrating factor µ is

µ = e
∫
− 3p+p2+2

√
−p

2(−p)
3
2 (p+1)

(
p+2−

√
−p
)dp

The ode becomes
d
dpµx = 0

d
dp

(
e
∫
− 3p+p2+2

√
−p

2(−p)
3
2 (p+1)

(
p+2−

√
−p
)dp

x

)
= 0

Integrating gives

e
∫
− 3p+p2+2

√
−p

2(−p)
3
2 (p+1)

(
p+2−

√
−p
)dp

x = c3

Dividing both sides by the integrating factor µ = e
∫
− 3p+p2+2

√
−p

2(−p)
3
2 (p+1)

(
p+2−

√
−p
)dp results in

x(p) = c3e−

∫ 3p+p2+2
√
−p

(−p)
3
2
(
−p−2+

√
−p
)
(p+1)

dp


2

Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −(1 +
√
−p) p

p+ 1
g = 0
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Hence (2) becomes

p+ (1 +
√
−p) p

p+ 1 = x

(
p

2
√
−p (p+ 1) +

(1 +
√
−p) p

(p+ 1)2
− 1 +

√
−p

p+ 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ (1 +
√
−p) p

p+ 1 = 0

Solving for p from the above gives

p = 0
p = −4

Substituting these in (1A) gives

y = −4x
y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) +

(
1+
√

−p(x)
)
p(x)

p(x)+1

x

(
p(x)

2
√

−p(x) (p(x)+1) +
(
1+
√

−p(x)
)
p(x)

(p(x)+1)2 − 1+
√

−p(x)
p(x)+1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

p
2
√
−p (p+1) +

(1+
√
−p)p

(p+1)2 − 1+
√
−p

p+1

)
p+ (1+

√
−p)p

p+1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3p+ p2 − 2
√
−p

2 (p+ 1) (−p)
3
2 (2 +

√
−p+ p)

q(p) = 0
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Hence the ode is
d

dp
x(p) + (3p+ p2 − 2

√
−p)x(p)

2 (p+ 1) (−p)
3
2 (2 +

√
−p+ p)

= 0

The integrating factor µ is

µ = e
∫ 3p+p2−2

√
−p

2(p+1)(−p)
3
2
(
2+

√
−p+p

)dp

The ode becomes
d
dpµx = 0

d
dp

(
e
∫ 3p+p2−2

√
−p

2(p+1)(−p)
3
2
(
2+

√
−p+p

)dp
x

)
= 0

Integrating gives

e
∫ 3p+p2−2

√
−p

2(p+1)(−p)
3
2
(
2+

√
−p+p

)dp
x = c6

Dividing both sides by the integrating factor µ = e
∫ 3p+p2−2

√
−p

2(p+1)(−p)
3
2
(
2+

√
−p+p

)dp results in

x(p) = c6e

∫ − 3p+p2−2
√

−p

(p+1)(−p)
3
2
(
2+

√
−p+p

) dp


2

Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = 0
(2)y = −4x
(3)y = 0

Verification of solutions

y = 0

Verified OK.
y = −4x

Verified OK.
y = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 124� �
dsolve(x^2*diff(y(x),x)^2+(2*x+y(x))*y(x)*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −4x
y(x) = 0

y(x) =
2c21
(
−
√
2 c1 + x

)
−2c21 + x2

y(x) =
2c21
(√

2 c1 + x
)

−2c21 + x2

y(x) =
c21
(√

2 c1 − 2x
)

2c21 − 4x2

y(x) = c31
√
2 + 2x c21

−2c21 + 4x2
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3 Solution by Mathematica
Time used: 0.698 (sec). Leaf size: 63� �
DSolve[x^2 (y'[x])^2+(2 x+y[x])y[x] y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − e4c1

−x+ e2c1

y(x) → e4c1

4 (4x+ e2c1)
y(x) → 0
y(x) → −4x
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31.13 problem 912
31.13.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8401

Internal problem ID [4148]
Internal file name [OUTPUT/3641_Sunday_June_05_2022_09_56_08_AM_59291155/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 912.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′
2
x2 + (2x− y) yy′ + y2 = 0

31.13.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2x2 + (2x− y) yp+ y2 = 0

Solving for y from the above results in

y =
(
1 +√

p
)
xp

p− 1 (1A)

y = −
(
−1 +√

p
)
xp

p− 1 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

8401



Comparing the form y = xf + g to (1A) shows that

f =
(
1 +√

p
)
p

p− 1
g = 0

Hence (2) becomes

p−
(
1 +√

p
)
p

p− 1 = x

( √
p

2p− 2 −
(
1 +√

p
)
p

(p− 1)2
+

1 +√
p

p− 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
(
1 +√

p
)
p

p− 1 = 0

Solving for p from the above gives

p = 0
p = 4

Substituting these in (1A) gives

y = 0
y = 4x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

(
1+
√

p(x)
)
p(x)

p(x)−1

x

( √
p(x)

2p(x)−2 −
(
1+
√

p(x)
)
p(x)

(p(x)−1)2 + 1+
√

p(x)
p(x)−1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
( √

p

2p−2 −
(
1+√

p
)
p

(p−1)2 + 1+√
p

p−1

)
p−

(
1+√

p
)
p

p−1

(4)

This ODE is now solved for x(p).

8402



Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
p

3
2 − 3√p− 2

2p
(
p− 2−√

p
)
(p− 1)

q(p) = 0

Hence the ode is

d

dp
x(p)−

(
p

3
2 − 3√p− 2

)
x(p)

2p
(
p− 2−√

p
)
(p− 1)

= 0

The integrating factor µ is

µ = e
∫
− p

3
2 −3√p−2

2p
(
p−2−√

p
)
(p−1)dp

The ode becomes
d
dpµx = 0

d
dp

(
e
∫
− p

3
2 −3√p−2

2p
(
p−2−√

p
)
(p−1)dpx

)
= 0

Integrating gives

e
∫
− p

3
2 −3√p−2

2p
(
p−2−√

p
)
(p−1)dpx = c3

Dividing both sides by the integrating factor µ = e
∫
− p

3
2 −3√p−2

2p
(
p−2−√

p
)
(p−1)dp results in

x(p) = c3e−

∫ p
3
2 −3√p−2

p
(
−p+2+√

p
)
(p−1) dp


2

Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −
(
−1 +√

p
)
p

p− 1
g = 0

Hence (2) becomes

p+
(
−1 +√

p
)
p

p− 1 = x

(
−

√
p

2 (p− 1) +
(
−1 +√

p
)
p

(p− 1)2
−

−1 +√
p

p− 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+
(
−1 +√

p
)
p

p− 1 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) +

(
−1+

√
p(x)

)
p(x)

p(x)−1

x

(
−

√
p(x)

2(p(x)−1) +
(
−1+

√
p(x)

)
p(x)

(p(x)−1)2 − −1+
√

p(x)
p(x)−1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
−

√
p

2(p−1) +
(
−1+√

p
)
p

(p−1)2 − −1+√
p

p−1

)
p+

(
−1+√

p
)
p

p−1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

8404



Where here

p(p) = −
−p

3
2 + 3√p− 2

2p
(
−2 +√

p+ p
)
(p− 1)

q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−p

3
2 + 3√p− 2

)
x(p)

2p
(
−2 +√

p+ p
)
(p− 1)

= 0

The integrating factor µ is

µ = e
∫
− −p

3
2 +3√p−2

2p
(
−2+√

p+p
)
(p−1)dp

The ode becomes

d
dpµx = 0

d
dp

(
e
∫
− −p

3
2 +3√p−2

2p
(
−2+√

p+p
)
(p−1)dpx

)
= 0

Integrating gives

e
∫
− −p

3
2 +3√p−2

2p
(
−2+√

p+p
)
(p−1)dpx = c6

Dividing both sides by the integrating factor µ = e
∫
− −p

3
2 +3√p−2

2p
(
−2+√

p+p
)
(p−1)dp results in

x(p) = c6e−

∫ p
3
2 −3√p+2

p
(
−2+√

p+p
)
(p−1) dp


2

Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = 0
(2)y = 4x
(3)y = 0
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Verification of solutions

y = 0

Verified OK.
y = 4x

Verified OK.
y = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 124� �
dsolve(x^2*diff(y(x),x)^2+(2*x-y(x))*y(x)*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 4x
y(x) = 0

y(x) = −
2c21
(
−
√
2 c1 + x

)
−2c21 + x2

y(x) = −
2c21
(√

2 c1 + x
)

−2c21 + x2

y(x) = c31
√
2− 2x c21

−2c21 + 4x2

y(x) =
c21
(√

2 c1 + 2x
)

2c21 − 4x2

3 Solution by Mathematica
Time used: 0.698 (sec). Leaf size: 62� �
DSolve[x^2 (y'[x])^2+(2 x-y[x])y[x] y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 4e−2c1

2 + e2c1x

y(x) → − e−2c1

2 + 4e2c1x
y(x) → 0
y(x) → 4x
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31.14 problem 913
31.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8410

Internal problem ID [4149]
Internal file name [OUTPUT/3642_Sunday_June_05_2022_09_56_22_AM_34574844/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 913.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2
x2 +

(
a+ b x2y3

)
y′ + aby3 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −by3 (1)

y′ = − a

x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
− 1
b y3

dy = x+ c1

1
2b y2 = x+ c1

Solving for y gives these solutions

y1 =
1√

2bc1 + 2bx

y2 = − 1√
2bc1 + 2bx
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Summary
The solution(s) found are the following

(1)y = 1√
2bc1 + 2bx

(2)y = − 1√
2bc1 + 2bx

Verification of solutions

y = 1√
2bc1 + 2bx

Verified OK.

y = − 1√
2bc1 + 2bx

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− a

x2 dx

= a

x
+ c2

Summary
The solution(s) found are the following

(1)y = a

x
+ c2

Verification of solutions

y = a

x
+ c2

Verified OK.

8409



31.14.1 Maple step by step solution

Let’s solve
y′2x2 + (a+ b x2y3) y′ + aby3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2x2 + (a+ b x2y3) y′ + aby3

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2x2 + (a+ b x2y3) y′ + aby3

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(x^2*diff(y(x),x)^2+(a+b*x^2*y(x)^3)*diff(y(x),x)+a*b*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = a

x
+ c1

y(x) = 1√
2bx+ c1

y(x) = − 1√
2bx+ c1

8410



3 Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 49� �
DSolve[x^2 (y'[x])^2+(a+b x^2 y[x]^3)y'[x]+a b y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
2bx− 2c1

y(x) → 1√
2bx− 2c1

y(x) → a

x
+ c1

8411



31.15 problem 914
31.15.1 Solving as first order nonlinear p but separable ode . . . . . . . 8412

Internal problem ID [4150]
Internal file name [OUTPUT/3643_Sunday_June_05_2022_09_56_32_AM_65202368/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 914.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

(
−x2 + 1

)
y′

2 + y2 = 1

31.15.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x2−1 , g = y2 − 1. Hence the ode is

(y′)2 = y2 − 1
x2 − 1

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

1
x2 − 1 > 0

y2 − 1 > 0

8412



Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
y2 − 1

dy =
(√

1
x2 − 1

)
dx

− 1√
y2 − 1

dy =
(√

1
x2 − 1

)
dx

Integrating now gives the solutions.∫ 1√
y2 − 1

dy =
∫ √ 1

x2 − 1dx+ c1∫
− 1√

y2 − 1
dy =

∫ √ 1
x2 − 1dx+ c1

Integrating gives

ln
(
y +

√
y2 − 1

)
=
√

1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
+ c1

− ln
(
y +

√
y2 − 1

)
=
√

1
x2 − 1

√
x2 − 1 ln

(
x+

√
x2 − 1

)
+ c1

Therefore

y =

(
e2
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
+2c1 + 1

)
e−
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
−c1

2

y =

(
e−2

√
1

x2−1

√
x2−1 ln

(
x+

√
x2−1

)
−2c1 + 1

)
e
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
+c1

2
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Summary
The solution(s) found are the following

(1)y =

(
e2
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
+2c1 + 1

)
e−
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
−c1

2

(2)y =

(
e−2

√
1

x2−1

√
x2−1 ln

(
x+

√
x2−1

)
−2c1 + 1

)
e
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
+c1

2
Verification of solutions

y =

(
e2
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
+2c1 + 1

)
e−
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
−c1

2

Verified OK. {0 < 1/(x^2-1), 0 < y^2-1}

y =

(
e−2

√
1

x2−1

√
x2−1 ln

(
x+

√
x2−1

)
−2c1 + 1

)
e
√

1
x2−1

√
x2−1 ln

(
x+

√
x2−1

)
+c1

2

Verified OK. {0 < 1/(x^2-1), 0 < y^2-1}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 162� �
dsolve((-x^2+1)*diff(y(x),x)^2 = 1-y(x)^2,y(x), singsol=all)� �

y(x) = −1
y(x) = 1√

y (x)2 − 1 ln
(
y(x) +

√
y (x)2 − 1

)
√

y (x)− 1
√

y (x) + 1
−
∫ x

√(_a2−1
)(

y(x)2−1
)

_a2−1 d_a√
y (x)− 1

√
y (x) + 1

+ c1 = 0√
y (x)2 − 1 ln

(
y(x) +

√
y (x)2 − 1

)
√

y (x)− 1
√

y (x) + 1
+
∫ x

√(_a2−1
)(

y(x)2−1
)

_a2−1 d_a√
y (x)− 1

√
y (x) + 1

+ c1 = 0

3 Solution by Mathematica
Time used: 5.283 (sec). Leaf size: 297� �
DSolve[(1-x^2) (y'[x])^2==1-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2e

−c1

√
2x2 − 2

√
x2 − 1x+ e4c1

(
2x2 + 2

√
x2 − 1x− 1

)
− 1 + 2e2c1

y(x) → 1
2e

−c1

√
2x2 − 2

√
x2 − 1x+ e4c1

(
2x2 + 2

√
x2 − 1x− 1

)
− 1 + 2e2c1

y(x) → −1
2

√
e−2c1

(
2x2 + 2

√
x2 − 1x+ e4c1

(
2x2 − 2

√
x2 − 1x− 1

)
− 1 + 2e2c1

)
y(x) → 1

2

√
e−2c1

(
2x2 + 2

√
x2 − 1x+ e4c1

(
2x2 − 2

√
x2 − 1x− 1

)
− 1 + 2e2c1

)
y(x) → −1
y(x) → 1
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31.16 problem 915
Internal problem ID [4151]
Internal file name [OUTPUT/3644_Sunday_June_05_2022_10_00_18_AM_45046821/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 915.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

(
−x2 + 1

)
y′

2 + 2xyy′ = −4x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
y +

√
y2 + 4x2 − 4

)
x

x2 − 1 (1)

y′ =
(
y −

√
y2 + 4x2 − 4

)
x

x2 − 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
y +

√
4x2 + y2 − 4

)
x

x2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

+
(
y +

√
4x2 + y2 − 4

)
x(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x2 − 1

−
(
y +

√
4x2 + y2 − 4

)2
x2(xa5 + 2ya6 + a3)

(x2 − 1)2

−

(
−
2
(
y +

√
4x2 + y2 − 4

)
x2

(x2 − 1)2
+ 4x2

(x2 − 1)
√
4x2 + y2 − 4

+ y +
√
4x2 + y2 − 4
x2 − 1

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
−

(
1 + y√

4x2+y2−4

)
x(x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

x2 − 1 = 0

Putting the above in normal form gives

−4a1 − 3
√
4x2 + y2 − 4x2ya4 + 2

√
4x2 + y2 − 4x2yb5 − 2

√
4x2 + y2 − 4x y2a5 +

√
4x2 + y2 − 4x y2b6 + 16x3yb6 − 8xyb6 −

√
4x2 + y2 − 4x2ya1 − 2

√
4x2 + y2 − 4xya2 + 2(4x2 + y2 − 4)

3
2 x2ya6 +

√
4x2 + y2 − 4x4ya4 −

√
4x2 + y2 − 4x4yb5 +

√
4x2 + y2 − 4x3y2a5 −

√
4x2 + y2 − 4x3y2b6 +

√
4x2 + y2 − 4x2y3a6 + 2x3y3a5 + 3x2y4a6 − 3x2y2a4 − 2x y3a5 − b2

√
4x2 + y2 − 4− 4x5b3 − y3a3 − y2a1 + 8xa2 + 4ya3 − 4x6b5 − y4a6 + 8x6a4 − 20x4a4 + 8xya5 −

√
4x2 + y2 − 4x5b4 + 3

√
4x2 + y2 − 4x3b4 −

√
4x2 + y2 − 4 y3a6 − 2xb4

√
4x2 + y2 − 4− yb5

√
4x2 + y2 − 4 + 8x4b5 − 4x2b5 − 8x5yb6 + x4y2a4 + (4x2 + y2 − 4)

3
2 x2a3 +

√
4x2 + y2 − 4x3b1 +

√
4x2 + y2 − 4x2b2 −

√
4x2 + y2 − 4 y2a3 −

√
4x2 + y2 − 4xb1 −

√
4x2 + y2 − 4 ya1 + 8x3b3 − 4xb3 + x2y3a3 − x2y2a1 − 2x y2a2 + 12x5ya5 + x5yb4 + 16x4y2a6 − x3y3b6 − 20x3ya5 − x3yb4 − 20x2y2a6 + x y3b6 + (4x2 + y2 − 4)

3
2 x3a5 + 12x2a4 + 4y2a6 + 4x5a2 − 12x3a2 − 4x2a1 + 8x4ya3 + x4yb2 + x3yb1 − 12x2ya3 − x2yb2 − xyb1

(x2 − 1)2
√
4x2 + y2 − 4

= 0
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Setting the numerator to zero gives

(6E)

−4a1 + 3
√

4x2 + y2 − 4x2ya4 − 2
√

4x2 + y2 − 4x2yb5

+ 2
√
4x2 + y2 − 4x y2a5 −

√
4x2 + y2 − 4x y2b6 − 16x3yb6

+ 8xyb6 +
√

4x2 + y2 − 4x2ya1 + 2
√

4x2 + y2 − 4xya2
− 2
(
4x2 + y2 − 4

) 3
2 x2ya6 −

√
4x2 + y2 − 4x4ya4

+
√

4x2 + y2 − 4x4yb5 −
√

4x2 + y2 − 4x3y2a5

+
√

4x2 + y2 − 4x3y2b6 −
√

4x2 + y2 − 4x2y3a6 − 2x3y3a5

− 3x2y4a6 + 3x2y2a4 + 2x y3a5 + b2
√

4x2 + y2 − 4 + 4x5b3
+ y3a3 + y2a1 − 8xa2 − 4ya3 +4x6b5 + y4a6 − 8x6a4 +20x4a4

− 8xya5 +
√

4x2 + y2 − 4x5b4 − 3
√
4x2 + y2 − 4x3b4

+
√

4x2 + y2 − 4 y3a6 + 2xb4
√
4x2 + y2 − 4

+ yb5
√

4x2 + y2 − 4− 8x4b5 + 4x2b5 + 8x5yb6

− x4y2a4 −
(
4x2 + y2 − 4

) 3
2 x2a3 −

√
4x2 + y2 − 4x3b1

−
√

4x2 + y2 − 4x2b2 +
√

4x2 + y2 − 4 y2a3
+
√

4x2 + y2 − 4xb1 +
√

4x2 + y2 − 4 ya1 − 8x3b3
+ 4xb3 − x2y3a3 + x2y2a1 + 2x y2a2 − 12x5ya5 − x5yb4
− 16x4y2a6 + x3y3b6 + 20x3ya5 + x3yb4 + 20x2y2a6 − x y3b6

−
(
4x2 + y2 − 4

) 3
2 x3a5 − 12x2a4 − 4y2a6 − 4x5a2 + 12x3a2

+4x2a1−8x4ya3−x4yb2−x3yb1+12x2ya3+x2yb2+xyb1 = 0
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Simplifying the above gives

(6E)

3
√

4x2 + y2 − 4x2ya4 − 2
√

4x2 + y2 − 4x2yb5

+ 2
√

4x2 + y2 − 4x y2a5 −
√

4x2 + y2 − 4x y2b6
−
(
4x2 + y2 − 4

)
x2ya3 +

√
4x2 + y2 − 4x2ya1

+ 2
√

4x2 + y2 − 4xya2 − 2
(
4x2 + y2 − 4

) 3
2 x2ya6

− 2
(
4x2 + y2 − 4

)
x3ya5 + 2

(
4x2 + y2 − 4

)
x3yb6

− 3
(
4x2 + y2 − 4

)
x2y2a6 −

√
4x2 + y2 − 4x4ya4

+
√

4x2 + y2 − 4x4yb5 −
√

4x2 + y2 − 4x3y2a5

+
√

4x2 + y2 − 4x3y2b6 −
√
4x2 + y2 − 4x2y3a6

+ 2
(
4x2 + y2 − 4

)
xya5 − 2

(
4x2 + y2 − 4

)
xyb6

+
(
4x2 + y2 − 4

)
a1 + b2

√
4x2 + y2 − 4− 4x6a4

+ 4x4a4 −
(
4x2 + y2 − 4

)
x4a4 +

(
4x2 + y2 − 4

)
x4b5

+
√

4x2 + y2 − 4x5b4 + 3
(
4x2 + y2 − 4

)
x2a4

−
(
4x2 + y2 − 4

)
x2b5 +

(
4x2 + y2 − 4

)
y2a6

− 3
√

4x2 + y2 − 4x3b4 +
√

4x2 + y2 − 4 y3a6
+ 2xb4

√
4x2 + y2 − 4 + yb5

√
4x2 + y2 − 4

−
(
4x2 + y2 − 4

) 3
2 x2a3 +

(
4x2 + y2 − 4

)
x3b3

+
(
4x2 + y2 − 4

)
x2a1 −

√
4x2 + y2 − 4x3b1

+ 2
(
4x2 + y2 − 4

)
xa2 −

(
4x2 + y2 − 4

)
xb3

+
(
4x2 + y2 − 4

)
ya3 −

√
4x2 + y2 − 4x2b2

+
√

4x2 + y2 − 4 y2a3 +
√
4x2 + y2 − 4xb1

+
√

4x2 + y2 − 4 ya1 − 4x5ya5 − x5yb4 − 4x4y2a6
− x4y2b5 − x3y3b6 + 4x3ya5 + x3yb4 + 4x2y2a6

+ x2y2b5 + x y3b6 −
(
4x2 + y2 − 4

) 3
2 x3a5 − 4x5a2

− 4x4a1 + 4x3a2 + 4x2a1 − 4x4ya3 − x4yb2 − x3y2b3
− x3yb1 + 4x2ya3 + x2yb2 + x y2b3 + xyb1 = 0
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Since the PDE has radicals, simplifying gives

−x2
√

4x2 + y2 − 4 y2a3 − 4a1 − 8
√

4x2 + y2 − 4x4ya6

+ 3
√

4x2 + y2 − 4x2ya4 − 2
√

4x2 + y2 − 4x2yb5

+ 2
√

4x2 + y2 − 4x y2a5 −
√

4x2 + y2 − 4x y2b6 − 16x3yb6

+ 8xyb6 +
√

4x2 + y2 − 4x2ya1 + 2
√

4x2 + y2 − 4xya2
+ 8
√

4x2 + y2 − 4x2ya6 −
√

4x2 + y2 − 4x4ya4

+
√

4x2 + y2 − 4x4yb5 − 2
√
4x2 + y2 − 4x3y2a5

+
√

4x2 + y2 − 4x3y2b6 − 3
√
4x2 + y2 − 4x2y3a6 − 2x3y3a5

− 3x2y4a6 + 3x2y2a4 + 2x y3a5 − 4
√

4x2 + y2 − 4x5a5

+ 4
√

4x2 + y2 − 4x3a5 + b2
√
4x2 + y2 − 4 + 4x5b3 + y3a3

+ y2a1 − 8xa2 − 4ya3 + 4x6b5 + y4a6 − 8x6a4 + 20x4a4

− 8xya5 +
√

4x2 + y2 − 4x5b4 − 3
√
4x2 + y2 − 4x3b4

+
√

4x2 + y2 − 4 y3a6 + 2xb4
√
4x2 + y2 − 4 + yb5

√
4x2 + y2 − 4

− 8x4b5 + 4x2b5 + 8x5yb6 − x4y2a4 −
√
4x2 + y2 − 4x3b1

−
√

4x2 + y2 − 4x2b2 +
√
4x2 + y2 − 4 y2a3 +

√
4x2 + y2 − 4xb1

+
√

4x2 + y2 − 4 ya1 − 8x3b3 + 4xb3 − x2y3a3 + x2y2a1
+ 2x y2a2 − 12x5ya5 − x5yb4 − 16x4y2a6 + x3y3b6 + 20x3ya5

+ x3yb4 + 20x2y2a6 − x y3b6 − 4x4
√
4x2 + y2 − 4 a3

+ 4
√

4x2 + y2 − 4x2a3 − 12x2a4 − 4y2a6 − 4x5a2 + 12x3a2
+ 4x2a1 − 8x4ya3 − x4yb2 − x3yb1 + 12x2ya3 + x2yb2 + xyb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x2 + y2 − 4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x2 + y2 − 4 = v3

}
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The above PDE (6E) now becomes

(7E)

−8v61a4 − v41v
2
2a4 − v3v

4
1v2a4 − 12v51v2a5 − 4v3v51a5 − 2v31v32a5

−2v3v31v22a5−16v41v22a6−8v3v41v2a6−3v21v42a6−3v3v21v32a6−v51v2b4
+ v3v

5
1b4 + 4v61b5 + v3v

4
1v2b5 + 8v51v2b6 + v31v

3
2b6 + v3v

3
1v

2
2b6 − 4v51a2

−8v41v2a3−4v41v3a3−v21v
3
2a3−v21v3v

2
2a3−v41v2b2+4v51b3+ v21v

2
2a1

+ v3v
2
1v2a1 + 20v41a4 + 3v21v22a4 + 3v3v21v2a4 + 20v31v2a5 + 4v3v31a5

+ 2v1v32a5 + 2v3v1v22a5 + 20v21v22a6 + 8v3v21v2a6 + v42a6 + v3v
3
2a6

−v31v2b1−v3v
3
1b1+v31v2b4−3v3v31b4−8v41b5−2v3v21v2b5−16v31v2b6

− v1v
3
2b6 − v3v1v

2
2b6 + 12v31a2 + 2v1v22a2 + 2v3v1v2a2 + 12v21v2a3

+4v3v21a3+ v32a3+ v3v
2
2a3+ v21v2b2− v3v

2
1b2− 8v31b3+4v21a1+ v22a1

+ v3v2a1 − 12v21a4 − 8v1v2a5 − 4v22a6 + v1v2b1 + v3v1b1 + 2v1b4v3
+4v21b5+ v2b5v3+8v1v2b6−8v1a2−4v2a3+ b2v3+4v1b3−4a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(−a4 − 8a6 + b5) v41v2v3 + (−2a5 + b6) v31v22v3
+ (a1 + 3a4 + 8a6 − 2b5) v21v2v3 − 4a1 + 2v3v1v2a2 − 3v3v21v32a6
− v21v3v

2
2a3 + (−12a5 − b4 + 8b6) v51v2 + (−4a5 + b4) v51v3

+ (−a4 − 16a6) v41v22 + (−8a3 − b2) v41v2 + (−2a5 + b6) v31v32
+ (20a5 − b1 + b4 − 16b6) v31v2 + (4a5 − b1 − 3b4) v31v3
+ (a1 + 3a4 + 20a6) v21v22 + (12a3 + b2) v21v2 + (4a3 − b2) v21v3
+ (2a5 − b6) v1v32 + (−8a5 + b1 + 8b6) v1v2 + (b1 + 2b4) v1v3
+(a1 + b5) v2v3 +(2a5 − b6) v1v22v3 +(−8a2 +4b3) v1 +(a1 − 4a6) v22
+ (−8a4 + 4b5) v61 + (−4a2 + 4b3) v51 + (20a4 − 8b5) v41
+(12a2−8b3) v31 +(4a1−12a4+4b5) v21 −3v21v42a6+v3v

3
2a6+v3v

2
2a3

− v21v
3
2a3 + 2v1v22a2 − 4v41v3a3 + b2v3 + v32a3 − 4v2a3 + v42a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
a6 = 0
b2 = 0

−4a1 = 0
2a2 = 0

−4a3 = 0
−a3 = 0
−3a6 = 0

a1 − 4a6 = 0
a1 + b5 = 0

−8a2 + 4b3 = 0
−4a2 + 4b3 = 0
12a2 − 8b3 = 0
−8a3 − b2 = 0
4a3 − b2 = 0
12a3 + b2 = 0

−8a4 + 4b5 = 0
−a4 − 16a6 = 0
20a4 − 8b5 = 0
−4a5 + b4 = 0
−2a5 + b6 = 0
2a5 − b6 = 0
b1 + 2b4 = 0

a1 + 3a4 + 20a6 = 0
4a1 − 12a4 + 4b5 = 0
−a4 − 8a6 + b5 = 0

−12a5 − b4 + 8b6 = 0
−8a5 + b1 + 8b6 = 0
4a5 − b1 − 3b4 = 0

a1 + 3a4 + 8a6 − 2b5 = 0
20a5 − b1 + b4 − 16b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0

a5 =
b6
2

a6 = 0
b1 = −4b6
b2 = 0
b3 = 0
b4 = 2b6
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = xy

2
η = 2x2 + y2 − 4

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 2x2 + y2 − 4
xy
2

= 4x2 + 2y2 − 8
xy
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This is easily solved to give

y =
√

c1x4 − 4x2 + 4

Where now the coordinate R is taken as the constant of integration. Hence

R = 4x2 + y2 − 4
x4

Since ξ depends on y and η depends on x then we can use either one to find S. Let us
use

dS = dx

ξ

= dx
xy
2

But we have now to replace y in ξ from its value from the solution of dy
dx

= η
ξ
found

above. This results in

ξ = x
√
c1x4 − 4x2 + 4

2
Integrating gives

S = dx
x
√

c1x4−4x2+4
2

= −
arctanh

(
−4x2+8

4
√

c1x4−4x2+4

)
2

Where the constant of integration is set to zero as we just need one solution. Replacing
back c1 = 4x2+y2−4

x4 then the above becomes

S = −
arctanh

(
−4x2+8
4
√

y2

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
y +

√
4x2 + y2 − 4

)
x

x2 − 1
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Evaluating all the partial derivatives gives

Rx = −8x2 − 4y2 + 16
x5

Ry =
2y
x4

Sx = − xy

x4 − 4x2 − y2 + 4

Sy =
x2 − 2

2x4 − 8x2 − 2y2 + 8

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
x2√4x2 + y2 − 4− x2y − 2

√
4x2 + y2 − 4

)
x6

4
(
x2
√
4x2 + y2 − 4 y − 4x4 − y2x2 + 12x2 + 2y2 − 8

)
(x4 − 4x2 − y2 + 4)

(2A)

Unable to generate ode in canonical coordinates.

Unable to determine ODE type.

Solving equation (2)

Writing the ode as

y′ =
(
−
√
4x2 + y2 − 4 + y

)
x

x2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

+
(
−
√
4x2 + y2 − 4 + y

)
x(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x2 − 1

−
(
−
√
4x2 + y2 − 4 + y

)2
x2(xa5 + 2ya6 + a3)

(x2 − 1)2

−

(
−
2
(
−
√
4x2 + y2 − 4 + y

)
x2

(x2 − 1)2
− 4x2

(x2 − 1)
√
4x2 + y2 − 4

+ −
√
4x2 + y2 − 4 + y

x2 − 1

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
−

(
− y√

4x2+y2−4
+ 1
)
x(x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

x2 − 1 = 0

Putting the above in normal form gives

−2(4x2 + y2 − 4)
3
2 x2ya6 +

√
4x2 + y2 − 4x4ya4 −

√
4x2 + y2 − 4x4yb5 +

√
4x2 + y2 − 4x3y2a5 −

√
4x2 + y2 − 4x3y2b6 +

√
4x2 + y2 − 4x2y3a6 − 3

√
4x2 + y2 − 4x2ya4 + 2

√
4x2 + y2 − 4x2yb5 − 2

√
4x2 + y2 − 4x y2a5 +

√
4x2 + y2 − 4x y2b6 − 16x3yb6 + 8xyb6 − 8x4ya3 − x4yb2 − x3yb1 + 12x2ya3 + x2yb2 + xyb1 + (4x2 + y2 − 4)

3
2 x2a3 +

√
4x2 + y2 − 4x3b1 +

√
4x2 + y2 − 4x2b2 −

√
4x2 + y2 − 4 y2a3 −

√
4x2 + y2 − 4xb1 −

√
4x2 + y2 − 4 ya1 − 8x3b3 + 4xb3 − x2y3a3 + x2y2a1 + 2x y2a2 −

√
4x2 + y2 − 4x5b4 + 3

√
4x2 + y2 − 4x3b4 −

√
4x2 + y2 − 4 y3a6 − 2xb4

√
4x2 + y2 − 4− yb5

√
4x2 + y2 − 4− 8x4b5 + 4x2b5 + 8x5yb6 − x4y2a4 − 2x3y3a5 − 3x2y4a6 + 3x2y2a4 + 2x y3a5 − 8xya5 − b2

√
4x2 + y2 − 4 + 4x5b3 + y3a3 + y2a1 − 4x5a2 + 12x3a2 + 4x2a1 − 12x5ya5 − x5yb4 − 16x4y2a6 + x3y3b6 + 20x3ya5 + x3yb4 + 20x2y2a6 − x y3b6 + (4x2 + y2 − 4)

3
2 x3a5 − 12x2a4 − 4y2a6 − 8x6a4 + 20x4a4 − 4a1 − 8xa2 − 4ya3 −

√
4x2 + y2 − 4x2ya1 − 2

√
4x2 + y2 − 4xya2 + 4x6b5 + y4a6

(x2 − 1)2
√
4x2 + y2 − 4

= 0
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Setting the numerator to zero gives

(6E)

−2
(
4x2 + y2 − 4

) 3
2 x2ya6 −

√
4x2 + y2 − 4x4ya4

+
√

4x2 + y2 − 4x4yb5 −
√

4x2 + y2 − 4x3y2a5

+
√

4x2 + y2 − 4x3y2b6 −
√

4x2 + y2 − 4x2y3a6

+ 3
√
4x2 + y2 − 4x2ya4 − 2

√
4x2 + y2 − 4x2yb5

+ 2
√
4x2 + y2 − 4x y2a5 −

√
4x2 + y2 − 4x y2b6 + 16x3yb6

− 8xyb6 + 8x4ya3 + x4yb2 + x3yb1 − 12x2ya3 − x2yb2

− xyb1 −
(
4x2 + y2 − 4

) 3
2 x2a3 −

√
4x2 + y2 − 4x3b1

−
√

4x2 + y2 − 4x2b2 +
√

4x2 + y2 − 4 y2a3
+
√

4x2 + y2 − 4xb1 +
√

4x2 + y2 − 4 ya1 + 8x3b3 − 4xb3
+ x2y3a3 − x2y2a1 − 2x y2a2 +

√
4x2 + y2 − 4x5b4

− 3
√

4x2 + y2 − 4x3b4 +
√
4x2 + y2 − 4 y3a6

+ 2xb4
√

4x2 + y2 − 4 + yb5
√
4x2 + y2 − 4 + 8x4b5 − 4x2b5

− 8x5yb6 + x4y2a4 + 2x3y3a5 + 3x2y4a6 − 3x2y2a4

− 2x y3a5 + 8xya5 + b2
√
4x2 + y2 − 4− 4x5b3 − y3a3

− y2a1 + 4x5a2 − 12x3a2 − 4x2a1 + 12x5ya5 + x5yb4
+ 16x4y2a6 − x3y3b6 − 20x3ya5 − x3yb4 − 20x2y2a6

+ x y3b6 −
(
4x2 + y2 − 4

) 3
2 x3a5 + 12x2a4 + 4y2a6 + 8x6a4

− 20x4a4 + 4a1 + 8xa2 + 4ya3 +
√

4x2 + y2 − 4x2ya1

+ 2
√
4x2 + y2 − 4xya2 − 4x6b5 − y4a6 = 0
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Simplifying the above gives

(6E)

−2
(
4x2 + y2 − 4

) 3
2 x2ya6 + 2

(
4x2 + y2 − 4

)
x3ya5

− 2
(
4x2 + y2 − 4

)
x3yb6 + 3

(
4x2 + y2 − 4

)
x2y2a6

−
√

4x2 + y2 − 4x4ya4 +
√
4x2 + y2 − 4x4yb5

−
√

4x2 + y2 − 4x3y2a5 +
√

4x2 + y2 − 4x3y2b6

−
√

4x2 + y2 − 4x2y3a6 − 2
(
4x2 + y2 − 4

)
xya5

+ 2
(
4x2 + y2 − 4

)
xyb6 + 3

√
4x2 + y2 − 4x2ya4

− 2
√

4x2 + y2 − 4x2yb5 + 2
√
4x2 + y2 − 4x y2a5

−
√

4x2 + y2 − 4x y2b6+4x4ya3+x4yb2+x3y2b3+x3yb1

− 4x2ya3−x2yb2−x y2b3−xyb1−
(
4x2+ y2− 4

) 3
2 x2a3

−
(
4x2 + y2 − 4

)
x3b3 −

(
4x2 + y2 − 4

)
x2a1

−
√

4x2 + y2 − 4x3b1 − 2
(
4x2 + y2 − 4

)
xa2

+
(
4x2 + y2 − 4

)
xb3 −

(
4x2 + y2 − 4

)
ya3

−
√

4x2 + y2 − 4x2b2 +
√
4x2 + y2 − 4 y2a3

+
√

4x2 + y2 − 4xb1 +
√
4x2 + y2 − 4 ya1

+
(
4x2 + y2 − 4

)
x4a4 −

(
4x2 + y2 − 4

)
x4b5

+
√

4x2 + y2 − 4x5b4 − 3
(
4x2 + y2 − 4

)
x2a4

+
(
4x2 + y2 − 4

)
x2b5 −

(
4x2 + y2 − 4

)
y2a6

− 3
√

4x2 + y2 − 4x3b4 +
√

4x2 + y2 − 4 y3a6
+ 2xb4

√
4x2 + y2 − 4 + yb5

√
4x2 + y2 − 4

−
(
4x2 + y2 − 4

)
a1 + b2

√
4x2 + y2 − 4 + 4x5a2

+ 4x4a1 − 4x3a2 − 4x2a1 + 4x5ya5 + x5yb4
+ 4x4y2a6 + x4y2b5 + x3y3b6 − 4x3ya5 − x3yb4

− 4x2y2a6 − x2y2b5 − x y3b6 −
(
4x2 + y2 − 4

) 3
2 x3a5

+ 4x6a4 − 4x4a4 +
(
4x2 + y2 − 4

)
x2ya3

+
√

4x2 + y2 − 4x2ya1 + 2
√

4x2 + y2 − 4xya2 = 0
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Since the PDE has radicals, simplifying gives

−
√

4x2 + y2 − 4x4ya4 +
√

4x2 + y2 − 4x4yb5

− 2
√

4x2 + y2 − 4x3y2a5 +
√

4x2 + y2 − 4x3y2b6

− 3
√

4x2 + y2 − 4x2y3a6 + 3
√
4x2 + y2 − 4x2ya4

− 2
√

4x2 + y2 − 4x2yb5 + 2
√

4x2 + y2 − 4x y2a5
−
√

4x2 + y2 − 4x y2b6+16x3yb6− 8xyb6− 4x4
√

4x2 + y2 − 4 a3
− x2

√
4x2 + y2 − 4 y2a3 + 8x4ya3 + x4yb2 + x3yb1 − 12x2ya3

− x2yb2 − xyb1 −
√

4x2 + y2 − 4x3b1 −
√

4x2 + y2 − 4x2b2

+
√

4x2 + y2 − 4 y2a3 +
√

4x2 + y2 − 4xb1 +
√
4x2 + y2 − 4 ya1

+ 8x3b3 − 4xb3 + x2y3a3 − x2y2a1 − 2x y2a2 +
√

4x2 + y2 − 4x5b4

− 3
√

4x2 + y2 − 4x3b4 +
√
4x2 + y2 − 4 y3a6

+ 2xb4
√

4x2 + y2 − 4 + yb5
√
4x2 + y2 − 4 + 8x4b5 − 4x2b5

− 8x5yb6 + x4y2a4 + 2x3y3a5 + 3x2y4a6 − 3x2y2a4 − 2x y3a5
+ 4
√

4x2 + y2 − 4x2a3 + 8xya5 + b2
√
4x2 + y2 − 4− 4x5b3

− y3a3 − y2a1 + 4x5a2 − 12x3a2 − 4x2a1 + 12x5ya5 + x5yb4
+ 16x4y2a6 − x3y3b6 − 20x3ya5 − x3yb4 − 20x2y2a6

+ x y3b6 + 4
√

4x2 + y2 − 4x3a5 + 12x2a4 + 4y2a6 + 8x6a4

− 20x4a4 + 4a1 + 8xa2 + 4ya3 − 8x4
√
4x2 + y2 − 4 ya6

+ 8
√

4x2 + y2 − 4x2ya6 +
√

4x2 + y2 − 4x2ya1

+2
√

4x2 + y2 − 4xya2− 4x6b5− y4a6− 4x5
√

4x2 + y2 − 4 a5 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x2 + y2 − 4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x2 + y2 − 4 = v3

}
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The above PDE (6E) now becomes

(7E)

8v61a4 + v41v
2
2a4 − v3v

4
1v2a4 + 12v51v2a5 − 4v51v3a5 + 2v31v32a5

−2v3v31v22a5+16v41v22a6−8v41v3v2a6+3v21v42a6−3v3v21v32a6+v51v2b4
+ v3v

5
1b4 − 4v61b5 + v3v

4
1v2b5 − 8v51v2b6 − v31v

3
2b6 + v3v

3
1v

2
2b6 + 4v51a2

+8v41v2a3− 4v41v3a3+ v21v
3
2a3− v21v3v

2
2a3+ v41v2b2− 4v51b3− v21v

2
2a1

+ v3v
2
1v2a1 − 20v41a4 − 3v21v22a4 + 3v3v21v2a4 − 20v31v2a5 + 4v3v31a5

− 2v1v32a5 + 2v3v1v22a5 − 20v21v22a6 + 8v3v21v2a6 − v42a6 + v3v
3
2a6

+v31v2b1−v3v
3
1b1−v31v2b4−3v3v31b4+8v41b5−2v3v21v2b5+16v31v2b6

+ v1v
3
2b6 − v3v1v

2
2b6 − 12v31a2 − 2v1v22a2 + 2v3v1v2a2 − 12v21v2a3

+4v3v21a3− v32a3+ v3v
2
2a3− v21v2b2− v3v

2
1b2+8v31b3− 4v21a1− v22a1

+ v3v2a1 + 12v21a4 + 8v1v2a5 + 4v22a6 − v1v2b1 + v3v1b1 + 2v1b4v3
−4v21b5+v2b5v3−8v1v2b6+8v1a2+4v2a3+ b2v3−4v1b3+4a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(8a4−4b5) v61+(4a2−4b3) v51+b2v3−v32a3+(−a4−8a6+b5) v41v2v3
+ (−2a5 + b6) v31v22v3 + (a1 + 3a4 + 8a6 − 2b5) v21v2v3
+ (2a5 − b6) v1v22v3 + (−20a4 + 8b5) v41 + (−12a2 + 8b3) v31
+ (−4a1 + 12a4 − 4b5) v21 + (8a2 − 4b3) v1 + (−a1 + 4a6) v22
− 3v3v21v32a6 − v21v3v

2
2a3 + 2v3v1v2a2 + 4v2a3 − v42a6 + 4a1

+ (12a5 + b4 − 8b6) v51v2 + (−4a5 + b4) v51v3 + (a4 + 16a6) v41v22
+ (8a3 + b2) v41v2 + (2a5 − b6) v31v32 + (−20a5 + b1 − b4 + 16b6) v31v2
+ (4a5 − b1 − 3b4) v31v3 + (−a1 − 3a4 − 20a6) v21v22
+ (−12a3 − b2) v21v2 + (4a3 − b2) v21v3 + (−2a5 + b6) v1v32
+ (8a5 − b1 − 8b6) v1v2 + (b1 + 2b4) v1v3 + (a1 + b5) v2v3
− 4v41v3a3 + v3v

2
2a3 + v21v

3
2a3 − 2v1v22a2 + v3v

3
2a6 + 3v21v42a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
a3 = 0
a6 = 0
b2 = 0

4a1 = 0
−2a2 = 0
2a2 = 0

−4a3 = 0
−a3 = 0
4a3 = 0

−3a6 = 0
−a6 = 0
3a6 = 0

−a1 + 4a6 = 0
a1 + b5 = 0

−12a2 + 8b3 = 0
4a2 − 4b3 = 0
8a2 − 4b3 = 0

−12a3 − b2 = 0
4a3 − b2 = 0
8a3 + b2 = 0

−20a4 + 8b5 = 0
a4 + 16a6 = 0
8a4 − 4b5 = 0
−4a5 + b4 = 0
−2a5 + b6 = 0
2a5 − b6 = 0
b1 + 2b4 = 0

−4a1 + 12a4 − 4b5 = 0
−a1 − 3a4 − 20a6 = 0

−a4 − 8a6 + b5 = 0
4a5 − b1 − 3b4 = 0
8a5 − b1 − 8b6 = 0
12a5 + b4 − 8b6 = 0

a1 + 3a4 + 8a6 − 2b5 = 0
−20a5 + b1 − b4 + 16b6 = 08432



Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0

a5 =
b6
2

a6 = 0
b1 = −4b6
b2 = 0
b3 = 0
b4 = 2b6
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = xy

2
η = 2x2 + y2 − 4

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.937 (sec). Leaf size: 46� �
dsolve((-x^2+1)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+4*x^2 = 0,y(x), singsol=all)� �

y(x) = −2
√
−x2 + 1

y(x) = 2
√
−x2 + 1

y(x) = −c1 + c1x
2 − 1

c1

3 Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 63� �
DSolve[(1-x^2) (y'[x])^2+2 x y[x] y'[x]+4 x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x2 + 4 + c1
2

2c1
y(x) → Indeterminate
y(x) → −2

√
1− x2

y(x) → 2
√
1− x2
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31.17 problem 916
31.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8437

Internal problem ID [4152]
Internal file name [OUTPUT/3645_Sunday_June_05_2022_10_00_33_AM_32540116/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 916.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
a2 + x2) y′2 = b2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = b√
a2 + x2

(1)

y′ = − b√
a2 + x2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

b√
a2 + x2

dx

= b ln
(
x+

√
a2 + x2

)
+ c1

Summary
The solution(s) found are the following

(1)y = b ln
(
x+

√
a2 + x2

)
+ c1
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Verification of solutions

y = b ln
(
x+

√
a2 + x2

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− b√
a2 + x2

dx

= −b ln
(
x+

√
a2 + x2

)
+ c2

Summary
The solution(s) found are the following

(1)y = −b ln
(
x+

√
a2 + x2

)
+ c2

Verification of solutions

y = −b ln
(
x+

√
a2 + x2

)
+ c2

Verified OK.

31.17.1 Maple step by step solution

Let’s solve
(a2 + x2) y′2 = b2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(a2 + x2) y′2dx =

∫
b2dx+ c1

• Cannot compute integral∫
(a2 + x2) y′2dx = b2x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 40� �
dsolve((a^2+x^2)*diff(y(x),x)^2 = b^2,y(x), singsol=all)� �

y(x) = b ln
(
x+

√
a2 + x2

)
+ c1

y(x) = −b ln
(
x+

√
a2 + x2

)
+ c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 101� �
DSolve[(a^2+x^2) (y'[x])^2==b^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2b log

(
1− x√

a2 + x2

)
− 1

2b log
(

x√
a2 + x2

+ 1
)
+ c1

y(x) → −1
2b log

(
1− x√

a2 + x2

)
+ 1

2b log
(

x√
a2 + x2

+ 1
)
+ c1
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31.18 problem 917
31.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8440

Internal problem ID [4153]
Internal file name [OUTPUT/3646_Sunday_June_05_2022_10_00_39_AM_42429116/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 917.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
a2 − x2) y′2 = −b2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − b√
−a2 + x2

(1)

y′ = b√
−a2 + x2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

− b√
−a2 + x2

dx

= −b ln
(
x+

√
−a2 + x2

)
+ c1

Summary
The solution(s) found are the following

(1)y = −b ln
(
x+

√
−a2 + x2

)
+ c1
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Verification of solutions

y = −b ln
(
x+

√
−a2 + x2

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

b√
−a2 + x2

dx

= b ln
(
x+

√
−a2 + x2

)
+ c2

Summary
The solution(s) found are the following

(1)y = b ln
(
x+

√
−a2 + x2

)
+ c2

Verification of solutions

y = b ln
(
x+

√
−a2 + x2

)
+ c2

Verified OK.

31.18.1 Maple step by step solution

Let’s solve
(a2 − x2) y′2 = −b2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(a2 − x2) y′2dx =

∫
−b2dx+ c1

• Cannot compute integral∫
(a2 − x2) y′2dx = −b2x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 44� �
dsolve((a^2-x^2)*diff(y(x),x)^2+b^2 = 0,y(x), singsol=all)� �

y(x) = b ln
(
x+

√
−a2 + x2

)
+ c1

y(x) = −b ln
(
x+

√
−a2 + x2

)
+ c1

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 109� �
DSolve[(a^2-x^2) (y'[x])^2+b^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2b log

(
1− x√

x2 − a2

)
− 1

2b log
(

x√
x2 − a2

+ 1
)
+ c1

y(x) → −1
2b log

(
1− x√

x2 − a2

)
+ 1

2b log
(

x√
x2 − a2

+ 1
)
+ c1
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31.19 problem 918
31.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8443

Internal problem ID [4154]
Internal file name [OUTPUT/3647_Sunday_June_05_2022_10_00_45_AM_81624219/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 918.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
a2 − x2) y′2 = b2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = b√
a2 − x2

(1)

y′ = − b√
a2 − x2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

b√
a2 − x2

dx

= b arctan
(

x√
a2 − x2

)
+ c1

Summary
The solution(s) found are the following

(1)y = b arctan
(

x√
a2 − x2

)
+ c1
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Verification of solutions

y = b arctan
(

x√
a2 − x2

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− b√
a2 − x2

dx

= −b arctan
(

x√
a2 − x2

)
+ c2

Summary
The solution(s) found are the following

(1)y = −b arctan
(

x√
a2 − x2

)
+ c2

Verification of solutions

y = −b arctan
(

x√
a2 − x2

)
+ c2

Verified OK.

31.19.1 Maple step by step solution

Let’s solve
(a2 − x2) y′2 = b2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(a2 − x2) y′2dx =

∫
b2dx+ c1

• Cannot compute integral∫
(a2 − x2) y′2dx = b2x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 44� �
dsolve((a^2-x^2)*diff(y(x),x)^2 = b^2,y(x), singsol=all)� �

y(x) = b arctan
(

x√
a2 − x2

)
+ c1

y(x) = −b arctan
(

x√
a2 − x2

)
+ c1

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 52� �
DSolve[(a^2-x^2) (y'[x])^2==b^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −b arctan
(

x√
a2 − x2

)
+ c1

y(x) → b arctan
(

x√
a2 − x2

)
+ c1
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31.20 problem 919
31.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8446

Internal problem ID [4155]
Internal file name [OUTPUT/3648_Sunday_June_05_2022_10_00_52_AM_44415289/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 919.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
a2 − x2) y′2 = x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x√
a2 − x2

(1)

y′ = − x√
a2 − x2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

x√
a2 − x2

dx

= −(−x+ a) (x+ a)√
a2 − x2

+ c1

Summary
The solution(s) found are the following

(1)y = −(−x+ a) (x+ a)√
a2 − x2

+ c1
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Verification of solutions

y = −(−x+ a) (x+ a)√
a2 − x2

+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− x√
a2 − x2

dx

= (−x+ a) (x+ a)√
a2 − x2

+ c2

Summary
The solution(s) found are the following

(1)y = (−x+ a) (x+ a)√
a2 − x2

+ c2

Verification of solutions

y = (−x+ a) (x+ a)√
a2 − x2

+ c2

Verified OK.

31.20.1 Maple step by step solution

Let’s solve
(a2 − x2) y′2 = x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(a2 − x2) y′2dx =

∫
x2dx+ c1

• Cannot compute integral∫
(a2 − x2) y′2dx = x3

3 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 52� �
dsolve((a^2-x^2)*diff(y(x),x)^2 = x^2,y(x), singsol=all)� �

y(x) = −(a− x) (x+ a)√
a2 − x2

+ c1

y(x) = (a− x) (x+ a)√
a2 − x2

+ c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 43� �
DSolve[(a^2-x^2) (y'[x])^2==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
a2 − x2 + c1

y(x) →
√
a2 − x2 + c1
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31.21 problem 920
Internal problem ID [4156]
Internal file name [OUTPUT/3649_Sunday_June_05_2022_10_00_58_AM_21473191/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 920.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`]]

(
a2 − x2) y′2 + 2xyy′ = −x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −
(
y −

√
y2 − a2 + x2

)
x

a2 − x2 (1)

y′ = −
(
y +

√
y2 − a2 + x2

)
x

a2 − x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −
(
y −

√
−a2 + x2 + y2

)
x

a2 − x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

8448



The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

−
(
y −

√
−a2 + x2 + y2

)
x(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

a2 − x2

−
(
y −

√
−a2 + x2 + y2

)2
x2(xa5 + 2ya6 + a3)

(a2 − x2)2

−

(
x2

√
−a2 + x2 + y2 (a2 − x2)

−
2
(
y −

√
−a2 + x2 + y2

)
x2

(a2 − x2)2

− y −
√
−a2 + x2 + y2

a2 − x2

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
+

(
1− y√

−a2+x2+y2

)
x(x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

a2 − x2 = 0

Putting the above in normal form gives

−3a2x3a2 − 2x4ya3 − x4yb2 + a2x2a1 − x3yb1 + (−a2 + x2 + y2)
3
2 x2a3 −

√
−a2 + x2 + y2 a4b2 +

√
−a2 + x2 + y2 x3b1 +

√
−a2 + x2 + y2 a2x2b2 −

√
−a2 + x2 + y2 a2y2a3 −

√
−a2 + x2 + y2 a2xb1 −

√
−a2 + x2 + y2 a2ya1 −

√
−a2 + x2 + y2 x2ya1 + 2a2x y2a2 − 2

√
−a2 + x2 + y2 a2xya2 − 2

√
−a2 + x2 + y2 a4xb4 −

√
−a2 + x2 + y2 a4yb5 + 3

√
−a2 + x2 + y2 a2x3b4 −

√
−a2 + x2 + y2 a2y3a6 +

√
−a2 + x2 + y2 x4ya4 −

√
−a2 + x2 + y2 x4yb5 +

√
−a2 + x2 + y2 x3y2a5 −

√
−a2 + x2 + y2 x3y2b6 +

√
−a2 + x2 + y2 x2y3a6 + 3a2x2ya3 + a2x2yb2 + a2xyb1 + 5a2x3ya5 + a2x3yb4 + 5a2x2y2a6 − a2x y3b6 + 2(−a2 + x2 + y2)

3
2 x2ya6 − 2a4xya5 + 2a4xyb6 − 4a2x3yb6 + 3a2x2y2a4 + 2a2x y3a5 − 3

√
−a2 + x2 + y2 a2x2ya4 + 2

√
−a2 + x2 + y2 a2x2yb5 − 2

√
−a2 + x2 + y2 a2x y2a5 +

√
−a2 + x2 + y2 a2x y2b6 − 2x6a4 + x5b3 − a4a1 + x6b5 − x5a2 − 2a4xa2 + a4xb3 − a4ya3 − 2a2x3b3 + a2y3a3 − x2y3a3 + a2y2a1 + x2y2a1 − 3a4x2a4 + a4x2b5 − a4y2a6 − 2a2x4b5 + a2y4a6 + 2x5yb6 − x4y2a4 − 2x3y3a5 − 3x2y4a6 + 5a2x4a4 − 3x5ya5 − x5yb4 − 4x4y2a6 + x3y3b6 + (−a2 + x2 + y2)

3
2 x3a5 −

√
−a2 + x2 + y2 x5b4√

−a2 + x2 + y2 (a2 − x2)2
= 0
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Setting the numerator to zero gives

(6E)

−3a2x3a2 + 2x4ya3 + x4yb2 − a2x2a1 + x3yb1

−
(
−a2 + x2 + y2

) 3
2 x2a3 +

√
−a2 + x2 + y2 a4b2

−
√

−a2 + x2 + y2 x3b1 −
√

−a2 + x2 + y2 a2x2b2

+
√

−a2 + x2 + y2 a2y2a3 +
√
−a2 + x2 + y2 a2xb1

+
√

−a2 + x2 + y2 a2ya1 +
√

−a2 + x2 + y2 x2ya1

− 2a2x y2a2 + 2
√

−a2 + x2 + y2 a2xya2

+ 2
√

−a2 + x2 + y2 a4xb4 +
√

−a2 + x2 + y2 a4yb5

− 3
√

−a2 + x2 + y2 a2x3b4 +
√

−a2 + x2 + y2 a2y3a6

−
√

−a2 + x2 + y2 x4ya4 +
√

−a2 + x2 + y2 x4yb5

−
√

−a2 + x2 + y2 x3y2a5 +
√
−a2 + x2 + y2 x3y2b6

−
√

−a2 + x2 + y2 x2y3a6 − 3a2x2ya3 − a2x2yb2
− a2xyb1 − 5a2x3ya5 − a2x3yb4 − 5a2x2y2a6 + a2x y3b6

−2
(
−a2+x2+y2

) 3
2 x2ya6+2a4xya5−2a4xyb6+4a2x3yb6

− 3a2x2y2a4 − 2a2x y3a5 + 3
√

−a2 + x2 + y2 a2x2ya4

− 2
√

−a2 + x2 + y2 a2x2yb5 + 2
√

−a2 + x2 + y2 a2x y2a5

−
√

−a2 + x2 + y2 a2x y2b6 + 2x6a4 − x5b3 + a4a1
− x6b5 + x5a2 + 2a4xa2 − a4xb3 + a4ya3 + 2a2x3b3
− a2y3a3 + x2y3a3 − a2y2a1 − x2y2a1 + 3a4x2a4 − a4x2b5
+ a4y2a6 + 2a2x4b5 − a2y4a6 − 2x5yb6 + x4y2a4 + 2x3y3a5
+ 3x2y4a6 − 5a2x4a4 + 3x5ya5 + x5yb4 + 4x4y2a6 − x3y3b6

−
(
−a2 + x2 + y2

) 3
2 x3a5 +

√
−a2 + x2 + y2 x5b4 = 0

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−a2 + x2 + y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−a2 + x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)

3a4v21a4 + 2a4v1v2a5 + a4v22a6 + 2v3a4v1b4 − a4v21b5 + v3a
4v2b5

− 2a4v1v2b6 − 5a2v41a4 − 3a2v21v22a4 + 3v3a2v21v2a4 − 5a2v31v2a5
+a2v31v3a5− 2a2v1v32a5+2v3a2v1v22a5− 5a2v21v22a6+2a2v21v3v2a6
− a2v42a6 + v3a

2v32a6 − a2v31v2b4 − 3v3a2v31b4 + 2a2v41b5
− 2v3a2v21v2b5 + 4a2v31v2b6 + a2v1v

3
2b6 − v3a

2v1v
2
2b6 + 2v61a4

+ v41v
2
2a4 − v3v

4
1v2a4 + 3v51v2a5 − v51v3a5 + 2v31v32a5 − 2v3v31v22a5

+ 4v41v22a6 − 2v41v3v2a6 + 3v21v42a6 − 3v3v21v32a6 + v51v2b4 + v3v
5
1b4

− v61b5 + v3v
4
1v2b5 − 2v51v2b6 − v31v

3
2b6 + v3v

3
1v

2
2b6 + 2a4v1a2

+ a4v2a3 + v3a
4b2 − a4v1b3 − 3a2v31a2 − 2a2v1v22a2 + 2v3a2v1v2a2

− 3a2v21v2a3 + a2v21v3a3 − a2v32a3 + v3a
2v22a3 − a2v21v2b2

− v3a
2v21b2 + 2a2v31b3 + v51a2 + 2v41v2a3 − v41v3a3 + v21v

3
2a3

− v21v3v
2
2a3 + v41v2b2 − v51b3 + a4a1 − a2v21a1 − a2v22a1 + v3a

2v2a1
− a2v1v2b1 + v3a

2v1b1 − v21v
2
2a1 + v3v

2
1v2a1 + v31v2b1 − v3v

3
1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

v3a
2v22a3 − 2a2v1v22a2 + v3a

2v32a6 − 3v3v21v32a6 − v21v3v
2
2a3

+ (2a5 − b6) v31v32 +
(
−5a2a5 − a2b4 + 4a2b6 + b1

)
v31v2

+
(
a2a5 − 3a2b4 − b1

)
v31v3 +

(
−3a2a4 − 5a2a6 − a1

)
v21v

2
2

+
(
−3a2a3 − a2b2

)
v21v2 +

(
a2a3 − a2b2

)
v21v3

+
(
−2a2a5 + a2b6

)
v1v

3
2 +

(
2a4a5 − 2a4b6 − a2b1

)
v1v2

+
(
2a4b4 + a2b1

)
v1v3 +

(
a4b5 + a2a1

)
v2v3 + (3a5 + b4 − 2b6) v51v2

+ (−a5 + b4) v51v3 + (a4 + 4a6) v41v22 + (2a3 + b2) v41v2
+ (−a4 − 2a6 + b5) v41v2v3 + (−2a5 + b6) v31v22v3
+
(
3a2a4 + 2a2a6 − 2a2b5 + a1

)
v21v2v3 +

(
2a2a5 − a2b6

)
v1v

2
2v3

+ (2a4 − b5) v61 + (−b3 + a2) v51 +
(
−5a2a4 + 2a2b5

)
v41

+
(
−3a2a2 + 2a2b3

)
v31 +

(
3a4a4 − a4b5 − a2a1

)
v21 + 2v3a2v1v2a2

+ a4a1 + v3a
4b2 − v41v3a3 + a4v2a3 − a2v32a3 + v21v

3
2a3 − a2v42a6

+ 3v21v42a6 +
(
2a4a2 − a4b3

)
v1 +

(
a4a6 − a2a1

)
v22 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
a3 = 0

a2a3 = 0
a2a6 = 0
a4a1 = 0
a4a3 = 0
a4b2 = 0
−a3 = 0
−3a6 = 0
3a6 = 0

−2a2a2 = 0
2a2a2 = 0
−a2a3 = 0
−a2a6 = 0

2a3 + b2 = 0
a4 + 4a6 = 0
2a4 − b5 = 0

−2a5 + b6 = 0
−a5 + b4 = 0
2a5 − b6 = 0
−b3 + a2 = 0

−a4 − 2a6 + b5 = 0
3a5 + b4 − 2b6 = 0

a4a6 − a2a1 = 0
a4b5 + a2a1 = 0

−3a2a2 + 2a2b3 = 0
2a4a2 − a4b3 = 0

−3a2a3 − a2b2 = 0
a2a3 − a2b2 = 0

−5a2a4 + 2a2b5 = 0
−2a2a5 + a2b6 = 0
2a2a5 − a2b6 = 0
2a4b4 + a2b1 = 0

−3a2a4 − 5a2a6 − a1 = 0
3a4a4 − a4b5 − a2a1 = 0

a2a5 − 3a2b4 − b1 = 0
2a4a5 − 2a4b6 − a2b1 = 0

3a2a4 + 2a2a6 − 2a2b5 + a1 = 0
−5a2a5 − a2b4 + 4a2b6 + b1 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = b4

a6 = 0
b1 = −2a2b4
b2 = 0
b3 = 0
b4 = b4

b5 = 0
b6 = 2b4

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = xy

η = −2a2 + x2 + 2y2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −2a2 + x2 + 2y2
xy

= −2a2 + x2 + 2y2
xy
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This is easily solved to give

y =
√

c1x4 + a2 − x2

Where now the coordinate R is taken as the constant of integration. Hence

R = −a2 + x2 + y2

x4

Since ξ depends on y and η depends on x then we can use either one to find S. Let us
use

dS = dx

ξ

= dx

xy

But we have now to replace y in ξ from its value from the solution of dy
dx

= η
ξ
found

above. This results in

ξ = x
√

c1x4 + a2 − x2

Integrating gives

S = dx

x
√
c1x4 + a2 − x2

= −
ln
(

2a2−x2+2
√
a2
√

c1x4+a2−x2

x2

)
2
√
a2

Where the constant of integration is set to zero as we just need one solution. Replacing
back c1 = −a2+x2+y2

x4 then the above becomes

S = −
ln
(

2a2−x2+2
√
a2
√

y2

x2

)
2
√
a2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
y −

√
−a2 + x2 + y2

)
x

a2 − x2
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Evaluating all the partial derivatives gives

Rx = 4a2 − 2x2 − 4y2
x5

Ry =
2y
x4

Sx = 2a+ 2y
(2a2 + 2ya− x2)x

Sy = − 1
2a2 + 2ya− x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
−x2

√
−a2+x2+y2

2 +
(
−a− y

2

)
x2 + a2(a+ y)

)
x4

4
(

x2
√

−a2+x2+y2 y
2 + (a2 − x2 − y2)

(
a2 − x2

2

)) (
−x2

2 + a (a+ y)
) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

1 +
(
−4Ra2 + 4

√
Ra− 1

)
e4S(R)a(

16a3R2 − 8R 3
2a2 − 4Ra+ 2

√
R
)
e4S(R)a − 4Ra− 2

√
R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R)−

∫ R

−
−4_a a2e4S(R)a + 4 e4S(R)aa

√_a− e4S(R)a + 1
2
(
4 e4S(R)a_a 3

2a2 − 8 e4S(R)a_a2a3 + 2 e4S(R)a_aa− e4S(R)a√_a+ 2_aa+√_a
)d_a

− c1 = 0

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (2a2 + 2ya− x2) + 2 ln (x)
2a −

∫ y2−a2+x2

x4

−
−4_a a2e−2 ln

(
2a2+2ya−x2)+4 ln(x) + 4 e−2 ln

(
2a2+2ya−x2)+4 ln(x)a

√_a− e−2 ln
(
2a2+2ya−x2)+4 ln(x) + 1

2
(
4 e−2 ln(2a2+2ya−x2)+4 ln(x)_a 3

2a2 − 8 e−2 ln(2a2+2ya−x2)+4 ln(x)_a2a3 + 2 e−2 ln(2a2+2ya−x2)+4 ln(x)_aa− e−2 ln(2a2+2ya−x2)+4 ln(x)√_a+ 2_aa+√_a
)d_a

− c1 = 0

Which simplifies to(∫ y2−a2+x2

x4
√_ax4+a3+2ya2+

(
−_ax4−x2+y2

)
a−x2y

_a 3
2 a x4+(y+a)(a2+ya−x2)

√_a+2_a
(
a4+2a3y+(−_ax4−x2+y2)a2−ya x2+x4

2

)d_a
)
a− 2c1a− ln (2a2 + 2ya− x2) + 2 ln (x)

2a = 0
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Summary
The solution(s) found are the following

(1)

(∫ y2−a2+x2

x4
√_ax4+a3+2ya2+

(
−_ax4−x2+y2

)
a−x2y

_a 3
2 a x4+(y+a)(a2+ya−x2)

√_a+2_a
(
a4+2a3y+(−_ax4−x2+y2)a2−ya x2+x4

2

)d_a
)
a− 2c1a− ln (2a2 + 2ya− x2) + 2 ln (x)

2a
= 0
Verification of solutions(∫ y2−a2+x2

x4
√_ax4+a3+2ya2+

(
−_ax4−x2+y2

)
a−x2y

_a 3
2 a x4+(y+a)(a2+ya−x2)

√_a+2_a
(
a4+2a3y+(−_ax4−x2+y2)a2−ya x2+x4

2

)d_a
)
a− 2c1a− ln (2a2 + 2ya− x2) + 2 ln (x)

2a
= 0

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
y +

√
−a2 + x2 + y2

)
x

a2 − x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

−
(
y +

√
−a2 + x2 + y2

)
x(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

a2 − x2

−
(
y +

√
−a2 + x2 + y2

)2
x2(xa5 + 2ya6 + a3)

(a2 − x2)2

−

(
− x2
√
−a2 + x2 + y2 (a2 − x2)

−
2
(
y +

√
−a2 + x2 + y2

)
x2

(a2 − x2)2

− y +
√
−a2 + x2 + y2

a2 − x2

)(
x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

)
+

(
1 + y√

−a2+x2+y2

)
x(x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1)

a2 − x2 = 0

Putting the above in normal form gives

−−5a2x4a4 + 3x5ya5 + x5yb4 + 4x4y2a6 − x3y3b6 + (−a2 + x2 + y2)
3
2 x3a5 −

√
−a2 + x2 + y2 x5b4 −

√
−a2 + x2 + y2 a4b2 +

√
−a2 + x2 + y2 x3b1 + 2a4xa2 − a4xb3 + a4ya3 + 2a2x3b3 − a2y3a3 + x2y3a3 − a2y2a1 − x2y2a1 + 3a4x2a4 − a4x2b5 + a4y2a6 + 2a2x4b5 − a2y4a6 − 2x5yb6 + x4y2a4 + 2x3y3a5 + 3x2y4a6 − 2

√
−a2 + x2 + y2 a2xya2 + x5a2 + 2a4xya5 − 2a4xyb6 + 4a2x3yb6 − 3a2x2y2a4 − 2a2x y3a5 − 3a2x3a2 + 2x4ya3 + x4yb2 − a2x2a1 + x3yb1 + (−a2 + x2 + y2)

3
2 x2a3 +

√
−a2 + x2 + y2 a2x2b2 −

√
−a2 + x2 + y2 a2y2a3 −

√
−a2 + x2 + y2 a2xb1 −

√
−a2 + x2 + y2 a2ya1 −

√
−a2 + x2 + y2 x2ya1 − 2a2x y2a2 − x5b3 + a4a1 − x6b5 − 3

√
−a2 + x2 + y2 a2x2ya4 + 2

√
−a2 + x2 + y2 a2x2yb5 − 2

√
−a2 + x2 + y2 a2x y2a5 +

√
−a2 + x2 + y2 a2x y2b6 + 2x6a4 − 3a2x2ya3 − a2x2yb2 − a2xyb1 + 2(−a2 + x2 + y2)

3
2 x2ya6 − 2

√
−a2 + x2 + y2 a4xb4 −

√
−a2 + x2 + y2 a4yb5 + 3

√
−a2 + x2 + y2 a2x3b4 −

√
−a2 + x2 + y2 a2y3a6 +

√
−a2 + x2 + y2 x4ya4 −

√
−a2 + x2 + y2 x4yb5 +

√
−a2 + x2 + y2 x3y2a5 −

√
−a2 + x2 + y2 x3y2b6 +

√
−a2 + x2 + y2 x2y3a6 − 5a2x3ya5 − a2x3yb4 − 5a2x2y2a6 + a2x y3b6√

−a2 + x2 + y2 (a2 − x2)2
= 0
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Setting the numerator to zero gives

(6E)

5a2x4a4 − 3x5ya5 − x5yb4 − 4x4y2a6 + x3y3b6

−
(
−a2 + x2 + y2

) 3
2 x3a5 +

√
−a2 + x2 + y2 x5b4

+
√

−a2 + x2 + y2 a4b2 −
√

−a2 + x2 + y2 x3b1 − 2a4xa2
+ a4xb3 − a4ya3 − 2a2x3b3 + a2y3a3 − x2y3a3 + a2y2a1
+ x2y2a1 − 3a4x2a4 + a4x2b5 − a4y2a6 − 2a2x4b5
+ a2y4a6 + 2x5yb6 − x4y2a4 − 2x3y3a5 − 3x2y4a6

+ 2
√

−a2 + x2 + y2 a2xya2 − x5a2 − 2a4xya5 + 2a4xyb6
− 4a2x3yb6 + 3a2x2y2a4 + 2a2x y3a5 + 3a2x3a2 − 2x4ya3

− x4yb2 + a2x2a1 − x3yb1 −
(
−a2 + x2 + y2

) 3
2 x2a3

−
√

−a2 + x2 + y2 a2x2b2 +
√

−a2 + x2 + y2 a2y2a3

+
√

−a2 + x2 + y2 a2xb1 +
√
−a2 + x2 + y2 a2ya1

+
√

−a2 + x2 + y2 x2ya1 +2a2x y2a2 + x5b3 − a4a1 + x6b5

+ 3
√

−a2 + x2 + y2 a2x2ya4 − 2
√

−a2 + x2 + y2 a2x2yb5

+ 2
√

−a2 + x2 + y2 a2x y2a5 −
√
−a2 + x2 + y2 a2x y2b6

− 2x6a4 + 3a2x2ya3 + a2x2yb2 + a2xyb1

− 2
(
−a2 + x2 + y2

) 3
2 x2ya6 + 2

√
−a2 + x2 + y2 a4xb4

+
√

−a2 + x2 + y2 a4yb5 − 3
√

−a2 + x2 + y2 a2x3b4

+
√

−a2 + x2 + y2 a2y3a6 −
√

−a2 + x2 + y2 x4ya4

+
√

−a2 + x2 + y2 x4yb5 −
√

−a2 + x2 + y2 x3y2a5

+
√

−a2 + x2 + y2 x3y2b6 −
√
−a2 + x2 + y2 x2y3a6

+ 5a2x3ya5 + a2x3yb4 + 5a2x2y2a6 − a2x y3b6 = 0

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−a2 + x2 + y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−a2 + x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)

−3a4v21a4 − 2a4v1v2a5 − a4v22a6 + 2v3a4v1b4 + a4v21b5 + v3a
4v2b5

+ 2a4v1v2b6 + 5a2v41a4 + 3a2v21v22a4 + 3v3a2v21v2a4 + 5a2v31v2a5
+ a2v31v3a5+2a2v1v32a5+2v3a2v1v22a5+5a2v21v22a6+2a2v21v3v2a6
+ a2v42a6 + v3a

2v32a6 + a2v31v2b4 − 3v3a2v31b4 − 2a2v41b5
− 2v3a2v21v2b5 − 4a2v31v2b6 − a2v1v

3
2b6 − v3a

2v1v
2
2b6 − 2v61a4

− v41v
2
2a4 − v3v

4
1v2a4 − 3v51v2a5 − v51v3a5 − 2v31v32a5 − 2v3v31v22a5

− 4v41v22a6 − 2v41v3v2a6 − 3v21v42a6 − 3v3v21v32a6 − v51v2b4 + v3v
5
1b4

+ v61b5 + v3v
4
1v2b5 + 2v51v2b6 + v31v

3
2b6 + v3v

3
1v

2
2b6 − 2a4v1a2

− a4v2a3 + v3a
4b2 + a4v1b3 + 3a2v31a2 + 2a2v1v22a2 + 2v3a2v1v2a2

+ 3a2v21v2a3 + a2v21v3a3 + a2v32a3 + v3a
2v22a3 + a2v21v2b2

− v3a
2v21b2 − 2a2v31b3 − v51a2 − 2v41v2a3 − v41v3a3 − v21v

3
2a3

− v21v3v
2
2a3 − v41v2b2 + v51b3 − a4a1 + a2v21a1 + a2v22a1 + v3a

2v2a1
+ a2v1v2b1 + v3a

2v1b1 + v21v
2
2a1 + v3v

2
1v2a1 − v31v2b1 − v3v

3
1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

v3a
2v22a3 + 2a2v1v22a2 + v3a

2v32a6 − 3v3v21v32a6 + (−a4 − 2a6 + b5) v41v2v3
+ (−2a5 + b6) v31v22v3 +

(
3a2a4 + 2a2a6 − 2a2b5 + a1

)
v21v2v3 +

(
2a2a5 − a2b6

)
v1v

2
2v3

+ 2v3a2v1v2a2 + (−2a4 + b5) v61 + (b3 − a2) v51 +
(
5a2a4 − 2a2b5

)
v41 +

(
3a2a2 − 2a2b3

)
v31

+
(
−3a4a4 + a4b5 + a2a1

)
v21 +

(
−2a4a2 + a4b3

)
v1 +

(
−a4a6 + a2a1

)
v22 + v3a

4b2

− a4v2a3 + a2v32a3 − v21v
3
2a3 + a2v42a6 − 3v21v42a6 − v41v3a3 + (−3a5 − b4 + 2b6) v51v2

+ (−a5 + b4) v51v3 + (−a4 − 4a6) v41v22 + (−2a3 − b2) v41v2 + (−2a5 + b6) v31v32
+
(
5a2a5 + a2b4 − 4a2b6 − b1

)
v31v2 +

(
a2a5 − 3a2b4 − b1

)
v31v3 +

(
3a2a4 +5a2a6 + a1

)
v21v

2
2

+
(
3a2a3 + a2b2

)
v21v2 +

(
a2a3 − a2b2

)
v21v3 +

(
2a2a5 − a2b6

)
v1v

3
2 − a4a1

+
(
−2a4a5 +2a4b6 + a2b1

)
v1v2 +

(
2a4b4 + a2b1

)
v1v3 +

(
a4b5 + a2a1

)
v2v3 − v21v3v

2
2a3 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

a2a3 = 0
a2a6 = 0
a4b2 = 0
−a3 = 0
−3a6 = 0
2a2a2 = 0
−a4a1 = 0
−a4a3 = 0

−2a3 − b2 = 0
−2a4 + b5 = 0
−a4 − 4a6 = 0
−2a5 + b6 = 0
−a5 + b4 = 0
b3 − a2 = 0

−a4 − 2a6 + b5 = 0
−3a5 − b4 + 2b6 = 0

−a4a6 + a2a1 = 0
a4b5 + a2a1 = 0

3a2a2 − 2a2b3 = 0
−2a4a2 + a4b3 = 0

a2a3 − a2b2 = 0
3a2a3 + a2b2 = 0

5a2a4 − 2a2b5 = 0
2a2a5 − a2b6 = 0
2a4b4 + a2b1 = 0

3a2a4 + 5a2a6 + a1 = 0
−3a4a4 + a4b5 + a2a1 = 0

a2a5 − 3a2b4 − b1 = 0
−2a4a5 + 2a4b6 + a2b1 = 0

3a2a4 + 2a2a6 − 2a2b5 + a1 = 0
5a2a5 + a2b4 − 4a2b6 − b1 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = b4

a6 = 0
b1 = −2a2b4
b2 = 0
b3 = 0
b4 = b4

b5 = 0
b6 = 2b4

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = xy

η = −2a2 + x2 + 2y2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �

8462



3 Solution by Maple
Time used: 1.39 (sec). Leaf size: 51� �
dsolve((a^2-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+x^2 = 0,y(x), singsol=all)� �

y(x) =
√
a2 − x2

y(x) = −
√
a2 − x2

y(x) = c1x
2 − c1a

2 − 1
4c1

3 Solution by Mathematica
Time used: 0.417 (sec). Leaf size: 67� �
DSolve[(a^2-x^2) (y'[x])^2+2 x y[x] y'[x]+x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a2 − x2 + c1
2

2c1
y(x) → Indeterminate
y(x) → −

√
a2 − x2

y(x) →
√
a2 − x2
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31.22 problem 921
31.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8466

Internal problem ID [4157]
Internal file name [OUTPUT/3650_Sunday_June_05_2022_10_01_14_AM_89327299/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 921.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
a2 − x2) y′2 − 2xyy′ − y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y

−x+ a
(1)

y′ = − y

x+ a
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

−x+ a
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Where f(x) = 1
−x+a

and g(y) = y. Integrating both sides gives
1
y
dy = 1

−x+ a
dx∫ 1

y
dy =

∫ 1
−x+ a

dx

ln (y) = − ln (−x+ a) + c1

y = e− ln(−x+a)+c1

= c1
−x+ a

Summary
The solution(s) found are the following

(1)y = c1
−x+ a

Verification of solutions

y = c1
−x+ a

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y

x+ a

Where f(x) = − 1
x+a

and g(y) = y. Integrating both sides gives
1
y
dy = − 1

x+ a
dx∫ 1

y
dy =

∫
− 1
x+ a

dx

ln (y) = − ln (x+ a) + c2

y = e− ln(x+a)+c2

= c2
x+ a

Summary
The solution(s) found are the following

(1)y = c2
x+ a
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Verification of solutions

y = c2
x+ a

Verified OK.

31.22.1 Maple step by step solution

Let’s solve
(a2 − x2) y′2 − 2xyy′ − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

−x+a

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
−x+a

dx+ c1

• Evaluate integral
ln (y) = − ln (−x+ a) + c1

• Solve for y
y = ec1

−x+a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((a^2-x^2)*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = c1
a− x

y(x) = c1
x+ a

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 32� �
DSolve[(a^2-x^2) (y'[x])^2-2 x y[x] y'[x]-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
a− x

y(x) → c1
a+ x

y(x) → 0
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31.23 problem 922
31.23.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 8468

Internal problem ID [4158]
Internal file name [OUTPUT/3651_Sunday_June_05_2022_10_01_22_AM_86899916/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 922.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Clairaut]

(
a2 + x2) y′2 − 2xyy′ + y2 = −b

31.23.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes(
a2 + x2) p2 − 2xyp+ y2 = −b

Solving for y from the above results in

y = px+
√

−p2a2 − b (1A)
y = px−

√
−p2a2 − b (2A)

Each of the above ode’s is a Clairaut ode which is now solved. Solving ode 1A We start
by replacing y′ by p which gives

y = px+
√
−p2a2 − b

= px+
√
−p2a2 − b

8468



Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g =
√

−p2a2 − b

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+
√
−a2c21 − b

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g =
√
−p2a2 − b,

then the above equation becomes

x+ g′(p) = x− a2p√
−p2a2 − b

= 0
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Solving the above for p results in

p1 =
√

− (a2 + x2) b x
(a2 + x2) a

p2 = −
√

− (a2 + x2) b x
(a2 + x2) a

Substituting the above back in (1) results in

y1 =
(a3 + x2a)

√
− a2b

a2+x2 +
√
− (a2 + x2) b x2

(a2 + x2) a

y2 =
(a3 + x2a)

√
− a2b

a2+x2 −
√
− (a2 + x2) b x2

(a2 + x2) a

Solving ode 2A We start by replacing y′ by p which gives

y = px−
√

−p2a2 − b

= px−
√

−p2a2 − b

Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −
√
−p2a2 − b

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx
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Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c2x−
√

−a2c22 − b

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −
√
−p2a2 − b,

then the above equation becomes

x+ g′(p) = x+ a2p√
−p2a2 − b

= 0

Solving the above for p results in

p1 =
√

− (a2 + x2) b x
(a2 + x2) a

p2 = −
√

− (a2 + x2) b x
(a2 + x2) a

Substituting the above back in (1) results in

y1 =
−
√

− a2b
a2+x2 a

3 −
√
− a2b

a2+x2 a x
2 +

√
− (a2 + x2) b x2

(a2 + x2) a

y2 =
−
√

− (a2 + x2) b x2 −
√

− a2b
a2+x2 a(a2 + x2)

(a2 + x2) a
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Summary
The solution(s) found are the following

(1)y = c1x+
√

−a2c21 − b

(2)y =
(a3 + x2a)

√
− a2b

a2+x2 +
√

− (a2 + x2) b x2

(a2 + x2) a

(3)y =
(a3 + x2a)

√
− a2b

a2+x2 −
√
− (a2 + x2) b x2

(a2 + x2) a

(4)y = c2x−
√

−a2c22 − b

(5)y =
−
√

− a2b
a2+x2 a

3 −
√

− a2b
a2+x2 a x

2 +
√
− (a2 + x2) b x2

(a2 + x2) a

(6)y =
−
√

− (a2 + x2) b x2 −
√
− a2b

a2+x2 a(a2 + x2)
(a2 + x2) a
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Verification of solutions

y = c1x+
√
−a2c21 − b

Verified OK.

y =
(a3 + x2a)

√
− a2b

a2+x2 +
√
− (a2 + x2) b x2

(a2 + x2) a

Verified OK.

y =
(a3 + x2a)

√
− a2b

a2+x2 −
√

− (a2 + x2) b x2

(a2 + x2) a

Verified OK.

y = c2x−
√
−a2c22 − b

Verified OK.

y =
−
√

− a2b
a2+x2 a

3 −
√

− a2b
a2+x2 a x

2 +
√
− (a2 + x2) b x2

(a2 + x2) a

Verified OK.

y =
−
√

− (a2 + x2) b x2 −
√

− a2b
a2+x2 a(a2 + x2)

(a2 + x2) a

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 84� �
dsolve((a^2+x^2)*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+b+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√
−b (a2 + x2)

a

y(x) = −
√

−b (a2 + x2)
a

y(x) = c1x−
√

−a2c21 − b

y(x) = c1x+
√
−a2c21 − b

3 Solution by Mathematica
Time used: 0.463 (sec). Leaf size: 100� �
DSolve[(a^2+x^2) (y'[x])^2-2 x y[x] y'[x]+b+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x−
√

−b− a2c12

y(x) →
√

−b− a2c12 + c1x

y(x) → −
√

−b (a2 + x2)
a

y(x) →
√
−b (a2 + x2)

a
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31.24 problem 924
31.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8478

Internal problem ID [4159]
Internal file name [OUTPUT/3652_Sunday_June_05_2022_10_01_56_AM_45904658/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 924.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

4y′2x2 − 4xyy′ + y2 = 8x3

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y + 2
√
2x 3

2

2x (1)

y′ = y − 2
√
2x 3

2

2x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
2x

q(x) =
√
2
√
x
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Hence the ode is

y′ − y

2x =
√
2
√
x

The integrating factor µ is

µ = e
∫
− 1

2xdx

= 1√
x

The ode becomes
d
dx(µy) = (µ)

(√
2
√
x
)

d
dx

(
y√
x

)
=
(

1√
x

)(√
2
√
x
)

d
(

y√
x

)
=

√
2 dx

Integrating gives

y√
x
=
∫ √

2 dx
y√
x
=

√
2x+ c1

Dividing both sides by the integrating factor µ = 1√
x
results in

y =
√
2x 3

2 + c1
√
x

which simplifies to

y =
√
x
(√

2x+ c1
)

Summary
The solution(s) found are the following

(1)y =
√
x
(√

2x+ c1
)

Verification of solutions

y =
√
x
(√

2x+ c1
)

Verified OK.
Solving equation (2)
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
2x

q(x) = −
√
2
√
x

Hence the ode is

y′ − y

2x = −
√
2
√
x

The integrating factor µ is

µ = e
∫
− 1

2xdx

= 1√
x

The ode becomes
d
dx(µy) = (µ)

(
−
√
2
√
x
)

d
dx

(
y√
x

)
=
(

1√
x

)(
−
√
2
√
x
)

d
(

y√
x

)
=
(
−
√
2
)
dx

Integrating gives
y√
x
=
∫

−
√
2 dx

y√
x
= −

√
2x+ c2

Dividing both sides by the integrating factor µ = 1√
x
results in

y = −
√
2x 3

2 +
√
x c2

Summary
The solution(s) found are the following

(1)y = −
√
2x 3

2 +
√
x c2

Verification of solutions

y = −
√
2x 3

2 +
√
x c2

Verified OK.
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31.24.1 Maple step by step solution

Let’s solve
4y′2x2 − 4xyy′ + y2 = 8x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

2x +
√
2
√
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

2x =
√
2
√
x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

2x

)
= µ(x)

√
2
√
x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

2x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

2x

• Solve to find the integrating factor
µ(x) = 1√

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)

√
2
√
xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)

√
2
√
xdx+ c1

• Solve for y

y =
∫
µ(x)

√
2
√
xdx+c1

µ(x)

• Substitute µ(x) = 1√
x

y =
√
x
(∫ √

2dx+ c1
)

• Evaluate the integrals on the rhs
y =

√
x
(√

2x+ c1
)
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �

3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 30� �
dsolve(4*x^2*diff(y(x),x)^2-4*x*y(x)*diff(y(x),x) = 8*x^3-y(x)^2,y(x), singsol=all)� �

y(x) =
(
−
√
2x+ c1

)√
x

y(x) =
(√

2x+ c1
)√

x
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3 Solution by Mathematica
Time used: 0.076 (sec). Leaf size: 42� �
DSolve[4 x^2 (y'[x])^2-4 x y[x] y'[x]==8 x^3 -y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
x
(
−
√
2x+ c1

)
y(x) →

√
x
(√

2x+ c1
)
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31.25 problem 925
31.25.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8481

Internal problem ID [4160]
Internal file name [OUTPUT/3653_Sunday_June_05_2022_10_02_06_AM_30880070/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 925.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

a x2y′
2 − 2axyy′ + y2 = −a(−a+ 1)x2

31.25.1 Solving as dAlembert ode

Let p = y′ the ode becomes

a x2p2 − 2axyp+ y2 = −a(−a+ 1)x2

Solving for y from the above results in

y =
(
ap+

√
a2p2 − a p2 + a2 − a

)
x (1A)

y =
(
ap−

√
a2p2 − a p2 + a2 − a

)
x (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = ap+
√

a (p2 + 1) (a− 1)
g = 0

Hence (2) becomes

p− ap−
√

a (p2 + 1) (a− 1) = x

(
a+ ap(a− 1)√

a (p2 + 1) (a− 1)

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− ap−
√

a (p2 + 1) (a− 1) = 0

Solving for p from the above gives

p =
√
−a

p = −
√
−a

Substituting these in (1A) gives

y = −(−a)
3
2 x+

√
−a3 + 2a2 − a x

y = (−a)
3
2 x+

√
−a3 + 2a2 − a x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− ap(x)−

√
a
(
p (x)2 + 1

)
(a− 1)

x

a+ ap(x)(a−1)√
a
(
p(x)2+1

)
(a−1)

 (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −
√

a (p2 + 1) (a− 1)
ax
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Where f(x) = − 1
ax

and g(p) =
√

a (p2 + 1) (a− 1). Integrating both sides gives

1√
a (p2 + 1) (a− 1)

dp = − 1
ax

dx

∫ 1√
a (p2 + 1) (a− 1)

dp =
∫

− 1
ax

dx

ln
(

(a−1)ap√
(a−1)a +

√
(a− 1) a p2 + (a− 1) a

)
√

(a− 1) a
= − ln (x)

a
+ c1

Raising both side to exponential gives

e
ln
(

(a−1)ap√
(a−1)a

+
√

(a−1)a p2+(a−1)a
)

√
(a−1)a = e−

ln(x)
a

+c1

Which simplifies to(
a2p+

√
a (p2 + 1) (a− 1)

√
(a− 1) a− ap√

(a− 1) a

) 1√
(a−1)a

= c2e−
ln(x)

a

Substituing the above solution for p in (2A) gives

y = x


a

(
e−

2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a − a2 + a

)
e
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a

2
√
(a− 1) a

+

√√√√√√√√a


(
e−

2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a − a2 + a

)2

e
2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a

4 (a− 1) a + 1

 (a− 1)



Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = ap−
√
a (p2 + 1) (a− 1)

g = 0
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Hence (2) becomes

p− ap+
√

a (p2 + 1) (a− 1) = x

(
a− ap(a− 1)√

a (p2 + 1) (a− 1)

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− ap+
√
a (p2 + 1) (a− 1) = 0

Solving for p from the above gives

p =
√
−a

p = −
√
−a

Substituting these in (1A) gives

y = −(−a)
3
2 x−

√
−a3 + 2a2 − a x

y = (−a)
3
2 x−

√
−a3 + 2a2 − a x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− ap(x) +

√
a
(
p (x)2 + 1

)
(a− 1)

x

a− ap(x)(a−1)√
a
(
p(x)2+1

)
(a−1)

 (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

=
√

a (p2 + 1) (a− 1)
ax

Where f(x) = 1
ax

and g(p) =
√
a (p2 + 1) (a− 1). Integrating both sides gives

1√
a (p2 + 1) (a− 1)

dp = 1
ax

dx

∫ 1√
a (p2 + 1) (a− 1)

dp =
∫ 1

ax
dx

ln
(

(a−1)ap√
(a−1)a +

√
(a− 1) a p2 + (a− 1) a

)
√

(a− 1) a
= ln (x)

a
+ c3
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Raising both side to exponential gives

e
ln
(

(a−1)ap√
(a−1)a

+
√

(a−1)a p2+(a−1)a
)

√
(a−1)a = e

ln(x)
a

+c3

Which simplifies to(
a2p+

√
a (p2 + 1) (a− 1)

√
(a− 1) a− ap√

(a− 1) a

) 1√
(a−1)a

= c4e
ln(x)

a

Substituing the above solution for p in (2A) gives

y = x


a

(
e−

2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)
e
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

2
√
(a− 1) a

−

√√√√√√√√a


(
e−

2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)2

e
2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

4 (a− 1) a + 1

 (a− 1)
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Summary
The solution(s) found are the following

(1)y = −(−a)
3
2 x+

√
−a3 + 2a2 − a x

(2)y = (−a)
3
2 x+

√
−a3 + 2a2 − a x

(3)y = x


a

(
e−

2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a − a2 + a

)
e
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a

2
√
(a− 1) a

+

√√√√√√√√a


(
e−

2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a − a2 + a

)2

e
2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a

4 (a− 1) a + 1

 (a− 1)


(4)y = −(−a)

3
2 x−

√
−a3 + 2a2 − a x

(5)y = (−a)
3
2 x−

√
−a3 + 2a2 − a x

(6)y = x


a

(
e−

2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)
e
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

2
√

(a− 1) a

−

√√√√√√√√a


(
e−

2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)2

e
2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

4 (a− 1) a + 1

 (a− 1)
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Verification of solutions

y = −(−a)
3
2 x+

√
−a3 + 2a2 − a x

Verified OK.

y = (−a)
3
2 x+

√
−a3 + 2a2 − a x

Verified OK.

y = x


a

(
e−

2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a − a2 + a

)
e
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a

2
√
(a− 1) a

+

√√√√√√√√a


(
e−

2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a − a2 + a

)2

e
2
√

(a−1)a
(
ln
(

1
c2

)
a−c1a+ln(x)

)
a

4 (a− 1) a + 1

 (a− 1)


Verified OK.

y = −(−a)
3
2 x−

√
−a3 + 2a2 − a x

Verified OK.

y = (−a)
3
2 x−

√
−a3 + 2a2 − a x

Verified OK.

y = x


a

(
e−

2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)
e
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

2
√

(a− 1) a

−

√√√√√√√√a


(
e−

2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)2

e
2
√

(a−1)a
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

4 (a− 1) a + 1

 (a− 1)


Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 106� �
dsolve(a*x^2*diff(y(x),x)^2-2*a*x*y(x)*diff(y(x),x)+a*(1-a)*x^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = x
√
−a

y(x) = −x
√
−a

y(x) = RootOf
(
− ln (x)−

(∫ _Z √(a− 1) (_a2 + a) a
(a− 1) (_a2 + a) d_a

)
+ c1

)
x

y(x) = RootOf
(
− ln (x) +

∫ _Z √(a− 1) (_a2 + a) a
(a− 1) (_a2 + a) d_a+ c1

)
x
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3 Solution by Mathematica
Time used: 0.637 (sec). Leaf size: 241� �
DSolve[a x^2 (y'[x])^2-2 a x y[x] y'[x]+a(1-a)x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
√
ae−c1x1−

√
a−1
a

(
x2
√

a−1
a − e2c1

)
y(x) → 1

2
√
ae−c1x1−

√
a−1
a

(
−x2

√
a−1
a + e2c1

)
y(x) → −1

2
√
ae−c1x1−

√
a−1
a

(
−1 + e2c1x2

√
a−1
a

)
y(x) → 1

2
√
ae−c1x1−

√
a−1
a

(
−1 + e2c1x2

√
a−1
a

)
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31.26 problem 926
31.26.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8490

Internal problem ID [4161]
Internal file name [OUTPUT/3654_Sunday_June_05_2022_10_02_17_AM_70480875/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 926.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

(
−a2 + 1

)
x2y′

2 − 2y′xy + y2 = a2x2

31.26.1 Solving as dAlembert ode

Let p = y′ the ode becomes(
−a2 + 1

)
x2p2 − 2pxy + y2 = a2x2

Solving for y from the above results in

y =
(
p+

√
a2p2 + a2

)
x (1A)

y =
(
p−

√
a2p2 + a2

)
x (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p+
√
a2 (p2 + 1)

g = 0

Hence (2) becomes

−
√

a2 (p2 + 1) = x

(
1 + a2p√

a2 (p2 + 1)

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−
√

a2 (p2 + 1) = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −

√
a2
(
p (x)2 + 1

)
x

1 + a2p(x)√
a2
(
p(x)2+1

)
 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

x(p)
(
1 + a2p√

a2(p2+1)

)
√
a2 (p2 + 1)

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = −
−a2p−

√
a2 (p2 + 1)

a2 (p2 + 1)
q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−a2p−

√
a2 (p2 + 1)

)
x(p)

a2 (p2 + 1) = 0

The integrating factor µ is

µ = e
∫
−

−a2p−
√

a2
(
p2+1

)
a2
(
p2+1

) dp

= e
ln
(

a2p√
a2

+
√

a2p2+a2
)

√
a2

+
ln
(
p2+1

)
2

Which simplifies to

µ =
(
ap csgn (a) +

√
a2 (p2 + 1)

) 1√
a2
√

p2 + 1

Which assuming all positive simplifies to

µ =
(
ap+

√
a2 (p2 + 1)

) 1√
a2
√
p2 + 1

The ode becomes
d
dpµx = 0

d
dp

((
ap+

√
a2 (p2 + 1)

) 1√
a2
√

p2 + 1x
)

= 0

Integrating gives (
ap+

√
a2 (p2 + 1)

) 1√
a2
√

p2 + 1x = c3

Dividing both sides by the integrating factor µ =
(
ap+

√
a2 (p2 + 1)

) 1√
a2
√
p2 + 1

results in

x(p) =
c3
(
ap+

√
a2 (p2 + 1)

)− csgn(a)
a

√
p2 + 1
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Assuming that {a} is positive, the solution becomes

x(p) =
c3a

− 1
a

(√
p2 + 1 + p

)− 1
a

√
p2 + 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −y +
√
−a4x2 + y2a2 + a2x2

(a2 − 1)x

p = −y +
√
−a4x2 + y2a2 + a2x2

(a2 − 1)x

Substituting the above in the solution for x found above gives

x =

c3a
− 1

a


(
a2−1

)
x

√√√√−2y
√

−
(
x2
(
a2−1

)
−y2

)
a2+

(
−x2+y2

)
a2+x2+y2(

a2−1
)2

x2
−y+

√
−(x2(a2−1)−y2)a2

(a2−1)x


− 1

a

√
−2y

√
−(x2(a2−1)−y2)a2+(−x2+y2)a2+x2+y2

(a2−1)2x2

x =

c3a
− 1

a


(
a2−1

)
x

√√√√ 2y
√

−
(
x2
(
a2−1

)
−y2

)
a2+

(
−x2+y2

)
a2+x2+y2(

a2−1
)2

x2
−y−

√
−(x2(a2−1)−y2)a2

(a2−1)x


− 1

a

√
2y
√

−(x2(a2−1)−y2)a2+(−x2+y2)a2+x2+y2

(a2−1)2x2

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p−
√

a2 (p2 + 1)
g = 0
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Hence (2) becomes

√
a2 (p2 + 1) = x

(
1− a2p√

a2 (p2 + 1)

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives√
a2 (p2 + 1) = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =

√
a2
(
p (x)2 + 1

)
x

1− a2p(x)√
a2
(
p(x)2+1

)
 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
1− a2p√

a2(p2+1)

)
√

a2 (p2 + 1)
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
−a2p+

√
a2 (p2 + 1)

a2 (p2 + 1)
q(p) = 0
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Hence the ode is

d

dp
x(p)−

x(p)
(
−a2p+

√
a2 (p2 + 1)

)
a2 (p2 + 1) = 0

The integrating factor µ is

µ = e
∫
−

−a2p+
√

a2
(
p2+1

)
a2
(
p2+1

) dp

= e−
ln
(

a2p√
a2

+
√

a2p2+a2
)

√
a2

+
ln
(
p2+1

)
2

Which simplifies to

µ =
(
ap csgn (a) +

√
a2 (p2 + 1)

)− csgn(a)
a
√

p2 + 1

Which assuming all positive simplifies to

µ =
(
ap+

√
a2 (p2 + 1)

)− 1
a
√
p2 + 1

The ode becomes

d
dpµx = 0

d
dp

((
ap+

√
a2 (p2 + 1)

)− 1
a
√

p2 + 1x
)

= 0

Integrating gives (
ap+

√
a2 (p2 + 1)

)− 1
a
√
p2 + 1x = c6

Dividing both sides by the integrating factor µ =
(
ap+

√
a2 (p2 + 1)

)− 1
a √

p2 + 1
results in

x(p) =
c6
(
ap+

√
a2 (p2 + 1)

) 1
a

√
p2 + 1
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =

(
−ya+

√
−a2x2+y2+x2

)
a

a2−1 + y

x

p =
−
(
ya+

√
−a2x2+y2+x2

)
a

a2−1 + y

x

Substituting the above in the solution for x found above gives

x =

c6


(
a2−1

)
x

√√√√−
a2
((

x2−y2
)
a2+2

√
−a2x2+y2+x2 ay−x2−y2

)
(
a2−1

)2
x2

+a
(
a
√

−a2x2+y2+x2−y
)

(a2−1)x


1
a

√
(−x2+y2)a2−2

√
−a2x2+y2+x2 ay+x2+y2

(a2−1)2x2

x =

c6


(
a2−1

)
x

√√√√a2
(
−a2x2+y2a2+2

√
−a2x2+y2+x2 ay+x2+y2

)
(
a2−1

)2
x2

−
√

−a2x2+y2+x2 a2−ya

(a2−1)x


1
a

√
(−x2+y2)a2+2

√
−a2x2+y2+x2 ay+x2+y2

(a2−1)2x2
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Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix

(3)x =

c3a
− 1

a


(
a2−1

)
x

√√√√−2y
√

−
(
x2
(
a2−1

)
−y2

)
a2+

(
−x2+y2

)
a2+x2+y2(

a2−1
)2

x2
−y+

√
−(x2(a2−1)−y2)a2

(a2−1)x


− 1

a

√
−2y

√
−(x2(a2−1)−y2)a2+(−x2+y2)a2+x2+y2

(a2−1)2x2

(4)x =

c3a
− 1

a


(
a2−1

)
x

√√√√ 2y
√

−
(
x2
(
a2−1

)
−y2

)
a2+

(
−x2+y2

)
a2+x2+y2(

a2−1
)2

x2
−y−

√
−(x2(a2−1)−y2)a2

(a2−1)x


− 1

a

√
2y
√

−(x2(a2−1)−y2)a2+(−x2+y2)a2+x2+y2

(a2−1)2x2

(5)y = −ix
(6)y = ix

(7)x =

c6


(
a2−1

)
x

√√√√−
a2
((

x2−y2
)
a2+2

√
−a2x2+y2+x2 ay−x2−y2

)
(
a2−1

)2
x2

+a
(
a
√

−a2x2+y2+x2−y
)

(a2−1)x


1
a

√
(−x2+y2)a2−2

√
−a2x2+y2+x2 ay+x2+y2

(a2−1)2x2

(8)x =

c6


(
a2−1

)
x

√√√√a2
(
−a2x2+y2a2+2

√
−a2x2+y2+x2 ay+x2+y2

)
(
a2−1

)2
x2

−
√

−a2x2+y2+x2 a2−ya

(a2−1)x


1
a

√
(−x2+y2)a2+2

√
−a2x2+y2+x2 ay+x2+y2

(a2−1)2x2
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Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.

x =

c3a
− 1

a


(
a2−1

)
x

√√√√−2y
√

−
(
x2
(
a2−1

)
−y2

)
a2+

(
−x2+y2

)
a2+x2+y2(

a2−1
)2

x2
−y+

√
−(x2(a2−1)−y2)a2

(a2−1)x


− 1

a

√
−2y

√
−(x2(a2−1)−y2)a2+(−x2+y2)a2+x2+y2

(a2−1)2x2

Warning, solution could not be verified

x =

c3a
− 1

a


(
a2−1

)
x

√√√√ 2y
√

−
(
x2
(
a2−1

)
−y2

)
a2+

(
−x2+y2

)
a2+x2+y2(

a2−1
)2

x2
−y−

√
−(x2(a2−1)−y2)a2

(a2−1)x


− 1

a

√
2y
√

−(x2(a2−1)−y2)a2+(−x2+y2)a2+x2+y2

(a2−1)2x2

Warning, solution could not be verified

y = −ix

Verified OK.
y = ix

Verified OK.

x =

c6


(
a2−1

)
x

√√√√−
a2
((

x2−y2
)
a2+2

√
−a2x2+y2+x2 ay−x2−y2

)
(
a2−1

)2
x2

+a
(
a
√

−a2x2+y2+x2−y
)

(a2−1)x


1
a

√
(−x2+y2)a2−2

√
−a2x2+y2+x2 ay+x2+y2

(a2−1)2x2

Warning, solution could not be verified

x =

c6


(
a2−1

)
x

√√√√a2
(
−a2x2+y2a2+2

√
−a2x2+y2+x2 ay+x2+y2

)
(
a2−1

)2
x2

−
√

−a2x2+y2+x2 a2−ya

(a2−1)x


1
a

√
(−x2+y2)a2+2

√
−a2x2+y2+x2 ay+x2+y2

(a2−1)2x2

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 229� �
dsolve((-a^2+1)*x^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)-a^2*x^2+y(x)^2 = 0,y(x), singsol=all)� �
2a ln (x)− 2

√
−a2 arctan

 a2y(x)
√
−a2

√
−x2a2+x2+y(x)2

x2 x

+ ln
(

x2+y(x)2
x2

)
a− 2c1a+ 2 ln

√
−x2a2+x2+y(x)2

x2 x+y(x)

x


2a

= 0

2a ln (x) + 2
√
−a2 arctan

 a2y(x)
√
−a2

√
−x2a2+x2+y(x)2

x2 x

+ ln
(

x2+y(x)2
x2

)
a− 2c1a− 2 ln

√
−x2a2+x2+y(x)2

x2 x+y(x)

x


2a

= 0
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3 Solution by Mathematica
Time used: 1.04 (sec). Leaf size: 223� �
DSolve[(1-a^2)x^2 (y'[x])^2-2 x y[x] y'[x]-a^2 x^2 + y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


2i arctan

 y(x)

x

√
a2− y(x)2

x2 −1

− 2ia arctan

 ay(x)

x

√
a2− y(x)2

x2 −1

+ a log
(

y(x)2
x2 + 1

)
2a2 − 2 = a log (x− a2x)

1− a2

+ c1, y(x)



Solve


−2i arctan

 y(x)

x

√
a2− y(x)2

x2 −1

+ 2ia arctan

 ay(x)

x

√
a2− y(x)2

x2 −1

+ a log
(

y(x)2
x2 + 1

)
2a2 − 2 = a log (x− a2x)

1− a2

+ c1, y(x)
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31.27 problem 927
31.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8502

Internal problem ID [4162]
Internal file name [OUTPUT/3655_Sunday_June_05_2022_10_02_35_AM_34218301/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 927.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

x3y′
2 = a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
ax

x2 (1)

y′ = −
√
ax

x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

ax

x2 dx

= −2
√
ax

x
+ c1

Summary
The solution(s) found are the following

(1)y = −2
√
ax

x
+ c1
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Verification of solutions

y = −2
√
ax

x
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
√
ax

x2 dx

= 2
√
ax

x
+ c2

Summary
The solution(s) found are the following

(1)y = 2
√
ax

x
+ c2

Verification of solutions

y = 2
√
ax

x
+ c2

Verified OK.

31.27.1 Maple step by step solution

Let’s solve
x3y′2 = a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
x3y′2dx =

∫
adx+ c1

• Cannot compute integral∫
x3y′2dx = ax+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 37� �
dsolve(x^3*diff(y(x),x)^2 = a,y(x), singsol=all)� �

y(x) = c1x− 2
√
ax

x

y(x) = c1x+ 2
√
ax

x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 39� �
DSolve[x^3 (y'[x])^2==a,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
√
a√
x

+ c1

y(x) → 2
√
a√
x

+ c1
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31.28 problem 928
Internal problem ID [4163]
Internal file name [OUTPUT/3656_Sunday_June_05_2022_10_02_42_AM_3689659/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 928.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x3y′
2 + xy′ − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −1 +
√
1 + 4yx

2x2 (1)

y′ = −1 +
√
1 + 4yx
2x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −1 +
√
4xy + 1

2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−1 +

√
4xy + 1

)
(b3 − a2)

2x2 −
(
−1 +

√
4xy + 1

)2
a3

4x4

−
(
−−1 +

√
4xy + 1

x3 + y

x2√4xy + 1

)
(xa2+ ya3+a1)−

xb2 + yb3 + b1
x
√
4xy + 1

= 0

Putting the above in normal form gives

−−4b2x4√4xy + 1 + 4x4b2 − 4x3ya2 − 4x3yb3 − 12x2y2a3 + (4xy + 1)
3
2 a3 + 2

√
4xy + 1x2a2 + 2

√
4xy + 1x2b3 + 4

√
4xy + 1xya3 + 4x3b1 − 12x2ya1 + 4

√
4xy + 1xa1 − 2x2a2 − 2x2b3 − 12xya3 + a3

√
4xy + 1− 4xa1 − 2a3

4x4√4xy + 1
= 0

Setting the numerator to zero gives

(6E)4b2x4√4xy + 1− 4x4b2 + 4x3ya2 + 4x3yb3 + 12x2y2a3 − (4xy + 1)
3
2 a3

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√

4xy + 1xya3 − 4x3b1 +12x2ya1

−4
√

4xy + 1xa1+2x2a2+2x2b3+12xya3−a3
√
4xy + 1+4xa1+2a3 = 0

Simplifying the above gives

(6E)
4b2x4√4xy + 1 + 2(4xy + 1)x2a2 + 2(4xy + 1)x2b3 + 4(4xy + 1)xya3
− 4x4b2 − 4x3ya2 − 4x3yb3 − 4x2y2a3 − (4xy + 1)

3
2 a3 + 4(4xy + 1)xa1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√
4xy + 1xya3 − 4x3b1

− 4x2ya1 + 2(4xy + 1) a3 − 4
√
4xy + 1xa1 − a3

√
4xy + 1 = 0
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Since the PDE has radicals, simplifying gives

4b2x4√4xy + 1− 4x4b2 + 4x3ya2 + 4x3yb3 + 12x2y2a3 − 4x3b1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 + 12x2ya1 − 8
√

4xy + 1xya3 + 2x2a2

+ 2x2b3 − 4
√

4xy + 1xa1 + 12xya3 + 4xa1 − 2a3
√
4xy + 1 + 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4xy + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4xy + 1 = v3

}
The above PDE (6E) now becomes

(7E)4b2v41v3 + 4v31v2a2 + 12v21v22a3 − 4v41b2 + 4v31v2b3 + 12v21v2a1 − 2v3v21a2
− 8v3v1v2a3 − 4v31b1 − 2v3v21b3 − 4v3v1a1 + 2v21a2 + 12v1v2a3 + 2v21b3 + 4v1a1
− 2a3v3 + 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v41v3 − 4v41b2 + (4a2 + 4b3) v31v2 − 4v31b1 + 12v21v22a3
+ 12v21v2a1 + (−2a2 − 2b3) v21v3 + (2a2 + 2b3) v21 − 8v3v1v2a3
+ 12v1v2a3 − 4v3v1a1 + 4v1a1 − 2a3v3 + 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
4a1 = 0
12a1 = 0
−8a3 = 0
−2a3 = 0
2a3 = 0
12a3 = 0
−4b1 = 0
−4b2 = 0
4b2 = 0

−2a2 − 2b3 = 0
2a2 + 2b3 = 0
4a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−1 +

√
4xy + 1

2x2

)
(−x)

= 2xy +
√
4xy + 1− 1
2x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2xy+
√
4xy+1−1
2x

dy

Which results in

S = 3 ln (xy − 2)
4 + ln (y)

4 +
3 ln

(√
4xy + 1 + 3

)
4 −

3 ln
(√

4xy + 1− 3
)

4 −
ln
(√

4xy + 1 + 1
)

4 +
ln
(
−1 +

√
4xy + 1

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1 +
√
4xy + 1

2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −−3xy + 2
√
4xy + 1

x (4xy − 8)

Sy = −
2
(
−2xy +

√
4xy + 1 + 1

)
y (4xy − 8)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3 ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (yx− 2)
4 + ln (y)

4 +
3 ln

(√
1 + 4yx+ 3

)
4 −

3 ln
(√

1 + 4yx− 3
)

4 −
ln
(
1 +

√
1 + 4yx

)
4 +

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Which simplifies to

3 ln (yx− 2)
4 + ln (y)

4 +
3 ln

(√
1 + 4yx+ 3

)
4 −

3 ln
(√

1 + 4yx− 3
)

4 −
ln
(
1 +

√
1 + 4yx

)
4 +

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Summary
The solution(s) found are the following

(1)
3 ln (yx− 2)

4 + ln (y)
4 +

3 ln
(√

1 + 4yx+ 3
)

4 −
3 ln

(√
1 + 4yx− 3

)
4

−
ln
(
1 +

√
1 + 4yx

)
4 +

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Verification of solutions

3 ln (yx− 2)
4 + ln (y)

4 +
3 ln

(√
1 + 4yx+ 3

)
4 −

3 ln
(√

1 + 4yx− 3
)

4

−
ln
(
1 +

√
1 + 4yx

)
4 +

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −
√
4xy + 1 + 1

2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(√

4xy + 1 + 1
)
(b3 − a2)

2x2 −
(√

4xy + 1 + 1
)2

a3

4x4

−
(
− y

x2√4xy + 1
+

√
4xy + 1 + 1

x3

)
(xa2 + ya3 + a1) +

xb2 + yb3 + b1
x
√
4xy + 1

= 0

Putting the above in normal form gives

−−4b2x4√4xy + 1− 4x4b2 + 4x3ya2 + 4x3yb3 + 12x2y2a3 + (4xy + 1)
3
2 a3 + 2

√
4xy + 1x2a2 + 2

√
4xy + 1x2b3 + 4

√
4xy + 1xya3 − 4x3b1 + 12x2ya1 + 4

√
4xy + 1xa1 + 2x2a2 + 2x2b3 + 12xya3 + a3

√
4xy + 1 + 4xa1 + 2a3

4x4√4xy + 1
= 0

Setting the numerator to zero gives

(6E)4b2x4√4xy + 1 + 4x4b2 − 4x3ya2 − 4x3yb3 − 12x2y2a3 − (4xy + 1)
3
2 a3

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√

4xy + 1xya3 +4x3b1 − 12x2ya1

−4
√

4xy + 1xa1−2x2a2−2x2b3−12xya3−a3
√

4xy + 1−4xa1−2a3 = 0
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Simplifying the above gives

(6E)
4b2x4√4xy + 1− 2(4xy + 1)x2a2 − 2(4xy + 1)x2b3 − 4(4xy + 1)xya3
+ 4x4b2 + 4x3ya2 + 4x3yb3 + 4x2y2a3 − (4xy + 1)

3
2 a3 − 4(4xy + 1)xa1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√
4xy + 1xya3 + 4x3b1

+ 4x2ya1 − 2(4xy + 1) a3 − 4
√

4xy + 1xa1 − a3
√

4xy + 1 = 0

Since the PDE has radicals, simplifying gives

4b2x4√4xy + 1 + 4x4b2 − 4x3ya2 − 4x3yb3 − 12x2y2a3 + 4x3b1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 12x2ya1 − 8
√

4xy + 1xya3 − 2x2a2

− 2x2b3 − 4
√

4xy + 1xa1 − 12xya3 − 4xa1 − 2a3
√
4xy + 1− 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
4xy + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4xy + 1 = v3

}
The above PDE (6E) now becomes

(7E)4b2v41v3 − 4v31v2a2 − 12v21v22a3 + 4v41b2 − 4v31v2b3 − 12v21v2a1 − 2v3v21a2
− 8v3v1v2a3 + 4v31b1 − 2v3v21b3 − 4v3v1a1 − 2v21a2 − 12v1v2a3 − 2v21b3 − 4v1a1
− 2a3v3 − 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v41v3 + 4v41b2 + (−4a2 − 4b3) v31v2 + 4v31b1 − 12v21v22a3
− 12v21v2a1 + (−2a2 − 2b3) v21v3 + (−2a2 − 2b3) v21
− 8v3v1v2a3 − 12v1v2a3 − 4v3v1a1 − 4v1a1 − 2a3v3 − 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−12a1 = 0
−4a1 = 0
−12a3 = 0
−8a3 = 0
−2a3 = 0
4b1 = 0
4b2 = 0

−4a2 − 4b3 = 0
−2a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
√
4xy + 1 + 1

2x2

)
(−x)

= 2xy −
√
4xy + 1− 1
2x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2xy−
√
4xy+1−1
2x

dy

Which results in

S = 3 ln (xy − 2)
4 + ln (y)

4 −
3 ln

(√
4xy + 1 + 3

)
4 +

3 ln
(√

4xy + 1− 3
)

4 +
ln
(√

4xy + 1 + 1
)

4 −
ln
(
−1 +

√
4xy + 1

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
4xy + 1 + 1

2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3xy + 2
√
4xy + 1

x (4xy − 8)

Sy =
4xy + 2

√
4xy + 1− 2

y (4xy − 8)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3 ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (yx− 2)
4 + ln (y)

4 −
3 ln

(√
1 + 4yx+ 3

)
4 +

3 ln
(√

1 + 4yx− 3
)

4 +
ln
(
1 +

√
1 + 4yx

)
4 −

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Which simplifies to

3 ln (yx− 2)
4 + ln (y)

4 −
3 ln

(√
1 + 4yx+ 3

)
4 +

3 ln
(√

1 + 4yx− 3
)

4 +
ln
(
1 +

√
1 + 4yx

)
4 −

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Summary
The solution(s) found are the following

(1)
3 ln (yx− 2)

4 + ln (y)
4 −

3 ln
(√

1 + 4yx+ 3
)

4 +
3 ln

(√
1 + 4yx− 3

)
4

+
ln
(
1 +

√
1 + 4yx

)
4 −

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Verification of solutions

3 ln (yx− 2)
4 + ln (y)

4 −
3 ln

(√
1 + 4yx+ 3

)
4 +

3 ln
(√

1 + 4yx− 3
)

4

+
ln
(
1 +

√
1 + 4yx

)
4 −

ln
(
−1 +

√
1 + 4yx

)
4 = 3 ln (x)

4 + c1

Verified OK.
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7 Solution by Maple� �
dsolve(x^3*diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 105.529 (sec). Leaf size: 7052� �
DSolve[x^3 (y'[x])^2+x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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31.29 problem 929
Internal problem ID [4164]
Internal file name [OUTPUT/3657_Sunday_June_05_2022_10_05_16_AM_85809036/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 929.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

x3y′
2 + y′x2y = −a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −yx+
√
y2x2 − 4ax
2x2 (1)

y′ = −yx+
√
y2x2 − 4ax
2x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −xy +
√
y2x2 − 4ax
2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−xy +

√
y2x2 − 4ax

)
(b3 − a2)

2x2 −
(
−xy +

√
y2x2 − 4ax

)2
a3

4x4

−

−−xy +
√
y2x2 − 4ax
x3 +

−y + 2x y2−4a
2
√

y2x2−4ax

2x2

 (xa2 + ya3 + a1)

−

(
−x+ x2y√

y2x2−4ax

)
(xb2 + yb3 + b1)

2x2 = 0

Putting the above in normal form gives

−2x5yb2 − 4x3y3a3 − 6b2x4√y2x2 − 4ax+ 3
√
y2x2 − 4ax x2y2a3 + 2x4yb1 − 2x3y2a1 − 2

√
y2x2 − 4ax x3b1 + 2

√
y2x2 − 4ax x2ya1 + 4a x3a2 + 8a x3b3 + 20a x2ya3 + (y2x2 − 4ax)

3
2 a3 + 12a x2a1

4x4
√
y2x2 − 4ax

= 0

Setting the numerator to zero gives

(6E)−2x5yb2 + 4x3y3a3 + 6b2x4
√

y2x2 − 4ax− 3
√
y2x2 − 4ax x2y2a3

− 2x4yb1 + 2x3y2a1 + 2
√
y2x2 − 4ax x3b1 − 2

√
y2x2 − 4ax x2ya1

− 4a x3a2 − 8a x3b3 − 20a x2ya3 −
(
y2x2 − 4ax

) 3
2 a3 − 12a x2a1 = 0

Simplifying the above gives

(6E)

−2x5yb2 − 2x4y2a2 − 2x4y2b3 − 2x3y3a3 + 6b2x4
√
y2x2 − 4ax

− 3
√

y2x2 − 4ax x2y2a3 − 2x4yb1 − 2x3y2a1 + 2
(
y2x2 − 4ax

)
x2a2

+ 2
(
y2x2 − 4ax

)
x2b3 + 6

(
y2x2 − 4ax

)
xya3 + 2

√
y2x2 − 4ax x3b1

− 2
√

y2x2 − 4ax x2ya1 + 4a x3a2 + 4a x2ya3

−
(
y2x2 − 4ax

) 3
2 a3 + 4

(
y2x2 − 4ax

)
xa1 + 4a x2a1 = 0
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Since the PDE has radicals, simplifying gives

2x
(
−x4yb2 + 2x2y3a3 + 3

√
−x (−x y2 + 4a)x3b2 − 2

√
−x (−x y2 + 4a)x y2a3

− x3yb1 + x2y2a1 +
√
−x (−x y2 + 4a)x2b1 −

√
−x (−x y2 + 4a)xya1

− 2a x2a2 − 4a x2b3 − 10axya3 + 2
√

−x (−x y2 + 4a) aa3 − 6axa1
)
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−x (−x y2 + 4a)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−x (−x y2 + 4a) = v3

}
The above PDE (6E) now becomes

(7E)2v1
(
2v21v32a3 − v41v2b2 + v21v

2
2a1 − 2v3v1v22a3 − v31v2b1 + 3v3v31b2 − 2av21a2

− 10av1v2a3 − 4av21b3 − v3v1v2a1 + v3v
2
1b1 − 6av1a1 + 2v3aa3

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2b2v2v51−2b1v2v41+6b2v3v41+4a3v32v31+2a1v22v31+2b1v3v31+(−4aa2−8ab3) v31
− 4a3v22v3v21 − 20aa3v2v21 − 2a1v2v3v21 − 12aa1v21 + 4v3aa3v1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0

−4a3 = 0
4a3 = 0

−2b1 = 0
2b1 = 0

−2b2 = 0
6b2 = 0

−12aa1 = 0
−20aa3 = 0

4aa3 = 0
−4aa2 − 8ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−xy +

√
y2x2 − 4ax
2x2

)
(−2x)

=
√
y2x2 − 4ax

x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

y2x2−4ax
x

dy

Which results in

S =
x ln

(
x2y√
x2 +

√
y2x2 − 4ax

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy +
√
y2x2 − 4ax
2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = iy
√
x
√
−x y2 + 4a+ x y2 − 2a

√
x
√
−x y2 + 4a

(
ixy −

√
x
√
−x y2 + 4a

)
Sy =

(
−i

√
x y +

√
−x y2 + 4a

)
x

√
−x y2 + 4a

(
xy + i

√
x
√
−x y2 + 4a

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

3
2
√
−x y2 + 4a y2 +

√
x
√
−x y2 + 4a

√
y2x2 − 4ax y − iy3x2 − 2a

√
x
√
−x y2 + 4a− i

√
y2x2 − 4ax x y2 + 4iaxy + 2ia

√
y2x2 − 4ax

√
x
√
−x y2 + 4a

(
xy + i

√
x
√
−x y2 + 4a

)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−iπ

2 + ln
(
iyx−

√
x
√
−y2x+ 4a

)
= c1

Which simplifies to

−iπ

2 + ln
(
iyx−

√
x
√
−y2x+ 4a

)
= c1

Which gives

y = −i(4ax+ e2c1) e iπ
2 −c1

2x

Summary
The solution(s) found are the following

(1)y = −i(4ax+ e2c1) e iπ
2 −c1

2x
Verification of solutions

y = −i(4ax+ e2c1) e iπ
2 −c1

2x

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −xy +
√
y2x2 − 4ax
2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
xy +

√
y2x2 − 4ax

)
(b3 − a2)

2x2 −
(
xy +

√
y2x2 − 4ax

)2
a3

4x4

−

−
y + 2x y2−4a

2
√

y2x2−4ax

2x2 + xy +
√
y2x2 − 4ax
x3

 (xa2 + ya3 + a1)

+

(
x+ x2y√

y2x2−4ax

)
(xb2 + yb3 + b1)

2x2 = 0

Putting the above in normal form gives

−−2x5yb2 + 4x3y3a3 − 6b2x4√y2x2 − 4ax+ 3
√
y2x2 − 4ax x2y2a3 − 2x4yb1 + 2x3y2a1 − 2

√
y2x2 − 4ax x3b1 + 2

√
y2x2 − 4ax x2ya1 − 4a x3a2 − 8a x3b3 − 20a x2ya3 + (y2x2 − 4ax)

3
2 a3 − 12a x2a1

4x4
√
y2x2 − 4ax

= 0
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Setting the numerator to zero gives

(6E)2x5yb2 − 4x3y3a3 + 6b2x4
√
y2x2 − 4ax− 3

√
y2x2 − 4ax x2y2a3

+ 2x4yb1 − 2x3y2a1 + 2
√

y2x2 − 4ax x3b1 − 2
√
y2x2 − 4ax x2ya1

+ 4a x3a2 + 8a x3b3 + 20a x2ya3 −
(
y2x2 − 4ax

) 3
2 a3 + 12a x2a1 = 0

Simplifying the above gives

(6E)

2x5yb2 + 2x4y2a2 + 2x4y2b3 + 2x3y3a3 + 6b2x4
√

y2x2 − 4ax
− 3
√

y2x2 − 4ax x2y2a3 + 2x4yb1 + 2x3y2a1 − 2
(
y2x2 − 4ax

)
x2a2

− 2
(
y2x2 − 4ax

)
x2b3 − 6

(
y2x2 − 4ax

)
xya3 + 2

√
y2x2 − 4ax x3b1

− 2
√

y2x2 − 4ax x2ya1 − 4a x3a2 − 4a x2ya3

−
(
y2x2 − 4ax

) 3
2 a3 − 4

(
y2x2 − 4ax

)
xa1 − 4a x2a1 = 0

Since the PDE has radicals, simplifying gives

2x
(
x4yb2 − 2x2y3a3 + 3

√
−x (−x y2 + 4a)x3b2 − 2

√
−x (−x y2 + 4a)x y2a3

+ x3yb1 − x2y2a1 +
√

−x (−x y2 + 4a)x2b1 −
√
−x (−x y2 + 4a)xya1

+ 2a x2a2 + 4a x2b3 + 10axya3 + 2
√

−x (−x y2 + 4a) aa3 + 6axa1
)
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−x (−x y2 + 4a)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−x (−x y2 + 4a) = v3

}
The above PDE (6E) now becomes

(7E)2v1
(
−2v21v32a3 + v41v2b2 − v21v

2
2a1 − 2v3v1v22a3 + v31v2b1 + 3v3v31b2 + 2av21a2

+ 10av1v2a3 + 4av21b3 − v3v1v2a1 + v3v
2
1b1 + 6av1a1 + 2v3aa3

)
= 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2b2v2v51 +2b1v2v41 +6b2v3v41 − 4a3v32v31 − 2a1v22v31 +2b1v3v31 + (4aa2 +8ab3) v31
− 4a3v22v3v21 + 20aa3v2v21 − 2a1v2v3v21 + 12aa1v21 + 4v3aa3v1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−4a3 = 0
2b1 = 0
2b2 = 0
6b2 = 0

12aa1 = 0
4aa3 = 0
20aa3 = 0

4aa2 + 8ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−xy +

√
y2x2 − 4ax
2x2

)
(−2x)

= −
√
y2x2 − 4ax

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√

y2x2−4ax
x

dy

Which results in

S = −
x ln

(
x2y√
x2 +

√
y2x2 − 4ax

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy +
√
y2x2 − 4ax
2x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = iy
√
x
√
−x y2 + 4a+ x y2 − 2a(

−ixy +
√
x
√
−x y2 + 4a

)√
x
√
−x y2 + 4a

Sy =
(
i
√
x y −

√
−x y2 + 4a

)
x

√
−x y2 + 4a

(
xy + i

√
x
√
−x y2 + 4a

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x

3
2
√
−x y2 + 4a y2 +

√
x
√
−x y2 + 4a

√
y2x2 − 4ax y + iy3x2 + 2a

√
x
√
−x y2 + 4a− i

√
y2x2 − 4ax x y2 − 4iaxy + 2ia

√
y2x2 − 4ax

√
x
√
−x y2 + 4a

(
xy + i

√
x
√
−x y2 + 4a

)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

iπ

2 − ln
(
iyx−

√
x
√

−y2x+ 4a
)
= − ln (x) + c1

Which simplifies to

iπ

2 − ln
(
iyx−

√
x
√

−y2x+ 4a
)
= − ln (x) + c1

Which gives

y = i(−4a e2c1 − x) e iπ
2 −c1

2x
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Summary
The solution(s) found are the following

(1)y = i(−4a e2c1 − x) e iπ
2 −c1

2x
Verification of solutions

y = i(−4a e2c1 − x) e iπ
2 −c1

2x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.36 (sec). Leaf size: 66� �
dsolve(x^3*diff(y(x),x)^2+x^2*y(x)*diff(y(x),x)+a = 0,y(x), singsol=all)� �

y(x) = −2
√
ax

x

y(x) = 2
√
ax

x

y(x) = x c21 + 4a
2c1x

y(x) = 4ax+ c21
2c1x

3 Solution by Mathematica
Time used: 0.851 (sec). Leaf size: 57� �
DSolve[x^3 (y'[x])^2+x^2 y[x] y'[x]+a==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e−
c1
2 (x+ 4aec1)

2x

y(x) → e−
c1
2 (x+ 4aec1)

2x
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31.30 problem 931
Internal problem ID [4165]
Internal file name [OUTPUT/3658_Sunday_June_05_2022_10_05_26_AM_85528302/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 931.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

x
(
−x2 + 1

)
y′

2 − 2
(
−x2 + 1

)
yy′ + x

(
1− y2

)
= 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x2y − y +
√
−y2x2 + x4 + y2 − x2

x (x2 − 1) (1)

y′ = x2y − y −
√
−y2x2 + x4 + y2 − x2

x (x2 − 1) (2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)+(diff(y(x), x))/(x*(x^2-1)), y(x)` *** Sublevel 4 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful

<- 1st order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.407 (sec). Leaf size: 33� �
dsolve(x*(-x^2+1)*diff(y(x),x)^2-2*(-x^2+1)*y(x)*diff(y(x),x)+x*(1-y(x)^2) = 0,y(x), singsol=all)� �

y(x) = −x
y(x) = x

y(x) =
√

−c21 + 1 +
√
x2 − 1 c1

3 Solution by Mathematica
Time used: 0.752 (sec). Leaf size: 75� �
DSolve[x*(1-x^2)*(y'[x])^2-2*(1-x^2)*y[x]*y'[x]+x*(1-y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x cos
(
2 tan−1

(√
x− 1
x+ 1

)
+ ic1

)

y(x) → −x cos
(
2 tan−1

(√
x− 1
x+ 1

)
− ic1

)
y(x) → −x
y(x) → x
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31.31 problem 932
31.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8535

Internal problem ID [4166]
Internal file name [OUTPUT/3659_Sunday_June_05_2022_10_05_40_AM_25685542/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 932.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

4x(−x+ a) (−x+ b) y′2 =
(
ab− 2(a+ b)x+ 2x2)2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = ab− 2ax− 2bx+ 2x2

2
√
abx− x2a− b x2 + x3

(1)

y′ = − ab− 2ax− 2bx+ 2x2

2
√
abx− x2a− b x2 + x3

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

ab− 2ax− 2bx+ 2x2

2
√
abx− x2a− b x2 + x3

dx

= −
a2b
√

−x−a
a

√
x−b
−b+a

√
x
a
EllipticF

(√
−x−a

a
,
√

a
−b+a

)
3
√
abx− x2a− b x2 + x3

−
(−2a− 2b) a

√
−x−a

a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ 2
√
abx− x2a− b x2 + x3

3 −
2
(2a

3 + 2b
3

)
a
√

−x−a
a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ c1
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Summary
The solution(s) found are the following

(1)y = −
a2b
√

−x−a
a

√
x−b
−b+a

√
x
a
EllipticF

(√
−x−a

a
,
√

a
−b+a

)
3
√
abx− x2a− b x2 + x3

−
(−2a− 2b) a

√
−x−a

a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ 2
√
abx− x2a− b x2 + x3

3

−
2
(2a

3 + 2b
3

)
a
√

−x−a
a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ c1

Verification of solutions

y = −
a2b
√

−x−a
a

√
x−b
−b+a

√
x
a
EllipticF

(√
−x−a

a
,
√

a
−b+a

)
3
√
abx− x2a− b x2 + x3

−
(−2a− 2b) a

√
−x−a

a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ 2
√
abx− x2a− b x2 + x3

3

−
2
(2a

3 + 2b
3

)
a
√

−x−a
a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− ab− 2ax− 2bx+ 2x2

2
√
abx− x2a− b x2 + x3

dx

=
a2b
√
−x−a

a

√
x−b
−b+a

√
x
a
EllipticF

(√
−x−a

a
,
√

a
−b+a

)
3
√
abx− x2a− b x2 + x3

+
(−2a− 2b) a

√
−x−a

a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

− 2
√
abx− x2a− b x2 + x3

3 +
2
(2a

3 + 2b
3

)
a
√

−x−a
a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ c2
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Summary
The solution(s) found are the following

(1)y =
a2b
√
−x−a

a

√
x−b
−b+a

√
x
a
EllipticF

(√
−x−a

a
,
√

a
−b+a

)
3
√
abx− x2a− b x2 + x3

+
(−2a− 2b) a

√
−x−a

a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

− 2
√
abx− x2a− b x2 + x3

3

+
2
(2a

3 + 2b
3

)
a
√

−x−a
a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ c2

Verification of solutions

y =
a2b
√
−x−a

a

√
x−b
−b+a

√
x
a
EllipticF

(√
−x−a

a
,
√

a
−b+a

)
3
√
abx− x2a− b x2 + x3

+
(−2a− 2b) a

√
−x−a

a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

− 2
√
abx− x2a− b x2 + x3

3

+
2
(2a

3 + 2b
3

)
a
√

−x−a
a

√
x−b
−b+a

√
x
a

(
(−b+ a) EllipticE

(√
−x−a

a
,
√

a
−b+a

)
+ bEllipticF

(√
−x−a

a
,
√

a
−b+a

))
√
abx− x2a− b x2 + x3

+ c2

Verified OK.

31.31.1 Maple step by step solution

Let’s solve
4x(−x+ a) (−x+ b) y′2 = (ab− 2(a+ b)x+ 2x2)2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
4x(−x+ a) (−x+ b) y′2dx =

∫
(ab− 2(a+ b)x+ 2x2)2 dx+ c1

• Cannot compute integral
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∫
4x(−x+ a) (−x+ b) y′2dx = 4x5

5 + (−8a−8b)x4

4 +
(
4ab+(−2a−2b)2

)
x3

3 + ab(−2a− 2b)x2 + a2b2x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 85� �
dsolve(4*x*(a-x)*(b-x)*diff(y(x),x)^2 = (a*b-2*x*(a+b)+2*x^2)^2,y(x), singsol=all)� �

y(x) = −

(∫ 2x2+(−2a−2b)x+ab√
x(−x+b)(a−x) dx

)
2 + c1

y(x) =

(∫ 2x2+(−2a−2b)x+ab√
x(−x+b)(a−x) dx

)
2 + c1

3 Solution by Mathematica
Time used: 14.208 (sec). Leaf size: 375� �
DSolve[4 x(a-x)(b-x) (y'[x])^2==(a b-2 x(a+b)+2 x^2)^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → c1

−
(a− x)

(
2(a2 − b2)

√
x
a

√
x−b
a−b

E
(
iarcsinh

(√
x
a
− 1
)
| a
a−b

)
+ b(a+ 2b)

√
x
a

√
x−b
a−b

EllipticF
(
iarcsinh

(√
x
a
− 1
)
, a
a−b

)
+ 2ix

√
x
a
− 1(b− x)

)
3
√

x
a
− 1
√

x(a− x)(x− b)
y(x)

→
(a− x)

(
2(a2 − b2)

√
x
a

√
x−b
a−b

E
(
iarcsinh

(√
x
a
− 1
)
| a
a−b

)
+ b(a+ 2b)

√
x
a

√
x−b
a−b

EllipticF
(
iarcsinh

(√
x
a
− 1
)
, a
a−b

)
+ 2ix

√
x
a
− 1(b− x)

)
3
√

x
a
− 1
√

x(a− x)(x− b)
+ c1
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31.32 problem 933
Internal problem ID [4167]
Internal file name [OUTPUT/3660_Sunday_June_05_2022_10_05_47_AM_63866434/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 933.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x4y′
2 − xy′ − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 +
√
1 + 4x2y

2x3 (1)

y′ = −−1 +
√
1 + 4x2y

2x3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 1 +
√
4x2y + 1
2x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

8537



The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
1 +

√
4x2y + 1

)
(b3 − a2)

2x3 −
(
1 +

√
4x2y + 1

)2
a3

4x6

−

(
−
3
(
1 +

√
4x2y + 1

)
2x4 + 2y

x2
√
4x2y + 1

)
(xa2 + ya3 + a1)

− xb2 + yb3 + b1

x
√
4x2y + 1

= 0

Putting the above in normal form gives

−−4b2x6√4x2y + 1 + 4x6b2 − 8x5ya2 − 4x5yb3 − 16x4y2a3 + 4x5b1 − 16x4ya1 − 4
√
4x2y + 1x3a2 − 2

√
4x2y + 1x3b3 − 6

√
4x2y + 1x2ya3 + (4x2y + 1)

3
2 a3 − 6

√
4x2y + 1x2a1 − 4x3a2 − 2x3b3 + 2x2ya3 − 6x2a1 + a3

√
4x2y + 1 + 2a3

4x6
√
4x2y + 1

= 0

Setting the numerator to zero gives

(6E)4b2x6
√

4x2y + 1− 4x6b2 + 8x5ya2 + 4x5yb3 + 16x4y2a3 − 4x5b1 + 16x4ya1

+4
√

4x2y + 1x3a2+2
√

4x2y + 1x3b3+6
√
4x2y + 1x2ya3−

(
4x2y+1

) 3
2 a3

+6
√

4x2y + 1x2a1 +4x3a2 +2x3b3 − 2x2ya3 +6x2a1 − a3
√
4x2y + 1− 2a3

= 0

Simplifying the above gives

(6E)
4b2x6

√
4x2y + 1− 4x6b2 − 8x5ya2 − 4x5yb3 − 8x4y2a3 +4

(
4x2y+1

)
x3a2

+2
(
4x2y+1

)
x3b3+6

(
4x2y+1

)
x2ya3−4x5b1−8x4ya1+6

(
4x2y+1

)
x2a1

+ 4
√

4x2y + 1x3a2 + 2
√

4x2y + 1x3b3 + 6
√

4x2y + 1x2ya3

−
(
4x2y+1

) 3
2 a3+6

√
4x2y + 1x2a1− 2

(
4x2y+1

)
a3− a3

√
4x2y + 1 = 0
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Since the PDE has radicals, simplifying gives

4b2x6
√

4x2y + 1− 4x6b2 + 8x5ya2 + 4x5yb3 + 16x4y2a3 − 4x5b1 + 16x4ya1

+ 4
√

4x2y + 1x3a2 + 2
√

4x2y + 1x3b3 + 2
√
4x2y + 1x2ya3 + 4x3a2

+ 2x3b3 + 6
√

4x2y + 1x2a1 − 2x2ya3 + 6x2a1 − 2a3
√

4x2y + 1− 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x2y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x2y + 1 = v3

}
The above PDE (6E) now becomes

(7E)4b2v61v3 + 8v51v2a2 + 16v41v22a3 − 4v61b2 + 4v51v2b3 + 16v41v2a1
− 4v51b1 + 4v3v31a2 + 2v3v21v2a3 + 2v3v31b3 + 6v3v21a1
+ 4v31a2 − 2v21v2a3 + 2v31b3 + 6v21a1 − 2a3v3 − 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v61v3 − 4v61b2 + (8a2 + 4b3) v51v2 − 4v51b1 + 16v41v22a3
+ 16v41v2a1 + (4a2 + 2b3) v31v3 + (4a2 + 2b3) v31 + 2v3v21v2a3
− 2v21v2a3 + 6v3v21a1 + 6v21a1 − 2a3v3 − 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
16a1 = 0
−2a3 = 0
2a3 = 0
16a3 = 0
−4b1 = 0
−4b2 = 0
4b2 = 0

4a2 + 2b3 = 0
8a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
1 +

√
4x2y + 1
2x3

)
(x)

= −4x2y −
√
4x2y + 1− 1
2x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x2y−
√

4x2y+1−1
2x2

dy

Which results in

S = − ln (y)
2 − arctanh

(√
4x2y + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1 +
√
4x2y + 1
2x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x
√
4x2y + 1

Sy =
−1 + 1√

4x2y+1

2y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
2 − arctanh

(√
1 + 4x2y

)
= c1

Which simplifies to

− ln (y)
2 − arctanh

(√
1 + 4x2y

)
= c1

Summary
The solution(s) found are the following

(1)− ln (y)
2 − arctanh

(√
1 + 4x2y

)
= c1

Verification of solutions

− ln (y)
2 − arctanh

(√
1 + 4x2y

)
= c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −−1 +
√
4x2y + 1

2x3

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(
−1 +

√
4x2y + 1

)
(b3 − a2)

2x3 −
(
−1 +

√
4x2y + 1

)2
a3

4x6

−

(
− 2y
x2
√
4x2y + 1

+
−3

2 +
3
√

4x2y+1
2

x4

)
(xa2+ya3+a1)+

xb2 + yb3 + b1

x
√
4x2y + 1

= 0

Putting the above in normal form gives

−−4b2x6√4x2y + 1− 4x6b2 + 8x5ya2 + 4x5yb3 + 16x4y2a3 − 4x5b1 + 16x4ya1 − 4
√
4x2y + 1x3a2 − 2

√
4x2y + 1x3b3 − 6

√
4x2y + 1x2ya3 + (4x2y + 1)

3
2 a3 − 6

√
4x2y + 1x2a1 + 4x3a2 + 2x3b3 − 2x2ya3 + 6x2a1 + a3

√
4x2y + 1− 2a3

4x6
√
4x2y + 1

= 0

Setting the numerator to zero gives

(6E)4b2x6
√

4x2y + 1 + 4x6b2 − 8x5ya2 − 4x5yb3 − 16x4y2a3 + 4x5b1 − 16x4ya1

+4
√

4x2y + 1x3a2+2
√

4x2y + 1x3b3+6
√
4x2y + 1x2ya3−

(
4x2y+1

) 3
2 a3

+6
√

4x2y + 1x2a1 − 4x3a2 − 2x3b3 +2x2ya3 − 6x2a1 − a3
√
4x2y + 1+2a3

= 0

Simplifying the above gives

(6E)
4b2x6

√
4x2y + 1+ 4x6b2 + 8x5ya2 + 4x5yb3 + 8x4y2a3 − 4

(
4x2y+ 1

)
x3a2

−2
(
4x2y+1

)
x3b3−6

(
4x2y+1

)
x2ya3+4x5b1+8x4ya1−6

(
4x2y+1

)
x2a1

+ 4
√

4x2y + 1x3a2 + 2
√

4x2y + 1x3b3 + 6
√

4x2y + 1x2ya3

−
(
4x2y+1

) 3
2 a3+6

√
4x2y + 1x2a1+2

(
4x2y+1

)
a3− a3

√
4x2y + 1 = 0
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Since the PDE has radicals, simplifying gives

4b2x6
√

4x2y + 1 + 4x6b2 − 8x5ya2 − 4x5yb3 − 16x4y2a3 + 4x5b1 − 16x4ya1

+ 4
√

4x2y + 1x3a2 + 2
√

4x2y + 1x3b3 + 2
√
4x2y + 1x2ya3 − 4x3a2

− 2x3b3 + 6
√

4x2y + 1x2a1 + 2x2ya3 − 6x2a1 − 2a3
√

4x2y + 1 + 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x2y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x2y + 1 = v3

}
The above PDE (6E) now becomes

(7E)4b2v61v3 − 8v51v2a2 − 16v41v22a3 + 4v61b2 − 4v51v2b3 − 16v41v2a1
+ 4v51b1 + 4v3v31a2 + 2v3v21v2a3 + 2v3v31b3 + 6v3v21a1
− 4v31a2 + 2v21v2a3 − 2v31b3 − 6v21a1 − 2a3v3 + 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v61v3 + 4v61b2 + (−8a2 − 4b3) v51v2 + 4v51b1 − 16v41v22a3
− 16v41v2a1 + (4a2 + 2b3) v31v3 + (−4a2 − 2b3) v31
+ 2v3v21v2a3 + 2v21v2a3 + 6v3v21a1 − 6v21a1 − 2a3v3 + 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−16a1 = 0
−6a1 = 0
6a1 = 0

−16a3 = 0
−2a3 = 0
2a3 = 0
4b1 = 0
4b2 = 0

−8a2 − 4b3 = 0
−4a2 − 2b3 = 0
4a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
−−1 +

√
4x2y + 1

2x3

)
(x)

= −4x2y +
√
4x2y + 1− 1
2x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x2y+
√

4x2y+1−1
2x2

dy

Which results in

S = − ln (y)
2 + arctanh

(√
4x2y + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−1 +
√
4x2y + 1

2x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x
√
4x2y + 1

Sy =
− 1√

4x2y+1
− 1

2y

8546



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
2 + arctanh

(√
1 + 4x2y

)
= c1

Which simplifies to

− ln (y)
2 + arctanh

(√
1 + 4x2y

)
= c1

Summary
The solution(s) found are the following

(1)− ln (y)
2 + arctanh

(√
1 + 4x2y

)
= c1

Verification of solutions

− ln (y)
2 + arctanh

(√
1 + 4x2y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 81� �
dsolve(x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = − 1
4x2

y(x) = −c1i− x

x c21

y(x) = c1i− x

x c21

y(x) = c1i− x

x c21

y(x) = −c1i− x

x c21

3 Solution by Mathematica
Time used: 0.517 (sec). Leaf size: 123� �
DSolve[x^4 (y'[x])^2-x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−x
√

4x2y(x) + 1arctanh
(√

4x2y(x) + 1
)

√
4x4y(x) + x2

− 1
2 log(y(x)) = c1, y(x)


Solve

x√4x2y(x) + 1arctanh
(√

4x2y(x) + 1
)

√
4x4y(x) + x2

− 1
2 log(y(x)) = c1, y(x)


y(x) → 0
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31.33 problem 934
Internal problem ID [4168]
Internal file name [OUTPUT/3661_Sunday_June_05_2022_10_05_56_AM_23130497/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 31
Problem number: 934.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x4y′
2 + 2x3yy′ = 4

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −yx+
√
y2x2 + 4

x2 (1)

y′ = −yx−
√
y2x2 + 4

x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −xy −
√
y2x2 + 4
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
xy −

√
y2x2 + 4

)
(b3 − a2)

x2 −
(
xy −

√
y2x2 + 4

)2
a3

x4

−

−
y − x y2√

y2x2+4

x2 + 2xy − 2
√
y2x2 + 4

x3

 (xa2 + ya3 + a1)

+

(
x− x2y√

y2x2+4

)
(xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−x5yb2 − 3x3y3a3 − 2b2x4√y2x2 + 4 + 2
√
y2x2 + 4x2y2a3 + x4yb1 − x3y2a1 −

√
y2x2 + 4x3b1 +

√
y2x2 + 4x2ya1 + (y2x2 + 4)

3
2 a3 − 4x2a2 − 4x2b3 − 16xya3 − 8xa1

x4
√
y2x2 + 4

= 0

Setting the numerator to zero gives

(6E)−x5yb2 + 3x3y3a3 + 2b2x4
√

y2x2 + 4− 2
√

y2x2 + 4x2y2a3

− x4yb1 + x3y2a1 +
√

y2x2 + 4x3b1 −
√

y2x2 + 4x2ya1

−
(
y2x2 + 4

) 3
2 a3 + 4x2a2 + 4x2b3 + 16xya3 + 8xa1 = 0

Simplifying the above gives

(6E)−x5yb2−x4y2a2−x4y2b3−x3y3a3+2b2x4
√
y2x2 + 4−2

√
y2x2 + 4x2y2a3

− x4yb1 − x3y2a1 +
(
y2x2 + 4

)
x2a2 +

(
y2x2 + 4

)
x2b3 + 4

(
y2x2 + 4

)
xya3

+
√
y2x2 + 4x3b1−

√
y2x2 + 4x2ya1−

(
y2x2+4

) 3
2 a3+2

(
y2x2+4

)
xa1 = 0
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Since the PDE has radicals, simplifying gives

−x5yb2 + 3x3y3a3 + 2b2x4
√
y2x2 + 4− x4yb1 + x3y2a1

− 3
√

y2x2 + 4x2y2a3 +
√

y2x2 + 4x3b1 −
√

y2x2 + 4x2ya1

+ 4x2a2 + 4x2b3 + 16xya3 + 8xa1 − 4
√

y2x2 + 4 a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y2x2 + 4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y2x2 + 4 = v3

}
The above PDE (6E) now becomes

(7E)3v31v32a3 − v51v2b2 + v31v
2
2a1 − 3v3v21v22a3 − v41v2b1 + 2b2v41v3 − v3v

2
1v2a1

+ v3v
3
1b1 + 4v21a2 + 16v1v2a3 + 4v21b3 + 8v1a1 − 4v3a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v51v2b2 − v41v2b1 + 2b2v41v3 + 3v31v32a3 + v31v
2
2a1 + v3v

3
1b1 − 3v3v21v22a3

− v3v
2
1v2a1 + (4a2 + 4b3) v21 + 16v1v2a3 + 8v1a1 − 4v3a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
8a1 = 0

−4a3 = 0
−3a3 = 0
3a3 = 0
16a3 = 0
−b1 = 0
−b2 = 0
2b2 = 0

4a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−xy −

√
y2x2 + 4
x2

)
(−x)

=
√
y2x2 + 4

x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

y2x2+4
x

dy

Which results in

S =
x ln

(
x2y√
x2 +

√
y2x2 + 4

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy −
√
y2x2 + 4
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y√
y2x2 + 4

Sy =
x√

y2x2 + 4
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which simplifies to

ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which gives

y = (e2c1x2 − 4) e−c1

2x2

Summary
The solution(s) found are the following

(1)y = (e2c1x2 − 4) e−c1

2x2

Verification of solutions

y = (e2c1x2 − 4) e−c1

2x2

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −xy +
√
y2x2 + 4
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
xy +

√
y2x2 + 4

)
(b3 − a2)

x2 −
(
xy +

√
y2x2 + 4

)2
a3

x4

−

−
y + x y2√

y2x2+4

x2 + 2xy + 2
√
y2x2 + 4

x3

 (xa2 + ya3 + a1)

+

(
x+ x2y√

y2x2+4

)
(xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−−x5yb2 + 3x3y3a3 − 2b2x4√y2x2 + 4 + 2
√
y2x2 + 4x2y2a3 − x4yb1 + x3y2a1 −

√
y2x2 + 4x3b1 +

√
y2x2 + 4x2ya1 + (y2x2 + 4)

3
2 a3 + 4x2a2 + 4x2b3 + 16xya3 + 8xa1

x4
√
y2x2 + 4

= 0

Setting the numerator to zero gives

(6E)x5yb2 − 3x3y3a3 + 2b2x4
√

y2x2 + 4− 2
√

y2x2 + 4x2y2a3

+ x4yb1 − x3y2a1 +
√
y2x2 + 4x3b1 −

√
y2x2 + 4x2ya1

−
(
y2x2 + 4

) 3
2 a3 − 4x2a2 − 4x2b3 − 16xya3 − 8xa1 = 0
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Simplifying the above gives

(6E)x5yb2 + x4y2a2 + x4y2b3 + x3y3a3 + 2b2x4
√

y2x2 + 4− 2
√

y2x2 + 4x2y2a3
+ x4yb1 + x3y2a1 −

(
y2x2 + 4

)
x2a2 −

(
y2x2 + 4

)
x2b3 − 4

(
y2x2 + 4

)
xya3

+
√

y2x2 + 4x3b1−
√
y2x2 + 4x2ya1−

(
y2x2+4

) 3
2 a3−2

(
y2x2+4

)
xa1 = 0

Since the PDE has radicals, simplifying gives

x5yb2 − 3x3y3a3 + 2b2x4
√

y2x2 + 4 + x4yb1 − x3y2a1

− 3
√

y2x2 + 4x2y2a3 +
√

y2x2 + 4x3b1 −
√

y2x2 + 4x2ya1

− 4x2a2 − 4x2b3 − 16xya3 − 8xa1 − 4
√
y2x2 + 4 a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y2x2 + 4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y2x2 + 4 = v3

}
The above PDE (6E) now becomes

(7E)−3v31v32a3 + v51v2b2 − v31v
2
2a1 − 3v3v21v22a3 + v41v2b1 + 2b2v41v3

− v3v
2
1v2a1 + v3v

3
1b1 − 4v21a2 − 16v1v2a3 − 4v21b3 − 8v1a1 − 4v3a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v51v2b2 + v41v2b1 + 2b2v41v3 − 3v31v32a3 − v31v
2
2a1 + v3v

3
1b1 − 3v3v21v22a3

− v3v
2
1v2a1 + (−4a2 − 4b3) v21 − 16v1v2a3 − 8v1a1 − 4v3a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−8a1 = 0
−a1 = 0

−16a3 = 0
−4a3 = 0
−3a3 = 0
2b2 = 0

−4a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−xy +

√
y2x2 + 4
x2

)
(−x)

= −
√
y2x2 + 4

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√

y2x2+4
x

dy

Which results in

S = −
x ln

(
x2y√
x2 +

√
y2x2 + 4

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy +
√
y2x2 + 4
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y√
y2x2 + 4

Sy = − x√
y2x2 + 4
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which simplifies to

− ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which gives

y = −(4 e2c1x2 − 1) e−c1

2x2

Summary
The solution(s) found are the following

(1)y = −(4 e2c1x2 − 1) e−c1

2x2

Verification of solutions

y = −(4 e2c1x2 − 1) e−c1

2x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 49� �
dsolve(x^4*diff(y(x),x)^2+2*x^3*y(x)*diff(y(x),x)-4 = 0,y(x), singsol=all)� �

y(x) = −2i
x

y(x) = 2i
x

y(x) = 2 sinh (− ln (x) + c1)
x

y(x) = −2 sinh (− ln (x) + c1)
x

3 Solution by Mathematica
Time used: 0.679 (sec). Leaf size: 71� �
DSolve[x^4 (y'[x])^2+2 x^3 y[x] y'[x]-4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4ec1
x2 − e−c1

4
y(x) → e−c1

4 − 4ec1
x2

y(x) → −2i
x

y(x) → 2i
x
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32 Various 32
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32.1 problem 935
Internal problem ID [4169]
Internal file name [OUTPUT/3662_Sunday_June_05_2022_10_06_05_AM_64859653/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 935.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

x4y′
2 + xy2y′ − y3 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −
(
y −

√
y2 + 4x2y

)
y

2x3 (1)

y′ = −
(
y +

√
y2 + 4x2y

)
y

2x3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −
(
y −

√
4x2y + y2

)
y

2x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
y −

√
4x2y + y2

)
y(b3 − a2)

2x3 −
(
y −

√
4x2y + y2

)2
y2a3

4x6

−

(
2y2√

4x2y + y2 x2 +
3
(
y −

√
4x2y + y2

)
y

2x4

)
(xa2 + ya3 + a1)

−

−

(
1− 4x2+2y

2
√

4x2y+y2

)
y

2x3 − y −
√
4x2y + y2

2x3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2x6√4x2y + y2 + 12x6yb2 − 8x5y2a2 + 4x5y2b3 − 16x4y3a3 − 4
√
4x2y + y2 x4yb2 + 4

√
4x2y + y2 x3y2a2 − 2

√
4x2y + y2 x3y2b3 + 6

√
4x2y + y2 x2y3a3 + 12x5yb1 − 16x4y2a1 + 4x4y2b2 − 4x3y3a2 + 2x3y3b3 − 14x2y4a3 + (4x2y + y2)

3
2 y2a3 − 4

√
4x2y + y2 x3yb1 + 6

√
4x2y + y2 x2y2a1 +

√
4x2y + y2 y4a3 + 4x3y2b1 − 6x2y3a1 − 2y5a3

4x6
√
4x2y + y2

= 0

Setting the numerator to zero gives

(6E)

4b2x6
√

4x2y + y2 − 12x6yb2 + 8x5y2a2 − 4x5y2b3

+ 16x4y3a3 + 4
√

4x2y + y2 x4yb2 − 4
√
4x2y + y2 x3y2a2

+ 2
√

4x2y + y2 x3y2b3 − 6
√

4x2y + y2 x2y3a3 − 12x5yb1
+ 16x4y2a1 − 4x4y2b2 + 4x3y3a2 − 2x3y3b3 + 14x2y4a3

−
(
4x2y + y2

) 3
2 y2a3 + 4

√
4x2y + y2 x3yb1 − 6

√
4x2y + y2 x2y2a1

−
√

4x2y + y2 y4a3 − 4x3y2b1 + 6x2y3a1 + 2y5a3 = 0
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Simplifying the above gives

(6E)

4b2x6
√

y (4x2 + y)− 4x6yb2 − 8x5y2a2 − 4x5y2b3 − 8x4y3a3
− 2
(
4x2y + y2

)
x4b2 + 4

(
4x2y + y2

)
x3ya2 + 6

(
4x2y + y2

)
x2y2a3

+4
√

y (4x2 + y)x4yb2− 4
√

y (4x2 + y)x3y2a2+2
√

y (4x2 + y)x3y2b3

− 6
√

y (4x2 + y)x2y3a3 − 4x5yb1 − 8x4y2a1 − 2x4y2b2

− 2x3y3b3 −
(
y
(
4x2 + y

)) 3
2y2a3 − 2

(
4x2y + y2

)
x3b1

+ 6
(
4x2y + y2

)
x2ya1 + 2

(
4x2y + y2

)
y3a3 + 4

√
y (4x2 + y)x3yb1

− 6
√

y (4x2 + y)x2y2a1 −
√

y (4x2 + y) y4a3 − 2x3y2b1 = 0

Since the PDE has radicals, simplifying gives

4b2x6
√

y (4x2 + y)− 12x6yb2 + 8x5y2a2 − 4x5y2b3 + 16x4y3a3

− 12x5yb1 + 4
√

y (4x2 + y)x4yb2 + 16x4y2a1 − 4x4y2b2

− 4
√

y (4x2 + y)x3y2a2 + 2
√

y (4x2 + y)x3y2b3 + 4x3y3a2 − 2x3y3b3

− 10
√

y (4x2 + y)x2y3a3 + 14x2y4a3 + 4
√
y (4x2 + y)x3yb1 − 4x3y2b1

− 6
√

y (4x2 + y)x2y2a1 + 6x2y3a1 − 2
√
y (4x2 + y) y4a3 + 2y5a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
y (4x2 + y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y (4x2 + y) = v3

}
The above PDE (6E) now becomes

(7E)
8v51v22a2 + 16v41v32a3 − 12v61v2b2 + 4b2v61v3 − 4v51v22b3 + 16v41v22a1
+ 4v31v32a2 − 4v3v31v22a2 + 14v21v42a3 − 10v3v21v32a3 − 12v51v2b1
− 4v41v22b2 + 4v3v41v2b2 − 2v31v32b3 + 2v3v31v22b3 + 6v21v32a1
− 6v3v21v22a1 + 2v52a3 − 2v3v42a3 − 4v31v22b1 + 4v3v31v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)
−12v61v2b2 + 4b2v61v3 + (8a2 − 4b3) v51v22 − 12v51v2b1 + 16v41v32a3
+ (16a1 − 4b2) v41v22 + 4v3v41v2b2 + (4a2 − 2b3) v31v32
+ (−4a2 + 2b3) v31v22v3 − 4v31v22b1 + 4v3v31v2b1 + 14v21v42a3
− 10v3v21v32a3 + 6v21v32a1 − 6v3v21v22a1 + 2v52a3 − 2v3v42a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6a1 = 0

−10a3 = 0
−2a3 = 0
2a3 = 0
14a3 = 0
16a3 = 0

−12b1 = 0
−4b1 = 0
4b1 = 0

−12b2 = 0
4b2 = 0

16a1 − 4b2 = 0
−4a2 + 2b3 = 0
4a2 − 2b3 = 0
8a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 2y
x

= 2y
x

This is easily solved to give

y = c1x
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x2

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

8568



Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
y −

√
4x2y + y2

)
y

2x3

Evaluating all the partial derivatives gives

Rx = −2y
x3

Ry =
1
x2

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 2x4

y
(
−4x2 +

√
y (4x2 + y)− y

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R
(
−
√
R + 4

√
R +R + 4

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 −

√
(R + 4)R ln

(
R + 2 +

√
R2 + 4R

)
2
√
R
√
R + 4

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = −
ln
(

y
x2

)
2 −

√(
y

x2+4
)
y

x2 ln
(

y
x2 + 2 +

√
y2

x4 + 4y
x2

)
2
√

y
x2

√
y
x2 + 4

+ c1
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Which simplifies to

ln (y)
2 +

ln
(
2x2 + y +√

y
√
4x2 + y

)
2 − ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)ln (y)
2 +

ln
(
2x2 + y +√

y
√
4x2 + y

)
2 − ln (x)− c1 = 0

Verification of solutions

ln (y)
2 +

ln
(
2x2 + y +√

y
√
4x2 + y

)
2 − ln (x)− c1 = 0

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
y +

√
4x2y + y2

)
y

2x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
y +

√
4x2y + y2

)
y(b3 − a2)

2x3 −
(
y +

√
4x2y + y2

)2
y2a3

4x6

−

(
− 2y2√

4x2y + y2 x2 +
3
(
y +

√
4x2y + y2

)
y

2x4

)
(xa2 + ya3 + a1)

−

−

(
1 + 4x2+2y

2
√

4x2y+y2

)
y

2x3 − y +
√
4x2y + y2

2x3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2x6√4x2y + y2 − 12x6yb2 + 8x5y2a2 − 4x5y2b3 + 16x4y3a3 − 4
√
4x2y + y2 x4yb2 + 4

√
4x2y + y2 x3y2a2 − 2

√
4x2y + y2 x3y2b3 + 6

√
4x2y + y2 x2y3a3 − 12x5yb1 + 16x4y2a1 − 4x4y2b2 + 4x3y3a2 − 2x3y3b3 + 14x2y4a3 + (4x2y + y2)

3
2 y2a3 − 4

√
4x2y + y2 x3yb1 + 6

√
4x2y + y2 x2y2a1 +

√
4x2y + y2 y4a3 − 4x3y2b1 + 6x2y3a1 + 2y5a3

4x6
√
4x2y + y2

= 0

Setting the numerator to zero gives

(6E)

4b2x6
√

4x2y + y2 + 12x6yb2 − 8x5y2a2 + 4x5y2b3

− 16x4y3a3 + 4
√

4x2y + y2 x4yb2 − 4
√

4x2y + y2 x3y2a2

+ 2
√

4x2y + y2 x3y2b3 − 6
√

4x2y + y2 x2y3a3 + 12x5yb1
− 16x4y2a1 + 4x4y2b2 − 4x3y3a2 + 2x3y3b3 − 14x2y4a3

−
(
4x2y + y2

) 3
2 y2a3 + 4

√
4x2y + y2 x3yb1 − 6

√
4x2y + y2 x2y2a1

−
√

4x2y + y2 y4a3 + 4x3y2b1 − 6x2y3a1 − 2y5a3 = 0

Simplifying the above gives

(6E)

4b2x6
√

y (4x2 + y) + 4x6yb2 + 8x5y2a2 + 4x5y2b3 + 8x4y3a3
+ 2
(
4x2y + y2

)
x4b2 − 4

(
4x2y + y2

)
x3ya2 − 6

(
4x2y + y2

)
x2y2a3

+4
√

y (4x2 + y)x4yb2− 4
√

y (4x2 + y)x3y2a2+2
√

y (4x2 + y)x3y2b3

− 6
√

y (4x2 + y)x2y3a3 + 4x5yb1 + 8x4y2a1 + 2x4y2b2

+ 2x3y3b3 −
(
y
(
4x2 + y

)) 3
2y2a3 + 2

(
4x2y + y2

)
x3b1

− 6
(
4x2y + y2

)
x2ya1 − 2

(
4x2y + y2

)
y3a3 + 4

√
y (4x2 + y)x3yb1

− 6
√

y (4x2 + y)x2y2a1 −
√

y (4x2 + y) y4a3 + 2x3y2b1 = 0
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Since the PDE has radicals, simplifying gives

4b2x6
√

y (4x2 + y) + 12x6yb2 − 8x5y2a2 + 4x5y2b3 − 16x4y3a3

+ 12x5yb1 + 4
√

y (4x2 + y)x4yb2 − 16x4y2a1 + 4x4y2b2

− 4
√

y (4x2 + y)x3y2a2 + 2
√

y (4x2 + y)x3y2b3 − 4x3y3a2 + 2x3y3b3

− 10
√

y (4x2 + y)x2y3a3 − 14x2y4a3 + 4
√
y (4x2 + y)x3yb1 + 4x3y2b1

− 6
√

y (4x2 + y)x2y2a1 − 6x2y3a1 − 2
√
y (4x2 + y) y4a3 − 2y5a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y (4x2 + y)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y (4x2 + y) = v3

}
The above PDE (6E) now becomes

(7E)
−8v51v22a2 − 16v41v32a3 + 12v61v2b2 + 4b2v61v3 + 4v51v22b3 − 16v41v22a1
− 4v31v32a2 − 4v3v31v22a2 − 14v21v42a3 − 10v3v21v32a3 + 12v51v2b1
+ 4v41v22b2 + 4v3v41v2b2 + 2v31v32b3 + 2v3v31v22b3 − 6v21v32a1
− 6v3v21v22a1 − 2v52a3 − 2v3v42a3 + 4v31v22b1 + 4v3v31v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)
12v61v2b2 + 4b2v61v3 + (−8a2 + 4b3) v51v22 + 12v51v2b1 − 16v41v32a3
+ (−16a1 + 4b2) v41v22 + 4v3v41v2b2 + (−4a2 + 2b3) v31v32
+ (−4a2 + 2b3) v31v22v3 + 4v31v22b1 + 4v3v31v2b1 − 14v21v42a3
− 10v3v21v32a3 − 6v21v32a1 − 6v3v21v22a1 − 2v52a3 − 2v3v42a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
−16a3 = 0
−14a3 = 0
−10a3 = 0
−2a3 = 0
4b1 = 0
12b1 = 0
4b2 = 0
12b2 = 0

−16a1 + 4b2 = 0
−8a2 + 4b3 = 0
−4a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−
(
y +

√
4x2y + y2

)
y

2x3

)
(x)

= 4x2y + y
√
4x2y + y2 + y2

2x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2y+y
√

4x2y+y2+y2

2x2

dy

Which results in

S = ln (y)
2 −

ln
(
2x2 + y +

√
4x2y + y2

)
4 −

√
4x2y + y2

8x2 −
ln
(
2x2 + y +

√
−4x2 (4x2 + y) + (4x2 + y)2

)
4 +

√
−4x2 (4x2 + y) + (4x2 + y)2

8x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
y +

√
4x2y + y2

)
y

2x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
2x
(√

y +
√
4x2 + y

)
√
4x2 + y

(
2x2 + y +√

y
√
4x2 + y

)
Sy =

x2(√y
√
4x2 + y + y

)
y

3
2
√
4x2 + y

(
2x2 + y +√

y
√
4x2 + y

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

4x2y + 4√y
√
4x2 + y x2 +

√
y (4x2 + y)√y

√
4x2 + y + y

3
2
√
4x2 + y + y

√
y (4x2 + y) + y2

√
y
√
4x2 + y

(
4x3 + 2

√
4x2 + y

√
y x+ 2xy

)
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

e−6S(R)

(((
e2S(R) − 1

2

)
RootOf

((
2 e2S(R) − 1

)
_Z4 − 4 e4S(R) + 4_Z2e2S(R))2 + e2S(R) − 2 e4S(R)

)√
(e2S(R) − 1)RootOf

(
(2 e2S(R) − 1)_Z4 − 4 e4S(R) + 4_Z2e2S(R)

)2 + e4S(R) +
3
((

e2S(R)− 2 e4S(R)
3 − 2

3

)
RootOf

((
2 e2S(R)−1

)_Z4
−4 e4S(R)+4_Z2

e2S(R)
)2

+ 4 e2S(R)
3 −2 e4S(R)

)√
2 e2S(R)−1

2

)((
e2S(R) − 1

2

)
RootOf

((
2 e2S(R) − 1

)
_Z4 − 4 e4S(R) + 4_Z2e2S(R))2 + e2S(R) + 3 e4S(R) − 2 e6S(R)

)
2
√
2 e2S(R) − 1R (−2 e4S(R) + 5 e2S(R) − 2)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

Expression too large to display (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

Expression too large to display

Which simplifies to

ln (x) + 4

∫ ln(y)
2 −

ln
(
2x2+y+√

y

√
4x2+y

)
2

− (e2_a − 2)
√
2 e2_a − 1 e2_a(

(2 e2_a − 1)RootOf
(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 6 e2_a − 4 e4_a

)√
(e2_a − 1)RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + e4_a + 5

((
e2_a − 2 e4_a

5 − 2
5

)
RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 12 e2_a

5 − 6 e4_a
5

)√
2 e2_a − 1

d_a

+ c1 = 0

This results in

ln (x) + 4

∫ ln(y)
2 −

ln
(
2x2+y+√

y

√
4x2+y

)
2

− (e2_a − 2)
√
2 e2_a − 1 e2_a(

(2 e2_a − 1)RootOf
(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 6 e2_a − 4 e4_a

)√
(e2_a − 1)RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + e4_a + 5

((
e2_a − 2 e4_a

5 − 2
5

)
RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 12 e2_a

5 − 6 e4_a
5

)√
2 e2_a − 1

d_a

+ c1 = 0

Summary
The solution(s) found are the following

(1)ln (x) + 4

∫ ln(y)
2 −

ln
(
2x2+y+√

y

√
4x2+y

)
2

− (e2_a − 2)
√
2 e2_a − 1 e2_a(

(2 e2_a − 1)RootOf
(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 6 e2_a − 4 e4_a

)√
(e2_a − 1)RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + e4_a + 5

((
e2_a − 2 e4_a

5 − 2
5

)
RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 12 e2_a

5 − 6 e4_a
5

)√
2 e2_a − 1

d_a


+ c1 = 0
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Verification of solutions

ln (x) + 4

∫ ln(y)
2 −

ln
(
2x2+y+√

y

√
4x2+y

)
2

− (e2_a − 2)
√
2 e2_a − 1 e2_a(

(2 e2_a − 1)RootOf
(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 6 e2_a − 4 e4_a

)√
(e2_a − 1)RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + e4_a + 5

((
e2_a − 2 e4_a

5 − 2
5

)
RootOf

(
(2 e2_a − 1)_Z4 − 4 e4_a + 4 e2_a_Z2)2 + 12 e2_a

5 − 6 e4_a
5

)√
2 e2_a − 1

d_a


+ c1 = 0

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 129� �
dsolve(x^4*diff(y(x),x)^2+x*y(x)^2*diff(y(x),x)-y(x)^3 = 0,y(x), singsol=all)� �

y(x) = −4x2

y(x) = 0

y(x) =
(√

2 c1 − 2x
)
c21x

2c21 − 4x2

y(x) = −
(√

2 c1 + 2x
)
c21x

2c21 − 4x2

y(x) = −
2
(
−c1x+

√
2
)
x

c1 (c21x2 − 2)

y(x) =
2
(
c1x+

√
2
)
x

c1 (c21x2 − 2)

3 Solution by Mathematica
Time used: 0.844 (sec). Leaf size: 79� �
DSolve[x^4 (y'[x])^2+x y[x]^2 y'[x]-y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x(cosh(2c1) + sinh(2c1))
x+ i cosh(c1) + i sinh(c1)

y(x) → x(cosh(2c1) + sinh(2c1))
−x+ i cosh(c1) + i sinh(c1)

y(x) → 0
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32.2 problem 936
32.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8580

Internal problem ID [4170]
Internal file name [OUTPUT/3663_Sunday_June_05_2022_10_06_15_AM_72728635/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 936.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

x2(a2 − x2) y′2 = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − 1√
−a2 + x2 x

(1)

y′ = 1√
−a2 + x2 x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

− 1√
−a2 + x2 x

dx

=
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

+ c1

Summary
The solution(s) found are the following

(1)y =
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

+ c1
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Verification of solutions

y =
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫ 1√

−a2 + x2 x
dx

= −
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

+ c2

Summary
The solution(s) found are the following

(1)y = −
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

+ c2

Verification of solutions

y = −
ln
(

−2a2+2
√
−a2

√
−a2+x2

x

)
√
−a2

+ c2

Verified OK.

32.2.1 Maple step by step solution

Let’s solve
x2(a2 − x2) y′2 = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
x2(a2 − x2) y′2dx =

∫
(−1) dx+ c1

• Cannot compute integral∫
x2(a2 − x2) y′2dx = −x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 111� �
dsolve(x^2*(a^2-x^2)*diff(y(x),x)^2+1 = 0,y(x), singsol=all)� �

y(x) =
c1
√
−a2 − ln (2)− ln

(√
−a2

√
−a2+x2−a2

x

)
√
−a2

y(x) =
c1
√
−a2 + ln (2) + ln

(√
−a2

√
−a2+x2−a2

x

)
√
−a2

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 120� �
DSolve[x^2(a^2-x^2) (y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
x
√
x2 − a2 arctan

(√
x2−a2

a

)
a
√
x4 − a2x2

+ c1

y(x) →
x
√
x2 − a2 arctan

(√
x2−a2

a

)
a
√
x4 − a2x2

+ c1
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32.3 problem 937
32.3.1 Solving as first order nonlinear p but separable ode . . . . . . . 8582

Internal problem ID [4171]
Internal file name [OUTPUT/3664_Sunday_June_05_2022_10_06_21_AM_89506219/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 937.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

3x4y′
2 − yx− y = 0

32.3.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = x+1
3x4 , g = y. Hence the ode is

(y′)2 = (x+ 1) y
3x4

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

x+ 1
3x4 > 0

y > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1
√
y
dy =

√
3
√

x+1
x4

3

 dx

− 1
√
y
dy =

√
3
√

x+1
x4

3

 dx

Integrating now gives the solutions.

∫ 1
√
y
dy =

∫ √
3
√

x+1
x4

3 dx+ c1

∫
− 1
√
y
dy =

∫ √
3
√

x+1
x4

3 dx+ c1

Integrating gives

2√y =
∫ √

3
√

x+1
x4

3 dx+ c1

−2√y =
∫ √

3
√

x+1
x4

3 dx+ c1

Therefore

y =

√
3
(∫ √ 1

x3 + 1
x4dx

)
c1

6 + c21
4 +

(∫ √ 1
x3 + 1

x4dx
)2

12

y =

√
3
(∫ √ 1

x3 + 1
x4dx

)
c1

6 + c21
4 +

(∫ √ 1
x3 + 1

x4dx
)2

12
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Summary
The solution(s) found are the following

(1)y =

√
3
(∫ √ 1

x3 + 1
x4dx

)
c1

6 + c21
4 +

(∫ √ 1
x3 + 1

x4dx
)2

12

(2)y =

√
3
(∫ √ 1

x3 + 1
x4dx

)
c1

6 + c21
4 +

(∫ √ 1
x3 + 1

x4dx
)2

12
Verification of solutions

y =

√
3
(∫ √ 1

x3 + 1
x4dx

)
c1

6 + c21
4 +

(∫ √ 1
x3 + 1

x4dx
)2

12

Verified OK. {0 < y, 0 < 1/3*(x+1)/x^4}

y =

√
3
(∫ √ 1

x3 + 1
x4dx

)
c1

6 + c21
4 +

(∫ √ 1
x3 + 1

x4dx
)2

12

Verified OK. {0 < y, 0 < 1/3*(x+1)/x^4}
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 201� �
dsolve(3*x^4*diff(y(x),x)^2-x*y(x)-y(x) = 0,y(x), singsol=all)� �

y(x) = 0

y(x) =
(√

3 arctanh
(√

x+ 1
)
x
√
x+ 1 + 3c1x

√
x+ 1 +

√
3x+

√
3
)2

36 (x+ 1)x2

y(x) =
(√

3 arctanh
(√

x+ 1
)
x
√
x+ 1− 3c1x

√
x+ 1 +

√
3x+

√
3
)2

36 (x+ 1)x2

y(x) =
(√

3 arctanh
(√

x+ 1
)
x
√
x+ 1− 3c1x

√
x+ 1 +

√
3x+

√
3
)2

36 (x+ 1)x2

y(x) =
(√

3 arctanh
(√

x+ 1
)
x
√
x+ 1 + 3c1x

√
x+ 1 +

√
3x+

√
3
)2

36 (x+ 1)x2

3 Solution by Mathematica
Time used: 0.153 (sec). Leaf size: 171� �
DSolve[3 x^4 (y'[x])^2-x y[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x2arctanh

(√
x+ 1

)2 + 2xarctanh
(√

x+ 1
) (√

x+ 1−
√
3c1x

)
+ 3c12x2 + x− 2

√
3c1x

√
x+ 1 + 1

12x2

y(x)

→
x2arctanh

(√
x+ 1

)2 + 2xarctanh
(√

x+ 1
) (√

x+ 1 +
√
3c1x

)
+ 3c12x2 + x+ 2

√
3c1x

√
x+ 1 + 1

12x2

y(x) → 0
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32.4 problem 938
Internal problem ID [4172]
Internal file name [OUTPUT/3665_Sunday_June_05_2022_10_06_35_AM_28247873/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 938.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

4x5y′
2 + 12x4yy′ = −9

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −
3
(
x2y −

√
y2x4 − x

)
2x3 (1)

y′ = −
3
(
x2y +

√
y2x4 − x

)
2x3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −
3
(
x2y −

√
x4y2 − x

)
2x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
3
(
x2y −

√
x4y2 − x

)
(b3 − a2)

2x3 −
9
(
x2y −

√
x4y2 − x

)2
a3

4x6

−

−
3
(
2xy − 4x3y2−1

2
√

x4y2−x

)
2x3 +

9x2y
2 − 9

√
x4y2−x
2

x4

 (xa2 + ya3 + a1)

+
3
(
x2 − x4y√

x4y2−x

)
(xb2 + yb3 + b1)

2x3 = 0

Putting the above in normal form gives

−6x8yb2 − 24x6y3a3 + 6x7yb1 − 6x6y2a1 − 10b2x6√x4y2 − x+ 15
√
x4y2 − xx4y2a3 − 6

√
x4y2 − xx5b1 + 6

√
x4y2 − xx4ya1 + 9x4a2 + 6x4b3 + 33x3ya3 + 9(x4y2 − x)

3
2 a3 + 15x3a1

4x6
√
x4y2 − x

= 0

Setting the numerator to zero gives

(6E)−6x8yb2 + 24x6y3a3 − 6x7yb1 + 6x6y2a1 + 10b2x6
√

x4y2 − x

− 15
√

x4y2 − xx4y2a3 + 6
√
x4y2 − xx5b1 − 6

√
x4y2 − xx4ya1

− 9x4a2 − 6x4b3 − 33x3ya3 − 9
(
x4y2 − x

) 3
2 a3 − 15x3a1 = 0

Simplifying the above gives

(6E)

−6x8yb2 − 12x7y2a2 − 6x7y2b3 − 12x6y3a3 − 6x7yb1

− 12x6y2a1 + 10b2x6
√
x4y2 − x− 15

√
x4y2 − xx4y2a3

+ 6
√

x4y2 − xx5b1 − 6
√
x4y2 − xx4ya1 + 12

(
x4y2 − x

)
x3a2

+ 6
(
x4y2 − x

)
x3b3 + 36

(
x4y2 − x

)
x2ya3 + 18

(
x4y2 − x

)
x2a1

+ 3x4a2 + 3x3ya3 − 9
(
x4y2 − x

) 3
2 a3 + 3x3a1 = 0
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Since the PDE has radicals, simplifying gives

x
(
−6x7yb2 + 24x5y3a3 − 6x6yb1 + 6x5y2a1 + 10

√
x (x3y2 − 1)x5b2

− 24
√

x (x3y2 − 1)x3y2a3 + 6
√

x (x3y2 − 1)x4b1 − 6
√
x (x3y2 − 1)x3ya1

− 9x3a2 − 6x3b3 − 33x2ya3 − 15x2a1 + 9
√

x (x3y2 − 1) a3
)
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x (x3y2 − 1)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x (x3y2 − 1) = v3
}

The above PDE (6E) now becomes

(7E)v1
(
24v51v32a3 − 6v71v2b2 + 6v51v22a1 − 6v61v2b1 − 24v3v31v22a3 + 10v3v51b2

− 6v3v31v2a1 + 6v3v41b1 − 9v31a2 − 33v21v2a3 − 6v31b3 − 15v21a1 + 9v3a3
)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−6b2v2v81 − 6b1v2v71 + 24a3v32v61 + 6a1v22v61 + 10b2v3v61 + 6b1v3v51 − 24a3v22v3v41
− 6a1v2v3v41 + (−9a2 − 6b3) v41 − 33a3v2v31 − 15a1v31 + 9v3a3v1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−15a1 = 0
−6a1 = 0
6a1 = 0

−33a3 = 0
−24a3 = 0

9a3 = 0
24a3 = 0
−6b1 = 0
6b1 = 0

−6b2 = 0
10b2 = 0

−9a2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 = −3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −3y
2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −3y
2 −

(
−
3
(
x2y −

√
x4y2 − x

)
2x3

)
(x)

= −3
√
x4y2 − x

2x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−3
√

x4y2−x
2x2

dy

Which results in

S = −
2x2 ln

(
y x4
√
x4 +

√
x4y2 − x

)
3
√
x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
3
(
x2y −

√
x4y2 − x

)
2x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x3y2 + 4x 3
2y
√
x3y2 − 1− 1

√
x
√
x3y2 − 1

(
3x2y + 3

√
x
√
x3y2 − 1

)
Sy = −

2x2
(
x

3
2y +

√
x3y2 − 1

)
√
x3y2 − 1

(
3x2y + 3

√
x
√
x3y2 − 1

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

(
3x2y + 3

√
x
√
x3y2 − 1

)√
x (x3y2 − 1) + x4y2 + x

5
2
√
x3y2 − 1 y − x

x
3
2
√
x3y2 − 1

(
3x2y + 3

√
x
√
x3y2 − 1

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 4

3R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −4 ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
2 ln

(
x2y +

√
x
√
−1 + y2x3

)
3 = −4 ln (x)

3 + c1

Which simplifies to

−
2 ln

(
x2y +

√
x
√
−1 + y2x3

)
3 = −4 ln (x)

3 + c1

Which gives

y = (x3 + e3c1) e−
3c1
2

2x3

Summary
The solution(s) found are the following

(1)y = (x3 + e3c1) e−
3c1
2

2x3

Verification of solutions

y = (x3 + e3c1) e−
3c1
2

2x3

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −
3
(
x2y +

√
x4y2 − x

)
2x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
3
(
x2y +

√
x4y2 − x

)
(b3 − a2)

2x3 −
9
(
x2y +

√
x4y2 − x

)2
a3

4x6

−

−
3
(
2xy + 4x3y2−1

2
√

x4y2−x

)
2x3 +

9x2y
2 + 9

√
x4y2−x
2

x4

 (xa2 + ya3 + a1)

+
3
(
x2 + x4y√

x4y2−x

)
(xb2 + yb3 + b1)

2x3 = 0

Putting the above in normal form gives

−−6x8yb2 + 24x6y3a3 − 6x7yb1 + 6x6y2a1 − 10b2x6√x4y2 − x+ 15
√
x4y2 − xx4y2a3 − 6

√
x4y2 − xx5b1 + 6

√
x4y2 − xx4ya1 − 9x4a2 − 6x4b3 − 33x3ya3 + 9(x4y2 − x)

3
2 a3 − 15x3a1

4x6
√
x4y2 − x

= 0

Setting the numerator to zero gives

(6E)6x8yb2 − 24x6y3a3 + 6x7yb1 − 6x6y2a1 + 10b2x6
√
x4y2 − x

− 15
√

x4y2 − xx4y2a3 + 6
√
x4y2 − xx5b1 − 6

√
x4y2 − xx4ya1

+ 9x4a2 + 6x4b3 + 33x3ya3 − 9
(
x4y2 − x

) 3
2 a3 + 15x3a1 = 0
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Simplifying the above gives

(6E)

6x8yb2 + 12x7y2a2 + 6x7y2b3 + 12x6y3a3 + 6x7yb1

+ 12x6y2a1 + 10b2x6
√
x4y2 − x− 15

√
x4y2 − xx4y2a3

+ 6
√

x4y2 − xx5b1 − 6
√
x4y2 − xx4ya1 − 12

(
x4y2 − x

)
x3a2

− 6
(
x4y2 − x

)
x3b3 − 36

(
x4y2 − x

)
x2ya3 − 18

(
x4y2 − x

)
x2a1

− 3x4a2 − 3x3ya3 − 9
(
x4y2 − x

) 3
2 a3 − 3x3a1 = 0

Since the PDE has radicals, simplifying gives

x
(
6x7yb2 − 24x5y3a3 + 6x6yb1 − 6x5y2a1 + 10

√
x (x3y2 − 1)x5b2

− 24
√

x (x3y2 − 1)x3y2a3 + 6
√

x (x3y2 − 1)x4b1 − 6
√
x (x3y2 − 1)x3ya1

+ 9x3a2 + 6x3b3 + 33x2ya3 + 15x2a1 + 9
√

x (x3y2 − 1) a3
)
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x (x3y2 − 1)

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x (x3y2 − 1) = v3
}

The above PDE (6E) now becomes

(7E)v1
(
−24v51v32a3 + 6v71v2b2 − 6v51v22a1 + 6v61v2b1 − 24v3v31v22a3 + 10v3v51b2

− 6v3v31v2a1 + 6v3v41b1 + 9v31a2 + 33v21v2a3 + 6v31b3 + 15v21a1 + 9v3a3
)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)6b2v2v81 + 6b1v2v71 − 24a3v32v61 − 6a1v22v61 + 10b2v3v61 + 6b1v3v51 − 24a3v22v3v41
− 6a1v2v3v41 + (9a2 + 6b3) v41 + 33a3v2v31 + 15a1v31 + 9v3a3v1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
15a1 = 0

−24a3 = 0
9a3 = 0
33a3 = 0
6b1 = 0
6b2 = 0
10b2 = 0

9a2 + 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 = −3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −3y
2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −3y
2 −

(
−
3
(
x2y +

√
x4y2 − x

)
2x3

)
(x)

= 3
√
x4y2 − x

2x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3
√

x4y2−x
2x2

dy

Which results in

S =
2x2 ln

(
y x4
√
x4 +

√
x4y2 − x

)
3
√
x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
3
(
x2y +

√
x4y2 − x

)
2x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4x3y2 + 4x 3
2y
√
x3y2 − 1− 1

√
x
√
x3y2 − 1

(
3x2y + 3

√
x
√
x3y2 − 1

)
Sy =

2x2
(
x

3
2y +

√
x3y2 − 1

)
√
x3y2 − 1

(
3x2y + 3

√
x
√
x3y2 − 1

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(
−3x2y − 3

√
x
√
x3y2 − 1

)√
x (x3y2 − 1) + x4y2 + x

5
2
√
x3y2 − 1 y − x

x
3
2
√
x3y2 − 1

(
3x2y + 3

√
x
√
x3y2 − 1

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln
(
x2y +

√
x
√
−1 + y2x3

)
3 = −2 ln (x)

3 + c1

Which simplifies to

2 ln
(
x2y +

√
x
√
−1 + y2x3

)
3 = −2 ln (x)

3 + c1

Which gives

y = (x3 + e3c1) e−
3c1
2

2x3

Summary
The solution(s) found are the following

(1)y = (x3 + e3c1) e−
3c1
2

2x3

Verification of solutions

y = (x3 + e3c1) e−
3c1
2

2x3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.344 (sec). Leaf size: 53� �
dsolve(4*x^5*diff(y(x),x)^2+12*x^4*y(x)*diff(y(x),x)+9 = 0,y(x), singsol=all)� �

y(x) = 1
x

3
2

y(x) = − 1
x

3
2

y(x) = c21x
3 + 1

2c1x3

y(x) = x3 + c21
2c1x3

3 Solution by Mathematica
Time used: 7.064 (sec). Leaf size: 75� �
DSolve[4 x^5 (y'[x])^2+12 x^4 y[x] y'[x]+9==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x3sech2 (3

2(− log(x) + c1)
)

y(x) → 1√
x3sech2 (3

2(− log(x) + c1)
)

y(x) → − 1
x3/2

y(x) → 1
x3/2
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32.5 problem 939
Internal problem ID [4173]
Internal file name [OUTPUT/3666_Sunday_June_05_2022_10_06_44_AM_64035252/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 939.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x6y′
2 − 2xy′ − 4y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 +
√
1 + 4yx4

x5 (1)

y′ = −−1 +
√
1 + 4yx4

x5 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 1 +
√
4x4y + 1
x5

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
1 +

√
4x4y + 1

)
(b3 − a2)

x5 −
(
1 +

√
4x4y + 1

)2
a3

x10

−

(
−
5
(
1 +

√
4x4y + 1

)
x6 + 8y

x2
√
4x4y + 1

)
(xa2 + ya3 + a1)

− 2(xb2 + yb3 + b1)
x
√
4x4y + 1

= 0

Putting the above in normal form gives

−−b2x
10√4x4y + 1 + 2x10b2 − 8x9ya2 − 2x9yb3 − 12x8y2a3 + 2x9b1 − 12x8ya1 − 4

√
4x4y + 1x5a2 −

√
4x4y + 1x5b3 − 5

√
4x4y + 1 x4ya3 − 5

√
4x4y + 1x4a1 − 4x5a2 − x5b3 + 3x4ya3 − 5x4a1 + (4x4y + 1)

3
2 a3 + a3

√
4x4y + 1 + 2a3

x10
√
4x4y + 1

= 0

Setting the numerator to zero gives

(6E)
b2x

10
√

4x4y + 1− 2x10b2 + 8x9ya2 + 2x9yb3 + 12x8y2a3

− 2x9b1 + 12x8ya1 + 4
√
4x4y + 1x5a2 +

√
4x4y + 1x5b3

+ 5
√

4x4y + 1x4ya3 + 5
√
4x4y + 1 x4a1 + 4x5a2 + x5b3

− 3x4ya3 + 5x4a1 −
(
4x4y + 1

) 3
2 a3 − a3

√
4x4y + 1− 2a3 = 0

Simplifying the above gives

(6E)
b2x

10
√

4x4y + 1− 2x10b2 − 8x9ya2 − 2x9yb3 − 8x8y2a3 − 2x9b1 − 8x8ya1
+4
(
4x4y+1

)
x5a2+

(
4x4y+1

)
x5b3+5

(
4x4y+1

)
x4ya3+5

(
4x4y+1

)
x4a1

+ 4
√

4x4y + 1x5a2 +
√

4x4y + 1x5b3 + 5
√
4x4y + 1x4ya3

+5
√

4x4y + 1x4a1 −
(
4x4y+1

) 3
2 a3 − 2

(
4x4y+1

)
a3 − a3

√
4x4y + 1 = 0
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Since the PDE has radicals, simplifying gives

b2x
10
√

4x4y + 1− 2x10b2 + 8x9ya2 + 2x9yb3 + 12x8y2a3 − 2x9b1 + 12x8ya1

+ 4
√

4x4y + 1x5a2 +
√

4x4y + 1 x5b3 +
√

4x4y + 1x4ya3 + 4x5a2

+ x5b3 + 5
√

4x4y + 1x4a1 − 3x4ya3 + 5x4a1 − 2a3
√
4x4y + 1− 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x4y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x4y + 1 = v3

}
The above PDE (6E) now becomes

(7E)b2v
10
1 v3+8v91v2a2+12v81v22a3− 2v101 b2+2v91v2b3+12v81v2a1− 2v91b1+4v3v51a2

+v3v
4
1v2a3+v3v

5
1b3+5v3v41a1+4v51a2−3v41v2a3+v51b3+5v41a1−2a3v3−2a3 =0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)b2v
10
1 v3−2v101 b2+(8a2+2b3) v91v2−2v91b1+12v81v22a3+12v81v2a1+(4a2+b3) v51v3

+ (4a2 + b3) v51 + v3v
4
1v2a3 − 3v41v2a3 + 5v3v41a1 + 5v41a1 − 2a3v3 − 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b2 = 0

5a1 = 0
12a1 = 0
−3a3 = 0
−2a3 = 0
12a3 = 0
−2b1 = 0
−2b2 = 0

4a2 + b3 = 0
8a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −4y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −4y −
(
1 +

√
4x4y + 1
x5

)
(x)

= −4x4y −
√
4x4y + 1− 1
x4

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x4y−
√

4x4y+1−1
x4

dy

Which results in

S = − ln (y)
4 −

arctanh
(√

4x4y + 1
)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1 +
√
4x4y + 1
x5

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x
√
4x4y + 1

Sy =
−1 + 1√

4x4y+1

4y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
4 −

arctanh
(√

1 + 4yx4
)

2 = c1

Which simplifies to

− ln (y)
4 −

arctanh
(√

1 + 4yx4
)

2 = c1

Summary
The solution(s) found are the following

(1)− ln (y)
4 −

arctanh
(√

1 + 4yx4
)

2 = c1

Verification of solutions

− ln (y)
4 −

arctanh
(√

1 + 4yx4
)

2 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −−1 +
√
4x4y + 1
x5

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(
−1 +

√
4x4y + 1

)
(b3 − a2)

x5 −
(
−1 +

√
4x4y + 1

)2
a3

x10

−
(
− 8y
x2
√
4x4y + 1

+ −5 + 5
√
4x4y + 1

x6

)
(xa2 + ya3 + a1)

+ 2xb2 + 2yb3 + 2b1√
4x4y + 1x

= 0

Putting the above in normal form gives

−−b2x
10√4x4y + 1− 2x10b2 + 8x9ya2 + 2x9yb3 + 12x8y2a3 − 2x9b1 + 12x8ya1 − 4

√
4x4y + 1 x5a2 −

√
4x4y + 1x5b3 − 5

√
4x4y + 1x4ya3 − 5

√
4x4y + 1x4a1 + 4x5a2 + x5b3 − 3x4ya3 + 5x4a1 + (4x4y + 1)

3
2 a3 + a3

√
4x4y + 1− 2a3

x10
√
4x4y + 1

= 0

Setting the numerator to zero gives

(6E)
b2x

10
√

4x4y + 1 + 2x10b2 − 8x9ya2 − 2x9yb3 − 12x8y2a3

+ 2x9b1 − 12x8ya1 + 4
√
4x4y + 1 x5a2 +

√
4x4y + 1x5b3

+ 5
√

4x4y + 1x4ya3 + 5
√
4x4y + 1x4a1 − 4x5a2 − x5b3

+ 3x4ya3 − 5x4a1 −
(
4x4y + 1

) 3
2 a3 − a3

√
4x4y + 1 + 2a3 = 0
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Simplifying the above gives

(6E)
b2x

10
√

4x4y + 1 + 2x10b2 + 8x9ya2 + 2x9yb3 + 8x8y2a3 + 2x9b1 + 8x8ya1
−4
(
4x4y+1

)
x5a2−

(
4x4y+1

)
x5b3−5

(
4x4y+1

)
x4ya3−5

(
4x4y+1

)
x4a1

+ 4
√

4x4y + 1x5a2 +
√

4x4y + 1x5b3 + 5
√
4x4y + 1x4ya3

+5
√

4x4y + 1x4a1 −
(
4x4y+1

) 3
2 a3 +2

(
4x4y+1

)
a3 − a3

√
4x4y + 1 = 0

Since the PDE has radicals, simplifying gives

b2x
10
√
4x4y + 1 + 2x10b2 − 8x9ya2 − 2x9yb3 − 12x8y2a3 + 2x9b1 − 12x8ya1

+ 4
√

4x4y + 1x5a2 +
√

4x4y + 1x5b3 +
√
4x4y + 1x4ya3 − 4x5a2

− x5b3 + 5
√
4x4y + 1x4a1 + 3x4ya3 − 5x4a1 − 2a3

√
4x4y + 1 + 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4x4y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4x4y + 1 = v3

}
The above PDE (6E) now becomes

(7E)b2v
10
1 v3− 8v91v2a2− 12v81v22a3+2v101 b2− 2v91v2b3− 12v81v2a1+2v91b1+4v3v51a2

+v3v
4
1v2a3+v3v

5
1b3+5v3v41a1−4v51a2+3v41v2a3−v51b3−5v41a1−2a3v3+2a3 =0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)b2v
10
1 v3 + 2v101 b2 + (−8a2 − 2b3) v91v2 + 2v91b1 − 12v81v22a3

− 12v81v2a1 + (4a2 + b3) v51v3 + (−4a2 − b3) v51 + v3v
4
1v2a3

+ 3v41v2a3 + 5v3v41a1 − 5v41a1 − 2a3v3 + 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b2 = 0

−12a1 = 0
−5a1 = 0
5a1 = 0

−12a3 = 0
−2a3 = 0
2a3 = 0
3a3 = 0
2b1 = 0
2b2 = 0

−8a2 − 2b3 = 0
−4a2 − b3 = 0
4a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −4y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −4y −
(
−−1 +

√
4x4y + 1
x5

)
(x)

= −4x4y +
√
4x4y + 1− 1
x4

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x4y+
√

4x4y+1−1
x4

dy

Which results in

S = − ln (y)
4 +

arctanh
(√

4x4y + 1
)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−1 +
√
4x4y + 1
x5
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x
√
4x4y + 1

Sy =
−1− 1√

4x4y+1

4y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
4 +

arctanh
(√

1 + 4yx4
)

2 = c1

Which simplifies to

− ln (y)
4 +

arctanh
(√

1 + 4yx4
)

2 = c1

Summary
The solution(s) found are the following

(1)− ln (y)
4 +

arctanh
(√

1 + 4yx4
)

2 = c1

Verification of solutions

− ln (y)
4 +

arctanh
(√

1 + 4yx4
)

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �

8611



3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 89� �
dsolve(x^6*diff(y(x),x)^2-2*x*diff(y(x),x)-4*y(x) = 0,y(x), singsol=all)� �

y(x) = − 1
4x4

y(x) = −c1i− x2

c21x
2

y(x) = c1i− x2

x2c21

y(x) = c1i− x2

x2c21

y(x) = −c1i− x2

c21x
2

3 Solution by Mathematica
Time used: 0.549 (sec). Leaf size: 128� �
DSolve[x^6 (y'[x])^2-2 x y'[x]-4 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−x
√

4x4y(x) + 1arctanh
(√

4x4y(x) + 1
)

2
√

4x6y(x) + x2
− 1

4 log(y(x)) = c1, y(x)


Solve

x√4x4y(x) + 1arctanh
(√

4x4y(x) + 1
)

2
√

4x6y(x) + x2
− 1

4 log(y(x)) = c1, y(x)


y(x) → 0
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32.6 problem 940
Internal problem ID [4174]
Internal file name [OUTPUT/3667_Sunday_June_05_2022_10_06_54_AM_48514703/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 940.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

x8y′
2 + 3xy′ + 9y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
−3

2 +
3
√

1−4yx6

2
x7 (1)

y′ = −
3
(
1 +

√
1− 4yx6

)
2x7 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
−3

2 +
3
√

−4y x6+1
2

x7

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
3
(
−1 +

√
−4y x6 + 1

)
(b3 − a2)

2x7 −
9
(
−1 +

√
−4y x6 + 1

)2
a3

4x14

−

(
−
21
(
−1 +

√
−4y x6 + 1

)
2x8 − 18y

x2
√
−4y x6 + 1

)
(xa2 + ya3 + a1)

+ 3xb2 + 3yb3 + 3b1√
−4y x6 + 1x

= 0

Putting the above in normal form gives

−−4b2x14√−4y x6 + 1− 12x14b2 + 72x13ya2 + 12x13yb3 + 96x12y2a3 − 12x13b1 + 96x12ya1 + 36
√
−4y x6 + 1x7a2 + 6

√
−4y x6 + 1x7b3 + 42

√
−4y x6 + 1x6ya3 + 42

√
−4y x6 + 1x6a1 − 36x7a2 − 6x7b3 + 30x6ya3 − 42x6a1 + 9(−4y x6 + 1)

3
2 a3 + 9a3

√
−4y x6 + 1− 18a3

4x14
√
−4y x6 + 1

= 0

Setting the numerator to zero gives

(6E)
4b2x14

√
−4y x6 + 1 + 12x14b2 − 72x13ya2 − 12x13yb3 − 96x12y2a3

+ 12x13b1 − 96x12ya1 − 36
√

−4y x6 + 1 x7a2 − 6
√

−4y x6 + 1x7b3

− 42
√

−4y x6 + 1x6ya3 − 42
√

−4y x6 + 1 x6a1 + 36x7a2 + 6x7b3

− 30x6ya3 + 42x6a1 − 9
(
−4y x6 + 1

) 3
2 a3 − 9a3

√
−4y x6 + 1 + 18a3 = 0

Simplifying the above gives

(6E)

4b2x14
√

−4y x6 + 1 + 12x14b2 + 72x13ya2 + 12x13yb3 + 72x12y2a3
+ 12x13b1 + 72x12ya1 + 36

(
−4y x6 + 1

)
x7a2 + 6

(
−4y x6 + 1

)
x7b3

+ 42
(
−4y x6 + 1

)
x6ya3 + 42

(
−4y x6 + 1

)
x6a1 − 36

√
−4y x6 + 1x7a2

− 6
√

−4y x6 + 1x7b3 − 42
√

−4y x6 + 1x6ya3 − 42
√

−4y x6 + 1x6a1

− 9
(
−4y x6 + 1

) 3
2 a3 + 18

(
−4y x6 + 1

)
a3 − 9a3

√
−4y x6 + 1 = 0
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Since the PDE has radicals, simplifying gives

4b2x14
√

−4y x6 + 1 + 12x14b2 − 72x13ya2 − 12x13yb3 − 96x12y2a3

+ 12x13b1 − 96x12ya1 − 36
√

−4y x6 + 1x7a2 − 6
√

−4y x6 + 1x7b3

− 6
√

−4y x6 + 1x6ya3 + 36x7a2 + 6x7b3 − 42
√
−4y x6 + 1x6a1

− 30x6ya3 + 42x6a1 − 18a3
√

−4y x6 + 1 + 18a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4y x6 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4y x6 + 1 = v3
}

The above PDE (6E) now becomes

(7E)4b2v141 v3 − 72v131 v2a2 − 96v121 v22a3 + 12v141 b2 − 12v131 v2b3 − 96v121 v2a1
+ 12v131 b1 − 36v3v71a2 − 6v3v61v2a3 − 6v3v71b3 − 42v3v61a1
+ 36v71a2 − 30v61v2a3 + 6v71b3 + 42v61a1 − 18a3v3 + 18a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v141 v3 + 12v141 b2 + (−72a2 − 12b3) v131 v2 + 12v131 b1 − 96v121 v22a3
− 96v121 v2a1 + (−36a2 − 6b3) v71v3 + (36a2 + 6b3) v71 − 6v3v61v2a3
− 30v61v2a3 − 42v3v61a1 + 42v61a1 − 18a3v3 + 18a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−96a1 = 0
−42a1 = 0
42a1 = 0

−96a3 = 0
−30a3 = 0
−18a3 = 0
−6a3 = 0
18a3 = 0
12b1 = 0
4b2 = 0
12b2 = 0

−72a2 − 12b3 = 0
−36a2 − 6b3 = 0
36a2 + 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −6y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6y −
(
−3

2 +
3
√

−4y x6+1
2

x7

)
(x)

= −12y x6 − 3
√
−4y x6 + 1 + 3

2x6

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12y x6−3
√

−4y x6+1+3
2x6

dy

Which results in

S = − ln (y)
6 +

arctanh
(√

−4y x6 + 1
)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−3

2 +
3
√

−4y x6+1
2

x7
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x
√
−4y x6 + 1

Sy =
−1− 1√

−4y x6+1

6y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Which simplifies to

− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Summary
The solution(s) found are the following

(1)− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Verification of solutions

− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −
3
(√

−4y x6 + 1 + 1
)

2x7

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
3
(√

−4y x6 + 1 + 1
)
(b3 − a2)

2x7 −
9
(√

−4y x6 + 1 + 1
)2

a3

4x14

−

(
18y

x2
√
−4y x6 + 1

+
21
√

−4y x6+1
2 + 21

2
x8

)
(xa2 + ya3 + a1)

− 3(xb2 + yb3 + b1)
x
√
−4y x6 + 1

= 0

Putting the above in normal form gives

−−4b2x14√−4y x6 + 1 + 12x14b2 − 72x13ya2 − 12x13yb3 − 96x12y2a3 + 12x13b1 − 96x12ya1 + 36
√
−4y x6 + 1x7a2 + 6

√
−4y x6 + 1x7b3 + 42

√
−4y x6 + 1x6ya3 + 42

√
−4y x6 + 1x6a1 + 36x7a2 + 6x7b3 − 30x6ya3 + 42x6a1 + 9(−4y x6 + 1)

3
2 a3 + 9a3

√
−4y x6 + 1 + 18a3

4x14
√
−4y x6 + 1

= 0

Setting the numerator to zero gives

(6E)
4b2x14

√
−4y x6 + 1− 12x14b2 + 72x13ya2 + 12x13yb3 + 96x12y2a3

− 12x13b1 + 96x12ya1 − 36
√
−4y x6 + 1x7a2 − 6

√
−4y x6 + 1x7b3

− 42
√
−4y x6 + 1x6ya3 − 42

√
−4y x6 + 1x6a1 − 36x7a2 − 6x7b3

+ 30x6ya3 − 42x6a1 − 9
(
−4y x6 + 1

) 3
2 a3 − 9a3

√
−4y x6 + 1− 18a3 = 0
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Simplifying the above gives

(6E)

4b2x14
√

−4y x6 + 1− 12x14b2 − 72x13ya2 − 12x13yb3 − 72x12y2a3
− 12x13b1 − 72x12ya1 − 36

(
−4y x6 + 1

)
x7a2 − 6

(
−4y x6 + 1

)
x7b3

− 42
(
−4y x6 + 1

)
x6ya3 − 42

(
−4y x6 + 1

)
x6a1 − 36

√
−4y x6 + 1x7a2

− 6
√

−4y x6 + 1x7b3 − 42
√

−4y x6 + 1x6ya3 − 42
√

−4y x6 + 1x6a1

− 9
(
−4y x6 + 1

) 3
2 a3 − 18

(
−4y x6 + 1

)
a3 − 9a3

√
−4y x6 + 1 = 0

Since the PDE has radicals, simplifying gives

4b2x14
√

−4y x6 + 1− 12x14b2 + 72x13ya2 + 12x13yb3 + 96x12y2a3

− 12x13b1 + 96x12ya1 − 36
√

−4y x6 + 1x7a2 − 6
√

−4y x6 + 1x7b3

− 6
√
−4y x6 + 1x6ya3 − 36x7a2 − 6x7b3 − 42

√
−4y x6 + 1x6a1

+ 30x6ya3 − 42x6a1 − 18a3
√

−4y x6 + 1− 18a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−4y x6 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4y x6 + 1 = v3
}

The above PDE (6E) now becomes

(7E)4b2v141 v3 + 72v131 v2a2 + 96v121 v22a3 − 12v141 b2 + 12v131 v2b3 + 96v121 v2a1
− 12v131 b1 − 36v3v71a2 − 6v3v61v2a3 − 6v3v71b3 − 42v3v61a1
− 36v71a2 + 30v61v2a3 − 6v71b3 − 42v61a1 − 18a3v3 − 18a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v141 v3 − 12v141 b2 + (72a2 + 12b3) v131 v2 − 12v131 b1 + 96v121 v22a3
+ 96v121 v2a1 + (−36a2 − 6b3) v71v3 + (−36a2 − 6b3) v71 − 6v3v61v2a3
+ 30v61v2a3 − 42v3v61a1 − 42v61a1 − 18a3v3 − 18a3 = 0

8620



Setting each coefficients in (8E) to zero gives the following equations to solve

−42a1 = 0
96a1 = 0

−18a3 = 0
−6a3 = 0
30a3 = 0
96a3 = 0

−12b1 = 0
−12b2 = 0

4b2 = 0
−36a2 − 6b3 = 0
72a2 + 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6y −
(
−
3
(√

−4y x6 + 1 + 1
)

2x7

)
(x)

= −12y x6 + 3
√
−4y x6 + 1 + 3

2x6

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12y x6+3
√

−4y x6+1+3
2x6

dy

Which results in

S = − ln (y)
6 −

arctanh
(√

−4y x6 + 1
)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
3
(√

−4y x6 + 1 + 1
)

2x7

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x
√
−4y x6 + 1

Sy =
−1 + 1√

−4y x6+1

6y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Which simplifies to

− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Summary
The solution(s) found are the following

(1)− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Verification of solutions

− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �

3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 45� �
dsolve(x^8*diff(y(x),x)^2+3*x*diff(y(x),x)+9*y(x) = 0,y(x), singsol=all)� �

y(x) = 1
4x6

y(x) = −x3 + c1
x3c21

y(x) = −x3 − c1
c21x

3
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3 Solution by Mathematica
Time used: 0.562 (sec). Leaf size: 130� �
DSolve[x^8 (y'[x])^2+3 x y'[x]+9 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

x√4x6y(x)− 1 arctan
(√

4x6y(x)− 1
)

3
√

x2 − 4x8y(x)
− 1

6 log(y(x)) = c1, y(x)


Solve

√x2 − 4x8y(x) arctan
(√

4x6y(x)− 1
)

3x
√

4x6y(x)− 1
− 1

6 log(y(x)) = c1, y(x)


y(x) → 0
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32.7 problem 941
32.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8627

Internal problem ID [4175]
Internal file name [OUTPUT/3668_Sunday_June_05_2022_10_07_05_AM_89889503/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 941.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′
2 = a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
ya

y
(1)

y′ = −
√
ya

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
y

√
ya

dy =
∫

dx

2y2
3√ya

= x+ c1

Summary
The solution(s) found are the following

(1)2y2
3√ya

= x+ c1
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Verification of solutions

2y2
3√ya

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− y
√
ya

dy =
∫

dx

− 2y2
3√ya

= x+ c2

Summary
The solution(s) found are the following

(1)− 2y2
3√ya

= x+ c2

Verification of solutions

− 2y2
3√ya

= x+ c2

Verified OK.

32.7.1 Maple step by step solution

Let’s solve
yy′2 = a

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′√
ya

= 1

• Integrate both sides with respect to x∫
yy′√
ya
dx =

∫
1dx+ c1

• Evaluate integral
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2(ya)
3
2

3a2 = x+ c1

• Solve for y

y =
(
12c1a2+12x a2

) 2
3

4a

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 173� �
dsolve(y(x)*diff(y(x),x)^2 = a,y(x), singsol=all)� �

y(x) = 12 2
3 (a2(−c1 + x))

2
3

4a

y(x) =
12 2

3 (a2(−c1 + x))
2
3
(
1 + i

√
3
)2

16a

y(x) =
12 2

3 (a2(−c1 + x))
2
3
(
i
√
3− 1

)2
16a

y(x) = 12 2
3 (a2(c1 − x))

2
3

4a

y(x) =
12 2

3 (a2(c1 − x))
2
3
(
1 + i

√
3
)2

16a

y(x) =
12 2

3 (a2(c1 − x))
2
3
(
i
√
3− 1

)2
16a
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3 Solution by Mathematica
Time used: 3.749 (sec). Leaf size: 54� �
DSolve[y[x] (y'[x])^2==a,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
3
2

)2/3 (
−
√
ax+ c1

) 2/3

y(x) →
(
3
2

)2/3 (√
ax+ c1

) 2/3
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32.8 problem 942
32.8.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8630

Internal problem ID [4176]
Internal file name [OUTPUT/3669_Sunday_June_05_2022_10_07_11_AM_32523359/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 942.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

yy′
2 = x a2

32.8.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y p2 = x a2

Solving for y from the above results in

y = x a2

p2
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = a2

p2

g = 0

Hence (2) becomes

p− a2

p2
= −2x a2p′(x)

p3
(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− a2

p2
= 0

Solving for p from the above gives

p = a
2
3

p = −a
2
3

2 + i
√
3 a 2

3

2

p = −a
2
3

2 − i
√
3 a 2

3

2
Substituting these in (1A) gives

y = a
2
3x

y = 4a 2
3x

−2 + 2i
√
3

y = − 4a 2
3x

2i
√
3 + 2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −

(
p(x)− a2

p(x)2

)
p(x)3

2x a2 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = − 2x(p) a2

p3
(
p− a2

p2

) (4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 2a2
p (−p3 + a2)

q(p) = 0

Hence the ode is

d

dp
x(p)− 2x(p) a2

p (−p3 + a2) = 0

The integrating factor µ is

µ = e
∫
− 2a2

p
(
−p3+a2

)dp

= e
2 ln

(
p3−a2

)
3 −2 ln(p)

Which simplifies to

µ = (p3 − a2)
2
3

p2

The ode becomes
d
dpµx = 0

d
dp

(
(p3 − a2)

2
3 x

p2

)
= 0

Integrating gives

(p3 − a2)
2
3 x

p2
= c3

Dividing both sides by the integrating factor µ =
(
p3−a2

) 2
3

p2
results in

x(p) = c3p
2

(p3 − a2)
2
3
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
√
yx a

y

p = −
√
yx a

y

Substituting the above in the solution for x found above gives

x = c3x a
2(

a2
(
ax

√
yx−y2

)
y2

) 2
3
y

x = c3x a
2(

−a2
(
ax

√
yx+y2

)
y2

) 2
3
y

Summary
The solution(s) found are the following

(1)y = a
2
3x

(2)y = 4a 2
3x

−2 + 2i
√
3

(3)y = − 4a 2
3x

2i
√
3 + 2

(4)x = c3x a
2(

a2
(
ax

√
yx−y2

)
y2

) 2
3
y

(5)x = c3x a
2(

−a2
(
ax

√
yx+y2

)
y2

) 2
3
y
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Verification of solutions

y = a
2
3x

Verified OK.

y = 4a 2
3x

−2 + 2i
√
3

Verified OK.

y = − 4a 2
3x

2i
√
3 + 2

Verified OK.

x = c3x a
2(

a2
(
ax

√
yx−y2

)
y2

) 2
3
y

Verified OK.

x = c3x a
2(

−a2
(
ax

√
yx+y2

)
y2

) 2
3
y

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 78� �
dsolve(y(x)*diff(y(x),x)^2 = a^2*x,y(x), singsol=all)� �

x

1− c1(
−

a2
(
−ax

√
xy(x)+y(x)2

)
y(x)2

) 2
3

y (x)

 = 0

x

1− c1(
−

a2
(
ax
√

xy(x)+y(x)2
)

y(x)2

) 2
3

y (x)

 = 0

3 Solution by Mathematica
Time used: 3.625 (sec). Leaf size: 46� �
DSolve[y[x] (y'[x])^2==a^2 x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
−ax3/2 + 3c1

2

)
2/3

y(x) →
(
ax3/2 + 3c1

2

)
2/3
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32.9 problem 943
Internal problem ID [4177]
Internal file name [OUTPUT/3670_Sunday_June_05_2022_10_07_19_AM_33822795/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 943.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

yy′
2 = e2x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
y e2x
y

(1)

y′ = −
√
y e2x
y

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
√
e2xy
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
√
e2xy (b3 − a2)

y
− e2xa3

y
− e2x(xa2 + ya3 + a1)√

e2xy

−
(
−
√
e2xy
y2

+ e2x

2y
√
e2xy

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2 e2xxya2 + 2 e2xy2a3 + 2 e2x
√
e2xy a3 − e2xxb2 + 2 e2xya1 + 2 e2xya2 − 3 e2xyb3 − 2

√
e2xy yb2 − e2xb1

2y
√
e2xy

= 0

Setting the numerator to zero gives

(6E)−2 e2xxya2 − 2 e2xy2a3 − 2 e2x
√
e2xy a3 + e2xxb2 − 2 e2xya1

− 2 e2xya2 + 3 e2xyb3 + 2
√

e2xy yb2 + e2xb1 = 0

Simplifying the above gives

(6E)−2 e2xx y2a2 − 2 e2xy3a3 − 2 e2xa3y
√
e2xy + e2xxyb2 − 2 e2xy2a1

+ 3 e2xy2b3 − 2 e2xy2a2 + 2b2y2
√

e2xy + e2xyb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
e2xy, e2x

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
e2xy = v3, e2x = v4

}
The above PDE (6E) now becomes

(7E)−2v4v1v22a2 − 2v4v32a3 − 2v4v22a1 − 2v4v22a2 − 2v4a3v2v3
+ v4v1v2b2 + 2b2v22v3 + 3v4v22b3 + v4v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−2v4v1v22a2 + v4v1v2b2 − 2v4v32a3 + 2b2v22v3
+ (−2a1 − 2a2 + 3b3) v22v4 − 2v4a3v2v3 + v4v2b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−2a2 = 0
−2a3 = 0
2b2 = 0

−2a1 − 2a2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 =
3b3
2

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3
2

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(√

e2xy
y

)(
3
2

)
= 2y2 − 3

√
e2xy

2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y2−3
√

e2xy
2y

dy

Which results in

S =
2 ln

(
3 e4x − 2(e2xy)

3
2
)

3
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
e2xy
y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −4y 3
2 + 8 ex

−2y 3
2 + 3 ex

Sy = −
2√y

−2y 3
2 + 3 ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

4y2 − 8 ex√y + 2
√
e2xy

√
y
(
2y 3

2 − 3 ex
) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R + c1 (4)

Summary
The solution(s) found are the following

(1)2x+
2 ln

(
−2y 3

2 + 3 ex
)

3 = 2x+ c1
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Verification of solutions

2x+
2 ln

(
−2y 3

2 + 3 ex
)

3 = 2x+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
√
e2xy
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
√
e2xy (b3 − a2)

y
− e2xa3

y
+ e2x(xa2 + ya3 + a1)√

e2xy

−
(√

e2xy
y2

− e2x

2y
√
e2xy

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−2 e2xxya2 − 2 e2xy2a3 + 2 e2x
√
e2xy a3 + e2xxb2 − 2 e2xya1 − 2 e2xya2 + 3 e2xyb3 − 2

√
e2xy yb2 + e2xb1

2y
√
e2xy

= 0

8641



Setting the numerator to zero gives

(6E)2 e2xxya2 + 2 e2xy2a3 − 2 e2x
√
e2xy a3 − e2xxb2 + 2 e2xya1

+ 2 e2xya2 − 3 e2xyb3 + 2
√

e2xy yb2 − e2xb1 = 0

Simplifying the above gives

(6E)2 e2xx y2a2 + 2 e2xy3a3 − 2 e2xa3y
√
e2xy − e2xxyb2 + 2 e2xy2a1

− 3 e2xy2b3 + 2 e2xy2a2 + 2b2y2
√

e2xy − e2xyb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
e2xy, e2x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
e2xy = v3, e2x = v4

}
The above PDE (6E) now becomes

(7E)2v4v1v22a2 + 2v4v32a3 + 2v4v22a1 + 2v4v22a2 − 2v4a3v2v3
− v4v1v2b2 + 2b2v22v3 − 3v4v22b3 − v4v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

2v4v1v22a2−v4v1v2b2+2v4v32a3+2b2v22v3+(2a1+2a2−3b3) v22v4−2v4a3v2v3−v4v2b1 = 0
(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

2a2 = 0
−2a3 = 0
2a3 = 0
−b1 = 0
−b2 = 0
2b2 = 0

2a1 + 2a2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 =
3b3
2

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3
2

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
√
e2xy
y

)(
3
2

)
= 2y2 + 3

√
e2xy

2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y2+3
√

e2xy
2y

dy

Which results in

S =
2 ln

(
3 e4x + 2(e2xy)

3
2
)

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
e2xy
y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4y 3
2 + 8 ex

2y 3
2 + 3 ex

Sy =
2√y

2y 3
2 + 3 ex
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

4y2 + 8 ex√y − 2
√
e2xy

√
y
(
2y 3

2 + 3 ex
) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R + c1 (4)

Summary
The solution(s) found are the following

(1)2x+
2 ln

(
2y 3

2 + 3 ex
)

3 = 2x+ c1

Verification of solutions

2x+
2 ln

(
2y 3

2 + 3 ex
)

3 = 2x+ c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �

3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 67� �
dsolve(y(x)*diff(y(x),x)^2 = exp(2*x),y(x), singsol=all)� �

2y(x)2 + 3c1
√
y (x)− 3

√
e2xy (x)

3
√

y (x)
= 0

2y(x)2 + 3c1
√
y (x) + 3

√
e2xy (x)

3
√

y (x)
= 0
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3 Solution by Mathematica
Time used: 2.162 (sec). Leaf size: 47� �
DSolve[y[x] (y'[x])^2==Exp[2 x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
3
2

)2/3

(−ex + c1) 2/3

y(x) →
(
3
2

)2/3

(ex + c1) 2/3
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32.10 problem 944
32.10.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8648

Internal problem ID [4178]
Internal file name [OUTPUT/3671_Sunday_June_05_2022_10_07_32_AM_48963664/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 944.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

yy′
2 + 2axy′ − ya = 0

32.10.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2axp+ y p2 − ya = 0

Solving for y from the above results in

y = 2axp
−p2 + a

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2ap
−p2 + a

g = 0

Hence (2) becomes

p− 2ap
−p2 + a

= x

(
2a

−p2 + a
+ 4a p2

(−p2 + a)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 2ap
−p2 + a

= 0

Solving for p from the above gives

p = 0
p =

√
−a

p = −
√
−a

Substituting these in (1A) gives

y = 0

y = − ax√
−a

y = ax√
−a

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 2ap(x)

−p(x)2+a

x

(
2a

−p(x)2+a
+ 4ap(x)2(

−p(x)2+a
)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

2a
−p2+a

+ 4a p2
(−p2+a)2

)
p− 2ap

−p2+a

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2a
p (−p2 + a)

q(p) = 0

Hence the ode is

d

dp
x(p) + 2ax(p)

p (−p2 + a) = 0

The integrating factor µ is

µ = e
∫ 2a

p
(
−p2+a

)dp

= e− ln
(
p2−a

)
+2 ln(p)

Which simplifies to

µ = − p2

−p2 + a

The ode becomes

d
dpµx = 0

d
dp

(
− p2x

−p2 + a

)
= 0

Integrating gives

− p2x

−p2 + a
= c3

Dividing both sides by the integrating factor µ = − p2

−p2+a
results in

x(p) = c3(p2 − a)
p2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −ax+
√
a2x2 + ay2

y

p = −ax+
√
a2x2 + ay2

y

Substituting the above in the solution for x found above gives

x = − 2ac3x
−ax+

√
a (x2a+ y2)

x = 2ac3x
ax+

√
a (x2a+ y2)

Summary
The solution(s) found are the following

(1)y = 0
(2)y = − ax√

−a

(3)y = ax√
−a

(4)x = − 2ac3x
−ax+

√
a (x2a+ y2)

(5)x = 2ac3x
ax+

√
a (x2a+ y2)
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Verification of solutions

y = 0

Verified OK.

y = − ax√
−a

Verified OK.

y = ax√
−a

Verified OK.

x = − 2ac3x
−ax+

√
a (x2a+ y2)

Verified OK.

x = 2ac3x
ax+

√
a (x2a+ y2)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
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3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 113� �
dsolve(y(x)*diff(y(x),x)^2+2*a*x*diff(y(x),x)-a*y(x) = 0,y(x), singsol=all)� �

y(x) = x
√
−a

y(x) = −x
√
−a

y(x) = 0

y(x) = RootOf
(
− ln (x)−

(∫ _Z _a2 +
√
(_a2 + a) a+ a

_a (_a2 + a) d_a
)

+ c1

)
x

y(x) = RootOf
(
− ln (x) +

∫ _Z
−
_a2 −

√
(_a2 + a) a+ a

_a (_a2 + a) d_a+ c1

)
x

3 Solution by Mathematica
Time used: 8.189 (sec). Leaf size: 88� �
DSolve[y[x] (y'[x])^2+2 a x y'[x]-a y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

ec1
(
−2

√
ax+ ec1

)
y(x) →

√
ec1
(
−2

√
ax+ ec1

)
y(x) → 0
y(x) → −i

√
ax

y(x) → i
√
ax

8653



32.11 problem 945
32.11.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8654

Internal problem ID [4179]
Internal file name [OUTPUT/3672_Sunday_June_05_2022_10_07_41_AM_89640406/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 945.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

yy′
2 − 4a2xy′ + ya2 = 0

32.11.1 Solving as dAlembert ode

Let p = y′ the ode becomes

−4a2xp+ y a2 + y p2 = 0

Solving for y from the above results in

y = 4a2xp
a2 + p2

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 4a2p
a2 + p2

g = 0

Hence (2) becomes

p− 4a2p
a2 + p2

= x

(
4a2

a2 + p2
− 8a2p2

(a2 + p2)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 4a2p
a2 + p2

= 0

Solving for p from the above gives

p = 0
p =

√
3 a

p = −
√
3 a

Substituting these in (1A) gives

y = 0
y =

√
3 ax

y = −
√
3 ax

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 4a2p(x)

a2+p(x)2

x

(
4a2

a2+p(x)2 −
8a2p(x)2(
a2+p(x)2

)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

4a2
a2+p2

− 8a2p2
(a2+p2)2

)
p− 4a2p

a2+p2

(4)

This ODE is now solved for x(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − −4a4 + 4a2p2
3a4p+ 2a2p3 − p5

q(p) = 0

Hence the ode is

d

dp
x(p)− (−4a4 + 4a2p2)x(p)

3a4p+ 2a2p3 − p5
= 0

The integrating factor µ is

µ = e
∫
− −4a4+4a2p2

3a4p+2a2p3−p5 dp

= e− ln
(
a2+p2

)
+

ln
(
−3a2+p2

)
3 + 4 ln(p)

3

Which simplifies to

µ = (−3a2 + p2)
1
3 p

4
3

a2 + p2

The ode becomes
d
dpµx = 0

d
dp

(
(−3a2 + p2)

1
3 p

4
3x

a2 + p2

)
= 0

Integrating gives

(−3a2 + p2)
1
3 p

4
3x

a2 + p2
= c3

Dividing both sides by the integrating factor µ =
(
−3a2+p2

) 1
3 p

4
3

a2+p2
results in

x(p) = c3(a2 + p2)
(−3a2 + p2)

1
3 p

4
3
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
2ax+

√
4a2x2 − y2

)
a

y

p = −
(
−2ax+

√
4a2x2 − y2

)
a

y

Substituting the above in the solution for x found above gives

x = 2c3a2x2
1
3

y
(

2x2a4+a3x
√

4a2x2−y2−y2a2

y2

) 1
3
((

2ax+
√

4a2x2−y2
)
a

y

) 1
3

x = 2c3a2x2
1
3

y
(

2x2a4−a3x
√

4a2x2−y2−y2a2

y2

) 1
3
((

2ax−
√

4a2x2−y2
)
a

y

) 1
3

Summary
The solution(s) found are the following

(1)y = 0
(2)y =

√
3 ax

(3)y = −
√
3 ax

(4)x = 2c3a2x2
1
3

y
(

2x2a4+a3x
√

4a2x2−y2−y2a2

y2

) 1
3
((

2ax+
√

4a2x2−y2
)
a

y

) 1
3

(5)x = 2c3a2x2
1
3

y
(

2x2a4−a3x
√

4a2x2−y2−y2a2

y2

) 1
3
((

2ax−
√

4a2x2−y2
)
a

y

) 1
3
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Verification of solutions

y = 0

Verified OK.

y =
√
3 ax

Verified OK.

y = −
√
3 ax

Verified OK.

x = 2c3a2x2
1
3

y
(

2x2a4+a3x
√

4a2x2−y2−y2a2

y2

) 1
3
((

2ax+
√

4a2x2−y2
)
a

y

) 1
3

Verified OK.

x = 2c3a2x2
1
3

y
(

2x2a4−a3x
√

4a2x2−y2−y2a2

y2

) 1
3
((

2ax−
√

4a2x2−y2
)
a

y

) 1
3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 122� �
dsolve(y(x)*diff(y(x),x)^2-4*a^2*x*diff(y(x),x)+a^2*y(x) = 0,y(x), singsol=all)� �

y(x) = 0

y(x) = RootOf
(
− ln (x)−

(∫ _Z _a2 − 2a2 +
√
−_a2a2 + 4a4

_a (_a2 − 3a2) d_a
)
+ c1

)
x

y(x) = RootOf
(
− ln (x) +

∫ _Z
−_a2 − 2a2 −

√
−_a2a2 + 4a4

_a (_a2 − 3a2) d_a+ c1

)
x
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3 Solution by Mathematica
Time used: 8.731 (sec). Leaf size: 758� �
DSolve[y[x] (y'[x])^2-4 a^2 x y'[x]+a^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


8
(
4a2 − y(x)2

x2

)3/2
arcsinh

(√
y(x)
x

−2a
2
√
a

)
+
√
a
√

y(x)
ax

+ 2

√−
(

y(x)
x

− 2a
)2√

2a+ y(x)
x

√
4a2 − y(x)2

x2

(
log
(
3a2 − y(x)2

x2

)
− 8 arctan

(√
2a− y(x)

x√
2a+ y(x)

x

)
+ 4 log

(
y(x)
x

))
+ 4
√

y(x)
x

− 2a
(

y(x)2
x2 − 4a2

)
arctanh

√
4a2− y(x)2

x2

2a

− 2
√

y(x)
x

− 2a
(

y(x)2
x2 − 4a2

)
arctanh

√
4a2− y(x)2

x2

a


6
√
a

√
−
(

y(x)
x

− 2a
)2√

2a+ y(x)
x

√
y(x)
ax

+ 2
√

4a2 − y(x)2
x2

=

− log(x) + c1, y(x)



Solve


√
a
√

y(x)
ax

+ 2

√−
(

y(x)
x

− 2a
)2√

2a+ y(x)
x

√
4a2 − y(x)2

x2

(
log
(
3a2 − y(x)2

x2

)
+ 8arctan

(√
2a− y(x)

x√
2a+ y(x)

x

)
+ 4 log

(
y(x)
x

))
− 4
√

y(x)
x

− 2a
(

y(x)2
x2 − 4a2

)
arctanh

√
4a2− y(x)2

x2

2a

+ 2
√

y(x)
x

− 2a
(

y(x)2
x2 − 4a2

)
arctanh

√
4a2− y(x)2

x2

a

− 8
(
4a2 − y(x)2

x2

)3/2
arcsinh

(√
y(x)
x

−2a
2
√
a

)

6
√
a

√
−
(

y(x)
x

− 2a
)2√

2a+ y(x)
x

√
y(x)
ax

+ 2
√

4a2 − y(x)2
x2

=

− log(x) + c1, y(x)


y(x) → 0
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32.12 problem 946
32.12.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8661

Internal problem ID [4180]
Internal file name [OUTPUT/3673_Sunday_June_05_2022_10_07_49_AM_84476546/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 946.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

yy′
2 + axy′ + yb = 0

32.12.1 Solving as dAlembert ode

Let p = y′ the ode becomes

axp+ y p2 + by = 0

Solving for y from the above results in

y = − axp

p2 + b
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = − ap

p2 + b

g = 0

Hence (2) becomes

p+ ap

p2 + b
= x

(
− a

p2 + b
+ 2a p2

(p2 + b)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ ap

p2 + b
= 0

Solving for p from the above gives

p = 0
p =

√
−a− b

p = −
√
−a− b

Substituting these in (1A) gives

y = 0
y =

√
−a− b x

y = −
√
−a− b x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + ap(x)

p(x)2+b

x

(
− a

p(x)2+b
+ 2ap(x)2(

p(x)2+b
)2
) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= p(p2 + a+ b) (p2 + b)
(p2 − b) ax
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Where f(x) = 1
ax

and g(p) = p
(
p2+a+b

)(
p2+b

)
p2−b

. Integrating both sides gives

1
p(p2+a+b)(p2+b)

p2−b

dp = 1
ax

dx

∫ 1
p(p2+a+b)(p2+b)

p2−b

dp =
∫ 1

ax
dx

−(a+ 2b) ln (p2 + a+ b)
2 (a+ b) a + ln (p2 + b)

a
− ln (p)

a+ b
= ln (x)

a
+ c1

Raising both side to exponential gives

e−
(a+2b) ln

(
p2+a+b

)
2(a+b)a +

ln
(
p2+b

)
a

− ln(p)
a+b = e

ln(x)
a

+c1

Which simplifies to (
p2 + a+ b

)− a+2b
2(a+b)a

(
p2 + b

) 1
a p−

1
a+b = c2e

ln(x)
a

Which simplifies to

p(x) = RootOf
(
c2x

1
a_Z

1
a+b −

(
_Z2 + a+ b

)− a+2b
2(a+b)a

(
_Z2 + b

) 1
a

)
Substituing the above solution for p in (2A) gives

y = −
axRootOf

(
c2x

1
a_Z

1
a+b −

(
_Z2 + a+ b

)− a+2b
2(a+b)a

(
_Z2 + b

) 1
a

)
RootOf

(
c2x

1
a_Z

1
a+b −

(
_Z2 + a+ b

)− a+2b
2(a+b)a

(
_Z2 + b

) 1
a

)2
+ b

Summary
The solution(s) found are the following

(1)y = 0
(2)y =

√
−a− b x

(3)y = −
√
−a− b x

(4)y = −
axRootOf

(
c2x

1
a_Z

1
a+b −

(
_Z2 + a+ b

)− a+2b
2(a+b)a

(
_Z2 + b

) 1
a

)
RootOf

(
c2x

1
a_Z

1
a+b −

(
_Z2 + a+ b

)− a+2b
2(a+b)a

(
_Z2 + b

) 1
a

)2
+ b
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Verification of solutions

y = 0

Verified OK.

y =
√
−a− b x

Verified OK.

y = −
√
−a− b x

Verified OK.

y = −
axRootOf

(
c2x

1
a_Z

1
a+b −

(
_Z2 + a+ b

)− a+2b
2(a+b)a

(
_Z2 + b

) 1
a

)
RootOf

(
c2x

1
a_Z

1
a+b −

(
_Z2 + a+ b

)− a+2b
2(a+b)a

(
_Z2 + b

) 1
a

)2
+ b

Warning, solution could not be verified

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.453 (sec). Leaf size: 108� �
dsolve(y(x)*diff(y(x),x)^2+a*x*diff(y(x),x)+b*y(x) = 0,y(x), singsol=all)� �

y(x) = 0

y(x) = RootOf
(
−2 ln (x)−

(∫ _Z 2_a2 +
√
−4_a2b+ a2 + a

_a (_a2 + a+ b) d_a
)
+ 2c1

)
x

y(x) = RootOf
(
−2 ln (x) +

∫ _Z
−2_a2 + a−

√
−4_a2b+ a2

_a (_a2 + a+ b) d_a+ 2c1
)
x
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3 Solution by Mathematica
Time used: 0.617 (sec). Leaf size: 162� �
DSolve[y[x] (y'[x])^2+a x y'[x]+b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

a log
(√

a2 − 4by(x)2
x2 + a

)
+ (a+ 2b) log

(√
a2 − 4by(x)2

x2 − a− 2b
)

4(a+ b) =

− log(x)
2 + c1, y(x)



Solve

a log
(√

a2 − 4by(x)2
x2 − a

)
+ (a+ 2b) log

(√
a2 − 4by(x)2

x2 + a+ 2b
)

4(a+ b) =

− log(x)
2 + c1, y(x)


y(x) → 0
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32.13 problem 947
32.13.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8666

Internal problem ID [4181]
Internal file name [OUTPUT/3674_Sunday_June_05_2022_10_08_00_AM_51429297/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 947.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , _dAlembert]

yy′
2 − (−2bx+ a) y′ − yb = 0

32.13.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y p2 − (−2bx+ a) p− by = 0

Solving for y from the above results in

y = 2bpx
−p2 + b

− ap

−p2 + b
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2bp
−p2 + b

g = − ap

−p2 + b

Hence (2) becomes

p− 2bp
−p2 + b

=
(
x

(
2b

−p2 + b
+ 4b p2

(−p2 + b)2
)
− a

−p2 + b
− 2a p2

(−p2 + b)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 2bp
−p2 + b

= 0

Solving for p from the above gives

p = 0
p =

√
−b

p = −
√
−b

Substituting these in (1A) gives

y = 0

y = −2bx+ a

2
√
−b

y = 2bx− a

2
√
−b

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 2bp(x)

−p(x)2+b

x

(
2b

−p(x)2+b
+ 4bp(x)2(

−p(x)2+b
)2
)

− a
−p(x)2+b

− 2ap(x)2(
−p(x)2+b

)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

2b
−p2+b

+ 4b p2
(−p2+b)2

)
− a

−p2+b
− 2a p2

(−p2+b)2

p− 2bp
−p2+b

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2b
p (−p2 + b)

q(p) = a

p (−p2 + b)

Hence the ode is

d

dp
x(p) + 2bx(p)

p (−p2 + b) = a

p (−p2 + b)

The integrating factor µ is

µ = e
∫ 2b

p
(
−p2+b

)dp

= e− ln
(
p2−b

)
+2 ln(p)

Which simplifies to

µ = − p2

−p2 + b

The ode becomes

d
dp(µx) = (µ)

(
a

p (−p2 + b)

)
d
dp

(
− p2x

−p2 + b

)
=
(
− p2

−p2 + b

)(
a

p (−p2 + b)

)
d
(
− p2x

−p2 + b

)
=
(
− pa

(−p2 + b)2
)

dp

Integrating gives

− p2x

−p2 + b
=
∫

− pa

(−p2 + b)2
dp

− p2x

−p2 + b
= a

2p2 − 2b + c3
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Dividing both sides by the integrating factor µ = − p2

−p2+b
results in

x(p) = a

2p2 + c3(p2 − b)
p2

which simplifies to

x(p) = (2p2 − 2b) c3 + a

2p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −2bx+ a+
√
4b2x2 + 4by2 − 4abx+ a2

2y

p = −2bx+
√
4b2x2 + 4by2 − 4abx+ a2 − a

2y

Substituting the above in the solution for x found above gives

x = 2c3(−2bx+ a)
√
4b2x2 + 4by2 − 4abx+ a2 + 2(−2bx+ a)2 c3 + 2ay2(

−2bx+ a+
√
4b2x2 + 4by2 − 4abx+ a2

)2
x = −2c3(−2bx+ a)

√
4b2x2 + 4by2 − 4abx+ a2 + 2(−2bx+ a)2 c3 + 2ay2(

−2bx+ a−
√
4b2x2 + 4by2 − 4abx+ a2

)2
Summary
The solution(s) found are the following

(1)y = 0

(2)y = −2bx+ a

2
√
−b

(3)y = 2bx− a

2
√
−b

(4)x = 2c3(−2bx+ a)
√
4b2x2 + 4by2 − 4abx+ a2 + 2(−2bx+ a)2 c3 + 2ay2(

−2bx+ a+
√
4b2x2 + 4by2 − 4abx+ a2

)2
(5)x = −2c3(−2bx+ a)

√
4b2x2 + 4by2 − 4abx+ a2 + 2(−2bx+ a)2 c3 + 2ay2(

−2bx+ a−
√
4b2x2 + 4by2 − 4abx+ a2

)2
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Verification of solutions

y = 0

Verified OK.

y = −2bx+ a

2
√
−b

Verified OK.

y = 2bx− a

2
√
−b

Verified OK.

x = 2c3(−2bx+ a)
√
4b2x2 + 4by2 − 4abx+ a2 + 2(−2bx+ a)2 c3 + 2ay2(

−2bx+ a+
√
4b2x2 + 4by2 − 4abx+ a2

)2
Verified OK.

x = −2c3(−2bx+ a)
√
4b2x2 + 4by2 − 4abx+ a2 + 2(−2bx+ a)2 c3 + 2ay2(

−2bx+ a−
√
4b2x2 + 4by2 − 4abx+ a2

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[-1/2/b*(-2*b*x+a), y], [1/4/b*(8*b^2*x^2-6*a*b*x+4*b*y^2+a^2), b*x*y], [1/8*(� �
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3 Solution by Maple
Time used: 0.406 (sec). Leaf size: 149� �
dsolve(y(x)*diff(y(x),x)^2-(-2*b*x+a)*diff(y(x),x)-b*y(x) = 0,y(x), singsol=all)� �

y(x) = −−2bx+ a

2
√
−b

y(x) = −2bx+ a

2
√
−b

y(x) = 0

y(x) =

√√√√c1b+
√
c1b (−2bx+ a)2

b

y(x) =

√√√√
−
−c1b+

√
c1b (−2bx+ a)2

b

y(x) = −

√√√√c1b+
√
c1b (−2bx+ a)2

b

y(x) = −

√√√√c1b−
√
c1b (−2bx+ a)2

b
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3 Solution by Mathematica
Time used: 1.067 (sec). Leaf size: 409� �
DSolve[y[x] (y'[x])^2-(a-2 b x)y'[x]-b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve


(
b−

√
b2
)
log(y(x))

b

−
−b log

(√
a2 − 4abx+ 4b (bx2 + y(x)2)− a− 2

√
b2x
)
+
√
b2 log

(
b
(√

a2 − 4abx+ 4b (bx2 + y(x)2)− a− 2
√
b2x
))

−
(√

b2 + b
)
log
(√

a2 − 4abx+ 4b (bx2 + y(x)2) + a− 2
√
b2x
)

2
√
b2

= c1, y(x)


Solve

−b log
(√

a2 − 4abx+ 4b (bx2 + y(x)2)− a− 2
√
b2x
)
+
√
b2 log

(
b
(√

a2 − 4abx+ 4b (bx2 + y(x)2)− a− 2
√
b2x
))

−
(√

b2 + b
)
log
(√

a2 − 4abx+ 4b (bx2 + y(x)2) + a− 2
√
b2x
)

2
√
b2

+

(√
b2 + b

)
log(y(x))

b
= c1, y(x)


y(x) → − i(2bx− a)

2
√
b

y(x) → i(2bx− a)
2
√
b
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32.14 problem 948
Internal problem ID [4182]
Internal file name [OUTPUT/3675_Sunday_June_05_2022_10_08_27_AM_77530541/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 948.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

yy′
2 + y′x3 − x2y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−x2 +

√
x4 + 4y2

)
x

2y (1)

y′ = −
(
x2 +

√
x4 + 4y2

)
x

2y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
−x2 +

√
x4 + 4y2

)
x

2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x2 +

√
x4 + 4y2

)
x(b3 − a2)

2y −
(
−x2 +

√
x4 + 4y2

)2
x2a3

4y2

−


(
−2x+ 2x3√

x4+4y2

)
x

2y + −x2 +
√
x4 + 4y2

2y

 (xa2 + ya3 + a1)

−

(
−
(
−x2 +

√
x4 + 4y2

)
x

2y2 + 2x√
x4 + 4y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−2x8a3 +
√
x4 + 4y2 x6a3 − 2x6b2 + 8x5ya2 − 4x5yb3 − 2x4y2a3 + (x4 + 4y2)

3
2 x2a3 + 2

√
x4 + 4y2 x4b2 − 8

√
x4 + 4y2 x3ya2 + 4

√
x4 + 4y2 x3yb3 − 6

√
x4 + 4y2 x2y2a3 − 2x5b1 + 6x4ya1 + 2

√
x4 + 4y2 x3b1 − 6

√
x4 + 4y2 x2ya1 + 16x y3a2 − 8x y3b3 + 8y4a3 − 4b2y2

√
x4 + 4y2 + 8y3a1

4y2
√
x4 + 4y2

= 0

Setting the numerator to zero gives

(6E)

2x8a3 −
√

x4 + 4y2 x6a3 + 2x6b2 − 8x5ya2 + 4x5yb3 + 2x4y2a3

−
(
x4 + 4y2

) 3
2 x2a3 − 2

√
x4 + 4y2 x4b2 + 8

√
x4 + 4y2 x3ya2

− 4
√

x4 + 4y2 x3yb3 + 6
√

x4 + 4y2 x2y2a3 + 2x5b1 − 6x4ya1

− 2
√

x4 + 4y2 x3b1 + 6
√

x4 + 4y2 x2ya1 − 16x y3a2
+ 8x y3b3 − 8y4a3 + 4b2y2

√
x4 + 4y2 − 8y3a1 = 0
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Simplifying the above gives

(6E)

−
√

x4 + 4y2 x6a3 + 2
(
x4 + 4y2

)
x4a3 − 4x5ya2 − 4x4y2a3

−
(
x4 + 4y2

) 3
2 x2a3 − 2

√
x4 + 4y2 x4b2 + 8

√
x4 + 4y2 x3ya2

− 4
√

x4 + 4y2 x3yb3 + 6
√

x4 + 4y2 x2y2a3 − 4x4ya1 + 2
(
x4 + 4y2

)
x2b2

− 4
(
x4 + 4y2

)
xya2 + 4

(
x4 + 4y2

)
xyb3 − 2

(
x4 + 4y2

)
y2a3

− 2
√

x4 + 4y2 x3b1 + 6
√

x4 + 4y2 x2ya1 − 8x2y2b2 − 8x y3b3
+ 2
(
x4 + 4y2

)
xb1 − 2

(
x4 + 4y2

)
ya1 + 4b2y2

√
x4 + 4y2 − 8x y2b1 = 0

Since the PDE has radicals, simplifying gives

2x8a3 − 2
√

x4 + 4y2 x6a3 + 2x6b2 − 8x5ya2 + 4x5yb3 + 2x4y2a3 + 2x5b1

− 2
√

x4 + 4y2 x4b2 − 6x4ya1 + 8
√

x4 + 4y2 x3ya2 − 4
√

x4 + 4y2 x3yb3

+ 2
√
x4 + 4y2 x2y2a3 − 2

√
x4 + 4y2 x3b1 + 6

√
x4 + 4y2 x2ya1

− 16x y3a2 + 8x y3b3 − 8y4a3 + 4b2y2
√
x4 + 4y2 − 8y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4 + 4y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x4 + 4y2 = v3

}
The above PDE (6E) now becomes

(7E)2v81a3 − 2v3v61a3 − 8v51v2a2 + 2v41v22a3 + 2v61b2 + 4v51v2b3 − 6v41v2a1
+ 8v3v31v2a2 + 2v3v21v22a3 + 2v51b1 − 2v3v41b2 − 4v3v31v2b3 + 6v3v21v2a1
− 16v1v32a2 − 8v42a3 − 2v3v31b1 + 8v1v32b3 − 8v32a1 + 4b2v22v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)2v81a3 − 2v3v61a3 + 2v61b2 + (−8a2 + 4b3) v51v2 + 2v51b1 + 2v41v22a3
− 6v41v2a1 − 2v3v41b2 + (8a2 − 4b3) v31v2v3 − 2v3v31b1 + 2v3v21v22a3
+ 6v3v21v2a1 + (−16a2 + 8b3) v1v32 − 8v42a3 − 8v32a1 + 4b2v22v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−8a1 = 0
−6a1 = 0
6a1 = 0

−8a3 = 0
−2a3 = 0
2a3 = 0

−2b1 = 0
2b1 = 0

−2b2 = 0
2b2 = 0
4b2 = 0

−16a2 + 8b3 = 0
−8a2 + 4b3 = 0
8a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
((

−x2 +
√
x4 + 4y2

)
x

2y

)
(x)

= x4 −
√
x4 + 4y2 x2 + 4y2

2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4−
√

x4+4y2 x2+4y2
2y

dy

Which results in

S = ln (y)
2 −

x2 ln
(

2x4+2
√
x4
√

x4+4y2
y

)
2
√
x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−x2 +

√
x4 + 4y2

)
x

2y
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x2 +
√
x4 + 4y2

x
√
x4 + 4y2

Sy =
√
x4 + 4y2 x2 + x4 + 2y2

y
√
x4 + 4y2

(
x2 +

√
x4 + 4y2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − x4 +

√
x4 + 4y2 x2 + 4y2

x
√
x4 + 4y2

(
x2 +

√
x4 + 4y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

Which gives

y = e
ln(2)
2 +

ln
(
2 e2c1e−2c1x2+8 e4c1e−2c1

)
2 +c1

Summary
The solution(s) found are the following

(1)y = e
ln(2)
2 +

ln
(
2 e2c1e−2c1x2+8 e4c1e−2c1

)
2 +c1

Verification of solutions

y = e
ln(2)
2 +

ln
(
2 e2c1e−2c1x2+8 e4c1e−2c1

)
2 +c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −
(
x2 +

√
x4 + 4y2

)
x

2y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
x2 +

√
x4 + 4y2

)
x(b3 − a2)

2y −
(
x2 +

√
x4 + 4y2

)2
x2a3

4y2

−

−

(
2x+ 2x3√

x4+4y2

)
x

2y − x2 +
√
x4 + 4y2
2y

 (xa2 + ya3 + a1)

−

(
− 2x√

x4 + 4y2
+
(
x2 +

√
x4 + 4y2

)
x

2y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x8a3 +
√
x4 + 4y2 x6a3 + 2x6b2 − 8x5ya2 + 4x5yb3 + 2x4y2a3 + (x4 + 4y2)

3
2 x2a3 + 2

√
x4 + 4y2 x4b2 − 8

√
x4 + 4y2 x3ya2 + 4

√
x4 + 4y2 x3yb3 − 6

√
x4 + 4y2 x2y2a3 + 2x5b1 − 6x4ya1 + 2

√
x4 + 4y2 x3b1 − 6

√
x4 + 4y2 x2ya1 − 16x y3a2 + 8x y3b3 − 8y4a3 − 4b2y2

√
x4 + 4y2 − 8y3a1

4y2
√
x4 + 4y2

= 0
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Setting the numerator to zero gives

(6E)

−2x8a3 −
√
x4 + 4y2 x6a3 − 2x6b2 + 8x5ya2 − 4x5yb3 − 2x4y2a3

−
(
x4 + 4y2

) 3
2 x2a3 − 2

√
x4 + 4y2 x4b2 + 8

√
x4 + 4y2 x3ya2

− 4
√

x4 + 4y2 x3yb3 + 6
√
x4 + 4y2 x2y2a3 − 2x5b1 + 6x4ya1

− 2
√

x4 + 4y2 x3b1 + 6
√
x4 + 4y2 x2ya1 + 16x y3a2

− 8x y3b3 + 8y4a3 + 4b2y2
√

x4 + 4y2 + 8y3a1 = 0

Simplifying the above gives

(6E)

−
√

x4 + 4y2 x6a3 − 2
(
x4 + 4y2

)
x4a3 + 4x5ya2 + 4x4y2a3

−
(
x4 + 4y2

) 3
2 x2a3 − 2

√
x4 + 4y2 x4b2 + 8

√
x4 + 4y2 x3ya2

− 4
√

x4 + 4y2 x3yb3 + 6
√

x4 + 4y2 x2y2a3 + 4x4ya1 − 2
(
x4 + 4y2

)
x2b2

+ 4
(
x4 + 4y2

)
xya2 − 4

(
x4 + 4y2

)
xyb3 + 2

(
x4 + 4y2

)
y2a3

− 2
√

x4 + 4y2 x3b1 + 6
√

x4 + 4y2 x2ya1 + 8x2y2b2 + 8x y3b3
− 2
(
x4 + 4y2

)
xb1 + 2

(
x4 + 4y2

)
ya1 + 4b2y2

√
x4 + 4y2 + 8x y2b1 = 0

Since the PDE has radicals, simplifying gives

−2x8a3 − 2
√

x4 + 4y2 x6a3 − 2x6b2 + 8x5ya2 − 4x5yb3 − 2x4y2a3 − 2x5b1

− 2
√

x4 + 4y2 x4b2 + 6x4ya1 + 8
√
x4 + 4y2 x3ya2 − 4

√
x4 + 4y2 x3yb3

+ 2
√

x4 + 4y2 x2y2a3 − 2
√
x4 + 4y2 x3b1 + 6

√
x4 + 4y2 x2ya1

+ 16x y3a2 − 8x y3b3 + 8y4a3 + 4b2y2
√

x4 + 4y2 + 8y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4 + 4y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x4 + 4y2 = v3

}
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The above PDE (6E) now becomes

(7E)−2v81a3 − 2v3v61a3 + 8v51v2a2 − 2v41v22a3 − 2v61b2 − 4v51v2b3 + 6v41v2a1
+ 8v3v31v2a2 + 2v3v21v22a3 − 2v51b1 − 2v3v41b2 − 4v3v31v2b3 + 6v3v21v2a1
+ 16v1v32a2 + 8v42a3 − 2v3v31b1 − 8v1v32b3 + 8v32a1 + 4b2v22v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v81a3 − 2v3v61a3 − 2v61b2 + (8a2 − 4b3) v51v2 − 2v51b1 − 2v41v22a3
+ 6v41v2a1 − 2v3v41b2 + (8a2 − 4b3) v31v2v3 − 2v3v31b1 + 2v3v21v22a3
+ 6v3v21v2a1 + (16a2 − 8b3) v1v32 + 8v42a3 + 8v32a1 + 4b2v22v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
8a1 = 0

−2a3 = 0
2a3 = 0
8a3 = 0

−2b1 = 0
−2b2 = 0
4b2 = 0

8a2 − 4b3 = 0
16a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−
(
x2 +

√
x4 + 4y2

)
x

2y

)
(x)

= x4 +
√
x4 + 4y2 x2 + 4y2

2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4+
√

x4+4y2 x2+4y2
2y

dy

Which results in

S = ln (y)
2 +

x2 ln
(

2x4+2
√
x4
√

x4+4y2
y

)
2
√
x4
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
x2 +

√
x4 + 4y2

)
x

2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 +
√
x4 + 4y2

x
√
x4 + 4y2

Sy =
2y√

x4 + 4y2
(
x2 +

√
x4 + 4y2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

Summary
The solution(s) found are the following

(1)ln (2)
2 + ln (x) +

ln
(
x2 +

√
x4 + 4y2

)
2 = ln (x) + c1
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Verification of solutions

ln (2)
2 + ln (x) +

ln
(
x2 +

√
x4 + 4y2

)
2 = ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[1/2*x, y]� �
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3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 89� �
dsolve(y(x)*diff(y(x),x)^2+x^3*diff(y(x),x)-x^2*y(x) = 0,y(x), singsol=all)� �

y(x) = −ix2

2
y(x) = ix2

2
y(x) = 0

y(x) = −
√

c1 (−4x2 + c1)
4

y(x) =
√

c1 (−4x2 + c1)
4

y(x) = −2
√
c1x2 + 4
c1

y(x) = 2
√
c1x2 + 4
c1

3 Solution by Mathematica
Time used: 1.28 (sec). Leaf size: 244� �
DSolve[y[x] (y'[x])^2+x^3 y'[x]-x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

√x6 + 4x2y(x)2 log
(√

x4 + 4y(x)2 + x2
)

2x
√
x4 + 4y(x)2

+ 1
2

(
1−

√
x6 + 4x2y(x)2

x
√

x4 + 4y(x)2

)
log(y(x)) = c1, y(x)


Solve

1
2

(√
x6 + 4x2y(x)2

x
√
x4 + 4y(x)2

+ 1
)
log(y(x))

−

√
x6 + 4x2y(x)2 log

(√
x4 + 4y(x)2 + x2

)
2x
√
x4 + 4y(x)2

= c1, y(x)


y(x) → − ix2

2
y(x) → ix2

2

8686



32.15 problem 949
32.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8689

Internal problem ID [4183]
Internal file name [OUTPUT/3676_Sunday_June_05_2022_10_08_35_AM_76996881/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 949.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "quadrature", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_quadrature]

yy′
2 + (−y + x) y′ = x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 (1)

y′ = −x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

1 dx

= x+ c1

Summary
The solution(s) found are the following

(1)y = x+ c1
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Verification of solutions

y = x+ c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y

Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c2

Which results in
y =

√
−x2 + 2c2

y = −
√

−x2 + 2c2

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c2
(2)y = −

√
−x2 + 2c2

Verification of solutions

y =
√

−x2 + 2c2

Verified OK.

y = −
√

−x2 + 2c2

Verified OK.
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32.15.1 Maple step by step solution

Let’s solve
yy′2 + (−y + x) y′ = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
yy′2 + (−y + x) y′

)
dx =

∫
xdx+ c1

• Cannot compute integral∫ (
yy′2 + (−y + x) y′

)
dx = x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(y(x)*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)-x = 0,y(x), singsol=all)� �

y(x) =
√
−x2 + c1

y(x) = −
√

−x2 + c1
y(x) = c1 + x
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3 Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 47� �
DSolve[y[x] (y'[x])^2+(x-y[x])y'[x]-x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1
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32.16 problem 950
32.16.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8691

Internal problem ID [4184]
Internal file name [OUTPUT/3677_Sunday_June_05_2022_10_08_44_AM_29785231/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 950.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

yy′
2 − (y + x) y′ + y = 0

32.16.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y p2 − (y + x) p+ y = 0

Solving for y from the above results in

y = xp

p2 − p+ 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

p2 − p+ 1
g = 0

Hence (2) becomes

p− p

p2 − p+ 1 = x

(
1

p2 − p+ 1 − p(2p− 1)
(p2 − p+ 1)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p

p2 − p+ 1 = 0

Solving for p from the above gives

p = 1
p = 0
p = 0

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y = 0
y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)

p(x)2−p(x)+1

x

(
1

p(x)2−p(x)+1 −
p(x)(2p(x)−1)(
p(x)2−p(x)+1

)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1
p2−p+1 −

p(2p−1)
(p2−p+1)2

)
p− p

p2−p+1
(4)

This ODE is now solved for x(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − −p− 1
(p2 − p+ 1) p2

q(p) = 0

Hence the ode is

d

dp
x(p)− (−p− 1)x(p)

(p2 − p+ 1) p2 = 0

The integrating factor µ is

µ = e
∫
− −p−1(

p2−p+1
)
p2

dp

= e− ln
(
p2−p+1

)
− 1

p
+2 ln(p)

Which simplifies to

µ = p2e−
1
p

p2 − p+ 1

The ode becomes

d
dpµx = 0

d
dp

(
p2e−

1
px

p2 − p+ 1

)
= 0

Integrating gives

p2e−
1
px

p2 − p+ 1 = c2

Dividing both sides by the integrating factor µ = p2e−
1
p

p2−p+1 results in

x(p) = c2(p2 − p+ 1) e
1
p

p2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y + x+
√
−3y2 + 2yx+ x2

2y

p = −−y − x+
√
−3y2 + 2yx+ x2

2y
Substituting the above in the solution for x found above gives

x = 2c2x e
2y

y+x+
√

(3y+x)(−y+x)

y + x+
√
(3y + x) (−y + x)

x = 2c2x e
2y

y+x−
√

(3y+x)(−y+x)

y + x−
√
(3y + x) (−y + x)

Summary
The solution(s) found are the following

(1)y = 0
(2)y = x

(3)x = 2c2x e
2y

y+x+
√

(3y+x)(−y+x)

y + x+
√
(3y + x) (−y + x)

(4)x = 2c2x e
2y

y+x−
√

(3y+x)(−y+x)

y + x−
√
(3y + x) (−y + x)

Verification of solutions

y = 0

Verified OK.
y = x

Verified OK.

x = 2c2x e
2y

y+x+
√

(3y+x)(−y+x)

y + x+
√

(3y + x) (−y + x)

Verified OK.

x = 2c2x e
2y

y+x−
√

(3y+x)(−y+x)

y + x−
√
(3y + x) (−y + x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 176� �
dsolve(y(x)*diff(y(x),x)^2-(x+y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �
y(x) = x
y(x) = 0

−x
√

(3y(x)+x)(x−y(x))
x2 + 2y(x) ln

(
y(x)
x

)
+
(
−2 arctanh

(
x+y(x)

x
√

(3y(x)+x)(x−y(x))
x2

)
− 2c1 + 2 ln (x)

)
y(x)− x

2y (x)
= 0
x
√

(3y(x)+x)(x−y(x))
x2 + 2y(x) ln

(
y(x)
x

)
+
(
2 arctanh

(
x+y(x)

x
√

(3y(x)+x)(x−y(x))
x2

)
− 2c1 + 2 ln (x)

)
y(x)− x

2y (x)
= 0
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3 Solution by Mathematica
Time used: 4.229 (sec). Leaf size: 320� �
DSolve[y[x] (y'[x])^2-(x+y[x])y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−
x

(
−i
√

y(x)
x

− 1
√

3y(x)
x

+ 1 +
4y(x) log

(√
3y(x)

x
−3−

√
3y(x)

x
+1
)

x
−

4y(x) log
(
−i
(

3y(x)
x

+1
)
+i
√

3y(x)
x

−3
√

3y(x)
x

+1+
√

2+2i
√
3
)

x
+ 1
)

4y(x) =

− log(x)
2 + c1, y(x)



Solve

−
x

(
i
√

y(x)
x

− 1
√

3y(x)
x

+ 1 +
4y(x) log

(√
3y(x)

x
−3−

√
3y(x)

x
+1
)

x
−

4y(x) log
(
i
(

3y(x)
x

+1
)
−i
√

3y(x)
x

−3
√

3y(x)
x

+1+
√

2−2i
√
3
)

x
+ 1
)

4y(x) =

− log(x)
2 + c1, y(x)


y(x) → 0
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32.17 problem 951
32.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8698

Internal problem ID [4185]
Internal file name [OUTPUT/3678_Sunday_June_05_2022_10_08_52_AM_945372/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 951.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′
2 − (1 + yx) y′ = −x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x (1)

y′ = 1
y

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

x dx

= x2

2 + c1

Summary
The solution(s) found are the following

(1)y = x2

2 + c1
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Verification of solutions

y = x2

2 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
ydy = x+ c2

y2

2 = x+ c2

Solving for y gives these solutions

y1 =
√
2c2 + 2x

y2 = −
√
2c2 + 2x

Summary
The solution(s) found are the following

(1)y =
√
2c2 + 2x

(2)y = −
√
2c2 + 2x

Verification of solutions

y =
√
2c2 + 2x

Verified OK.

y = −
√
2c2 + 2x

Verified OK.

32.17.1 Maple step by step solution

Let’s solve
yy′2 − (1 + yx) y′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x
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∫ (
yy′2 − (1 + yx) y′

)
dx =

∫
−xdx+ c1

• Cannot compute integral∫ (
yy′2 − (1 + yx) y′

)
dx = −x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(y(x)*diff(y(x),x)^2-(1+x*y(x))*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) =
√
2x+ c1

y(x) = −
√
2x+ c1

y(x) = x2

2 + c1

3 Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 52� �
DSolve[y[x] (y'[x])^2-(1+x y[x])y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2
√
x+ c1

y(x) →
√
2
√
x+ c1

y(x) → x2

2 + c1
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32.18 problem 952
32.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8702

Internal problem ID [4186]
Internal file name [OUTPUT/3679_Sunday_June_05_2022_10_09_00_AM_28717882/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 952.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "quadrature", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_quadrature]

yy′
2 +

(
x− y2

)
y′ − yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y (1)

y′ = −x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
y
dy = x+ c1

ln (y) = x+ c1

y = ex+c1

y = c1ex
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Summary
The solution(s) found are the following

(1)y = c1ex

Verification of solutions

y = c1ex

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y

Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c2

Which results in
y =

√
−x2 + 2c2

y = −
√

−x2 + 2c2

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c2
(2)y = −

√
−x2 + 2c2
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Verification of solutions

y =
√

−x2 + 2c2

Verified OK.

y = −
√

−x2 + 2c2

Verified OK.

32.18.1 Maple step by step solution

Let’s solve
yy′2 + (x− y2) y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
1dx+ c1

• Evaluate integral
ln (y) = x+ c1

• Solve for y
y = ex+c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(y(x)*diff(y(x),x)^2+(x-y(x)^2)*diff(y(x),x)-x*y(x) = 0,y(x), singsol=all)� �

y(x) =
√
−x2 + c1

y(x) = −
√

−x2 + c1
y(x) = exc1

3 Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 54� �
DSolve[y[x] (y'[x])^2+(x-y[x]^2)y'[x]-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1

y(x) → 0
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32.19 problem 953
32.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8705

Internal problem ID [4187]
Internal file name [OUTPUT/3680_Sunday_June_05_2022_10_09_09_AM_77027191/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 953.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

yy′
2 + y = a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

−y (y − a)
y

(1)

y′ = −
√
−y (y − a)

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
y√

−y (−a+ y)
dy =

∫
dx

−
√
ya− y2 +

a arctan
(

y−a
2√

ya−y2

)
2 = x+ c1
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Summary
The solution(s) found are the following

(1)−
√
ya− y2 +

a arctan
(

y−a
2√

ya−y2

)
2 = x+ c1

Verification of solutions

−
√
ya− y2 +

a arctan
(

y−a
2√

ya−y2

)
2 = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− y√

−y (−a+ y)
dy =

∫
dx

√
ya− y2 −

a arctan
(

y−a
2√

ya−y2

)
2 = x+ c2

Summary
The solution(s) found are the following

(1)
√

ya− y2 −
a arctan

(
y−a

2√
ya−y2

)
2 = x+ c2

Verification of solutions

√
ya− y2 −

a arctan
(

y−a
2√

ya−y2

)
2 = x+ c2

Verified OK.

32.19.1 Maple step by step solution

Let’s solve
yy′2 + y = a

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′y√

−y(y−a) = 1

• Integrate both sides with respect to x∫
y′y√

−y(y−a)dx =
∫
1dx+ c1

• Evaluate integral

−
√
ya− y2 +

a arctan
(

y−a
2√

ya−y2

)
2 = x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 339� �
dsolve(y(x)*diff(y(x),x)^2+y(x) = a,y(x), singsol=all)� �
y(x) = a
y(x)

= (RootOf ((cos (_Z) a+ a_Z+ 2c1 − 2x) (− cos (_Z) a+ a_Z+ 2c1 − 2x)) a− 2x+ 2c1) tan (RootOf ((cos (_Z) a+ a_Z+ 2c1 − 2x) (− cos (_Z) a+ a_Z+ 2c1 − 2x)))
2

+ a

2
y(x)

= (−RootOf ((cos (_Z) a+ a_Z+ 2c1 − 2x) (− cos (_Z) a+ a_Z+ 2c1 − 2x)) a+ 2x− 2c1) tan (RootOf ((cos (_Z) a+ a_Z+ 2c1 − 2x) (− cos (_Z) a+ a_Z+ 2c1 − 2x)))
2

+ a

2
y(x)

= (RootOf ((cos (_Z) a− a_Z+ 2c1 − 2x) (− cos (_Z) a− a_Z+ 2c1 − 2x)) a+ 2x− 2c1) tan (RootOf ((cos (_Z) a− a_Z+ 2c1 − 2x) (− cos (_Z) a− a_Z+ 2c1 − 2x)))
2

+ a

2
y(x)

= (−RootOf ((cos (_Z) a− a_Z+ 2c1 − 2x) (− cos (_Z) a− a_Z+ 2c1 − 2x)) a− 2x+ 2c1) tan (RootOf ((cos (_Z) a− a_Z+ 2c1 − 2x) (− cos (_Z) a− a_Z+ 2c1 − 2x)))
2

+ a

2

3 Solution by Mathematica
Time used: 0.429 (sec). Leaf size: 106� �
DSolve[y[x] (y'[x])^2+y[x]==a,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
a arctan

( √
#1√

a−#1

)
−
√
#1
√

a−#1&
]
[−x+ c1]

y(x) → InverseFunction
[
a arctan

( √
#1√

a−#1

)
−
√
#1
√

a−#1&
]
[x+ c1]

y(x) → a
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32.20 problem 954
32.20.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8708

Internal problem ID [4188]
Internal file name [OUTPUT/3681_Sunday_June_05_2022_10_09_16_AM_32791368/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 954.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(y + x) y′2 + 2xy′ − y = 0

32.20.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(y + x) p2 + 2xp− y = 0

Solving for y from the above results in

y = −xp(p+ 2)
p2 − 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p(p+ 2)
p2 − 1

g = 0

Hence (2) becomes

p+ p(p+ 2)
p2 − 1 = x

(
− p+ 2
p2 − 1 − p

p2 − 1 + 2p2(p+ 2)
(p2 − 1)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p(p+ 2)
p2 − 1 = 0

Solving for p from the above gives

p = 0

p = −1
2 + i

√
3

2

p = −1
2 − i

√
3

2
Substituting these in (1A) gives

y = 0

y = −i
√
3x
2 − x

2

y = i
√
3x
2 − x

2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)(p(x)+2)

p(x)2−1

x

(
− p(x)+2

p(x)2−1 −
p(x)

p(x)2−1 +
2p(x)2(p(x)+2)(

p(x)2−1
)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− p+2

p2−1 −
p

p2−1 +
2p2(p+2)
(p2−1)2

)
p+ p(p+2)

p2−1

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 2
p3 − p

q(p) = 0

Hence the ode is

d

dp
x(p)− 2x(p)

p3 − p
= 0

The integrating factor µ is

µ = e
∫
− 2

p3−p
dp

= e− ln(p+1)−ln(p−1)+2 ln(p)

Which simplifies to

µ = p2

p2 − 1

The ode becomes

d
dpµx = 0

d
dp

(
p2x

p2 − 1

)
= 0

Integrating gives

p2x

p2 − 1 = c3

Dividing both sides by the integrating factor µ = p2

p2−1 results in

x(p) = c3(p2 − 1)
p2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x+
√
x2 + yx+ y2

y + x

p = −x+
√
x2 + yx+ y2

y + x

Substituting the above in the solution for x found above gives

x =
x
(
−2

√
x2 + yx+ y2 + x− y

)
c3(

x−
√
x2 + yx+ y2

)2
x =

x
(
2
√
x2 + yx+ y2 + x− y

)
c3(

x+
√
x2 + yx+ y2

)2
Summary
The solution(s) found are the following

(1)y = 0

(2)y = −i
√
3x
2 − x

2

(3)y = i
√
3x
2 − x

2

(4)x =
x
(
−2

√
x2 + yx+ y2 + x− y

)
c3(

x−
√
x2 + yx+ y2

)2
(5)x =

x
(
2
√
x2 + yx+ y2 + x− y

)
c3(

x+
√
x2 + yx+ y2

)2
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Verification of solutions

y = 0

Verified OK.

y = −i
√
3x
2 − x

2

Verified OK.

y = i
√
3x
2 − x

2

Verified OK.

x =
x
(
−2

√
x2 + yx+ y2 + x− y

)
c3(

x−
√
x2 + yx+ y2

)2
Verified OK.

x =
x
(
2
√
x2 + yx+ y2 + x− y

)
c3(

x+
√
x2 + yx+ y2

)2
Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
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3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 121� �
dsolve((x+y(x))*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −
(
1 + i

√
3
)
x

2

y(x) =
(
i
√
3− 1

)
x

2

ln (x)− arctanh

 y(x) + 2x

2x
√

y(x)2+xy(x)+x2

x2

+ ln
(
y(x)
x

)
− c1 = 0

ln (x) + arctanh

 y(x) + 2x

2x
√

y(x)2+xy(x)+x2

x2

+ ln
(
y(x)
x

)
− c1 = 0

3 Solution by Mathematica
Time used: 4.545 (sec). Leaf size: 166� �
DSolve[(x+y[x]) (y'[x])^2+2 x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
3
√

ec1 (−3x+ ec1)− ec1

3
y(x) → 2

3
√

ec1 (−3x+ ec1)− ec1

3
y(x) → ec1 − 2

√
ec1 (x+ ec1)

y(x) → 2
√

ec1 (x+ ec1) + ec1

y(x) → 0

y(x) → −1
2i
(√

3− i
)
x

y(x) → 1
2i
(√

3 + i
)
x
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32.21 problem 955
32.21.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8714

Internal problem ID [4189]
Internal file name [OUTPUT/3682_Sunday_June_05_2022_10_09_24_AM_39963627/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 955.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

(2x− y) y′2 − 2(1− x) y′ − y = −2

32.21.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(2x− y) p2 − 2(1− x) p− y = −2

Solving for y from the above results in

y = 2(p2 + p)x
p2 + 1 + −2p+ 2

p2 + 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p(p+ 1)
p2 + 1

g = −2p+ 2
p2 + 1

Hence (2) becomes

p− 2p(p+ 1)
p2 + 1 =

(
x

(
2p+ 2
p2 + 1 + 2p

p2 + 1 − 4p2(p+ 1)
(p2 + 1)2

)
− 2

p2 + 1 − 2(−2p+ 2) p
(p2 + 1)2

)
p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 2p(p+ 1)
p2 + 1 = 0

Solving for p from the above gives

p = 0
p = 1 +

√
2

p = −
√
2 + 1

Substituting these in (1A) gives

y = 2

y = 4x+ 3
√
2x−

√
2

2 +
√
2

y = 3
√
2x−

√
2− 4x√

2− 2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 2p(x)(p(x)+1)

p(x)2+1

x

(
2p(x)+2
p(x)2+1 +

2p(x)
p(x)2+1 −

4p(x)2(p(x)+1)(
p(x)2+1

)2
)

− 2
p(x)2+1 −

2(−2p(x)+2)p(x)(
p(x)2+1

)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

2p+2
p2+1 +

2p
p2+1 −

4p2(p+1)
(p2+1)2

)
− 2

p2+1 −
2(−2p+2)p
(p2+1)2

p− 2p(p+1)
p2+1

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p (p2 + 1)

q(p) = 2
p (p2 + 1)

Hence the ode is

d

dp
x(p) + 2x(p)

p (p2 + 1) = 2
p (p2 + 1)

The integrating factor µ is

µ = e
∫ 2

p
(
p2+1

)dp

= e− ln
(
p2+1

)
+2 ln(p)

Which simplifies to

µ = p2

p2 + 1

The ode becomes

d
dp(µx) = (µ)

(
2

p (p2 + 1)

)
d
dp

(
p2x

p2 + 1

)
=
(

p2

p2 + 1

)(
2

p (p2 + 1)

)
d
(

p2x

p2 + 1

)
=
(

2p
(p2 + 1)2

)
dp

Integrating gives

p2x

p2 + 1 =
∫ 2p

(p2 + 1)2
dp

p2x

p2 + 1 = − 1
p2 + 1 + c3
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Dividing both sides by the integrating factor µ = p2

p2+1 results in

x(p) = − 1
p2

+ c3(p2 + 1)
p2

which simplifies to

x(p) = c3p
2 + c3 − 1
p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x+ 1 +
√
−y2 + 2yx+ x2 + 2y − 6x+ 1

2x− y

p = −x− 1 +
√
−y2 + 2yx+ x2 + 2y − 6x+ 1

2x− y

Substituting the above in the solution for x found above gives

x=
−2(x− 1) c3

√
x2 + (2y − 6)x− y2 + 2y + 1 + 6

(
x− y

3 −
1
3

)
(x− 1) c3 − 4

(
x− y

2

)2(
x− 1−

√
x2 + (2y − 6)x− y2 + 2y + 1

)2
x =

2(x− 1) c3
√

x2 + (2y − 6)x− y2 + 2y + 1 + 6
(
x− y

3 −
1
3

)
(x− 1) c3 − 4

(
x− y

2

)2(
x− 1 +

√
x2 + (2y − 6)x− y2 + 2y + 1

)2
Summary
The solution(s) found are the following

(1)y = 2

(2)y = 4x+ 3
√
2x−

√
2

2 +
√
2

(3)y = 3
√
2x−

√
2− 4x√

2− 2
x

=
−2(x− 1) c3

√
x2 + (2y − 6)x− y2 + 2y + 1 + 6

(
x− y

3 −
1
3

)
(x− 1) c3 − 4

(
x− y

2

)2(
x− 1−

√
x2 + (2y − 6)x− y2 + 2y + 1

)2
(4)

x =
2(x− 1) c3

√
x2 + (2y − 6)x− y2 + 2y + 1 + 6

(
x− y

3 −
1
3

)
(x− 1) c3 − 4

(
x− y

2

)2(
x− 1 +

√
x2 + (2y − 6)x− y2 + 2y + 1

)2
(5)
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Verification of solutions

y = 2

Verified OK.

y = 4x+ 3
√
2x−

√
2

2 +
√
2

Verified OK.

y = 3
√
2x−

√
2− 4x√

2− 2

Verified OK.

x=
−2(x− 1) c3

√
x2 + (2y − 6)x− y2 + 2y + 1 + 6

(
x− y

3 −
1
3

)
(x− 1) c3 − 4

(
x− y

2

)2(
x− 1−

√
x2 + (2y − 6)x− y2 + 2y + 1

)2
Verified OK.

x =
2(x− 1) c3

√
x2 + (2y − 6)x− y2 + 2y + 1 + 6

(
x− y

3 −
1
3

)
(x− 1) c3 − 4

(
x− y

2

)2(
x− 1 +

√
x2 + (2y − 6)x− y2 + 2y + 1

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 2.016 (sec). Leaf size: 71� �
dsolve((2*x-y(x))*diff(y(x),x)^2-2*(1-x)*diff(y(x),x)+2-y(x) = 0,y(x), singsol=all)� �

y(x) = −
√
2x+

√
2 + x+ 1

y(x) = (x− 1)
√
2 + x+ 1

y(x) = 2 + c1
2 −

√
c1 (−c1 + 4x− 4)

2
y(x) = 2 + c1 −

√
c1 (−c1 + 2x− 2)

3 Solution by Mathematica
Time used: 4.92 (sec). Leaf size: 187� �
DSolve[(2 x -y[x]) (y'[x])^2-2(1-x)y'[x]+2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2
√

−ec1 (4x− 4 + ec1) + 2− ec1

2
y(x) → 1

2

(√
−ec1 (4x− 4 + ec1) + 4− ec1

)
y(x) → −

√
−ec1 (2x− 2 + ec1) + 2− ec1

y(x) →
√
−ec1 (2x− 2 + ec1) + 2− ec1

y(x) → 2
y(x) → x−

√
2
√
(x− 1)2 + 1

y(x) → x+
√
2
√
(x− 1)2 + 1
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32.22 problem 956
32.22.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8721

Internal problem ID [4190]
Internal file name [OUTPUT/3683_Sunday_June_05_2022_10_10_54_AM_45670093/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 956.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , _dAlembert]

2yy′2 + (5− 4x) y′ + 2y = 0

32.22.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2y p2 + (5− 4x) p+ 2y = 0

Solving for y from the above results in

y = 2px
p2 + 1 − 5p

2 (p2 + 1) (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p
p2 + 1

g = − 5p
2p2 + 2

Hence (2) becomes

p− 2p
p2 + 1 =

(
x

(
2

p2 + 1 − 4p2

(p2 + 1)2
)
− 5

2p2 + 2 + 20p2

(2p2 + 2)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 2p
p2 + 1 = 0

Solving for p from the above gives

p = 0
p = 1
p = −1

Substituting these in (1A) gives

y = 5
4 − x

y = 0

y = −5
4 + x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 2p(x)

p(x)2+1

x

(
2

p(x)2+1 −
4p(x)2(

p(x)2+1
)2
)

− 5
2p(x)2+2 +

20p(x)2(
2p(x)2+2

)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

2
p2+1 −

4p2
(p2+1)2

)
− 5

2p2+2 +
20p2

(2p2+2)2

p− 2p
p2+1

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p (p2 + 1)

q(p) = 5
2p (p2 + 1)

Hence the ode is

d

dp
x(p) + 2x(p)

p (p2 + 1) = 5
2p (p2 + 1)

The integrating factor µ is

µ = e
∫ 2

p
(
p2+1

)dp

= e− ln
(
p2+1

)
+2 ln(p)

Which simplifies to

µ = p2

p2 + 1

The ode becomes

d
dp(µx) = (µ)

(
5

2p (p2 + 1)

)
d
dp

(
p2x

p2 + 1

)
=
(

p2

p2 + 1

)(
5

2p (p2 + 1)

)
d
(

p2x

p2 + 1

)
=
(

5p
2 (p2 + 1)2

)
dp

Integrating gives

p2x

p2 + 1 =
∫ 5p

2 (p2 + 1)2
dp

p2x

p2 + 1 = − 5
4 (p2 + 1) + c3
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Dividing both sides by the integrating factor µ = p2

p2+1 results in

x(p) = − 5
4p2 + c3(p2 + 1)

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −5 + 4x+
√
−16y2 + 16x2 − 40x+ 25

4y

p = −5− 4x+
√
−16y2 + 16x2 − 40x+ 25

4y

Substituting the above in the solution for x found above gives

x =
(8x− 10) c3

√
−16y2 + 16x2 − 40x+ 25 + 32

(
−5

4 + x
)2

c3 − 20y2(
−5 + 4x+

√
−16y2 + 16x2 − 40x+ 25

)2
x =

(−8x+ 10) c3
√
−16y2 + 16x2 − 40x+ 25 + 32

(
−5

4 + x
)2

c3 − 20y2(
−5 + 4x−

√
−16y2 + 16x2 − 40x+ 25

)2
Summary
The solution(s) found are the following

(1)y = 5
4 − x

(2)y = 0

(3)y = −5
4 + x

(4)x =
(8x− 10) c3

√
−16y2 + 16x2 − 40x+ 25 + 32

(
−5

4 + x
)2

c3 − 20y2(
−5 + 4x+

√
−16y2 + 16x2 − 40x+ 25

)2
(5)x =

(−8x+ 10) c3
√
−16y2 + 16x2 − 40x+ 25 + 32

(
−5

4 + x
)2

c3 − 20y2(
−5 + 4x−

√
−16y2 + 16x2 − 40x+ 25

)2
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Verification of solutions

y = 5
4 − x

Verified OK.
y = 0

Verified OK.

y = −5
4 + x

Verified OK.

x =
(8x− 10) c3

√
−16y2 + 16x2 − 40x+ 25 + 32

(
−5

4 + x
)2

c3 − 20y2(
−5 + 4x+

√
−16y2 + 16x2 − 40x+ 25

)2
Verified OK.

x =
(−8x+ 10) c3

√
−16y2 + 16x2 − 40x+ 25 + 32

(
−5

4 + x
)2

c3 − 20y2(
−5 + 4x−

√
−16y2 + 16x2 − 40x+ 25

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[x-5/4, y], [25/16+2*x^2-y^2-15/4*x, y*x], [-4*x^3+3*y^2*x-125/32+5*x^2+5/4*y^2� �
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3 Solution by Maple
Time used: 0.25 (sec). Leaf size: 119� �
dsolve(2*y(x)*diff(y(x),x)^2+(5-4*x)*diff(y(x),x)+2*y(x) = 0,y(x), singsol=all)� �

y(x) = x− 5
4

y(x) = −x+ 5
4

y(x) = 0

y(x) =

√
4c1 + 2

√
−c1 (−5 + 4x)2

2

y(x) = −

√
4c1 + 2

√
−c1 (−5 + 4x)2

2

y(x) =

√
4c1 − 2

√
−c1 (−5 + 4x)2

2

y(x) = −

√
4c1 − 2

√
−c1 (−5 + 4x)2

2

3 Solution by Mathematica
Time used: 0.722 (sec). Leaf size: 160� �
DSolve[(2 y[x] (y'[x])^2)+(5-4 x)y'[x]+2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −i
√
2e

c1
2
√
4x− 5 + 8ec1

y(x) → i
√
2e

c1
2
√
4x− 5 + 8ec1

y(x) → −1
4ie

c1
2
√
8x− 10 + ec1

y(x) → 1
4ie

c1
2
√
8x− 10 + ec1

y(x) → 0

y(x) → 5
4 − x

y(x) → x− 5
4
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32.23 problem 957
Internal problem ID [4191]
Internal file name [OUTPUT/3684_Sunday_June_05_2022_10_12_21_AM_41450320/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 957.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

9yy′2 + 4y′x3 − 4x2y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
2
(
−x2 +

√
x4 + 9y2

)
x

9y (1)

y′ = −
2
(
x2 +

√
x4 + 9y2

)
x

9y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
2
(
−x2 +

√
x4 + 9y2

)
x

9y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

8728



The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
2
(
−x2 +

√
x4 + 9y2

)
x(b3 − a2)

9y −
4
(
−x2 +

√
x4 + 9y2

)2
x2a3

81y2

−

2
(
−2x+ 2x3√

x4+9y2

)
x

9y +
−2x2

9 + 2
√

x4+9y2
9

y

 (xa2 + ya3 + a1)

−

(
2x√

x4 + 9y2
−

2
(
−x2 +

√
x4 + 9y2

)
x

9y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−8x8a3 + 4
√
x4 + 9y2 x6a3 − 18x6b2 + 72x5ya2 − 36x5yb3 − 18x4y2a3 + 4(x4 + 9y2)

3
2 x2a3 + 18

√
x4 + 9y2 x4b2 − 72

√
x4 + 9y2 x3ya2 + 36

√
x4 + 9y2 x3yb3 − 54

√
x4 + 9y2 x2y2a3 − 18x5b1 + 54x4ya1 + 18

√
x4 + 9y2 x3b1 − 54

√
x4 + 9y2 x2ya1 + 324x y3a2 − 162x y3b3 + 162y4a3 − 81b2

√
x4 + 9y2 y2 + 162y3a1

81
√
x4 + 9y2 y2

= 0

Setting the numerator to zero gives

(6E)

8x8a3 − 4
√

x4 + 9y2 x6a3 + 18x6b2 − 72x5ya2 + 36x5yb3 + 18x4y2a3

− 4
(
x4 + 9y2

) 3
2 x2a3 − 18

√
x4 + 9y2 x4b2 + 72

√
x4 + 9y2 x3ya2

− 36
√
x4 + 9y2 x3yb3 + 54

√
x4 + 9y2 x2y2a3 + 18x5b1 − 54x4ya1

− 18
√
x4 + 9y2 x3b1 + 54

√
x4 + 9y2 x2ya1 − 324x y3a2

+ 162x y3b3 − 162y4a3 + 81b2
√

x4 + 9y2 y2 − 162y3a1 = 0
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Simplifying the above gives

(6E)

−4
√

x4 + 9y2 x6a3 + 8
(
x4 + 9y2

)
x4a3 − 36x5ya2

− 36x4y2a3 − 4
(
x4 + 9y2

) 3
2 x2a3 − 18

√
x4 + 9y2 x4b2

+ 72
√

x4 + 9y2 x3ya2 − 36
√
x4 + 9y2 x3yb3 + 54

√
x4 + 9y2 x2y2a3

− 36x4ya1 + 18
(
x4 + 9y2

)
x2b2 − 36

(
x4 + 9y2

)
xya2

+ 36
(
x4 + 9y2

)
xyb3 − 18

(
x4 + 9y2

)
y2a3 − 18

√
x4 + 9y2 x3b1

+ 54
√

x4 + 9y2 x2ya1 − 162x2y2b2 − 162x y3b3 + 18
(
x4 + 9y2

)
xb1

− 18
(
x4 + 9y2

)
ya1 + 81b2

√
x4 + 9y2 y2 − 162x y2b1 = 0

Since the PDE has radicals, simplifying gives

8x8a3 − 8
√
x4 + 9y2 x6a3 + 18x6b2 − 72x5ya2 + 36x5yb3 + 18x4y2a3 + 18x5b1

− 18
√

x4 + 9y2 x4b2 − 54x4ya1 + 72
√

x4 + 9y2 x3ya2 − 36
√

x4 + 9y2 x3yb3

+ 18
√

x4 + 9y2 x2y2a3 − 18
√

x4 + 9y2 x3b1 + 54
√
x4 + 9y2 x2ya1

− 324x y3a2 + 162x y3b3 − 162y4a3 + 81b2
√

x4 + 9y2 y2 − 162y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4 + 9y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x4 + 9y2 = v3

}
The above PDE (6E) now becomes

(7E)8v81a3 − 8v3v61a3 − 72v51v2a2 + 18v41v22a3 + 18v61b2 + 36v51v2b3 − 54v41v2a1
+ 72v3v31v2a2 + 18v3v21v22a3 + 18v51b1 − 18v3v41b2 − 36v3v31v2b3 + 54v3v21v2a1
− 324v1v32a2 − 162v42a3 − 18v3v31b1 + 162v1v32b3 − 162v32a1 + 81b2v3v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)8v81a3 − 8v3v61a3 + 18v61b2 + (−72a2 + 36b3) v51v2 + 18v51b1 + 18v41v22a3
− 54v41v2a1 − 18v3v41b2 + (72a2 − 36b3) v31v2v3 − 18v3v31b1 + 18v3v21v22a3
+ 54v3v21v2a1 + (−324a2 + 162b3) v1v32 − 162v42a3 − 162v32a1 + 81b2v3v22 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−162a1 = 0
−54a1 = 0
54a1 = 0

−162a3 = 0
−8a3 = 0
8a3 = 0
18a3 = 0

−18b1 = 0
18b1 = 0

−18b2 = 0
18b2 = 0
81b2 = 0

−324a2 + 162b3 = 0
−72a2 + 36b3 = 0
72a2 − 36b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
2
(
−x2 +

√
x4 + 9y2

)
x

9y

)
(x)

= 2x4 − 2
√
x4 + 9y2 x2 + 18y2

9y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x4−2
√

x4+9y2 x2+18y2
9y

dy

Which results in

S = ln (y)
2 −

x2 ln
(

2x4+2
√
x4
√

x4+9y2
y

)
2
√
x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
2
(
−x2 +

√
x4 + 9y2

)
x

9y
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x2 +
√
x4 + 9y2

x
√
x4 + 9y2

Sy =
2
√
x4 + 9y2 x2 + 2x4 + 9y2

2y
√
x4 + 9y2

(
x2 +

√
x4 + 9y2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − x4 +

√
x4 + 9y2 x2 + 9y2

x
√
x4 + 9y2

(
x2 +

√
x4 + 9y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

Which gives

y = e
ln(2)
2 +

ln
(
2 e2c1e−2c1x2+18 e4c1e−2c1

)
2 +c1

Summary
The solution(s) found are the following

(1)y = e
ln(2)
2 +

ln
(
2 e2c1e−2c1x2+18 e4c1e−2c1

)
2 +c1

Verification of solutions

y = e
ln(2)
2 +

ln
(
2 e2c1e−2c1x2+18 e4c1e−2c1

)
2 +c1

Verified OK.

8733



Solving equation (2)

Writing the ode as

y′ = −
2
(
x2 +

√
x4 + 9y2

)
x

9y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2
(
x2 +

√
x4 + 9y2

)
x(b3 − a2)

9y −
4
(
x2 +

√
x4 + 9y2

)2
x2a3

81y2

−

−
2
(
2x+ 2x3√

x4+9y2

)
x

9y −
2
(
x2 +

√
x4 + 9y2

)
9y

 (xa2 + ya3 + a1)

−

(
− 2x√

x4 + 9y2
+

2
(
x2 +

√
x4 + 9y2

)
x

9y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−8x8a3 + 4
√
x4 + 9y2 x6a3 + 18x6b2 − 72x5ya2 + 36x5yb3 + 18x4y2a3 + 4(x4 + 9y2)

3
2 x2a3 + 18

√
x4 + 9y2 x4b2 − 72

√
x4 + 9y2 x3ya2 + 36

√
x4 + 9y2 x3yb3 − 54

√
x4 + 9y2 x2y2a3 + 18x5b1 − 54x4ya1 + 18

√
x4 + 9y2 x3b1 − 54

√
x4 + 9y2 x2ya1 − 324x y3a2 + 162x y3b3 − 162y4a3 − 81b2

√
x4 + 9y2 y2 − 162y3a1

81
√
x4 + 9y2 y2

= 0

8734



Setting the numerator to zero gives

(6E)

−8x8a3 − 4
√

x4 + 9y2 x6a3 − 18x6b2 + 72x5ya2 − 36x5yb3 − 18x4y2a3

− 4
(
x4 + 9y2

) 3
2 x2a3 − 18

√
x4 + 9y2 x4b2 + 72

√
x4 + 9y2 x3ya2

− 36
√
x4 + 9y2 x3yb3 + 54

√
x4 + 9y2 x2y2a3 − 18x5b1 + 54x4ya1

− 18
√
x4 + 9y2 x3b1 + 54

√
x4 + 9y2 x2ya1 + 324x y3a2

− 162x y3b3 + 162y4a3 + 81b2
√

x4 + 9y2 y2 + 162y3a1 = 0

Simplifying the above gives

(6E)

−4
√

x4 + 9y2 x6a3 − 8
(
x4 + 9y2

)
x4a3 + 36x5ya2

+ 36x4y2a3 − 4
(
x4 + 9y2

) 3
2 x2a3 − 18

√
x4 + 9y2 x4b2

+ 72
√

x4 + 9y2 x3ya2 − 36
√
x4 + 9y2 x3yb3 + 54

√
x4 + 9y2 x2y2a3

+ 36x4ya1 − 18
(
x4 + 9y2

)
x2b2 + 36

(
x4 + 9y2

)
xya2

− 36
(
x4 + 9y2

)
xyb3 + 18

(
x4 + 9y2

)
y2a3 − 18

√
x4 + 9y2 x3b1

+ 54
√

x4 + 9y2 x2ya1 + 162x2y2b2 + 162x y3b3 − 18
(
x4 + 9y2

)
xb1

+ 18
(
x4 + 9y2

)
ya1 + 81b2

√
x4 + 9y2 y2 + 162x y2b1 = 0

Since the PDE has radicals, simplifying gives

−8x8a3 − 8
√

x4 + 9y2 x6a3 − 18x6b2 + 72x5ya2 − 36x5yb3

− 18x4y2a3 − 18
√

x4 + 9y2 x4b2 + 72
√

x4 + 9y2 x3ya2

− 36
√

x4 + 9y2 x3yb3 + 18
√
x4 + 9y2 x2y2a3 − 18x5b1 + 54x4ya1

− 18
√

x4 + 9y2 x3b1 + 54
√
x4 + 9y2 x2ya1 + 324x y3a2

− 162x y3b3 + 162y4a3 + 81b2
√
x4 + 9y2 y2 + 162y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4 + 9y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x4 + 9y2 = v3

}
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The above PDE (6E) now becomes

(7E)−8v81a3 − 8v3v61a3 + 72v51v2a2 − 18v41v22a3 − 18v61b2 − 36v51v2b3 + 54v41v2a1
+ 72v3v31v2a2 + 18v3v21v22a3 − 18v51b1 − 18v3v41b2 − 36v3v31v2b3 + 54v3v21v2a1
+ 324v1v32a2 + 162v42a3 − 18v3v31b1 − 162v1v32b3 + 162v32a1 + 81b2v3v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−8v81a3 − 8v3v61a3 − 18v61b2 + (72a2 − 36b3) v51v2 − 18v51b1 − 18v41v22a3
+ 54v41v2a1 − 18v3v41b2 + (72a2 − 36b3) v31v2v3 − 18v3v31b1 + 18v3v21v22a3
+ 54v3v21v2a1 + (324a2 − 162b3) v1v32 + 162v42a3 + 162v32a1 + 81b2v3v22 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

54a1 = 0
162a1 = 0
−18a3 = 0
−8a3 = 0
18a3 = 0
162a3 = 0
−18b1 = 0
−18b2 = 0
81b2 = 0

72a2 − 36b3 = 0
324a2 − 162b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−
2
(
x2 +

√
x4 + 9y2

)
x

9y

)
(x)

= 2x4 + 18y2 + 2
√
x4 + 9y2 x2

9y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x4+18y2+2
√

x4+9y2 x2

9y

dy

Which results in

S = ln (y)
2 +

x2 ln
(

2x4+2
√
x4
√

x4+9y2
y

)
2
√
x4
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
2
(
x2 +

√
x4 + 9y2

)
x

9y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 +
√
x4 + 9y2

x
√
x4 + 9y2

Sy =
9y√

x4 + 9y2
(
2x2 + 2

√
x4 + 9y2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

Summary
The solution(s) found are the following

(1)ln (2)
2 + ln (x) +

ln
(
x2 +

√
x4 + 9y2

)
2 = ln (x) + c1
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Verification of solutions

ln (2)
2 + ln (x) +

ln
(
x2 +

√
x4 + 9y2

)
2 = ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[1/2*x, y]� �
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3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 89� �
dsolve(9*y(x)*diff(y(x),x)^2+4*x^3*diff(y(x),x)-4*x^2*y(x) = 0,y(x), singsol=all)� �

y(x) = −ix2

3
y(x) = ix2

3
y(x) = 0

y(x) = −2
√
c1x2 + 9
c1

y(x) = 2
√
c1x2 + 9
c1

y(x) = −
√

c1 (−4x2 + c1)
6

y(x) =
√

c1 (−4x2 + c1)
6

3 Solution by Mathematica
Time used: 1.295 (sec). Leaf size: 244� �
DSolve[9 y[x] (y'[x])^2+4 x^3 y'[x]-4 x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

√x6 + 9x2y(x)2 log
(√

x4 + 9y(x)2 + x2
)

2x
√
x4 + 9y(x)2

+ 1
2

(
1−

√
x6 + 9x2y(x)2

x
√

x4 + 9y(x)2

)
log(y(x)) = c1, y(x)


Solve

1
2

(√
x6 + 9x2y(x)2

x
√
x4 + 9y(x)2

+ 1
)
log(y(x))

−

√
x6 + 9x2y(x)2 log

(√
x4 + 9y(x)2 + x2

)
2x
√
x4 + 9y(x)2

= c1, y(x)


y(x) → − ix2

3
y(x) → ix2

3
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32.24 problem 958
32.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8743

Internal problem ID [4192]
Internal file name [OUTPUT/3685_Sunday_June_05_2022_10_12_30_AM_33985969/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 958.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(1− ya) y′2 − ya = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

− (ya− 1) ya
ya− 1 (1)

y′ = −
√
− (ya− 1) ya
ya− 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
ya− 1√

− (ya− 1) ya
dy =

∫
dx

−
√
−y2a2 + ya

a
−

arctan
( √

a2
(
y− 1

2a
)√

−y2a2+ya

)
2
√
a2

= x+ c1
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Summary
The solution(s) found are the following

(1)−
√
−y2a2 + ya

a
−

arctan
( √

a2
(
y− 1

2a
)√

−y2a2+ya

)
2
√
a2

= x+ c1

Verification of solutions

−
√
−y2a2 + ya

a
−

arctan
( √

a2
(
y− 1

2a
)√

−y2a2+ya

)
2
√
a2

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− ya− 1√

− (ya− 1) ya
dy =

∫
dx

√
−y2a2 + ya

a
+

arctan
( √

a2
(
y− 1

2a
)√

−y2a2+ya

)
2
√
a2

= x+ c2

Summary
The solution(s) found are the following

(1)
√
−y2a2 + ya

a
+

arctan
( √

a2
(
y− 1

2a
)√

−y2a2+ya

)
2
√
a2

= x+ c2

Verification of solutions

√
−y2a2 + ya

a
+

arctan
( √

a2
(
y− 1

2a
)√

−y2a2+ya

)
2
√
a2

= x+ c2

Verified OK.
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32.24.1 Maple step by step solution

Let’s solve
(1− ya) y′2 − ya = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(ya−1)√
−(ya−1)ya = 1

• Integrate both sides with respect to x∫ y′(ya−1)√
−(ya−1)yadx =

∫
1dx+ c1

• Evaluate integral

−
√

−y2a2+ya
a

−
arctan

(√
a2
(
y− 1

2a
)

√
−y2a2+ya

)
2
√
a2

= x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 399� �
dsolve((1-a*y(x))*diff(y(x),x)^2 = a*y(x),y(x), singsol=all)� �
y(x) = 0
y(x)

=
RootOf

(
4a2c21 − 8x a2c1 + 4x2a2 − 4 csgn (a) ac1RootOf

(
−4 csgn (a) ac1_Z+ 4 csgn (a) ax_Z+ 4a2c21 − 8x a2c1 + 4x2a2 + _Z2 − cos (_Z)2

)
+ 4 csgn (a) axRootOf

(
−4 csgn (a) ac1_Z+ 4 csgn (a) ax_Z+ 4a2c21 − 8x a2c1 + 4x2a2 + _Z2 − cos (_Z)2

)
+RootOf

(
−4 csgn (a) ac1_Z+ 4 csgn (a) ax_Z+ 4a2c21 − 8x a2c1 + 4x2a2 + _Z2 − cos (_Z)2

)2 + _Z2 − 2_Z
)

2a
y(x)

=
RootOf

(
4a2c21 − 8x a2c1 + 4x2a2 + 4 csgn (a) ac1RootOf

(
4 csgn (a) ac1_Z− 4 csgn (a) ax_Z+ 4a2c21 − 8x a2c1 + 4x2a2 + _Z2 − cos (_Z)2

)
− 4 csgn (a) axRootOf

(
4 csgn (a) ac1_Z− 4 csgn (a) ax_Z+ 4a2c21 − 8x a2c1 + 4x2a2 + _Z2 − cos (_Z)2

)
+RootOf

(
4 csgn (a) ac1_Z− 4 csgn (a) ax_Z+ 4a2c21 − 8x a2c1 + 4x2a2 + _Z2 − cos (_Z)2

)2 + _Z2 − 2_Z
)

2a

3 Solution by Mathematica
Time used: 0.571 (sec). Leaf size: 147� �
DSolve[(1-a y[x]) (y'[x])^2==a y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction


2 arctan

( √
#1√a√

1−#1a−1

)
√
a

+
√

#1
√
1−#1a&

 [−√
ax+ c1

]

y(x) → InverseFunction


2 arctan

( √
#1√a√

1−#1a−1

)
√
a

+
√

#1
√
1−#1a&

 [√ax+ c1
]

y(x) → 0
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32.25 problem 960
32.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8750

Internal problem ID [4193]
Internal file name [OUTPUT/3686_Sunday_June_05_2022_10_12_37_AM_60083019/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 960.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "quadrature", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_quadrature]

(
x2 − ya

)
y′

2 − 2xyy′ = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 0 (1)

y′ = − 2yx
ya− x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Verification of solutions
y = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = − 2yx
ya− x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−
2yx(b3 − a2)

ya− x2 − 4y2x2a3

(ya− x2)2
−
(
− 2y
ya− x2 −

4y x2

(ya− x2)2
)
(xa2+ya3+a1)

−
(
− 2x
ya− x2 + 2yxa

(ya− x2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

a2y2b2 − 2a x2yb2 + 4ax y2a2 − 2ax y2b3 + 2a y3a3 − x4b2 − 2y2x2a3 + 2a y2a1 − 2x3b1 + 2x2ya1

(ya− x2)2
= 0
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Setting the numerator to zero gives

(6E)a2y2b2 − 2a x2yb2 + 4ax y2a2 − 2ax y2b3 + 2a y3a3
− x4b2 − 2y2x2a3 + 2a y2a1 − 2x3b1 + 2x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2b2v
2
2 + 4aa2v1v22 + 2aa3v32 − 2ab2v21v2 − 2ab3v1v22

− 2a3v21v22 − b2v
4
1 + 2aa1v22 + 2a1v21v2 − 2b1v31 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2v
4
1 − 2b1v31 − 2a3v21v22 + (−2ab2 + 2a1) v21v2

+ (4aa2 − 2ab3) v1v22 + 2aa3v32 +
(
a2b2 + 2aa1

)
v22 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a3 = 0
−2b1 = 0
−b2 = 0
2aa3 = 0

−2ab2 + 2a1 = 0
a2b2 + 2aa1 = 0
4aa2 − 2ab3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
− 2yx
ya− x2

)
(x)

= 2a y2
ya− x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2a y2
ya−x2

dy
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Which results in

S = x2

2ay + ln (y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2yx
ya− x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

ya

Sy =
ya− x2

2a y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) ya+ x2

2ya = c1
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Which simplifies to

ln (y) ya+ x2

2ya = c1

Which gives

y = eLambertW
(
−x2e−2c1

a

)
+2c1

Summary
The solution(s) found are the following

(1)y = eLambertW
(
−x2e−2c1

a

)
+2c1

Verification of solutions

y = eLambertW
(
−x2e−2c1

a

)
+2c1

Verified OK.

32.25.1 Maple step by step solution

Let’s solve
(x2 − ya) y′2 − 2xyy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
(x2 − ya) y′2 − 2xyy′

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
(x2 − ya) y′2 − 2xyy′

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 28� �
dsolve((x^2-a*y(x))*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x) = 0,y(x), singsol=all)� �

y(x) = − x2

aLambertW
(
− c1x2

a

)
y(x) = c1
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3 Solution by Mathematica
Time used: 8.11 (sec). Leaf size: 310� �
DSolve[(x^2-a y[x]) (y'[x])^2-2 x y[x] y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → c1

Solve



(
2− 2

(
2axy(x)+x3)

3√
x3(x2−ay(x))

)(
6x3

x2−ay(x)−4x
3√
x3

+ 4
)(1− x

(
2ay(x)+x2)

3√
x3(x2−ay(x))

)
log


2−

2
(
2axy(x)+x3

)
3√
x3(

x2−ay(x)
)

3
√
2

+
(

2axy(x)+x3

3√
x3(x2−ay(x))

− 1
)
log


6x3

x2−ay(x)
−4x

3√
x3

+4

3
√
2

− 3


18 3

√
2
(
− (2ay(x)+x2)3

(x2−ay(x))3 + 3(2axy(x)+x3)
3√
x3(x2−ay(x))

− 2
) = 2 22/3x log(x)

9 3√
x3

+ c1, y(x)


y(x) → 0
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32.26 problem 961
32.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8754

Internal problem ID [4194]
Internal file name [OUTPUT/3687_Sunday_June_05_2022_10_12_47_AM_59034346/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 961.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xyy′
2 + (y + x) y′ = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −1
y

(1)

y′ = −1
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
−ydy = x+ c1

−y2

2 = x+ c1

Solving for y gives these solutions

y1 =
√
−2x− 2c1

y2 = −
√
−2x− 2c1
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Summary
The solution(s) found are the following

(1)y =
√
−2x− 2c1

(2)y = −
√
−2x− 2c1

Verification of solutions

y =
√
−2x− 2c1

Verified OK.

y = −
√
−2x− 2c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−1
x
dx

= − ln (x) + c2

Summary
The solution(s) found are the following

(1)y = − ln (x) + c2

Verification of solutions

y = − ln (x) + c2

Verified OK.

32.26.1 Maple step by step solution

Let’s solve
xyy′2 + (y + x) y′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
xyy′2 + (y + x) y′

)
dx =

∫
(−1) dx+ c1

• Cannot compute integral
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∫ (
xyy′2 + (y + x) y′

)
dx = −x+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(x*y(x)*diff(y(x),x)^2+(x+y(x))*diff(y(x),x)+1 = 0,y(x), singsol=all)� �

y(x) = − ln (x) + c1
y(x) =

√
−2x+ c1

y(x) = −
√
−2x+ c1

3 Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 53� �
DSolve[x y[x] (y'[x])^2+(x+y[x])y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2
√
−x+ c1

y(x) →
√
2
√
−x+ c1

y(x) → − log(x) + c1
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32.27 problem 962
32.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8758

Internal problem ID [4195]
Internal file name [OUTPUT/3688_Sunday_June_05_2022_10_12_56_AM_9699418/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 32
Problem number: 962.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

xyy′
2 +

(
y2 + x2) y′ + yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −y

x
(1)

y′ = −x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y

x
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Where f(x) = − 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = −1

x
dx∫ 1

y
dy =

∫
−1
x
dx

ln (y) = − ln (x) + c1

y = e− ln(x)+c1

= c1
x

Summary
The solution(s) found are the following

(1)y = c1
x

Verification of solutions

y = c1
x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y

Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c2

Which results in
y =

√
−x2 + 2c2

y = −
√

−x2 + 2c2
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Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c2
(2)y = −

√
−x2 + 2c2

Verification of solutions

y =
√

−x2 + 2c2

Verified OK.

y = −
√

−x2 + 2c2

Verified OK.

32.27.1 Maple step by step solution

Let’s solve
xyy′2 + (y2 + x2) y′ + yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 1

x
dx+ c1

• Evaluate integral
ln (y) = − ln (x) + c1

• Solve for y
y = ec1

x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(x*y(x)*diff(y(x),x)^2+(x^2+y(x)^2)*diff(y(x),x)+x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1
x

y(x) =
√
−x2 + c1

y(x) = −
√

−x2 + c1

3 Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 54� �
DSolve[x y[x] (y'[x])^2+(x^2 + y[x]^2)y'[x]+x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1

y(x) → 0
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33 Various 33
33.1 problem 963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8761
33.2 problem 964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8765
33.3 problem 965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8769
33.4 problem 966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8781
33.5 problem 967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8795
33.6 problem 968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8799
33.7 problem 969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8807
33.8 problem 970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8819
33.9 problem 971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8823
33.10problem 972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8827
33.11problem 973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8841
33.12problem 974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8855
33.13problem 975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8858
33.14problem 976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8862
33.15problem 977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8866
33.16problem 978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8880
33.17problem 979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8888
33.18problem 980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8891
33.19problem 981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8894
33.20problem 982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8897
33.21problem 983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8901
33.22problem 985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8904
33.23problem 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8912
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8760



33.1 problem 963
33.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8763

Internal problem ID [4196]
Internal file name [OUTPUT/3689_Sunday_June_05_2022_10_13_05_AM_40505348/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 963.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

xyy′
2 +

(
x2 − y2

)
y′ − yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y

x
(1)

y′ = −x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x
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Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c1

y = eln(x)+c1

= c1x

Summary
The solution(s) found are the following

(1)y = c1x

Verification of solutions
y = c1x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y

Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c2

Which results in
y =

√
−x2 + 2c2

y = −
√

−x2 + 2c2
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Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c2
(2)y = −

√
−x2 + 2c2

Verification of solutions

y =
√

−x2 + 2c2

Verified OK.

y = −
√

−x2 + 2c2

Verified OK.

33.1.1 Maple step by step solution

Let’s solve
xyy′2 + (x2 − y2) y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = ec1x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(x*y(x)*diff(y(x),x)^2+(x^2-y(x)^2)*diff(y(x),x)-x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1x

y(x) =
√
−x2 + c1

y(x) = −
√

−x2 + c1

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 65� �
DSolve[x y[x] (y'[x])^2+(x^2-y[x]^2)y'[x]-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1

y(x) → −ix
y(x) → ix
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33.2 problem 964
33.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8767

Internal problem ID [4197]
Internal file name [OUTPUT/3690_Sunday_June_05_2022_10_13_14_AM_51486285/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 964.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

xyy′
2 −

(
x2 − y2

)
y′ − yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −y

x
(1)

y′ = x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y

x
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Where f(x) = − 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = −1

x
dx∫ 1

y
dy =

∫
−1
x
dx

ln (y) = − ln (x) + c1

y = e− ln(x)+c1

= c1
x

Summary
The solution(s) found are the following

(1)y = c1
x

Verification of solutions

y = c1
x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x

y

Where f(x) = x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = x dx

∫ 1
1
y

dy =
∫

x dx

y2

2 = x2

2 + c2

Which results in
y =

√
x2 + 2c2

y = −
√
x2 + 2c2
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Summary
The solution(s) found are the following

(1)y =
√

x2 + 2c2
(2)y = −

√
x2 + 2c2

Verification of solutions

y =
√

x2 + 2c2

Verified OK.

y = −
√
x2 + 2c2

Verified OK.

33.2.1 Maple step by step solution

Let’s solve
xyy′2 − (x2 − y2) y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = x

• Integrate both sides with respect to x∫
yy′dx =

∫
xdx+ c1

• Evaluate integral
y2

2 = x2

2 + c1

• Solve for y{
y =

√
x2 + 2c1, y = −

√
x2 + 2c1

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve(x*y(x)*diff(y(x),x)^2-(x^2-y(x)^2)*diff(y(x),x)-x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1
x

y(x) =
√

x2 + c1

y(x) = −
√
x2 + c1

3 Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 50� �
DSolve[x y[x] (y'[x])^2-(x^2-y[x]^2)y'[x]-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x

y(x) → −
√

x2 + 2c1
y(x) →

√
x2 + 2c1

y(x) → 0
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33.3 problem 965
Internal problem ID [4198]
Internal file name [OUTPUT/3691_Sunday_June_05_2022_10_13_22_AM_25934494/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 965.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

xyy′
2 +

(
a+ x2 − y2

)
y′ − yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a− x2 + y2 +
√
y4 + 2y2x2 + x4 − 2y2a+ 2a x2 + a2

2yx (1)

y′ = −a− x2 + y2 −
√
y4 + 2y2x2 + x4 − 2y2a+ 2a x2 + a2

2yx (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −a− x2 + y2 +
√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+
(
−a− x2 + y2 +

√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

)
(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

2yx

−
(
−a− x2 + y2 +

√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
4y2x2

−

−−a− x2 + y2 +
√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

2y x2

+
−2x+ 4x3+4x y2+4ax

2
√

x4+2x2y2+y4+2a x2−2y2a+a2

2yx

(x3a7 + x2ya8

+ x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1
)

−

−−a− x2 + y2 +
√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

2y2x

+
2y + 4x2y+4y3−4ya

2
√

x4+2x2y2+y4+2a x2−2y2a+a2

2yx

(x3b7 + x2yb8 + x y2b9

+ y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2 = v3
}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−2a6 = 0
−4a10 = 0
10aa10 = 0
14aa10 = 0
−2a2a3 = 0
2a3a3 = 0

−2a4 − 4a6 = 0
−2a5 − 2b4 = 0
−2a5 + 2b6 = 0
−2a5 + 6b6 = 0
2a5 + 2b4 = 0

−2a8 − 2b7 = 0
2a8 + 2b7 = 0

−4a9 + 4b10 = 0
−8a4 + 2a6 + 4b5 = 0
−6a4 + 4a6 + 4b5 = 0
−2a4 + 2a6 + 4b5 = 0
6a4 − 4a6 − 4b5 = 0

−6a5 − 2b4 + 8b6 = 0
4a5 + 6b4 − 6b6 = 0

−4a7 − 8a9 + 12b10 = 0
−4a8 − 6a10 + 2b9 = 0
−4a8 + 2a10 + 6b9 = 0
−4a9 + 8a7 − 4b8 = 0
4b8 + 4a9 − 8a7 = 0
6b9 + 6a10 − 4a8 = 0
8b10 − 12a7 + 4b8 = 0

−10a8 + 4a10 − 2b7 + 8b9 = 0
−6a10 + 10b7 + 6a8 − 6b9 = 0

8b8 − 4a7 + 4a9 − 8b10 = 0
6aa6 + 2a1 = 0
8aa6 + 2a1 = 0

−10a2a6 − 4aa1 = 0
−4a2a6 − 2aa1 = 0
4a3a6 + 2a2a1 = 0

−16a2a10 + 2aa3 = 0
−6a2a10 + 2aa3 = 0
6a3a10 − 4a2a3 = 0
−2a2a5 − 2ab1 = 0
2a3a5 + 2a2b1 = 0
−8aa5 + 12ab6 = 0
−6a2a5 + 6a2b6 = 0
−4a2a9 − 4ab3 = 0
4a3a9 + 4a2b3 = 0
8aa9 − 8ab10 = 0

12aa9 − 12ab10 = 0
−2a2a8 − 4aa3 − 2ab2 = 0
2a3a8 + 6a2a3 + 2a2b2 = 0

4aa4 − 8aa6 − 4ab5 = 0
−2a2a4 + 12a2a6 + 4a2b5 = 0

−4aa5 − 2ab4 − 2b1 = 0
6aa5 + 4ab4 + 2b1 = 0

6a2a5 + 2a2b4 + 4ab1 = 0
4aa5 − 6ab6 − 2b1 = 0
6aa5 − 8ab6 − 2b1 = 0

−12aa8 + 18aa10 + 12ab9 = 0
−12a2a9 + 8a2b10 − 4ab3 = 0

−8aa4 + 12aa6 + 8ab5 − 2a1 = 0
2aa4 − 8aa6 − 4ab5 + 2a1 = 0

−8a2a8 + 18a2a10 + 6a2b9 − 4aa3 = 0
−4aa8 − 2ab7 − 2a3 − 2b2 = 0
6aa8 + 4ab7 + 2a3 + 2b2 = 0

6a2a8 + 2a2b7 + 6aa3 + 4ab2 = 0
−12aa7 + 12aa9 + 8ab8 − 4a2 + 4b3 = 0

4aa7 − 8aa9 − 4ab8 + 4a2 − 4b3 = 0
−4a2a7 + 12a2a9 + 4a2b8 − 4aa2 + 8ab3 = 0

6aa8 − 12aa10 − 6ab9 + 2a3 + 2b2 = 0
10aa8 − 12aa10 − 8ab9 − 2a3 − 2b2 = 0

8aa7 − 12aa9 − 4ab8 + 16ab10 − 4a2 + 4b3 = 0

8772



Solving the above equations for the unknowns gives

a1 = 0
a2 = ab10

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = b10

a8 = 0
a9 = b10

a10 = 0
b1 = 0
b2 = 0
b3 = −ab10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b10

b9 = 0
b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x3 + x y2 + ax

η = x2y + y3 − ya

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= x2y + y3 − ya

x3 + x y2 + ax

= −y(−x2 − y2 + a)
x (x2 + y2 + a)

This is easily solved to give

1
1
y2

+ 1
x2+a

= −
√
x2 + a x√
c1 − 4a

x2+a

+ x2

2 + a

2

Where now the coordinate R is taken as the constant of integration. Hence

R = 4x4 + 8x2y2 + 4y4 + 8a x2 − 8y2a+ 4a2
x4 − 2x2y2 + y4 + 2a x2 − 2y2a+ a2

Since ξ depends on y and η depends on x then we can use either one to find S. Let us
use

dS = dx

ξ

= dx

x3 + x y2 + ax

But we have now to replace y in ξ from its value from the solution of dy
dx

= η
ξ
found

above. This results in

ξ = x3 + x

−
√
x2 + a x√
c1 − 4a

x2+a

+ x2

2 + a

2

2

+ ax

Integrating gives

S = dx

x3 + x

(
−

√
x2+a x√
c1− 4a

x2+a

+ x2

2 + a
2

)2

+ ax

= Expression too large to display

8774



Where the constant of integration is set to zero as we just need one solution. Replacing
back c1 = 4x4+8x2y2+4y4+8a x2−8y2a+4a2

x4−2x2y2+y4+2a x2−2y2a+a2
then the above becomes

S = Expression too large to display

Unable to determine ODE type.

Solving equation (2)

Writing the ode as

y′ = −a− x2 + y2 −
√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+
(
−a− x2 + y2 −

√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

)
(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

2yx

−
(
−a− x2 + y2 −

√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
4y2x2

−

−−a− x2 + y2 −
√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

2y x2

+
−2x− 4x3+4x y2+4ax

2
√

x4+2x2y2+y4+2a x2−2y2a+a2

2yx

(x3a7 + x2ya8

+ x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1
)

−

−−a− x2 + y2 −
√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

2y2x

+
2y − 4x2y+4y3−4ya

2
√

x4+2x2y2+y4+2a x2−2y2a+a2

2yx

(x3b7 + x2yb8 + x y2b9

+ y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x4 + 2x2y2 + y4 + 2a x2 − 2y2a+ a2 = v3
}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−2a6 = 0
2a6 = 0

−4a10 = 0
4a10 = 0

−14aa10 = 0
10aa10 = 0
−2a2a3 = 0
−2a3a3 = 0

2a4 + 4a6 = 0
−2a5 − 2b4 = 0
−2a5 + 2b6 = 0
2a5 − 6b6 = 0
2a5 − 2b6 = 0

−2a8 − 2b7 = 0
−4a9 + 4b10 = 0
4a9 − 4b10 = 0

−2a4 + 2a6 + 4b5 = 0
6a4 − 4a6 − 4b5 = 0
8a4 − 2a6 − 4b5 = 0
4a5 + 6b4 − 6b6 = 0
6a5 + 2b4 − 8b6 = 0

4a7 + 8a9 − 12b10 = 0
−4a8 + 2a10 + 6b9 = 0
4a8 + 6a10 − 2b9 = 0
−4b8 − 4a9 + 8a7 = 0
−6b9 − 6a10 + 4a8 = 0
−8b10 + 12a7 − 4b8 = 0

−4a7 + 4a9 − 8b10 + 8b8 = 0
6a8 − 6b9 − 6a10 + 10b7 = 0
10a8 − 4a10 + 2b7 − 8b9 = 0

−8aa6 − 2a1 = 0
6aa6 + 2a1 = 0

−4a2a6 − 2aa1 = 0
10a2a6 + 4aa1 = 0

−4a3a6 − 2a2a1 = 0
−6a2a10 + 2aa3 = 0
16a2a10 − 2aa3 = 0

−6a3a10 + 4a2a3 = 0
−2a2a5 − 2ab1 = 0
−2a3a5 − 2a2b1 = 0

8aa5 − 12ab6 = 0
6a2a5 − 6a2b6 = 0
−4a2a9 − 4ab3 = 0
−4a3a9 − 4a2b3 = 0

−12aa9 + 12ab10 = 0
8aa9 − 8ab10 = 0

−2a2a8 − 4aa3 − 2ab2 = 0
−2a3a8 − 6a2a3 − 2a2b2 = 0

−4aa4 + 8aa6 + 4ab5 = 0
2a2a4 − 12a2a6 − 4a2b5 = 0

−6aa5 − 4ab4 − 2b1 = 0
−4aa5 − 2ab4 − 2b1 = 0

−6a2a5 − 2a2b4 − 4ab1 = 0
−6aa5 + 8ab6 + 2b1 = 0
4aa5 − 6ab6 − 2b1 = 0

12aa8 − 18aa10 − 12ab9 = 0
12a2a9 − 8a2b10 + 4ab3 = 0

2aa4 − 8aa6 − 4ab5 + 2a1 = 0
8aa4 − 12aa6 − 8ab5 + 2a1 = 0

8a2a8 − 18a2a10 − 6a2b9 + 4aa3 = 0
−6aa8 − 4ab7 − 2a3 − 2b2 = 0
−4aa8 − 2ab7 − 2a3 − 2b2 = 0

−6a2a8 − 2a2b7 − 6aa3 − 4ab2 = 0
4aa7 − 8aa9 − 4ab8 + 4a2 − 4b3 = 0

12aa7 − 12aa9 − 8ab8 + 4a2 − 4b3 = 0
4a2a7 − 12a2a9 − 4a2b8 + 4aa2 − 8ab3 = 0
−10aa8 + 12aa10 + 8ab9 + 2a3 + 2b2 = 0

6aa8 − 12aa10 − 6ab9 + 2a3 + 2b2 = 0
−8aa7 + 12aa9 + 4ab8 − 16ab10 + 4a2 − 4b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = ab10

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = b10

a8 = 0
a9 = b10

a10 = 0
b1 = 0
b2 = 0
b3 = −ab10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b10

b9 = 0
b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x3 + x y2 + ax

η = x2y + y3 − ya

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

7 Solution by Maple� �
dsolve(x*y(x)*diff(y(x),x)^2+(a+x^2-y(x)^2)*diff(y(x),x)-x*y(x) = 0,y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 0.419 (sec). Leaf size: 112� �
DSolve[x y[x] (y'[x])^2+(a+x^2-y[x]^2)y'[x]-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
c1

(
x2 + a

1 + c1

)
y(x) → −

√(√
a− ix

)2
y(x) →

√(√
a− ix

)2
y(x) → −

√(√
a+ ix

)2
y(x) →

√(√
a+ ix

)2
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33.4 problem 966
Internal problem ID [4199]
Internal file name [OUTPUT/3692_Sunday_June_05_2022_10_13_37_AM_37332828/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 966.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[_rational]

xyy′
2 −

(
a− b x2 + y2

)
y′ − bxy = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −b x2 + y2 + a+
√
x4b2 + 2b x2y2 + y4 − 2ab x2 + 2ay2 + a2

2yx (1)

y′ = −b x2 + y2 + a−
√
x4b2 + 2b x2y2 + y4 − 2ab x2 + 2ay2 + a2

2yx (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −b x2 + y2 + a+
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+
(
−b x2 + y2 + a+

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

)
(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

2yx

−
(
−b x2 + y2 + a+

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
4y2x2

−

−−b x2 + y2 + a+
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2y x2

+
−2bx+ 4b2x3+4bx y2−4abx

2
√

x4b2+2b x2y2−2ab x2+y4+2a y2+a2

2yx

(x3a7 + x2ya8

+ x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

−

−−b x2 + y2 + a+
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2y2x

+
2y + 4b x2y+4y3+4ya

2
√

x4b2+2b x2y2−2ab x2+y4+2a y2+a2

2yx

(x3b7 + x2yb8

+ x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

8782



Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2 = v3

}
The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−2a6 = 0
−4a10 = 0

−14aa10 = 0
−10aa10 = 0
−2a2a3 = 0
−2a3a3 = 0

−2a5 + 2b6 = 0
4b10 − 4a9 = 0

−8aa6 + 2a1 = 0
−6aa6 + 2a1 = 0

−10a2a6 + 4aa1 = 0
−4a2a6 + 2aa1 = 0
−4a3a6 + 2a2a1 = 0
−16a2a10 − 2aa3 = 0
−6a2a10 − 2aa3 = 0
−6a3a10 − 4a2a3 = 0
−2a2a5 + 2ab1 = 0
−2a3a5 + 2a2b1 = 0
−6a2a5 + 6a2b6 = 0
−4a2a9 + 4ab3 = 0
−4a3a9 + 4a2b3 = 0

−12aa9 + 12ab10 = 0
−8aa9 + 8ab10 = 0
−4ba6 − 2a4 = 0

−2b2a5 − 2bb4 = 0
2b3a5 + 2b2b4 = 0

−2b2a5 + 6b2b6 = 0
−2b2a8 − 2bb7 = 0
2b3a8 + 2b2b7 = 0

8aba5 − 12abb6 = 0
−6aa5 + 8ab6 − 2b1 = 0
−4aa5 + 6ab6 − 2b1 = 0

−12a2a9 + 8a2b10 + 4ab3 = 0
2ba6 − 2a4 + 4b5 = 0

−4b2a6 + 6ba4 − 4bb5 = 0
2b2a6 − 8ba4 + 4bb5 = 0

4b3a6 − 6b2a4 + 4b2b5 = 0
−6ba5 + 8bb6 − 2b4 = 0
4ba5 − 6bb6 + 6b4 = 0

−4b2a9 + 8ba7 − 4bb8 = 0
4b3a9 − 8b2a7 + 4b2b8 = 0
−8ba9 + 12bb10 − 4a7 = 0
8b2b10 − 12ba7 + 4bb8 = 0
−6ba10 − 4a8 + 2b9 = 0
2ba10 − 4a8 + 6b9 = 0

6b3a10 − 4b2a8 + 6b2b9 = 0
−2a2a8 + 4aba3 + 2ab2 = 0

−2a3a8 + 6a2ba3 + 2a2b2 = 0
8aba6 − 4aa4 + 4ab5 = 0

12a2ba6 − 2a2a4 + 4a2b5 = 0
4aba5 + 2ab4 − 2bb1 = 0

−6a b2a5 − 4abb4 + 2b2b1 = 0
6a2ba5 + 2a2b4 − 4abb1 = 0

−18a b2a10 + 12aba8 − 12abb9 = 0
4ba9 − 8bb10 − 4a7 + 8b8 = 0

−6b2a10 + 6ba8 − 6bb9 + 10b7 = 0
4b2a10 − 10ba8 + 8bb9 − 2b7 = 0
8aba6 − 2aa4 + 4ab5 + 2ba1 = 0

−12a b2a6 + 8aba4 − 8abb5 − 2b2a1 = 0
18a2ba10 − 8a2a8 + 6a2b9 + 4aba3 = 0

4aba8 − 2b2a3 + 2ab7 − 2bb2 = 0
−6a b2a8 + 2b3a3 − 4abb7 + 2b2b2 = 0
6a2ba8 − 6a b2a3 + 2a2b7 − 4abb2 = 0

8aba9 − 4aa7 + 4ab8 + 4ba2 − 4bb3 = 0
−12a b2a9 + 12aba7 − 8abb8 − 4b2a2 + 4b2b3 = 0

12a2ba9 − 4a2a7 + 4a2b8 + 4aba2 − 8abb3 = 0
12aba10 − 10aa8 + 8ab9 − 2ba3 − 2b2 = 0
12aba10 − 6aa8 + 6ab9 + 2ba3 + 2b2 = 0

12aba9 − 16abb10 − 8aa7 + 4ab8 − 4ba2 + 4bb3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −ab10

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = bb10

a8 = 0
a9 = b10

a10 = 0
b1 = 0
b2 = 0
b3 = ab10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = bb10

b9 = 0
b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = b x3 + x y2 − ax

η = b x2y + y3 + ya

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= b x2y + y3 + ya

b x3 + x y2 − ax

= − y(b x2 + y2 + a)
x (−b x2 − y2 + a)

This is easily solved to give

1
1
y2

− 1
−b x2+a

= −
√
b x2 − a x√

c1 + 4a
b(b x2−a)

+ b x2

2 − a

2

Where now the coordinate R is taken as the constant of integration. Hence

R = 4x4b2 + 8b x2y2 − 8ab x2 + 4y4 + 8a y2 + 4a2
(x4b2 − 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2) b

Since ξ depends on y and η depends on x then we can use either one to find S. Let us
use

dS = dx

ξ

= dx

b x3 + x y2 − ax

But we have now to replace y in ξ from its value from the solution of dy
dx

= η
ξ
found

above. This results in

ξ = b x3 + x

−
√
b x2 − a x√

c1 + 4a
b(b x2−a)

+ b x2

2 − a

2

2

− ax

Integrating gives

S = dx

b x3 + x

−
√
b x2−a x√

c1+ 4a
b
(
b x2−a

) + b x2

2 − a
2

2

− ax

= Expression too large to display
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Where the constant of integration is set to zero as we just need one solution. Replacing
back c1 = 4x4b2+8b x2y2−8ab x2+4y4+8a y2+4a2

(x4b2−2b x2y2−2ab x2+y4+2a y2+a2)b then the above becomes

S = Expression too large to display

Unable to determine ODE type.

Solving equation (2)

Writing the ode as

y′ = −b x2 + y2 + a−
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

+
(
−b x2 + y2 + a−

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

)
(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

2yx

−
(
−b x2 + y2 + a−

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
4y2x2

−

−−b x2 + y2 + a−
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2y x2

+
−2bx− 4b2x3+4bx y2−4abx

2
√

x4b2+2b x2y2−2ab x2+y4+2a y2+a2

2yx

(x3a7 + x2ya8

+ x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

−

−−b x2 + y2 + a−
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2y2x

+
2y − 4b x2y+4y3+4ya

2
√

x4b2+2b x2y2−2ab x2+y4+2a y2+a2

2yx

(x3b7 + x2yb8

+ x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2 = v3

}
The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−2a6 = 0
2a6 = 0

−4a10 = 0
4a10 = 0

−10aa10 = 0
14aa10 = 0
−2a2a3 = 0
2a3a3 = 0

−2a5 + 2b6 = 0
2a5 − 2b6 = 0

−4a9 + 4b10 = 0
−4b10 + 4a9 = 0
−6aa6 + 2a1 = 0
8aa6 − 2a1 = 0

−4a2a6 + 2aa1 = 0
10a2a6 − 4aa1 = 0
4a3a6 − 2a2a1 = 0

−6a2a10 − 2aa3 = 0
16a2a10 + 2aa3 = 0
6a3a10 + 4a2a3 = 0
−2a2a5 + 2ab1 = 0
2a3a5 − 2a2b1 = 0
6a2a5 − 6a2b6 = 0
−4a2a9 + 4ab3 = 0
4a3a9 − 4a2b3 = 0
−8aa9 + 8ab10 = 0
12aa9 − 12ab10 = 0

4ba6 + 2a4 = 0
−2b2a5 − 2bb4 = 0
−2b3a5 − 2b2b4 = 0
2b2a5 − 6b2b6 = 0
−2b2a8 − 2bb7 = 0
−2b3a8 − 2b2b7 = 0

−8aba5 + 12abb6 = 0
−4aa5 + 6ab6 − 2b1 = 0
6aa5 − 8ab6 + 2b1 = 0

12a2a9 − 8a2b10 − 4ab3 = 0
2ba6 − 2a4 + 4b5 = 0

−4b2a6 + 6ba4 − 4bb5 = 0
−2b2a6 + 8ba4 − 4bb5 = 0

−4b3a6 + 6b2a4 − 4b2b5 = 0
4ba5 − 6bb6 + 6b4 = 0
6ba5 − 8bb6 + 2b4 = 0

−4b2a9 + 8ba7 − 4bb8 = 0
−4b3a9 + 8b2a7 − 4b2b8 = 0

8ba9 − 12bb10 + 4a7 = 0
−8b2b10 + 12ba7 − 4bb8 = 0

2ba10 − 4a8 + 6b9 = 0
6ba10 + 4a8 − 2b9 = 0

−6b3a10 + 4b2a8 − 6b2b9 = 0
−2a2a8 + 4aba3 + 2ab2 = 0
2a3a8 − 6a2ba3 − 2a2b2 = 0
−8aba6 + 4aa4 − 4ab5 = 0

−12a2ba6 + 2a2a4 − 4a2b5 = 0
4aba5 + 2ab4 − 2bb1 = 0

6a b2a5 + 4abb4 − 2b2b1 = 0
−6a2ba5 − 2a2b4 + 4abb1 = 0

18a b2a10 − 12aba8 + 12abb9 = 0
4ba9 − 8bb10 − 4a7 + 8b8 = 0

−6b2a10 + 6ba8 − 6bb9 + 10b7 = 0
−4b2a10 + 10ba8 − 8bb9 + 2b7 = 0
8aba6 − 2aa4 + 4ab5 + 2ba1 = 0

12a b2a6 − 8aba4 + 8abb5 + 2b2a1 = 0
−18a2ba10 + 8a2a8 − 6a2b9 − 4aba3 = 0

4aba8 − 2b2a3 + 2ab7 − 2bb2 = 0
6a b2a8 − 2b3a3 + 4abb7 − 2b2b2 = 0

−6a2ba8 + 6a b2a3 − 2a2b7 + 4abb2 = 0
8aba9 − 4aa7 + 4ab8 + 4ba2 − 4bb3 = 0

12a b2a9 − 12aba7 + 8abb8 + 4b2a2 − 4b2b3 = 0
−12a2ba9 + 4a2a7 − 4a2b8 − 4aba2 + 8abb3 = 0

−12aba10 + 10aa8 − 8ab9 + 2ba3 + 2b2 = 0
12aba10 − 6aa8 + 6ab9 + 2ba3 + 2b2 = 0

−12aba9 + 16abb10 + 8aa7 − 4ab8 + 4ba2 − 4bb3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −ab10

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = bb10

a8 = 0
a9 = b10

a10 = 0
b1 = 0
b2 = 0
b3 = ab10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = bb10

b9 = 0
b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = b x3 + x y2 − ax

η = b x2y + y3 + ya

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= b x2y + y3 + ya−
(
−b x2 + y2 + a−

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2yx

)(
b x3 + x y2 − ax

)
= b2x5 + 2b x3y2 +

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2 b x3 − 2ab x3 + y4x+ x y2

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2 + 2ax y2 −

√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2 ax+ x a2

2xy
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

b2x5+2b x3y2+
√

x4b2+2b x2y2−2ab x2+y4+2a y2+a2 b x3−2ab x3+y4x+x y2
√

x4b2+2b x2y2−2ab x2+y4+2a y2+a2+2ax y2−
√

x4b2+2b x2y2−2ab x2+y4+2a y2+a2 ax+x a2

2xy

dy

Which results in

S = −
ln
(

2x4b2−4ab x2+2a2+
(
2b x2+2a

)
y2+2

√
(b x2−a)2

√
y4+(2b x2+2a)y2+x4b2−2ab x2+a2

y2

)
4
√

(b x2 − a)2
−

arctanh
(

2b x2+2y2+2a
4x

√
ab

)
8x

√
ab

− a ln (x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2)
8 (−b x2 + a)2

−
ax arctanh

(
2b x2+2y2+2a

4x
√
ab

)
b

8 (−b x2 + a)2
√
ab

+
arctanh

(
2b x2+2y2+2a

4x
√
ab

)
a2

8 (−b x2 + a)2 x
√
ab

+ a ln (y)
2x4b2 − 4ab x2 + 2a2 −

ln
(
b x2 + y2 + a+

√
y4 + (2b x2 + 2a) y2 + x4b2 − 2ab x2 + a2

)
4a + ln (x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2)

8a −
x arctanh

(
2b x2+2y2+2a

4x
√
ab

)
b

8a
√
ab

+ b x2 ln (x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2)
4 (−b x2 + a)2

−
b2x3 arctanh

(
2b x2+2y2+2a

4x
√
ab

)
8 (−b x2 + a)2

√
ab

− b x2 ln (y)
x4b2 − 2ab x2 + a2

− x4b2 ln (x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2)
8a (−b x2 + a)2

+
x5b3 arctanh

(
2b x2+2y2+2a

4x
√
ab

)
8a (−b x2 + a)2

√
ab

+ x4b2 ln (y)
2a (x4b2 − 2ab x2 + a2) +

b x2 ln
(

2x4b2−4ab x2+2a2+
(
2b x2+2a

)
y2+2

√
(b x2−a)2

√
y4+(2b x2+2a)y2+x4b2−2ab x2+a2

y2

)
4a
√
(b x2 − a)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −b x2 + y2 + a−
√
x4b2 + 2b x2y2 − 2ab x2 + y4 + 2a y2 + a2

2yx
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2bx√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2

(
b x2 + y2 +

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + a

)

Sy =

(
x4b2 − 2b

(
−y2

2 + a
)
x2 + a2

)√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 − b3x6 + 3x4

(
−2y2

3 + a
)
b2 − 3x2(1

3y
4 − 1

3a y
2 + a2

)
b+ a2(y2 + a)√

y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 ya
(
(−b x2 + a)

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + x4b2 − 2b

(
−y2

2 + a
)
x2 + a (y2 + a)

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
(−b x2 + a)

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + x4b2 − 2b

(
−y2

2 + a
)
x2 + a(a+ y2)

)
+ 4 ln (y)− ln

(
b x2 + y2 +

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + a

)
− ln (2)

4a = c1

Which simplifies to

− ln
(
(−b x2 + a)

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + x4b2 − 2b

(
−y2

2 + a
)
x2 + a(a+ y2)

)
+ 4 ln (y)− ln

(
b x2 + y2 +

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + a

)
− ln (2)

4a = c1

Summary
The solution(s) found are the following

(1)
− ln

(
(−b x2 + a)

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + x4b2 − 2b

(
−y2

2 + a
)
x2 + a(a+ y2)

)
+ 4 ln (y)− ln

(
b x2 + y2 +

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + a

)
− ln (2)

4a= c1

8793



Verification of solutions

− ln
(
(−b x2 + a)

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + x4b2 − 2b

(
−y2

2 + a
)
x2 + a(a+ y2)

)
+ 4 ln (y)− ln

(
b x2 + y2 +

√
y4 + (2b x2 + 2a) y2 + (−b x2 + a)2 + a

)
− ln (2)

4a= c1

Verified OK.
7 Solution by Maple� �
dsolve(x*y(x)*diff(y(x),x)^2-(a-b*x^2+y(x)^2)*diff(y(x),x)-b*x*y(x) = 0,y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 1.599 (sec). Leaf size: 131� �
DSolve[x y[x] (y'[x])^2-(a-b x^2+y[x]^2)y'[x]-b x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
c1

(
x2 − a

b+ c1

)
y(x) → −

√
−
(√

a+
√
bx
)2

y(x) →
√

−
(√

a+
√
bx
)2

y(x) → −
√
−
(√

a−
√
bx
)2

y(x) →
√

−
(√

a−
√
bx
)2
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33.5 problem 967
33.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8797

Internal problem ID [4200]
Internal file name [OUTPUT/3693_Sunday_June_05_2022_10_16_54_AM_1422747/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 967.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

xyy′
2 +

(
3x2 − 2y2

)
y′ − 6yx = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2y
x

(1)

y′ = −3x
y

(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y
x
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Where f(x) = 2
x
and g(y) = y. Integrating both sides gives

1
y
dy = 2

x
dx∫ 1

y
dy =

∫ 2
x
dx

ln (y) = 2 ln (x) + c1

y = e2 ln(x)+c1

= c1x
2

Summary
The solution(s) found are the following

(1)y = c1x
2

Verification of solutions

y = c1x
2

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −3x
y

Where f(x) = −3x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −3x dx

∫ 1
1
y

dy =
∫

−3x dx

y2

2 = −3x2

2 + c2

Which results in
y =

√
−3x2 + 2c2

y = −
√

−3x2 + 2c2
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Summary
The solution(s) found are the following

(1)y =
√

−3x2 + 2c2
(2)y = −

√
−3x2 + 2c2

Verification of solutions

y =
√
−3x2 + 2c2

Verified OK.

y = −
√

−3x2 + 2c2

Verified OK.

33.5.1 Maple step by step solution

Let’s solve
xyy′2 + (3x2 − 2y2) y′ − 6yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 2
x
dx+ c1

• Evaluate integral
ln (y) = 2 ln (x) + c1

• Solve for y
y = ec1x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(x*y(x)*diff(y(x),x)^2+(3*x^2-2*y(x)^2)*diff(y(x),x)-6*x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1x
2

y(x) =
√

−3x2 + c1

y(x) = −
√

−3x2 + c1

3 Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 54� �
DSolve[x y[x] (y'[x])^2+(3 x^2-2 y[x]^2)y'[x]-6 x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
2

y(x) → −
√
−3x2 + 2c1

y(x) →
√
−3x2 + 2c1

y(x) → 0
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33.6 problem 968
33.6.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8799

Internal problem ID [4201]
Internal file name [OUTPUT/3694_Sunday_June_05_2022_10_17_03_AM_13538762/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 968.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x(x− 2y) y′2 − 2xyy′ − 2yx+ y2 = 0

33.6.1 Solving as dAlembert ode

Let p = y′ the ode becomes

x(x− 2y) p2 − 2xyp− 2xy + y2 = 0

Solving for y from the above results in

y =
(
p2 + p+ 1 +

√
p4 + 2p3 + 2p2 + 2p+ 1

)
x (1A)

y =
(
p2 + p+ 1−

√
p4 + 2p3 + 2p2 + 2p+ 1

)
x (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + p+ 1 +
√

(p2 + 1) (p+ 1)2

g = 0

Hence (2) becomes

−p2 − 1−
√
(p2 + 1) (p+ 1)2 = x

2p+ 1 + 2p(p+ 1)2 + 2(p2 + 1) (p+ 1)

2
√

(p2 + 1) (p+ 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 − 1−
√

(p2 + 1) (p+ 1)2 = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
−p(x)2 − 1−

√(
p (x)2 + 1

)
(p (x) + 1)2

x

2p (x) + 1 +
2p(x)(p(x)+1)2+2

(
p(x)2+1

)
(p(x)+1)

2
√(

p(x)2+1
)
(p(x)+1)2

 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
2p+ 1 + 2p(p+1)2+2

(
p2+1

)
(p+1)

2
√

(p2+1)(p+1)2

)
−p2 − 1−

√
(p2 + 1) (p+ 1)2

(4)

This ODE is now solved for x(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
(−2p− 1)

√
(p2 + 1) (p+ 1)2 − 2p3 − 3p2 − 2p− 1√

(p2 + 1) (p+ 1)2
(
p2 + 1 +

√
(p2 + 1) (p+ 1)2

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

(
(−2p− 1)

√
(p2 + 1) (p+ 1)2 − 2p3 − 3p2 − 2p− 1

)
x(p)√

(p2 + 1) (p+ 1)2
(
p2 + 1 +

√
(p2 + 1) (p+ 1)2

) = 0

The integrating factor µ is

µ = e

∫
−

(−2p−1)
√(

p2+1
)
(p+1)2−2p3−3p2−2p−1√(

p2+1
)
(p+1)2

(
p2+1+

√(
p2+1

)
(p+1)2

)dp

The ode becomes
d
dpµx = 0

d
dp

e

∫
−

(−2p−1)
√(

p2+1
)
(p+1)2−2p3−3p2−2p−1√(

p2+1
)
(p+1)2

(
p2+1+

√(
p2+1

)
(p+1)2

)dp
x

 = 0

Integrating gives

e

∫
−

(−2p−1)
√(

p2+1
)
(p+1)2−2p3−3p2−2p−1√(

p2+1
)
(p+1)2

(
p2+1+

√(
p2+1

)
(p+1)2

)dp
x = c2

Dividing both sides by the integrating factor µ = e

∫
−

(−2p−1)
√(

p2+1
)
(p+1)2−2p3−3p2−2p−1√(

p2+1
)
(p+1)2

(
p2+1+

√(
p2+1

)
(p+1)2

)dp

results in

x(p) = c2e
−

∫ (2p+1)
√(

p2+1
)
(p+1)2+2p3+3p2+2p+1√(

p2+1
)
(p+1)2

(
p2+1+

√(
p2+1

)
(p+1)2

)dp
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Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p2 + p+ 1−
√

(p2 + 1) (p+ 1)2

g = 0

Hence (2) becomes

−p2 − 1 +
√

(p2 + 1) (p+ 1)2 = x

2p+ 1− 2p(p+ 1)2 + 2(p2 + 1) (p+ 1)

2
√

(p2 + 1) (p+ 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 − 1 +
√
(p2 + 1) (p+ 1)2 = 0

Solving for p from the above gives

p = 0
p = i

p = −i

Substituting these in (1A) gives

y = 0
y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
−p(x)2 − 1 +

√(
p (x)2 + 1

)
(p (x) + 1)2

x

2p (x) + 1−
2p(x)(p(x)+1)2+2

(
p(x)2+1

)
(p(x)+1)

2
√(

p(x)2+1
)
(p(x)+1)2

 (3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
2p+ 1− 2p(p+1)2+2

(
p2+1

)
(p+1)

2
√

(p2+1)(p+1)2

)
−p2 − 1 +

√
(p2 + 1) (p+ 1)2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
−2p3 + 2p

√
(p2 + 1) (p+ 1)2 − 3p2 +

√
(p2 + 1) (p+ 1)2 − 2p− 1√

(p2 + 1) (p+ 1)2
(
−p2 − 1 +

√
(p2 + 1) (p+ 1)2

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

x(p)
(
−2p3 + 2p

√
(p2 + 1) (p+ 1)2 − 3p2 +

√
(p2 + 1) (p+ 1)2 − 2p− 1

)
√

(p2 + 1) (p+ 1)2
(
−p2 − 1 +

√
(p2 + 1) (p+ 1)2

) = 0

The integrating factor µ is

µ = e

∫
−

−2p3+2p
√(

p2+1
)
(p+1)2−3p2+

√(
p2+1

)
(p+1)2−2p−1√(

p2+1
)
(p+1)2

(
−p2−1+

√(
p2+1

)
(p+1)2

) dp

The ode becomes
d
dpµx = 0

d
dp

e

∫
−

−2p3+2p
√(

p2+1
)
(p+1)2−3p2+

√(
p2+1

)
(p+1)2−2p−1√(

p2+1
)
(p+1)2

(
−p2−1+

√(
p2+1

)
(p+1)2

) dp

x

 = 0

Integrating gives

e

∫
−

−2p3+2p
√(

p2+1
)
(p+1)2−3p2+

√(
p2+1

)
(p+1)2−2p−1√(

p2+1
)
(p+1)2

(
−p2−1+

√(
p2+1

)
(p+1)2

) dp

x = c4

8803



Dividing both sides by the integrating factor µ = e

∫
−

−2p3+2p
√(

p2+1
)
(p+1)2−3p2+

√(
p2+1

)
(p+1)2−2p−1√(

p2+1
)
(p+1)2

(
−p2−1+

√(
p2+1

)
(p+1)2

) dp

results in

x(p) = c4e

∫ −2p3+2p
√(

p2+1
)
(p+1)2−3p2+

√(
p2+1

)
(p+1)2−2p−1√(

p2+1
)
(p+1)2

(
−p2−1+

√(
p2+1

)
(p+1)2

) dp

Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix
(3)y = 0
(4)y = −ix
(5)y = ix

Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.
y = 0

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.859 (sec). Leaf size: 103� �
dsolve(x*(x-2*y(x))*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)-2*x*y(x)+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 0

y(x) = RootOf

−2 ln (x)−

∫ _Z 2_a2 +
√
2
√
_a (_a− 1)2

_a (_a2 + 1) d_a

+ 2c1

x

y(x) = RootOf

−2 ln (x) +
∫ _Z

√
2
√

_a (_a− 1)2 − 2_a2

_a (_a2 + 1) d_a+ 2c1

x
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3 Solution by Mathematica
Time used: 4.905 (sec). Leaf size: 167� �
DSolve[x(x-2 y[x]) (y'[x])^2-2 x y[x] y'[x]-2 x y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x
(
x+ 2e

c1
2

)
− e

c1
2

y(x) →
√

−x
(
x+ 2e

c1
2

)
− e

c1
2

y(x) → e
c1
2 −

√
x
(
−x+ 2e

c1
2

)
y(x) →

√
x
(
−x+ 2e

c1
2

)
+ e

c1
2

y(x) → −
√
−x2

y(x) →
√
−x2
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33.7 problem 969
33.7.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8807

Internal problem ID [4202]
Internal file name [OUTPUT/3695_Sunday_June_05_2022_10_17_11_AM_58503920/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 969.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

x(x− 2y) y′2 + 6y′xy − 2yx+ y2 = 0

33.7.1 Solving as dAlembert ode

Let p = y′ the ode becomes

x(−2y + x) p2 + 6pxy − 2yx+ y2 = 0

Solving for y from the above results in

y =
(
p2 − 3p+ 1 +

√
p4 − 6p3 + 10p2 − 6p+ 1

)
x (1A)

y =
(
p2 − 3p+ 1−

√
p4 − 6p3 + 10p2 − 6p+ 1

)
x (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 − 3p+ 1 +
√

(p2 − 4p+ 1) (p− 1)2

g = 0

Hence (2) becomes

4p− p2 − 1−
√

(p2 − 4p+ 1) (p− 1)2 = x

2p− 3 + (2p− 4) (p− 1)2 + 2(p2 − 4p+ 1) (p− 1)

2
√

(p2 − 4p+ 1) (p− 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

4p− p2 − 1−
√

(p2 − 4p+ 1) (p− 1)2 = 0

Solving for p from the above gives

p = 2 +
√
3

p = 2−
√
3

Substituting these in (1A) gives

y = −x
√
3 + 2x

y = x
√
3 + 2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
4p(x)− p(x)2 − 1−

√(
p (x)2 − 4p (x) + 1

)
(p (x)− 1)2

x

2p (x)− 3 +
(2p(x)−4)(p(x)−1)2+2

(
p(x)2−4p(x)+1

)
(p(x)−1)

2
√(

p(x)2−4p(x)+1
)
(p(x)−1)2

 (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
2p− 3 + (2p−4)(p−1)2+2

(
p2−4p+1

)
(p−1)

2
√

(p2−4p+1)(p−1)2

)
4p− p2 − 1−

√
(p2 − 4p+ 1) (p− 1)2

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
(−2p+ 3)

√
(p2 − 4p+ 1) (p− 1)2 − 2p3 + 9p2 − 10p+ 3√

(p2 − 4p+ 1) (p− 1)2
(
−4p+ p2 + 1 +

√
(p2 − 4p+ 1) (p− 1)2

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

(
(−2p+ 3)

√
(p2 − 4p+ 1) (p− 1)2 − 2p3 + 9p2 − 10p+ 3

)
x(p)√

(p2 − 4p+ 1) (p− 1)2
(
−4p+ p2 + 1 +

√
(p2 − 4p+ 1) (p− 1)2

) = 0

The integrating factor µ is

µ = e

∫
−

(−2p+3)
√(

p2−4p+1
)
(p−1)2−2p3+9p2−10p+3√(

p2−4p+1
)
(p−1)2

(
−4p+p2+1+

√(
p2−4p+1

)
(p−1)2

)dp

= e

√(
p2−4p+1

)
(p−1)2 ln

(
p−2+

√
p2−4p+1

)
(p−1)

√
p2−4p+1

+
ln
(
p2−4p+1

)
2

Which simplifies to

µ =
√

p2 − 4p+ 1
(
p− 2 +

√
p2 − 4p+ 1

)√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1

The ode becomes

d
dpµx = 0

d
dp

√p2 − 4p+ 1
(
p− 2 +

√
p2 − 4p+ 1

)√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1 x

 = 0
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Integrating gives

√
p2 − 4p+ 1

(
p− 2 +

√
p2 − 4p+ 1

)√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1 x = c2

Dividing both sides by the integrating factor µ =
√
p2 − 4p+ 1

(
p− 2 +

√
p2 − 4p+ 1

)√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1

results in

x(p) =
c2
(
p− 2 +

√
p2 − 4p+ 1

)−√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1

√
p2 − 4p+ 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3yx+
√
2y3x+ 4y2x2 + 2x3y

x (x− 2y)

p = −3yx+
√
2y3x+ 4y2x2 + 2x3y

x (x− 2y)

Substituting the above in the solution for x found above gives

x

=

c2

x(x−2y)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx+

√
2
√

yx(y+x)2

x(x−2y)


√√√√√
(
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)(

−
√

2
√

yx(y+x)2+x(y+x)
)2

x3(x−2y)4
x(x−2y)√√√√−4

(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(
−
√

2
√

yx(y+x)2+x(y+x)
)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

x

=

c2

x(x−2y)

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx−

√
2
√

yx(y+x)2

x(x−2y)


√√√√√
(√

2
√

yx(y+x)2+x(y+x)
)2(

4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)

x3(x−2y)4
x(x−2y)

(√
2
√

yx(y+x)2+x2+yx

)√√√√ 4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
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Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p2 − 3p+ 1−
√
(p2 − 4p+ 1) (p− 1)2

g = 0

Hence (2) becomes

4p− p2 − 1 +
√

(p2 − 4p+ 1) (p− 1)2 = x

2p− 3− (2p− 4) (p− 1)2 + 2(p2 − 4p+ 1) (p− 1)

2
√

(p2 − 4p+ 1) (p− 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

4p− p2 − 1 +
√
(p2 − 4p+ 1) (p− 1)2 = 0

Solving for p from the above gives

p = 0
p = 2 +

√
3

p = 2−
√
3

Substituting these in (1A) gives

y = 0
y = −x

√
3 + 2x

y = x
√
3 + 2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
4p(x)− p(x)2 − 1 +

√(
p (x)2 − 4p (x) + 1

)
(p (x)− 1)2

x

2p (x)− 3−
(2p(x)−4)(p(x)−1)2+2

(
p(x)2−4p(x)+1

)
(p(x)−1)

2
√(

p(x)2−4p(x)+1
)
(p(x)−1)2

 (3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
2p− 3− (2p−4)(p−1)2+2

(
p2−4p+1

)
(p−1)

2
√

(p2−4p+1)(p−1)2

)
4p− p2 − 1 +

√
(p2 − 4p+ 1) (p− 1)2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
(−2p+ 3)

√
(p2 − 4p+ 1) (p− 1)2 + 2p3 − 9p2 + 10p− 3√

(p2 − 4p+ 1) (p− 1)2
(
−4p+ p2 + 1−

√
(p2 − 4p+ 1) (p− 1)2

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

(
(−2p+ 3)

√
(p2 − 4p+ 1) (p− 1)2 + 2p3 − 9p2 + 10p− 3

)
x(p)√

(p2 − 4p+ 1) (p− 1)2
(
−4p+ p2 + 1−

√
(p2 − 4p+ 1) (p− 1)2

) = 0

The integrating factor µ is

µ = e

∫
−

(−2p+3)
√(

p2−4p+1
)
(p−1)2+2p3−9p2+10p−3√(

p2−4p+1
)
(p−1)2

(
−4p+p2+1−

√(
p2−4p+1

)
(p−1)2

)dp

= e
−

√(
p2−4p+1

)
(p−1)2 ln

(
p−2+

√
p2−4p+1

)
(p−1)

√
p2−4p+1

+
ln
(
p2−4p+1

)
2

Which simplifies to

µ =
√

p2 − 4p+ 1
(
p− 2 +

√
p2 − 4p+ 1

)−√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1
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The ode becomes

d
dpµx = 0

d
dp

√p2 − 4p+ 1
(
p− 2 +

√
p2 − 4p+ 1

)−√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1 x

 = 0

Integrating gives

√
p2 − 4p+ 1

(
p− 2 +

√
p2 − 4p+ 1

)−√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1 x = c4

Dividing both sides by the integrating factor µ =
√
p2 − 4p+ 1

(
p− 2 +

√
p2 − 4p+ 1

)−√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1

results in

x(p) =
c4
(
p− 2 +

√
p2 − 4p+ 1

)√(p2−4p+1
)
(p−1)2

(p−1)
√

p2−4p+1

√
p2 − 4p+ 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3yx+
√
2y3x+ 4y2x2 + 2x3y

x (x− 2y)

p = −3yx+
√
2y3x+ 4y2x2 + 2x3y

x (x− 2y)

Substituting the above in the solution for x found above gives

x

=

c4

x(x−2y)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx+

√
2
√

yx(y+x)2

x(x−2y)


−

√√√√√
(
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)(

−
√
2
√

yx(y+x)2+x(y+x)
)2

x3(x−2y)4
x(x−2y)√√√√−4

(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(
−
√

2
√

yx(y+x)2+x(y+x)
)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
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x

=

c4

x(x−2y)

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx−

√
2
√

yx(y+x)2

x(x−2y)


−

√√√√√
(√

2
√

yx(y+x)2+x(y+x)
)2(

4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)

x3(x−2y)4
x(x−2y)

(√
2
√

yx(y+x)2+x2+yx

)√√√√ 4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
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Summary
The solution(s) found are the following

(1)y = −x
√
3 + 2x

(2)y = x
√
3 + 2x

(3)x

=

c2

x(x−2y)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx+

√
2
√

yx(y+x)2

x(x−2y)


√√√√√
(
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)(

−
√

2
√

yx(y+x)2+x(y+x)
)2

x3(x−2y)4
x(x−2y)√√√√−4

(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(
−
√

2
√

yx(y+x)2+x(y+x)
)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(4)x

=

c2

x(x−2y)

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx−

√
2
√

yx(y+x)2

x(x−2y)


√√√√√
(√

2
√

yx(y+x)2+x(y+x)
)2(

4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)

x3(x−2y)4
x(x−2y)

(√
2
√

yx(y+x)2+x2+yx

)√√√√ 4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(5)y = 0
(6)y = −x

√
3 + 2x

(7)y = x
√
3 + 2x

(8)x

=

c4

x(x−2y)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx+

√
2
√

yx(y+x)2

x(x−2y)


−

√√√√√
(
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)(

−
√
2
√

yx(y+x)2+x(y+x)
)2

x3(x−2y)4
x(x−2y)√√√√−4

(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(
−
√

2
√

yx(y+x)2+x(y+x)
)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(9)x

=

c4

x(x−2y)

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx−

√
2
√

yx(y+x)2

x(x−2y)


−

√√√√√
(√

2
√

yx(y+x)2+x(y+x)
)2(

4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)

x3(x−2y)4
x(x−2y)

(√
2
√

yx(y+x)2+x2+yx

)√√√√ 4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
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Verification of solutions

y = −x
√
3 + 2x

Verified OK.

y = x
√
3 + 2x

Verified OK.
x

=

c2

x(x−2y)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx+

√
2
√

yx(y+x)2

x(x−2y)


√√√√√
(
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)(

−
√

2
√

yx(y+x)2+x(y+x)
)2

x3(x−2y)4
x(x−2y)√√√√−4

(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(
−
√

2
√

yx(y+x)2+x(y+x)
)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

Warning, solution could not be verified
x

=

c2

x(x−2y)

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx−

√
2
√

yx(y+x)2

x(x−2y)


√√√√√
(√

2
√

yx(y+x)2+x(y+x)
)2(

4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)

x3(x−2y)4
x(x−2y)

(√
2
√

yx(y+x)2+x2+yx

)√√√√ 4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

Warning, solution could not be verified

y = 0

Verified OK.

y = −x
√
3 + 2x

Verified OK.

y = x
√
3 + 2x

Verified OK.
x

=

c4

x(x−2y)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx+

√
2
√

yx(y+x)2

x(x−2y)


−

√√√√√
(
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)(

−
√
2
√

yx(y+x)2+x(y+x)
)2

x3(x−2y)4
x(x−2y)√√√√−4

(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

(
−
√

2
√

yx(y+x)2+x(y+x)
)

√
−4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

Warning, solution could not be verified
x

=

c4

x(x−2y)

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2
−2x2+yx−

√
2
√

yx(y+x)2

x(x−2y)


−

√√√√√
(√

2
√

yx(y+x)2+x(y+x)
)2(

4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3
)

x3(x−2y)4
x(x−2y)

(√
2
√

yx(y+x)2+x2+yx

)√√√√ 4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

√
4
(
x− y

2
)√

2
√

yx(y+x)2+x3+10yx2−7y2x+2y3

x(x−2y)2

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.797 (sec). Leaf size: 115� �
dsolve(x*(x-2*y(x))*diff(y(x),x)^2+6*x*y(x)*diff(y(x),x)-2*x*y(x)+y(x)^2 = 0,y(x), singsol=all)� �
y(x) = 0

y(x) = RootOf

−2 ln (x)−

∫ _Z 2_a2 +
√
2
√
_a (_a+ 1)2 − 4_a

_a (_a2 − 4_a+ 1) d_a

+ 2c1

x

y(x) = RootOf

−2 ln (x) +
∫ _Z

√
2
√
_a (_a+ 1)2 − 2_a2 + 4_a
_a (_a2 − 4_a+ 1) d_a+ 2c1

x
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3 Solution by Mathematica
Time used: 7.579 (sec). Leaf size: 196� �
DSolve[x(x-2 y[x]) (y'[x])^2+6 x y[x] y'[x]-2 x y[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x−
√

x
(
3x− 2e

c1
2

)
− e

c1
2

y(x) → 2x+
√
x
(
3x− 2e

c1
2

)
− e

c1
2

y(x) → 2x−
√

x
(
3x+ 2e

c1
2

)
+ e

c1
2

y(x) → 2x+
√
x
(
3x+ 2e

c1
2

)
+ e

c1
2

y(x) → 2x−
√
3
√
x2

y(x) →
√
3
√
x2 + 2x
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33.8 problem 970
33.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8821

Internal problem ID [4203]
Internal file name [OUTPUT/3696_Sunday_June_05_2022_10_17_19_AM_9607831/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 970.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y2y′
2 = a2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = a

y
(1)

y′ = −a

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
y

a
dy = x+ c1

y2

2a = x+ c1

Solving for y gives these solutions

y1 =
√
2ac1 + 2ax

y2 = −
√
2ac1 + 2ax
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Summary
The solution(s) found are the following

(1)y =
√
2ac1 + 2ax

(2)y = −
√
2ac1 + 2ax

Verification of solutions

y =
√
2ac1 + 2ax

Verified OK.

y = −
√
2ac1 + 2ax

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
−y

a
dy = x+ c2

− y2

2a = x+ c2

Solving for y gives these solutions

y1 =
√
−2ac2 − 2ax

y2 = −
√
−2ac2 − 2ax

Summary
The solution(s) found are the following

(1)y =
√
−2ac2 − 2ax

(2)y = −
√
−2ac2 − 2ax

Verification of solutions

y =
√
−2ac2 − 2ax

Verified OK.

y = −
√
−2ac2 − 2ax

Verified OK.
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33.8.1 Maple step by step solution

Let’s solve
y2y′2 = a2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = a

• Integrate both sides with respect to x∫
yy′dx =

∫
adx+ c1

• Evaluate integral
y2

2 = ax+ c1

• Solve for y{
y =

√
2ax+ 2c1, y = −

√
2ax+ 2c1

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
dsolve(y(x)^2*diff(y(x),x)^2 = a^2,y(x), singsol=all)� �

y(x) =
√
2ax+ c1

y(x) = −
√
2ax+ c1

y(x) =
√
−2ax+ c1

y(x) = −
√
−2ax+ c1

3 Solution by Mathematica
Time used: 0.285 (sec). Leaf size: 85� �
DSolve[y[x]^2(y'[x])^2==a^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2
√
−ax+ c1

y(x) →
√
2
√
−ax+ c1

y(x) → −
√
2
√
ax+ c1

y(x) →
√
2
√
ax+ c1
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33.9 problem 971
33.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8824

Internal problem ID [4204]
Internal file name [OUTPUT/3697_Sunday_June_05_2022_10_17_30_AM_75664466/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 971.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y2y′
2 + y2 = a2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√
a2 − y2

y
(1)

y′ = −
√
a2 − y2

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
y√

a2 − y2
dy =

∫
dx

−(a− y) (y + a)√
a2 − y2

= x+ c1

Summary
The solution(s) found are the following

(1)−(a− y) (y + a)√
a2 − y2

= x+ c1
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Verification of solutions

−(a− y) (y + a)√
a2 − y2

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− y√

a2 − y2
dy =

∫
dx

(a− y) (y + a)√
a2 − y2

= x+ c2

Summary
The solution(s) found are the following

(1)(a− y) (y + a)√
a2 − y2

= x+ c2

Verification of solutions

(a− y) (y + a)√
a2 − y2

= x+ c2

Verified OK.

33.9.1 Maple step by step solution

Let’s solve
y2y′2 + y2 = a2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y√
a2−y2

= 1

• Integrate both sides with respect to x∫
y′y√
a2−y2

dx =
∫
1dx+ c1

• Evaluate integral
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−
√
a2 − y2 = x+ c1

• Solve for y{
y =

√
−c21 − 2c1x+ a2 − x2, y = −

√
−c21 − 2c1x+ a2 − x2

}

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.734 (sec). Leaf size: 54� �
dsolve(y(x)^2*diff(y(x),x)^2-a^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −a
y(x) = a

y(x) =
√

a2 − c21 + 2c1x− x2

y(x) = −
√

(a+ x− c1) (c1 + a− x)
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3 Solution by Mathematica
Time used: 0.239 (sec). Leaf size: 101� �
DSolve[y[x]^2 (y'[x])^2-a^2 +y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
a2 − (x+ c1)2

y(x) →
√
a2 − (x+ c1)2

y(x) → −
√
a2 − (x− c1)2

y(x) →
√
a2 − (x− c1)2

y(x) → −a
y(x) → a
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33.10 problem 972
Internal problem ID [4205]
Internal file name [OUTPUT/3698_Sunday_June_05_2022_10_17_36_AM_67141814/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 972.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

y2y′
2 − 3xy′ + y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 3x+
√
9x2 − 4y3
2y2 (1)

y′ = −−3x+
√
9x2 − 4y3

2y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 3x+
√
−4y3 + 9x2

2y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
3x+

√
−4y3 + 9x2

)
(b3 − a2)

2y2 −
(
3x+

√
−4y3 + 9x2

)2
a3

4y4

−

(
3 + 9x√

−4y3+9x2

)
(xa2 + ya3 + a1)

2y2

−
(
−3x+

√
−4y3 + 9x2

y3
− 3√

−4y3 + 9x2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2y4
√
−4y3 + 9x2 + 4x y4b2 − 8y5a2 + 12y5b3 − 12

√
−4y3 + 9x2 x2yb2 + 12

√
−4y3 + 9x2 x y2a2 − 18

√
−4y3 + 9x2 x y2b3 + 6

√
−4y3 + 9x2 y3a3 − 36x3yb2 + 36x2y2a2 − 54x2y2b3 − 6x y3a3 + 4y4b1 + (−4y3 + 9x2)

3
2 a3 + 9

√
−4y3 + 9x2 x2a3 − 12

√
−4y3 + 9x2 xyb1 + 6

√
−4y3 + 9x2 y2a1 + 54x3a3 − 36x2yb1 + 18x y2a1

4y4
√
−4y3 + 9x2

= 0

Setting the numerator to zero gives

(6E)

4b2y4
√

−4y3 + 9x2 − 4x y4b2 + 8y5a2 − 12y5b3 + 12
√
−4y3 + 9x2 x2yb2

− 12
√

−4y3 + 9x2 x y2a2 + 18
√
−4y3 + 9x2 x y2b3 − 6

√
−4y3 + 9x2 y3a3

+ 36x3yb2 − 36x2y2a2 + 54x2y2b3 + 6x y3a3 − 4y4b1
−
(
−4y3 + 9x2) 3

2 a3 − 9
√
−4y3 + 9x2 x2a3 + 12

√
−4y3 + 9x2 xyb1

− 6
√

−4y3 + 9x2 y2a1 − 54x3a3 + 36x2yb1 − 18x y2a1 = 0
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Simplifying the above gives

(6E)

4b2y4
√

−4y3 + 9x2 + 12x y4b2 + 12y5b3 + 4
(
−4y3 + 9x2)xyb2

− 2
(
−4y3 + 9x2) y2a2 + 6

(
−4y3 + 9x2) y2b3 + 12

√
−4y3 + 9x2 x2yb2

−12
√

−4y3 + 9x2 x y2a2+18
√
−4y3 + 9x2 x y2b3−6

√
−4y3 + 9x2 y3a3

− 18x2y2a2 − 18x y3a3 + 12y4b1 −
(
−4y3 + 9x2) 3

2 a3

− 6
(
−4y3 + 9x2)xa3 + 4

(
−4y3 + 9x2) yb1 − 9

√
−4y3 + 9x2 x2a3

+ 12
√

−4y3 + 9x2 xyb1 − 6
√
−4y3 + 9x2 y2a1 − 18x y2a1 = 0

Since the PDE has radicals, simplifying gives

−4x y4b2 + 4b2y4
√

−4y3 + 9x2 + 8y5a2 − 12y5b3 + 36x3yb2

+ 12
√

−4y3 + 9x2 x2yb2 − 36x2y2a2 + 54x2y2b3 − 12
√
−4y3 + 9x2 x y2a2

+ 18
√

−4y3 + 9x2 x y2b3 + 6x y3a3 − 2
√

−4y3 + 9x2 y3a3

− 4y4b1 − 54x3a3 − 18
√

−4y3 + 9x2 x2a3 + 36x2yb1

+ 12
√

−4y3 + 9x2 xyb1 − 18x y2a1 − 6
√

−4y3 + 9x2 y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4y3 + 9x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4y3 + 9x2 = v3
}

The above PDE (6E) now becomes

(7E)8v52a2 − 4v1v42b2 + 4b2v42v3 − 12v52b3 − 36v21v22a2 − 12v3v1v22a2 + 6v1v32a3
− 2v3v32a3 − 4v42b1 + 36v31v2b2 + 12v3v21v2b2 + 54v21v22b3 + 18v3v1v22b3
− 18v1v22a1 − 6v3v22a1 − 54v31a3 − 18v3v21a3 + 36v21v2b1 + 12v3v1v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)36v31v2b2 − 54v31a3 + (−36a2 + 54b3) v21v22 + 12v3v21v2b2 + 36v21v2b1
− 18v3v21a3 − 4v1v42b2 + 6v1v32a3 + (−12a2 + 18b3) v1v22v3 − 18v1v22a1
+ 12v3v1v2b1 + (8a2 − 12b3) v52 + 4b2v42v3 − 4v42b1 − 2v3v32a3 − 6v3v22a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−18a1 = 0
−6a1 = 0
−54a3 = 0
−18a3 = 0
−2a3 = 0
6a3 = 0

−4b1 = 0
12b1 = 0
36b1 = 0
−4b2 = 0
4b2 = 0
12b2 = 0
36b2 = 0

−36a2 + 54b3 = 0
−12a2 + 18b3 = 0

8a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
3b3
2

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
2

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
3x+

√
−4y3 + 9x2

2y2

)(
3x
2

)
= 4y3 − 3

√
−4y3 + 9x2 x− 9x2

4y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4y3−3
√

−4y3+9x2 x−9x2

4y2

dy

Which results in

S = ln (y) +
2x arctanh

(√
−4y3+9x2

3
√
x2

)
3
√
x2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x+
√
−4y3 + 9x2

2y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2√
−4y3 + 9x2

Sy =
1− 3x√

−4y3+9x2

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) +
2 arctanh

(√
9x2−4y3
3x

)
3 = c1
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Which simplifies to

ln (y) +
2 arctanh

(√
9x2−4y3
3x

)
3 = c1

Summary
The solution(s) found are the following

(1)ln (y) +
2 arctanh

(√
9x2−4y3
3x

)
3 = c1

Verification of solutions

ln (y) +
2 arctanh

(√
9x2−4y3
3x

)
3 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
√
−4y3 + 9x2 − 3x

2y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(√

−4y3 + 9x2 − 3x
)
(b3 − a2)

2y2 −
(√

−4y3 + 9x2 − 3x
)2

a3

4y4

+

(
9x√

−4y3+9x2 − 3
)
(xa2 + ya3 + a1)

2y2

−
(

3√
−4y3 + 9x2 +

√
−4y3 + 9x2 − 3x

y3

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2y4
√
−4y3 + 9x2 − 4x y4b2 + 8y5a2 − 12y5b3 − 12

√
−4y3 + 9x2 x2yb2 + 12

√
−4y3 + 9x2 x y2a2 − 18

√
−4y3 + 9x2 x y2b3 + 6

√
−4y3 + 9x2 y3a3 + 36x3yb2 − 36x2y2a2 + 54x2y2b3 + 6x y3a3 − 4y4b1 + (−4y3 + 9x2)

3
2 a3 + 9

√
−4y3 + 9x2 x2a3 − 12

√
−4y3 + 9x2 xyb1 + 6

√
−4y3 + 9x2 y2a1 − 54x3a3 + 36x2yb1 − 18x y2a1

4y4
√
−4y3 + 9x2

= 0

Setting the numerator to zero gives

(6E)

4b2y4
√

−4y3 + 9x2 + 4x y4b2 − 8y5a2 + 12y5b3 + 12
√
−4y3 + 9x2 x2yb2

− 12
√

−4y3 + 9x2 x y2a2 + 18
√
−4y3 + 9x2 x y2b3 − 6

√
−4y3 + 9x2 y3a3

− 36x3yb2 + 36x2y2a2 − 54x2y2b3 − 6x y3a3 + 4y4b1
−
(
−4y3 + 9x2) 3

2 a3 − 9
√
−4y3 + 9x2 x2a3 + 12

√
−4y3 + 9x2 xyb1

− 6
√

−4y3 + 9x2 y2a1 + 54x3a3 − 36x2yb1 + 18x y2a1 = 0

Simplifying the above gives

(6E)

4b2y4
√

−4y3 + 9x2 − 12x y4b2 − 12y5b3 − 4
(
−4y3 + 9x2)xyb2

+ 2
(
−4y3 + 9x2) y2a2 − 6

(
−4y3 + 9x2) y2b3 + 12

√
−4y3 + 9x2 x2yb2

−12
√

−4y3 + 9x2 x y2a2+18
√
−4y3 + 9x2 x y2b3−6

√
−4y3 + 9x2 y3a3

+ 18x2y2a2 + 18x y3a3 − 12y4b1 −
(
−4y3 + 9x2) 3

2 a3

+ 6
(
−4y3 + 9x2)xa3 − 4

(
−4y3 + 9x2) yb1 − 9

√
−4y3 + 9x2 x2a3

+ 12
√

−4y3 + 9x2 xyb1 − 6
√
−4y3 + 9x2 y2a1 + 18x y2a1 = 0

Since the PDE has radicals, simplifying gives

4x y4b2+4b2y4
√

−4y3 + 9x2−8y5a2+12y5b3−36x3yb2+12
√
−4y3 + 9x2 x2yb2

+ 36x2y2a2 − 54x2y2b3 − 12
√

−4y3 + 9x2 x y2a2 + 18
√

−4y3 + 9x2 x y2b3

− 6x y3a3 − 2
√

−4y3 + 9x2 y3a3 + 4y4b1 + 54x3a3 − 18
√
−4y3 + 9x2 x2a3

− 36x2yb1 + 12
√

−4y3 + 9x2 xyb1 + 18x y2a1 − 6
√

−4y3 + 9x2 y2a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4y3 + 9x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4y3 + 9x2 = v3
}

The above PDE (6E) now becomes

(7E)−8v52a2 + 4v1v42b2 + 4b2v42v3 + 12v52b3 + 36v21v22a2 − 12v3v1v22a2 − 6v1v32a3
− 2v3v32a3 + 4v42b1 − 36v31v2b2 + 12v3v21v2b2 − 54v21v22b3 + 18v3v1v22b3
+ 18v1v22a1 − 6v3v22a1 + 54v31a3 − 18v3v21a3 − 36v21v2b1 + 12v3v1v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−36v31v2b2 + 54v31a3 + (36a2 − 54b3) v21v22 + 12v3v21v2b2 − 36v21v2b1
− 18v3v21a3 + 4v1v42b2 − 6v1v32a3 + (−12a2 + 18b3) v1v22v3 + 18v1v22a1
+ 12v3v1v2b1 + (−8a2 + 12b3) v52 + 4b2v42v3 + 4v42b1 − 2v3v32a3 − 6v3v22a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
18a1 = 0

−18a3 = 0
−6a3 = 0
−2a3 = 0
54a3 = 0

−36b1 = 0
4b1 = 0
12b1 = 0

−36b2 = 0
4b2 = 0
12b2 = 0

−12a2 + 18b3 = 0
−8a2 + 12b3 = 0
36a2 − 54b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
3b3
2

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
2

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
√
−4y3 + 9x2 − 3x

2y2

)(
3x
2

)
= 4y3 + 3

√
−4y3 + 9x2 x− 9x2

4y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4y3+3
√

−4y3+9x2 x−9x2

4y2

dy

Which results in

S = ln (y)−
2x arctanh

(√
−4y3+9x2

3
√
x2

)
3
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
−4y3 + 9x2 − 3x

2y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2√
−4y3 + 9x2

Sy =
1 + 3x√

−4y3+9x2

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)−
2 arctanh

(√
9x2−4y3
3x

)
3 = c1

Which simplifies to

ln (y)−
2 arctanh

(√
9x2−4y3
3x

)
3 = c1
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Summary
The solution(s) found are the following

(1)ln (y)−
2 arctanh

(√
9x2−4y3
3x

)
3 = c1

Verification of solutions

ln (y)−
2 arctanh

(√
9x2−4y3
3x

)
3 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[3/2*x, y], [-2/3*y^3+3*x^2, y*x]� �
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3 Solution by Maple
Time used: 0.516 (sec). Leaf size: 119� �
dsolve(y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = 18 1
3 (x2)

1
3

2

y(x) = −
2 1

3 (x2)
1
3
(
3i3 1

6 + 3 2
3

)
4

y(x) =
2 1

3 (x2)
1
3
(
3i3 1

6 − 3 2
3

)
4

y(x) = 0

y(x) = RootOf
(
−2 ln (x)− 3

(∫ _Z 4_a3 + 3
√
−4_a3 + 9− 9

_a (4_a3 − 9) d_a
)
+ 2c1

)
x

2
3

3 Solution by Mathematica
Time used: 0.623 (sec). Leaf size: 247� �
DSolve[y[x]^2 (y'[x])^2-3 x y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
c1
3 3
√
ec1 − 3ix

y(x) → − 3
√
−1e

c1
3 3
√
ec1 − 3ix

y(x) → (−1)2/3e
c1
3 3
√
ec1 − 3ix

y(x) → e
c1
3 3
√
3ix+ ec1

y(x) → − 3
√
−1e

c1
3 3
√
3ix+ ec1

y(x) → (−1)2/3e
c1
3 3
√
3ix+ ec1

y(x) → 0

y(x) →
(
−3
2

)2/3

x2/3

y(x) →
(
3
2

)2/3

x2/3

y(x) → − 3
√
−1
(
3
2

)2/3

x2/3
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33.11 problem 973
Internal problem ID [4206]
Internal file name [OUTPUT/3699_Sunday_June_05_2022_10_17_45_AM_97100614/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 973.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y2y′
2 − 6y′x3 + 4x2y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
3x2 +

√
9x4 − 4y3

)
x

y2
(1)

y′ = −
(
−3x2 +

√
9x4 − 4y3

)
x

y2
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
3x2 +

√
9x4 − 4y3

)
x

y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
3x2 +

√
9x4 − 4y3

)
x(b3 − a2)

y2
−
(
3x2 +

√
9x4 − 4y3

)2
x2a3

y4

−


(
6x+ 18x3√

9x4−4y3

)
x

y2
+ 3x2 +

√
9x4 − 4y3
y2

 (xa2 + ya3 + a1)

−

(
−
2
(
3x2 +

√
9x4 − 4y3

)
x

y3
− 6x√

9x4 − 4y3

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−54x8a3 + 9
√
9x4 − 4y3 x6a3 − 18x6yb2 + 36x5y2a2 − 27x5y2b3 + 3x4y3a3 − 6

√
9x4 − 4y3 x4yb2 + 12

√
9x4 − 4y3 x3y2a2 − 9

√
9x4 − 4y3 x3y2b3 + 9

√
9x4 − 4y3 x2y3a3 − 18x5yb1 + 27x4y2a1 + 2x2y4b2 − 8x y5a2 + 6x y5b3 − 4y6a3 + (9x4 − 4y3)

3
2 x2a3 − 6

√
9x4 − 4y3 x3yb1 + 9

√
9x4 − 4y3 x2y2a1 − b2y

4√9x4 − 4y3 + 2x y4b1 − 4y5a1
y4
√
9x4 − 4y3

= 0

Setting the numerator to zero gives

(6E)

−54x8a3 − 9
√

9x4 − 4y3 x6a3 +18x6yb2 − 36x5y2a2 +27x5y2b3 − 3x4y3a3

+ 6
√

9x4 − 4y3 x4yb2 − 12
√

9x4 − 4y3 x3y2a2 + 9
√

9x4 − 4y3 x3y2b3

− 9
√

9x4 − 4y3 x2y3a3 + 18x5yb1 − 27x4y2a1 − 2x2y4b2 + 8x y5a2
− 6x y5b3 + 4y6a3 −

(
9x4 − 4y3

) 3
2 x2a3 + 6

√
9x4 − 4y3 x3yb1

− 9
√

9x4 − 4y3 x2y2a1 + b2y
4
√
9x4 − 4y3 − 2x y4b1 + 4y5a1 = 0

8842



Simplifying the above gives

(6E)

−9
√

9x4 − 4y3 x6a3 − 18x5y2a2 − 18x4y3a3 − 6
(
9x4 − 4y3

)
x4a3

+ 6
√

9x4 − 4y3 x4yb2 − 12
√

9x4 − 4y3 x3y2a2 + 9
√

9x4 − 4y3 x3y2b3

−9
√

9x4 − 4y3 x2y3a3−18x4y2a1+6x2y4b2+6x y5b3−
(
9x4−4y3

) 3
2 x2a3

+ 2
(
9x4 − 4y3

)
x2yb2 − 2

(
9x4 − 4y3

)
x y2a2 + 3

(
9x4 − 4y3

)
x y2b3

−
(
9x4 − 4y3

)
y3a3 + 6

√
9x4 − 4y3 x3yb1 − 9

√
9x4 − 4y3 x2y2a1

+ b2y
4
√
9x4 − 4y3 + 6x y4b1 + 2

(
9x4 − 4y3

)
xyb1 −

(
9x4 − 4y3

)
y2a1 = 0

Since the PDE has radicals, simplifying gives

−54x8a3 − 18
√

9x4 − 4y3 x6a3 + 18x6yb2 − 36x5y2a2 + 27x5y2b3

− 3x4y3a3 + 18x5yb1 + 6
√

9x4 − 4y3 x4yb2 − 27x4y2a1

− 12
√

9x4 − 4y3 x3y2a2 + 9
√
9x4 − 4y3 x3y2b3 − 5

√
9x4 − 4y3 x2y3a3

− 2x2y4b2 + 8x y5a2 − 6x y5b3 + 4y6a3 + 6
√
9x4 − 4y3 x3yb1

− 9
√

9x4 − 4y3 x2y2a1 − 2x y4b1 + b2y
4
√
9x4 − 4y3 + 4y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
9x4 − 4y3

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

9x4 − 4y3 = v3
}

The above PDE (6E) now becomes

(7E)−54v81a3− 36v51v22a2− 18v3v61a3− 3v41v32a3+18v61v2b2+27v51v22b3− 27v41v22a1
−12v3v31v22a2+8v1v52a2−5v3v21v32a3+4v62a3+18v51v2b1+6v3v41v2b2−2v21v42b2
+9v3v31v22b3−6v1v52b3−9v3v21v22a1+4v52a1+6v3v31v2b1−2v1v42b1+b2v

4
2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)
−54v81a3 + 18v61v2b2 − 18v3v61a3 + (−36a2 + 27b3) v51v22 + 18v51v2b1
− 3v41v32a3 − 27v41v22a1 + 6v3v41v2b2 + (−12a2 + 9b3) v31v22v3
+ 6v3v31v2b1 − 2v21v42b2 − 5v3v21v32a3 − 9v3v21v22a1
+ (8a2 − 6b3) v1v52 − 2v1v42b1 + 4v62a3 + 4v52a1 + b2v

4
2v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−27a1 = 0
−9a1 = 0
4a1 = 0

−54a3 = 0
−18a3 = 0
−5a3 = 0
−3a3 = 0
4a3 = 0

−2b1 = 0
6b1 = 0
18b1 = 0
−2b2 = 0
6b2 = 0
18b2 = 0

−36a2 + 27b3 = 0
−12a2 + 9b3 = 0

8a2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
4a2
3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y
3

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y
3 −

((
3x2 +

√
9x4 − 4y3

)
x

y2

)
(x)

= −9x4 − 3
√
9x4 − 4y3 x2 + 4y3
3y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−9x4−3
√

9x4−4y3 x2+4y3
3y2

dy

Which results in

S = 3 ln (y)
4 +

x2 arctanh
(√

9x4−4y3
3
√
x4

)
2
√
x4
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
3x2 +

√
9x4 − 4y3

)
x

y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3x√
9x4 − 4y3

Sy =
3
4 −

9x2

4
√

9x4−4y3

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y)
4 +

arctanh
(√

9x4−4y3
3x2

)
2 = c1
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Which simplifies to

3 ln (y)
4 +

arctanh
(√

9x4−4y3
3x2

)
2 = c1

Summary
The solution(s) found are the following

(1)3 ln (y)
4 +

arctanh
(√

9x4−4y3
3x2

)
2 = c1

Verification of solutions

3 ln (y)
4 +

arctanh
(√

9x4−4y3
3x2

)
2 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
(
−3x2 +

√
9x4 − 4y3

)
x

y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
−3x2 +

√
9x4 − 4y3

)
x(b3 − a2)

y2
−
(
−3x2 +

√
9x4 − 4y3

)2
x2a3

y4

−

−

(
−6x+ 18x3√

9x4−4y3

)
x

y2
− −3x2 +

√
9x4 − 4y3

y2

 (xa2 + ya3 + a1)

−

(
6x√

9x4 − 4y3
+

2
(
−3x2 +

√
9x4 − 4y3

)
x

y3

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−54x8a3 + 9
√
9x4 − 4y3 x6a3 + 18x6yb2 − 36x5y2a2 + 27x5y2b3 − 3x4y3a3 − 6

√
9x4 − 4y3 x4yb2 + 12

√
9x4 − 4y3 x3y2a2 − 9

√
9x4 − 4y3 x3y2b3 + 9

√
9x4 − 4y3 x2y3a3 + 18x5yb1 − 27x4y2a1 − 2x2y4b2 + 8x y5a2 − 6x y5b3 + 4y6a3 + (9x4 − 4y3)

3
2 x2a3 − 6

√
9x4 − 4y3 x3yb1 + 9

√
9x4 − 4y3 x2y2a1 − b2y

4√9x4 − 4y3 − 2x y4b1 + 4y5a1
y4
√
9x4 − 4y3

= 0

Setting the numerator to zero gives

(6E)

54x8a3 − 9
√

9x4 − 4y3 x6a3 − 18x6yb2 + 36x5y2a2 − 27x5y2b3 + 3x4y3a3

+ 6
√

9x4 − 4y3 x4yb2 − 12
√

9x4 − 4y3 x3y2a2 + 9
√

9x4 − 4y3 x3y2b3

− 9
√

9x4 − 4y3 x2y3a3 − 18x5yb1 + 27x4y2a1 + 2x2y4b2 − 8x y5a2
+ 6x y5b3 − 4y6a3 −

(
9x4 − 4y3

) 3
2 x2a3 + 6

√
9x4 − 4y3 x3yb1

− 9
√

9x4 − 4y3 x2y2a1 + b2y
4
√
9x4 − 4y3 + 2x y4b1 − 4y5a1 = 0

Simplifying the above gives

(6E)

−9
√

9x4 − 4y3 x6a3 + 18x5y2a2 + 18x4y3a3 + 6
(
9x4 − 4y3

)
x4a3

+ 6
√

9x4 − 4y3 x4yb2 − 12
√

9x4 − 4y3 x3y2a2 + 9
√

9x4 − 4y3 x3y2b3

−9
√

9x4 − 4y3 x2y3a3+18x4y2a1−6x2y4b2−6x y5b3−
(
9x4−4y3

) 3
2 x2a3

− 2
(
9x4 − 4y3

)
x2yb2 + 2

(
9x4 − 4y3

)
x y2a2 − 3

(
9x4 − 4y3

)
x y2b3

+
(
9x4 − 4y3

)
y3a3 + 6

√
9x4 − 4y3 x3yb1 − 9

√
9x4 − 4y3 x2y2a1

+ b2y
4
√

9x4 − 4y3 − 6x y4b1 − 2
(
9x4 − 4y3

)
xyb1 +

(
9x4 − 4y3

)
y2a1 = 0
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Since the PDE has radicals, simplifying gives

54x8a3−18
√

9x4 − 4y3 x6a3−18x6yb2+36x5y2a2−27x5y2b3+3x4y3a3−18x5yb1

+ 6
√
9x4 − 4y3 x4yb2 + 27x4y2a1 − 12

√
9x4 − 4y3 x3y2a2 + 9

√
9x4 − 4y3 x3y2b3

−5
√

9x4 − 4y3 x2y3a3+2x2y4b2−8x y5a2+6x y5b3−4y6a3+6
√

9x4 − 4y3 x3yb1

− 9
√

9x4 − 4y3 x2y2a1 + 2x y4b1 + b2y
4
√
9x4 − 4y3 − 4y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
9x4 − 4y3

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

9x4 − 4y3 = v3
}

The above PDE (6E) now becomes

(7E)54v81a3 + 36v51v22a2 − 18v3v61a3 + 3v41v32a3 − 18v61v2b2 − 27v51v22b3 + 27v41v22a1
−12v3v31v22a2−8v1v52a2−5v3v21v32a3−4v62a3−18v51v2b1+6v3v41v2b2+2v21v42b2
+9v3v31v22b3+6v1v52b3−9v3v21v22a1−4v52a1+6v3v31v2b1+2v1v42b1+b2v

4
2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)
54v81a3 − 18v61v2b2 − 18v3v61a3 + (36a2 − 27b3) v51v22 − 18v51v2b1
+ 3v41v32a3 + 27v41v22a1 + 6v3v41v2b2 + (−12a2 + 9b3) v31v22v3
+ 6v3v31v2b1 + 2v21v42b2 − 5v3v21v32a3 − 9v3v21v22a1
+ (−8a2 + 6b3) v1v52 + 2v1v42b1 − 4v62a3 − 4v52a1 + b2v

4
2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−9a1 = 0
−4a1 = 0
27a1 = 0

−18a3 = 0
−5a3 = 0
−4a3 = 0
3a3 = 0
54a3 = 0

−18b1 = 0
2b1 = 0
6b1 = 0

−18b2 = 0
2b2 = 0
6b2 = 0

−12a2 + 9b3 = 0
−8a2 + 6b3 = 0
36a2 − 27b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
4a2
3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y
3
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y
3 −

(
−
(
−3x2 +

√
9x4 − 4y3

)
x

y2

)
(x)

= −9x4 + 3
√
9x4 − 4y3 x2 + 4y3
3y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−9x4+3
√

9x4−4y3 x2+4y3
3y2

dy

Which results in

S = 3 ln (y)
4 −

x2 arctanh
(√

9x4−4y3
3
√
x4

)
2
√
x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
(
−3x2 +

√
9x4 − 4y3

)
x

y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3x√
9x4 − 4y3

Sy =
3
4 +

9x2

4
√

9x4−4y3

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y)
4 −

arctanh
(√

9x4−4y3
3x2

)
2 = c1

Which simplifies to

3 ln (y)
4 −

arctanh
(√

9x4−4y3
3x2

)
2 = c1
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Summary
The solution(s) found are the following

(1)3 ln (y)
4 −

arctanh
(√

9x4−4y3
3x2

)
2 = c1

Verification of solutions

3 ln (y)
4 −

arctanh
(√

9x4−4y3
3x2

)
2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[3/4*x, y]� �
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3 Solution by Maple
Time used: 0.563 (sec). Leaf size: 107� �
dsolve(y(x)^2*diff(y(x),x)^2-6*x^3*diff(y(x),x)+4*x^2*y(x) = 0,y(x), singsol=all)� �

y(x) = 18 1
3x

4
3

2

y(x) = −
18 1

3x
4
3
(
1 + i

√
3
)

4

y(x) =
18 1

3x
4
3
(
i
√
3− 1

)
4

y(x) = 0

y(x) = RootOf
(
−4 ln (x)− 3

(∫ _Z 4_a3 + 3
√
−4_a3 + 9− 9

_a (4_a3 − 9) d_a
)
+ 4c1

)
x

4
3

3 Solution by Mathematica
Time used: 2.556 (sec). Leaf size: 304� �
DSolve[y[x]^2 (y'[x])^2-6 x^3 y'[x]+4 x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

√9x6 − 4x2y(x)3 log
(√

9x4 − 4y(x)3 + 3x2
)

2x
√

9x4 − 4y(x)3

− 3
4

(√
9x6 − 4x2y(x)3 log(y(x))

x
√

9x4 − 4y(x)3
− log(y(x))

)
= c1, y(x)


Solve

3
4

(√
9x6 − 4x2y(x)3 log(y(x))

x
√

9x4 − 4y(x)3
+ log(y(x))

)

−

√
9x6 − 4x2y(x)3 log

(√
9x4 − 4y(x)3 + 3x2

)
2x
√

9x4 − 4y(x)3
= c1, y(x)


y(x) →

(
−3
2

)2/3

x4/3

y(x) →
(
3
2

)2/3

x4/3

y(x) → − 3
√
−1
(
3
2

)2/3

x4/3
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33.12 problem 974
Internal problem ID [4207]
Internal file name [OUTPUT/3700_Sunday_June_05_2022_10_17_54_AM_15129843/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 974.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

y2y′
2 − 4ayy′ + y2 = −4a2 + 4ax

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2a+
√
−y2 + 4ax
y

(1)

y′ = 2a−
√
−y2 + 4ax
y

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[1, 2*a/y], [x, -(2*a*x-y^2)/y], [-6*a*x-x^2+y^2, -2*x*(2*a^2-3*a*x+y^2)/y]� �

3 Solution by Maple
Time used: 0.625 (sec). Leaf size: 72� �
dsolve(y(x)^2*diff(y(x),x)^2-4*a*y(x)*diff(y(x),x)+4*a^2-4*a*x+y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −2
√
ax

y(x) = 2
√
ax

y(x) =
√

4ax− c21 + 2c1x− x2

y(x) = −
√
−x2 + (4a+ 2c1)x− c21
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3 Solution by Mathematica
Time used: 0.75 (sec). Leaf size: 85� �
DSolve[y[x]^2 (y'[x])^2-4 a y[x] y'[x]+4 a^2-4 a x+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
16a3x− 4a2x2 − 4ac1x− c12

2a

y(x) →
√
16a3x− 4a2x2 − 4ac1x− c12

2a
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33.13 problem 975
33.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8860

Internal problem ID [4208]
Internal file name [OUTPUT/3701_Sunday_June_05_2022_10_18_09_AM_33411510/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 975.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "quadrature", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_quadrature]

y2y′
2 − (x+ 1) yy′ = −x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1
y

(1)

y′ = x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
ydy = x+ c1

y2

2 = x+ c1

Solving for y gives these solutions

y1 =
√
2x+ 2c1

y2 = −
√
2x+ 2c1
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Summary
The solution(s) found are the following

(1)y =
√
2x+ 2c1

(2)y = −
√
2x+ 2c1

Verification of solutions

y =
√
2x+ 2c1

Verified OK.

y = −
√
2x+ 2c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x

y

Where f(x) = x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = x dx

∫ 1
1
y

dy =
∫

x dx

y2

2 = x2

2 + c2

Which results in
y =

√
x2 + 2c2

y = −
√
x2 + 2c2

Summary
The solution(s) found are the following

(1)y =
√

x2 + 2c2
(2)y = −

√
x2 + 2c2

8859



Verification of solutions

y =
√

x2 + 2c2

Verified OK.

y = −
√
x2 + 2c2

Verified OK.

33.13.1 Maple step by step solution

Let’s solve
y2y′2 − (x+ 1) yy′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = 1

• Integrate both sides with respect to x∫
yy′dx =

∫
1dx+ c1

• Evaluate integral
y2

2 = x+ c1

• Solve for y{
y =

√
2x+ 2c1, y = −

√
2x+ 2c1

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(y(x)^2*diff(y(x),x)^2-(1+x)*y(x)*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) =
√
2x+ c1

y(x) = −
√
2x+ c1

y(x) =
√

x2 + c1

y(x) = −
√
x2 + c1

3 Solution by Mathematica
Time used: 0.152 (sec). Leaf size: 72� �
DSolve[y[x]^2 (y'[x])^2-(1+x)y[x] y'[x]+x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2
√
x+ c1

y(x) →
√
2
√
x+ c1

y(x) → −
√

x2 + 2c1
y(x) →

√
x2 + 2c1
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33.14 problem 976
33.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8864

Internal problem ID [4209]
Internal file name [OUTPUT/3702_Sunday_June_05_2022_10_18_20_AM_67701533/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 976.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y2y′
2 + 2xyy′ = −x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −x

y
(1)

y′ = −x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y
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Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c1

Which results in
y =

√
−x2 + 2c1

y = −
√

−x2 + 2c1

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c1
(2)y = −

√
−x2 + 2c1

Verification of solutions

y =
√

−x2 + 2c1

Verified OK.

y = −
√

−x2 + 2c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y
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Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c2

Which results in
y =

√
−x2 + 2c2

y = −
√

−x2 + 2c2

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c2
(2)y = −

√
−x2 + 2c2

Verification of solutions

y =
√

−x2 + 2c2

Verified OK.

y = −
√

−x2 + 2c2

Verified OK.

33.14.1 Maple step by step solution

Let’s solve
y2y′2 + 2xyy′ = −x2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = −x

• Integrate both sides with respect to x
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∫
yy′dx =

∫
−xdx+ c1

• Evaluate integral
y2

2 = −x2

2 + c1

• Solve for y{
y =

√
−x2 + 2c1, y = −

√
−x2 + 2c1

}
Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.438 (sec). Leaf size: 31� �
dsolve(y(x)^2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+x^2 = 0,y(x), singsol=all)� �

y(x) =
√

−x2 + 2c1
y(x) = −

√
−x2 + 2c1

3 Solution by Mathematica
Time used: 0.096 (sec). Leaf size: 39� �
DSolve[y[x]^2 (y'[x])^2+2 x y[x] y'[x]+x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1
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33.15 problem 977
Internal problem ID [4210]
Internal file name [OUTPUT/3703_Sunday_June_05_2022_10_18_27_AM_47805997/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 977.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

y2y′
2 + 2xyy′ − y2 = −a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −x+
√
x2 + y2 − a

y
(1)

y′ = −x−
√
x2 + y2 − a

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −x+
√
x2 + y2 − a

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

8866



The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

+
(
−x+

√
x2 + y2 − a

)
(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

y

−
(
−x+

√
x2 + y2 − a

)2 (xa5 + 2ya6 + a3)
y2

−

(
−1 + x√

x2+y2−a

)
(x2a4 + xya5 + y2a6 + xa2 + ya3 + a1)

y

−
(

1√
x2 + y2 − a

− −x+
√
x2 + y2 − a

y2

)(
x2b4

+ xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−−3
√
x2 + y2 − a x2ya4 + 2

√
x2 + y2 − a x2ya6 + 2

√
x2 + y2 − a x2yb5 − 2

√
x2 + y2 − a x y2a5 − 2xb4

√
x2 + y2 − a y2 + 3

√
x2 + y2 − a x y2b6 − 2y4b6 − 2x4a5 − x4b4 + y4a5 − 2

√
x2 + y2 − a xya2 + 2

√
x2 + y2 − a xyb3 − 2axya4 + 4axya6 + 2axyb5 − y3b3 + (x2 + y2 − a)

3
2 a3 − 2x3a3 − x3b2 + y3a2 − x2b1 + ab1 + 2x2ya2 − x y2a3 + xya1 +

√
x2 + y2 − a x2a3 +

√
x2 + y2 − a x2b2 −

√
x2 + y2 − a y2a3 − b2

√
x2 + y2 − a y2 +

√
x2 + y2 − a xb1 −

√
x2 + y2 − a ya1 − 4x3ya6 − 2x3yb5 − 3x2y2b6 + 2x y3a4 + 2a x2a5 + a x2b4 − a y2a5 + 3a y2b6 − 2x2yb3 + 2axa3 + axb2 − aya2 + 2ayb3 + 3x3ya4 − 3x y3a6 − x y3b5 + (x2 + y2 − a)

3
2 xa5 + 2(x2 + y2 − a)

3
2 ya6 +

√
x2 + y2 − a x3a5 +

√
x2 + y2 − a x3b4 −

√
x2 + y2 − a y3a6 − y3b5

√
x2 + y2 − a√

x2 + y2 − a y2

= 0
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Setting the numerator to zero gives

(6E)

3
√

x2 + y2 − a x2ya4 − 2
√

x2 + y2 − a x2ya6

− 2
√

x2 + y2 − a x2yb5 + 2
√

x2 + y2 − a x y2a5

+ 2xb4
√

x2 + y2 − a y2 − 3
√
x2 + y2 − a x y2b6 + 2y4b6 + 2x4a5

+ x4b4 − y4a5 + 2
√

x2 + y2 − a xya2 − 2
√
x2 + y2 − a xyb3

+2axya4−4axya6−2axyb5+y3b3−
(
x2+y2−a

) 3
2 a3+2x3a3+x3b2

−y3a2+x2b1−ab1−2x2ya2+x y2a3−xya1−
√
x2 + y2 − a x2a3

−
√

x2 + y2 − a x2b2 +
√
x2 + y2 − a y2a3 + b2

√
x2 + y2 − a y2

−
√

x2 + y2 − a xb1 +
√
x2 + y2 − a ya1 + 4x3ya6 + 2x3yb5

+3x2y2b6 − 2x y3a4 − 2a x2a5 − a x2b4 + a y2a5 − 3a y2b6 +2x2yb3
− 2axa3 − axb2 + aya2 − 2ayb3 − 3x3ya4 + 3x y3a6 + x y3b5

−
(
x2 + y2 − a

) 3
2 xa5 − 2

(
x2 + y2 − a

) 3
2 ya6 −

√
x2 + y2 − a x3a5

−
√

x2 + y2 − a x3b4+
√
x2 + y2 − a y3a6+y3b5

√
x2 + y2 − a=0

Simplifying the above gives

(6E)

−2
(
x2+y2−a

)
xya4+4

(
x2+y2−a

)
xya6+2

(
x2+y2−a

)
xyb5

+ 3
√

x2 + y2 − a x2ya4 − 2
√

x2 + y2 − a x2ya6

− 2
√

x2 + y2 − a x2yb5 + 2
√
x2 + y2 − a x y2a5

+ 2xb4
√

x2 + y2 − a y2 − 3
√

x2 + y2 − a x y2b6 − y4b6

+ 2
√

x2 + y2 − a xya2 − 2
√

x2 + y2 − a xyb3 − y3b3 − y2b1

−
(
x2 + y2 − a

) 3
2 a3 +

(
x2 + y2 − a

)
b1 − x2ya2 − x y2a3 − x y2b2

−xya1+2
(
x2+y2−a

)
xa3+

(
x2+y2−a

)
xb2−

(
x2+y2−a

)
ya2

+ 2
(
x2 + y2 − a

)
yb3 −

√
x2 + y2 − a x2a3 −

√
x2 + y2 − a x2b2

+
√

x2 + y2 − a y2a3 + b2
√
x2 + y2 − a y2 −

√
x2 + y2 − a xb1

+
√

x2 + y2 − a ya1 − x3ya4 − x2y2a5 − x2y2b4 − x y3a6

− x y3b5 −
(
x2 + y2 − a

) 3
2 xa5 − 2

(
x2 + y2 − a

) 3
2 ya6

+ 2
(
x2 + y2 − a

)
x2a5 +

(
x2 + y2 − a

)
x2b4 −

(
x2 + y2 − a

)
y2a5

+ 3
(
x2 + y2 − a

)
y2b6 −

√
x2 + y2 − a x3a5 −

√
x2 + y2 − a x3b4

+
√

x2 + y2 − a y3a6 + y3b5
√

x2 + y2 − a = 0
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Since the PDE has radicals, simplifying gives

3
√

x2 + y2 − a x2ya4 − 4
√
x2 + y2 − a x2ya6 − 2

√
x2 + y2 − a x2yb5

+
√

x2 + y2 − a x y2a5 + 2xb4
√

x2 + y2 − a y2 − 3
√

x2 + y2 − a x y2b6

+ ax
√

x2 + y2 − a a5 + 2a
√

x2 + y2 − a ya6 + 2y4b6 + 2x4a5 + x4b4

− y4a5 + 2
√

x2 + y2 − a xya2 − 2
√
x2 + y2 − a xyb3 + 2axya4

− 4axya6 − 2axyb5 + y3b3 + 2x3a3 + x3b2 − y3a2 + x2b1 − ab1

− 2x2ya2 + x y2a3 − xya1 − 2
√

x2 + y2 − a x2a3 −
√

x2 + y2 − a x2b2

+ b2
√

x2 + y2 − a y2 −
√

x2 + y2 − a xb1 +
√
x2 + y2 − a ya1

+ 4x3ya6 + 2x3yb5 + 3x2y2b6 − 2x y3a4 − 2a x2a5 − a x2b4 + a y2a5
− 3a y2b6 + 2x2yb3 − 2axa3 − axb2 + aya2 − 2ayb3 − 3x3ya4

+ 3x y3a6 + x y3b5 − 2
√

x2 + y2 − a x3a5 −
√
x2 + y2 − a x3b4

−
√

x2 + y2 − a y3a6 + y3b5
√

x2 + y2 − a+ a
√

x2 + y2 − a a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2 − a

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 + y2 − a = v3
}

The above PDE (6E) now becomes

(7E)

−3v31v2a4 + 3v3v21v2a4 − 2v1v32a4 + 2v41a5 − 2v3v31a5 + v3v1v
2
2a5

− v42a5 + 4v31v2a6 − 4v3v21v2a6 + 3v1v32a6 − v3v
3
2a6 + v41b4 − v3v

3
1b4

+ 2v1b4v3v22 + 2v31v2b5 − 2v3v21v2b5 + v1v
3
2b5 + v32b5v3 + 3v21v22b6

− 3v3v1v22b6 + 2v42b6 + 2av1v2a4 − 2av21a5 + av1v3a5 + av22a5
− 4av1v2a6 + 2av3v2a6 − av21b4 − 2av1v2b5 − 3av22b6 − 2v21v2a2
+ 2v3v1v2a2 − v32a2 + 2v31a3 − 2v3v21a3 + v1v

2
2a3 + v31b2 − v3v

2
1b2

+ b2v3v
2
2 + 2v21v2b3 − 2v3v1v2b3 + v32b3 + av2a2 − 2av1a3 + av3a3

− av1b2 − 2av2b3 − v1v2a1 + v3v2a1 + v21b1 − v3v1b1 − ab1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)

v1v
2
2a3 + b2v3v

2
2 + 3v21v22b6 + av3a3 + (−3a4 + 4a6 + 2b5) v31v2

+ (−2a5 − b4) v31v3 + (−2a2 + 2b3) v21v2 + (−2a3 − b2) v21v3
+(−2a4+3a6+b5) v1v32+(2aa4−4aa6−2ab5−a1) v1v2+(aa5−b1) v1v3
+ (−a6 + b5) v32v3 + (2aa6 + a1) v2v3 + (3a4 − 4a6 − 2b5) v21v2v3
+ (a5 + 2b4 − 3b6) v1v22v3 + (2a2 − 2b3) v1v2v3 − ab1 + (2a5 + b4) v41
+ (2a3 + b2) v31 + (−2aa5 − ab4 + b1) v21 + (−2aa3 − ab2) v1
+ (−a5 + 2b6) v42 + (b3 − a2) v32 + (aa5 − 3ab6) v22 + (aa2 − 2ab3) v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b2 = 0

aa3 = 0
3b6 = 0

−ab1 = 0
−2a2 + 2b3 = 0
2a2 − 2b3 = 0
−2a3 − b2 = 0
2a3 + b2 = 0

−2a5 − b4 = 0
−a5 + 2b6 = 0
2a5 + b4 = 0
−a6 + b5 = 0
b3 − a2 = 0

−3a4 + 4a6 + 2b5 = 0
−2a4 + 3a6 + b5 = 0
3a4 − 4a6 − 2b5 = 0
a5 + 2b4 − 3b6 = 0

2aa6 + a1 = 0
aa2 − 2ab3 = 0

−2aa3 − ab2 = 0
aa5 − b1 = 0

aa5 − 3ab6 = 0
−2aa5 − ab4 + b1 = 0

2aa4 − 4aa6 − 2ab5 − a1 = 0
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Solving the above equations for the unknowns gives

a1 = −2ab5
a2 = 0
a3 = 0
a4 = 2b5
a5 = 0
a6 = b5

b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = b5

b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x2 + y2 − 2a
η = xy

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (2)

Writing the ode as

y′ = −
√
x2 + y2 − a+ x

y

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

−
(√

x2 + y2 − a+ x
)
(−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

y

−
(√

x2 + y2 − a+ x
)2 (xa5 + 2ya6 + a3)
y2

+

(
1 + x√

x2+y2−a

)
(x2a4 + xya5 + y2a6 + xa2 + ya3 + a1)

y

−
(
− 1√

x2 + y2 − a
+

√
x2 + y2 − a+ x

y2

)(
x2b4

+ xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−−3
√
x2 + y2 − a x2ya4 + 2

√
x2 + y2 − a x2ya6 + 2

√
x2 + y2 − a x2yb5 − 2

√
x2 + y2 − a x y2a5 − 2xb4

√
x2 + y2 − a y2 + 3

√
x2 + y2 − a x y2b6 − y4a5 + 2axya4 − 4axya6 − 2axyb5 − 2x2ya2 + x y2a3 − xya1 +

√
x2 + y2 − a x2a3 +

√
x2 + y2 − a x2b2 −

√
x2 + y2 − a y2a3 − b2

√
x2 + y2 − a y2 +

√
x2 + y2 − a xb1 −

√
x2 + y2 − a ya1 + 2x2yb3 − 2axa3 − axb2 + aya2 − 2ayb3 + 2y4b6 + 2x4a5 + x4b4 + 4x3ya6 + 2x3yb5 + 3x2y2b6 − 2x y3a4 − 2a x2a5 − a x2b4 + a y2a5 − 3a y2b6 − 3x3ya4 + 3x y3a6 + x y3b5 + (x2 + y2 − a)

3
2 xa5 + 2(x2 + y2 − a)

3
2 ya6 +

√
x2 + y2 − a x3a5 +

√
x2 + y2 − a x3b4 −

√
x2 + y2 − a y3a6 − y3b5

√
x2 + y2 − a− 2

√
x2 + y2 − a xya2 + 2

√
x2 + y2 − a xyb3 + y3b3 + (x2 + y2 − a)

3
2 a3 + 2x3a3 + x3b2 − y3a2 + x2b1 − ab1√

x2 + y2 − a y2

= 0
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Setting the numerator to zero gives

(6E)

3
√

x2 + y2 − a x2ya4 − 2
√

x2 + y2 − a x2ya6

− 2
√

x2 + y2 − a x2yb5 + 2
√

x2 + y2 − a x y2a5

+ 2xb4
√

x2 + y2 − a y2 − 3
√
x2 + y2 − a x y2b6 + y4a5 − 2axya4

+4axya6 +2axyb5 +2x2ya2 − x y2a3 + xya1 −
√
x2 + y2 − a x2a3

−
√

x2 + y2 − a x2b2 +
√
x2 + y2 − a y2a3 + b2

√
x2 + y2 − a y2

−
√

x2 + y2 − a xb1 +
√
x2 + y2 − a ya1 − 2x2yb3 + 2axa3

+ axb2 − aya2 + 2ayb3 − 2y4b6 − 2x4a5 − x4b4 − 4x3ya6 − 2x3yb5
− 3x2y2b6+2x y3a4+2a x2a5+ a x2b4− a y2a5+3a y2b6+3x3ya4

− 3x y3a6 − x y3b5 −
(
x2 + y2 − a

) 3
2 xa5 − 2

(
x2 + y2 − a

) 3
2 ya6

−
√

x2 + y2 − a x3a5 −
√

x2 + y2 − a x3b4 +
√

x2 + y2 − a y3a6

+ y3b5
√

x2 + y2 − a+ 2
√

x2 + y2 − a xya2 − 2
√

x2 + y2 − a xyb3

− y3b3 −
(
x2 + y2 − a

) 3
2 a3 − 2x3a3 − x3b2 + y3a2 − x2b1 + ab1 = 0

Simplifying the above gives

(6E)

2
(
x2 + y2 − a

)
xya4 − 4

(
x2 + y2 − a

)
xya6 − 2

(
x2 + y2 − a

)
xyb5

+ 3
√

x2 + y2 − a x2ya4 − 2
√

x2 + y2 − a x2ya6

− 2
√

x2 + y2 − a x2yb5 + 2
√
x2 + y2 − a x y2a5

+2xb4
√

x2 + y2 − a y2 − 3
√

x2 + y2 − a x y2b6 + x2ya2 + x y2a3
+ x y2b2 + xya1 − 2

(
x2 + y2 − a

)
xa3 −

(
x2 + y2 − a

)
xb2

+
(
x2 + y2 − a

)
ya2 − 2

(
x2 + y2 − a

)
yb3 −

√
x2 + y2 − a x2a3

−
√

x2 + y2 − a x2b2 +
√

x2 + y2 − a y2a3 + b2
√

x2 + y2 − a y2

−
√

x2 + y2 − a xb1 +
√

x2 + y2 − a ya1 + y4b6 + x3ya4

+ x2y2a5 + x2y2b4 + x y3a6 + x y3b5 −
(
x2 + y2 − a

) 3
2 xa5

− 2
(
x2+ y2− a

) 3
2 ya6− 2

(
x2+ y2− a

)
x2a5−

(
x2+ y2− a

)
x2b4

+
(
x2 + y2 − a

)
y2a5 − 3

(
x2 + y2 − a

)
y2b6 −

√
x2 + y2 − a x3a5

−
√

x2 + y2 − a x3b4 +
√

x2 + y2 − a y3a6 + y3b5
√
x2 + y2 − a

+ 2
√

x2 + y2 − a xya2 − 2
√

x2 + y2 − a xyb3 + y3b3

+ y2b1 −
(
x2 + y2 − a

) 3
2 a3 −

(
x2 + y2 − a

)
b1 = 0
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Since the PDE has radicals, simplifying gives

3
√

x2 + y2 − a x2ya4 − 4
√

x2 + y2 − a x2ya6 − 2
√

x2 + y2 − a x2yb5

+
√
x2 + y2 − a x y2a5 + 2xb4

√
x2 + y2 − a y2 − 3

√
x2 + y2 − a x y2b6

+ y4a5 − 2axya4 + 4axya6 + 2axyb5 + 2x2ya2 − x y2a3 + xya1

− 2
√

x2 + y2 − a x2a3 −
√
x2 + y2 − a x2b2 + b2

√
x2 + y2 − a y2

−
√

x2 + y2 − a xb1 +
√

x2 + y2 − a ya1 − 2x2yb3 + 2axa3 + axb2

− aya2 + 2ayb3 + ax
√

x2 + y2 − a a5 + 2a
√
x2 + y2 − a ya6

+ a
√

x2 + y2 − a a3 − 2y4b6 − 2x4a5 − x4b4 − 4x3ya6 − 2x3yb5
− 3x2y2b6 + 2x y3a4 + 2a x2a5 + a x2b4 − a y2a5 + 3a y2b6 + 3x3ya4

− 3x y3a6 − x y3b5 − 2
√

x2 + y2 − a x3a5 −
√
x2 + y2 − a x3b4

−
√

x2 + y2 − a y3a6 + y3b5
√

x2 + y2 − a+ 2
√
x2 + y2 − a xya2

− 2
√

x2 + y2 − a xyb3 − y3b3 − 2x3a3 − x3b2 + y3a2 − x2b1 + ab1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2 − a

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x2 + y2 − a = v3
}

The above PDE (6E) now becomes

(7E)

3v31v2a4 + 3v3v21v2a4 + 2v1v32a4 − 2v41a5 − 2v3v31a5 + v3v1v
2
2a5

+ v42a5 − 4v31v2a6 − 4v3v21v2a6 − 3v1v32a6 − v3v
3
2a6 − v41b4 − v3v

3
1b4

+ 2v1b4v3v22 − 2v31v2b5 − 2v3v21v2b5 − v1v
3
2b5 + v32b5v3 − 3v21v22b6

− 3v3v1v22b6 − 2v42b6 − 2av1v2a4 + 2av21a5 + av1v3a5 − av22a5
+ 4av1v2a6 + 2av3v2a6 + av21b4 + 2av1v2b5 + 3av22b6 + 2v21v2a2
+ 2v3v1v2a2 + v32a2 − 2v31a3 − 2v3v21a3 − v1v

2
2a3 − v31b2 − v3v

2
1b2

+ b2v3v
2
2 − 2v21v2b3 − 2v3v1v2b3 − v32b3 − av2a2 + 2av1a3 + av3a3

+ av1b2 + 2av2b3 + v1v2a1 + v3v2a1 − v21b1 − v3v1b1 + ab1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)

(−2a5 − b4) v41 + (−2a3 − b2) v31 + (2aa5 + ab4 − b1) v21
+(3a4− 4a6− 2b5) v21v2v3+(a5+2b4− 3b6) v1v22v3+(2a2− 2b3) v1v2v3
− v1v

2
2a3 + b2v3v

2
2 + av3a3 − 3v21v22b6 + (3a4 − 4a6 − 2b5) v31v2

+ (−2a5 − b4) v31v3 + (2a2 − 2b3) v21v2 + (−2a3 − b2) v21v3
+(2a4−3a6−b5) v1v32+(−2aa4+4aa6+2ab5+a1) v1v2+(aa5−b1) v1v3
+ (−a6 + b5) v32v3 + (2aa6 + a1) v2v3 + (2aa3 + ab2) v1 + (a5 − 2b6) v42
+ (−b3 + a2) v32 + (−aa5 + 3ab6) v22 + (−aa2 + 2ab3) v2 + ab1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
aa3 = 0
ab1 = 0
−a3 = 0
−3b6 = 0

2a2 − 2b3 = 0
−2a3 − b2 = 0
−2a5 − b4 = 0
a5 − 2b6 = 0
−a6 + b5 = 0
−b3 + a2 = 0

2a4 − 3a6 − b5 = 0
3a4 − 4a6 − 2b5 = 0
a5 + 2b4 − 3b6 = 0

2aa6 + a1 = 0
−aa2 + 2ab3 = 0
2aa3 + ab2 = 0
aa5 − b1 = 0

−aa5 + 3ab6 = 0
2aa5 + ab4 − b1 = 0

−2aa4 + 4aa6 + 2ab5 + a1 = 0
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Solving the above equations for the unknowns gives

a1 = −2ab5
a2 = 0
a3 = 0
a4 = 2b5
a5 = 0
a6 = b5

b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = b5

b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x2 + y2 − 2a
η = xy

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation`Warning: persistent store makes readlib obsolete |G:/public_html/my_notes� �

3 Solution by Maple
Time used: 0.266 (sec). Leaf size: 57� �
dsolve(y(x)^2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+a-y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√
−x2 + a

y(x) = −
√
−x2 + a

y(x) =
√

c21 − 2c1x+ a

y(x) = −
√
c21 − 2c1x+ a
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3 Solution by Mathematica
Time used: 0.569 (sec). Leaf size: 61� �
DSolve[y[x]^2 (y'[x])^2+2 x y[x] y'[x]+a-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
a+ c1(−2x+ c1)

y(x) →
√
a+ c1(−2x+ c1)

y(x) → −
√
a

y(x) →
√
a
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33.16 problem 978
33.16.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8880

Internal problem ID [4211]
Internal file name [OUTPUT/3704_Sunday_June_05_2022_10_20_58_AM_55443806/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 978.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y2y′
2 − 2xyy′ + 2y2 = x2

33.16.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y2p2 − 2xyp+ 2y2 = x2

Solving for y from the above results in

y =
(
p+

√
2p2 + 2

)
x

p2 + 2 (1A)

y = −
(
−p+

√
2p2 + 2

)
x

p2 + 2 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p+
√
2p2 + 2

p2 + 2
g = 0

Hence (2) becomes

p− p+
√
2p2 + 2

p2 + 2 = x

(1 + 2p√
2p2+2

p2 + 2 −
2
(
p+

√
2p2 + 2

)
p

(p2 + 2)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p+
√
2p2 + 2

p2 + 2 = 0

Solving for p from the above gives

p = 1
p = i

p = −i

Substituting these in (1A) gives

y = x

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)+

√
2p(x)2+2

p(x)2+2

x

(
1+ 2p(x)√

2p(x)2+2

p(x)2+2 −
2
(
p(x)+

√
2p(x)2+2

)
p(x)(

p(x)2+2
)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1+ 2p√
2p2+2

p2+2 −
2
(
p+
√

2p2+2
)
p

(p2+2)2

)
p− p+

√
2p2+2

p2+2

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = p2
√
2p2 + 2 + 2p3 − 2

√
2p2 + 2(

p3 −
√
2p2 + 2 + p

)√
2p2 + 2 (p2 + 2)

q(p) = 0

Hence the ode is

d

dp
x(p) +

2
(
p3 + p2

√
2p2+2
2 −

√
2p2 + 2

)
x(p)

√
2p2 + 2

(
p3 −

√
2p2 + 2 + p

)
(p2 + 2)

= 0

The integrating factor µ is

µ = e
∫ p2

√
2p2+2+2p3−2

√
2p2+2(

p3−
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp

The ode becomes

d
dpµx = 0

d
dp

e
∫ p2

√
2p2+2+2p3−2

√
2p2+2(

p3−
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp
x

 = 0

Integrating gives

e
∫ p2

√
2p2+2+2p3−2

√
2p2+2(

p3−
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp
x = c2

Dividing both sides by the integrating factor µ = e
∫ p2

√
2p2+2+2p3−2

√
2p2+2(

p3−
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp
results in

x(p) = c2e
∫
−

2

p3+
p2
√

2p2+2
2 −

√
2p2+2


√

2p2+2
(
p3−

√
2p2+2+p

)(
p2+2

)dp

Since the solution x(p) has unresolved integral, unable to continue.
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Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p−
√
2p2 + 2

p2 + 2
g = 0

Hence (2) becomes

p− p−
√
2p2 + 2

p2 + 2 = x

(1− 2p√
2p2+2

p2 + 2 −
2
(
p−

√
2p2 + 2

)
p

(p2 + 2)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p−
√
2p2 + 2

p2 + 2 = 0

Solving for p from the above gives

p = −1
p = i

p = −i

Substituting these in (1A) gives

y = −x

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)−

√
2p(x)2+2

p(x)2+2

x

(
1− 2p(x)√

2p(x)2+2

p(x)2+2 −
2
(
p(x)−

√
2p(x)2+2

)
p(x)(

p(x)2+2
)2

) (3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1− 2p√
2p2+2

p2+2 −
2
(
p−
√

2p2+2
)
p

(p2+2)2

)
p− p−

√
2p2+2

p2+2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − −p2
√
2p2 + 2 + 2p3 + 2

√
2p2 + 2(

p3 +
√
2p2 + 2 + p

)√
2p2 + 2 (p2 + 2)

q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−p2

√
2p2 + 2 + 2p3 + 2

√
2p2 + 2

)
x(p)(

p3 +
√
2p2 + 2 + p

)√
2p2 + 2 (p2 + 2)

= 0

The integrating factor µ is

µ = e
∫
− −p2

√
2p2+2+2p3+2

√
2p2+2(

p3+
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp

The ode becomes

d
dpµx = 0

d
dp

e
∫
− −p2

√
2p2+2+2p3+2

√
2p2+2(

p3+
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp
x

 = 0

Integrating gives

e
∫
− −p2

√
2p2+2+2p3+2

√
2p2+2(

p3+
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp
x = c4
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Dividing both sides by the integrating factor µ = e
∫
− −p2

√
2p2+2+2p3+2

√
2p2+2(

p3+
√

2p2+2+p

)√
2p2+2

(
p2+2

)dp
results

in

x(p) = c4e
−

∫ −
2

p3−
p2
√

2p2+2
2 +

√
2p2+2


√

2p2+2
(
p3+

√
2p2+2+p

)(
p2+2

)dp


Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = x
(2)y = −ix
(3)y = ix
(4)y = −x
(5)y = −ix
(6)y = ix

Verification of solutions
y = x

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.
y = −x

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 107� �
dsolve(y(x)^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)-x^2+2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −x
y(x) = x

y(x) =
√

−2c1
√
2x− c21 − x2

y(x) =
√

2c1
√
2x− c21 − x2

y(x) = −
√
−2c1

√
2x− c21 − x2

y(x) = −
√
2c1

√
2x− c21 − x2

8886



3 Solution by Mathematica
Time used: 7.875 (sec). Leaf size: 233� �
DSolve[y[x]^2 (y'[x])^2-2 x y[x] y'[x]-x^2+2 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−x2 − 4
√
2x cosh(c1)− 4

√
2x sinh(c1)− 4 cosh(2c1)− 4 sinh(2c1)

y(x) →
√

−x2 − 4
√
2x cosh(c1)− 4

√
2x sinh(c1)− 4 cosh(2c1)− 4 sinh(2c1)

y(x) → −
√

−x2 + 4
√
2x cosh(c1) + 4

√
2x sinh(c1)− 4 cosh(2c1)− 4 sinh(2c1)

y(x) →
√

−x2 + 4
√
2x cosh(c1) + 4

√
2x sinh(c1)− 4 cosh(2c1)− 4 sinh(2c1)

y(x) → −
√
−x2

y(x) →
√
−x2
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33.17 problem 979
Internal problem ID [4212]
Internal file name [OUTPUT/3705_Sunday_June_05_2022_10_21_08_AM_7871850/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 979.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

y2y′
2 − 2xyy′ + 2y2 = x2 − a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x+
√
2x2 − 2y2 − a

y
(1)

y′ = x−
√
2x2 − 2y2 − a

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[1, 1/y*x], [x, 1/2*(2*y^2+a)/y], [-3*x^2+y^2+2*a, x*(x^2-3*y^2)/y]� �

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 83� �
dsolve(y(x)^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+a-x^2+2*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −
√
4x2 − 2a

2

y(x) =
√
4x2 − 2a

2

y(x) = −
√

−8c21 + 16c1x− 4x2 − 2a
2

y(x) =
√

−8c21 + 16c1x− 4x2 − 2a
2
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3 Solution by Mathematica
Time used: 0.744 (sec). Leaf size: 63� �
DSolve[y[x]^2 (y'[x])^2-2 x y[x] y'[x]+a -x^2+2 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−a

2 − x2 + 4c1x− 2c12

y(x) →
√
−a

2 − x2 + 4c1x− 2c12
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33.18 problem 980
Internal problem ID [4213]
Internal file name [OUTPUT/3706_Sunday_June_05_2022_10_21_22_AM_69664054/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 980.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

y2y′
2 + 2axyy′ + (−a+ 1) y2 = −(a− 1) b− x2a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −ax+
√
a2x2 + ay2 − x2a− y2 − ab+ b

y
(1)

y′ = −ax−
√
a2x2 + ay2 − x2a− y2 − ab+ b

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[1, -1/y*a*x], [x, -(-y^2+b)/y], [-(2*a*x^2-x^2+y^2)/a, x*(a*x^2-a*y^2+2*a*b+2*� �

3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 88� �
dsolve(y(x)^2*diff(y(x),x)^2+2*a*x*y(x)*diff(y(x),x)+(a-1)*b+a*x^2+(1-a)*y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
√
−a x2 + b

y(x) = −
√
−a x2 + b

y(x) =
√

a c21 − 2ac1x− c21 + 2c1x− x2 + b

y(x) = −
√

(a− 1) c21 − 2x (a− 1) c1 − x2 + b
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3 Solution by Mathematica
Time used: 1.186 (sec). Leaf size: 65� �
DSolve[y[x]^2 (y'[x])^2+2 a x y[x] y'[x]+(a-1)b+a x^2+(1-a)y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−2(a− 1)c1x+ (a− 1)c12 + b− x2

y(x) →
√

−2(a− 1)c1x+ (a− 1)c12 + b− x2
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33.19 problem 981
33.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8895

Internal problem ID [4214]
Internal file name [OUTPUT/3707_Sunday_June_05_2022_10_21_39_AM_85108962/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 981.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
1− y2

)
y′

2 = 1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − 1√
1− y2

(1)

y′ = 1√
1− y2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
−
√

−y2 + 1dy =
∫

dx

−y
√
1− y2

2 − arcsin (y)
2 = x+ c1

Summary
The solution(s) found are the following

(1)−y
√
1− y2

2 − arcsin (y)
2 = x+ c1
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Verification of solutions

−y
√
1− y2

2 − arcsin (y)
2 = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ √
−y2 + 1dy =

∫
dx

y
√
1− y2

2 + arcsin (y)
2 = x+ c2

Summary
The solution(s) found are the following

(1)y
√
1− y2

2 + arcsin (y)
2 = x+ c2

Verification of solutions

y
√
1− y2

2 + arcsin (y)
2 = x+ c2

Verified OK.

33.19.1 Maple step by step solution

Let’s solve
(1− y2) y′2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
√
1− y2 = 1

• Integrate both sides with respect to x∫
y′
√
1− y2dx =

∫
1dx+ c1

• Evaluate integral
y
√

1−y2

2 + arcsin(y)
2 = x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 46� �
dsolve((1-y(x)^2)*diff(y(x),x)^2 = 1,y(x), singsol=all)� �

y(x) = sin (RootOf (sin (_Z) csgn (cos (_Z)) cos (_Z) + _Z+ 2c1 − 2x))
y(x) = sin (RootOf (− sin (_Z) csgn (cos (_Z)) cos (_Z)− _Z+ 2c1 − 2x))

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 105� �
DSolve[(1-y[x]^2) (y'[x])^2==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
1
2#1

√
1−#12 − arctan

(√
1−#12

#1+ 1

)
&
]
[−x+ c1]

y(x) → InverseFunction
[
1
2#1

√
1−#12 − arctan

(√
1−#12

#1+ 1

)
&
]
[x+ c1]
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33.20 problem 982
33.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8899

Internal problem ID [4215]
Internal file name [OUTPUT/3708_Sunday_June_05_2022_10_21_45_AM_97727202/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 982.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
a2 − y2

)
y′

2 − y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y√
a2 − y2

(1)

y′ = − y√
a2 − y2

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ √
a2 − y2

y
dy =

∫
dx

√
a2 − y2 −

a2 ln
(

2a2+2
√
a2
√

a2−y2

y

)
√
a2

= x+ c1
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Summary
The solution(s) found are the following

(1)
√

a2 − y2 −
a2 ln

(
2a2+2

√
a2
√

a2−y2

y

)
√
a2

= x+ c1

Verification of solutions

√
a2 − y2 −

a2 ln
(

2a2+2
√
a2
√

a2−y2

y

)
√
a2

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
−
√
a2 − y2

y
dy =

∫
dx

−
√

a2 − y2 +
a2 ln

(
2a2+2

√
a2
√

a2−y2

y

)
√
a2

= x+ c2

Summary
The solution(s) found are the following

(1)−
√

a2 − y2 +
a2 ln

(
2a2+2

√
a2
√

a2−y2

y

)
√
a2

= x+ c2

Verification of solutions

−
√

a2 − y2 +
a2 ln

(
2a2+2

√
a2
√

a2−y2

y

)
√
a2

= x+ c2

Verified OK.
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33.20.1 Maple step by step solution

Let’s solve
(a2 − y2) y′2 − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
√

a2−y2

y
= 1

• Integrate both sides with respect to x∫ y′
√

a2−y2

y
dx =

∫
1dx+ c1

• Evaluate integral

√
a2 − y2 −

a2 ln
(

2a2+2
√

a2
√

a2−y2
y

)
√
a2

= x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 115� �
dsolve((a^2-y(x)^2)*diff(y(x),x)^2 = y(x)^2,y(x), singsol=all)� �

y(x) = 0

a csgn (a) ln (2) + a csgn (a) ln

a

(
csgn (a)

√
a2 − y (x)2 + a

)
y (x)


−
√

a2 − y (x)2 − c1 + x = 0

−a csgn (a) ln (2)− a csgn (a) ln

a

(
csgn (a)

√
a2 − y (x)2 + a

)
y (x)


+
√

a2 − y (x)2 − c1 + x = 0

3 Solution by Mathematica
Time used: 0.337 (sec). Leaf size: 102� �
DSolve[(a^2-y[x]^2) (y'[x])^2==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[√

a2 −#12 − aarctanh
(√

a2 −#12

a

)
&
]
[−x+ c1]

y(x) → InverseFunction
[√

a2 −#12 − aarctanh
(√

a2 −#12

a

)
&
]
[x+ c1]

y(x) → 0
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33.21 problem 983
Internal problem ID [4216]
Internal file name [OUTPUT/3709_Sunday_June_05_2022_10_21_54_AM_8729942/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 983.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

(
a2 − 2axy + y2

)
y′

2 + 2ayy′ + y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−a+

√
2axy − y2

)
y

a2 − 2axy + y2
(1)

y′ = −
(
a+

√
2axy − y2

)
y

a2 − 2axy + y2
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-2*y(x)^2*x*a-2*y(x)^3)/(-y(x)^2*x^3+2*y(x)^2*a*x^2+a^2*x^3-x*y(x)^2), y(x)` **

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation

-> Calling odsolve with the ODE`, diff(y(x), x) = (-2*y(x)^2*x^2-y(x)*x^3-2*(x*(x*y(x)^2-x-2*y(x)))^(1/2)*y(x)*x-(x*(x*y(x)^2-x-2*y(
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
`, `-> Computing symmetries using: way = 5`� �
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7 Solution by Maple� �
dsolve((a^2-2*a*x*y(x)+y(x)^2)*diff(y(x),x)^2+2*a*y(x)*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(a^2-2 a x y[x]+y[x]^2) (y'[x])^2+2 a y[x] y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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33.22 problem 985
33.22.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8904

Internal problem ID [4217]
Internal file name [OUTPUT/3710_Sunday_June_05_2022_10_22_23_AM_39450547/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 985.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
(−a+ 1)x2 + y2

)
y′

2 + 2axyy′ + (−a+ 1) y2 = −x2

33.22.1 Solving as dAlembert ode

Let p = y′ the ode becomes(
(−a+ 1)x2 + y2

)
p2 + 2axyp+ (−a+ 1) y2 = −x2

Solving for y from the above results in

y =
(
ap+

√
a p4 − p4 + 2a p2 − 2p2 + a− 1

)
x

−p2 + a− 1 (1A)

y = −
(
−ap+

√
a p4 − p4 + 2a p2 − 2p2 + a− 1

)
x

−p2 + a− 1 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f =
ap+

√
(p2 + 1)2 (a− 1)

−p2 + a− 1
g = 0

Hence (2) becomes

p−
ap+

√
(p2 + 1)2 (a− 1)

−p2 + a− 1 = x

a+ 2
(
p2+1

)
(a−1)p√

(p2+1)2(a−1)

−p2 + a− 1 +
2
(
ap+

√
(p2 + 1)2 (a− 1)

)
p

(−p2 + a− 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
ap+

√
(p2 + 1)2 (a− 1)

−p2 + a− 1 = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

ap(x)+
√(

p(x)2+1
)2

(a−1)

−p(x)2+a−1

x

a+
2
(
p(x)2+1

)
(a−1)p(x)√(

p(x)2+1
)2

(a−1)

−p(x)2+a−1 +
2
(
ap(x)+

√(
p(x)2+1

)2
(a−1)

)
p(x)(

−p(x)2+a−1
)2


(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)

a+
2
(
p2+1

)
(a−1)p√(

p2+1
)2

(a−1)

−p2+a−1 +
2
(
ap+

√
(p2+1)2(a−1)

)
p

(−p2+a−1)2


p− ap+

√
(p2+1)2(a−1)

−p2+a−1

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) =
2
( (

p2+a−1
)√

(p2+1)2(a−1)
2 + (p2 + 1) (a− 1) p

)
a√

(p2 + 1)2 (a− 1)
(
p3 +

√
(p2 + 1)2 (a− 1) + p

)
(−p2 + a− 1)

q(p) = 0

Hence the ode is

d

dp
x(p) +

2
( (

p2+a−1
)√

(p2+1)2(a−1)
2 + (p2 + 1) (a− 1) p

)
ax(p)√

(p2 + 1)2 (a− 1)
(
p3 +

√
(p2 + 1)2 (a− 1) + p

)
(−p2 + a− 1)

= 0

The integrating factor µ is

µ = e

∫ 2


(
p2+a−1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p

a

√(
p2+1

)2
(a−1)

(
p3+

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp

The ode becomes
d
dpµx = 0

d
dp


e

∫ 2


(
p2+a−1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p

a

√(
p2+1

)2
(a−1)

(
p3+

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp
x


= 0

Integrating gives

e

∫ 2


(
p2+a−1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p

a

√(
p2+1

)2
(a−1)

(
p3+

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp
x = c2
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Dividing both sides by the integrating factor µ = e

∫ 2


(
p2+a−1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p

a

√(
p2+1

)2
(a−1)

(
p3+

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp

results in

x(p) = c2e
−a

∫ (
p2+a−1

)√(
p2+1

)2
(a−1)+2

(
p2+1

)
(a−1)p(

p3+
√(

p2+1
)2

(a−1)+p

)(
−p2+a−1

)√(
p2+1

)2
(a−1)

dp



Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f =
ap−

√
(p2 + 1)2 (a− 1)

−p2 + a− 1
g = 0

Hence (2) becomes

p−
ap−

√
(p2 + 1)2 (a− 1)

−p2 + a− 1 = x

a− 2
(
p2+1

)
(a−1)p√

(p2+1)2(a−1)

−p2 + a− 1 +
2
(
ap−

√
(p2 + 1)2 (a− 1)

)
p

(−p2 + a− 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
ap−

√
(p2 + 1)2 (a− 1)

−p2 + a− 1 = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

ap(x)−
√(

p(x)2+1
)2

(a−1)

−p(x)2+a−1

x

a−
2
(
p(x)2+1

)
(a−1)p(x)√(

p(x)2+1
)2

(a−1)

−p(x)2+a−1 +
2
(
ap(x)−

√(
p(x)2+1

)2
(a−1)

)
p(x)(

−p(x)2+a−1
)2


(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)

a−
2
(
p2+1

)
(a−1)p√(

p2+1
)2

(a−1)

−p2+a−1 +
2
(
ap−

√
(p2+1)2(a−1)

)
p

(−p2+a−1)2


p− ap−

√
(p2+1)2(a−1)

−p2+a−1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
2a
( (

−p2−a+1
)√

(p2+1)2(a−1)
2 + (p2 + 1) (a− 1) p

)
√

(p2 + 1)2 (a− 1)
(
p3 −

√
(p2 + 1)2 (a− 1) + p

)
(−p2 + a− 1)

q(p) = 0

Hence the ode is

d

dp
x(p)−

2a
( (

−p2−a+1
)√

(p2+1)2(a−1)
2 + (p2 + 1) (a− 1) p

)
x(p)√

(p2 + 1)2 (a− 1)
(
p3 −

√
(p2 + 1)2 (a− 1) + p

)
(−p2 + a− 1)

= 0

The integrating factor µ is

µ = e

∫
−

2a


(
−p2−a+1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p


√(

p2+1
)2

(a−1)
(
p3−

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp
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The ode becomes

d
dpµx = 0

d
dp


e

∫
−

2a


(
−p2−a+1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p


√(

p2+1
)2

(a−1)
(
p3−

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp
x


= 0

Integrating gives

e

∫
−

2a


(
−p2−a+1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p


√(

p2+1
)2

(a−1)
(
p3−

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp
x = c4

Dividing both sides by the integrating factor µ = e

∫
−

2a


(
−p2−a+1

)√(
p2+1

)2
(a−1)

2 +
(
p2+1

)
(a−1)p


√(

p2+1
)2

(a−1)
(
p3−

√(
p2+1

)2
(a−1)+p

)(
−p2+a−1

)dp

results in

x(p) = c4e
a

∫ (
−p2−a+1

)√(
p2+1

)2
(a−1)+2

(
p2+1

)
(a−1)p(

p3−
√(

p2+1
)2

(a−1)+p

)(
−p2+a−1

)√(
p2+1

)2
(a−1)

dp



Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix
(3)y = −ix
(4)y = ix
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Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 75� �
dsolve(((1-a)*x^2+y(x)^2)*diff(y(x),x)^2+2*a*x*y(x)*diff(y(x),x)+x^2+(1-a)*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −ix
y(x) = ix

y(x) = tan
(
RootOf

(
−2_Z

√
a− 1− ln

(
x2 sec (_Z)2

)
+ 2c1

))
x

y(x) = tan
(
RootOf

(
2_Z

√
a− 1− ln

(
x2 sec (_Z)2

)
+ 2c1

))
x
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3 Solution by Mathematica
Time used: 0.328 (sec). Leaf size: 101� �
DSolve[((1-a)x^2+y[x]^2)(y'[x])^2+2 a x y[x] y'[x]+x^2+(1-a)y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[√

a− 1 arctan
(
y(x)
x

)
− 1

2 log
(
y(x)2
x2 + 1

)
= log(x) + c1, y(x)

]
Solve

[√
a− 1 arctan

(
y(x)
x

)
+ 1

2 log
(
y(x)2
x2 + 1

)
= − log(x) + c1, y(x)

]
y(x) → −ix
y(x) → ix
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33.23 problem 986
33.23.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8912

Internal problem ID [4218]
Internal file name [OUTPUT/3711_Sunday_June_05_2022_10_22_33_AM_5476441/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 986.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

((
−4a2 + 1

)
x2 + y2

)
y′

2 − 8a2xyy′ +
(
−4a2 + 1

)
y2 = −x2

33.23.1 Solving as dAlembert ode

Let p = y′ the ode becomes((
−4a2 + 1

)
x2 + y2

)
p2 − 8a2xyp+

(
−4a2 + 1

)
y2 = −x2

Solving for y from the above results in

y =
(
−4a2p+

√
4a2p4 + 8a2p2 − p4 + 4a2 − 2p2 − 1

)
x

4a2 − p2 − 1 (1A)

y = −
(
4a2p+

√
4a2p4 + 8a2p2 − p4 + 4a2 − 2p2 − 1

)
x

4a2 − p2 − 1 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f =
−4a2p+

√
(p2 + 1)2 (4a2 − 1)

4a2 − p2 − 1
g = 0

Hence (2) becomes

p−
−4a2p+

√
(p2 + 1)2 (4a2 − 1)

4a2 − p2 − 1 = x

−4a2 + 2
(
p2+1

)(
4a2−1

)
p√

(p2+1)2(4a2−1)

4a2 − p2 − 1 +
2
(
−4a2p+

√
(p2 + 1)2 (4a2 − 1)

)
p

(4a2 − p2 − 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
−4a2p+

√
(p2 + 1)2 (4a2 − 1)

4a2 − p2 − 1 = 0

Solving for p from the above gives

p =
√
8a2 − 1 + 4

√
4a4 − a2

p = −
√
8a2 − 1 + 4

√
4a4 − a2

p =
√
8a2 − 1− 4

√
4a4 − a2

p = −
√
8a2 − 1− 4

√
4a4 − a2

Substituting these in (1A) gives

y = −x a2
√

8a2 − 1− 4
√
4a4 − a2 + x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

y = x a2
√

8a2 − 1 + 4
√
4a4 − a2 − x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

y = x a2
√

8a2 − 1− 4
√
4a4 − a2 + x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

y = −x a2
√

8a2 − 1 + 4
√
4a4 − a2 − x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

−4a2p(x)+
√(

p(x)2+1
)2

(4a2−1)

4a2−p(x)2−1

x

−4a2+
2
(
p(x)2+1

)(
4a2−1

)
p(x)√(

p(x)2+1
)2(

4a2−1
)

4a2−p(x)2−1 +
2
(
−4a2p(x)+

√(
p(x)2+1

)2
(4a2−1)

)
p(x)(

4a2−p(x)2−1
)2


(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)

−4a2+
2
(
p2+1

)(
4a2−1

)
p√(

p2+1
)2(

4a2−1
)

4a2−p2−1 +
2
(
−4a2p+

√
(p2+1)2(4a2−1)

)
p

(4a2−p2−1)2


p− −4a2p+

√
(p2+1)2(4a2−1)

4a2−p2−1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
4a2
(
−8p3a2 + 4a2

√
(p2 + 1)2 (4a2 − 1) +

√
(p2 + 1)2 (4a2 − 1) p2 − 8a2p+ 2p3 −

√
(p2 + 1)2 (4a2 − 1) + 2p

)
(
−8a2p+ p3 +

√
(p2 + 1)2 (4a2 − 1) + p

)
(4a2 − p2 − 1)

√
(p2 + 1)2 (4a2 − 1)

q(p) = 0

Hence the ode is

d

dp
x(p)−

4x(p) a2
(
−8p3a2 + 4a2

√
(p2 + 1)2 (4a2 − 1) +

√
(p2 + 1)2 (4a2 − 1) p2 − 8a2p+ 2p3 −

√
(p2 + 1)2 (4a2 − 1) + 2p

)
(
−8a2p+ p3 +

√
(p2 + 1)2 (4a2 − 1) + p

)
(4a2 − p2 − 1)

√
(p2 + 1)2 (4a2 − 1)

= 0

The integrating factor µ is

µ = e

∫
−

4a2
(
−8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2−8a2p+2p3−

√(
p2+1

)2(
4a2−1

)
+2p

)
(
−8a2p+p3+

√(
p2+1

)2(
4a2−1

)
+p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp
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The ode becomes
d
dpµx = 0

d
dp

e

∫
−

4a2
(
−8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2−8a2p+2p3−

√(
p2+1

)2(
4a2−1

)
+2p

)
(
−8a2p+p3+

√(
p2+1

)2(
4a2−1

)
+p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp

x

 = 0

Integrating gives

e

∫
−

4a2
(
−8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2−8a2p+2p3−

√(
p2+1

)2(
4a2−1

)
+2p

)
(
−8a2p+p3+

√(
p2+1

)2(
4a2−1

)
+p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp

x = c2

Dividing both sides by the integrating factor µ = e

∫
−

4a2
(
−8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2−8a2p+2p3−

√(
p2+1

)2(
4a2−1

)
+2p

)
(
−8a2p+p3+

√(
p2+1

)2(
4a2−1

)
+p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp

results in

x(p) = c2e
4a2

∫ −8p3a2+4a2
√(

p2+1
)2(

4a2−1
)
+
√(

p2+1
)2(

4a2−1
)
p2−8a2p+2p3−

√(
p2+1

)2(
4a2−1

)
+2p(

−8a2p+p3+
√(

p2+1
)2(

4a2−1
)
+p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp



Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f =
−4a2p−

√
(p2 + 1)2 (4a2 − 1)

4a2 − p2 − 1
g = 0

Hence (2) becomes

p−
−4a2p−

√
(p2 + 1)2 (4a2 − 1)

4a2 − p2 − 1 = x

−4a2 − 2
(
p2+1

)(
4a2−1

)
p√

(p2+1)2(4a2−1)

4a2 − p2 − 1 +
2
(
−4a2p−

√
(p2 + 1)2 (4a2 − 1)

)
p

(4a2 − p2 − 1)2

 p′(x)

(2A)
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The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
−4a2p−

√
(p2 + 1)2 (4a2 − 1)

4a2 − p2 − 1 = 0

Solving for p from the above gives

p =
√
8a2 − 1 + 4

√
4a4 − a2

p = −
√
8a2 − 1 + 4

√
4a4 − a2

p =
√
8a2 − 1− 4

√
4a4 − a2

p = −
√
8a2 − 1− 4

√
4a4 − a2

Substituting these in (1A) gives

y = −x a2
√

8a2 − 1− 4
√
4a4 − a2 − x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

y = x a2
√

8a2 − 1 + 4
√
4a4 − a2 + x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

y = x a2
√

8a2 − 1− 4
√
4a4 − a2 − x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

y = −x a2
√

8a2 − 1 + 4
√
4a4 − a2 + x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

−4a2p(x)−
√(

p(x)2+1
)2

(4a2−1)

4a2−p(x)2−1

x

−4a2−
2
(
p(x)2+1

)(
4a2−1

)
p(x)√(

p(x)2+1
)2(

4a2−1
)

4a2−p(x)2−1 +
2
(
−4a2p(x)−

√(
p(x)2+1

)2
(4a2−1)

)
p(x)(

4a2−p(x)2−1
)2


(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)

−4a2−
2
(
p2+1

)(
4a2−1

)
p√(

p2+1
)2(

4a2−1
)

4a2−p2−1 +
2
(
−4a2p−

√
(p2+1)2(4a2−1)

)
p

(4a2−p2−1)2


p− −4a2p−

√
(p2+1)2(4a2−1)

4a2−p2−1

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) =
4a2
(
8p3a2 + 4a2

√
(p2 + 1)2 (4a2 − 1) +

√
(p2 + 1)2 (4a2 − 1) p2 + 8a2p− 2p3 −

√
(p2 + 1)2 (4a2 − 1)− 2p

)
(
8a2p− p3 +

√
(p2 + 1)2 (4a2 − 1)− p

)
(4a2 − p2 − 1)

√
(p2 + 1)2 (4a2 − 1)

q(p) = 0

Hence the ode is

d

dp
x(p) +

4x(p) a2
(
8p3a2 + 4a2

√
(p2 + 1)2 (4a2 − 1) +

√
(p2 + 1)2 (4a2 − 1) p2 + 8a2p− 2p3 −

√
(p2 + 1)2 (4a2 − 1)− 2p

)
(
8a2p− p3 +

√
(p2 + 1)2 (4a2 − 1)− p

)
(4a2 − p2 − 1)

√
(p2 + 1)2 (4a2 − 1)

= 0

The integrating factor µ is

µ = e

∫ 4a2
(
8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2+8a2p−2p3−

√(
p2+1

)2(
4a2−1

)
−2p

)
(
8a2p−p3+

√(
p2+1

)2(
4a2−1

)
−p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp

The ode becomes
d
dpµx = 0

d
dp

e

∫ 4a2
(
8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2+8a2p−2p3−

√(
p2+1

)2(
4a2−1

)
−2p

)
(
8a2p−p3+

√(
p2+1

)2(
4a2−1

)
−p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp

x

 = 0

Integrating gives

e

∫ 4a2
(
8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2+8a2p−2p3−

√(
p2+1

)2(
4a2−1

)
−2p

)
(
8a2p−p3+

√(
p2+1

)2(
4a2−1

)
−p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp

x = c4

Dividing both sides by the integrating factor µ = e

∫ 4a2
(
8p3a2+4a2

√(
p2+1

)2(
4a2−1

)
+
√(

p2+1
)2(

4a2−1
)
p2+8a2p−2p3−

√(
p2+1

)2(
4a2−1

)
−2p

)
(
8a2p−p3+

√(
p2+1

)2(
4a2−1

)
−p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

) dp

results in

x(p) = c4e
−4a2

∫ (
4a2+p2−1

)√(
p2+1

)2(
4a2−1

)
+8p3a2+8a2p−2p3−2p(

8a2p−p3+
√(

p2+1
)2(

4a2−1
)
−p

)(
4a2−p2−1

)√(
p2+1

)2(
4a2−1

)dp
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Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y

= −x a2
√

8a2 − 1− 4
√
4a4 − a2 + x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

(2)y

= x a2
√

8a2 − 1 + 4
√
4a4 − a2 − x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

(3)y

= x a2
√

8a2 − 1− 4
√
4a4 − a2 + x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

(4)y

= −x a2
√

8a2 − 1 + 4
√
4a4 − a2 − x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

(5)y

= −x a2
√

8a2 − 1− 4
√
4a4 − a2 − x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

(6)y

= x a2
√

8a2 − 1 + 4
√
4a4 − a2 + x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

(7)y

= x a2
√

8a2 − 1− 4
√
4a4 − a2 − x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

(8)y

= −x a2
√

8a2 − 1 + 4
√
4a4 − a2 + x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2
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Verification of solutions
y

= −x a2
√

8a2 − 1− 4
√
4a4 − a2 + x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

Verified OK.

y= x a2
√
8a2 − 1 + 4

√
4a4 − a2 − x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

Verified OK.

y= x a2
√
8a2 − 1− 4

√
4a4 − a2 + x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

Verified OK.
y

= −x a2
√

8a2 − 1 + 4
√
4a4 − a2 − x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

Verified OK.
y

= −x a2
√

8a2 − 1− 4
√
4a4 − a2 − x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

Verified OK.

y= x a2
√
8a2 − 1 + 4

√
4a4 − a2 + x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

Verified OK.

y= x a2
√
8a2 − 1− 4

√
4a4 − a2 − x

√
32a6 − 12a4 − 16a4

√
4a4 − a2 + 4a2

√
4a4 − a2 + a2

−a2 +
√
4a4 − a2

Verified OK.
y

= −x a2
√

8a2 − 1 + 4
√
4a4 − a2 + x

√
32a6 − 12a4 + 16a4

√
4a4 − a2 − 4a2

√
4a4 − a2 + a2

a2 +
√
4a4 − a2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 136� �
dsolve(((-4*a^2+1)*x^2+y(x)^2)*diff(y(x),x)^2-8*a^2*x*y(x)*diff(y(x),x)+x^2+(-4*a^2+1)*y(x)^2 = 0,y(x), singsol=all)� �
y(x) = RootOf

− ln (x) +
∫ _Z

−
_a3 − 8_a a2 −

√
(4a2 − 1) (_a2 + 1)2 + _a

_a4 − 16_a2a2 + 2_a2 + 1 d_a

+ c1

x

y(x) = RootOf

− ln (x)−

∫ _Z _a3 − 8_a a2 +
√

(4a2 − 1) (_a2 + 1)2 + _a
_a4 − 16_a2a2 + 2_a2 + 1 d_a


+ c1

x
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3 Solution by Mathematica
Time used: 1.499 (sec). Leaf size: 328� �
DSolve[((1-4 a^2)x^2+y[x]^2) (y'[x])^2 - 8 a^2 x y[x] y'[x]+x^2+(1-4 a^2)y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

14
−

2
√
2a− 1

√
2a+ 1arctan

(
y(x)
x

−2a√
1−4a2

)
√
1− 4a2

−
2
√
2a− 1

√
2a+ 1arctan

(
2a+ y(x)

x√
1−4a2

)
√
1− 4a2

+ log
(
−4ay(x)

x
+ y(x)2

x2 + 1
)

+ log
(
4ay(x)

x
+ y(x)2

x2 + 1
) = − log(x) + c1, y(x)



Solve

−−2
√
2a− 1

√
2a+ 1arctan

(
y(x)
x

−2a√
1−4a2

)
− 2

√
2a− 1

√
2a+ 1arctan

(
2a+ y(x)

x√
1−4a2

)
−

√
1− 4a2

(
log
(
−4ay(x)

x
+ y(x)2

x2 + 1
)
+ log

(
4ay(x)

x
+ y(x)2

x2 + 1
))

4
√
1− 4a2

=

− log(x) + c1, y(x)
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33.24 problem 987
33.24.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8922

Internal problem ID [4219]
Internal file name [OUTPUT/3712_Sunday_June_05_2022_10_22_42_AM_53176039/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 987.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

((
−a2 + 1

)
x2 + y2

)
y′

2 + 2a2xyy′ +
(
−a2 + 1

)
y2 = −x2

33.24.1 Solving as dAlembert ode

Let p = y′ the ode becomes((
−a2 + 1

)
x2 + y2

)
p2 + 2a2xyp+

(
−a2 + 1

)
y2 = −x2

Solving for y from the above results in

y =
(
a2p+

√
a2p4 + 2a2p2 − p4 + a2 − 2p2 − 1

)
x

a2 − p2 − 1 (1A)

y = −
(
−a2p+

√
a2p4 + 2a2p2 − p4 + a2 − 2p2 − 1

)
x

a2 − p2 − 1 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f =
a2p+

√
(p2 + 1)2 (a2 − 1)

a2 − p2 − 1
g = 0

Hence (2) becomes

p−
a2p+

√
(p2 + 1)2 (a2 − 1)

a2 − p2 − 1 = x

a2 + 2
(
p2+1

)(
a2−1

)
p√

(p2+1)2(a2−1)

a2 − p2 − 1 +
2
(
a2p+

√
(p2 + 1)2 (a2 − 1)

)
p

(a2 − p2 − 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
a2p+

√
(p2 + 1)2 (a2 − 1)

a2 − p2 − 1 = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

a2p(x)+
√(

p(x)2+1
)2

(a2−1)

a2−p(x)2−1

x

a2+
2
(
p(x)2+1

)(
a2−1

)
p(x)√(

p(x)2+1
)2(

a2−1
)

a2−p(x)2−1 +
2
(
a2p(x)+

√(
p(x)2+1

)2
(a2−1)

)
p(x)(

a2−p(x)2−1
)2


(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)

a2+
2
(
p2+1

)(
a2−1

)
p√(

p2+1
)2(

a2−1
)

a2−p2−1 +
2
(
a2p+

√
(p2+1)2(a2−1)

)
p

(a2−p2−1)2


p− a2p+

√
(p2+1)2(a2−1)
a2−p2−1

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
a2
(
−(a2 + p2 − 1)

√
(p2 + 1)2 (a2 − 1)− 2p(p2 + 1) (a− 1) (1 + a)

)
√

(p2 + 1)2 (a2 − 1)
(
p3 +

√
(p2 + 1)2 (a2 − 1) + p

)
(a2 − p2 − 1)

q(p) = 0

Hence the ode is

d

dp
x(p)−

a2
(
−(a2 + p2 − 1)

√
(p2 + 1)2 (a2 − 1)− 2p(p2 + 1) (a− 1) (1 + a)

)
x(p)√

(p2 + 1)2 (a2 − 1)
(
p3 +

√
(p2 + 1)2 (a2 − 1) + p

)
(a2 − p2 − 1)

= 0

The integrating factor µ is

µ = e

∫
−

a2
(
−
(
a2+p2−1

)√(
p2+1

)2(
a2−1

)
−2p

(
p2+1

)
(a−1)(1+a)

)
√(

p2+1
)2(

a2−1
)(

p3+
√(

p2+1
)2(

a2−1
)
+p

)(
a2−p2−1

) dp

The ode becomes
d
dpµx = 0

d
dp

e

∫
−

a2
(
−
(
a2+p2−1

)√(
p2+1

)2(
a2−1

)
−2p

(
p2+1

)
(a−1)(1+a)

)
√(

p2+1
)2(

a2−1
)(

p3+
√(

p2+1
)2(

a2−1
)
+p

)(
a2−p2−1

) dp

x

 = 0

Integrating gives

e

∫
−

a2
(
−
(
a2+p2−1

)√(
p2+1

)2(
a2−1

)
−2p

(
p2+1

)
(a−1)(1+a)

)
√(

p2+1
)2(

a2−1
)(

p3+
√(

p2+1
)2(

a2−1
)
+p

)(
a2−p2−1

) dp

x = c2

Dividing both sides by the integrating factor µ = e

∫
−

a2
(
−
(
a2+p2−1

)√(
p2+1

)2(
a2−1

)
−2p

(
p2+1

)
(a−1)(1+a)

)
√(

p2+1
)2(

a2−1
)(

p3+
√(

p2+1
)2(

a2−1
)
+p

)(
a2−p2−1

) dp

results in

x(p) = c2e
−a2

∫ (
a2+p2−1

)√(
p2+1

)2(
a2−1

)
+2p3a2+2a2p−2p3−2p(

p3+
√(

p2+1
)2(

a2−1
)
+p

)(
a2−p2−1

)√(
p2+1

)2(
a2−1

)dp
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Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f =
a2p−

√
(p2 + 1)2 (a2 − 1)

a2 − p2 − 1
g = 0

Hence (2) becomes

p−
a2p−

√
(p2 + 1)2 (a2 − 1)

a2 − p2 − 1 = x

a2 − 2
(
p2+1

)(
a2−1

)
p√

(p2+1)2(a2−1)

a2 − p2 − 1 +
2
(
a2p−

√
(p2 + 1)2 (a2 − 1)

)
p

(a2 − p2 − 1)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−
a2p−

√
(p2 + 1)2 (a2 − 1)

a2 − p2 − 1 = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

a2p(x)−
√(

p(x)2+1
)2

(a2−1)

a2−p(x)2−1

x

a2−
2
(
p(x)2+1

)(
a2−1

)
p(x)√(

p(x)2+1
)2(

a2−1
)

a2−p(x)2−1 +
2
(
a2p(x)−

√(
p(x)2+1

)2
(a2−1)

)
p(x)(

a2−p(x)2−1
)2


(3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)

a2−
2
(
p2+1

)(
a2−1

)
p√(

p2+1
)2(

a2−1
)

a2−p2−1 +
2
(
a2p−

√
(p2+1)2(a2−1)

)
p

(a2−p2−1)2


p− a2p−

√
(p2+1)2(a2−1)
a2−p2−1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
a2
(
2p3a2 − 2p3 −

√
(p2 + 1)2 (a2 − 1) p2 + 2a2p− a2

√
(p2 + 1)2 (a2 − 1)− 2p+

√
(p2 + 1)2 (a2 − 1)

)
(
p3 −

√
(p2 + 1)2 (a2 − 1) + p

)
(a2 − p2 − 1)

√
(p2 + 1)2 (a2 − 1)

q(p) = 0

Hence the ode is

d

dp
x(p)−

a2
(
2p3a2 − 2p3 −

√
(p2 + 1)2 (a2 − 1) p2 + 2a2p− a2

√
(p2 + 1)2 (a2 − 1)− 2p+

√
(p2 + 1)2 (a2 − 1)

)
x(p)(

p3 −
√

(p2 + 1)2 (a2 − 1) + p

)
(a2 − p2 − 1)

√
(p2 + 1)2 (a2 − 1)

= 0

The integrating factor µ is

µ = e

∫
−

a2
(
2p3a2−2p3−

√(
p2+1

)2(
a2−1

)
p2+2a2p−a2

√(
p2+1

)2(
a2−1

)
−2p+

√(
p2+1

)2(
a2−1

))
(
p3−

√(
p2+1

)2(
a2−1

)
+p

)(
a2−p2−1

)√(
p2+1

)2(
a2−1

) dp

The ode becomes
d
dpµx = 0

d
dp

e

∫
−

a2
(
2p3a2−2p3−

√(
p2+1

)2(
a2−1

)
p2+2a2p−a2

√(
p2+1

)2(
a2−1

)
−2p+

√(
p2+1

)2(
a2−1

))
(
p3−

√(
p2+1

)2(
a2−1

)
+p

)(
a2−p2−1

)√(
p2+1

)2(
a2−1

) dp

x

 = 0
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Integrating gives

e

∫
−

a2
(
2p3a2−2p3−

√(
p2+1

)2(
a2−1

)
p2+2a2p−a2

√(
p2+1

)2(
a2−1

)
−2p+

√(
p2+1

)2(
a2−1

))
(
p3−

√(
p2+1

)2(
a2−1

)
+p

)(
a2−p2−1

)√(
p2+1

)2(
a2−1

) dp

x = c4

Dividing both sides by the integrating factor µ = e

∫
−

a2
(
2p3a2−2p3−

√(
p2+1

)2(
a2−1

)
p2+2a2p−a2

√(
p2+1

)2(
a2−1

)
−2p+

√(
p2+1

)2(
a2−1

))
(
p3−

√(
p2+1

)2(
a2−1

)
+p

)(
a2−p2−1

)√(
p2+1

)2(
a2−1

) dp

results in

x(p) = c4e
a2

∫ (
−a2−p2+1

)√(
p2+1

)2(
a2−1

)
+2p3a2+2a2p−2p3−2p(

p3−
√(

p2+1
)2(

a2−1
)
+p

)(
a2−p2−1

)√(
p2+1

)2(
a2−1

)dp


Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix
(3)y = −ix
(4)y = ix

Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.406 (sec). Leaf size: 79� �
dsolve(((-a^2+1)*x^2+y(x)^2)*diff(y(x),x)^2+2*a^2*x*y(x)*diff(y(x),x)+x^2+(-a^2+1)*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −ix
y(x) = ix

y(x) = tan
(
RootOf

(
−2_Z

√
a2 − 1− ln

(
x2 sec (_Z)2

)
+ 2c1

))
x

y(x) = tan
(
RootOf

(
2_Z

√
a2 − 1− ln

(
x2 sec (_Z)2

)
+ 2c1

))
x

3 Solution by Mathematica
Time used: 0.381 (sec). Leaf size: 115� �
DSolve[((1-a^2)x^2+y[x]^2) (y'[x])^2 +2 a^2 x y[x] y'[x]+x^2+(1-a^2) y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[√

a− 1
√
a+ 1arctan

(
y(x)
x

)
− 1

2 log
(
y(x)2
x2 + 1

)
= log(x) + c1, y(x)

]
Solve

[√
a− 1

√
a+ 1arctan

(
y(x)
x

)
+ 1

2 log
(
y(x)2
x2 + 1

)
= − log(x) + c1, y(x)

]
y(x) → −ix
y(x) → ix
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33.25 problem 988
33.25.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8929

Internal problem ID [4220]
Internal file name [OUTPUT/3713_Sunday_June_05_2022_10_22_53_AM_67882897/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 988.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(y + x)2 y′2 − y2 = 0

33.25.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(y + x)2 p2 − y2 = 0

Solving for y from the above results in

y = − px

1 + p
(1A)

y = − px

−1 + p
(2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = − p

1 + p

g = 0

Hence (2) becomes

p+ p

1 + p
= x

(
− 1
1 + p

+ p

(1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p

1 + p
= 0

Solving for p from the above gives

p = −2
p = 0

Substituting these in (1A) gives

y = −2x
y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)

1+p(x)

x
(
− 1

1+p(x) +
p(x)

(1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

1+p
+ p

(1+p)2

)
p+ p

1+p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = 1
(2 + p) p (1 + p)

q(p) = 0

Hence the ode is
d

dp
x(p) + x(p)

(2 + p) p (1 + p) = 0

The integrating factor µ is

µ = e
∫ 1

(2+p)p(1+p)dp

= e− ln(1+p)+ ln(2+p)
2 + ln(p)

2

Which simplifies to

µ =
√
2 + p

√
p

1 + p

The ode becomes
d
dpµx = 0

d
dp

(√
2 + p

√
p x

1 + p

)
= 0

Integrating gives
√
2 + p

√
p x

1 + p
= c3

Dividing both sides by the integrating factor µ =
√
2+p

√
p

1+p
results in

x(p) = c3(1 + p)√
2 + p

√
p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = − y

y + x

Substituting the above in the solution for x found above gives

x = c3x

(y + x)
√

y+2x
y+x

√
− y

y+x
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Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = − p

−1 + p

g = 0

Hence (2) becomes

p+ p

−1 + p
= x

(
− 1
−1 + p

+ p

(−1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p

−1 + p
= 0

Solving for p from the above gives

p = 0
p = 0

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)

−1+p(x)

x
(
− 1

−1+p(x) +
p(x)

(−1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

−1+p
+ p

(−1+p)2

)
p+ p

−1+p

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1
p2 (−1 + p)

q(p) = 0

Hence the ode is

d

dp
x(p)− x(p)

p2 (−1 + p) = 0

The integrating factor µ is

µ = e
∫
− 1

p2(−1+p)dp

= e− ln(−1+p)− 1
p
+ln(p)

Which simplifies to

µ = p e−
1
p

−1 + p

The ode becomes

d
dpµx = 0

d
dp

(
p e−

1
px

−1 + p

)
= 0

Integrating gives

p e−
1
px

−1 + p
= c5

Dividing both sides by the integrating factor µ = p e−
1
p

−1+p
results in

x(p) = c5(−1 + p) e
1
p

p
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y

y + x

Substituting the above in the solution for x found above gives

x = −c5x e
y+x
y

y

Summary
The solution(s) found are the following

(1)y = −2x
(2)y = 0
(3)x = c3x

(y + x)
√

y+2x
y+x

√
− y

y+x

(4)y = 0

(5)x = −c5x e
y+x
y

y

Verification of solutions

y = −2x

Verified OK.
y = 0

Verified OK.

x = c3x

(y + x)
√

y+2x
y+x

√
− y

y+x

Verified OK.
y = 0

Verified OK.

x = −c5x e
y+x
y

y

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
dsolve((x+y(x))^2*diff(y(x),x)^2 = y(x)^2,y(x), singsol=all)� �

y(x) = x

LambertW (x ec1)
y(x) = −x−

√
x2 + 2c1

y(x) = −x+
√
x2 + 2c1
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3 Solution by Mathematica
Time used: 4.107 (sec). Leaf size: 101� �
DSolve[(x+y[x])^2 (y'[x])^2==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
x2 + e2c1

y(x) → −x+
√
x2 + e2c1

y(x) → x

W (e−c1x)
y(x) → 0
y(x) → −

√
x2 − x

y(x) →
√
x2 − x
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33.26 problem 989
33.26.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8937

Internal problem ID [4221]
Internal file name [OUTPUT/3714_Sunday_June_05_2022_10_23_00_AM_39261125/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 989.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(y + x)2 y′2 −
(
x2 − yx− 2y2

)
y′ − y(−y + x) = 0

33.26.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(y + x)2 p2 −
(
x2 − xy − 2y2

)
p− y(−y + x) = 0

Solving for y from the above results in

y = −(p− 1)x
1 + p

(1A)

y = − xp

1 + p
(2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p+ 1
1 + p

g = 0

Hence (2) becomes

p− −p+ 1
1 + p

= x

(
− 1
1 + p

− −p+ 1
(1 + p)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −p+ 1
1 + p

= 0

Solving for p from the above gives

p =
√
2− 1

p = −1−
√
2

Substituting these in (1A) gives

y = −x−
√
2x

y = −x+
√
2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −p(x)+1

1+p(x)

x
(
− 1

1+p(x) −
−p(x)+1
(1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

1+p
− −p+1

(1+p)2

)
p− −p+1

1+p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = 2
(p2 + 2p− 1) (1 + p)

q(p) = 0

Hence the ode is

d

dp
x(p) + 2x(p)

(p2 + 2p− 1) (1 + p) = 0

The integrating factor µ is

µ = e
∫ 2(

p2+2p−1
)
(1+p)

dp

= e− ln(1+p)+
ln
(
p2+2p−1

)
2

Which simplifies to

µ =
√
p2 + 2p− 1
1 + p

The ode becomes

d
dpµx = 0

d
dp

(√
p2 + 2p− 1x

1 + p

)
= 0

Integrating gives
√
p2 + 2p− 1x

1 + p
= c3

Dividing both sides by the integrating factor µ =
√

p2+2p−1
1+p

results in

x(p) = c3(1 + p)√
p2 + 2p− 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −y + x

y + x
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Substituting the above in the solution for x found above gives

x = c3x
√
2

(y + x)
√

x2−2yx−y2

(y+x)2

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = − p

1 + p

g = 0

Hence (2) becomes

p+ p

1 + p
= x

(
− 1
1 + p

+ p

(1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p

1 + p
= 0

Solving for p from the above gives

p = −2
p = 0

Substituting these in (1A) gives

y = −2x
y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)

1+p(x)

x
(
− 1

1+p(x) +
p(x)

(1+p(x))2

) (3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

1+p
+ p

(1+p)2

)
p+ p

1+p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
(2 + p) p (1 + p)

q(p) = 0

Hence the ode is

d

dp
x(p) + x(p)

(2 + p) p (1 + p) = 0

The integrating factor µ is

µ = e
∫ 1

(2+p)p(1+p)dp

= e− ln(1+p)+ ln(2+p)
2 + ln(p)

2

Which simplifies to

µ =
√
2 + p

√
p

1 + p

The ode becomes
d
dpµx = 0

d
dp

(√
2 + p

√
p x

1 + p

)
= 0

Integrating gives
√
2 + p

√
p x

1 + p
= c6
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Dividing both sides by the integrating factor µ =
√
2+p

√
p

1+p
results in

x(p) = c6(1 + p)√
2 + p

√
p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = − y

y + x

Substituting the above in the solution for x found above gives

x = c6x

(y + x)
√

y+2x
y+x

√
− y

y+x

Summary
The solution(s) found are the following

(1)y = −x−
√
2x

(2)y = −x+
√
2x

(3)x = c3x
√
2

(y + x)
√

x2−2yx−y2

(y+x)2

(4)y = −2x
(5)y = 0
(6)x = c6x

(y + x)
√

y+2x
y+x

√
− y

y+x
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Verification of solutions

y = −x−
√
2x

Verified OK.

y = −x+
√
2x

Verified OK.

x = c3x
√
2

(y + x)
√

x2−2yx−y2

(y+x)2

Verified OK.
y = −2x

Verified OK.
y = 0

Verified OK.

x = c6x

(y + x)
√

y+2x
y+x

√
− y

y+x

Verified OK.

8943



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 85� �
dsolve((x+y(x))^2*diff(y(x),x)^2-(x^2-x*y(x)-2*y(x)^2)*diff(y(x),x)-(x-y(x))*y(x) = 0,y(x), singsol=all)� �

y(x) = −x−
√
x2 + 2c1

y(x) = −x+
√

x2 + 2c1

y(x) = −c1x−
√
2c21x2 + 1

c1

y(x) = −c1x+
√
2c21x2 + 1

c1
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3 Solution by Mathematica
Time used: 0.592 (sec). Leaf size: 172� �
DSolve[(x+y[x])^2 (y'[x])^2 -(x^2-x y[x]-2 y[x]^2) y'[x]-(x-y[x])y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
x2 + e2c1

y(x) → −x+
√
x2 + e2c1

y(x) → −x−
√
2x2 + e2c1

y(x) → −x+
√
2x2 + e2c1

y(x) → −
√
x2 − x

y(x) →
√
x2 − x

y(x) → −
√
2
√
x2 − x

y(x) →
√
2
√
x2 − x
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33.27 problem 990
33.27.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8946

Internal problem ID [4222]
Internal file name [OUTPUT/3715_Sunday_June_05_2022_10_23_09_AM_92483113/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 990.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

(
a2 − (−y + x)2

)
y′

2 + 2y′a2 − (−y + x)2 = −a2

33.27.1 Solving as dAlembert ode

Let p = y′ the ode becomes(
a2 − (−y + x)2

)
p2 + 2p a2 − (−y + x)2 = −a2

Solving for y from the above results in

y = x+
√
a2p4 + 2a2p3 + 2a2p2 + 2p a2 + a2

p2 + 1 (1A)

y = −(−p2 − 1)x
p2 + 1 −

√
a2p4 + 2a2p3 + 2a2p2 + 2p a2 + a2

p2 + 1 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1

g =

√
a2 (p2 + 1) (p+ 1)2

p2 + 1

Hence (2) becomes

p− 1 =

2a2p(p+ 1)2 + 2a2(p2 + 1) (p+ 1)

2
√

a2 (p2 + 1) (p+ 1)2 (p2 + 1)
−

2
√

a2 (p2 + 1) (p+ 1)2 p
(p2 + 1)2

 p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = a csgn (a)
√
2 + x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1

2a2p(x)(p(x)+1)2+2a2
(
p(x)2+1

)
(p(x)+1)

2
√

a2
(
p(x)2+1

)
(p(x)+1)2

(
p(x)2+1

) −
2
√

a2
(
p(x)2+1

)
(p(x)+1)2 p(x)(

p(x)2+1
)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

2a2p(p+1)2+2a2
(
p2+1

)
(p+1)

2
√

a2(p2+1)(p+1)2 (p2+1)
− 2

√
a2(p2+1)(p+1)2 p

(p2+1)2

p− 1 (4)

This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫

− (p+ 1) a2√
a2 (p2 + 1) (p+ 1)2 (p2 + 1)

dp

= − p(p+ 1) a2√
a2 (p2 + 1) (p+ 1)2

+ c2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −a2 +
√
−y4 + 4xy3 + 2y2a2 − 6y2x2 − 4ya2x+ 4yx3 + 2a2x2 − x4

a2 − x2 + 2yx− y2

p = −a2 +
√
−y4 + 4xy3 + 2y2a2 − 6y2x2 − 4ya2x+ 4yx3 + 2a2x2 − x4

a2 − x2 + 2yx− y2

Substituting the above in the solution for x found above gives

x =

−

(
a2 −

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(
−
√

(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2
)
a2
√
2

2

√
−

a4
(
−a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
−x2+2yx−y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c2

x =

−

(
a2 +

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
a4
(
a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
x2−2yx+y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c2

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = 1

g = −

√
a2 (p2 + 1) (p+ 1)2

p2 + 1

Hence (2) becomes

p− 1 =

−2a2p(p+ 1)2 + 2a2(p2 + 1) (p+ 1)

2
√

a2 (p2 + 1) (p+ 1)2 (p2 + 1)
+

2
√
a2 (p2 + 1) (p+ 1)2 p

(p2 + 1)2

 p′(x)

(2A)
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The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = −a csgn (a)
√
2 + x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1

−
2a2p(x)(p(x)+1)2+2a2

(
p(x)2+1

)
(p(x)+1)

2
√

a2
(
p(x)2+1

)
(p(x)+1)2

(
p(x)2+1

) +
2
√

a2
(
p(x)2+1

)
(p(x)+1)2 p(x)(

p(x)2+1
)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−2a2p(p+1)2+2a2
(
p2+1

)
(p+1)

2
√

a2(p2+1)(p+1)2 (p2+1)
+ 2

√
a2(p2+1)(p+1)2 p

(p2+1)2

p− 1 (4)

This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫ (p+ 1) a2√

a2 (p2 + 1) (p+ 1)2 (p2 + 1)
dp

= p(p+ 1) a2√
a2 (p2 + 1) (p+ 1)2

+ c4

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −a2 +
√
−y4 + 4xy3 + 2y2a2 − 6y2x2 − 4ya2x+ 4yx3 + 2a2x2 − x4

a2 − x2 + 2yx− y2

p = −a2 +
√
−y4 + 4xy3 + 2y2a2 − 6y2x2 − 4ya2x+ 4yx3 + 2a2x2 − x4

a2 − x2 + 2yx− y2

8949



Substituting the above in the solution for x found above gives

x

=

(
a2 −

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(
−
√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
−

a4
(
−a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
−x2+2yx−y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c4

x

=

(
a2 +

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
a4
(
a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
x2−2yx+y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c4

Simplifying the solution y = a csgn (a)
√
2+ x to y = a

√
2+ x Simplifying the solution
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y = −a csgn (a)
√
2+x to y = −a

√
2+x

Summary
The solution(s) found are the following

(1)y = a
√
2 + x

(2)x =

−

(
a2 −

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(
−
√

(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2
)
a2
√
2

2

√
−

a4
(
−a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
−x2+2yx−y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c2
(3)x =

−

(
a2 +

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
a4
(
a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
x2−2yx+y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c2
(4)y = −a

√
2 + x

(5)x

=

(
a2 −

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(
−
√

(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2
)
a2
√
2

2

√
−

a4
(
−a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
−x2+2yx−y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c4
(6)x

=

(
a2 +

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
a4
(
a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
x2−2yx+y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c4
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Verification of solutions

y = a
√
2 + x

Verified OK.
x =

−

(
a2 −

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(
−
√

(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2
)
a2
√
2

2

√
−

a4
(
−a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
−x2+2yx−y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c2

Verified OK.
x =

−

(
a2 +

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
a4
(
a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
x2−2yx+y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c2

Verified OK.

y = −a
√
2 + x

Verified OK.
x

=

(
a2 −

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(
−
√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
−

a4
(
−a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
−x2+2yx−y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c4

Verified OK.
x

=

(
a2 +

√
(−y + x)2 (2a2 − x2 + 2yx− y2)

)(√
(−y + x)2 (2a2 − x2 + 2yx− y2) + (−y + x)2

)
a2
√
2

2

√
a4
(
a2+

√
(−y+x)2(2a2−x2+2yx−y2)

)(
x2−2yx+y2+

√
(−y+x)2(2a2−x2+2yx−y2)

)2

(a2−x2+2yx−y2)4 (a+ x− y)2 (a− x+ y)2

+ c4

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 1, y(x)` *** Sublevel 4 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.281 (sec). Leaf size: 135� �
dsolve((a^2-(x-y(x))^2)*diff(y(x),x)^2+2*a^2*diff(y(x),x)+a^2-(x-y(x))^2 = 0,y(x), singsol=all)� �

y(x) = x−
√
2 a

y(x) = x+
√
2 a

y(x) = x+RootOf
(
−2x−

(∫ _Z _a2 − 2a2 +
√
−_a4 + 2_a2a2

_a2 − 2a2 d_a
)
+ 2c1

)
y(x) = x+RootOf

(
−2x+

∫ _Z
−−2a2 + _a2 −

√
−_a4 + 2_a2a2

_a2 − 2a2 d_a+ 2c1
)

3 Solution by Mathematica
Time used: 51.486 (sec). Leaf size: 18407� �
DSolve[(a^2-(x-y[x])^2)(y'[x])^2+2 a^2 y'[x]+a^2-(x-y[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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33.28 problem 991
Internal problem ID [4223]
Internal file name [OUTPUT/3716_Sunday_June_05_2022_10_24_58_AM_82005273/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 991.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

2y2y′2 + 2y′xy + y2 = −x2 + 1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
−x

2 +
√

−x2−2y2+2
2

y
(1)

y′ =
−x

2 −
√

−x2−2y2+2
2

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[1, -1/2/y*x], [x, (y^2-1)/y], [-2/3*y^2-4/3, 1/3*x*(x^2+3*y^2)/y]� �

3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 103� �
dsolve(2*y(x)^2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)-1+x^2+y(x)^2 = 0,y(x), singsol=all)� �
y(x) = −

√
−2x2 + 4

2

y(x) =
√
−2x2 + 4

2

y(x) =
√

RootOf
(
−2 ln (x) + 2 arctanh

(√
−2_Z− 1

)
− ln (_Z+ 1) + 2c1

)
x2 + 1

y(x) = −
√

RootOf
(
−2 ln (x) + 2 arctanh

(√
−2_Z− 1

)
− ln (_Z+ 1) + 2c1

)
x2 + 1
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3 Solution by Mathematica
Time used: 0.576 (sec). Leaf size: 57� �
DSolve[2 y[x]^2 (y'[x])^2 +2 x y[x] y'[x]-1+x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + c1x+ 1− c12

2

y(x) →
√
−x2 + c1x+ 1− c12

2
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33.29 problem 992
33.29.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8958

Internal problem ID [4224]
Internal file name [OUTPUT/3717_Sunday_June_05_2022_10_25_11_AM_72036337/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 992.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

3y2y′2 − 2xyy′ + 4y2 = x2

33.29.1 Solving as dAlembert ode

Let p = y′ the ode becomes

3y2p2 − 2xyp+ 4y2 = x2

Solving for y from the above results in

y =
(
p+ 2

√
p2 + 1

)
x

3p2 + 4 (1A)

y = −
(
−p+ 2

√
p2 + 1

)
x

3p2 + 4 (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p+ 2
√
p2 + 1

3p2 + 4
g = 0

Hence (2) becomes

p− p+ 2
√
p2 + 1

3p2 + 4 = x

(1 + 2p√
p2+1

3p2 + 4 −
6
(
p+ 2

√
p2 + 1

)
p

(3p2 + 4)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p+ 2
√
p2 + 1

3p2 + 4 = 0

Solving for p from the above gives

p = i

p = −i

p =
√
3
3

Substituting these in (1A) gives

y = −ix

y = ix

y =
√
3x
3

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)+2

√
p(x)2+1

3p(x)2+4

x

(
1+ 2p(x)√

p(x)2+1

3p(x)2+4 −
6
(
p(x)+2

√
p(x)2+1

)
p(x)(

3p(x)2+4
)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1+ 2p√
p2+1

3p2+4 −
6
(
p+2

√
p2+1

)
p

(3p2+4)2

)
p− p+2

√
p2+1

3p2+4

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 3p2
√
p2 + 1 + 6p3 − 4

√
p2 + 1 + 4p(

−3p3 + 2
√
p2 + 1− 3p

)
(3p2 + 4)

√
p2 + 1

q(p) = 0

Hence the ode is

d

dp
x(p)−

x(p)
(
3p2

√
p2 + 1 + 6p3 − 4

√
p2 + 1 + 4p

)(
−3p3 + 2

√
p2 + 1− 3p

)
(3p2 + 4)

√
p2 + 1

= 0

The integrating factor µ is

µ = e
∫
− 3p2

√
p2+1+6p3−4

√
p2+1+4p(

−3p3+2
√

p2+1−3p
)(

3p2+4
)√

p2+1
dp

The ode becomes

d
dpµx = 0

d
dp

e
∫
− 3p2

√
p2+1+6p3−4

√
p2+1+4p(

−3p3+2
√

p2+1−3p
)(

3p2+4
)√

p2+1
dp

x

 = 0

Integrating gives

e
∫
− 3p2

√
p2+1+6p3−4

√
p2+1+4p(

−3p3+2
√

p2+1−3p
)(

3p2+4
)√

p2+1
dp

x = c2

Dividing both sides by the integrating factor µ = e
∫
− 3p2

√
p2+1+6p3−4

√
p2+1+4p(

−3p3+2
√

p2+1−3p
)(

3p2+4
)√

p2+1
dp

results
in

x(p) = c2e
∫ 3p2

√
p2+1+6p3−4

√
p2+1+4p(

−3p3+2
√

p2+1−3p
)(

3p2+4
)√

p2+1
dp

Since the solution x(p) has unresolved integral, unable to continue.
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Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p− 2
√
p2 + 1

3p2 + 4
g = 0

Hence (2) becomes

p− p− 2
√
p2 + 1

3p2 + 4 = x

(1− 2p√
p2+1

3p2 + 4 −
6
(
p− 2

√
p2 + 1

)
p

(3p2 + 4)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p− 2
√
p2 + 1

3p2 + 4 = 0

Solving for p from the above gives

p = i

p = −i

p = −
√
3
3

Substituting these in (1A) gives

y = −ix

y = ix

y = −
√
3x
3

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)−2

√
p(x)2+1

3p(x)2+4

x

(
1− 2p(x)√

p(x)2+1

3p(x)2+4 −
6
(
p(x)−2

√
p(x)2+1

)
p(x)(

3p(x)2+4
)2

) (3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1− 2p√
p2+1

3p2+4 −
6
(
p−2

√
p2+1

)
p

(3p2+4)2

)
p− p−2

√
p2+1

3p2+4

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − −3p2
√
p2 + 1 + 6p3 + 4

√
p2 + 1 + 4p(

3p3 + 2
√
p2 + 1 + 3p

)√
p2 + 1 (3p2 + 4)

q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−3p2

√
p2 + 1 + 6p3 + 4

√
p2 + 1 + 4p

)
x(p)(

3p3 + 2
√
p2 + 1 + 3p

)√
p2 + 1 (3p2 + 4)

= 0

The integrating factor µ is

µ = e
∫
− −3p2

√
p2+1+6p3+4

√
p2+1+4p(

3p3+2
√

p2+1+3p
)√

p2+1
(
3p2+4

)dp

The ode becomes

d
dpµx = 0

d
dp

e
∫
− −3p2

√
p2+1+6p3+4

√
p2+1+4p(

3p3+2
√

p2+1+3p
)√

p2+1
(
3p2+4

)dp
x

 = 0

Integrating gives

e
∫
− −3p2

√
p2+1+6p3+4

√
p2+1+4p(

3p3+2
√

p2+1+3p
)√

p2+1
(
3p2+4

)dp
x = c4
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Dividing both sides by the integrating factor µ = e
∫
− −3p2

√
p2+1+6p3+4

√
p2+1+4p(

3p3+2
√

p2+1+3p
)√

p2+1
(
3p2+4

)dp
results

in

x(p) = c4e
−

∫ 3p2
√

p2+1−6p3−4
√

p2+1−4p(
3p3+2

√
p2+1+3p

)(
3p2+4

)√
p2+1

dp



Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix

(3)y =
√
3x
3

(4)y = −ix
(5)y = ix

(6)y = −
√
3x
3

Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.

y =
√
3x
3

Verified OK.
y = −ix

Verified OK.
y = ix

Verified OK.

y = −
√
3x
3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 105� �
dsolve(3*y(x)^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)-x^2+4*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −
√
3x
3

y(x) =
√
3x
3

ln (x)− arctanh


√

x2−3y(x)2
x2

2

+
ln
(

x2+y(x)2
x2

)
2 − c1 = 0

ln (x) + arctanh


√

x2−3y(x)2
x2

2

+
ln
(

x2+y(x)2
x2

)
2 − c1 = 0
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3 Solution by Mathematica
Time used: 0.639 (sec). Leaf size: 179� �
DSolve[3 y[x]^2 (y'[x])^2 -2 x y[x] y'[x]-x^2+4 y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−3x2 − 4ie3c1x+ e6c1√

3

y(x) →
√
−3x2 − 4ie3c1x+ e6c1√

3

y(x) → −
√
−3x2 + 4ie3c1x+ e6c1√

3

y(x) →
√
−3x2 + 4ie3c1x+ e6c1√

3
y(x) → −

√
−x2

y(x) →
√
−x2
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33.30 problem 993
33.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8968

Internal problem ID [4225]
Internal file name [OUTPUT/3718_Sunday_June_05_2022_10_25_20_AM_90759115/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 993.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

4y2y′2 + 2(3x+ 1)xyy′ = −3x3

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − x

2y (1)

y′ = −3x2

2y (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − x

2y
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Where f(x) = −x
2 and g(y) = 1

y
. Integrating both sides gives

1
1
y

dy = −x

2 dx

∫ 1
1
y

dy =
∫

−x

2 dx

y2

2 = −x2

4 + c1

Which results in

y =
√
−2x2 + 8c1

2

y = −
√
−2x2 + 8c1

2

Summary
The solution(s) found are the following

(1)y =
√
−2x2 + 8c1

2

(2)y = −
√
−2x2 + 8c1

2
Verification of solutions

y =
√
−2x2 + 8c1

2

Verified OK.

y = −
√
−2x2 + 8c1

2

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −3x2

2y

8967



Where f(x) = −3x2

2 and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −3x2

2 dx

∫ 1
1
y

dy =
∫

−3x2

2 dx

y2

2 = −x3

2 + c2

Which results in
y =

√
−x3 + 2c2

y = −
√

−x3 + 2c2

Summary
The solution(s) found are the following

(1)y =
√

−x3 + 2c2
(2)y = −

√
−x3 + 2c2

Verification of solutions

y =
√

−x3 + 2c2

Verified OK.

y = −
√

−x3 + 2c2

Verified OK.

33.30.1 Maple step by step solution

Let’s solve
4y2y′2 + 2(3x+ 1)xyy′ = −3x3

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = −3x2

2
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• Integrate both sides with respect to x∫
yy′dx =

∫
−3x2

2 dx+ c1

• Evaluate integral
y2

2 = −x3

2 + c1

• Solve for y{
y =

√
−x3 + 2c1, y = −

√
−x3 + 2c1

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 59� �
dsolve(4*y(x)^2*diff(y(x),x)^2+2*(1+3*x)*x*y(x)*diff(y(x),x)+3*x^3 = 0,y(x), singsol=all)� �

y(x) = −
√
−2x2 + 4c1

2

y(x) =
√
−2x2 + 4c1

2
y(x) =

√
−x3 + c1

y(x) = −
√
−x3 + c1
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3 Solution by Mathematica
Time used: 0.169 (sec). Leaf size: 81� �
DSolve[4 y[x]^2 (y'[x])^2 +2(1+3 x)x y[x] y'[x]+3 x^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x3 + 2c1

y(x) →
√

−x3 + 2c1

y(x) → −
√
−x2

2 + 2c1

y(x) →
√

−x2

2 + 2c1
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33.31 problem 994
33.31.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8971

Internal problem ID [4226]
Internal file name [OUTPUT/3719_Sunday_June_05_2022_10_25_30_AM_11571885/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 994.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(
x2 − 4y2

)
y′

2 + 6xyy′ + y2 = 4x2

33.31.1 Solving as dAlembert ode

Let p = y′ the ode becomes(
x2 − 4y2

)
p2 + 6xyp+ y2 = 4x2

Solving for y from the above results in

y = −(p− 2)x
−1 + 2p (1A)

y = (p+ 2)x
1 + 2p (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p+ 2
−1 + 2p

g = 0

Hence (2) becomes

p− −p+ 2
−1 + 2p = x

(
− 1
−1 + 2p − 2(−p+ 2)

(−1 + 2p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −p+ 2
−1 + 2p = 0

Solving for p from the above gives

p = 1
p = −1

Substituting these in (1A) gives

y = −x

y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −p(x)+2

−1+2p(x)

x
(
− 1

−1+2p(x) −
2(−p(x)+2)
(−1+2p(x))2

) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −2(2p3 − p2 − 2p+ 1)
3x

Where f(x) = − 2
3x and g(p) = 2p3 − p2 − 2p+ 1. Integrating both sides gives

1
2p3 − p2 − 2p+ 1 dp = − 2

3x dx∫ 1
2p3 − p2 − 2p+ 1 dp =

∫
− 2
3x dx

ln (p+ 1)
6 − 2 ln (−1 + 2p)

3 + ln (p− 1)
2 = −2 ln (x)

3 + c1
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Raising both side to exponential gives

e
ln(p+1)

6 − 2 ln(−1+2p)
3 + ln(p−1)

2 = e−
2 ln(x)

3 +c1

Which simplifies to

(p+ 1)
1
6
√
p− 1

(−1 + 2p)
2
3

= c2

x
2
3

Substituing the above solution for p in (2A) gives

y =
x

(
−

RootOf
((

16c62−x4)_Z12
+6_Z6

x4−8x4_Z3
+3x4

)3
2 + 3

2

)
RootOf

(
(16c62 − x4)_Z12 + 6_Z6x4 − 8x4_Z3 + 3x4

)3
Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p+ 2
1 + 2p

g = 0

Hence (2) becomes

p− p+ 2
1 + 2p = x

(
1

1 + 2p − 2(p+ 2)
(1 + 2p)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p+ 2
1 + 2p = 0

Solving for p from the above gives

p = 1
p = −1
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Substituting these in (1A) gives

y = −x

y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)+2

1+2p(x)

x
(

1
1+2p(x) −

2(p(x)+2)
(1+2p(x))2

) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −2(2p3 + p2 − 2p− 1)
3x

Where f(x) = − 2
3x and g(p) = 2p3 + p2 − 2p− 1. Integrating both sides gives

1
2p3 + p2 − 2p− 1 dp = − 2

3x dx∫ 1
2p3 + p2 − 2p− 1 dp =

∫
− 2
3x dx

ln (p+ 1)
2 + ln (p− 1)

6 − 2 ln (1 + 2p)
3 = −2 ln (x)

3 + c3

Raising both side to exponential gives

e
ln(p+1)

2 + ln(p−1)
6 − 2 ln(1+2p)

3 = e−
2 ln(x)

3 +c3

Which simplifies to
√
p+ 1 (p− 1)

1
6

(1 + 2p)
2
3

= c4

x
2
3

Substituing the above solution for p in (2A) gives

y =

16c64RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
−RootOf

((
16c64−x4)_Z12

+6_Z6
x4+8x4_Z3

+3x4
)9

x4−3RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)6
x4−16c64RootOf

((
16c64−x4)_Z12

+6_Z6
x4+8x4_Z3

+3x4
)3

−3RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
x4−8c64−x4

(
16c64−x4

)(
RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
+1
)3 + 2

x

1 +
32c64RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
−2RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
x4−6RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)6
x4−32c64RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
−6RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
x4−16c64−2x4

(
16c64−x4

)(
RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
+1
)3
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Summary
The solution(s) found are the following

(1)y = −x
(2)y = x

(3)y =
x

(
−

RootOf
((

16c62−x4)_Z12
+6_Z6

x4−8x4_Z3
+3x4

)3
2 + 3

2

)
RootOf

(
(16c62 − x4)_Z12 + 6_Z6x4 − 8x4_Z3 + 3x4

)3
(4)y = −x
(5)y = x
(6)y

=

16c64RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
−RootOf

((
16c64−x4)_Z12

+6_Z6
x4+8x4_Z3

+3x4
)9

x4−3RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)6
x4−16c64RootOf

((
16c64−x4)_Z12

+6_Z6
x4+8x4_Z3

+3x4
)3

−3RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
x4−8c64−x4

(
16c64−x4

)(
RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
+1
)3 + 2

x

1 +
32c64RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
−2RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
x4−6RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)6
x4−32c64RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
−6RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
x4−16c64−2x4

(
16c64−x4

)(
RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
+1
)3
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Verification of solutions

y = −x

Verified OK.
y = x

Verified OK.

y =
x

(
−

RootOf
((

16c62−x4)_Z12
+6_Z6

x4−8x4_Z3
+3x4

)3
2 + 3

2

)
RootOf

(
(16c62 − x4)_Z12 + 6_Z6x4 − 8x4_Z3 + 3x4

)3
Verified OK.

y = −x

Verified OK.
y = x

Verified OK.
y

=

16c64RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
−RootOf

((
16c64−x4)_Z12

+6_Z6
x4+8x4_Z3

+3x4
)9

x4−3RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)6
x4−16c64RootOf

((
16c64−x4)_Z12

+6_Z6
x4+8x4_Z3

+3x4
)3

−3RootOf
((

16c64−x4)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
x4−8c64−x4

(
16c64−x4

)(
RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
+1
)3 + 2

x

1 +
32c64RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
−2RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)9
x4−6RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)6
x4−32c64RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
−6RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
x4−16c64−2x4

(
16c64−x4

)(
RootOf

((
16c64−x4

)_Z12
+6_Z6

x4+8x4_Z3
+3x4

)3
+1
)3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 1.453 (sec). Leaf size: 93� �
dsolve((x^2-4*y(x)^2)*diff(y(x),x)^2+6*x*y(x)*diff(y(x),x)-4*x^2+y(x)^2 = 0,y(x), singsol=all)� �

y(x) =
x
(
−RootOf

(
_Z16 + 2_Z4c1x

4 − c1x
4)4 + 1

)
RootOf

(
_Z16 + 2_Z4c1x4 − c1x4

)4
y(x) =

RootOf
(
_Z16

−2_Z4
c1x4−c1x4

)12
c1

− x4

x3

3 Solution by Mathematica
Time used: 60.117 (sec). Leaf size: 3017� �
DSolve[(x^2-4 y[x]^2) (y'[x])^2 +6 x y[x] y'[x]-4 x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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33.32 problem 995
Internal problem ID [4227]
Internal file name [OUTPUT/3720_Sunday_June_05_2022_10_25_42_AM_74222935/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 33
Problem number: 995.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

9y2y′2 − 3xy′ + y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x+
√
x2 − 4y3
6y2 (1)

y′ = −−x+
√
x2 − 4y3

6y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = x+
√
−4y3 + x2

6y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
x+

√
−4y3 + x2

)
(b3 − a2)

6y2 −
(
x+

√
−4y3 + x2

)2
a3

36y4

−

(
1 + x√

−4y3+x2

)
(xa2 + ya3 + a1)

6y2

−
(
−x+

√
−4y3 + x2

3y3 − 1√
−4y3 + x2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−36b2y4
√
−4y3 + x2 + 12x y4b2 − 24y5a2 + 36y5b3 − 12

√
−4y3 + x2 x2yb2 + 12

√
−4y3 + x2 x y2a2 − 18

√
−4y3 + x2 x y2b3 + 6

√
−4y3 + x2 y3a3 − 12x3yb2 + 12x2y2a2 − 18x2y2b3 − 2x y3a3 + 12y4b1 + (−4y3 + x2)

3
2 a3 +

√
−4y3 + x2 x2a3 − 12

√
−4y3 + x2 xyb1 + 6

√
−4y3 + x2 y2a1 + 2x3a3 − 12x2yb1 + 6x y2a1

36y4
√
−4y3 + x2

= 0

Setting the numerator to zero gives

(6E)

36b2y4
√

−4y3 + x2 − 12x y4b2 + 24y5a2 − 36y5b3 + 12
√

−4y3 + x2 x2yb2

− 12
√

−4y3 + x2 x y2a2 + 18
√

−4y3 + x2 x y2b3 − 6
√

−4y3 + x2 y3a3
+ 12x3yb2 − 12x2y2a2 + 18x2y2b3 + 2x y3a3 − 12y4b1
−
(
−4y3 + x2) 3

2 a3 −
√

−4y3 + x2 x2a3 + 12
√
−4y3 + x2 xyb1

− 6
√

−4y3 + x2 y2a1 − 2x3a3 + 12x2yb1 − 6x y2a1 = 0
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Simplifying the above gives

(6E)

36b2y4
√

−4y3 + x2 + 36x y4b2 + 36y5b3 + 12
(
−4y3 + x2)xyb2

− 6
(
−4y3 + x2) y2a2 + 18

(
−4y3 + x2) y2b3 + 12

√
−4y3 + x2 x2yb2

− 12
√

−4y3 + x2 x y2a2 + 18
√
−4y3 + x2 x y2b3 − 6

√
−4y3 + x2 y3a3

− 6x2y2a2 − 6x y3a3 + 36y4b1 −
(
−4y3 + x2) 3

2 a3

− 2
(
−4y3 + x2)xa3 + 12

(
−4y3 + x2) yb1 −√−4y3 + x2 x2a3

+ 12
√

−4y3 + x2 xyb1 − 6
√
−4y3 + x2 y2a1 − 6x y2a1 = 0

Since the PDE has radicals, simplifying gives

−12x y4b2 + 36b2y4
√

−4y3 + x2 + 24y5a2 − 36y5b3
+ 12x3yb2 + 12

√
−4y3 + x2 x2yb2 − 12x2y2a2 + 18x2y2b3

− 12
√

−4y3 + x2 x y2a2 + 18
√

−4y3 + x2 x y2b3 + 2x y3a3
− 2
√

−4y3 + x2 y3a3 − 12y4b1 − 2x3a3 − 2
√
−4y3 + x2 x2a3

+ 12x2yb1 + 12
√

−4y3 + x2 xyb1 − 6x y2a1 − 6
√

−4y3 + x2 y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4y3 + x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4y3 + x2 = v3

}
The above PDE (6E) now becomes

(7E)24v52a2 − 12v1v42b2 + 36b2v42v3 − 36v52b3 − 12v21v22a2 − 12v3v1v22a2 + 2v1v32a3
− 2v3v32a3 − 12v42b1 + 12v31v2b2 + 12v3v21v2b2 + 18v21v22b3 + 18v3v1v22b3
− 6v1v22a1 − 6v3v22a1 − 2v31a3 − 2v3v21a3 + 12v21v2b1 + 12v3v1v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)12v31v2b2 − 2v31a3 + (−12a2 + 18b3) v21v22 + 12v3v21v2b2 + 12v21v2b1 − 2v3v21a3
− 12v1v42b2 + 2v1v32a3 + (−12a2 + 18b3) v1v22v3 − 6v1v22a1 + 12v3v1v2b1
+ (24a2 − 36b3) v52 + 36b2v42v3 − 12v42b1 − 2v3v32a3 − 6v3v22a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
−2a3 = 0
2a3 = 0

−12b1 = 0
12b1 = 0

−12b2 = 0
12b2 = 0
36b2 = 0

−12a2 + 18b3 = 0
24a2 − 36b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
3b3
2

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
2

η = y

8981



Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x+

√
−4y3 + x2

6y2

)(
3x
2

)
= 4y3 −

√
−4y3 + x2 x− x2

4y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4y3−
√

−4y3+x2 x−x2

4y2

dy

Which results in

S = ln (y) +
2x arctanh

(√
−4y3+x2
√
x2

)
3
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+
√
−4y3 + x2

6y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
3
√
−4y3 + x2

Sy =
1− x√

−4y3+x2

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) +
2 arctanh

(√
x2−4y3
x

)
3 = c1

Which simplifies to

ln (y) +
2 arctanh

(√
x2−4y3
x

)
3 = c1
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Summary
The solution(s) found are the following

(1)ln (y) +
2 arctanh

(√
x2−4y3
x

)
3 = c1

Verification of solutions

ln (y) +
2 arctanh

(√
x2−4y3
x

)
3 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
√
−4y3 + x2 − x

6y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(√

−4y3 + x2 − x
)
(b3 − a2)

6y2 −
(√

−4y3 + x2 − x
)2

a3

36y4

+

(
−1 + x√

−4y3+x2

)
(xa2 + ya3 + a1)

6y2

−
(

1√
−4y3 + x2 +

√
−4y3 + x2 − x

3y3

)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−−36b2y4
√
−4y3 + x2 − 12x y4b2 + 24y5a2 − 36y5b3 − 12

√
−4y3 + x2 x2yb2 + 12

√
−4y3 + x2 x y2a2 − 18

√
−4y3 + x2 x y2b3 + 6

√
−4y3 + x2 y3a3 + 12x3yb2 − 12x2y2a2 + 18x2y2b3 + 2x y3a3 − 12y4b1 + (−4y3 + x2)

3
2 a3 +

√
−4y3 + x2 x2a3 − 12

√
−4y3 + x2 xyb1 + 6

√
−4y3 + x2 y2a1 − 2x3a3 + 12x2yb1 − 6x y2a1

36y4
√
−4y3 + x2

= 0

Setting the numerator to zero gives

(6E)

36b2y4
√

−4y3 + x2 + 12x y4b2 − 24y5a2 + 36y5b3 + 12
√
−4y3 + x2 x2yb2

− 12
√
−4y3 + x2 x y2a2 + 18

√
−4y3 + x2 x y2b3 − 6

√
−4y3 + x2 y3a3

− 12x3yb2 + 12x2y2a2 − 18x2y2b3 − 2x y3a3 + 12y4b1
−
(
−4y3 + x2) 3

2 a3 −
√

−4y3 + x2 x2a3 + 12
√
−4y3 + x2 xyb1

− 6
√

−4y3 + x2 y2a1 + 2x3a3 − 12x2yb1 + 6x y2a1 = 0

Simplifying the above gives

(6E)

36b2y4
√

−4y3 + x2 − 36x y4b2 − 36y5b3 − 12
(
−4y3 + x2)xyb2

+ 6
(
−4y3 + x2) y2a2 − 18

(
−4y3 + x2) y2b3 + 12

√
−4y3 + x2 x2yb2

− 12
√

−4y3 + x2 x y2a2 + 18
√
−4y3 + x2 x y2b3 − 6

√
−4y3 + x2 y3a3

+ 6x2y2a2 + 6x y3a3 − 36y4b1 −
(
−4y3 + x2) 3

2 a3

+ 2
(
−4y3 + x2)xa3 − 12

(
−4y3 + x2) yb1 −√−4y3 + x2 x2a3

+ 12
√

−4y3 + x2 xyb1 − 6
√
−4y3 + x2 y2a1 + 6x y2a1 = 0

Since the PDE has radicals, simplifying gives

12x y4b2+36b2y4
√

−4y3 + x2−24y5a2+36y5b3−12x3yb2+12
√
−4y3 + x2 x2yb2

+ 12x2y2a2 − 18x2y2b3 − 12
√

−4y3 + x2 x y2a2 + 18
√

−4y3 + x2 x y2b3

− 2x y3a3 − 2
√

−4y3 + x2 y3a3 + 12y4b1 + 2x3a3 − 2
√
−4y3 + x2 x2a3

− 12x2yb1 + 12
√

−4y3 + x2 xyb1 + 6x y2a1 − 6
√

−4y3 + x2 y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4y3 + x2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
−4y3 + x2 = v3

}
The above PDE (6E) now becomes

(7E)−24v52a2 +12v1v42b2 +36b2v42v3 +36v52b3 +12v21v22a2 − 12v3v1v22a2 − 2v1v32a3
− 2v3v32a3 + 12v42b1 − 12v31v2b2 + 12v3v21v2b2 − 18v21v22b3 + 18v3v1v22b3
+ 6v1v22a1 − 6v3v22a1 + 2v31a3 − 2v3v21a3 − 12v21v2b1 + 12v3v1v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−12v31v2b2 + 2v31a3 + (12a2 − 18b3) v21v22 + 12v3v21v2b2 − 12v21v2b1 − 2v3v21a3
+ 12v1v42b2 − 2v1v32a3 + (−12a2 + 18b3) v1v22v3 + 6v1v22a1 + 12v3v1v2b1
+ (−24a2 + 36b3) v52 + 36b2v42v3 + 12v42b1 − 2v3v32a3 − 6v3v22a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6a1 = 0

−2a3 = 0
2a3 = 0

−12b1 = 0
12b1 = 0

−12b2 = 0
12b2 = 0
36b2 = 0

−24a2 + 36b3 = 0
−12a2 + 18b3 = 0
12a2 − 18b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
3b3
2

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
2

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
√
−4y3 + x2 − x

6y2

)(
3x
2

)
= 4y3 +

√
−4y3 + x2 x− x2

4y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

4y3+
√

−4y3+x2 x−x2

4y2

dy

Which results in

S = ln (y)−
2x arctanh

(√
−4y3+x2
√
x2

)
3
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
−4y3 + x2 − x

6y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2
3
√
−4y3 + x2

Sy =
1 + x√

−4y3+x2

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)−
2 arctanh

(√
x2−4y3
x

)
3 = c1

Which simplifies to

ln (y)−
2 arctanh

(√
x2−4y3
x

)
3 = c1

Summary
The solution(s) found are the following

(1)ln (y)−
2 arctanh

(√
x2−4y3
x

)
3 = c1

Verification of solutions

ln (y)−
2 arctanh

(√
x2−4y3
x

)
3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[3/2*x, y], [-6*y^3+3*x^2, x*y]� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 111� �
dsolve(9*y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = 2 1
3 (x2)

1
3

2

y(x) = −
2 1

3 (x2)
1
3
(
1 + i

√
3
)

4

y(x) =
2 1

3 (x2)
1
3
(
−1 + i

√
3
)

4
y(x) = 0

y(x) = RootOf
(
−2 ln (x)− 3

(∫ _Z 4_a3 +
√
−4_a3 + 1− 1

_a (4_a3 − 1) d_a
)
+ 2c1

)
x

2
3
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3 Solution by Mathematica
Time used: 0.49 (sec). Leaf size: 243� �
DSolve[9 y[x]^2 (y'[x])^2 -3 x y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
c1
3 3
√
ec1 − ix

y(x) → − 3
√
−1e

c1
3 3
√
ec1 − ix

y(x) → (−1)2/3e
c1
3 3
√
ec1 − ix

y(x) → e
c1
3 3
√
ix+ ec1

y(x) → − 3
√
−1e

c1
3 3
√
ix+ ec1

y(x) → (−1)2/3e
c1
3 3
√
ix+ ec1

y(x) → 0

y(x) →
(
−1
2

)2/3

x2/3

y(x) → x2/3

22/3

y(x) → −
3
√
−1x2/3

22/3
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34.1 problem 996
34.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8994

Internal problem ID [4228]
Internal file name [OUTPUT/3721_Sunday_June_05_2022_10_25_52_AM_69557878/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 996.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(2− 3y)2 y′2 + 4y = 4

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2
√
1− y

3y − 2 (1)

y′ = −2
√
1− y

3y − 2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 3y − 2
2
√
1− y

dy =
∫

dx

−y
√

1− y = x+ c1

Summary
The solution(s) found are the following

(1)−y
√

1− y = x+ c1
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Verification of solutions

−y
√

1− y = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
− 3y − 2
2
√
1− y

dy =
∫

dx

y
√
1− y = x+ c2

Summary
The solution(s) found are the following

(1)y
√

1− y = x+ c2

Verification of solutions

y
√

1− y = x+ c2

Verified OK.

34.1.1 Maple step by step solution

Let’s solve
(2− 3y)2 y′2 + 4y = 4

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(3y−2)√

1−y
= 2

• Integrate both sides with respect to x∫ y′(3y−2)√
1−y

dx =
∫
2dx+ c1

• Evaluate integral

2(1− y)
3
2 − 2

√
1− y = 2x+ c1

• Solve for y
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y = −

(
54c1+108x+6

√
81c21+324c1x+324x2−48

) 1
3

6 + 2(
54c1+108x+6

√
81c21+324c1x+324x2−48

) 1
3

2

+ 1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 477� �
dsolve((2-3*y(x))^2*diff(y(x),x)^2 = 4-4*y(x),y(x), singsol=all)� �
y(x) = 1
y(x) =

−

(108c1 − 108x+ 12
√

81c21 − 162c1x+ 81x2 − 12
) 1

3 + 12(
108c1−108x+12

√
81c21−162c1x+81x2−12

) 1
3

2

36
+ 1

y(x)

= 1+

((
i−

√
3
) (

108c1 − 108x+ 12
√
81c21 − 162c1x+ 81x2 − 12

) 2
3 + 12i+ 12

√
3
)2

144
(
108c1 − 108x+ 12

√
81c21 − 162c1x+ 81x2 − 12

) 2
3

y(x)

= 1+

((√
3 + i

) (
108c1 − 108x+ 12

√
81c21 − 162c1x+ 81x2 − 12

) 2
3 + 12i− 12

√
3
)2

144
(
108c1 − 108x+ 12

√
81c21 − 162c1x+ 81x2 − 12

) 2
3

y(x) =

−

(−108c1 + 108x+ 12
√

81c21 − 162c1x+ 81x2 − 12
) 1

3 + 12(
−108c1+108x+12

√
81c21−162c1x+81x2−12

) 1
3

2

36
+ 1

y(x)

= 1+

((
i−

√
3
) (

−108c1 + 108x+ 12
√
81c21 − 162c1x+ 81x2 − 12

) 2
3 + 12i+ 12

√
3
)2

144
(
−108c1 + 108x+ 12

√
81c21 − 162c1x+ 81x2 − 12

) 2
3

y(x)

= 1+

((√
3 + i

) (
−108c1 + 108x+ 12

√
81c21 − 162c1x+ 81x2 − 12

) 2
3 + 12i− 12

√
3
)2

144
(
−108c1 + 108x+ 12

√
81c21 − 162c1x+ 81x2 − 12

) 2
3
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3 Solution by Mathematica
Time used: 4.408 (sec). Leaf size: 896� �
DSolve[(2-3 y[x])^2 (y'[x])^2 ==4(1-y[x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
12

2 3
√

−108x2 + 3
√
3
√

(2x+ c1)2 (108x2 + 108c1x− 16 + 27c12)− 108c1x+ 8− 27c12

+ 8
3
√

−108x2 + 3
√
3
√

(2x+ c1)2 (108x2 + 108c1x− 16 + 27c12)− 108c1x+ 8− 27c12

+ 4


y(x) → 1

24

2i
(√

3

+i
)

3
√

−108x2 + 3
√
3
√

(2x+ c1)2 (108x2 + 108c1x− 16 + 27c12)− 108c1x+ 8− 27c12

−
8
(
1 + i

√
3
)

3
√

−108x2 + 3
√
3
√

(2x+ c1)2 (108x2 + 108c1x− 16 + 27c12)− 108c1x+ 8− 27c12

+ 8


y(x) → 1

24

−2
(
1

+i
√
3
)

3
√

−108x2 + 3
√
3
√

(2x+ c1)2 (108x2 + 108c1x− 16 + 27c12)− 108c1x+ 8− 27c12

+
8i
(√

3 + i
)

3
√

−108x2 + 3
√
3
√

(2x+ c1)2 (108x2 + 108c1x− 16 + 27c12)− 108c1x+ 8− 27c12

+ 8


y(x)

→ 1
12

2 3
√

−108x2 + 3
√
3
√

(−2x+ c1)2 (108x2 − 108c1x− 16 + 27c12) + 108c1x+ 8− 27c12

+ 8
3
√

−108x2 + 3
√
3
√

(−2x+ c1)2 (108x2 − 108c1x− 16 + 27c12) + 108c1x+ 8− 27c12

+ 4


y(x) → 1

24

2i
(√

3

+i
)

3
√

−108x2 + 3
√
3
√

(−2x+ c1)2 (108x2 − 108c1x− 16 + 27c12) + 108c1x+ 8− 27c12

+ −8− 8i
√
3

3
√

−108x2 + 3
√
3
√

(−2x+ c1)2 (108x2 − 108c1x− 16 + 27c12) + 108c1x+ 8− 27c12

+ 8


y(x) → 1

24

−2
(
1

+i
√
3
)

3
√

−108x2 + 3
√
3
√

(−2x+ c1)2 (108x2 − 108c1x− 16 + 27c12) + 108c1x+ 8− 27c12

+ −8 + 8i
√
3

3
√

−108x2 + 3
√
3
√

(−2x+ c1)2 (108x2 − 108c1x− 16 + 27c12) + 108c1x+ 8− 27c12

+ 8


y(x) → 1
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34.2 problem 997
34.2.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 8998

Internal problem ID [4229]
Internal file name [OUTPUT/3722_Sunday_June_05_2022_10_25_58_AM_91433928/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 997.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
−a2 + 1

)
y2y′

2 − 3a2xyy′ + y2 = a2x2

34.2.1 Solving as dAlembert ode

Let p = y′ the ode becomes(
−a2 + 1

)
y2p2 − 3a2xyp+ y2 = a2x2

Solving for y from the above results in

y =
(
−3pa+

√
5a2p2 + 4p2 + 4

)
ax

2a2p2 − 2p2 − 2 (1A)

y = −
(
3pa+

√
5a2p2 + 4p2 + 4

)
ax

2 (a2p2 − p2 − 1) (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f =

(
−3pa+

√
4 + (5a2 + 4) p2

)
a

2a2p2 − 2p2 − 2
g = 0

Hence (2) becomes

p−

(
−3pa+

√
4 + (5a2 + 4) p2

)
a

2a2p2 − 2p2 − 2 = x


(
−3a+

(
5a2+4

)
p√

4+(5a2+4)p2

)
a

2a2p2 − 2p2 − 2 −

(
−3pa+

√
4 + (5a2 + 4) p2

)
a(4a2p− 4p)

(2a2p2 − 2p2 − 2)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p−

(
−3pa+

√
4 + (5a2 + 4) p2

)
a

2a2p2 − 2p2 − 2 = 0

Solving for p from the above gives

p =

√
2
√√

5a4−2a2+1−3a2+1
a2−1

2

p = −

√
2
√√

5a4−2a2+1−3a2+1
a2−1

2

p =

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1

2

p = −

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1

2
Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y =
−3a2x

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1 − ax

√
−

2
(
15a4+5

√
5a4−2a2+1 a2−a2+4

√
5a4−2a2+1+4

)
a2−1

6a2 + 2
√
5a4 − 2a2 + 1 + 2

y =
3
√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 +
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

y =
−3

√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 +
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)−

(
−3p(x)a+

√
4+(5a2+4)p(x)2

)
a

2a2p(x)2−2p(x)2−2

x


−3a+

(
5a2+4

)
p(x)√

4+
(
5a2+4

)
p(x)2

a

2a2p(x)2−2p(x)2−2 −

(
−3p(x)a+

√
4+(5a2+4)p(x)2

)
a(4a2p(x)−4p(x))(

2a2p(x)2−2p(x)2−2
)2


(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)


−3a+

(
5a2+4

)
p√

4+
(
5a2+4

)
p2

a

2a2p2−2p2−2 −
(
−3pa+

√
4+(5a2+4)p2

)
a
(
4a2p−4p

)
(2a2p2−2p2−2)2


p−

(
−3pa+

√
4+(5a2+4)p2

)
a

2a2p2−2p2−2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) =
5
(
−3

(
1+
(
a2−1

)
p2
)
a
√

4+(5a2+4)p2
5 + p

((
a4 − 1

5a
2 − 4

5

)
p2 + 13a2

5 − 4
5

))
a√

4 + (5a2 + 4) p2
(
2a2p3 + 3a2p− 2p3 −

√
4 + (5a2 + 4) p2 a− 2p

)
(a2p2 − p2 − 1)

q(p) = 0

Hence the ode is

d

dp
x(p) +

5
(
−3

(
1+
(
a2−1

)
p2
)
a
√

4+(5a2+4)p2
5 + p

((
a4 − 1

5a
2 − 4

5

)
p2 + 13a2

5 − 4
5

))
ax(p)√

4 + (5a2 + 4) p2
(
2a2p3 + 3a2p− 2p3 −

√
4 + (5a2 + 4) p2 a− 2p

)
(a2p2 − p2 − 1)

= 0

The integrating factor µ is

µ = e

∫ 5

−
3
(
1+
(
a2−1

)
p2
)
a

√
4+
(
5a2+4

)
p2

5 +p

((
a4− 1

5a2− 4
5
)
p2+13a2

5 − 4
5

)a

√
4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3−

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

) dp
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The ode becomes
d
dpµx = 0

d
dp

e

∫ 5

−
3
(
1+
(
a2−1

)
p2
)
a

√
4+
(
5a2+4

)
p2

5 +p

((
a4− 1

5a2− 4
5
)
p2+13a2

5 − 4
5

)a

√
4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3−

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

) dp

x

 = 0

Integrating gives

e

∫ 5

−
3
(
1+
(
a2−1

)
p2
)
a

√
4+
(
5a2+4

)
p2

5 +p

((
a4− 1

5a2− 4
5
)
p2+13a2

5 − 4
5

)a

√
4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3−

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

) dp

x = c2

Dividing both sides by the integrating factor µ = e

∫ 5

−
3
(
1+
(
a2−1

)
p2
)
a

√
4+
(
5a2+4

)
p2

5 +p

((
a4− 1

5a2− 4
5
)
p2+13a2

5 − 4
5

)a

√
4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3−

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

) dp

results in

x(p) = c2e
−a

∫ ((
−3a3+3a

)
p2−3a

)√
4+
(
5a2+4

)
p2+

(
5a4−a2−4

)
p3+

(
13a2−4

)
p(

2a2p3+3a2p−2p3−
√

4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

)√
4+
(
5a2+4

)
p2

dp



Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −

(
3pa+

√
4 + (5a2 + 4) p2

)
a

2a2p2 − 2p2 − 2
g = 0

Hence (2) becomes

p+

(
3pa+

√
4 + (5a2 + 4) p2

)
a

2a2p2 − 2p2 − 2 = x

−

(
3a+

(
5a2+4

)
p√

4+(5a2+4)p2

)
a

2a2p2 − 2p2 − 2 +

(
3pa+

√
4 + (5a2 + 4) p2

)
a(4a2p− 4p)

(2a2p2 − 2p2 − 2)2

 p′(x)

(2A)
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The singular solution is found by setting dp
dx

= 0 in the above which gives

p+

(
3pa+

√
4 + (5a2 + 4) p2

)
a

2a2p2 − 2p2 − 2 = 0

Solving for p from the above gives

p =

√
2
√√

5a4−2a2+1−3a2+1
a2−1

2

p = −

√
2
√√

5a4−2a2+1−3a2+1
a2−1

2

p =

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1

2

p = −

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1

2

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y =
−3a2x

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1 + ax

√
−

2
(
15a4+5

√
5a4−2a2+1 a2−a2+4

√
5a4−2a2+1+4

)
a2−1

6a2 + 2
√
5a4 − 2a2 + 1 + 2

y =
3
√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 −
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

y =
−3

√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 −
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) +

(
3p(x)a+

√
4+(5a2+4)p(x)2

)
a

2a2p(x)2−2p(x)2−2

x

−

3a+
(
5a2+4

)
p(x)√

4+
(
5a2+4

)
p(x)2

a

2a2p(x)2−2p(x)2−2 +

(
3p(x)a+

√
4+(5a2+4)p(x)2

)
a(4a2p(x)−4p(x))(

2a2p(x)2−2p(x)2−2
)2


(3)

This ODE is now solved for p(x).
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Inverting the above ode gives

d

dp
x(p) =

x(p)

−

3a+
(
5a2+4

)
p√

4+
(
5a2+4

)
p2

a

2a2p2−2p2−2 +
(
3pa+

√
4+(5a2+4)p2

)
a
(
4a2p−4p

)
(2a2p2−2p2−2)2


p+

(
3pa+

√
4+(5a2+4)p2

)
a

2a2p2−2p2−2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −
3(1 + (a2 − 1) p2) a2

√
4 + (5a2 + 4) p2 + (5a5 − a3 − 4a) p3 + (13a3 − 4a) p√

4 + (5a2 + 4) p2
(
2a2p3 + 3a2p− 2p3 +

√
4 + (5a2 + 4) p2 a− 2p

)
(a2p2 − p2 − 1)

q(p) = 0

Hence the ode is

d

dp
x(p)−

(
3(1 + (a2 − 1) p2) a2

√
4 + (5a2 + 4) p2 + (5a5 − a3 − 4a) p3 + (13a3 − 4a) p

)
x(p)√

4 + (5a2 + 4) p2
(
2a2p3 + 3a2p− 2p3 +

√
4 + (5a2 + 4) p2 a− 2p

)
(a2p2 − p2 − 1)

= 0

The integrating factor µ is

µ = e

∫
−

3
(
1+
(
a2−1

)
p2
)
a2
√

4+
(
5a2+4

)
p2+

(
5a5−a3−4a

)
p3+

(
13a3−4a

)
p√

4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3+

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

)dp

The ode becomes
d
dpµx = 0

d
dp

e

∫
−

3
(
1+
(
a2−1

)
p2
)
a2
√

4+
(
5a2+4

)
p2+

(
5a5−a3−4a

)
p3+

(
13a3−4a

)
p√

4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3+

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

)dp
x

 = 0

Integrating gives

e

∫
−

3
(
1+
(
a2−1

)
p2
)
a2
√

4+
(
5a2+4

)
p2+

(
5a5−a3−4a

)
p3+

(
13a3−4a

)
p√

4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3+

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

)dp
x = c4
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Dividing both sides by the integrating factor µ = e

∫
−

3
(
1+
(
a2−1

)
p2
)
a2
√

4+
(
5a2+4

)
p2+

(
5a5−a3−4a

)
p3+

(
13a3−4a

)
p√

4+
(
5a2+4

)
p2
(
2a2p3+3a2p−2p3+

√
4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

)dp

results in

x(p) = c4e
a

∫ ((
3a3−3a

)
p2+3a

)√
4+
(
5a2+4

)
p2+

(
5a4−a2−4

)
p3+

(
13a2−4

)
p(

2a2p3+3a2p−2p3+
√

4+
(
5a2+4

)
p2 a−2p

)(
a2p2−p2−1

)√
4+
(
5a2+4

)
p2

dp



Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y =
−3a2x

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1 − ax

√
−

2
(
15a4+5

√
5a4−2a2+1 a2−a2+4

√
5a4−2a2+1+4

)
a2−1

6a2 + 2
√
5a4 − 2a2 + 1 + 2

(2)y =
3
√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 +
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

(3)y =
−3

√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 +
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

(4)y =
−3a2x

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1 + ax

√
−

2
(
15a4+5

√
5a4−2a2+1 a2−a2+4

√
5a4−2a2+1+4

)
a2−1

6a2 + 2
√
5a4 − 2a2 + 1 + 2

(5)y =
3
√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 −
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

(6)y =
−3

√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 −
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2
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Verification of solutions

y =
−3a2x

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1 − ax

√
−

2
(
15a4+5

√
5a4−2a2+1 a2−a2+4

√
5a4−2a2+1+4

)
a2−1

6a2 + 2
√
5a4 − 2a2 + 1 + 2

Verified OK.

y =
3
√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 +
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

Verified OK.

y =
−3

√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 +
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

Verified OK.

y =
−3a2x

√
−

2
(
3a2+

√
5a4−2a2+1−1

)
a2−1 + ax

√
−

2
(
15a4+5

√
5a4−2a2+1 a2−a2+4

√
5a4−2a2+1+4

)
a2−1

6a2 + 2
√
5a4 − 2a2 + 1 + 2

Verified OK.

y =
3
√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 −
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

Verified OK.

y =
−3

√
2 a2x

√√
5a4−2a2+1−3a2+1

a2−1 −
√
2 ax

√
−15a4+5

√
5a4−2a2+1 a2+a2+4

√
5a4−2a2+1−4

a2−1

−6a2 + 2
√
5a4 − 2a2 + 1− 2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 198� �
dsolve((-a^2+1)*y(x)^2*diff(y(x),x)^2-3*a^2*x*y(x)*diff(y(x),x)-a^2*x^2+y(x)^2 = 0,y(x), singsol=all)� �
y(x) = RootOf

(
−2 ln (x)

−

(∫ _Z (2_a2a2 − 2_a2 + 3a2 +
√
4_a2a2 + 5a4 − 4_a2 + 4a2

)
_a

a2_a4 − _a4 + 3_a2a2 − _a2 + a2
d_a

)

+ 2c1

)
x

y(x) = RootOf
(
−2 ln (x) +

∫ _Z

−
(
2_a2a2 − 2_a2 + 3a2 −

√
4_a2a2 + 5a4 − 4_a2 + 4a2

)
_a

a2_a4 − _a4 + 3_a2a2 − _a2 + a2
d_a+ 2c1

)
x
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3 Solution by Mathematica
Time used: 1.255 (sec). Leaf size: 342� �
DSolve[(1-a^2)y[x]^2 (y'[x])^2 -2 a^2 x y[x] y'[x]-a^2 x y[x] y'[x]-a^2 x^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


log
(
−
(
a2
(

2y(x)2
x2 + 3

))
+
√
5a4 + 4a2

(
y(x)2
x2 + 1

)
− 4y(x)2

x2 + 2y(x)2
x2

)
−

2 arctan

 1−

√
5a4+4a2

(
y(x)2
x2

+1
)
− 4y(x)2

x2√
−5a4+2a2−1


√
−5a4+2a2−1

4a2 − 4 = log (−2(a2 − 1)x)
2− 2a2

+ c1, y(x)



Solve


log
(
a2
(

2y(x)2
x2 + 3

)
+
√

5a4 + 4a2
(

y(x)2
x2 + 1

)
− 4y(x)2

x2 − 2y(x)2
x2

)
−

2 arctan


√

5a4+4a2
(

y(x)2
x2

+1
)
− 4y(x)2

x2
+1√

−5a4+2a2−1


√
−5a4+2a2−1

4a2 − 4 = log (−2(a2 − 1)x)
2− 2a2

+ c1, y(x)
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34.3 problem 998
Internal problem ID [4230]
Internal file name [OUTPUT/3723_Sunday_June_05_2022_10_26_06_AM_59788085/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 998.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(y)]`]]

Unable to solve or complete the solution.

(−b+ a) y2y′2 − 2bxyy′ + ay2 = b x2 + ab

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = bx+
√
−y2a2 + y2ab+ ab x2 + a2b− a b2

(−b+ a) y (1)

y′ = −−bx+
√
−y2a2 + y2ab+ ab x2 + a2b− a b2

(−b+ a) y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[x, -(-y^2+b)/y], [1, 1/(a-b)/y*b*x], [-(a*x^2-a*y^2+b*x^2+b*y^2+2*a^2-2*a*b)/b� �
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3 Solution by Maple
Time used: 0.219 (sec). Leaf size: 765� �
dsolve((a-b)*y(x)^2*diff(y(x),x)^2-2*b*x*y(x)*diff(y(x),x)-a*b-b*x^2+a*y(x)^2 = 0,y(x), singsol=all)� �
y(x) =

√
b (x2 + a− b) (a− b)

a− b

y(x) = −
√

b (x2 + a− b) (a− b)
a− b

−

∫ x

_b

b_a+
√
a
(
(−a+ b) y (x)2 + b (_a2 + a− b)

)√
a
(
(−a+ b) y (x)2 + b (_a2 + a− b)

)
_a+ (−a+ b) y (x)2 + b (_a2 + a− b)

d_a



+
∫ y(x)

(√a
(
−b2 +

(
_f2 + x2 + a

)
b− a_f2

)
x+ (−a+ b)_f2 + b(x2 + a− b)

)∫ x

_b

(a−b)
(
2b_a

√
a
(
−b2+

(
_a2+_f2+a

)
b−a_f2

)
+a
(
−b2+

(
2_a2+_f2+a

)
b−a_f2

))
√

a
(
−b2+

(
_a2+_f2+a

)
b−a_f2

)(√
a
(
−b2+

(
_a2+_f2+a

)
b−a_f2

)
_a−b2+

(
_a2+_f2+a

)
b−a_f2

)2d_a

+ a− b

_f

√
a
(
−b2 +

(
_f2 + x2 + a

)
b− a_f2

)
x+ (−a+ b)_f2 + b (x2 + a− b)

d_f

+ c1 = 0

−

∫ x

_b

b_a−
√

a
(
(−a+ b) y (x)2 + b (_a2 + a− b)

)
−
√

a
(
(−a+ b) y (x)2 + b (_a2 + a− b)

)
_a+ (−a+ b) y (x)2 + b (_a2 + a− b)

d_a



+
∫ y(x)

(−√a
(
−b2 +

(
_f2 + x2 + a

)
b− a_f2

)
x+ (−a+ b)_f2 + b(x2 + a− b)

)∫ x

_b −
(a−b)

(
−2b_a

√
a
(
−b2+

(
_a2+_f2+a

)
b−a_f2

)
+a
(
−b2+

(
2_a2+_f2+a

)
b−a_f2

))
√

a
(
−b2+

(
_a2+_f2+a

)
b−a_f2

)(
−
√

a
(
−b2+

(
_a2+_f2+a

)
b−a_f2

)
_a−b2+

(
_a2+_f2+a

)
b−a_f2

)2d_a

+ a− b

_f

−
√

a
(
−b2 +

(
_f2 + x2 + a

)
b− a_f2

)
x+ (−a+ b)_f2 + b (x2 + a− b)

d_f

+ c1 = 0

3 Solution by Mathematica
Time used: 1.39 (sec). Leaf size: 86� �
DSolve[(a-b) y[x]^2 (y'[x])^2 -2 b x y[x] y'[x]-a b -b x^2+a y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

b (b− x2) + a (−b+ (x− c1)2)√
b− a

y(x) →
√

b (b− x2) + a (−b+ (x− c1)2)√
b− a
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34.4 problem 999
34.4.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9011

Internal problem ID [4231]
Internal file name [OUTPUT/3724_Sunday_June_05_2022_10_26_25_AM_70733981/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 999.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

a2
(
b2 − (cx− ya)2

)
y′

2 + 2a b2cy′ + c2
(
b2 − (cx− ya)2

)
= 0

34.4.1 Solving as dAlembert ode

Let p = y′ the ode becomes

a2
(
b2 − (−ya+ cx)2

)
p2 + 2a b2cp+ c2

(
b2 − (−ya+ cx)2

)
= 0

Solving for y from the above results in

y = (a2c p2 + c3)x
(a2p2 + c2) a +

√
a4b2p4 + 2a3b2c p3 + 2a2b2c2p2 + 2a b2c3p+ b2c4

(a2p2 + c2) a (1A)

y = −(−a2c p2 − c3)x
(a2p2 + c2) a −

√
a4b2p4 + 2a3b2c p3 + 2a2b2c2p2 + 2a b2c3p+ b2c4

(a2p2 + c2) a (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = c

a

g =

√
b2 (a2p2 + c2) (ap+ c)2

(a2p2 + c2) a

Hence (2) becomes

p− c

a
=

2b2a2p(ap+ c)2 + 2b2(a2p2 + c2) (ap+ c) a

2
√

b2 (a2p2 + c2) (ap+ c)2 (a2p2 + c2) a
−

2
√
b2 (a2p2 + c2) (ap+ c)2 ap

(a2p2 + c2)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− c

a
= 0

Solving for p from the above gives

p = c

a

Substituting these in (1A) gives

y = c3x+
√
b2c4

√
2

c2a

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− c

a

2b2a2p(x)(ap(x)+c)2+2b2
(
a2p(x)2+c2

)
(ap(x)+c)a

2
√

b2
(
a2p(x)2+c2

)
(ap(x)+c)2

(
a2p(x)2+c2

)
a

−
2
√

b2
(
a2p(x)2+c2

)
(ap(x)+c)2 ap(x)(

a2p(x)2+c2
)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

2b2a2p(ap+c)2+2b2
(
a2p2+c2

)
(ap+c)a

2
√

b2(a2p2+c2)(ap+c)2 (a2p2+c2)a
− 2

√
b2(a2p2+c2)(ap+c)2 ap

(a2p2+c2)2

p− c
a

(4)
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This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫

− a(ap+ c) b2c√
b2 (a2p2 + c2) (ap+ c)2 (a2p2 + c2)

dp

= − pa(ap+ c) b2

c
√

b2 (a2p2 + c2) (ap+ c)2
+ c2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
b2 +

√
−y4a4 + 4y3a3cx− 6y2a2c2x2 + 4ya c3x3 − c4x4 + 2y2a2b2 − 4ya b2cx+ 2b2c2x2

)
c

(y2a2 − 2ycxa+ c2x2 − b2) a

p = −
(
−b2 +

√
−y4a4 + 4y3a3cx− 6y2a2c2x2 + 4ya c3x3 − c4x4 + 2y2a2b2 − 4ya b2cx+ 2b2c2x2

)
c

(y2a2 − 2ycxa+ c2x2 − b2) a
Substituting the above in the solution for x found above gives

x =

−
c

(√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2

)√
2 b2
(
b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
b4c4

(
b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
y2a2−2ycxa+c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c2

x

=

(
−
√

− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2
)
c
√
2 b2
(
−b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
−

b4c4
(
−b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
−y2a2+2ycxa−c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c2

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = c

a

g = −

√
b2 (a2p2 + c2) (ap+ c)2

(a2p2 + c2) a

9013



Hence (2) becomes

p− c

a
=

−2b2a2p(ap+ c)2 + 2b2(a2p2 + c2) (ap+ c) a

2
√
b2 (a2p2 + c2) (ap+ c)2 (a2p2 + c2) a

+
2
√

b2 (a2p2 + c2) (ap+ c)2 ap
(a2p2 + c2)2

 p′(x)

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− c

a
= 0

Solving for p from the above gives

p = c

a

Substituting these in (1A) gives

y = c3x−
√
b2c4

√
2

a c2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− c

a

−
2b2a2p(x)(ap(x)+c)2+2b2

(
a2p(x)2+c2

)
(ap(x)+c)a

2
√

b2
(
a2p(x)2+c2

)
(ap(x)+c)2

(
a2p(x)2+c2

)
a

+
2
√

b2
(
a2p(x)2+c2

)
(ap(x)+c)2 ap(x)(

a2p(x)2+c2
)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−2b2a2p(ap+c)2+2b2
(
a2p2+c2

)
(ap+c)a

2
√

b2(a2p2+c2)(ap+c)2 (a2p2+c2)a
+ 2

√
b2(a2p2+c2)(ap+c)2 ap

(a2p2+c2)2

p− c
a

(4)

This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫

a(ap+ c) b2c√
b2 (a2p2 + c2) (ap+ c)2 (a2p2 + c2)

dp

= pa(ap+ c) b2

c
√
b2 (a2p2 + c2) (ap+ c)2

+ c4
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
b2 +

√
−y4a4 + 4y3a3cx− 6y2a2c2x2 + 4ya c3x3 − c4x4 + 2y2a2b2 − 4ya b2cx+ 2b2c2x2

)
c

(y2a2 − 2ycxa+ c2x2 − b2) a

p = −
(
−b2 +

√
−y4a4 + 4y3a3cx− 6y2a2c2x2 + 4ya c3x3 − c4x4 + 2y2a2b2 − 4ya b2cx+ 2b2c2x2

)
c

(y2a2 − 2ycxa+ c2x2 − b2) a

Substituting the above in the solution for x found above gives

x

=
c

(√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2

)√
2 b2
(
b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
b4c4

(
b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
y2a2−2ycxa+c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c4

x =

−

(
−
√

− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2
)
c
√
2 b2
(
−b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
−

b4c4
(
−b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
−y2a2+2ycxa−c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c4
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Summary
The solution(s) found are the following

(1)y = c3x+
√
b2c4

√
2

c2a
(2)x =

−
c

(√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2

)√
2 b2
(
b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
b4c4

(
b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
y2a2−2ycxa+c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c2
(3)x

=

(
−
√

− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2
)
c
√
2 b2
(
−b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
−

b4c4
(
−b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
−y2a2+2ycxa−c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c2

(4)y = c3x−
√
b2c4

√
2

a c2

(5)x

=
c

(√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2

)√
2 b2
(
b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
b4c4

(
b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
y2a2−2ycxa+c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c4
(6)x =

−

(
−
√

− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2
)
c
√
2 b2
(
−b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
−

b4c4
(
−b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
−y2a2+2ycxa−c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c4
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Verification of solutions

y = c3x+
√
b2c4

√
2

c2a

Verified OK.
x =

−
c

(√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2

)√
2 b2
(
b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
b4c4

(
b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
y2a2−2ycxa+c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c2

Verified OK.
x

=

(
−
√

− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2
)
c
√
2 b2
(
−b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
−

b4c4
(
−b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
−y2a2+2ycxa−c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c2

Verified OK.

y = c3x−
√
b2c4

√
2

a c2

Verified OK.
x

=
c

(√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2

)√
2 b2
(
b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
b4c4

(
b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
y2a2−2ycxa+c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c4

Verified OK.
x =

−

(
−
√

− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2) + (cx− ya)2
)
c
√
2 b2
(
−b2 +

√
− (ya− cx)2 (y2a2 − 2ycxa+ c2x2 − 2b2)

)

2

√
−

b4c4
(
−b2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)(
−y2a2+2ycxa−c2x2+

√
−(ya−cx)2(y2a2−2ycxa+c2x2−2b2)

)2

(y2a2−2ycxa+c2x2−b2)4 (y2a2 − 2ycxa+ c2x2 − b2)2

+ c4

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = c/a, y(x)` *** Sublevel 4 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.218 (sec). Leaf size: 200� �
dsolve(a^2*(b^2-(c*x-a*y(x))^2)*diff(y(x),x)^2+2*a*b^2*c*diff(y(x),x)+c^2*(b^2-(c*x-a*y(x))^2) = 0,y(x), singsol=all)� �
y(x) = cx−

√
2 b

a

y(x) = cx+
√
2 b

a

y(x) =
RootOf

(
−a

(∫ _Z _a2a2−2b2+
√

−a2_a2(_a2a2−2b2
)

_a2a2−2b2 d_a
)
+ 2c1c− 2cx

)
a+ cx

a

y(x) =
RootOf

(
a

(∫ _Z −
_a2a2−2b2−

√
−a2_a2(_a2a2−2b2

)
_a2a2−2b2 d_a

)
+ 2c1c− 2cx

)
a+ cx

a

3 Solution by Mathematica
Time used: 2.249 (sec). Leaf size: 71� �
DSolve[a^2 ( b^2 -(c x-a y[x])^2 ) (y'[x])^2 +2 a b^2 c y'[x]+c^2(b^2-(c x-a y[x])^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cc1 −
√

b2 − c2(x− c1)2
a

y(x) →
√
b2 − c2(x− c1)2 + cc1

a
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34.5 problem 1000
Internal problem ID [4232]
Internal file name [OUTPUT/3725_Sunday_June_05_2022_10_32_32_AM_74287455/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1000.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

xy2y′
2 − y3y′ = −x a2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y2 +
√
y4 − 4a2x2

2xy (1)

y′ = y2 −
√
y4 − 4a2x2

2xy (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = y2 +
√
−4a2x2 + y4

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y2 +

√
−4a2x2 + y4

)
(b3 − a2)

2xy −
(
y2 +

√
−4a2x2 + y4

)2
a3

4x2y2

−
(
−y2 +

√
−4a2x2 + y4

2x2y
− 2a2√

−4a2x2 + y4 y

)
(xa2 + ya3 + a1)

−

2y + 2y3√
−4a2x2+y4

2xy − y2 +
√
−4a2x2 + y4

2x y2

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−8a2x4b2 − 8a2x3ya2 + 16a2x3yb3 − 8a2x2y2a3 + 2x2y4b2 − 2b2x2y2
√
−4a2x2 + y4 −

√
−4a2x2 + y4 y4a3 + 8a2x3b1 + 2x y4b1 − 2y5a1 + 2

√
−4a2x2 + y4 x y2b1 − 2

√
−4a2x2 + y4 y3a1 + (−4a2x2 + y4)

3
2 a3

4x2y2
√
−4a2x2 + y4

= 0

Setting the numerator to zero gives

(6E)
−8a2x4b2 + 8a2x3ya2 − 16a2x3yb3 + 8a2x2y2a3 − 2x2y4b2

+ 2b2x2y2
√

−4a2x2 + y4 +
√

−4a2x2 + y4 y4a3 − 8a2x3b1 − 2x y4b1 + 2y5a1
− 2
√

−4a2x2 + y4 x y2b1 + 2
√

−4a2x2 + y4 y3a1 −
(
−4a2x2 + y4

) 3
2 a3 = 0

Simplifying the above gives

(6E)
8a2x3ya2 + 8a2x2y2a3 − 4x2y4b2 − 4x y5b3 + 2b2x2y2

√
−4a2x2 + y4

+
√

−4a2x2 + y4 y4a3 + 8a2x2ya1 − 4x y4b1 + 2
(
−4a2x2 + y4

)
x2b2

+ 4
(
−4a2x2 + y4

)
xyb3 − 2

√
−4a2x2 + y4 x y2b1 + 2

√
−4a2x2 + y4 y3a1

−
(
−4a2x2 + y4

) 3
2 a3 + 2

(
−4a2x2 + y4

)
xb1 + 2

(
−4a2x2 + y4

)
ya1 = 0
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Since the PDE has radicals, simplifying gives

−8a2x4b2 + 8a2x3ya2 − 16a2x3yb3 + 8a2x2y2a3 − 2x2y4b2 − 8a2x3b1

+ 4a2x2
√

−4a2x2 + y4 a3 + 2b2x2y2
√
−4a2x2 + y4 − 2x y4b1

+ 2y5a1 − 2
√

−4a2x2 + y4 x y2b1 + 2
√
−4a2x2 + y4 y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−4a2x2 + y4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4a2x2 + y4 = v3
}

The above PDE (6E) now becomes

(7E)8a2v31v2a2 + 8a2v21v22a3 − 8a2v41b2 − 16a2v31v2b3 − 2v21v42b2 + 4a2v21v3a3
− 8a2v31b1 + 2v52a1 − 2v1v42b1 + 2b2v21v22v3 + 2v3v32a1 − 2v3v1v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−8a2v41b2 +
(
8a2a2 − 16a2b3

)
v31v2 − 8a2v31b1 − 2v21v42b2 + 2b2v21v22v3

+ 8a2v21v22a3 + 4a2v21v3a3 − 2v1v42b1 − 2v3v1v22b1 + 2v52a1 + 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0
−2b2 = 0
2b2 = 0

4a2a3 = 0
8a2a3 = 0

−8a2b1 = 0
−8a2b2 = 0

8a2a2 − 16a2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y2 +

√
−4a2x2 + y4

2xy

)
(2x)

= −
√
−4a2x2 + y4

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√

−4a2x2+y4

y

dy

9023



Which results in

S = −
ln
(
y2 +

√
−4a2x2 + y4

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 +
√
−4a2x2 + y4

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x a2√
−4a2x2 + y4

(
y2 +

√
−4a2x2 + y4

)
Sy = − y√

−4a2x2 + y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4a2x2 − y4 −

√
−4a2x2 + y4 y2

x
√
−4a2x2 + y4

(
y2 +

√
−4a2x2 + y4

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)
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To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
ln
(
y2 +

√
y4 − 4a2x2

)
2 = − ln (x) + c1

Which simplifies to

−
ln
(
y2 +

√
y4 − 4a2x2

)
2 = − ln (x) + c1

Summary
The solution(s) found are the following

(1)−
ln
(
y2 +

√
y4 − 4a2x2

)
2 = − ln (x) + c1

Verification of solutions

−
ln
(
y2 +

√
y4 − 4a2x2

)
2 = − ln (x) + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = y2 −
√
−4a2x2 + y4

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y2 −

√
−4a2x2 + y4

)
(b3 − a2)

2xy −
(
y2 −

√
−4a2x2 + y4

)2
a3

4x2y2

−
(
−y2 −

√
−4a2x2 + y4

2x2y
+ 2a2√

−4a2x2 + y4 y

)
(xa2 + ya3 + a1)

−

2y − 2y3√
−4a2x2+y4

2xy − y2 −
√
−4a2x2 + y4

2x y2

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−8a2x4b2 + 8a2x3ya2 − 16a2x3yb3 + 8a2x2y2a3 − 2x2y4b2 − 2b2x2y2
√
−4a2x2 + y4 −

√
−4a2x2 + y4 y4a3 − 8a2x3b1 − 2x y4b1 + 2y5a1 + 2

√
−4a2x2 + y4 x y2b1 − 2

√
−4a2x2 + y4 y3a1 + (−4a2x2 + y4)

3
2 a3

4x2y2
√
−4a2x2 + y4

= 0

Setting the numerator to zero gives

(6E)
8a2x4b2 − 8a2x3ya2 + 16a2x3yb3 − 8a2x2y2a3 + 2x2y4b2

+ 2b2x2y2
√

−4a2x2 + y4 +
√

−4a2x2 + y4 y4a3 + 8a2x3b1 + 2x y4b1 − 2y5a1
− 2
√

−4a2x2 + y4 x y2b1 + 2
√

−4a2x2 + y4 y3a1 −
(
−4a2x2 + y4

) 3
2 a3 = 0

Simplifying the above gives

(6E)
−8a2x3ya2 − 8a2x2y2a3 + 4x2y4b2 + 4x y5b3 + 2b2x2y2

√
−4a2x2 + y4

+
√

−4a2x2 + y4 y4a3 − 8a2x2ya1 + 4x y4b1 − 2
(
−4a2x2 + y4

)
x2b2

− 4
(
−4a2x2 + y4

)
xyb3 − 2

√
−4a2x2 + y4 x y2b1 + 2

√
−4a2x2 + y4 y3a1

−
(
−4a2x2 + y4

) 3
2 a3 − 2

(
−4a2x2 + y4

)
xb1 − 2

(
−4a2x2 + y4

)
ya1 = 0

Since the PDE has radicals, simplifying gives

8a2x4b2 − 8a2x3ya2 + 16a2x3yb3 − 8a2x2y2a3 + 2x2y4b2 + 8a2x3b1

+ 4a2x2
√

−4a2x2 + y4 a3 + 2b2x2y2
√

−4a2x2 + y4 + 2x y4b1
− 2y5a1 − 2

√
−4a2x2 + y4 x y2b1 + 2

√
−4a2x2 + y4 y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4a2x2 + y4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4a2x2 + y4 = v3
}

The above PDE (6E) now becomes

(7E)−8a2v31v2a2 − 8a2v21v22a3 + 8a2v41b2 + 16a2v31v2b3 + 2v21v42b2 + 4a2v21v3a3
+ 8a2v31b1 − 2v52a1 + 2v1v42b1 + 2b2v21v22v3 + 2v3v32a1 − 2v3v1v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)8a2v41b2 +
(
−8a2a2 + 16a2b3

)
v31v2 + 8a2v31b1 + 2v21v42b2 + 2b2v21v22v3

− 8a2v21v22a3 + 4a2v21v3a3 + 2v1v42b1 − 2v3v1v22b1 − 2v52a1 + 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0

−2b1 = 0
2b1 = 0
2b2 = 0

−8a2a3 = 0
4a2a3 = 0
8a2b1 = 0
8a2b2 = 0

−8a2a2 + 16a2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y2 −

√
−4a2x2 + y4

2xy

)
(2x)

=
√
−4a2x2 + y4

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

−4a2x2+y4

y

dy
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Which results in

S =
ln
(
y2 +

√
−4a2x2 + y4

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 −
√
−4a2x2 + y4

2xy
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x a2√
−4a2x2 + y4

(
y2 +

√
−4a2x2 + y4

)
Sy =

y√
−4a2x2 + y4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
y2 +

√
y4 − 4a2x2

)
2 = c1

9029



Which simplifies to

ln
(
y2 +

√
y4 − 4a2x2

)
2 = c1

Summary
The solution(s) found are the following

(1)
ln
(
y2 +

√
y4 − 4a2x2

)
2 = c1

Verification of solutions

ln
(
y2 +

√
y4 − 4a2x2

)
2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 152� �
dsolve(x*y(x)^2*diff(y(x),x)^2-y(x)^3*diff(y(x),x)+a^2*x = 0,y(x), singsol=all)� �

y(x) =
√
2
√
−ax

y(x) = −
√
2
√
−ax

y(x) =
√
2
√
ax

y(x) = −
√
2
√
ax

y(x) = e
c1
2 +

RootOf
(
16x a2e2_Z+2c1+e2_Zx3−4 e2c1+3_Z)

2
√
x

y(x) =
√
x e−

c1
2 +

RootOf
(
x2
(
16a2x2e2_Z−2c1−4 e3_Z−2c1x+e2_Z))

2

3 Solution by Mathematica
Time used: 22.383 (sec). Leaf size: 219� �
DSolve[x y[x]^2 (y'[x])^2 - y[x]^3 y'[x]+a^2 x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−2a2e−c1x2 − ec1

2

y(x) →
√
−2a2e−c1x2 − ec1

2

y(x) → −
√
4a2e−c1x2 + ec1√

2

y(x) →
√
4a2e−c1x2 + ec1√

2
y(x) → −

√
2
√
a
√
x

y(x) → −i
√
2
√
a
√
x

y(x) → i
√
2
√
a
√
x

y(x) →
√
2
√
a
√
x
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34.6 problem 1001
Internal problem ID [4233]
Internal file name [OUTPUT/3726_Sunday_June_05_2022_10_32_48_AM_68142059/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1001.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

xy2y′
2 +

(
a− x3 − y3

)
y′ + x2y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −a+ x3 + y3 +
√
y6 − 2y3x3 + x6 − 2ay3 − 2a x3 + a2

2y2x (1)

y′ = −a+ x3 + y3 −
√
y6 − 2y3x3 + x6 − 2ay3 − 2a x3 + a2

2y2x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5`[0, (x^6-2*x^3*y^3+y^6-2*a*x^3-2*a*y^3+a^2)^(1/2)/y^2]� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 251� �
dsolve(x*y(x)^2*diff(y(x),x)^2+(a-x^3-y(x)^3)*diff(y(x),x)+x^2*y(x) = 0,y(x), singsol=all)� �

y(x) =
(
x3 + a− 2x

√
ax
) 1

3

y(x) =
(
x3 + a+ 2x

√
ax
) 1

3

y(x) = −
(
x3 + a− 2x

√
ax
) 1

3
(
1 + i

√
3
)

2

y(x) =
(
x3 + a− 2x

√
ax
) 1

3
(
−1 + i

√
3
)

2

y(x) = −
(
x3 + a+ 2x

√
ax
) 1

3
(
1 + i

√
3
)

2

y(x) =
(
x3 + a+ 2x

√
ax
) 1

3
(
−1 + i

√
3
)

2
y(x) = 0∫ y(x)

_b

_a2√
_a6 + (−2x3 − 2a)_a3 + (−x3 + a)2

d_a+ ln (x)
2 − c1 = 0

∫ y(x)

_b

_a2√
_a6 + (−2x3 − 2a)_a3 + (−x3 + a)2

d_a− ln (x)
2 − c1 = 0
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3 Solution by Mathematica
Time used: 0.427 (sec). Leaf size: 194� �
DSolve[x y[x]^2 (y'[x])^2 +(a-x^3-y[x]^3) y'[x]+x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

a+ (−1 + c1)x3

3

√
1− 1

c1
y(x) → 0

y(x) → 3
√(√

a− x3/2
)2

y(x) → − 3
√
−1 3
√(√

a− x3/2
)2

y(x) → (−1)2/3 3
√(√

a− x3/2
)2

y(x) → 3
√(√

a+ x3/2
)2

y(x) → − 3
√
−1 3
√(√

a+ x3/2
)2

y(x) → (−1)2/3 3
√(√

a+ x3/2
)2
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34.7 problem 1003
Internal problem ID [4234]
Internal file name [OUTPUT/3727_Sunday_June_05_2022_10_33_03_AM_23181786/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1003.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

2xy2y′2 − y3y′ = a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y2 +
√
y4 + 8ax
4xy (1)

y′ = y2 −
√
y4 + 8ax
4xy (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = y2 +
√
y4 + 8ax
4xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y2 +

√
y4 + 8ax

)
(b3 − a2)

4xy −
(
y2 +

√
y4 + 8ax

)2
a3

16x2y2

−
(
−y2 +

√
y4 + 8ax

4x2y
+ a

x
√
y4 + 8ax y

)
(xa2 + ya3 + a1)

−

2y + 2y3√
y4+8ax

4xy − y2 +
√
y4 + 8ax

4x y2

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x2y4b2 − 2y6a3 − 12b2x2y2
√
y4 + 8ax− 3

√
y4 + 8ax y4a3 + 4x y4b1 − 4y5a1 + 4

√
y4 + 8ax x y2b1 − 4

√
y4 + 8ax y3a1 − 32a x3b2 + 16a x2ya2 − 64a x2yb3 + (y4 + 8ax)

3
2 a3 − 32a x2b1 − 16axya1

16x2y2
√
y4 + 8ax

= 0

Setting the numerator to zero gives

(6E)−4x2y4b2 + 2y6a3 + 12b2x2y2
√

y4 + 8ax+ 3
√
y4 + 8ax y4a3 − 4x y4b1

+ 4y5a1 − 4
√
y4 + 8ax x y2b1 + 4

√
y4 + 8ax y3a1 + 32a x3b2

− 16a x2ya2 + 64a x2yb3 −
(
y4 + 8ax

) 3
2 a3 + 32a x2b1 + 16axya1 = 0

Simplifying the above gives

(6E)
−8x2y4b2 − 8x y5b3 + 12b2x2y2

√
y4 + 8ax+ 3

√
y4 + 8ax y4a3

− 8x y4b1 + 4
(
y4 + 8ax

)
x2b2 + 8

(
y4 + 8ax

)
xyb3 + 2

(
y4 + 8ax

)
y2a3

− 4
√

y4 + 8ax x y2b1 + 4
√

y4 + 8ax y3a1 − 16a x2ya2 − 16ax y2a3
−
(
y4 + 8ax

) 3
2 a3 + 4

(
y4 + 8ax

)
xb1 + 4

(
y4 + 8ax

)
ya1 − 16axya1 = 0
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Since the PDE has radicals, simplifying gives

−4x2y4b2 + 2y6a3 + 12b2x2y2
√

y4 + 8ax− 4x y4b1 + 2
√

y4 + 8ax y4a3
+ 4y5a1 + 32a x3b2 − 16a x2ya2 + 64a x2yb3 − 4

√
y4 + 8ax x y2b1

+ 4
√

y4 + 8ax y3a1 + 32a x2b1 − 8ax
√

y4 + 8ax a3 + 16axya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y4 + 8ax

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y4 + 8ax = v3

}
The above PDE (6E) now becomes

(7E)2v62a3−4v21v42b2+4v52a1+2v3v42a3−4v1v42b1+12b2v21v22v3−16av21v2a2+32av31b2
+ 64av21v2b3 + 4v3v32a1 − 4v3v1v22b1 + 16av1v2a1 − 8av1v3a3 + 32av21b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)32av31b2 − 4v21v42b2 + 12b2v21v22v3 + (−16aa2 + 64ab3) v21v2 + 32av21b1 − 4v1v42b1
− 4v3v1v22b1 +16av1v2a1 − 8av1v3a3 +2v62a3 +4v52a1 +2v3v42a3 +4v3v32a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 = 0
2a3 = 0

−4b1 = 0
−4b2 = 0
12b2 = 0

16aa1 = 0
−8aa3 = 0
32ab1 = 0
32ab2 = 0

−16aa2 + 64ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 4b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y2 +

√
y4 + 8ax
4xy

)
(4x)

= −
√
y4 + 8ax

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√

y4+8ax
y

dy

Which results in

S = −
ln
(
y2 +

√
y4 + 8ax

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 +
√
y4 + 8ax
4xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2a√
y4 + 8ax

(
y2 +

√
y4 + 8ax

)
Sy = − y√

y4 + 8ax
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −y4 −

√
y4 + 8ax y2 − 8ax

2x
√
y4 + 8ax

(
y2 +

√
y4 + 8ax

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
ln
(
y2 +

√
y4 + 8ax

)
2 = − ln (x)

2 + c1

Which simplifies to

−
ln
(
y2 +

√
y4 + 8ax

)
2 = − ln (x)

2 + c1

Summary
The solution(s) found are the following

(1)−
ln
(
y2 +

√
y4 + 8ax

)
2 = − ln (x)

2 + c1

Verification of solutions

−
ln
(
y2 +

√
y4 + 8ax

)
2 = − ln (x)

2 + c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = y2 −
√
y4 + 8ax
4xy

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y2 −

√
y4 + 8ax

)
(b3 − a2)

4xy −
(
y2 −

√
y4 + 8ax

)2
a3

16x2y2

−
(
−y2 −

√
y4 + 8ax

4x2y
− a

x
√
y4 + 8ax y

)
(xa2 + ya3 + a1)

−

2y − 2y3√
y4+8ax

4xy − y2 −
√
y4 + 8ax

4x y2

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4x2y4b2 + 2y6a3 − 12b2x2y2
√
y4 + 8ax− 3

√
y4 + 8ax y4a3 − 4x y4b1 + 4y5a1 + 4

√
y4 + 8ax x y2b1 − 4

√
y4 + 8ax y3a1 + 32a x3b2 − 16a x2ya2 + 64a x2yb3 + (y4 + 8ax)

3
2 a3 + 32a x2b1 + 16axya1

16x2y2
√
y4 + 8ax

= 0

Setting the numerator to zero gives

(6E)4x2y4b2 − 2y6a3 + 12b2x2y2
√
y4 + 8ax+ 3

√
y4 + 8ax y4a3 + 4x y4b1

− 4y5a1 − 4
√

y4 + 8ax x y2b1 + 4
√
y4 + 8ax y3a1 − 32a x3b2

+ 16a x2ya2 − 64a x2yb3 −
(
y4 + 8ax

) 3
2 a3 − 32a x2b1 − 16axya1 = 0
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Simplifying the above gives

(6E)
8x2y4b2 + 8x y5b3 + 12b2x2y2

√
y4 + 8ax+ 3

√
y4 + 8ax y4a3 + 8x y4b1

− 4
(
y4 + 8ax

)
x2b2 − 8

(
y4 + 8ax

)
xyb3 − 2

(
y4 + 8ax

)
y2a3

− 4
√

y4 + 8ax x y2b1 + 4
√
y4 + 8ax y3a1 + 16a x2ya2 + 16ax y2a3

−
(
y4 + 8ax

) 3
2 a3 − 4

(
y4 + 8ax

)
xb1 − 4

(
y4 + 8ax

)
ya1 + 16axya1 = 0

Since the PDE has radicals, simplifying gives

4x2y4b2 − 2y6a3 + 12b2x2y2
√

y4 + 8ax+ 2
√
y4 + 8ax y4a3 + 4x y4b1

− 4y5a1 − 32a x3b2 + 16a x2ya2 − 64a x2yb3 − 4
√

y4 + 8ax x y2b1
+ 4
√

y4 + 8ax y3a1 − 8a
√
y4 + 8ax xa3 − 32a x2b1 − 16axya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y4 + 8ax

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y4 + 8ax = v3

}
The above PDE (6E) now becomes

(7E)−2v62a3 + 4v21v42b2 − 4v52a1 + 2v3v42a3 + 4v1v42b1 + 12b2v21v22v3
+ 16av21v2a2 − 32av31b2 − 64av21v2b3 + 4v3v32a1
− 4v3v1v22b1 − 16av1v2a1 − 8av3v1a3 − 32av21b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−32av31b2 + 4v21v42b2 + 12b2v21v22v3 + (16aa2 − 64ab3) v21v2 − 32av21b1 + 4v1v42b1
− 4v3v1v22b1 − 16av1v2a1 − 8av3v1a3 − 2v62a3 − 4v52a1 +2v3v42a3 +4v3v32a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
4a1 = 0

−2a3 = 0
2a3 = 0

−4b1 = 0
4b1 = 0
4b2 = 0
12b2 = 0

−16aa1 = 0
−8aa3 = 0
−32ab1 = 0
−32ab2 = 0

16aa2 − 64ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 4b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y2 −

√
y4 + 8ax
4xy

)
(4x)

=
√
y4 + 8ax

y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

y4+8ax
y

dy

Which results in

S =
ln
(
y2 +

√
y4 + 8ax

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 −
√
y4 + 8ax
4xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2a√
y4 + 8ax

(
y2 +

√
y4 + 8ax

)
Sy =

y√
y4 + 8ax
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
y2 +

√
y4 + 8ax

)
2 = c1

Which simplifies to

ln
(
y2 +

√
y4 + 8ax

)
2 = c1

Summary
The solution(s) found are the following

(1)
ln
(
y2 +

√
y4 + 8ax

)
2 = c1

Verification of solutions

ln
(
y2 +

√
y4 + 8ax

)
2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.25 (sec). Leaf size: 159� �
dsolve(2*x*y(x)^2*diff(y(x),x)^2-y(x)^3*diff(y(x),x)-a = 0,y(x), singsol=all)� �

y(x) = 2 3
4 (−ax)

1
4

y(x) = −2 3
4 (−ax)

1
4

y(x) = −i2 3
4 (−ax)

1
4

y(x) = i2 3
4 (−ax)

1
4

y(x) =
2 1

4
(
a(c1 − x)2 c31

) 1
4

c1

y(x) = −
2 1

4
(
a(c1 − x)2 c31

) 1
4

c1

y(x) = −
i2 1

4
(
a(c1 − x)2 c31

) 1
4

c1

y(x) =
i2 1

4
(
a(c1 − x)2 c31

) 1
4

c1

3 Solution by Mathematica
Time used: 1.666 (sec). Leaf size: 151� �
DSolve[2 x y[x]^2 (y'[x])^2 -y[x]^3 y'[x] -a ==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e−
c1
4
√
−8ax+ ec1√

2

y(x) → e−
c1
4
√
−8ax+ ec1√

2
y(x) → −(−2)3/4 4

√
a 4
√
x

y(x) → (−2)3/4 4
√
a 4
√
x

y(x) → (−1− i) 4
√
2 4
√
a 4
√
x

y(x) → (1 + i) 4
√
2 4
√
a 4
√
x
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34.8 problem 1004
34.8.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9050

Internal problem ID [4235]
Internal file name [OUTPUT/3728_Sunday_June_05_2022_10_33_15_AM_54538900/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1004.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

4x2y2y′
2 −

(
y2 + x2)2 = 0

34.8.1 Solving as dAlembert ode

Let p = y′ the ode becomes

4x2y2p2 −
(
x2 + y2

)2 = 0

Solving for y from the above results in

y =
(
−p+

√
p2 − 1

)
x (1A)

y =
(
−p−

√
p2 − 1

)
x (2A)

y =
(
p+

√
p2 − 1

)
x (3A)

y =
(
p−

√
p2 − 1

)
x (4A)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −p+
√

p2 − 1
g = 0

Hence (2) becomes

2p−
√

p2 − 1 = x

(
−1 + p√

p2 − 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p−
√

p2 − 1 = 0

Solving for p from the above gives

p = i
√
3

3
None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
2p(x)−

√
p (x)2 − 1

x

(
−1 + p(x)√

p(x)2−1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
−1 + p√

p2−1

)
2p−

√
p2 − 1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − −p+
√
p2 − 1√

p2 − 1
(
−2p+

√
p2 − 1

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−p+

√
p2 − 1

)
x(p)

√
p2 − 1

(
−2p+

√
p2 − 1

) = 0

The integrating factor µ is

µ = e
∫
− −p+

√
p2−1√

p2−1
(
−2p+

√
p2−1

)dp

The ode becomes

d
dpµx = 0

d
dp

e
∫
− −p+

√
p2−1√

p2−1
(
−2p+

√
p2−1

)dp
x

 = 0

Integrating gives

e
∫
− −p+

√
p2−1√

p2−1
(
−2p+

√
p2−1

)dp
x = c2

Dividing both sides by the integrating factor µ = e
∫
− −p+

√
p2−1√

p2−1
(
−2p+

√
p2−1

)dp
results in

x(p) = c2e
∫ −p+

√
p2−1√

p2−1
(
−2p+

√
p2−1

)dp

Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p−
√

p2 − 1
g = 0

Hence (2) becomes

2p+
√

p2 − 1 = x

(
−1− p√

p2 − 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p+
√
p2 − 1 = 0

Solving for p from the above gives

p = −i
√
3

3
None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
2p(x) +

√
p (x)2 − 1

x

(
−1− p(x)√

p(x)2−1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
−1− p√

p2−1

)
2p+

√
p2 − 1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = p+
√
p2 − 1√

p2 − 1
(
2p+

√
p2 − 1

)
q(p) = 0
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Hence the ode is

d

dp
x(p) +

(
p+

√
p2 − 1

)
x(p)

√
p2 − 1

(
2p+

√
p2 − 1

) = 0

The integrating factor µ is

µ = e
∫ p+

√
p2−1√

p2−1
(
2p+

√
p2−1

)dp

The ode becomes
d
dpµx = 0

d
dp

e
∫ p+

√
p2−1√

p2−1
(
2p+

√
p2−1

)dp
x

 = 0

Integrating gives

e
∫ p+

√
p2−1√

p2−1
(
2p+

√
p2−1

)dp
x = c4

Dividing both sides by the integrating factor µ = e
∫ p+

√
p2−1√

p2−1
(
2p+

√
p2−1

)dp
results in

x(p) = c4e
−

∫ p+
√

p2−1√
p2−1

(
2p+

√
p2−1

)dp


Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 3A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p+
√

p2 − 1
g = 0

Hence (2) becomes

−
√

p2 − 1 = x

(
1 + p√

p2 − 1

)
p′(x) (2A)

9054



The singular solution is found by setting dp
dx

= 0 in the above which gives

−
√
p2 − 1 = 0

Solving for p from the above gives

p = 1
p = −1

Substituting these in (1A) gives

y = −x

y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −

√
p (x)2 − 1

x

(
1 + p(x)√

p(x)2−1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

x(p)
(
1 + p√

p2−1

)
√
p2 − 1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −−p−
√
p2 − 1

p2 − 1
q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−p−

√
p2 − 1

)
x(p)

p2 − 1 = 0
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The integrating factor µ is

µ = e
∫
−−p−

√
p2−1

p2−1 dp

= eln
(
p+
√

p2−1
)
+ ln(p−1)

2 + ln(p+1)
2

Which simplifies to

µ =
(
p+

√
p2 − 1

)√
p− 1

√
p+ 1

The ode becomes
d
dpµx = 0

d
dp

((
p+

√
p2 − 1

)√
p− 1

√
p+ 1x

)
= 0

Integrating gives (
p+

√
p2 − 1

)√
p− 1

√
p+ 1x = c7

Dividing both sides by the integrating factor µ =
(
p+

√
p2 − 1

)√
p− 1

√
p+ 1 results

in

x(p) = c7(
p+

√
p2 − 1

)√
p− 1

√
p+ 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y2 + x2

2yx

Substituting the above in the solution for x found above gives

x = 4c7xy√
(−y+x)2

xy

√
(y+x)2

xy

(√
(x2−y2)2

y2x2 xy + x2 + y2
)

Solving ode 4A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p−
√
p2 − 1

g = 0

Hence (2) becomes √
p2 − 1 = x

(
1− p√

p2 − 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives√
p2 − 1 = 0

Solving for p from the above gives

p = 1
p = −1

Substituting these in (1A) gives

y = −x

y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =

√
p (x)2 − 1

x

(
1− p(x)√

p(x)2−1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
1− p√

p2−1

)
√
p2 − 1

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = −−p+
√
p2 − 1

p2 − 1
q(p) = 0

Hence the ode is

d

dp
x(p)−

x(p)
(
−p+

√
p2 − 1

)
p2 − 1 = 0

The integrating factor µ is

µ = e
∫
−−p+

√
p2−1

p2−1 dp

= e− ln
(
p+
√

p2−1
)
+ ln(p−1)

2 + ln(p+1)
2

Which simplifies to

µ =
√
p− 1

√
p+ 1

p+
√
p2 − 1

The ode becomes
d
dpµx = 0

d
dp

(√
p− 1

√
p+ 1x

p+
√
p2 − 1

)
= 0

Integrating gives
√
p− 1

√
p+ 1x

p+
√
p2 − 1

= _C10

Dividing both sides by the integrating factor µ =
√
p−1

√
p+1

p+
√

p2−1
results in

x(p) =
_C10

(
p+

√
p2 − 1

)
√
p− 1

√
p+ 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y2 + x2

2yx
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Substituting the above in the solution for x found above gives

x =
_C10

(√
(x2−y2)2

y2x2 xy + x2 + y2
)

xy
√

(−y+x)2
xy

√
(y+x)2

xy

Summary
The solution(s) found are the following

(1)y = −x
(2)y = x

(3)x = 4c7xy√
(−y+x)2

xy

√
(y+x)2

xy

(√
(x2−y2)2

y2x2 xy + x2 + y2
)

(4)y = −x
(5)y = x

(6)x =
_C10

(√
(x2−y2)2

y2x2 xy + x2 + y2
)

xy
√

(−y+x)2
xy

√
(y+x)2

xy
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Verification of solutions

y = −x

Verified OK.
y = x

Verified OK.

x = 4c7xy√
(−y+x)2

xy

√
(y+x)2

xy

(√
(x2−y2)2

y2x2 xy + x2 + y2
)

Verified OK.
y = −x

Verified OK.
y = x

Verified OK.

x =
c10

(√
(x2−y2)2

y2x2 xy + x2 + y2
)

xy
√

(−y+x)2
xy

√
(y+x)2

xy

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 69� �
dsolve(4*x^2*y(x)^2*diff(y(x),x)^2 = (x^2+y(x)^2)^2,y(x), singsol=all)� �

y(x) =
√

(x+ c1)x
y(x) = −

√
(x+ c1)x

y(x) = −
√
3
√
−x (x3 − 3c1)

3x

y(x) =
√
3
√

−x (x3 − 3c1)
3x

3 Solution by Mathematica
Time used: 0.526 (sec). Leaf size: 97� �
DSolve[4 x^2 y[x]^2(y'[x])^2 ==(x^2+y[x]^2)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x
√
x+ c1

y(x) →
√
x
√
x+ c1

y(x) → −
√
−x3 + 3c1√

3
√
x

y(x) →
√
−x3 + 3c1√

3
√
x
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34.9 problem 1006
Internal problem ID [4236]
Internal file name [OUTPUT/3729_Sunday_June_05_2022_10_33_26_AM_66498046/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1006.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

4y3y′2 − 4xy′ + y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x+
√
x2 − y4

2y3 (1)

y′ = −−x+
√
x2 − y4

2y3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = x+
√
−y4 + x2

2y3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
x+

√
−y4 + x2

)
(b3 − a2)

2y3 −
(
x+

√
−y4 + x2

)2
a3

4y6

−

(
1 + x√

−y4+x2

)
(xa2 + ya3 + a1)
2y3

−

(
− 1√

−y4 + x2 −
3
(
x+

√
−y4 + x2

)
2y4

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2
√
−y4 + x2 y6 + 2x y6b2 − 2y7a2 + 4y7b3 + 2y6b1 − 6

√
−y4 + x2 x2y2b2 + 4

√
−y4 + x2 x y3a2 − 8

√
−y4 + x2 x y3b3 + 2

√
−y4 + x2 y4a3 − 6x3y2b2 + 4x2y3a2 − 8x2y3b3 − 6

√
−y4 + x2 x y2b1 + 2

√
−y4 + x2 y3a1 − 6x2y2b1 + 2x y3a1 + (−y4 + x2)

3
2 a3 +

√
−y4 + x2 x2a3 + 2x3a3

4
√
−y4 + x2 y6

= 0

Setting the numerator to zero gives

(6E)
4b2
√

−y4 + x2 y6 − 2x y6b2 +2y7a2 − 4y7b3 − 2y6b1 +6
√

−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3 − 2
√
−y4 + x2 y4a3

+ 6x3y2b2 − 4x2y3a2 + 8x2y3b3 + 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1

+ 6x2y2b1 − 2x y3a1 −
(
−y4 + x2) 3

2 a3 −
√
−y4 + x2 x2a3 − 2x3a3 = 0
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Simplifying the above gives

(6E)

4b2
√
−y4 + x2 y6 + 4x y6b2 + 4y7b3 + 4y6b1 + 6

(
−y4 + x2)x y2b2

− 2
(
−y4 + x2) y3a2 + 8

(
−y4 + x2) y3b3 + 6

√
−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3

− 2
√

−y4 + x2 y4a3 − 2x2y3a2 − 2x y4a3 + 6
(
−y4 + x2) y2b1

+ 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1 − 2x y3a1
−
(
−y4 + x2) 3

2 a3 − 2
(
−y4 + x2)xa3 −√−y4 + x2 x2a3 = 0

Since the PDE has radicals, simplifying gives

−2x y6b2 + 4b2
√
−y4 + x2 y6 + 2y7a2 − 4y7b3 − 2y6b1 + 6x3y2b2

+ 6
√

−y4 + x2 x2y2b2 − 4x2y3a2 + 8x2y3b3 − 4
√
−y4 + x2 x y3a2

+ 8
√

−y4 + x2 x y3b3 −
√

−y4 + x2 y4a3 + 6x2y2b1 + 6
√
−y4 + x2 x y2b1

− 2x y3a1 − 2
√

−y4 + x2 y3a1 − 2x3a3 − 2
√

−y4 + x2 x2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y4 + x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−y4 + x2 = v3
}

The above PDE (6E) now becomes

(7E)2v72a2 − 2v1v62b2 + 4b2v3v62 − 4v72b3 − 2v62b1 − 4v21v32a2 − 4v3v1v32a2
− v3v

4
2a3 + 6v31v22b2 + 6v3v21v22b2 + 8v21v32b3 + 8v3v1v32b3 − 2v1v32a1

− 2v3v32a1 + 6v21v22b1 + 6v3v1v22b1 − 2v31a3 − 2v3v21a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}
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Equation (7E) now becomes

(8E)6v31v22b2 − 2v31a3 + (−4a2 + 8b3) v21v32 + 6v3v21v22b2 + 6v21v22b1
− 2v3v21a3 − 2v1v62b2 + (−4a2 + 8b3) v1v32v3 − 2v1v32a1 + 6v3v1v22b1
+ (2a2 − 4b3) v72 + 4b2v3v62 − 2v62b1 − v3v

4
2a3 − 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−2a3 = 0
−a3 = 0
−2b1 = 0
6b1 = 0

−2b2 = 0
4b2 = 0
6b2 = 0

−4a2 + 8b3 = 0
2a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x+

√
−y4 + x2

2y3

)
(2x)

= y4 −
√
−y4 + x2 x− x2

y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4−
√

−y4+x2 x−x2

y3

dy

Which results in

S = − ln (y2 + x)
4 − ln (y2 − x)

4 + ln (y) + ln (y4 − x2)
4 +

x ln
(

2x2+2
√
x2
√

−y4+x2

y2

)
2
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+
√
−y4 + x2

2y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+
√
−y4 + x2

2
√
−y4 + x2 x

Sy = − y3√
−y4 + x2

(
x+

√
−y4 + x2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

Summary
The solution(s) found are the following

(1)ln (2)
2 + ln (x)

2 +
ln
(
x+

√
x2 − y4

)
2 = ln (x)

2 + c1

Verification of solutions

ln (2)
2 + ln (x)

2 +
ln
(
x+

√
x2 − y4

)
2 = ln (x)

2 + c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −
√
−y4 + x2 − x

2y3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(√

−y4 + x2 − x
)
(b3 − a2)

2y3 −
(√

−y4 + x2 − x
)2

a3

4y6

+

(
−1 + x√

−y4+x2

)
(xa2 + ya3 + a1)

2y3

−

(
1√

−y4 + x2 +
3
√

−y4+x2

2 − 3x
2

y4

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2
√
−y4 + x2 y6 − 2x y6b2 + 2y7a2 − 4y7b3 − 2y6b1 − 6

√
−y4 + x2 x2y2b2 + 4

√
−y4 + x2 x y3a2 − 8

√
−y4 + x2 x y3b3 + 2

√
−y4 + x2 y4a3 + 6x3y2b2 − 4x2y3a2 + 8x2y3b3 − 6

√
−y4 + x2 x y2b1 + 2

√
−y4 + x2 y3a1 + 6x2y2b1 − 2x y3a1 + (−y4 + x2)

3
2 a3 +

√
−y4 + x2 x2a3 − 2x3a3

4
√
−y4 + x2 y6

= 0

9068



Setting the numerator to zero gives

(6E)
4b2
√

−y4 + x2 y6 + 2x y6b2 − 2y7a2 + 4y7b3 + 2y6b1 + 6
√

−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3 − 2
√
−y4 + x2 y4a3

− 6x3y2b2 + 4x2y3a2 − 8x2y3b3 + 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1

− 6x2y2b1 + 2x y3a1 −
(
−y4 + x2) 3

2 a3 −
√

−y4 + x2 x2a3 + 2x3a3 = 0

Simplifying the above gives

(6E)

4b2
√
−y4 + x2 y6 − 4x y6b2 − 4y7b3 − 4y6b1 − 6

(
−y4 + x2)x y2b2

+ 2
(
−y4 + x2) y3a2 − 8

(
−y4 + x2) y3b3 + 6

√
−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3

− 2
√

−y4 + x2 y4a3 + 2x2y3a2 + 2x y4a3 − 6
(
−y4 + x2) y2b1

+ 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1 + 2x y3a1
−
(
−y4 + x2) 3

2 a3 + 2
(
−y4 + x2)xa3 −√−y4 + x2 x2a3 = 0

Since the PDE has radicals, simplifying gives

4b2
√

−y4 + x2 y6 + 2x y6b2 − 2y7a2 + 4y7b3 + 2y6b1 + 6
√

−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√
−y4 + x2 x y3b3 −

√
−y4 + x2 y4a3

− 6x3y2b2 + 4x2y3a2 − 8x2y3b3 + 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1

− 6x2y2b1 + 2x y3a1 − 2
√
−y4 + x2 x2a3 + 2x3a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−y4 + x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−y4 + x2 = v3
}

The above PDE (6E) now becomes

(7E)−2v72a2 + 2v1v62b2 + 4b2v3v62 + 4v72b3 + 2v62b1 + 4v21v32a2 − 4v3v1v32a2
− v3v

4
2a3 − 6v31v22b2 + 6v3v21v22b2 − 8v21v32b3 + 8v3v1v32b3 + 2v1v32a1

− 2v3v32a1 − 6v21v22b1 + 6v3v1v22b1 + 2v31a3 − 2v3v21a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−6v31v22b2 + 2v31a3 + (4a2 − 8b3) v21v32 + 6v3v21v22b2 − 6v21v22b1
− 2v3v21a3 + 2v1v62b2 + (−4a2 + 8b3) v1v32v3 + 2v1v32a1 + 6v3v1v22b1
+ (−2a2 + 4b3) v72 + 4b2v3v62 + 2v62b1 − v3v

4
2a3 − 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0

−2a3 = 0
−a3 = 0
2a3 = 0

−6b1 = 0
2b1 = 0
6b1 = 0

−6b2 = 0
2b2 = 0
4b2 = 0
6b2 = 0

−4a2 + 8b3 = 0
−2a2 + 4b3 = 0
4a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
√
−y4 + x2 − x

2y3

)
(2x)

= y4 +
√
−y4 + x2 x− x2

y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4+
√

−y4+x2 x−x2

y3

dy

Which results in

S = ln (y4 − x2)
4 − ln (y2 + x)

4 − ln (y2 − x)
4 + ln (y)−

x ln
(

2x2+2
√
x2
√

−y4+x2

y2

)
2
√
x2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
−y4 + x2 − x

2y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x+
√
−y4 + x2

2
√
−y4 + x2 x

Sy =
−y4 + 2x2 + 2

√
−y4 + x2 x

y
√
−y4 + x2

(
x+

√
−y4 + x2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − −y4 +

√
−y4 + x2 x+ x2

2
√
−y4 + x2 x

(
x+

√
−y4 + x2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

Which gives

y = e
ln(2)
4 +

ln
(
−2 e4c1e−2c1+2 e2c1e−2c1x

)
4 + c1

2
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Summary
The solution(s) found are the following

(1)y = e
ln(2)
4 +

ln
(
−2 e4c1e−2c1+2 e2c1e−2c1x

)
4 + c1

2

Verification of solutions

y = e
ln(2)
4 +

ln
(
−2 e4c1e−2c1+2 e2c1e−2c1x

)
4 + c1

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[2*x, y]� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 82� �
dsolve(4*y(x)^3*diff(y(x),x)^2-4*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) =
√
−x

y(x) = −
√
−x

y(x) =
√
x

y(x) = −
√
x

y(x) = 0

y(x) = RootOf
(
− ln (x)− 2

(∫ _Z _a4 +
√
−_a4 + 1− 1

_a (_a4 − 1) d_a
)
+ c1

)√
x

3 Solution by Mathematica
Time used: 0.55 (sec). Leaf size: 282� �
DSolve[4 y[x]^3 (y'[x])^2 -4 x y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e
c1
4 4
√
ec1 − 2ix

y(x) → −ie
c1
4 4
√
ec1 − 2ix

y(x) → ie
c1
4 4
√
ec1 − 2ix

y(x) → e
c1
4 4
√
ec1 − 2ix

y(x) → −e
c1
4 4
√
2ix+ ec1

y(x) → −ie
c1
4 4
√
2ix+ ec1

y(x) → ie
c1
4 4
√
2ix+ ec1

y(x) → e
c1
4 4
√
2ix+ ec1

y(x) → 0
y(x) → −

√
x

y(x) → −i
√
x

y(x) → i
√
x

y(x) →
√
x
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34.10 problem 1012
Internal problem ID [4237]
Internal file name [OUTPUT/3730_Sunday_June_05_2022_10_33_36_AM_56168833/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1012.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

3xy4y′2 − y5y′ = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y3 +
√
y6 − 12x

6xy2 (1)

y′ = y3 −
√
y6 − 12x

6xy2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = y3 +
√
y6 − 12x

6x y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y3 +

√
y6 − 12x

)
(b3 − a2)

6x y2 −
(
y3 +

√
y6 − 12x

)2
a3

36x2y4

−
(
−y3 +

√
y6 − 12x

6x2y2
− 1

x
√
y6 − 12x y2

)
(xa2 + ya3 + a1)

−

3y2 + 3y5√
y6−12x

6x y2 − y3 +
√
y6 − 12x

3x y3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−6x2y7b2 − 4y9a3 + 6x y7b1 − 6y8a1 − 30b2y4x2√y6 − 12x− 5
√
y6 − 12x y6a3 + 6

√
y6 − 12xx y4b1 − 6

√
y6 − 12x y5a1 + 144x3yb2 − 36x2y2a2 + 216x2y2b3 + 12x y3a3 + (y6 − 12x)

3
2 a3 + 144x2yb1 + 36x y2a1

36y4x2
√
y6 − 12x

= 0

Setting the numerator to zero gives

(6E)−6x2y7b2+4y9a3−6x y7b1+6y8a1+30b2y4x2
√
y6 − 12x+5

√
y6 − 12x y6a3

− 6
√

y6 − 12xx y4b1 + 6
√

y6 − 12x y5a1 − 144x3yb2 + 36x2y2a2

− 216x2y2b3 − 12x y3a3 −
(
y6 − 12x

) 3
2 a3 − 144x2yb1 − 36x y2a1 = 0

Simplifying the above gives

(6E)
−18x2y7b2−18x y8b3−18x y7b1+30b2y4x2

√
y6 − 12x+5

√
y6 − 12x y6a3

− 6
√

y6 − 12xx y4b1 + 6
√

y6 − 12x y5a1 + 12
(
y6 − 12x

)
x2yb2

+ 18
(
y6 − 12x

)
x y2b3 + 4

(
y6 − 12x

)
y3a3 + 12

(
y6 − 12x

)
xyb1

+6
(
y6 − 12x

)
y2a1 +36x2y2a2 +36x y3a3 −

(
y6 − 12x

) 3
2 a3 +36x y2a1 = 0
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Since the PDE has radicals, simplifying gives

−6x2y7b2 + 4y9a3 − 6x y7b1 + 6y8a1 + 30b2y4x2
√

y6 − 12x+ 4
√

y6 − 12x y6a3
− 6
√

y6 − 12xx y4b1 + 6
√

y6 − 12x y5a1 − 144x3yb2 + 36x2y2a2

− 216x2y2b3 − 12x y3a3 − 144x2yb1 − 36x y2a1 + 12x
√

y6 − 12x a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y6 − 12x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y6 − 12x = v3
}

The above PDE (6E) now becomes

(7E)4v92a3 − 6v21v72b2 + 6v82a1 − 6v1v72b1 + 4v3v62a3 + 30b2v42v21v3
+ 6v3v52a1 − 6v3v1v42b1 + 36v21v22a2 − 12v1v32a3 − 144v31v2b2
− 216v21v22b3 − 36v1v22a1 − 144v21v2b1 + 12v1v3a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−144v31v2b2 − 6v21v72b2 + 30b2v42v21v3 + (36a2 − 216b3) v21v22
− 144v21v2b1 − 6v1v72b1 − 6v3v1v42b1 − 12v1v32a3 − 36v1v22a1
+ 12v1v3a3 + 4v92a3 + 6v82a1 + 4v3v62a3 + 6v3v52a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−36a1 = 0
6a1 = 0

−12a3 = 0
4a3 = 0
12a3 = 0

−144b1 = 0
−6b1 = 0

−144b2 = 0
−6b2 = 0
30b2 = 0

36a2 − 216b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 6b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 6x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= y

6x
= y

6x
This is easily solved to give

y = c1x
1
6

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
1
6

And S is found from

dS = dx

ξ

= dx

6x
Integrating gives

S =
∫

dx

T

= ln (x)
6

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y3 +
√
y6 − 12x

6x y2
Evaluating all the partial derivatives gives

Rx = − y

6x 7
6

Ry =
1
x

1
6

Sx = 1
6x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

1
6y2√

y6 − 12x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

√
R6 − 12

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

R2
√
R6 − 12

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 − 12
d_a+ c1

Which simplifies to

ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 − 12
d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 − 12
d_a+ c1

Verification of solutions

ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 − 12
d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = y3 −
√
y6 − 12x

6x y2
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y3 −

√
y6 − 12x

)
(b3 − a2)

6x y2 −
(
y3 −

√
y6 − 12x

)2
a3

36x2y4

−
(
−y3 −

√
y6 − 12x

6x2y2
+ 1

x
√
y6 − 12x y2

)
(xa2 + ya3 + a1)

−

3y2 − 3y5√
y6−12x

6x y2 − y3 −
√
y6 − 12x

3x y3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−6x2y7b2 + 4y9a3 − 6x y7b1 + 6y8a1 − 30b2y4x2√y6 − 12x− 5
√
y6 − 12x y6a3 + 6

√
y6 − 12xx y4b1 − 6

√
y6 − 12x y5a1 − 144x3yb2 + 36x2y2a2 − 216x2y2b3 − 12x y3a3 + (y6 − 12x)

3
2 a3 − 144x2yb1 − 36x y2a1

36y4x2
√
y6 − 12x

= 0

Setting the numerator to zero gives

(6E)6x2y7b2−4y9a3+6x y7b1−6y8a1+30b2y4x2
√

y6 − 12x+5
√
y6 − 12x y6a3

− 6
√

y6 − 12xx y4b1 + 6
√

y6 − 12x y5a1 + 144x3yb2 − 36x2y2a2

+ 216x2y2b3 + 12x y3a3 −
(
y6 − 12x

) 3
2 a3 + 144x2yb1 + 36x y2a1 = 0
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Simplifying the above gives

(6E)
18x2y7b2 + 18x y8b3 + 18x y7b1 + 30b2y4x2

√
y6 − 12x+ 5

√
y6 − 12x y6a3

− 6
√

y6 − 12xx y4b1 + 6
√

y6 − 12x y5a1 − 12
(
y6 − 12x

)
x2yb2

− 18
(
y6 − 12x

)
x y2b3 − 4

(
y6 − 12x

)
y3a3 − 12

(
y6 − 12x

)
xyb1

− 6
(
y6− 12x

)
y2a1− 36x2y2a2− 36x y3a3−

(
y6− 12x

) 3
2 a3− 36x y2a1 = 0

Since the PDE has radicals, simplifying gives

6x2y7b2 − 4y9a3 + 6x y7b1 − 6y8a1 + 30b2y4x2
√
y6 − 12x+ 4

√
y6 − 12x y6a3

− 6
√

y6 − 12xx y4b1 + 6
√

y6 − 12x y5a1 + 144x3yb2 − 36x2y2a2

+ 216x2y2b3 + 12x y3a3 + 144x2yb1 + 36x y2a1 + 12
√
y6 − 12xxa3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
y6 − 12x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

y6 − 12x = v3
}

The above PDE (6E) now becomes

(7E)−4v92a3 + 6v21v72b2 − 6v82a1 + 6v1v72b1 + 4v3v62a3 + 30b2v42v21v3
+ 6v3v52a1 − 6v3v1v42b1 − 36v21v22a2 + 12v1v32a3 + 144v31v2b2
+ 216v21v22b3 + 36v1v22a1 + 144v21v2b1 + 12v3v1a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)144v31v2b2 + 6v21v72b2 + 30b2v42v21v3 + (−36a2 + 216b3) v21v22
+ 144v21v2b1 + 6v1v72b1 − 6v3v1v42b1 + 12v1v32a3 + 36v1v22a1
+ 12v3v1a3 − 4v92a3 − 6v82a1 + 4v3v62a3 + 6v3v52a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6a1 = 0
36a1 = 0
−4a3 = 0
4a3 = 0
12a3 = 0
−6b1 = 0
6b1 = 0

144b1 = 0
6b2 = 0
30b2 = 0
144b2 = 0

−36a2 + 216b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 6b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 6x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 297� �
dsolve(3*x*y(x)^4*diff(y(x),x)^2-y(x)^5*diff(y(x),x)+1 = 0,y(x), singsol=all)� �

y(x) = 2 1
33 1

6x
1
6

y(x) = −2 1
33 1

6x
1
6

y(x) = −
(
1 + i

√
3
)
3 1

62 1
3x

1
6

2

y(x) =
(
−1 + i

√
3
)
3 1

62 1
3x

1
6

2

y(x) = −
(
−1 + i

√
3
)
3 1

62 1
3x

1
6

2

y(x) =
(
1 + i

√
3
)
3 1

62 1
3x

1
6

2

y(x) =
3 1

6
(
−(c1 − x)2 c51

) 1
6

c1

y(x) = −
3 1

6
(
−(c1 − x)2 c51

) 1
6

c1

y(x) = −
(
1 + i

√
3
)
3 1

6
(
−(c1 − x)2 c51

) 1
6

2c1

y(x) =

(
i3 2

3 − 3 1
6

) (
−(c1 − x)2 c51

) 1
6

2c1

y(x) = −
(
−1 + i

√
3
)
3 1

6
(
−(c1 − x)2 c51

) 1
6

2c1

y(x) =

(
i3 2

3 + 3 1
6

) (
−(c1 − x)2 c51

) 1
6

2c1
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3 Solution by Mathematica
Time used: 1.332 (sec). Leaf size: 230� �
DSolve[3 x y[x]^4 (y'[x])^2 -y[x]^5 y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 3

√
−1
2e

− c1
6 3
√
12x+ ec1

y(x) → e−
c1
6 3

√
6x+ ec1

2

y(x) → (−1)2/3e−
c1
6 3

√
6x+ ec1

2
y(x) → − 3

√
−2 6

√
3 6
√
x

y(x) → 3
√
−2 6

√
3 6
√
x

y(x) → − 3
√
2 6
√
3 6
√
x

y(x) → 3
√
2 6
√
3 6
√
x

y(x) → −(−1)2/3 3
√
2 6
√
3 6
√
x

y(x) → (−1)2/3 3
√
2 6
√
3 6
√
x
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34.11 problem 1013
Internal problem ID [4238]
Internal file name [OUTPUT/3731_Sunday_June_05_2022_10_33_47_AM_75172618/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1013.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

9xy4y′2 − 3y5y′ = a

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y3 +
√
y6 + 4ax

6xy2 (1)

y′ = y3 −
√
y6 + 4ax

6xy2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = y3 +
√
y6 + 4ax

6x y2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y3 +

√
y6 + 4ax

)
(b3 − a2)

6x y2 −
(
y3 +

√
y6 + 4ax

)2
a3

36x2y4

−
(
−y3 +

√
y6 + 4ax

6x2y2
+ a

3x
√
y6 + 4ax y2

)
(xa2 + ya3 + a1)

−

3y2 + 3y5√
y6+4ax

6x y2 − y3 +
√
y6 + 4ax

3x y3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−6x2y7b2 − 4y9a3 + 6x y7b1 − 6y8a1 − 30b2y4x2√y6 + 4ax− 5
√
y6 + 4ax y6a3 + 6

√
y6 + 4ax x y4b1 − 6

√
y6 + 4ax y5a1 − 48a x3yb2 + 12a x2y2a2 − 72a x2y2b3 − 4ax y3a3 − 48a x2yb1 − 12ax y2a1 + (y6 + 4ax)

3
2 a3

36y4x2
√
y6 + 4ax

= 0

Setting the numerator to zero gives

(6E)−6x2y7b2 + 4y9a3 − 6x y7b1 + 6y8a1 + 30b2y4x2
√
y6 + 4ax

+ 5
√

y6 + 4ax y6a3 − 6
√

y6 + 4ax x y4b1 + 6
√
y6 + 4ax y5a1

+ 48a x3yb2 − 12a x2y2a2 + 72a x2y2b3 + 4ax y3a3
+ 48a x2yb1 + 12ax y2a1 −

(
y6 + 4ax

) 3
2 a3 = 0

Simplifying the above gives

(6E)
−18x2y7b2−18x y8b3−18x y7b1+30b2y4x2

√
y6 + 4ax+5

√
y6 + 4ax y6a3

− 6
√

y6 + 4ax x y4b1 + 6
√

y6 + 4ax y5a1 + 12
(
y6 + 4ax

)
x2yb2

+ 18
(
y6 + 4ax

)
x y2b3 + 4

(
y6 + 4ax

)
y3a3 − 12a x2y2a2 − 12ax y3a3

+ 12
(
y6 + 4ax

)
xyb1 + 6

(
y6 + 4ax

)
y2a1 − 12ax y2a1 −

(
y6 + 4ax

) 3
2 a3 = 0
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Since the PDE has radicals, simplifying gives

−6x2y7b2 + 4y9a3 − 6x y7b1 + 6y8a1 + 30b2y4x2
√
y6 + 4ax+ 4

√
y6 + 4ax y6a3

− 6
√

y6 + 4ax x y4b1 + 6
√

y6 + 4ax y5a1 + 48a x3yb2 − 12a x2y2a2

+ 72a x2y2b3 + 4ax y3a3 + 48a x2yb1 + 12ax y2a1 − 4ax
√

y6 + 4ax a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
y6 + 4ax

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y6 + 4ax = v3

}
The above PDE (6E) now becomes

(7E)4v92a3 − 6v21v72b2 + 6v82a1 − 6v1v72b1 + 4v3v62a3 + 30b2v42v21v3
+ 6v3v52a1 − 6v3v1v42b1 − 12av21v22a2 + 4av1v32a3 + 48av31v2b2
+ 72av21v22b3 + 12av1v22a1 + 48av21v2b1 − 4av1v3a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)48av31v2b2 − 6v21v72b2 + 30b2v42v21v3 + (−12aa2 + 72ab3) v21v22
+ 48av21v2b1 − 6v1v72b1 − 6v3v1v42b1 + 4av1v32a3 + 12av1v22a1
− 4av1v3a3 + 4v92a3 + 6v82a1 + 4v3v62a3 + 6v3v52a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
4a3 = 0

−6b1 = 0
−6b2 = 0
30b2 = 0

12aa1 = 0
−4aa3 = 0
4aa3 = 0
48ab1 = 0
48ab2 = 0

−12aa2 + 72ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 6b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 6x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= y

6x
= y

6x
This is easily solved to give

y = c1x
1
6

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
1
6

And S is found from

dS = dx

ξ

= dx

6x
Integrating gives

S =
∫

dx

T

= ln (x)
6

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y3 +
√
y6 + 4ax

6x y2
Evaluating all the partial derivatives gives

Rx = − y

6x 7
6

Ry =
1
x

1
6

Sx = 1
6x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

1
6y2√

y6 + 4ax
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

√
R6 + 4a

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

R2
√
R6 + 4a

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 + 4a
d_a+ c1

Which simplifies to

ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 + 4a
d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 + 4a
d_a+ c1

Verification of solutions

ln (x)
6 =

∫ y

x
1
6 _a2√

_a6 + 4a
d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = y3 −
√
y6 + 4ax

6x y2
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y3 −

√
y6 + 4ax

)
(b3 − a2)

6x y2 −
(
y3 −

√
y6 + 4ax

)2
a3

36x2y4

−
(
−y3 −

√
y6 + 4ax

6x2y2
− a

3x
√
y6 + 4ax y2

)
(xa2 + ya3 + a1)

−

3y2 − 3y5√
y6+4ax

6x y2 − y3 −
√
y6 + 4ax

3x y3

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−6x2y7b2 + 4y9a3 − 6x y7b1 + 6y8a1 − 30b2y4x2√y6 + 4ax− 5
√
y6 + 4ax y6a3 + 6

√
y6 + 4ax x y4b1 − 6

√
y6 + 4ax y5a1 + 48a x3yb2 − 12a x2y2a2 + 72a x2y2b3 + 4ax y3a3 + 48a x2yb1 + 12ax y2a1 + (y6 + 4ax)

3
2 a3

36y4x2
√
y6 + 4ax

= 0

Setting the numerator to zero gives

(6E)6x2y7b2−4y9a3+6x y7b1−6y8a1+30b2y4x2
√
y6 + 4ax+5

√
y6 + 4ax y6a3

− 6
√

y6 + 4ax x y4b1 + 6
√

y6 + 4ax y5a1 − 48a x3yb2 + 12a x2y2a2

− 72a x2y2b3 − 4ax y3a3 − 48a x2yb1 − 12ax y2a1 −
(
y6 + 4ax

) 3
2 a3 = 0
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Simplifying the above gives

(6E)
18x2y7b2 + 18x y8b3 + 18x y7b1 + 30b2y4x2

√
y6 + 4ax+ 5

√
y6 + 4ax y6a3

− 6
√

y6 + 4ax x y4b1 + 6
√

y6 + 4ax y5a1 − 12
(
y6 + 4ax

)
x2yb2

− 18
(
y6 + 4ax

)
x y2b3 − 4

(
y6 + 4ax

)
y3a3 + 12a x2y2a2 + 12ax y3a3

− 12
(
y6 +4ax

)
xyb1 − 6

(
y6 +4ax

)
y2a1 +12ax y2a1 −

(
y6 +4ax

) 3
2 a3 = 0

Since the PDE has radicals, simplifying gives

6x2y7b2 − 4y9a3 + 6x y7b1 − 6y8a1 + 30b2y4x2
√
y6 + 4ax+ 4

√
y6 + 4ax y6a3

− 6
√

y6 + 4ax x y4b1 + 6
√

y6 + 4ax y5a1 − 48a x3yb2 + 12a x2y2a2

− 72a x2y2b3 − 4ax y3a3 − 48a x2yb1 − 12ax y2a1 − 4a
√

y6 + 4ax xa3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
y6 + 4ax

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
y6 + 4ax = v3

}
The above PDE (6E) now becomes

(7E)−4v92a3 + 6v21v72b2 − 6v82a1 + 6v1v72b1 + 4v3v62a3 + 30b2v42v21v3
+ 6v3v52a1 − 6v3v1v42b1 + 12av21v22a2 − 4av1v32a3 − 48av31v2b2
− 72av21v22b3 − 12av1v22a1 − 48av21v2b1 − 4av3v1a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−48av31v2b2 + 6v21v72b2 + 30b2v42v21v3 + (12aa2 − 72ab3) v21v22
− 48av21v2b1 + 6v1v72b1 − 6v3v1v42b1 − 4av1v32a3 − 12av1v22a1
− 4av3v1a3 − 4v92a3 − 6v82a1 + 4v3v62a3 + 6v3v52a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−6a1 = 0
6a1 = 0

−4a3 = 0
4a3 = 0

−6b1 = 0
6b1 = 0
6b2 = 0
30b2 = 0

−12aa1 = 0
−4aa3 = 0
−48ab1 = 0
−48ab2 = 0

12aa2 − 72ab3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 6b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 6x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �

9096



3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 279� �
dsolve(9*x*y(x)^4*diff(y(x),x)^2-3*y(x)^5*diff(y(x),x)-a = 0,y(x), singsol=all)� �

y(x) = 2 1
3 (−ax)

1
6

y(x) = −2 1
3 (−ax)

1
6

y(x) = −
(
1 + i

√
3
)
2 1

3 (−ax)
1
6

2

y(x) =
(
−1 + i

√
3
)
2 1

3 (−ax)
1
6

2

y(x) = −
(
−1 + i

√
3
)
2 1

3 (−ax)
1
6

2

y(x) =
(
1 + i

√
3
)
2 1

3 (−ax)
1
6

2

y(x) =
(
a(c1 − x)2 c51

) 1
6

c1

y(x) = −
(
a(c1 − x)2 c51

) 1
6

c1

y(x) = −
(
1 + i

√
3
) (

a(c1 − x)2 c51
) 1

6

2c1

y(x) =
(
−1 + i

√
3
) (

a(c1 − x)2 c51
) 1

6

2c1

y(x) = −
(
−1 + i

√
3
) (

a(c1 − x)2 c51
) 1

6

2c1

y(x) =
(
1 + i

√
3
) (

a(c1 − x)2 c51
) 1

6

2c1
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3 Solution by Mathematica
Time used: 11.244 (sec). Leaf size: 358� �
DSolve[9 x y[x]^4 (y'[x])^2 -3 y[x]^5 y'[x]-a==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 3

√
−1
2e

− c1
6 3
√
−4ax+ ec1

y(x) → e−
c1
6

3
√
−4ax+ ec1

3
√
2

y(x) → (−1)2/3e−
c1
6

3
√
−4ax+ ec1

3
√
2

y(x) → − 3

√
−1
2

3
√
−e−

c1
2 (−4ax+ ec1)

y(x) →
3
√

e−
c1
2 (4ax− ec1)

3
√
2

y(x) →
(−1)2/3 3

√
−e−

c1
2 (−4ax+ ec1)

3
√
2

y(x) → −i
3
√
2 6
√
a 6
√
x

y(x) → i
3
√
2 6
√
a 6
√
x

y(x) → − 6
√
−1 3

√
2 6
√
a 6
√
x

y(x) → 6
√
−1 3

√
2 6
√
a 6
√
x

y(x) → −(−1)5/6 3
√
2 6
√
a 6
√
x

y(x) → (−1)5/6 3
√
2 6
√
a 6
√
x
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34.12 problem 1014
Internal problem ID [4239]
Internal file name [OUTPUT/3732_Sunday_June_05_2022_10_33_58_AM_73821296/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1014.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Unable to solve or complete the solution.

9
(
−x2 + 1

)
y4y′

2 + 6xy5y′ = −4x2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
y3 +

√
y6 + 4x2 − 4

)
x

3 (x2 − 1) y2 (1)

y′ =
(
y3 −

√
y6 + 4x2 − 4

)
x

3 (x2 − 1) y2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4`[-3/4*y^3/x, 1/y^2]� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 231� �
dsolve(9*(-x^2+1)*y(x)^4*diff(y(x),x)^2+6*x*y(x)^5*diff(y(x),x)+4*x^2 = 0,y(x), singsol=all)� �

y(x) = 2 1
3
(
−x2 + 1

) 1
6

y(x) = −2 1
3
(
−x2 + 1

) 1
6

y(x) = −
(
1 + i

√
3
)
2 1

3 (−x2 + 1)
1
6

2

y(x) =
(
−1 + i

√
3
)
2 1

3 (−x2 + 1)
1
6

2

y(x) = −
(
−1 + i

√
3
)
2 1

3 (−x2 + 1)
1
6

2

y(x) =
(
1 + i

√
3
)
2 1

3 (−x2 + 1)
1
6

2

y(x) = 2 2
3 ((−4c21 + x2 − 1) c21)

1
3

2c1

y(x) = −
2 2

3 ((−4c21 + x2 − 1) c21)
1
3
(
1 + i

√
3
)

4c1

y(x) =
2 2

3 ((−4c21 + x2 − 1) c21)
1
3
(
−1 + i

√
3
)

4c1
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3 Solution by Mathematica
Time used: 0.415 (sec). Leaf size: 199� �
DSolve[9(1-x^2) y[x]^4 (y'[x])^2 +6 x y[x]^5 y'[x]+4 x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3

√
−1
2

3
√

−4x2 + 4 + c12

3
√
c1

y(x) → −1
y(x) → 0

y(x) → 3

√
−1
2

y(x) → Indeterminate
y(x) → − 3

√
−2 6

√
1− x2

y(x) → 3
√
−2 6

√
1− x2

y(x) → − 3
√
2 6
√
1− x2

y(x) → 3
√
2 6
√
1− x2

y(x) → −(−1)2/3 3
√
2 6
√
1− x2

y(x) → (−1)2/3 3
√
2 6
√
1− x2
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34.13 problem 1015
34.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9105

Internal problem ID [4240]
Internal file name [OUTPUT/3733_Sunday_June_05_2022_10_34_14_AM_67611099/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1015.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 = bx+ a

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = (bx+ a)
1
3 (1)

y′ = −(bx+ a)
1
3

2 + i
√
3 (bx+ a)

1
3

2 (2)

y′ = −(bx+ a)
1
3

2 − i
√
3 (bx+ a)

1
3

2 (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

(bx+ a)
1
3 dx

= 3(bx+ a)
4
3

4b + c1
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Summary
The solution(s) found are the following

(1)y = 3(bx+ a)
4
3

4b + c1

Verification of solutions

y = 3(bx+ a)
4
3

4b + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−(bx+ a)
1
3

2 + i
√
3 (bx+ a)

1
3

2 dx

=
3(bx+ a)

4
3
(
−1 + i

√
3
)

8b + c2

Summary
The solution(s) found are the following

(1)y =
3(bx+ a)

4
3
(
−1 + i

√
3
)

8b + c2

Verification of solutions

y =
3(bx+ a)

4
3
(
−1 + i

√
3
)

8b + c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−(bx+ a)
1
3

2 − i
√
3 (bx+ a)

1
3

2 dx

= −
3(bx+ a)

4
3
(
1 + i

√
3
)

8b + c3

Summary
The solution(s) found are the following

(1)y = −
3(bx+ a)

4
3
(
1 + i

√
3
)

8b + c3

9104



Verification of solutions

y = −
3(bx+ a)

4
3
(
1 + i

√
3
)

8b + c3

Verified OK.

34.13.1 Maple step by step solution

Let’s solve
y′3 = bx+ a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′3dx =

∫
(bx+ a) dx+ c1

• Cannot compute integral∫
y′3dx = 1

2b x
2 + ax+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �

9105



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 90� �
dsolve(diff(y(x),x)^3 = b*x+a,y(x), singsol=all)� �

y(x) = (3bx+ 3a) (bx+ a)
1
3 + 4c1b

4b

y(x) =
−3(bx+ a)

4
3
(
1 + i

√
3
)
+ 8c1b

8b

y(x) =
3(bx+ a)

4
3
(
−1 + i

√
3
)
+ 8c1b

8b

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 80� �
DSolve[(y'[x])^3 ==a+b x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3(a+ bx)4/3
4b + c1

y(x) → −3 3
√
−1(a+ bx)4/3

4b + c1

y(x) → 3(−1)2/3(a+ bx)4/3
4b + c1
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34.14 problem 1016
34.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9109

Internal problem ID [4241]
Internal file name [OUTPUT/3734_Sunday_June_05_2022_10_34_21_AM_7697013/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1016.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 = a xn

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = (a xn)
1
3 (1)

y′ = −(a xn)
1
3

2 + i
√
3 (a xn)

1
3

2 (2)

y′ = −(a xn)
1
3

2 − i
√
3 (a xn)

1
3

2 (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

(a xn)
1
3 dx

= 3x(a xn)
1
3

n+ 3 + c1
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Summary
The solution(s) found are the following

(1)y = 3x(a xn)
1
3

n+ 3 + c1

Verification of solutions

y = 3x(a xn)
1
3

n+ 3 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−(a xn)
1
3

2 + i
√
3 (a xn)

1
3

2 dx

=
3x(a xn)

1
3
(
−1 + i

√
3
)

2 (n+ 3) + c2

Summary
The solution(s) found are the following

(1)y =
3x(a xn)

1
3
(
−1 + i

√
3
)

2 (n+ 3) + c2

Verification of solutions

y =
3x(a xn)

1
3
(
−1 + i

√
3
)

2 (n+ 3) + c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−(a xn)
1
3

2 − i
√
3 (a xn)

1
3

2 dx

= −
3x(a xn)

1
3
(
1 + i

√
3
)

2 (n+ 3) + c3
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Summary
The solution(s) found are the following

(1)y = −
3x(a xn)

1
3
(
1 + i

√
3
)

2 (n+ 3) + c3

Verification of solutions

y = −
3x(a xn)

1
3
(
1 + i

√
3
)

2 (n+ 3) + c3

Verified OK.

34.14.1 Maple step by step solution

Let’s solve
y′3 = a xn

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′3dx =

∫
a xndx+ c1

• Cannot compute integral∫
y′3dx = a xn+1

n+1 + c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �

9109



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 100� �
dsolve(diff(y(x),x)^3 = a*x^n,y(x), singsol=all)� �

y(x) = 3x(a xn)
1
3 + c1(n+ 3)
n+ 3

y(x) =
(
3i
√
3x− 3x

)
(a xn)

1
3 + 2c1(n+ 3)

2n+ 6

y(x) =
(
−3i

√
3x− 3x

)
(a xn)

1
3 + 2c1(n+ 3)

2n+ 6

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 95� �
DSolve[(y'[x])^3 ==a x^n,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3 3
√
ax

n
3+1

n+ 3 + c1

y(x) → −3 3
√
−1 3

√
ax

n
3+1

n+ 3 + c1

y(x) → 3(−1)2/3 3
√
ax

n
3+1

n+ 3 + c1
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34.15 problem 1017
34.15.1 Solving as first order nonlinear p but linear in x y ode . . . . . 9111
34.15.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9114

Internal problem ID [4242]
Internal file name [OUTPUT/3735_Sunday_June_05_2022_10_34_27_AM_89501133/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1017.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert", "first_order_non-
linear_p_but_linear_in_x_y"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′
3 − y = −x

34.15.1 Solving as first order nonlinear p but linear in x y ode

The ode has the form

(y′) n
m = ax+ by + c (1)

Where n = 3,m = 1, a = −1, b = 1, c = 0. Hence the ode is

(y′)3 = y − x

Let

u = ax+ by + c

Hence

u′ = a+ by′

y′ = u′ − a

b
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Substituting the above in (1) gives(
u′ − a

b

) n
m

= u(
u′ − a

b

)n

= um

Plugging in the above the values for n,m, a, b, c gives

(u′(x) + 1)3 = u

Therefore the solutions are

u′(x) + 1 = u
1
3

u′(x) + 1 = −u
1
3

2 + i
√
3u 1

3

2

u′(x) + 1 = −u
1
3

2 − i
√
3u 1

3

2
Rewriting the above gives

u′(x) = u
1
3 − 1

u′(x) = −u
1
3

2 + i
√
3u 1

3

2 − 1

u′(x) = −u
1
3

2 − i
√
3u 1

3

2 − 1

Each of the above is a separable ODE in u(x). This results in
du

u
1
3 − 1

= dx

du

−u
1
3
2 + i

√
3u

1
3

2 − 1
= dx

du

−u
1
3
2 − i

√
3u

1
3

2 − 1
= dx

Integrating each of the above solutions gives∫
du

u
1
3 − 1

= x+ c1∫
du

−u
1
3
2 + i

√
3u

1
3

2 − 1
= x+ c1∫

du

−u
1
3
2 − i

√
3u

1
3

2 − 1
= x+ c1
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But since

u = ax+ by + c

= y − x

Then the solutions can be written as∫ y−x 1
τ

1
3 − 1

dτ = x+ c1∫ y−x 1

− τ
1
3
2 + i

√
3 τ

1
3

2 − 1
dτ = x+ c1∫ y−x 1

− τ
1
3
2 − i

√
3 τ

1
3

2 − 1
dτ = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y−x 1

τ
1
3 − 1

dτ = x+ c1

(2)
∫ y−x 1

− τ
1
3
2 + i

√
3 τ

1
3

2 − 1
dτ = x+ c1

(3)
∫ y−x 1

− τ
1
3
2 − i

√
3 τ

1
3

2 − 1
dτ = x+ c1

Verification of solutions ∫ y−x 1
τ

1
3 − 1

dτ = x+ c1

Verified OK. ∫ y−x 1

− τ
1
3
2 + i

√
3 τ

1
3

2 − 1
dτ = x+ c1

Verified OK. ∫ y−x 1

− τ
1
3
2 − i

√
3 τ

1
3

2 − 1
dτ = x+ c1

Verified OK.
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34.15.2 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 − y = −x

Solving for y from the above results in

y = p3 + x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = 1
g = p3

Hence (2) becomes

p− 1 = 3p2p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = x+ 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1
3p (x)2

(3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = 3p2

p− 1 (4)

This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫ 3p2

p− 1 dp

= 3p2
2 + 3p+ 3 ln (p− 1) + c2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = (y − x)
1
3

p = −(y − x)
1
3

2 − i
√
3 (y − x)

1
3

2

p = −(y − x)
1
3

2 + i
√
3 (y − x)

1
3

2

Substituting the above in the solution for x found above gives

x = 3(y − x)
2
3

2 + 3(y − x)
1
3 + 3 ln

(
(y − x)

1
3 − 1

)
+ c2

x = −3(y − x)
2
3

4 + 3i
√
3 (y − x)

2
3

4 − 3(y − x)
1
3

2 − 3i
√
3 (y − x)

1
3

2
− 3 ln (2) + 3 ln

(
−(y − x)

1
3 − i

√
3 (y − x)

1
3 − 2

)
+ c2

x = −3(y − x)
2
3

4 − 3i
√
3 (y − x)

2
3

4 − 3(y − x)
1
3

2 + 3i
√
3 (y − x)

1
3

2
− 3 ln (2) + 3 ln

(
i
√
3 (y − x)

1
3 − (y − x)

1
3 − 2

)
+ c2
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Summary
The solution(s) found are the following

(1)y = x+ 1

(2)x = 3(y − x)
2
3

2 + 3(y − x)
1
3 + 3 ln

(
(y − x)

1
3 − 1

)
+ c2

(3)x = −3(y − x)
2
3

4 + 3i
√
3 (y − x)

2
3

4 − 3(y − x)
1
3

2 − 3i
√
3 (y − x)

1
3

2
− 3 ln (2) + 3 ln

(
−(y − x)

1
3 − i

√
3 (y − x)

1
3 − 2

)
+ c2

(4)x = −3(y − x)
2
3

4 − 3i
√
3 (y − x)

2
3

4 − 3(y − x)
1
3

2 + 3i
√
3 (y − x)

1
3

2
− 3 ln (2) + 3 ln

(
i
√
3 (y − x)

1
3 − (y − x)

1
3 − 2

)
+ c2

Verification of solutions

y = x+ 1

Verified OK.

x = 3(y − x)
2
3

2 + 3(y − x)
1
3 + 3 ln

(
(y − x)

1
3 − 1

)
+ c2

Verified OK.

x = −3(y − x)
2
3

4 + 3i
√
3 (y − x)

2
3

4 − 3(y − x)
1
3

2 − 3i
√
3 (y − x)

1
3

2
− 3 ln (2) + 3 ln

(
−(y − x)

1
3 − i

√
3 (y − x)

1
3 − 2

)
+ c2

Verified OK.

x = −3(y − x)
2
3

4 − 3i
√
3 (y − x)

2
3

4 − 3(y − x)
1
3

2 + 3i
√
3 (y − x)

1
3

2
− 3 ln (2) + 3 ln

(
i
√
3 (y − x)

1
3 − (y − x)

1
3 − 2

)
+ c2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 217� �
dsolve(diff(y(x),x)^3+x-y(x) = 0,y(x), singsol=all)� �

x− 3(y(x)− x)
2
3

2 − 3(y(x)− x)
1
3 − 3 ln

(
(y(x)− x)

1
3 − 1

)
− c1 = 0

x+ 3(y(x)− x)
2
3

4 − 3i
√
3 (y(x)− x)

2
3

4 + 3(y(x)− x)
1
3

2 + 3i
√
3 (y(x)− x)

1
3

2
+ 6 ln (2)− 3 ln

(
−4− 2i

√
3 (y(x)− x)

1
3 − 2(y(x)− x)

1
3

)
− c1 = 0

x+ 3(y(x)− x)
2
3

4 + 3i
√
3 (y(x)− x)

2
3

4 + 3(y(x)− x)
1
3

2 − 3i
√
3 (y(x)− x)

1
3

2
+ 6 ln (2)− 3 ln

(
2i
√
3 (y(x)− x)

1
3 − 2(y(x)− x)

1
3 − 4

)
− c1 = 0
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3 Solution by Mathematica
Time used: 10.999 (sec). Leaf size: 298� �
DSolve[(y'[x])^3 +x-y[x]==0 x,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[
3
2(y(x)− x)2/3 + 3 3

√
y(x)− x+ 3 log

(
3
√
y(x)− x− 1

)
− x = c1, y(x)

]
Solve

[
1
2

(
1
2

3
√

y(x)− x
(
4i(y(x)−x)2/3+3

√
3 3
√
y(x)− x−3i 3

√
y(x)− x−6

√
3−6i

)
+6i log

(√
2− 2i

√
3−2i 3

√
y(x)− x

))
− i(y(x)− x) = c1, y(x)

]
Solve

[
y(x)
2

+1
4

(
−1
2

3
√

y(x)− x
(
4(y(x)−x)2/3+3i

√
3 3
√

y(x)− x−3 3
√
y(x)− x−6i

√
3−6

)
−6 log

(
2i 3
√

y(x)− x+
√

2 + 2i
√
3
))

= c1, y(x)
]
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34.16 problem 1018
34.16.1 Solving as first order nonlinear p but separable ode . . . . . . . 9119

Internal problem ID [4243]
Internal file name [OUTPUT/3736_Sunday_June_05_2022_10_34_39_AM_71226790/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1018.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
3 −

(
a+ yb+ cy2

)
f(x) = 0

34.16.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 3,m = 1, f = f(x) , g = y2c+ by + a. Hence the ode is

(y′)3 = f(x)
(
y2c+ by + a

)
Solving for y′ from (1) gives

y′ = (fg)
1
3

y′ = −(fg)
1
3

2 + i
√
3 (fg)

1
3

2

y′ = −(fg)
1
3

2 − i
√
3 (fg)

1
3

2
To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

f(x) > 0
y2c+ by + a > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
3 g

1
3

y′ =
f

1
3 g

1
3
(
−1 + i

√
3
)

2

y′ = −
f

1
3 g

1
3
(
1 + i

√
3
)

2

Therefore
1
g

1
3
dy =

(
f

1
3

)
dx

2
g

1
3
(
−1 + i

√
3
) dy =

(
f

1
3

)
dx

− 2
g

1
3
(
1 + i

√
3
) dy =

(
f

1
3

)
dx

Replacing f(x), g(y) by their values gives

1
(y2c+ by + a)

1
3
dy =

(
f(x)

1
3

)
dx

2
(y2c+ by + a)

1
3
(
−1 + i

√
3
) dy =

(
f(x)

1
3

)
dx

− 2
(y2c+ by + a)

1
3
(
1 + i

√
3
) dy =

(
f(x)

1
3

)
dx

Integrating now gives the solutions.∫ 1
(y2c+ by + a)

1
3
dy =

∫
f(x)

1
3 dx+ c1∫ 2

(y2c+ by + a)
1
3
(
−1 + i

√
3
)dy =

∫
f(x)

1
3 dx+ c1∫

− 2
(y2c+ by + a)

1
3
(
1 + i

√
3
)dy =

∫
f(x)

1
3 dx+ c1
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Integrating gives ∫ y 1
(_a2c+ _ab+ a)

1
3
d_a =

∫
f(x)

1
3 dx+ c1

2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
−1 + i

√
3

=
∫

f(x)
1
3 dx+ c1

−
2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
1 + i

√
3

=
∫

f(x)
1
3 dx+ c1

Therefore ∫ y 1
(_a2c+ _ab+ a)

1
3
d_a =

∫
f(x)

1
3 dx+ c1

2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
−1 + i

√
3

=
∫

f(x)
1
3 dx+ c1

−
2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
1 + i

√
3

=
∫

f(x)
1
3 dx+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

(_a2c+ _ab+ a)
1
3
d_a =

∫
f(x)

1
3 dx+ c1

(2)
2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
−1 + i

√
3

=
∫

f(x)
1
3 dx+ c1

(3)−
2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
1 + i

√
3

=
∫

f(x)
1
3 dx+ c1
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Verification of solutions∫ y 1
(_a2c+ _ab+ a)

1
3
d_a =

∫
f(x)

1
3 dx+ c1

Verified OK. {0 < c*y^2+b*y+a, 0 < f(x)}

2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
−1 + i

√
3

=
∫

f(x)
1
3 dx+ c1

Verified OK. {0 < c*y^2+b*y+a, 0 < f(x)}

−
2
(∫ y 1(_a2c+_ab+a

) 1
3
d_a

)
1 + i

√
3

=
∫

f(x)
1
3 dx+ c1

Verified OK. {0 < c*y^2+b*y+a, 0 < f(x)}

9122



Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 191� �
dsolve(diff(y(x),x)^3 = (a+b*y(x)+c*y(x)^2)*f(x),y(x), singsol=all)� �

∫ y(x) 1
(_a2c+ b_a+ a)

1
3
d_a−

∫ x ((
a+ by(x) + cy(x)2

)
f(_a)

) 1
3d_a(

a+ by (x) + cy (x)2
) 1

3
+c1

= 0∫ y(x) 1
(_a2c+ b_a+ a)

1
3
d_a

+

(
1 + i

√
3
) (∫ x ((

a+ by(x) + cy(x)2
)
f(_a)

) 1
3d_a

)
2
(
a+ by (x) + cy (x)2

) 1
3

+ c1 = 0

∫ y(x) 1
(_a2c+ b_a+ a)

1
3
d_a

−

(
−1 + i

√
3
) (∫ x ((

a+ by(x) + cy(x)2
)
f(_a)

) 1
3d_a

)
2
(
a+ by (x) + cy (x)2

) 1
3

+ c1 = 0
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3 Solution by Mathematica
Time used: 21.19 (sec). Leaf size: 405� �
DSolve[(y'[x])^3 ==(a+b y[x]+c y[x]^2) f[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

(2#1c+ b) 3

√
c(#1(#1c+ b) + a)

4ac− b2
Hypergeometric2F1

(
1
3 ,

1
2 ,

3
2 ,

(b+2c#1)2
b2−4ac

)
3
√
2c 3
√
#1(#1c+ b) + a

&

[∫ x

1

3
√

f(K[1])dK[1]

+ c1

]
y(x)

→ InverseFunction

(2#1c+ b) 3

√
c(#1(#1c+ b) + a)

4ac− b2
Hypergeometric2F1

(
1
3 ,

1
2 ,

3
2 ,

(b+2c#1)2
b2−4ac

)
3
√
2c 3
√
#1(#1c+ b) + a

&

[∫ x

1

− 3
√
−1 3
√
f(K[2])dK[2] + c1

]
y(x)

→ InverseFunction

(2#1c+ b) 3

√
c(#1(#1c+ b) + a)

4ac− b2
Hypergeometric2F1

(
1
3 ,

1
2 ,

3
2 ,

(b+2c#1)2
b2−4ac

)
3
√
2c 3
√
#1(#1c+ b) + a

&

[∫ x

1
(−1)2/3 3

√
f(K[3])dK[3]

+ c1

]
y(x) → −

√
b2 − 4ac+ b

2c

y(x) →
√
b2 − 4ac− b

2c
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34.17 problem 1019
34.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9128

Internal problem ID [4244]
Internal file name [OUTPUT/3737_Sunday_June_05_2022_10_34_49_AM_87660983/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1019.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 − (y − a)2 (y − b)2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
y4 − 2ay3 − 2by3 + y2a2 + 4y2ab+ b2y2 − 2ya2b− 2ya b2 + a2b2

) 1
3 (1)

y′ = −(y4 − 2ay3 − 2by3 + y2a2 + 4y2ab+ b2y2 − 2ya2b− 2ya b2 + a2b2)
1
3

2 + i
√
3 (y4 − 2ay3 − 2by3 + y2a2 + 4y2ab+ b2y2 − 2ya2b− 2ya b2 + a2b2)

1
3

2
(2)

y′ = −(y4 − 2ay3 − 2by3 + y2a2 + 4y2ab+ b2y2 − 2ya2b− 2ya b2 + a2b2)
1
3

2 − i
√
3 (y4 − 2ay3 − 2by3 + y2a2 + 4y2ab+ b2y2 − 2ya2b− 2ya b2 + a2b2)

1
3

2
(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 1
(a2b2 − 2y a2b+ y2a2 − 2ya b2 + 4ab y2 − 2a y3 + b2y2 − 2b y3 + y4)

1
3
dy =

∫
dx

∫ y 1
(_a4 − 2_a3a− 2_a3b+ _a2a2 + 4_a2ab+ _a2b2 − 2_a a2b− 2_aa b2 + a2b2)

1
3
d_a

= x+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1

(_a4 − 2_a3a− 2_a3b+ _a2a2 + 4_a2ab+ _a2b2 − 2_a a2b− 2_aa b2 + a2b2)
1
3
d_a

= x+ c1

Verification of solutions∫ y 1
(_a4 − 2_a3a− 2_a3b+ _a2a2 + 4_a2ab+ _a2b2 − 2_a a2b− 2_aa b2 + a2b2)

1
3
d_a

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives∫ 1

− (a2b2−2y a2b+y2a2−2ya b2+4ab y2−2a y3+b2y2−2b y3+y4)
1
3

2 + i
√
3 (a2b2−2y a2b+y2a2−2ya b2+4ab y2−2a y3+b2y2−2b y3+y4)

1
3

2

dy

=
∫

dx∫ y 1

−
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2 + i
√
3
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2

d_a

= x+ c2

Summary
The solution(s) found are the following

(1)
∫ y 1

−
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2 + i
√
3
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2

d_a

= x+ c2

Verification of solutions∫ y 1

−
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2 + i
√
3
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2

d_a

= x+ c2

Verified OK.
Solving equation (3)
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Integrating both sides gives∫ 1

− (a2b2−2y a2b+y2a2−2ya b2+4ab y2−2a y3+b2y2−2b y3+y4)
1
3

2 − i
√
3 (a2b2−2y a2b+y2a2−2ya b2+4ab y2−2a y3+b2y2−2b y3+y4)

1
3

2

dy

=
∫

dx∫ y 1

−
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2 − i
√
3
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2

d_a

= x+ c3

Summary
The solution(s) found are the following

(1)
∫ y 1

−
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2 − i
√
3
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2

d_a

= x+ c3

Verification of solutions∫ y 1

−
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2 − i
√
3
(_a4−2_a3a−2_a3b+_a2a2+4_a2ab+_a2b2−2_a a2b−2_aa b2+a2b2

) 1
3

2

d_a

= x+ c3

Verified OK.

34.17.1 Maple step by step solution

Let’s solve
y′3 − (y − a)2 (y − b)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(y4−2ay3−2by3+y2a2+4y2ab+b2y2−2ya2b−2ya b2+a2b2)
1
3
= 1

• Integrate both sides with respect to x∫
y′

(y4−2ay3−2by3+y2a2+4y2ab+b2y2−2ya2b−2ya b2+a2b2)
1
3
dx =

∫
1dx+ c1

• Cannot compute integral
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∫
y′

(y4−2ay3−2by3+y2a2+4y2ab+b2y2−2ya2b−2ya b2+a2b2)
1
3
dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 146� �
dsolve(diff(y(x),x)^3 = (y(x)-a)^2*(y(x)-b)^2,y(x), singsol=all)� �

y(x) = a
y(x) = b

x−

∫ y(x) 1(
(_a− a)2 (_a− b)2

) 1
3
d_a

− c1 = 0

2
(∫ y(x) 1(

(_a−a)2(_a−b)2
) 1

3
d_a

)
+ i(x− c1)

√
3 + x− c1

1 + i
√
3

= 0

−2
(∫ y(x) 1(

(_a−a)2(_a−b)2
) 1

3
d_a

)
+ i(x− c1)

√
3− x+ c1

−1 + i
√
3

= 0
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3 Solution by Mathematica
Time used: 1.124 (sec). Leaf size: 246� �
DSolve[(y'[x])^3 ==(y[x]-a)^2 (y[x]-b)^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−3 3
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

a−#1
a−b

)
(b−#1)2/3 &

 [x+c1]

y(x)

→ InverseFunction

−3 3
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

a−#1
a−b

)
(b−#1)2/3 &

 [− 3
√
−1x+c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

a−#1
a−b

)
(b−#1)2/3 &

 [(−1)2/3x+c1
]

y(x) → a
y(x) → b
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34.18 problem 1020
34.18.1 Solving as first order nonlinear p but separable ode . . . . . . . 9131

Internal problem ID [4245]
Internal file name [OUTPUT/3738_Sunday_June_05_2022_10_34_57_AM_48146273/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1020.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
3 + f(x) (y − a)2 (y − b)2 = 0

34.18.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 3,m = 1, f = −f(x) , g = (−y + b)2 (a− y)2. Hence the ode is

(y′)3 = −f(x) (−y + b)2 (a− y)2

Solving for y′ from (1) gives

y′ = (fg)
1
3

y′ = −(fg)
1
3

2 + i
√
3 (fg)

1
3

2

y′ = −(fg)
1
3

2 − i
√
3 (fg)

1
3

2
To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

−f(x) > 0
(−y + b)2 (a− y)2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
3 g

1
3

y′ =
f

1
3 g

1
3
(
−1 + i

√
3
)

2

y′ = −
f

1
3 g

1
3
(
1 + i

√
3
)

2

Therefore
1
g

1
3
dy =

(
f

1
3

)
dx

2
g

1
3
(
−1 + i

√
3
) dy =

(
f

1
3

)
dx

− 2
g

1
3
(
1 + i

√
3
) dy =

(
f

1
3

)
dx

Replacing f(x), g(y) by their values gives

1(
(−y + b)2 (a− y)2

) 1
3
dy =

(
(−f(x))

1
3

)
dx

2(
(−y + b)2 (a− y)2

) 1
3
(
−1 + i

√
3
) dy =

(
(−f(x))

1
3

)
dx

− 2(
(−y + b)2 (a− y)2

) 1
3
(
1 + i

√
3
) dy =

(
(−f(x))

1
3

)
dx

Integrating now gives the solutions.∫ 1(
(−y + b)2 (a− y)2

) 1
3
dy =

∫
(−f(x))

1
3 dx+ c1∫ 2(

(−y + b)2 (a− y)2
) 1

3
(
−1 + i

√
3
)dy =

∫
(−f(x))

1
3 dx+ c1∫

− 2(
(−y + b)2 (a− y)2

) 1
3
(
1 + i

√
3
)dy =

∫
(−f(x))

1
3 dx+ c1
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Integrating gives∫ y 1(
(−_a+ b)2 (a− _a)2

) 1
3
d_a =

∫
(−f(x))

1
3 dx+ c1

2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

−

2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Therefore ∫ y 1(
(−_a+ b)2 (a− _a)2

) 1
3
d_a =

∫
(−f(x))

1
3 dx+ c1

2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

−

2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1(

(−_a+ b)2 (a− _a)2
) 1

3
d_a =

∫
(−f(x))

1
3 dx+ c1

(2)
2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

(3)−

2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1
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Verification of solutions∫ y 1(
(−_a+ b)2 (a− _a)2

) 1
3
d_a =

∫
(−f(x))

1
3 dx+ c1

Verified OK. {0 < (-y+b)^2*(a-y)^2, 0 < -f(x)}

2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Verified OK. {0 < (-y+b)^2*(a-y)^2, 0 < -f(x)}

−

2
(∫ y 1(

(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Verified OK. {0 < (-y+b)^2*(a-y)^2, 0 < -f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 212� �
dsolve(diff(y(x),x)^3+f(x)*(y(x)-a)^2*(y(x)-b)^2 = 0,y(x), singsol=all)� �
∫ y(x) 1

((_a− b) (_a− a))
2
3
d_a−

∫ x (−f(_a) (y(x)− a)2 (y(x)− b)2
) 1

3 d_a
((y (x)− b) (y (x)− a))

2
3

+ c1 = 0∫ y(x) 1
((_a− b) (_a− a))

2
3
d_a

+

(
1 + i

√
3
) (∫ x (−f(_a) (y(x)− a)2 (y(x)− b)2

) 1
3 d_a

)
2 ((y (x)− b) (y (x)− a))

2
3

+ c1 = 0∫ y(x) 1
((_a− b) (_a− a))

2
3
d_a

−

(
−1 + i

√
3
) (∫ x (−f(_a) (y(x)− a)2 (y(x)− b)2

) 1
3 d_a

)
2 ((y (x)− b) (y (x)− a))

2
3

+ c1 = 0

3 Solution by Mathematica
Time used: 1.083 (sec). Leaf size: 287� �
DSolve[(y'[x])^3 +f[x] (y[x]-a)^2 (y[x]-b)^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−3 3
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1
− 3
√

f(K[1])dK[1]+c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1

3
√
−1 3
√

f(K[2])dK[2]+c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1
−(−1)2/3 3

√
f(K[3])dK[3]+c1

]
y(x) → a
y(x) → b
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34.19 problem 1021
34.19.1 Solving as first order nonlinear p but separable ode . . . . . . . 9137

Internal problem ID [4246]
Internal file name [OUTPUT/3739_Sunday_June_05_2022_10_35_08_AM_28740706/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1021.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
3 + f(x) (y − a)2 (y − b)2 (y − c)2 = 0

34.19.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 3,m = 1, f = −f(x) , g = (−y + c)2 (−y + b)2 (a− y)2. Hence the ode is

(y′)3 = −f(x) (−y + c)2 (−y + b)2 (a− y)2

Solving for y′ from (1) gives

y′ = (fg)
1
3

y′ = −(fg)
1
3

2 + i
√
3 (fg)

1
3

2

y′ = −(fg)
1
3

2 − i
√
3 (fg)

1
3

2
To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

−f(x) > 0
(−y + c)2 (−y + b)2 (a− y)2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
3 g

1
3

y′ =
f

1
3 g

1
3
(
−1 + i

√
3
)

2

y′ = −
f

1
3 g

1
3
(
1 + i

√
3
)

2

Therefore
1
g

1
3
dy =

(
f

1
3

)
dx

2
g

1
3
(
−1 + i

√
3
) dy =

(
f

1
3

)
dx

− 2
g

1
3
(
1 + i

√
3
) dy =

(
f

1
3

)
dx

Replacing f(x), g(y) by their values gives

1(
(−y + c)2 (−y + b)2 (a− y)2

) 1
3
dy =

(
(−f(x))

1
3

)
dx

2(
(−y + c)2 (−y + b)2 (a− y)2

) 1
3
(
−1 + i

√
3
) dy =

(
(−f(x))

1
3

)
dx

− 2(
(−y + c)2 (−y + b)2 (a− y)2

) 1
3
(
1 + i

√
3
) dy =

(
(−f(x))

1
3

)
dx

Integrating now gives the solutions.∫ 1(
(−y + c)2 (−y + b)2 (a− y)2

) 1
3
dy =

∫
(−f(x))

1
3 dx+ c1∫ 2(

(−y + c)2 (−y + b)2 (a− y)2
) 1

3
(
−1 + i

√
3
)dy =

∫
(−f(x))

1
3 dx+ c1∫

− 2(
(−y + c)2 (−y + b)2 (a− y)2

) 1
3
(
1 + i

√
3
)dy =

∫
(−f(x))

1
3 dx+ c1
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Integrating gives∫ y 1(
(−_a+ c)2 (−_a+ b)2 (a− _a)2

) 1
3
d_a =

∫
(−f(x))

1
3 dx+ c1

2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

−

2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Therefore∫ y 1(
(−_a+ c)2 (−_a+ b)2 (a− _a)2

) 1
3
d_a =

∫
(−f(x))

1
3 dx+ c1

2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

−

2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1(

(−_a+ c)2 (−_a+ b)2 (a− _a)2
) 1

3
d_a =

∫
(−f(x))

1
3 dx+ c1

(2)
2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

(3)−

2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1
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Verification of solutions∫ y 1(
(−_a+ c)2 (−_a+ b)2 (a− _a)2

) 1
3
d_a =

∫
(−f(x))

1
3 dx+ c1

Verified OK. {0 < (-y+c)^2*(-y+b)^2*(a-y)^2, 0 < -f(x)}

2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
−1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Verified OK. {0 < (-y+c)^2*(-y+b)^2*(a-y)^2, 0 < -f(x)}

−

2
(∫ y 1(

(−_a+c)2(−_a+b)2(a−_a)2
) 1

3
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
3 dx+ c1

Verified OK. {0 < (-y+c)^2*(-y+b)^2*(a-y)^2, 0 < -f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.344 (sec). Leaf size: 269� �
dsolve(diff(y(x),x)^3+f(x)*(y(x)-a)^2*(y(x)-b)^2*(y(x)-c)^2 = 0,y(x), singsol=all)� �∫ y(x) 1

((_a− c) (_a− b) (_a− a))
2
3
d_a

−
∫ x (−f(_a) (y(x)− c)2 (y(x)− b)2 (y(x)− a)2

) 1
3 d_a

((y (x)− c) (y (x)− b) (y (x)− a))
2
3

+ c1 = 0∫ y(x) 1
((_a− c) (_a− b) (_a− a))

2
3
d_a

+

(
1 + i

√
3
) (∫ x (−f(_a) (y(x)− c)2 (y(x)− b)2 (y(x)− a)2

) 1
3 d_a

)
2 ((y (x)− c) (y (x)− b) (y (x)− a))

2
3

+ c1 = 0∫ y(x) 1
((_a− c) (_a− b) (_a− a))

2
3
d_a

−

(
−1 + i

√
3
) (∫ x (−f(_a) (y(x)− c)2 (y(x)− b)2 (y(x)− a)2

) 1
3 d_a

)
2 ((y (x)− c) (y (x)− b) (y (x)− a))

2
3

+ c1 = 0
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3 Solution by Mathematica
Time used: 15.995 (sec). Leaf size: 421� �
DSolve[(y'[x])^3 +f[x](y[x]-a)^2 (y[x]-b)^2 (y[x]-c)^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

3 3
√

a−#1 3
√

c−#1
(

(b−#1)(a−c)
(c−#1)(a−b)

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

(c−b)(a−#1)
(a−b)(c−#1)

)
(b−#1)2/3(a− c) &

[∫ x

1
− 3
√

f(K[1])dK[1]+c1

]
y(x)

→ InverseFunction

3 3
√

a−#1 3
√

c−#1
(

(b−#1)(a−c)
(c−#1)(a−b)

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

(c−b)(a−#1)
(a−b)(c−#1)

)
(b−#1)2/3(a− c) &

[∫ x

1

3
√
−1 3
√
f(K[2])dK[2]+c1

]
y(x)

→ InverseFunction

3 3
√

a−#1 3
√

c−#1
(

(b−#1)(a−c)
(c−#1)(a−b)

)2/3
Hypergeometric2F1

(
1
3 ,

2
3 ,

4
3 ,

(c−b)(a−#1)
(a−b)(c−#1)

)
(b−#1)2/3(a− c) &

[∫ x

1
−(−1)2/3 3

√
f(K[3])dK[3]+c1

]
y(x) → a
y(x) → b
y(x) → c
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34.20 problem 1022
34.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9147

Internal problem ID [4247]
Internal file name [OUTPUT/3740_Sunday_June_05_2022_10_35_21_AM_88065148/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1022.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 + y′ = bx− a

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

6 − 2(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

(1)

y′ = −
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

12 + 1(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3
+

i
√
3
((

108bx−108a+12
√
81b2x2−162abx+81a2+12

) 1
3

6 + 2(
108bx−108a+12

√
81b2x2−162abx+81a2+12

) 1
3

)
2

(2)

y′ = −
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

12 + 1(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3
−

i
√
3
((

108bx−108a+12
√
81b2x2−162abx+81a2+12

) 1
3

6 + 2(
108bx−108a+12

√
81b2x2−162abx+81a2+12

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

y =
∫ (

108bx− 108a+ 12
√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

6
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx

=
∫ (

108bx− 108a+ 12
√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

6
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫ (

108bx− 108a+ 12
√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

6
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx+ c1

Verification of solutions

y =
∫ (

108bx− 108a+ 12
√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

6
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3−

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 + 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx

=
∫

i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3−

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 + 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx+ c2

Summary
The solution(s) found are the following

(1)y

=
∫

i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3−

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 + 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx

+ c2
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Verification of solutions
y

=
∫

i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3−

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 + 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx

+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−
i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3 +

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx

=
∫

−
i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3 +

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx+ c3

Summary
The solution(s) found are the following

(1)y =
∫

−
i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3 +

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx

+ c3

Verification of solutions

y =
∫

−
i
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3
√
3 + 12i

√
3 +

(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 2
3 − 12

12
(
108bx− 108a+ 12

√
81b2x2 − 162abx+ 81a2 + 12

) 1
3

dx

+ c3

Verified OK.
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34.20.1 Maple step by step solution

Let’s solve
y′3 + y′ = bx− a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′3 + y′

)
dx =

∫
(bx− a) dx+ c1

• Cannot compute integral∫ (
y′3 + y′

)
dx = 1

2b x
2 − ax+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �

9147



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 302� �
dsolve(diff(y(x),x)^3+diff(y(x),x)+a-b*x = 0,y(x), singsol=all)� �
y(x) =

−

(∫ i
(
108bx−108a+12

√
81b2x2−162abx+81a2+12

) 2
3√3+

(
108bx−108a+12

√
81b2x2−162abx+81a2+12

) 2
3+12i

√
3−12(

108bx−108a+12
√
81b2x2−162abx+81a2+12

) 1
3

dx

)
12

+ c1

y(x) =

(∫ (
−1+i

√
3
)(

108bx−108a+12
√
81b2x2−162abx+81a2+12

) 2
3+12i

√
3+12(

108bx−108a+12
√
81b2x2−162abx+81a2+12

) 1
3

dx

)
12 + c1

y(x) =

(∫ (
108bx−108a+12

√
81b2x2−162abx+81a2+12

) 2
3−12(

108bx−108a+12
√
81b2x2−162abx+81a2+12

) 1
3

dx

)
6 + c1
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3 Solution by Mathematica
Time used: 2.035 (sec). Leaf size: 811� �
DSolve[(y'[x])^3 +y'[x]+a-b x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
144

(
22/3 3

√
3
(√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)4/3
b

−
4 3
√
232/3

(√
3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)2/3
b

− 24 22/3 3
√
3

b
(√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)2/3
+ 24 3

√
232/3

b
(√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)4/3 + 144c1

)

y(x) → 1
288

(
i22/3 3

√
3
(√

3 + i
) (√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)4/3
b

+
4 3
√
232/3

(
1 + i

√
3
) (√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)2/3
b

+
24 22/3 3

√
3
(
1− i

√
3
)

b
(√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)2/3
−

24 3
√
232/3

(
1 + i

√
3
)

b
(√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)4/3 + 288c1

)

y(x) → 1
288

(
−
22/3 3

√
3
(
1 + i

√
3
) (√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)4/3
b

+
4 3
√
232/3

(
1− i

√
3
) (√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)2/3
b

+
24 22/3 3

√
3
(
1 + i

√
3
)

b
(√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)2/3
+

24i 3
√
232/3

(√
3 + i

)
b
(√

3
√
27a2 − 54abx+ 27b2x2 + 4− 9a+ 9bx

)4/3 + 288c1

)
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34.21 problem 1023
34.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9153

Internal problem ID [4248]
Internal file name [OUTPUT/3741_Sunday_June_05_2022_10_35_27_AM_24714363/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1023.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 + y′ − y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
108y + 12

√
12 + 81y2

) 1
3

6 − 2(
108y + 12

√
12 + 81y2

) 1
3

(1)

y′ = −
(
108y + 12

√
12 + 81y2

) 1
3

12 + 1(
108y + 12

√
12 + 81y2

) 1
3
+

i
√
3
((

108y+12
√

12+81y2
) 1

3

6 + 2(
108y+12

√
12+81y2

) 1
3

)
2

(2)

y′ = −
(
108y + 12

√
12 + 81y2

) 1
3

12 + 1(
108y + 12

√
12 + 81y2

) 1
3
−

i
√
3
((

108y+12
√

12+81y2
) 1

3

6 + 2(
108y+12

√
12+81y2

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 6
(
108y + 12

√
81y2 + 12

) 1
3(

108y + 12
√
81y2 + 12

) 2
3 − 12

dy =
∫

dx

6

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3(

108_a+ 12
√
81_a2 + 12

) 2
3 − 12

d_a

 = x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3(

108_a+ 12
√
81_a2 + 12

) 2
3 − 12

d_a

 = x+ c1

Verification of solutions

6

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3(

108_a+ 12
√
81_a2 + 12

) 2
3 − 12

d_a

 = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

∫ 12
(
108y + 12

√
81y2 + 12

) 1
3

i
√
3
(
108y + 12

√
81y2 + 12

) 2
3 + 12i

√
3−

(
108y + 12

√
81y2 + 12

) 2
3 + 12

dy =
∫

dx

12

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3

i
√
3
(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12i

√
3−

(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12

d_a


= x+ c2

Summary
The solution(s) found are the following

(1)12

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3

i
√
3
(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12i

√
3−

(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12

d_a


= x+ c2
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Verification of solutions

12

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3

i
√
3
(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12i

√
3−

(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12

d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

∫
−

12
(
108y + 12

√
81y2 + 12

) 1
3

i
√
3
(
108y + 12

√
81y2 + 12

) 2
3 + 12i

√
3 +

(
108y + 12

√
81y2 + 12

) 2
3 − 12

dy =
∫

dx

−12

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3

i
√
3
(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12i

√
3 +

(
108_a+ 12

√
81_a2 + 12

) 2
3 − 12

d_a


= x+ c3

Summary
The solution(s) found are the following

(1)−12

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3

i
√
3
(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12i

√
3 +

(
108_a+ 12

√
81_a2 + 12

) 2
3 − 12

d_a


= x+ c3

Verification of solutions

−12

∫ y
(
108_a+ 12

√
81_a2 + 12

) 1
3

i
√
3
(
108_a+ 12

√
81_a2 + 12

) 2
3 + 12i

√
3 +

(
108_a+ 12

√
81_a2 + 12

) 2
3 − 12

d_a


= x+ c3

Verified OK.
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34.21.1 Maple step by step solution

Let’s solve
y′3 + y′ − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

108y+12
√

12+81y2
) 1

3

6 − 2(
108y+12

√
12+81y2

) 1
3

= 1

• Integrate both sides with respect to x∫
y′(

108y+12
√

12+81y2
) 1

3

6 − 2(
108y+12

√
12+81y2

) 1
3

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

108y+12
√

12+81y2
) 1

3

6 − 2(
108y+12

√
12+81y2

) 1
3

dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

9153



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 221� �
dsolve(diff(y(x),x)^3+diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

x− 6

∫ y(x) (
108_a+ 12

√
81_a2 + 12

) 1
3(

108_a+ 12
√
81_a2 + 12

) 2
3 − 12

d_a

− c1 = 0

−12
(∫ y(x)

(
108_a+12

√
81_a2+12

) 1
3

−6−6i
√
3−
(
108_a+12

√
81_a2+12

) 2
3
d_a

)
+ i(x− c1)

√
3 + x− c1

1 + i
√
3

= 0

12
(∫ y(x)

(
108_a+12

√
81_a2+12

) 1
3

−
(
108_a+12

√
81_a2+12

) 2
3+
(√

3+3i
)2d_a

)
+ i(x− c1)

√
3 + c1 − x

−1 + i
√
3

= 0

3 Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 335� �
DSolve[(y'[x])^3 +y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

∫
3

√√
729#12 + 108− 27#1

22/3
(√

729#12 + 108− 27#1
)2/3

− 6 3
√
2
d#1&

[−x

6 + c1
]

y(x)

→ InverseFunction

∫
3

√√
729#12 + 108− 27#1

−i22/3
√
3
(√

729#12 + 108− 27#1
)2/3

+ 22/3
(√

729#12 + 108− 27#1
)2/3

− 6i 3
√
2
√
3− 6 3

√
2
d#1&

[ x12+c1
]

y(x)

→ InverseFunction

∫
3

√√
729#12 + 108− 27#1

i22/3
√
3
(√

729#12 + 108− 27#1
)2/3

+ 22/3
(√

729#12 + 108− 27#1
)2/3

+ 6i 3
√
2
√
3− 6 3

√
2
d#1&

[ x12+c1
]

y(x) → 0
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34.22 problem 1024
34.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9158

Internal problem ID [4249]
Internal file name [OUTPUT/3742_Sunday_June_05_2022_10_35_36_AM_7236292/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1024.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 + y′ − ey = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
108 ey + 12

√
12 + 81 e2y

) 1
3

6 − 2(
108 ey + 12

√
12 + 81 e2y

) 1
3

(1)

y′ = −
(
108 ey + 12

√
12 + 81 e2y

) 1
3

12 + 1(
108 ey + 12

√
12 + 81 e2y

) 1
3
+

i
√
3
((

108 ey+12
√
12+81 e2y

) 1
3

6 + 2(
108 ey+12

√
12+81 e2y

) 1
3

)
2

(2)

y′ = −
(
108 ey + 12

√
12 + 81 e2y

) 1
3

12 + 1(
108 ey + 12

√
12 + 81 e2y

) 1
3
−

i
√
3
((

108 ey+12
√
12+81 e2y

) 1
3

6 + 2(
108 ey+12

√
12+81 e2y

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 6
(
108 ey + 12

√
12 + 81 e2y

) 1
3(

108 ey + 12
√
12 + 81 e2y

) 2
3 − 12

dy =
∫

dx

6

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3(

108 e_a + 12
√
12 + 81 e2_a

) 2
3 − 12

d_a

 = x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3(

108 e_a + 12
√
12 + 81 e2_a

) 2
3 − 12

d_a

 = x+ c1

Verification of solutions

6

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3(

108 e_a + 12
√
12 + 81 e2_a

) 2
3 − 12

d_a

 = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

∫ 12
(
108 ey + 12

√
12 + 81 e2y

) 1
3

i
√
3
(
108 ey + 12

√
12 + 81 e2y

) 2
3 −

(
108 ey + 12

√
12 + 81 e2y

) 2
3 + 12i

√
3 + 12

dy

=
∫

dx

12

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3

i
√
3
(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 −

(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 + 12i

√
3 + 12

d_a


= x+ c2

Summary
The solution(s) found are the following

(1)12

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3

i
√
3
(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 −

(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 + 12i

√
3 + 12

d_a


= x+ c2
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Verification of solutions

12

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3

i
√
3
(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 −

(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 + 12i

√
3 + 12

d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

∫
−

12
(
108 ey + 12

√
12 + 81 e2y

) 1
3

i
√
3
(
108 ey + 12

√
12 + 81 e2y

) 2
3 +

(
108 ey + 12

√
12 + 81 e2y

) 2
3 + 12i

√
3− 12

dy

=
∫

dx

−12

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3

i
√
3
(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 +

(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 + 12i

√
3− 12

d_a


= x+ c3

Summary
The solution(s) found are the following

(1)−12

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3

i
√
3
(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 +

(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 + 12i

√
3− 12

d_a


= x+ c3

Verification of solutions

−12

∫ y
(
108 e_a + 12

√
12 + 81 e2_a

) 1
3

i
√
3
(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 +

(
108 e_a + 12

√
12 + 81 e2_a

) 2
3 + 12i

√
3− 12

d_a


= x+ c3

Verified OK.
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34.22.1 Maple step by step solution

Let’s solve
y′3 + y′ − ey = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

108 ey+12
√

12+81(ey)2
) 1

3

6 − 2(
108 ey+12

√
12+81(ey)2

) 1
3

= 1

• Integrate both sides with respect to x∫
y′(

108 ey+12
√

12+81(ey)2
) 1

3

6 − 2(
108 ey+12

√
12+81(ey)2

) 1
3

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

108 ey+12
√

12+81(ey)2
) 1

3

6 − 2(
108 ey+12

√
12+81(ey)2

) 1
3

dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 233� �
dsolve(diff(y(x),x)^3+diff(y(x),x) = exp(y(x)),y(x), singsol=all)� �

x− 6

∫ y(x) (
108 e_a + 12

√
12 + 81 e2_a

) 1
3(

108 e_a + 12
√
12 + 81 e2_a

) 2
3 − 12

d_a

− c1 = 0

−12
(∫ y(x)

(
108 e_a+12

√
12+81 e2_a

) 1
3

−
(
108 e_a+12

√
12+81 e2_a

) 2
3−6−6i

√
3
d_a

)
+ i(x− c1)

√
3 + x− c1

1 + i
√
3

= 0

12
(∫ y(x)

(
108 e_a+12

√
12+81 e2_a

) 1
3

−
(
108 e_a+12

√
12+81 e2_a

) 2
3+
(√

3+3i
)2d_a

)
+ i(x− c1)

√
3 + c1 − x

−1 + i
√
3

= 0
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3 Solution by Mathematica
Time used: 168.19 (sec). Leaf size: 1244� �
DSolve[(y'[x])^3 +y'[x]==Exp[ y[x]],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

 1
36

e−#1
(
22/3 3

√√
81e2#1 + 12− 9e#1

√
81e2#1 + 12− 9 22/3e#1 3

√√
81e2#1 + 12− 9e#1 + 4 32/3

)
(√

81e2#1 + 12− 9e#1
)2/3

−12 3
√
6 arctan

 62/3 3
√√

81e2#1 + 12− 9e#1

3
√
2
(√

81e2#1 + 12− 9e#1
)2/3

− 2 3
√
3


+ e−#1

3 62/3&

[− x

62/3 + c1
]

y(x) → InverseFunction


− e−#1

6 22/335/6

− 1
144i


e−#1

−12i 3
√
2 6
√
3e#1

(√
81e2#1 + 12− 9e#1

)2/3
arctan

 62/3
3
√√

81e2#1 + 12− 9e#1

3
√
2
(√

81e2#1+12−9e#1
)2/3

−2
3
√
3

− 3i22/3 3
√
3
(√

3− 3i
)
e#1 3
√√

81e2#1 + 12− 9e#1 + 22/335/6
√
27e2#1 + 4 3

√√
81e2#1 + 12− 9e#1 + i22/3 3

√
3
√
27e2#1 + 4 3

√√
81e2#1 + 12− 9e#1 + 4i

√
3− 12


(√

81e2#1 + 12− 9e#1
)2/3 −24 3

√
2 6
√
3arctanh

 3
√√

81e2#1 + 12− 9e#1

3
√
2 6
√
3

−12 3
√
2 6
√
3arctanh

 3
√
232/3

(√
81e2#1 + 12− 9e#1

)2/3
+ 6

22/335/6 3
√√

81e2#1 + 12− 9e#1




&


[ x

2 22/335/6+c1
]

y(x) → InverseFunction


− e−#1

6 22/335/6

+ 1
144i


e−#1

12i 3
√
2 6
√
3e#1

(√
81e2#1 + 12− 9e#1

)2/3
arctan

 62/3
3
√√

81e2#1 + 12− 9e#1

3
√
2
(√

81e2#1+12−9e#1
)2/3

−2
3
√
3

+ 3i22/3 3
√
3
(√

3 + 3i
)
e#1 3
√√

81e2#1 + 12− 9e#1 + 22/335/6
√
27e2#1 + 4 3

√√
81e2#1 + 12− 9e#1 − i22/3 3

√
3
√
27e2#1 + 4 3

√√
81e2#1 + 12− 9e#1 − 4i

√
3− 12


(√

81e2#1 + 12− 9e#1
)2/3 −24 3

√
2 6
√
3arctanh

 3
√√

81e2#1 + 12− 9e#1

3
√
2 6
√
3

−12 3
√
2 6
√
3arctanh

 3
√
232/3

(√
81e2#1 + 12− 9e#1

)2/3
+ 6

22/335/6 3
√√

81e2#1 + 12− 9e#1




&


[ x

2 22/335/6+c1
]
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34.23 problem 1025
34.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9163

Internal problem ID [4250]
Internal file name [OUTPUT/3743_Sunday_June_05_2022_10_35_43_AM_74519808/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1025.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 − 7y′ = −6

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 (1)
y′ = 2 (2)
y′ = −3 (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

1 dx

= x+ c1

Summary
The solution(s) found are the following

(1)y = x+ c1

9161



Verification of solutions

y = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

2 dx

= 2x+ c2

Summary
The solution(s) found are the following

(1)y = 2x+ c2

Verification of solutions

y = 2x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−3 dx

= −3x+ c3

Summary
The solution(s) found are the following

(1)y = −3x+ c3

Verification of solutions

y = −3x+ c3

Verified OK.
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34.23.1 Maple step by step solution

Let’s solve
y′3 − 7y′ = −6

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′3 − 7y′

)
dx =

∫
(−6) dx+ c1

• Cannot compute integral∫ (
y′3 − 7y′

)
dx = −6x+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)^3-7*diff(y(x),x)+6 = 0,y(x), singsol=all)� �

y(x) = 2x+ c1
y(x) = x+ c1
y(x) = −3x+ c1
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 29� �
DSolve[(y'[x])^3-7 y'[x]+6==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3x+ c1
y(x) → x+ c1
y(x) → 2x+ c1
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34.24 problem 1026
34.24.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9165

Internal problem ID [4251]
Internal file name [OUTPUT/3744_Sunday_June_05_2022_10_35_51_AM_29960903/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1026.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
3 − xy′ + ya = 0

34.24.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 + ya− xp = 0

Solving for y from the above results in

y = px

a
− p3

a
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

a

g = −p3

a

Hence (2) becomes

p− p

a
=
(
x

a
− 3p2

a

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p

a
= 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)

a

x
a
− 3p(x)2

a

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
a

− 3p2
a

p− p
a

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1
(a− 1) p

q(p) = − 3p
a− 1
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Hence the ode is

d

dp
x(p)− x(p)

(a− 1) p = − 3p
a− 1

The integrating factor µ is

µ = e
∫
− 1

(a−1)pdp

= e−
ln(p)
a−1

Which simplifies to

µ = p−
1

a−1

The ode becomes

d
dp(µx) = (µ)

(
− 3p
a− 1

)
d
dp

(
p−

1
a−1x

)
=
(
p−

1
a−1

)(
− 3p
a− 1

)
d
(
p−

1
a−1x

)
=
(
−3p

a−2
a−1

a− 1

)
dp

Integrating gives

p−
1

a−1x =
∫

−3p
a−2
a−1

a− 1 dp

p−
1

a−1x = −3p1+
a−2
a−1

2a− 3 + c1

Dividing both sides by the integrating factor µ = p−
1

a−1 results in

x(p) = −3p
1

a−1p1+
a−2
a−1

2a− 3 + c1p
1

a−1

which simplifies to

x(p) = − 3p2
2a− 3 + c1p

1
a−1
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3

6 + 2x(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3

p = −
(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3

12 − x(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3
+

i
√
3
((

−108ya+12
√

−12x3+81y2a2
) 1

3

6 − 2x(
−108ya+12

√
−12x3+81y2a2

) 1
3

)
2

p = −
(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3

12 − x(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3
−

i
√
3
((

−108ya+12
√

−12x3+81y2a2
) 1

3

6 − 2x(
−108ya+12

√
−12x3+81y2a2

) 1
3

)
2

Substituting the above in the solution for x found above gives

x = −

((
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12x

)2
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (24a− 36)

+ c16−
1

a−1

(−108ya+ 12
√
−12x3 + 81y2a2

) 2
3 + 12x(

−108ya+ 12
√
−12x3 + 81y2a2

) 1
3

 1
a−1

x =

((√
3 + i

) (
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12

(
i−

√
3
)
x
)2

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (96a− 144)

+c112−
1

a−1

i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12i

√
3x−

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12x(

−108ya+ 12
√
−12x3 + 81y2a2

) 1
3

 1
a−1

x =

−

(
i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12i

√
3x+

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12x

)2
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (96a− 144)

+c1

−i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12i

√
3x−

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12x

12
(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3

 1
a−1
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Summary
The solution(s) found are the following

(1)y = 0

(2)
x = −

((
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12x

)2
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (24a− 36)

+ c16−
1

a−1

(−108ya+ 12
√
−12x3 + 81y2a2

) 2
3 + 12x(

−108ya+ 12
√
−12x3 + 81y2a2

) 1
3

 1
a−1

(3)x =

((√
3 + i

) (
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12

(
i−

√
3
)
x
)2

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (96a− 144)

+c112−
1

a−1

i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12i

√
3x−

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12x(

−108ya+ 12
√
−12x3 + 81y2a2

) 1
3

 1
a−1

(4)x =

−

(
i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12i

√
3x+

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12x

)2
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (96a− 144)

+c1

−i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12i

√
3x−

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12x

12
(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3

 1
a−1
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Verification of solutions

y = 0

Verified OK.

x = −

((
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12x

)2
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (24a− 36)

+ c16−
1

a−1

(−108ya+ 12
√
−12x3 + 81y2a2

) 2
3 + 12x(

−108ya+ 12
√
−12x3 + 81y2a2

) 1
3

 1
a−1

Warning, solution could not be verified

x =

((√
3 + i

) (
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12

(
i−

√
3
)
x
)2

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (96a− 144)

+c112−
1

a−1

i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12i

√
3x−

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12x(

−108ya+ 12
√
−12x3 + 81y2a2

) 1
3

 1
a−1

Warning, solution could not be verified
x =

−

(
i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12i

√
3x+

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12x

)2
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 (96a− 144)

+c1

−i
√
3
(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 + 12i

√
3x−

(
−108ya+ 12

√
−12x3 + 81y2a2

) 2
3 − 12x

12
(
−108ya+ 12

√
−12x3 + 81y2a2

) 1
3

 1
a−1

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 821� �
dsolve(diff(y(x),x)^3-x*diff(y(x),x)+a*y(x) = 0,y(x), singsol=all)� �

−

48

6−
1

a−1 c1

(
−108y(x) a+ 12

√
81y (x)2 a2 − 12x3

) 2
3 (

a− 3
2

)2(
−108y(x)a+12

√
81y(x)2a2−12x3

) 2
3
+12x(

−108y(x)a+12
√

81y(x)2a2−12x3
) 1

3


1

a−1

−
x
(
a− 1

2
)(

−108y(x)a+12
√

81y(x)2a2−12x3
) 2

3

24 +
(

3y(x)a
16 −

√
81y(x)2a2−12x3

48

)(
−108y(x) a+ 12

√
81y (x)2 a2 − 12x3

) 1
3

− x2

4


(
−108y (x) a+ 12

√
81y (x)2 a2 − 12x3

) 2
3

(2a− 3)

= 0

192c1
(
−108y(x) a+ 12

√
81y (x)2 a2 − 12x3

) 2
3 (

a− 3
2

)2 12− 1
a−1

 i

(
−108y(x)a+12

√
81y(x)2a2−12x3

) 2
3√

3−12i
√
3x−

(
−108y(x)a+12

√
81y(x)2a2−12x3

) 2
3
−12x(

−108y(x)a+12
√

81y(x)2a2−12x3
) 1

3


1

a−1

+ 4x
(
a− 1

2

)(
−108y(x) a+ 12

√
81y (x)2 a2 − 12x3

) 2
3

+ 9
(
1 + i

√
3
)(

y(x) a−
√

81y(x)2a2−12x3

9

)(
−108y(x) a+ 12

√
81y (x)2 a2 − 12x3

) 1
3

+ 12
(
−1 + i

√
3
)
x2

(
−108y (x) a+ 12

√
81y (x)2 a2 − 12x3

) 2
3

(4a− 6)

= 0

−

9


64c1

(
−108y(x)a+12

√
81y(x)2a2−12x3

) 2
3 (

a− 3
2
)2
−

i

(
−108y(x)a+12

√
81y(x)2a2−12x3

) 2
3 √

3−12i
√
3 x+

(
−108y(x)a+12

√
81y(x)2a2−12x3

) 2
3 +12x

12
(
−108y(x)a+12

√
81y(x)2a2−12x3

) 1
3


1

a−1

3 −
4x
(
a− 1

2
)(

−108y(x)a+12
√

81y(x)2a2−12x3
) 2

3

9 +
(
y(x) a−

√
81y(x)2a2−12x3

9

)(
−1 + i

√
3
)(

−108y(x) a+ 12
√

81y (x)2 a2 − 12x3
) 1

3

+
4
(
1+i

√
3
)
x2

3


(
−108y (x) a+ 12

√
81y (x)2 a2 − 12x3

) 2
3

(4a− 6)

= 0
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3 -x y'[x]+a y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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34.25 problem 1027
34.25.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9173

Internal problem ID [4252]
Internal file name [OUTPUT/3745_Sunday_June_05_2022_10_36_37_AM_89783904/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1027.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
3 + 2xy′ − y = 0

34.25.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 + 2xp− y = 0

Solving for y from the above results in

y = p3 + 2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p
g = p3

Hence (2) becomes

−p =
(
3p2 + 2x

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
3p (x)2 + 2x

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3p2 + 2x(p)

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = −3p
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Hence the ode is

d

dp
x(p) + 2x(p)

p
= −3p

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ) (−3p)

d
dp
(
p2x
)
=
(
p2
)
(−3p)

d
(
p2x
)
=
(
−3p3

)
dp

Integrating gives

p2x =
∫

−3p3 dp

p2x = −3p4
4 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) = −3p2
4 + c1

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
108y + 12

√
96x3 + 81y2

) 1
3

6 − 4x(
108y + 12

√
96x3 + 81y2

) 1
3

p = −
(
108y + 12

√
96x3 + 81y2

) 1
3

12 + 2x(
108y + 12

√
96x3 + 81y2

) 1
3
+

i
√
3
((

108y+12
√

96x3+81y2
) 1

3

6 + 4x(
108y+12

√
96x3+81y2

) 1
3

)
2

p = −
(
108y + 12

√
96x3 + 81y2

) 1
3

12 + 2x(
108y + 12

√
96x3 + 81y2

) 1
3
−

i
√
3
((

108y+12
√

96x3+81y2
) 1

3

6 + 4x(
108y+12

√
96x3+81y2

) 1
3

)
2
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Substituting the above in the solution for x found above gives

x = −

((
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
48
(
108y + 12

√
96x3 + 81y2

) 2
3

+
36c1

(
108y + 12

√
96x3 + 81y2

) 2
3((

108y + 12
√
96x3 + 81y2

) 2
3 − 24x

)2

x =
3
((√

3+i
)(

108y+12
√

96x3+81y2
) 2

3

24 + x
(
−i+

√
3
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
(
108y + 12

√
96x3 + 81y2

) 2
3
√
3 + 24i

√
3x−

(
108y + 12

√
96x3 + 81y2

) 2
3 + 24x

)2

x =
3
((

108y+12
√

96x3+81y2
) 2

3
(
−i+

√
3
)

24 +
(√

3 + i
)
x

)2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
(
108y + 12

√
96x3 + 81y2

) 2
3
√
3 + 24i

√
3x+

(
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
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Summary
The solution(s) found are the following

(1)y = 0

x = −

((
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
48
(
108y + 12

√
96x3 + 81y2

) 2
3

+
36c1

(
108y + 12

√
96x3 + 81y2

) 2
3((

108y + 12
√
96x3 + 81y2

) 2
3 − 24x

)2
(2)

(3)x =
3
((√

3+i
)(

108y+12
√

96x3+81y2
) 2

3

24 + x
(
−i+

√
3
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
(
108y + 12

√
96x3 + 81y2

) 2
3
√
3 + 24i

√
3x−

(
108y + 12

√
96x3 + 81y2

) 2
3 + 24x

)2

(4)x =
3
((

108y+12
√

96x3+81y2
) 2

3
(
−i+

√
3
)

24 +
(√

3 + i
)
x

)2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
(
108y + 12

√
96x3 + 81y2

) 2
3
√
3 + 24i

√
3x+

(
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
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Verification of solutions

y = 0

Verified OK.

x = −

((
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
48
(
108y + 12

√
96x3 + 81y2

) 2
3

+
36c1

(
108y + 12

√
96x3 + 81y2

) 2
3((

108y + 12
√
96x3 + 81y2

) 2
3 − 24x

)2
Verified OK.

x =
3
((√

3+i
)(

108y+12
√

96x3+81y2
) 2

3

24 + x
(
−i+

√
3
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
(
108y + 12

√
96x3 + 81y2

) 2
3
√
3 + 24i

√
3x−

(
108y + 12

√
96x3 + 81y2

) 2
3 + 24x

)2
Verified OK.

x =
3
((

108y+12
√

96x3+81y2
) 2

3
(
−i+

√
3
)

24 +
(√

3 + i
)
x

)2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
(
108y + 12

√
96x3 + 81y2

) 2
3
√
3 + 24i

√
3x+

(
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 141� �
dsolve(diff(y(x),x)^3+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) =
2
(
−2x+

√
x2 + 3c1

)√
−6

√
x2 + 3c1 − 6x

9

y(x) = −
2
(
−2x+

√
x2 + 3c1

)√
−6

√
x2 + 3c1 − 6x

9

y(x) = −
2
(
2x+

√
x2 + 3c1

)√
6
√
x2 + 3c1 − 6x

9

y(x) =
2
(
2x+

√
x2 + 3c1

)√
6
√
x2 + 3c1 − 6x

9

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3 +2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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34.26 problem 1028
34.26.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9180

Internal problem ID [4253]
Internal file name [OUTPUT/3746_Sunday_June_05_2022_10_36_55_AM_51632051/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1028.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
3 − 2xy′ − y = 0

34.26.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 − 2xp− y = 0

Solving for y from the above results in

y = p3 − 2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −2p
g = p3

Hence (2) becomes

3p =
(
3p2 − 2x

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

3p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 3p(x)
3p (x)2 − 2x

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = 3p2 − 2x(p)

3p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
3p

q(p) = p
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Hence the ode is

d

dp
x(p) + 2x(p)

3p = p

The integrating factor µ is

µ = e
∫ 2

3pdp

= p
2
3

The ode becomes
d
dp(µx) = (µ) (p)

d
dp

(
p

2
3x
)
=
(
p

2
3

)
(p)

d
(
p

2
3x
)
= p

5
3 dp

Integrating gives

p
2
3x =

∫
p

5
3 dp

p
2
3x = 3p 8

3

8 + c1

Dividing both sides by the integrating factor µ = p
2
3 results in

x(p) = 3p2
8 + c1

p
2
3

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
108y + 12

√
−96x3 + 81y2

) 1
3

6 + 4x(
108y + 12

√
−96x3 + 81y2

) 1
3

p = −
(
108y + 12

√
−96x3 + 81y2

) 1
3

12 − 2x(
108y + 12

√
−96x3 + 81y2

) 1
3
+

i
√
3
((

108y+12
√

−96x3+81y2
) 1

3

6 − 4x(
108y+12

√
−96x3+81y2

) 1
3

)
2

p = −
(
108y + 12

√
−96x3 + 81y2

) 1
3

12 − 2x(
108y + 12

√
−96x3 + 81y2

) 1
3
−

i
√
3
((

108y+12
√

−96x3+81y2
) 1

3

6 − 4x(
108y+12

√
−96x3+81y2

) 1
3

)
2
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Substituting the above in the solution for x found above gives

x =

((
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
96
(
108y + 12

√
−96x3 + 81y2

) 2
3

+ c16
2
3((

108y+12
√

−96x3+81y2
) 2

3+24x(
108y+12

√
−96x3+81y2

) 1
3

) 2
3

x

=

(
−i

√
3
(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24i

√
3x+

(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
384

(
108y + 12

√
−96x3 + 81y2

) 2
3

+ c112
2
3(

i
√
3
(
108y+12

√
−96x3+81y2

) 2
3−24i

√
3x−

(
108y+12

√
−96x3+81y2

) 2
3−24x(

108y+12
√

−96x3+81y2
) 1

3

) 2
3

x

=

(
i
√
3
(
108y + 12

√
−96x3 + 81y2

) 2
3 − 24i

√
3x+

(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
384

(
108y + 12

√
−96x3 + 81y2

) 2
3

+ 2c118
1
3(

−i
√
3
(
108y+12

√
−96x3+81y2

) 2
3+24i

√
3x−

(
108y+12

√
−96x3+81y2

) 2
3−24x(

108y+12
√

−96x3+81y2
) 1

3

) 2
3
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Summary
The solution(s) found are the following

(1)y = 0

(2)x =

((
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
96
(
108y + 12

√
−96x3 + 81y2

) 2
3

+ c16
2
3((

108y+12
√

−96x3+81y2
) 2

3+24x(
108y+12

√
−96x3+81y2

) 1
3

) 2
3

(3)x

=

(
−i

√
3
(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24i

√
3x+

(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
384

(
108y + 12

√
−96x3 + 81y2

) 2
3

+ c112
2
3(

i
√
3
(
108y+12

√
−96x3+81y2

) 2
3−24i

√
3x−

(
108y+12

√
−96x3+81y2

) 2
3−24x(

108y+12
√

−96x3+81y2
) 1

3

) 2
3

(4)x

=

(
i
√
3
(
108y + 12

√
−96x3 + 81y2

) 2
3 − 24i

√
3x+

(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
384

(
108y + 12

√
−96x3 + 81y2

) 2
3

+ 2c118
1
3(

−i
√
3
(
108y+12

√
−96x3+81y2

) 2
3+24i

√
3x−

(
108y+12

√
−96x3+81y2

) 2
3−24x(

108y+12
√

−96x3+81y2
) 1

3

) 2
3
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Verification of solutions

y = 0

Verified OK.

x =

((
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
96
(
108y + 12

√
−96x3 + 81y2

) 2
3

+ c16
2
3((

108y+12
√

−96x3+81y2
) 2

3+24x(
108y+12

√
−96x3+81y2

) 1
3

) 2
3

Verified OK.
x

=

(
−i

√
3
(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24i

√
3x+

(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
384

(
108y + 12

√
−96x3 + 81y2

) 2
3

+ c112
2
3(

i
√
3
(
108y+12

√
−96x3+81y2

) 2
3−24i

√
3x−

(
108y+12

√
−96x3+81y2

) 2
3−24x(

108y+12
√

−96x3+81y2
) 1

3

) 2
3

Verified OK.
x

=

(
i
√
3
(
108y + 12

√
−96x3 + 81y2

) 2
3 − 24i

√
3x+

(
108y + 12

√
−96x3 + 81y2

) 2
3 + 24x

)2
384

(
108y + 12

√
−96x3 + 81y2

) 2
3

+ 2c118
1
3(

−i
√
3
(
108y+12

√
−96x3+81y2

) 2
3+24i

√
3x−

(
108y+12

√
−96x3+81y2

) 2
3−24x(

108y+12
√

−96x3+81y2
) 1

3

) 2
3

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 450� �
dsolve(diff(y(x),x)^3-2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

− c1(
108y(x)+12

√
−96x3+81y(x)2

) 2
3
+24x(

108y(x)+12
√

−96x3+81y(x)2
) 1

3


2
3
+ x

−

((
108y(x) + 12

√
−96x3 + 81y (x)2

) 2
3

+ 24x
)2

96
(
108y (x) + 12

√
−96x3 + 81y (x)2

) 2
3

= 0

− c1 i
√
3
(
108y(x)+12

√
−96x3+81y(x)2

) 2
3
−24i

√
3x−

(
108y(x)+12

√
−96x3+81y(x)2

) 2
3
−24x(

108y(x)+12
√

−96x3+81y(x)2
) 1

3


2
3

+ x+

3

−
(√

3+i
)(

108y(x)+12
√

−96x3+81y(x)2
) 2

3

24 + x
(
−i+

√
3
)2

2
(
108y (x) + 12

√
−96x3 + 81y (x)2

) 2
3

= 0

− 12 2
3 c1−i

√
3
(
108y(x)+12

√
−96x3+81y(x)2

) 2
3
+24i

√
3x−

(
108y(x)+12

√
−96x3+81y(x)2

) 2
3
−24x(

108y(x)+12
√

−96x3+81y(x)2
) 1

3


2
3

+ x+

3

(
i−

√
3
)(

108y(x)+12
√

−96x3+81y(x)2
) 2

3

24 +
(√

3 + i
)
x

2

2
(
108y (x) + 12

√
−96x3 + 81y (x)2

) 2
3

= 0
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3 -2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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34.27 problem 1029
34.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9192

Internal problem ID [4254]
Internal file name [OUTPUT/3747_Sunday_June_05_2022_10_37_11_AM_26451973/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 34
Problem number: 1029.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 − axy′ = −x3

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

6 + 2ax(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

(1)

y′ = −
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

12 − ax(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3
+

i
√
3
((

−108x3+12
√
−12a3x3+81x6

) 1
3

6 − 2ax(
−108x3+12

√
−12a3x3+81x6

) 1
3

)
2

(2)

y′ = −
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

12 − ax(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3
−

i
√
3
((

−108x3+12
√
−12a3x3+81x6

) 1
3

6 − 2ax(
−108x3+12

√
−12a3x3+81x6

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

y =
∫ (

−108x3 + 12
√
−12a3x3 + 81x6

) 2
3 + 12ax

6
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx

=
∫ (

−108x3 + 12
√
−12a3x3 + 81x6

) 2
3 + 12ax

6
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫ (

−108x3 + 12
√
−12a3x3 + 81x6

) 2
3 + 12ax

6
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx+ c1

Verification of solutions

y =
∫ (

−108x3 + 12
√
−12a3x3 + 81x6

) 2
3 + 12ax

6
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax−

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 − 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx

=
∫

i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax−

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 − 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx+ c2

Summary
The solution(s) found are the following

(1)y

=
∫

i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax−

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 − 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx

+ c2
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Verification of solutions
y

=
∫

i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax−

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 − 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx

+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−
i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax+

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 + 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx

=
∫

−
i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax+

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 + 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx+ c3

Summary
The solution(s) found are the following

(1)y =
∫

−
i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax+

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 + 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx

+ c3

Verification of solutions

y =
∫

−
i
(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3
√
3− 12i

√
3 ax+

(
−108x3 + 12

√
−12a3x3 + 81x6

) 2
3 + 12ax

12
(
−108x3 + 12

√
−12a3x3 + 81x6

) 1
3

dx

+ c3

Verified OK.
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34.27.1 Maple step by step solution

Let’s solve
y′3 − axy′ = −x3

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′3 − axy′

)
dx =

∫
−x3dx+ c1

• Cannot compute integral∫ (
y′3 − axy′

)
dx = −x4

4 + c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 252� �
dsolve(diff(y(x),x)^3-a*x*diff(y(x),x)+x^3 = 0,y(x), singsol=all)� �
y(x)

=

(∫ ((
−108x3 + 12

√
3
√
−4a3x3 + 27x6

) 1
3
(
−1 + i

√
3
)
−

12a
(
1+i

√
3
)
x(

−108x3+12
√
3
√
−4a3x3+27x6

) 1
3

)
dx

)
12

+ c1
y(x) =

−

(∫ ((
1 + i

√
3
) (

−108x3 + 12
√
3
√
−4a3x3 + 27x6

) 1
3 −

12a
(
−1+i

√
3
)
x(

−108x3+12
√
3
√
−4a3x3+27x6

) 1
3

)
dx

)
12

+ c1

y(x) =

(∫ (
−108x3+12

√
3
√
−4a3x3+27x6

) 2
3+12ax(

−108x3+12
√
3
√
−4a3x3+27x6

) 1
3

dx

)
6 + c1

3 Solution by Mathematica
Time used: 166.72 (sec). Leaf size: 349� �
DSolve[(y'[x])^3 -a*x*y'[x]+x^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
∫ x

1

2 3
√
3aK[1] + 3

√
2
(√

81K[1]6 − 12a3K[1]3 − 9K[1]3
)2/3

62/3 3
√√

81K[1]6 − 12a3K[1]3 − 9K[1]3
dK[1] + c1

y(x)

→
∫ x

1

i
3
√
3
(
i+

√
3
) (

2
√

81K[2]6 − 12a3K[2]3 − 18K[2]3
)2/3

− 2 3
√
2 6
√
3
(
3i+

√
3
)
aK[2]

12 3
√√

81K[2]6 − 12a3K[2]3 − 9K[2]3
dK[2]

+ c1
y(x)

→
∫ x

1

3
√
3
(
−1− i

√
3
) (

2
√

81K[3]6 − 12a3K[3]3 − 18K[3]3
)2/3

− 2 3
√
2 6
√
3
(
−3i+

√
3
)
aK[3]

12 3
√√

81K[3]6 − 12a3K[3]3 − 9K[3]3
dK[3]

+ c1
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35.1 problem 1030
35.1.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9195

Internal problem ID [4255]
Internal file name [OUTPUT/3748_Sunday_June_05_2022_10_37_18_AM_25808255/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1030.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
3 + axy′ − ya = 0

35.1.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

axp+ p3 − ya = 0

Solving for y from the above results in

y = p(ax+ p2)
a

(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ p3

a

= px+ p3

a
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = p3

a

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ c31
a

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p3

a
, then the

above equation becomes

x+ g′(p) = x+ 3p2
a

= 0
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Solving the above for p results in

p1 =
√
−3ax
3

p2 = −
√
−3ax
3

Substituting the above back in (1) results in

y1 =
2
√
3
√
−ax x

9

y2 = −2
√
3
√
−ax x

9

Summary
The solution(s) found are the following

(1)y = c1x+ c31
a

(2)y = 2
√
3
√
−ax x

9

(3)y = −2
√
3
√
−ax x

9
Verification of solutions

y = c1x+ c31
a

Verified OK.

y = 2
√
3
√
−ax x

9

Verified OK.

y = −2
√
3
√
−ax x

9

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 46� �
dsolve(diff(y(x),x)^3+a*x*diff(y(x),x)-a*y(x) = 0,y(x), singsol=all)� �

y(x) = −2
√
3
√
−ax x

9

y(x) = 2
√
3
√
−ax x

9
y(x) = c1(ax+ c21)

a

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 68� �
DSolve[(y'[x])^3 +a*x*y'[x]-a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
3

a
+ c1x

y(x) → −2i
√
ax3/2

3
√
3

y(x) → 2i
√
ax3/2

3
√
3
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35.2 problem 1031
35.2.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9199

Internal problem ID [4256]
Internal file name [OUTPUT/3749_Sunday_June_05_2022_10_37_34_AM_65033186/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1031.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
3 − (bx+ a) y′ + yb = 0

35.2.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p3 − (bx+ a) p+ by = 0

Solving for y from the above results in

y = p(bx− p2 + a)
b

(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ p(−p2 + a)
b

= px+ p(−p2 + a)
b
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = p(−p2 + a)
b

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ c1(−c21 + a)
b

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p
(
−p2+a

)
b

, then
the above equation becomes

x+ g′(p) = x+ −p2 + a

b
− 2p2

b
= 0
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Solving the above for p results in

p1 =
√
3bx+ 3a

3

p2 = −
√
3bx+ 3a

3

Substituting the above back in (1) results in

y1 =
2
√
3bx+ 3a (bx+ a)

9b

y2 = −2
√
3bx+ 3a (bx+ a)

9b

Summary
The solution(s) found are the following

(1)y = c1x+ c1(−c21 + a)
b

(2)y = 2
√
3bx+ 3a (bx+ a)

9b

(3)y = −2
√
3bx+ 3a (bx+ a)

9b
Verification of solutions

y = c1x+ c1(−c21 + a)
b

Verified OK.

y = 2
√
3bx+ 3a (bx+ a)

9b

Verified OK.

y = −2
√
3bx+ 3a (bx+ a)

9b

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 65� �
dsolve(diff(y(x),x)^3-(b*x+a)*diff(y(x),x)+b*y(x) = 0,y(x), singsol=all)� �

y(x) = −2
√
3bx+ 3a (bx+ a)

9b

y(x) = 2
√
3bx+ 3a (bx+ a)

9b
y(x) = c1(bx− c21 + a)

b

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 72� �
DSolve[(y'[x])^3 -(a+b*x)y'[x]+b*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(a+ bx− c1
2)

b

y(x) → −2(a+ bx)3/2

3
√
3b

y(x) → 2(a+ bx)3/2

3
√
3b
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35.3 problem 1034
35.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9206

Internal problem ID [4257]
Internal file name [OUTPUT/3750_Sunday_June_05_2022_10_37_51_AM_969927/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1034.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 − 2yy′ + y2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−108y2 + 12

√
−96y3 + 81y4

) 1
3

6 + 4y(
−108y2 + 12

√
−96y3 + 81y4

) 1
3

(1)

y′ = −
(
−108y2 + 12

√
−96y3 + 81y4

) 1
3

12 − 2y(
−108y2 + 12

√
−96y3 + 81y4

) 1
3
+

i
√
3
((

−108y2+12
√

−96y3+81y4
) 1

3

6 − 4y(
−108y2+12

√
−96y3+81y4

) 1
3

)
2

(2)

y′ = −
(
−108y2 + 12

√
−96y3 + 81y4

) 1
3

12 − 2y(
−108y2 + 12

√
−96y3 + 81y4

) 1
3
−

i
√
3
((

−108y2+12
√

−96y3+81y4
) 1

3

6 − 4y(
−108y2+12

√
−96y3+81y4

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 6
(
−108y2 + 12

√
81y4 − 96y3

) 1
3(

−108y2 + 12
√
81y4 − 96y3

) 2
3 + 24y

dy =
∫

dx

6

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3(

−108_a2 + 12
√
81_a4 − 96_a3

) 2
3 + 24_a

d_a

 = x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3(

−108_a2 + 12
√
81_a4 − 96_a3

) 2
3 + 24_a

d_a

 = x+ c1

Verification of solutions

6

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3(

−108_a2 + 12
√
81_a4 − 96_a3

) 2
3 + 24_a

d_a

 = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives∫
−

12
(
−108y2 + 12

√
81y4 − 96y3

) 1
3

−i
√
3
(
−108y2 + 12

√
81y4 − 96y3

) 2
3 + 24i

√
3 y +

(
−108y2 + 12

√
81y4 − 96y3

) 2
3 + 24y

dy

=
∫

dx

−12

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3

−i
√
3
(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24i

√
3_a+

(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24_a

d_a


= x+ c2
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Summary
The solution(s) found are the following

(1)−12

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3

−i
√
3
(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24i

√
3_a+

(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24_a

d_a


= x+ c2

Verification of solutions

−12

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3

−i
√
3
(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24i

√
3_a+

(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24_a

d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

∫ 12
(
−108y2 + 12

√
81y4 − 96y3

) 1
3

−i
√
3
(
−108y2 + 12

√
81y4 − 96y3

) 2
3 + 24i

√
3 y −

(
−108y2 + 12

√
81y4 − 96y3

) 2
3 − 24y

dy

=
∫

dx

12

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3

−i
√
3
(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24i

√
3_a−

(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 − 24_a

d_a


= x+ c3

Summary
The solution(s) found are the following

(1)12

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3

−i
√
3
(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24i

√
3_a−

(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 − 24_a

d_a


= x+ c3

Verification of solutions

12

∫ y
(
−108_a2 + 12

√
81_a4 − 96_a3

) 1
3

−i
√
3
(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 + 24i

√
3_a−

(
−108_a2 + 12

√
81_a4 − 96_a3

) 2
3 − 24_a

d_a


= x+ c3

Verified OK.
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35.3.1 Maple step by step solution

Let’s solve
y′3 − 2yy′ + y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

−108y2+12
√

−96y3+81y4
) 1

3

6 + 4y(
−108y2+12

√
−96y3+81y4

) 1
3

= 1

• Integrate both sides with respect to x∫
y′(

−108y2+12
√

−96y3+81y4
) 1

3

6 + 4y(
−108y2+12

√
−96y3+81y4

) 1
3

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

−108y2+12
√

−96y3+81y4
) 1

3

6 + 4y(
−108y2+12

√
−96y3+81y4

) 1
3

dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

9206



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 295� �
dsolve(diff(y(x),x)^3-2*y(x)*diff(y(x),x)+y(x)^2 = 0,y(x), singsol=all)� �
y(x) = 0

−2 2
3
√
3

∫ y(x) (
−3

√
3_a2 +

√
27_a4 − 32_a3

) 1
3

2 1
3
(
−3

√
3_a2 +

√
27_a4 − 32_a3

) 2
3 + 4_a

d_a

+ x− c1 = 0

2 2 2
3
√
3
(∫ y(x)

(
−3

√
3_a2+

√
27_a4−32_a3

) 1
3

2
1
3
(
−3

√
3_a2+

√
27_a4−32_a3

) 2
3−2i_a√3−2_a

d_a
)

+ (x− c1)
(
1 + i

√
3
)

1 + i
√
3

= 0

2i2 2
3
√
3
(∫ y(x)

(
−3

√
3_a2+

√
27_a4−32_a3

) 1
3

2
1
3
(
−3

√
3_a2+

√
27_a4−32_a3

) 2
3+2i_a√3−2_a

d_a
)

+ (x− c1)
(√

3 + i
)

√
3 + i

= 0

9207



3 Solution by Mathematica
Time used: 0.534 (sec). Leaf size: 427� �
DSolve[(y'[x])^3 -2*y[x]*y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction


∫ 3

√
√
3
√

#13(27#1− 32)− 9#12

3
√
2
(√

3
√

#13(27#1− 32)− 9#12
)2/3

+ 4 3
√
3#1

d#1&

[ x

62/3

+ c1
]

y(x)

→ InverseFunction


∫ 3

√
√
3
√

#13(27#1− 32)− 9#12

3
√
232/3

(√
3
√

#13(27#1− 32)− 9#12
)2/3

− 3
√
2 6
√
3i
(√

3
√
#13(27#1− 32)− 9#12

)2/3

− 12#1− 4i#1
√
3
d#1&


[
c1−

ix

2 22/335/6

]

y(x)

→ InverseFunction


∫ 3

√
√
3
√

#13(27#1− 32)− 9#12

3
√
232/3

(√
3
√

#13(27#1− 32)− 9#12
)2/3

+ 3
√
2 6
√
3i
(√

3
√
#13(27#1− 32)− 9#12

)2/3

− 12#1+ 4i#1
√
3
d#1&


[

ix

2 22/335/6+c1

]

y(x) → 0
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35.4 problem 1035
Internal problem ID [4258]
Internal file name [OUTPUT/3751_Sunday_June_05_2022_10_38_00_AM_34607830/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1035.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
3 − axyy′ + 2ay2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−27ay2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

3 + axy(
−27ay2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

(1)

y′ = −
(
−27ay2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

6 − axy

2
(
−27ay2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3
+

i
√
3
((

−27ay2+3
√

−3a3x3y3+81a2y4
) 1

3

3 − axy(
−27ay2+3

√
−3a3x3y3+81a2y4

) 1
3

)
2

(2)

y′ = −
(
−27ay2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

6 − axy

2
(
−27ay2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3
−

i
√
3
((

−27ay2+3
√

−3a3x3y3+81a2y4
) 1

3

3 − axy(
−27ay2+3

√
−3a3x3y3+81a2y4

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3

3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

b2 +

(
3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)
(b3 − a2)

3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

−

(
3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)2
a3

9
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3

−


3ya− 9a3x2y3(

−27a y2+3
√

−3a3x3y3+81a2y4
) 1

3√−3a3x3y3+81a2y4

3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

+
3
(
3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)
a3x2y3

2
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 4
3
√
−3a3x3y3 + 81a2y4

 (xa2 + ya3 + a1)

−


3ax+

−36ya+
2
(
− 27

2 a3x3y2+486a2y3
)

3
√

−3a3x3y3+81a2y4(
−27a y2+3

√
−3a3x3y3+81a2y4

) 1
3

3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

−

(
3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)(

−54ya+ − 27
2 a3x3y2+486a2y3√
−3a3x3y3+81a2y4

)
9
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 4
3

 (xb2

+ yb3 + b1) = 0
(5E)

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display
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Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−a2y3 (a x3 − 27y),

(
−27a y2

+ 3
√
3
√

−a2y3 (a x3 − 27y)
) 1

3
,
(
−27a y2 + 3

√
3
√

−a2y3 (a x3 − 27y)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−a2y3 (a x3 − 27y) = v3,
(
−27a y2

+3
√
3
√

−a2y3 (a x3 − 27y)
) 1

3 = v4,
(
−27a y2+3

√
3
√
−a2y3 (a x3 − 27y)

) 2
3 = v5

}

The above PDE (6E) now becomes

(7E)

−9v2a
(
−6

√
3 v3a2v31v22a3 − 18

√
3 v3av21v2b2 − 108

√
3 v3av1v22a2

+ 36
√
3 v3av1v22b3 − 18

√
3 v3av1v2b1 − 27a3v41v32a2 + 9a3v41v32b3

+ 99a3v31v42a3 − 9a3v41v22b1 − 9a3v31v32a1 + 162a2v21v32b2
+ 972a2v1v42a2 − 324a2v1v42b3 + 162a2v1v32b1 + 162v5av32a2
− 54v5av32b3 + 108v5av22b1 − 486v4av32b2 − 12

√
3 v5v3b1 − 9a3v51v22b2

+2
√
3 v5v3av21v2a3+324v4a2v1v42a3+270

√
3 v3av32a3+108v5av1v22b2

− 12
√
3 v5v3v1b2 − 18

√
3 v5v3v2a2 + 6

√
3 v5v3v2b3 − 54

√
3 v3av22a1

+ 54
√
3 v4v3v2b2 − 36

√
3 v4v3av1v22a3 − 2430a2v52a3 + 486a2v42a1

− 12v4a3v41v32a3 − 3v5a2v41v2b2 − 9v5a2v31v22a2 + 3v5a2v31v22b3
− 3v5a2v21v32a3 − 3v5a2v31v2b1 − 3v5a2v21v22a1 + 18v4a2v31v22b2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−2430
√
3 a2a3v42v3 + 486a2

√
3 a1v32v3

− 9a
(
−18

√
3 a2 + 6

√
3 b3
)
v22v3v5 + 4374a2b2v42v4

− 9a(162aa2 − 54ab3) v42v5 − 972a2b1v5v32
− 9a

(
972a2a2 − 324a2b3

)
v1v

5
2 − 1458a3b1v1v42

− 9a
(
−27a3a2 + 9a3b3

)
v41v

4
2 + 81a4b1v41v32 − 891a4a3v31v52

+ 81a4a1v31v42 − 1458a3b2v21v42 + 81v32a4b2v51 + 162a2
√
3 b2v21v22v3

+ 54a3
√
3 a3v31v32v3 + 21870a3a3v62 − 4374a3a1v52 + 108a4a3v41v42v4

+ 27a3b2v5v41v22 − 162a3b2v31v32v4 − 9a
(
−9a2a2 + 3a2b3

)
v31v

3
2v5

+ 27a3b1v5v31v22 + 27a3a3v21v42v5 + 27a3a1v5v21v32
− 2916a3a3v1v52v4 − 9a

(
−108

√
3 aa2 + 36

√
3 ab3

)
v1v

3
2v3

− 972a2b2v5v1v32 + 162a2
√
3 b1v3v1v22 − 486

√
3 ab2v22v3v4

+ 108a
√
3 v5v3b1v2 + 324

√
3 a2a3v1v32v3v4

+ 108a
√
3 b2v3v5v1v2 − 18

√
3 a2a3v21v22v3v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−9a
(
−18

√
3 a2 + 6

√
3 b3
)
= 0

−9a
(
−108

√
3 aa2 + 36

√
3 ab3

)
= 0

−9a(162aa2 − 54ab3) = 0
−9a

(
−9a2a2 + 3a2b3

)
= 0

−9a
(
972a2a2 − 324a2b3

)
= 0

−9a
(
−27a3a2 + 9a3b3

)
= 0

−972a2b1 = 0
−972a2b2 = 0
4374a2b2 = 0

−4374a3a1 = 0
27a3a1 = 0

−2916a3a3 = 0
27a3a3 = 0

21870a3a3 = 0
−1458a3b1 = 0

27a3b1 = 0
−1458a3b2 = 0
−162a3b2 = 0

27a3b2 = 0
81a4a1 = 0

−891a4a3 = 0
108a4a3 = 0
81a4b1 = 0
81a4b2 = 0

−486
√
3 ab2 = 0

108
√
3 ab2 = 0

−2430
√
3 a2a3 = 0

−18
√
3 a2a3 = 0

324
√
3 a2a3 = 0

108a
√
3 b1 = 0

486a2
√
3 a1 = 0

162a2
√
3 b1 = 0

162a2
√
3 b2 = 0

54a3
√
3 a3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

3
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
x
3

= 3y
x

This is easily solved to give

y = c1x
3

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x3
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And S is found from

dS = dx

ξ

= dx
x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3

3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

Evaluating all the partial derivatives gives

Rx = −3y
x4

Ry =
1
x3

Sx = 3
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

9
(
−27a y2 + 3

√
3
√
−a2y3 (a x3 − 27y)

) 1
3
x3(

−27a y2 + 3
√
3
√

−a2y3 (a x3 − 27y)
) 2

3
x+ 3y

(
x2a− 3

(
−27a y2 + 3

√
3
√
−a2y3 (a x3 − 27y)

) 1
3
)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

93 1
3a

1
3

(√
3
√
27R− a− 9

√
R
) 1

3

√
R

(
3 2

3a
2
3

(√
3
√
27R− a− 9

√
R
) 2

3 − 9 3 1
3
√
Ra

1
3

(√
3
√
27R− a− 9

√
R
) 1

3 + 3a
)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 9

(√
81R− 3a− 9

√
R
) 1

3 3 1
3a

1
3((√

81R− 3a− 9
√
R
) 2

3 9 1
3 (a2)

1
3 − 9

√
R
(√

81R− 3a− 9
√
R
) 1

3 3 1
3a

1
3 + 3a

)√
R

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (x) =
∫ y

x3 9
(√

81_a− 3a− 9√_a
) 1

3 3 1
3a

1
3((√

81_a− 3a− 9√_a
) 2

3 9 1
3 (a2)

1
3 − 9√_a

(√
81_a− 3a− 9√_a

) 1
3 3 1

3a
1
3 + 3a

)√_a
d_a+ c1

Which simplifies to

3 ln (x) =
∫ y

x3 9
(√

81_a− 3a− 9√_a
) 1

3 3 1
3a

1
3((√

81_a− 3a− 9√_a
) 2

3 9 1
3 (a2)

1
3 − 9√_a

(√
81_a− 3a− 9√_a

) 1
3 3 1

3a
1
3 + 3a

)√_a
d_a+ c1

Summary
The solution(s) found are the following

(1)3 ln (x)

=
∫ y

x3 9
(√

81_a− 3a− 9√_a
) 1

3 3 1
3a

1
3((√

81_a− 3a− 9√_a
) 2

3 9 1
3 (a2)

1
3 − 9√_a

(√
81_a− 3a− 9√_a

) 1
3 3 1

3a
1
3 + 3a

)√_a
d_a

+ c1
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Verification of solutions

3 ln (x)

=
∫ y

x3 9
(√

81_a− 3a− 9√_a
) 1

3 3 1
3a

1
3((√

81_a− 3a− 9√_a
) 2

3 9 1
3 (a2)

1
3 − 9√_a

(√
81_a− 3a− 9√_a

) 1
3 3 1

3a
1
3 + 3a

)√_a
d_a

+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
3i
√
3 axy − i

√
3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3 + 3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3

6
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
3i
√
3 axy − i

√
3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3 + 3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)
(b3 − a2)

6
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

−

(
3i
√
3 axy − i

√
3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3 + 3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)2
a3

36
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3

−

−

3i
√
3 ay + 9i

√
3 a3x2y3(

−27a y2+3
√

−3a3x3y3+81a2y4
) 1

3√−3a3x3y3+81a2y4
+ 3ya− 9a3x2y3(

−27a y2+3
√

−3a3x3y3+81a2y4
) 1

3√−3a3x3y3+81a2y4

6
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

−
3
(
3i
√
3 axy − i

√
3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3 + 3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)
a3x2y3

4
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 4
3
√
−3a3x3y3 + 81a2y4

 (xa2

+ ya3 + a1)

−

−

3i
√
3 ax−

2i
√
3
(
−54ya+− 27

2 a3x3y2+486a2y3√
−3a3x3y3+81a2y4

)

3
(
−27a y2+3

√
−3a3x3y3+81a2y4

) 1
3
+ 3ax+

−36ya+
2
(
− 27

2 a3x3y2+486a2y3
)

3
√

−3a3x3y3+81a2y4(
−27a y2+3

√
−3a3x3y3+81a2y4

) 1
3

6
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

+

(
3i
√
3 axy − i

√
3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3 + 3axy +

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3
)(

−54ya+ − 27
2 a3x3y2+486a2y3√
−3a3x3y3+81a2y4

)
18
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−a2y3 (a x3 − 27y),

(
−27a y2

+ 3
√
3
√

−a2y3 (a x3 − 27y)
) 1

3
,
(
−27a y2 + 3

√
3
√

−a2y3 (a x3 − 27y)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−a2y3 (a x3 − 27y) = v3,
(
−27a y2

+3
√
3
√

−a2y3 (a x3 − 27y)
) 1

3 = v4,
(
−27a y2+3

√
3
√
−a2y3 (a x3 − 27y)

) 2
3 = v5

}
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The above PDE (6E) now becomes

(7E)

9v2a
(
24v4a3v41v32a3 − 3v5a2v41v2b2 − 9v5a2v31v22a2

+ 3v5a2v31v22b3 − 3v5a2v21v32a3 − 3v5a2v31v2b1
− 3v5a2v21v22a1 − 36v4a2v31v22b2 + 54iv5v3v2a2
− 18iv5v3v2b3 − 162iv3av22a1 − 2430i

√
3 a2v52a3

+ 486i
√
3 a2v42a1 + 810iv3av32a3 − 3i

√
3 v5a2v31v22b3

+ 3i
√
3 v5a2v21v32a3 + 3i

√
3 v5a2v31v2b1 − 6

√
3 v3a2v31v22a3

− 18
√
3 v3av21v2b2 − 108

√
3 v3av1v22a2 + 36

√
3 v3av1v22b3

− 18
√
3 v3av1v2b1 − 162i

√
3 v5av32a2 + 54i

√
3 v5av32b3

+ 162i
√
3 a2v1v32b1 − 108i

√
3 v5av22b1 − 54iv3av21v2b2

− 27a3v41v32a2 + 9a3v41v32b3 + 99a3v31v42a3 − 9a3v41v22b1
− 9a3v31v32a1 + 162a2v21v32b2 + 972a2v1v42a2
− 324a2v1v42b3 + 162a2v1v32b1 + 162v5av32a2
− 54v5av32b3 + 108v5av22b1 + 972v4av32b2 − 12

√
3 v5v3b1

+ 36iv5v3b1 + 2
√
3 v5v3av21v2a3 + 72

√
3 v4v3av1v22a3

− 324iv3av1v22a2 + 108iv3av1v22b3 − 54iv3av1v2b1
− 9i

√
3 a3v51v22b2 − 27i

√
3 a3v41v32a2 + 9i

√
3 a3v41v32b3

+ 99i
√
3 a3v31v42a3 − 9i

√
3 a3v41v22b1 − 9i

√
3 a3v31v32a1

+162i
√
3 a2v21v32b2+972i

√
3 a2v1v42a2− 324i

√
3 a2v1v42b3

− 18iv3a2v31v22a3 + 3i
√
3 v5a2v21v22a1 − 108i

√
3 v5av1v22b2

− 6iv5v3av21v2a3 + 3i
√
3 v5a2v41v2b2 + 9i

√
3 v5a2v31v22a2

+ 36iv5v3v1b2 − 2430a2v52a3 + 486a2v42a1
− 648v4a2v1v42a3 + 270

√
3 v3av32a3 + 108v5av1v22b2

− 12
√
3 v5v3v1b2 − 18

√
3 v5v3v2a2 + 6

√
3 v5v3v2b3

− 54
√
3 v3av22a1 − 108

√
3 v4v3v2b2 − 9a3v51v22b2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

9a
(
−162i

√
3 aa2 + 54i

√
3 ab3 + 162aa2 − 54ab3

)
v42v5

+ 9a
(
−54

√
3 aa1 − 162iaa1

)
v32v3

+ 9a
(
−108i

√
3 ab1 + 108ab1

)
v32v5

− 972
√
3 ab2v22v3v4 − 324a3b2v31v32v4

− 5832a3a3v1v52v4 + 9a
(
−12

√
3 b2 + 36ib2

)
v1v2v3v5

+ 9a
(
2
√
3 aa3 − 6iaa3

)
v21v

2
2v3v5 + 648

√
3 a2a3v1v32v3v4

+ 9a
(
9i
√
3 a2a2 − 3i

√
3 a2b3 − 9a2a2 + 3a2b3

)
v31v

3
2v5

+ 9a
(
3i
√
3 a2b1 − 3a2b1

)
v31v

2
2v5 + 9a

(
−108

√
3 aa2

+ 36
√
3 ab3 − 324iaa2 + 108iab3

)
v1v

3
2v3

+ 9a
(
−108i

√
3 ab2 + 108ab2

)
v1v

3
2v5

+ 9a
(
−18

√
3 ab1 − 54iab1

)
v1v

2
2v3

+ 9a
(
3i
√
3 a2b2 − 3a2b2

)
v41v

2
2v5

+ 9a
(
3i
√
3 a2a3 − 3a2a3

)
v21v

4
2v5

+ 9a
(
3i
√
3 a2a1 − 3a2a1

)
v21v

3
2v5

+ 9a
(
−18

√
3 ab2 − 54iab2

)
v21v

2
2v3

+ 9a
(
−18

√
3 a2 + 6

√
3 b3 + 54ia2 − 18ib3

)
v22v3v5

+ 9a
(
−12

√
3 b1 + 36ib1

)
v2v3v5 + 216a4a3v41v42v4

+ 9a
(
−6

√
3 a2a3 − 18ia2a3

)
v31v

3
2v3

+ 8748a2b2v42v4 + 9a
(
162i

√
3 a2b2 + 162a2b2

)
v21v

4
2

+ 9a
(
−27i

√
3 a3a2 + 9i

√
3 a3b3 − 27a3a2 + 9a3b3

)
v41v

4
2

+ 9a
(
−9i

√
3 a3b1 − 9a3b1

)
v41v

3
2

+ 9a
(
−9i

√
3 a3b2 − 9a3b2

)
v51v

3
2 + 9a

(
972i

√
3 a2a2

− 324i
√
3 a2b3 + 972a2a2 − 324a2b3

)
v1v

5
2

+ 9a
(
162i

√
3 a2b1 + 162a2b1

)
v1v

4
2

+ 9a
(
99i

√
3 a3a3 + 99a3a3

)
v31v

5
2

+ 9a
(
−9i

√
3 a3a1 − 9a3a1

)
v31v

4
2

+ 9a
(
270

√
3 aa3 + 810iaa3

)
v42v3

+ 9a
(
−2430i

√
3 a2a3 − 2430a2a3

)
v62

+ 9a
(
486i

√
3 a2a1 + 486a2a1

)
v52 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

9a
(
−12

√
3 b1 + 36ib1

)
= 0

9a
(
−12

√
3 b2 + 36ib2

)
= 0

9a
(
−54

√
3 aa1 − 162iaa1

)
= 0

9a
(
2
√
3 aa3 − 6iaa3

)
= 0

9a
(
270

√
3 aa3 + 810iaa3

)
= 0

9a
(
−18

√
3 ab1 − 54iab1

)
= 0

9a
(
−18

√
3 ab2 − 54iab2

)
= 0

9a
(
−6

√
3 a2a3 − 18ia2a3

)
= 0

9a
(
−2430i

√
3 a2a3 − 2430a2a3

)
= 0

9a
(
−108i

√
3 ab1 + 108ab1

)
= 0

9a
(
−108i

√
3 ab2 + 108ab2

)
= 0

9a
(
−9i

√
3 a3a1 − 9a3a1

)
= 0

9a
(
−9i

√
3 a3b1 − 9a3b1

)
= 0

9a
(
−9i

√
3 a3b2 − 9a3b2

)
= 0

9a
(
3i
√
3 a2a1 − 3a2a1

)
= 0

9a
(
3i
√
3 a2a3 − 3a2a3

)
= 0

9a
(
3i
√
3 a2b1 − 3a2b1

)
= 0

9a
(
3i
√
3 a2b2 − 3a2b2

)
= 0

9a
(
99i

√
3 a3a3 + 99a3a3

)
= 0

9a
(
162i

√
3 a2b1 + 162a2b1

)
= 0

9a
(
162i

√
3 a2b2 + 162a2b2

)
= 0

9a
(
486i

√
3 a2a1 + 486a2a1

)
= 0

9a
(
−18

√
3 a2 + 6

√
3 b3 + 54ia2 − 18ib3

)
= 0

9a
(
−108

√
3 aa2 + 36

√
3 ab3 − 324iaa2 + 108iab3

)
= 0

9a
(
−162i

√
3 aa2 + 54i

√
3 ab3 + 162aa2 − 54ab3

)
= 0

9a
(
−27i

√
3 a3a2 + 9i

√
3 a3b3 − 27a3a2 + 9a3b3

)
= 0

9a
(
9i
√
3 a2a2 − 3i

√
3 a2b3 − 9a2a2 + 3a2b3

)
= 0

9a
(
972i

√
3 a2a2 − 324i

√
3 a2b3 + 972a2a2 − 324a2b3

)
= 0

8748a2b2 = 0
−5832a3a3 = 0
−324a3b2 = 0
216a4a3 = 0

−972
√
3 ab2 = 0

648
√
3 a2a3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ =
3i
√
3 axy − i

√
3
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3 − 3axy −

(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 2
3

6
(
−27a y2 + 3

√
−3a3x3y3 + 81a2y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−a2y3 (a x3 − 27y),

(
−27a y2

+ 3
√
3
√

−a2y3 (a x3 − 27y)
) 1

3
,
(
−27a y2 + 3

√
3
√

−a2y3 (a x3 − 27y)
) 2

3
}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−a2y3 (a x3 − 27y) = v3,
(
−27a y2

+3
√
3
√

−a2y3 (a x3 − 27y)
) 1

3 = v4,
(
−27a y2+3

√
3
√
−a2y3 (a x3 − 27y)

) 2
3 = v5

}
The above PDE (6E) now becomes

(7E)

−9v2a
(
−18iv3a2v31v22a3 − 162i

√
3 v5av32a2

+ 54i
√
3 v5av32b3 + 162i

√
3 a2v1v32b1 − 108i

√
3 v5av22b1

− 54iv3av21v2b2 − 324iv3av1v22a2 + 108iv3av1v22b3
− 54iv3av1v2b1 − 9i

√
3 a3v51v22b2 − 27i

√
3 a3v41v32a2

+ 9i
√
3 a3v41v32b3 + 99i

√
3 a3v31v42a3 − 9i

√
3 a3v41v22b1

− 9i
√
3 a3v31v32a1 + 162i

√
3 a2v21v32b2 + 972i

√
3 a2v1v42a2

− 324i
√
3 a2v1v42b3 − 2

√
3 v5v3av21v2a3 + 9a3v51v22b2

− 72
√
3 v4v3av1v22a3 + 3i

√
3 v5a2v41v2b2

+ 9i
√
3 v5a2v31v22a2 − 3i

√
3 v5a2v31v22b3 + 3i

√
3 v5a2v21v32a3

+3i
√
3 v5a2v31v2b1+3i

√
3 v5a2v21v22a1−108i

√
3 v5av1v22b2

− 6iv5v3av21v2a3 − 24v4a3v41v32a3 + 3v5a2v41v2b2
+ 9v5a2v31v22a2 − 3v5a2v31v22b3 + 3v5a2v21v32a3
+ 3v5a2v31v2b1 + 3v5a2v21v22a1 + 36v4a2v31v22b2
+ 648v4a2v1v42a3 − 270

√
3 v3av32a3 − 108v5av1v22b2

+ 12
√
3 v5v3v1b2 + 18

√
3 v5v3v2a2 − 6

√
3 v5v3v2b3

+ 54
√
3 v3av22a1 + 108

√
3 v4v3v2b2 + 6

√
3 v3a2v31v22a3

+ 18
√
3 v3av21v2b2 + 108

√
3 v3av1v22a2 − 36

√
3 v3av1v22b3

+ 18
√
3 v3av1v2b1 − 2430i

√
3 a2v52a3 + 486i

√
3 a2v42a1

+810iv3av32a3 +36iv5v3v1b2 +54iv5v3v2a2 − 18iv5v3v2b3
− 162iv3av22a1 + 2430a2v52a3 − 486a2v42a1 + 27a3v41v32a2
− 9a3v41v32b3 − 99a3v31v42a3 + 9a3v41v22b1 + 9a3v31v32a1
− 162a2v21v32b2 − 972a2v1v42a2 + 324a2v1v42b3
− 162a2v1v32b1 − 162v5av32a2 + 54v5av32b3 − 108v5av22b1
− 972v4av32b2 + 12

√
3 v5v3b1 + 36iv5v3b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

9226



Equation (7E) now becomes

(8E)

−972
√
3 ab2v22v3v4 − 9a

(
−2

√
3 aa3 − 6iaa3

)
v21v

2
2v3v5

− 9a
(
12
√
3 b2 + 36ib2

)
v1v2v3v5 + 8748a2b2v42v4

− 9a
(
972i

√
3 a2a2 − 324i

√
3 a2b3 − 972a2a2

+ 324a2b3
)
v1v

5
2 − 9a

(
162i

√
3 a2b1 − 162a2b1

)
v1v

4
2

− 9a
(
162i

√
3 a2b2 − 162a2b2

)
v21v

4
2

− 9a
(
−9i

√
3 a3a1 + 9a3a1

)
v31v

4
2

− 9a
(
−162i

√
3 aa2 + 54i

√
3 ab3 − 162aa2 + 54ab3

)
v42v5

− 9a
(
54
√
3 aa1 − 162iaa1

)
v32v3

− 9a
(
−108i

√
3 ab1 − 108ab1

)
v32v5 − 5832a3a3v1v52v4

− 9a
(
−2430i

√
3 a2a3 + 2430a2a3

)
v62

− 9a
(
486i

√
3 a2a1 − 486a2a1

)
v52 + 648

√
3 a2a3v1v32v3v4

+ 216a4a3v41v42v4 − 9a
(
3i
√
3 a2b1 + 3a2b1

)
v31v

2
2v5

− 9a
(
18
√
3 a2 − 6

√
3 b3 + 54ia2 − 18ib3

)
v22v3v5

− 9a
(
12
√
3 b1 + 36ib1

)
v2v3v5

− 9a
(
3i
√
3 a2b2 + 3a2b2

)
v41v

2
2v5

− 9a
(
3i
√
3 a2a3 + 3a2a3

)
v21v

4
2v5

− 9a
(
3i
√
3 a2a1 + 3a2a1

)
v21v

3
2v5

− 9a
(
18
√
3 ab2 − 54iab2

)
v21v

2
2v3

−9a
(
108

√
3 aa2−36

√
3 ab3−324iaa2+108iab3

)
v1v

3
2v3

− 9a
(
−108i

√
3 ab2 − 108ab2

)
v1v

3
2v5

− 9a
(
18
√
3 ab1 − 54iab1

)
v1v

2
2v3

− 9a
(
6
√
3 a2a3 − 18ia2a3

)
v31v

3
2v3

− 9a
(
9i
√
3 a2a2 − 3i

√
3 a2b3 + 9a2a2 − 3a2b3

)
v31v

3
2v5

− 9a
(
−270

√
3 aa3 + 810iaa3

)
v42v3

− 9a
(
−27i

√
3 a3a2 + 9i

√
3 a3b3 + 27a3a2 − 9a3b3

)
v41v

4
2

− 9a
(
−9i

√
3 a3b1 + 9a3b1

)
v41v

3
2

− 9a
(
99i

√
3 a3a3 − 99a3a3

)
v31v

5
2

− 9a
(
−9i

√
3 a3b2 + 9a3b2

)
v51v

3
2 − 324a3b2v31v32v4 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−9a
(
12
√
3 b1 + 36ib1

)
= 0

−9a
(
12
√
3 b2 + 36ib2

)
= 0

−9a
(
54
√
3 aa1 − 162iaa1

)
= 0

−9a
(
−270

√
3 aa3 + 810iaa3

)
= 0

−9a
(
−2

√
3 aa3 − 6iaa3

)
= 0

−9a
(
18
√
3 ab1 − 54iab1

)
= 0

−9a
(
18
√
3 ab2 − 54iab2

)
= 0

−9a
(
6
√
3 a2a3 − 18ia2a3

)
= 0

−9a
(
−2430i

√
3 a2a3 + 2430a2a3

)
= 0

−9a
(
−108i

√
3 ab1 − 108ab1

)
= 0

−9a
(
−108i

√
3 ab2 − 108ab2

)
= 0

−9a
(
−9i

√
3 a3a1 + 9a3a1

)
= 0

−9a
(
−9i

√
3 a3b1 + 9a3b1

)
= 0

−9a
(
−9i

√
3 a3b2 + 9a3b2

)
= 0

−9a
(
3i
√
3 a2a1 + 3a2a1

)
= 0

−9a
(
3i
√
3 a2a3 + 3a2a3

)
= 0

−9a
(
3i
√
3 a2b1 + 3a2b1

)
= 0

−9a
(
3i
√
3 a2b2 + 3a2b2

)
= 0

−9a
(
99i

√
3 a3a3 − 99a3a3

)
= 0

−9a
(
162i

√
3 a2b1 − 162a2b1

)
= 0

−9a
(
162i

√
3 a2b2 − 162a2b2

)
= 0

−9a
(
486i

√
3 a2a1 − 486a2a1

)
= 0

−9a
(
18
√
3 a2 − 6

√
3 b3 + 54ia2 − 18ib3

)
= 0

−9a
(
108

√
3 aa2 − 36

√
3 ab3 − 324iaa2 + 108iab3

)
= 0

−9a
(
−162i

√
3 aa2 + 54i

√
3 ab3 − 162aa2 + 54ab3

)
= 0

−9a
(
−27i

√
3 a3a2 + 9i

√
3 a3b3 + 27a3a2 − 9a3b3

)
= 0

−9a
(
9i
√
3 a2a2 − 3i

√
3 a2b3 + 9a2a2 − 3a2b3

)
= 0

−9a
(
972i

√
3 a2a2 − 324i

√
3 a2b3 − 972a2a2 + 324a2b3

)
= 0

8748a2b2 = 0
−5832a3a3 = 0
−324a3b2 = 0
216a4a3 = 0

−972
√
3 ab2 = 0

648
√
3 a2a3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-2*y(x)^3*a+2*y(x)*x^3)/(-y(x)^2*x*a+x^4), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 33� �
dsolve(diff(y(x),x)^3-a*x*y(x)*diff(y(x),x)+2*a*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = a x3

27
y(x) = 0

y(x) = (ac1x− 1)2

4c31a2

3 Solution by Mathematica
Time used: 146.625 (sec). Leaf size: 13176� �
DSolve[(y'[x])^3 -a*x*y[x]*y'[x]+2*a*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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35.5 problem 1037
Internal problem ID [4259]
Internal file name [OUTPUT/3752_Sunday_June_05_2022_10_38_18_AM_39508821/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1037.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
3 − xy4y′ − y5 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

(108y2 + 12
√
−12y6x3 + 81y4

) 1
3

6 + 2y2x(
108y2 + 12

√
−12y6x3 + 81y4

) 1
3

 y (1)

y′ =

−
(
108y2 + 12

√
−12y6x3 + 81y4

) 1
3

12 − y2x(
108y2 + 12

√
−12y6x3 + 81y4

) 1
3
+

i
√
3
((

108y2+12
√

−12y6x3+81y4
) 1

3

6 − 2y2x(
108y2+12

√
−12y6x3+81y4

) 1
3

)
2

 y

(2)

y′ =

−
(
108y2 + 12

√
−12y6x3 + 81y4

) 1
3

12 − y2x(
108y2 + 12

√
−12y6x3 + 81y4

) 1
3
−

i
√
3
((

108y2+12
√

−12y6x3+81y4
) 1

3

6 − 2y2x(
108y2+12

√
−12y6x3+81y4

) 1
3

)
2

 y

(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Writing the ode as

y′ =
y
(
12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)

6
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

b2 +
y
(
12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
(b3 − a2)

6
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

−
y2
(
12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)2

a3

36
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3

−


y

(
12y2 − 144x2y6(

108y2+12
√

−12x3y6+81y4
) 1

3√−12x3y6+81y4

)
6
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

+
12y7

(
12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
x2(

108y2 + 12
√
−12x3y6 + 81y4

) 4
3
√
−12x3y6 + 81y4

 (xa2 + ya3 + a1)

−


12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3

6
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

+

y

24xy +
144y+

2
(
−432x3y5+1944y3

)
3
√

−12x3y6+81y4(
108y2+12

√
−12x3y6+81y4

) 1
3


6
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

−
y
(
12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)(

216y + −432x3y5+1944y3√
−12x3y6+81y4

)
18
(
108y2 + 12

√
−12x3y6 + 81y4

) 4
3


(xb2

+ yb3 + b1) = 0
(5E)

Putting the above in normal form gives

Expression too large to display
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Setting the numerator to zero gives

(6E)

−23328x y7a2 − 46656y8a3 − 11664y7a1

+ 144
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
x4y6b2

+ 72
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
x3y7a2

+ 144
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
x3y7b3

− 2592
√

−12x3y6 + 81y4 x y5a2

+ 72
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
x2y8a3

+ 144
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
x3y6b1

+ 72
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
x2y7a1

−
√

−12x3y6 + 81y4
(
108y2

+ 12
√

−12x3y6 + 81y4
) 5

3
xb2

−
√

−12x3y6 + 81y4
(
108y2

+ 12
√

−12x3y6 + 81y4
) 5

3
ya2

− 3024
√

−12x3y6 + 81y4 x2y4b2

− 1728
√

−12x3y6 + 81y4 x y5b3

− 648
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
x y4b2

− 72
√

−12x3y6 + 81y4
(
108y2

+ 12
√

−12x3y6 + 81y4
) 2

3
y3b3

− 3024
√

−12x3y6 + 81y4 x y4b1
− 72

√
−12x3y6 + 81y4

(
108y2

+ 12
√

−12x3y6 + 81y4
) 2

3
y2b1

− 24
√

−12x3y6 + 81y4
(
108y2

+ 12
√

−12x3y6 + 81y4
) 2

3
x2y6a3

− 4
√

−12x3y6 + 81y4
(
108y2

+ 12
√

−12x3y6 + 81y4
) 4

3
x y4a3

− 72
√

−12x3y6 + 81y4
(
108y2

+ 12
√

−12x3y6 + 81y4
) 2

3
x y2b2

+ 2592x4y9a2 + 6048x3y10a3 + 864x3y9a1
+ 3456x5y8b2 + 1728x4y9b3 + 3456x4y8b1
− 27216x2y6b2 − 15552x y7b3 − 27216x y6b1

− 648
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
y5b3

−
√

−12x3y6 + 81y4
(
108y2

+ 12
√

−12x3y6 + 81y4
) 5

3
b1

− 648
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
y4b1

+ 6b2
(
108y2

+ 12
√

−12x3y6 + 81y4
) 4

3 √−12x3y6 + 81y4

− 3240
√

−12x3y6 + 81y4 y6a3
− 1296

√
−12x3y6 + 81y4 y5a1

− 24
(
−12x3y6 + 81y4

) 3
2 y2a3 = 0
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−y4 (4x3y2 − 27),

(
108y2 + 12

√
3
√
−y4 (4x3y2 − 27)

) 1
3
,
(
108y2

+ 12
√
3
√

−y4 (4x3y2 − 27)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−y4 (4x3y2 − 27) = v3,
(
108y2

+ 12
√
3
√

−y4 (4x3y2 − 27)
) 1

3 = v4,
(
108y2 + 12

√
3
√
−y4 (4x3y2 − 27)

) 2
3 = v5

}
The above PDE (6E) now becomes

(7E)

−72v22
(
−48v4v41v82a3 + 2

√
3 v3v5v21v42a3 + 36

√
3 v3v4v1v42a3

− 24v5v41v42b2 − 18v5v31v52a2 − 12v5v31v52b3 − 6v5v21v62a3
− 24v5v31v42b1 − 6v5v21v52a1 + 72v4v31v42b2 + 324v4v1v62a3
+ 432

√
3 v3v42a3 + 108

√
3 v3v32a1 + 135v5v1v22b2 + 15

√
3 v3v5b1

− 54
√
3 v3v4b2 − 288v51v62b2 − 216v41v72a2 − 144v41v72b3

− 504v31v82a3 − 288v41v62b1 − 72v31v72a1 + 1944v1v52a2 + 81v5v32a2
+ 54v5v32b3 + 135v5v22b1 − 486v4v22b2 + 2268v21v42b2 + 1296v1v52b3
+ 2268v1v42b1 + 3888v62a3 + 972v52a1 + 144

√
3 v3v1v32b3

+ 15
√
3 v3v5v1b2 + 9

√
3 v3v5v2a2 + 6

√
3 v3v5v2b3 + 252

√
3 v3v1v22b1

− 24
√
3 v3v31v62a3 + 252

√
3 v3v21v22b2 + 216

√
3 v3v1v32a2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−23328a3v4v1v82 + (−139968a2 − 93312b3) v1v72
+
(
−15552

√
3 a2 − 10368

√
3 b3
)
v3v1v

5
2 − 9720b2v5v1v42

− 7776
√
3 a1v3v52 +

(
−648

√
3 a2 − 432

√
3 b3
)
v3v5v

3
2

− 2592
√
3 a3v3v4v1v62 − 1080

√
3 b2v3v5v1v22 − 144

√
3 a3v3v5v21v62

− 31104
√
3 a3v62v3 + 3456a3v4v41v102 + (15552a2 + 10368b3) v41v92

+ 1728b2v5v41v62 + (1296a2 + 864b3) v5v31v72 − 5184b2v4v31v62
+ 1728b1v5v31v62 + 432a3v5v21v82 + 432a1v5v21v72
+ 1728

√
3 a3v3v31v82 − 18144

√
3 b2v3v21v42 − 18144

√
3 b1v3v1v42

+ 3888
√
3 b2v3v4v22 − 1080

√
3 b1v3v5v22 − 9720b1v42v5

+ 34992b2v42v4 + 20736v82b2v51 + 20736b1v41v82 + 36288a3v31v102
+ 5184a1v31v92 − 163296b2v21v62 − 163296b1v1v62
+ (−5832a2 − 3888b3) v5v52 − 279936a3v82 − 69984a1v72 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−69984a1 = 0

432a1 = 0
5184a1 = 0

−279936a3 = 0
−23328a3 = 0

432a3 = 0
3456a3 = 0
36288a3 = 0

−163296b1 = 0
−9720b1 = 0
1728b1 = 0
20736b1 = 0

−163296b2 = 0
−9720b2 = 0
−5184b2 = 0
1728b2 = 0
20736b2 = 0
34992b2 = 0

−7776
√
3 a1 = 0

−31104
√
3 a3 = 0

−2592
√
3 a3 = 0

−144
√
3 a3 = 0

1728
√
3 a3 = 0

−18144
√
3 b1 = 0

−1080
√
3 b1 = 0

−18144
√
3 b2 = 0

−1080
√
3 b2 = 0

3888
√
3 b2 = 0

−139968a2 − 93312b3 = 0
−5832a2 − 3888b3 = 0

1296a2 + 864b3 = 0
15552a2 + 10368b3 = 0

−15552
√
3 a2 − 10368

√
3 b3 = 0

−648
√
3 a2 − 432

√
3 b3 = 09238



Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 = −3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −3y
2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

=
−3y

2
x

= −3y
2x

This is easily solved to give

y = c1

x
3
2

Where now the coordinate R is taken as the constant of integration. Hence

R = x
3
2y
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And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
y
(
12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)

6
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

Evaluating all the partial derivatives gives

Rx = 3
√
x y

2
Ry = x

3
2

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

6
(
108y2 + 12

√
3
√
−4x3y6 + 27y4

) 1
3

x
3
2y
(
12y2x2 +

(
108y2 + 12

√
3
√
−4x3y6 + 27y4

) 2
3 x+ 9

(
108y2 + 12

√
3
√
−4x3y6 + 27y4

) 1
3
)

(2A)
We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

612 1
3
(
i
√
3
√
4R2 − 27 + 9

) 1
3

R
1
3

(
R

4
312 2

3
(
i
√
3
√
4R2 − 27 + 9

) 2
3 + 9R 2

312 1
3
(
i
√
3
√
4R2 − 27 + 9

) 1
3 + 12R2

)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 2

(
i
√
12R2 − 81 + 9

) 1
3 18 2

3(
2R 4

3
(
i
√
12R2 − 81 + 9

) 2
3 18 1

3 + 9
(
i
√
12R2 − 81 + 9

) 1
3 12 1

3 (R2)
1
3 + 12R2

)
R

1
3

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ x

3
2 y 2

(
i
√
12_a2 − 81 + 9

) 1
3 18 2

3(
2_a 4

3
(
i
√
12_a2 − 81 + 9

) 2
3 18 1

3 + 9
(
i
√
12_a2 − 81 + 9

) 1
3 12 1

3 (_a2)
1
3 + 12_a2

)
_a 1

3

d_a+ c1

Which simplifies to

ln (x) =
∫ x

3
2 y 2

(
i
√
12_a2 − 81 + 9

) 1
3 18 2

3(
2_a 4

3
(
i
√
12_a2 − 81 + 9

) 2
3 18 1

3 + 9
(
i
√
12_a2 − 81 + 9

) 1
3 12 1

3 (_a2)
1
3 + 12_a2

)
_a 1

3

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x)

=
∫ x

3
2 y 2

(
i
√
12_a2 − 81 + 9

) 1
3 18 2

3(
2_a 4

3
(
i
√
12_a2 − 81 + 9

) 2
3 18 1

3 + 9
(
i
√
12_a2 − 81 + 9

) 1
3 12 1

3 (_a2)
1
3 + 12_a2

)
_a 1

3

d_a

+ c1

Verification of solutions

ln (x)

=
∫ x

3
2 y 2

(
i
√
12_a2 − 81 + 9

) 1
3 18 2

3(
2_a 4

3
(
i
√
12_a2 − 81 + 9

) 2
3 18 1

3 + 9
(
i
√
12_a2 − 81 + 9

) 1
3 12 1

3 (_a2)
1
3 + 12_a2

)
_a 1

3

d_a

+ c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 + 12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 + 12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y(b3 − a2)

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

−

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 + 12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)2

y2a3

144
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3

−

−

(
12i

√
3 y2 + 144i

√
3x2y6(

108y2+12
√

−12x3y6+81y4
) 1

3√−12x3y6+81y4
+ 12y2 − 144x2y6(

108y2+12
√

−12x3y6+81y4
) 1

3√−12x3y6+81y4

)
y

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

−
6
(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 + 12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y7x2(

108y2 + 12
√
−12x3y6 + 81y4

) 4
3
√
−12x3y6 + 81y4

 (xa2

+ ya3 + a1)

−


−

24i
√
3 yx−

2i
√
3
(
216y+−432x3y5+1944y3√

−12x3y6+81y4

)

3
(
108y2+12

√
−12x3y6+81y4

) 1
3
+ 24xy +

144y+
2
(
−432x3y5+1944y3

)
3
√

−12x3y6+81y4(
108y2+12

√
−12x3y6+81y4

) 1
3

 y

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

−
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 + 12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

+

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 + 12x y2 +

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y
(
216y + −432x3y5+1944y3√

−12x3y6+81y4

)
36
(
108y2 + 12

√
−12x3y6 + 81y4

) 4
3


(xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y4 (4x3y2 − 27),

(
108y2 + 12

√
3
√
−y4 (4x3y2 − 27)

) 1
3
,
(
108y2

+ 12
√
3
√

−y4 (4x3y2 − 27)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−y4 (4x3y2 − 27) = v3,
(
108y2

+ 12
√
3
√

−y4 (4x3y2 − 27)
) 1

3 = v4,
(
108y2 + 12

√
3
√
−y4 (4x3y2 − 27)

) 2
3 = v5

}
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The above PDE (6E) now becomes

(7E)

144v22
(
6
√
3 v3v5v2b3 + 252

√
3 v3v1v22b1 − 24v5v31v42b1

− 6v5v21v52a1 − 144v4v31v42b2 − 648v4v1v62a3 +432
√
3 v3v42a3

+ 108
√
3 v3v32a1 + 135v5v1v22b2 + 15

√
3 v3v5b1

+ 108
√
3 v3v4b2 + 96v4v41v82a3 − 288v51v62b2 − 216v41v72a2

− 144v41v72b3 − 504v31v82a3 − 288v41v62b1 − 72v31v72a1
+ 1944v1v52a2 + 81v5v32a2 + 54v5v32b3 + 135v5v22b1
+ 972v4v22b2 + 2268v21v42b2 + 1296v1v52b3 + 2268v1v42b1
+ 3888v62a3 + 972v52a1 + 9

√
3 v3v5v2a2 − 288i

√
3 v51v62b2

− 216i
√
3 v41v72a2 − 144i

√
3 v41v72b3 − 504i

√
3 v31v82a3

− 288i
√
3 v41v62b1 − 72i

√
3 v31v72a1 − 72iv3v31v62a3

+ 2268i
√
3 v21v42b2 + 1944i

√
3 v1v52a2 + 1296i

√
3 v1v52b3

− 81i
√
3 v5v32a2 − 54i

√
3 v5v32b3 + 2268i

√
3 v1v42b1

− 135i
√
3 v5v22b1 + 756iv3v21v22b2 + 648iv3v1v32a2

+ 432iv3v1v32b3 − 45iv3v5v1b2 − 27iv3v5v2a2 − 18iv3v5v2b3
+ 756iv3v1v22b1 − 6v5v21v62a3 + 2

√
3 v3v5v21v42a3

− 72
√
3 v3v4v1v42a3 + 24i

√
3 v5v41v42b2 + 18i

√
3 v5v31v52a2

+ 12i
√
3 v5v31v52b3 + 6i

√
3 v5v21v62a3 + 24i

√
3 v5v31v42b1

+ 6i
√
3 v5v21v52a1 − 6iv3v5v21v42a3 − 24

√
3 v3v31v62a3

+ 252
√
3 v3v21v22b2 + 216

√
3 v3v1v32a2 + 144

√
3 v3v1v32b3

+ 15
√
3 v3v5v1b2 − 24v5v41v42b2 − 18v5v31v52a2 − 12v5v31v52b3

+ 3888i
√
3 v62a3 + 972i

√
3 v52a1 + 1296iv3v42a3

+ 324iv3v32a1 − 45iv3v5b1 − 135i
√
3 v5v1v22b2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

15552
√
3 b2v3v4v22 +

(
3456i

√
3 b2 − 3456b2

)
v5v

4
1v

6
2

+
(
−3888ia2 − 2592ib3 + 1296

√
3 a2 + 864

√
3 b3
)
v3v5v

3
2

+
(
−6480ib1 + 2160

√
3 b1
)
v3v5v

2
2

+
(
−10368ia3 − 3456

√
3 a3
)
v3v

3
1v

8
2

+
(
2592i

√
3 a2 + 1728i

√
3 b3 − 2592a2 − 1728b3

)
v5v

3
1v

7
2

+
(
−864ia3 + 288

√
3 a3
)
v3v5v

2
1v

6
2

+
(
−6480ib2 + 2160

√
3 b2
)
v3v5v1v

2
2 − 20736b2v4v31v62

+ 13824a3v4v41v102 +
(
326592i

√
3 b2 + 326592b2

)
v21v

6
2

+
(
279936i

√
3 a2 + 186624i

√
3 b3 + 279936a2

+ 186624b3
)
v1v

7
2 +

(
326592i

√
3 b1 + 326592b1

)
v1v

6
2

+
(
−41472i

√
3 b2 − 41472b2

)
v51v

8
2

+
(
−31104i

√
3 a2 − 20736i

√
3 b3 − 31104a2

− 20736b3
)
v41v

9
2 +

(
−41472i

√
3 b1 − 41472b1

)
v41v

8
2

+
(
−72576i

√
3 a3 − 72576a3

)
v31v

10
2

+
(
−10368i

√
3 a1 − 10368a1

)
v31v

9
2

+
(
186624ia3 + 62208

√
3 a3
)
v3v

6
2

+
(
46656ia1 + 15552

√
3 a1
)
v3v

5
2

+
(
−11664i

√
3 a2−7776i

√
3 b3+11664a2+7776b3

)
v5v

5
2

+
(
−19440i

√
3 b1 + 19440b1

)
v5v

4
2

− 10368
√
3 a3v3v4v1v62 +

(
3456i

√
3 b1 − 3456b1

)
v5v

3
1v

6
2

+
(
864i

√
3 a3 − 864a3

)
v5v

2
1v

8
2

+
(
864i

√
3 a1 − 864a1

)
v5v

2
1v

7
2

+
(
108864ib2 + 36288

√
3 b2
)
v3v

2
1v

4
2 +

(
93312ia2

+ 62208ib3 + 31104
√
3 a2 + 20736

√
3 b3
)
v3v1v

5
2

+
(
108864ib1 + 36288

√
3 b1
)
v3v1v

4
2

+
(
−19440i

√
3 b2 + 19440b2

)
v5v1v

4
2

+ 139968b2v42v4 +
(
559872i

√
3 a3 + 559872a3

)
v82

+
(
139968i

√
3 a1 + 139968a1

)
v72 − 93312a3v4v1v82 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−93312a3 = 0
13824a3 = 0

−20736b2 = 0
139968b2 = 0

−10368
√
3 a3 = 0

15552
√
3 b2 = 0

−10368ia3 − 3456
√
3 a3 = 0

−6480ib1 + 2160
√
3 b1 = 0

−6480ib2 + 2160
√
3 b2 = 0

−864ia3 + 288
√
3 a3 = 0

46656ia1 + 15552
√
3 a1 = 0

108864ib1 + 36288
√
3 b1 = 0

108864ib2 + 36288
√
3 b2 = 0

186624ia3 + 62208
√
3 a3 = 0

−72576i
√
3 a3 − 72576a3 = 0

−41472i
√
3 b1 − 41472b1 = 0

−41472i
√
3 b2 − 41472b2 = 0

−19440i
√
3 b1 + 19440b1 = 0

−19440i
√
3 b2 + 19440b2 = 0

−10368i
√
3 a1 − 10368a1 = 0

864i
√
3 a1 − 864a1 = 0

864i
√
3 a3 − 864a3 = 0

3456i
√
3 b1 − 3456b1 = 0

3456i
√
3 b2 − 3456b2 = 0

139968i
√
3 a1 + 139968a1 = 0

326592i
√
3 b1 + 326592b1 = 0

326592i
√
3 b2 + 326592b2 = 0

559872i
√
3 a3 + 559872a3 = 0

−3888ia2 − 2592ib3 + 1296
√
3 a2 + 864

√
3 b3 = 0

93312ia2 + 62208ib3 + 31104
√
3 a2 + 20736

√
3 b3 = 0

−31104i
√
3 a2 − 20736i

√
3 b3 − 31104a2 − 20736b3 = 0

−11664i
√
3 a2 − 7776i

√
3 b3 + 11664a2 + 7776b3 = 0

2592i
√
3 a2 + 1728i

√
3 b3 − 2592a2 − 1728b3 = 0

279936i
√
3 a2 + 186624i

√
3 b3 + 279936a2 + 186624b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ =

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 − 12x y2 −

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 − 12x y2 −

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y(b3 − a2)

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

−

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 − 12x y2 −

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)2

y2a3

144
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3

−



(
12i

√
3 y2 + 144i

√
3x2y6(

108y2+12
√

−12x3y6+81y4
) 1

3√−12x3y6+81y4
− 12y2 + 144x2y6(

108y2+12
√

−12x3y6+81y4
) 1

3√−12x3y6+81y4

)
y

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

+
6
(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 − 12x y2 −

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y7x2(

108y2 + 12
√
−12x3y6 + 81y4

) 4
3
√
−12x3y6 + 81y4

 (xa2

+ ya3 + a1)

−



24i
√
3 yx−

2i
√
3
(
216y+−432x3y5+1944y3√

−12x3y6+81y4

)

3
(
108y2+12

√
−12x3y6+81y4

) 1
3
− 24xy −

2
(
216y+−432x3y5+1944y3√

−12x3y6+81y4

)

3
(
108y2+12

√
−12x3y6+81y4

) 1
3

 y

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

+
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 − 12x y2 −

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3

12
(
108y2 + 12

√
−12x3y6 + 81y4

) 1
3

−

(
12i

√
3 y2x− i

√
3
(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3 − 12x y2 −

(
108y2 + 12

√
−12x3y6 + 81y4

) 2
3
)
y
(
216y + −432x3y5+1944y3√

−12x3y6+81y4

)
36
(
108y2 + 12

√
−12x3y6 + 81y4

) 4
3


(xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y4 (4x3y2 − 27),

(
108y2 + 12

√
3
√
−y4 (4x3y2 − 27)

) 1
3
,
(
108y2

+ 12
√
3
√

−y4 (4x3y2 − 27)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−y4 (4x3y2 − 27) = v3,
(
108y2

+ 12
√
3
√

−y4 (4x3y2 − 27)
) 1

3 = v4,
(
108y2 + 12

√
3
√
−y4 (4x3y2 − 27)

) 2
3 = v5

}
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The above PDE (6E) now becomes

(7E)

−144v22
(
−3888v62a3 − 972v52a1 − 144

√
3 v3v1v32b3

− 15
√
3 v3v5v1b2 − 9

√
3 v3v5v2a2 − 6

√
3 v3v5v2b3

− 252
√
3 v3v1v22b1 − 288i

√
3 v51v62b2 − 216i

√
3 v41v72a2

− 144i
√
3 v41v72b3 − 504i

√
3 v31v82a3 − 288i

√
3 v41v62b1

− 96v4v41v82a3 + 288v51v62b2 + 216v41v72a2 + 144v41v72b3
+ 504v31v82a3 + 288v41v62b1 + 72v31v72a1 − 1944v1v52a2
− 81v5v32a2 − 54v5v32b3 − 135v5v22b1 − 972v4v22b2
− 2268v21v42b2 − 1296v1v52b3 − 2268v1v42b1 − 72i

√
3 v31v72a1

− 72iv3v31v62a3 + 2268i
√
3 v21v42b2 + 1944i

√
3 v1v52a2

+ 1296i
√
3 v1v52b3 − 81i

√
3 v5v32a2 − 54i

√
3 v5v32b3

+ 2268i
√
3 v1v42b1 − 135i

√
3 v5v22b1 + 756iv3v21v22b2

+648iv3v1v32a2+432iv3v1v32b3− 45iv3v5v1b2− 27iv3v5v2a2
− 18iv3v5v2b3 + 756iv3v1v22b1 + 24i

√
3 v5v41v42b2

+ 18i
√
3 v5v31v52a2 + 12i

√
3 v5v31v52b3 + 6i

√
3 v5v21v62a3

+ 24i
√
3 v5v31v42b1 + 6i

√
3 v5v21v52a1 − 6iv3v5v21v42a3

− 135i
√
3 v5v1v22b2 − 2

√
3 v3v5v21v42a3 + 72

√
3 v3v4v1v42a3

+ 24
√
3 v3v31v62a3 − 252

√
3 v3v21v22b2 − 216

√
3 v3v1v32a2

+ 24v5v41v42b2 + 18v5v31v52a2 + 12v5v31v52b3 + 6v5v21v62a3
+ 24v5v31v42b1 + 6v5v21v52a1 + 144v4v31v42b2 + 648v4v1v62a3
− 432

√
3 v3v42a3 − 108

√
3 v3v32a1 − 135v5v1v22b2

− 15
√
3 v3v5b1 − 108

√
3 v3v4b2 + 3888i

√
3 v62a3

+972i
√
3 v52a1+1296iv3v42a3+324iv3v32a1−45iv3v5b1

)
=0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

13824a3v4v41v102 − 93312a3v4v1v82
+
(
−186624ia3 + 62208

√
3 a3
)
v3v

6
2

+
(
−46656ia1 + 15552

√
3 a1
)
v3v

5
2

+
(
11664i

√
3 a2 + 7776i

√
3 b3 + 11664a2 + 7776b3

)
v5v

5
2

+
(
19440i

√
3 b1 + 19440b1

)
v5v

4
2

+
(
41472i

√
3 b2 − 41472b2

)
v51v

8
2

+
(
−279936i

√
3 a2 − 186624i

√
3 b3 + 279936a2

+ 186624b3
)
v1v

7
2 +

(
−326592i

√
3 b1 + 326592b1

)
v1v

6
2

+
(
31104i

√
3 a2+20736i

√
3 b3−31104a2−20736b3

)
v41v

9
2

+ 139968b2v42v4 +
(
864ia3 + 288

√
3 a3
)
v3v5v

2
1v

6
2

+
(
6480ib2 + 2160

√
3 b2
)
v3v5v1v

2
2

+
(
−3456i

√
3 b2 − 3456b2

)
v5v

4
1v

6
2

+
(
10368ia3 − 3456

√
3 a3
)
v3v

3
1v

8
2

+
(
3888ia2 + 2592ib3 + 1296

√
3 a2 + 864

√
3 b3
)
v3v5v

3
2

+
(
6480ib1 + 2160

√
3 b1
)
v3v5v

2
2

+
(
−2592i

√
3 a2−1728i

√
3 b3−2592a2−1728b3

)
v5v

3
1v

7
2

+
(
−3456i

√
3 b1 − 3456b1

)
v5v

3
1v

6
2

+
(
−864i

√
3 a3 − 864a3

)
v5v

2
1v

8
2

+
(
−864i

√
3 a1 − 864a1

)
v5v

2
1v

7
2

+
(
−108864ib2 + 36288

√
3 b2
)
v3v

2
1v

4
2 +

(
−93312ia2

− 62208ib3 + 31104
√
3 a2 + 20736

√
3 b3
)
v3v1v

5
2

+
(
−108864ib1 + 36288

√
3 b1
)
v3v1v

4
2

+
(
19440i

√
3 b2 + 19440b2

)
v5v1v

4
2

+
(
−139968i

√
3 a1 + 139968a1

)
v72

+
(
41472i

√
3 b1 − 41472b1

)
v41v

8
2

+
(
72576i

√
3 a3 − 72576a3

)
v31v

10
2

+
(
10368i

√
3 a1 − 10368a1

)
v31v

9
2

+
(
−326592i

√
3 b2 + 326592b2

)
v21v

6
2

+
(
−559872i

√
3 a3 + 559872a3

)
v82 − 20736b2v4v31v62

− 10368
√
3 a3v3v4v1v62 + 15552

√
3 b2v3v4v22 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−93312a3 = 0
13824a3 = 0

−20736b2 = 0
139968b2 = 0

−10368
√
3 a3 = 0

15552
√
3 b2 = 0

−186624ia3 + 62208
√
3 a3 = 0

−108864ib1 + 36288
√
3 b1 = 0

−108864ib2 + 36288
√
3 b2 = 0

−46656ia1 + 15552
√
3 a1 = 0

864ia3 + 288
√
3 a3 = 0

6480ib1 + 2160
√
3 b1 = 0

6480ib2 + 2160
√
3 b2 = 0

10368ia3 − 3456
√
3 a3 = 0

−559872i
√
3 a3 + 559872a3 = 0

−326592i
√
3 b1 + 326592b1 = 0

−326592i
√
3 b2 + 326592b2 = 0

−139968i
√
3 a1 + 139968a1 = 0

−3456i
√
3 b1 − 3456b1 = 0

−3456i
√
3 b2 − 3456b2 = 0

−864i
√
3 a1 − 864a1 = 0

−864i
√
3 a3 − 864a3 = 0

10368i
√
3 a1 − 10368a1 = 0

19440i
√
3 b1 + 19440b1 = 0

19440i
√
3 b2 + 19440b2 = 0

41472i
√
3 b1 − 41472b1 = 0

41472i
√
3 b2 − 41472b2 = 0

72576i
√
3 a3 − 72576a3 = 0

−93312ia2 − 62208ib3 + 31104
√
3 a2 + 20736

√
3 b3 = 0

3888ia2 + 2592ib3 + 1296
√
3 a2 + 864

√
3 b3 = 0

−279936i
√
3 a2 − 186624i

√
3 b3 + 279936a2 + 186624b3 = 0

−2592i
√
3 a2 − 1728i

√
3 b3 − 2592a2 − 1728b3 = 0

11664i
√
3 a2 + 7776i

√
3 b3 + 11664a2 + 7776b3 = 0

31104i
√
3 a2 + 20736i

√
3 b3 − 31104a2 − 20736b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-y(x)^6-2*y(x)*x^3)/(-2*x*y(x)^5-4*x^4), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 47� �
dsolve(diff(y(x),x)^3-x*y(x)^4*diff(y(x),x)-y(x)^5 = 0,y(x), singsol=all)� �

y(x) = −3
√
3

2x 3
2

y(x) = 3
√
3

2x 3
2

y(x) = 0

y(x) = c1

√
c101

(c41x− 1)2

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 64� �
DSolve[(y'[x])^3 -x*y[x]^4*y'[x]- y[x]^5==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
c1x− c13

y(x) → 0
y(x) → Indeterminate

y(x) → − 3
√
3

2x3/2

y(x) → 3
√
3

2x3/2
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35.6 problem 1038
35.6.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9258

Internal problem ID [4260]
Internal file name [OUTPUT/3753_Sunday_June_05_2022_10_39_10_AM_90780590/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1038.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′
3 + e3x−2y(y′ − 1) = 0

35.6.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 + e3x−2y(p− 1) = 0

Solving for y from the above results in

y = 3x
2 −

ln
(
− p3

p−1

)
2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3
2

g = −
ln
(
− p3

p−1

)
2

Hence (2) becomes

p− 3
2 =

(
− 3p2

p−1 +
p3

(p−1)2

)
(p− 1) p′(x)

2p3 (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 3
2 = 0

Solving for p from the above gives

p = 3
2

Substituting these in (1A) gives

y = 3x
2 − 3 ln (3)

2 + ln (2)− iπ

2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
2
(
p(x)− 3

2

)
p(x)3(

− 3p(x)2
p(x)−1 +

p(x)3

(p(x)−1)2

)
(p (x)− 1)

(3)

This ODE is now solved for p(x). Integrating both sides gives∫
− 1
p (p− 1)dp =

∫
dx

− ln (p− 1) + ln (p) = x+ c1

Raising both side to exponential gives

e− ln(p−1)+ln(p) = ex+c1

Which simplifies to
p

p− 1 = c2ex
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Substituing the above solution for p in (2A) gives

y = 3x
2 −

ln
(
− c32e3x

(−1+c2ex)3
(

c2ex
−1+c2ex

−1
)
)

2

Summary
The solution(s) found are the following

(1)y = 3x
2 − 3 ln (3)

2 + ln (2)− iπ

2

(2)y = 3x
2 −

ln
(
− c32e3x

(−1+c2ex)3
(

c2ex
−1+c2ex

−1
)
)

2
Verification of solutions

y = 3x
2 − 3 ln (3)

2 + ln (2)− iπ

2

Verified OK.

y = 3x
2 −

ln
(
− c32e3x

(−1+c2ex)3
(

c2ex
−1+c2ex

−1
)
)

2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 3/2, y(x)` *** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �9261



3 Solution by Maple
Time used: 7.391 (sec). Leaf size: 944� �
dsolve(diff(y(x),x)^3+exp(3*x-2*y(x))*(diff(y(x),x)-1) = 0,y(x), singsol=all)� �
y(x) = 3x

2 + RootOf

x

+2 2 1
33 2

3

∫ _Z e2_a
((√

3
√

(4 + 27 e2_a) e−6_a e2_a + 9
)
e−2_a

) 1
3

3 e2_a2 1
33 2

3

((√
3
√
(4 + 27 e2_a) e−6_a e2_a + 9

)
e−2_a

) 1
3 − 2

((√
3
√

(4 + 27 e2_a) e−6_a e2_a + 9
)
e−2_a

) 2
3 e2_a + 22 2

33 1
3

d_a


− c1


y(x) = 3x

2

+RootOf

−2


∫ _Z e2_a+3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3

3 e2_a+3
(
2
√
e−4_a (4 e−2_a + 27) + 6

√
3 e−2_a

) 1
3 3 5

6 + 4 e2_a+33 1
3

((√
e−4_a (4 e−2_a + 27) + 3

√
3 e−2_a

)2) 1
3

− 9ie2_a+33 1
3

(
2
√
e−4_a (4 e−2_a + 27) + 6

√
3 e−2_a

) 1
3 + 22 2

33 1
3 e3 + 2i2 2

33 5
6 e3

d_a

 3 5
6

+6i3 1
3


∫ _Z e2_a+3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3

3 e2_a+3
(
2
√
e−4_a (4 e−2_a + 27) + 6

√
3 e−2_a

) 1
3 3 5

6 + 4 e2_a+33 1
3

((√
e−4_a (4 e−2_a + 27) + 3

√
3 e−2_a

)2) 1
3

− 9ie2_a+33 1
3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3 + 22 2

33 1
3 e3 + 2i2 2

33 5
6 e3

d_a



+ c1 − x


y(x) = 3x

2

+RootOf

2


∫ _Z e2_a+3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3

−4 e2_a+33 1
3

((√
e−4_a (4 e−2_a + 27) + 3

√
3 e−2_a

)2) 1
3

− 9ie2_a+33 1
3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3 − 3 e2_a+3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3 3 5

6 + 2i2 2
33 5

6 e3 − 2 2 2
33 1

3 e3
d_a

 3 5
6

+6i3 1
3


∫ _Z e2_a+3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3

−4 e2_a+33 1
3

((√
e−4_a (4 e−2_a + 27) + 3

√
3 e−2_a

)2) 1
3

− 9ie2_a+33 1
3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3 − 3 e2_a+3

(
2
√

e−4_a (4 e−2_a + 27) + 6
√
3 e−2_a

) 1
3 3 5

6 + 2i2 2
33 5

6 e3 − 2 2 2
33 1

3 e3
d_a



+ c1 − x
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3 +Exp[3*x -2*y[x]]*(y'[x]-1)==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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35.7 problem 1039
Internal problem ID [4261]
Internal file name [OUTPUT/3754_Sunday_June_05_2022_10_42_32_AM_11727732/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1039.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′
3 + e−2y(e2x + e3x

)
y′ − e3x−2y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
108 e3x−2y + 12

√
12 e6xe−6y + 36 e4xe−6ye3x + 36 e2xe−6ye6x + 12 e9xe−6y + 81 e6x−4y

) 1
3

6 −
6
(

e2xe−2y

3 + e3xe−2y

3

)
(
108 e3x−2y + 12

√
12 e6xe−6y + 36 e4xe−6ye3x + 36 e2xe−6ye6x + 12 e9xe−6y + 81 e6x−4y

) 1
3

(1)

y′ = −
(
108 e3x−2y + 12

√
12 e6xe−6y + 36 e4xe−6ye3x + 36 e2xe−6ye6x + 12 e9xe−6y + 81 e6x−4y

) 1
3

12 + e2xe−2y + e3xe−2y(
108 e3x−2y + 12

√
12 e6xe−6y + 36 e4xe−6ye3x + 36 e2xe−6ye6x + 12 e9xe−6y + 81 e6x−4y

) 1
3
+

i
√
3
((

108 e3x−2y+12
√
12 e6xe−6y+36 e4xe−6ye3x+36 e2xe−6ye6x+12 e9xe−6y+81 e6x−4y

) 1
3

6 + 2 e2xe−2y+2 e3xe−2y(
108 e3x−2y+12

√
12 e6xe−6y+36 e4xe−6ye3x+36 e2xe−6ye6x+12 e9xe−6y+81 e6x−4y

) 1
3

)
2

(2)

y′ = −
(
108 e3x−2y + 12

√
12 e6xe−6y + 36 e4xe−6ye3x + 36 e2xe−6ye6x + 12 e9xe−6y + 81 e6x−4y

) 1
3

12 + e2xe−2y + e3xe−2y(
108 e3x−2y + 12

√
12 e6xe−6y + 36 e4xe−6ye3x + 36 e2xe−6ye6x + 12 e9xe−6y + 81 e6x−4y

) 1
3
−

i
√
3
((

108 e3x−2y+12
√
12 e6xe−6y+36 e4xe−6ye3x+36 e2xe−6ye6x+12 e9xe−6y+81 e6x−4y

) 1
3

6 + 2 e2xe−2y+2 e3xe−2y(
108 e3x−2y+12

√
12 e6xe−6y+36 e4xe−6ye3x+36 e2xe−6ye6x+12 e9xe−6y+81 e6x−4y

) 1
3

)
2

(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (3)

Unable to determine ODE type.

Unable to determine ODE type.

9265



Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-2*x*exp(y(x))+3*exp(y(x))-2*x)/(2*exp(y(x))*x^3-5*exp(y(x))*x^2+2*x^3+3*x*exp(y(

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

<- 1st order, parametric methods successful`� �
3 Solution by Maple
Time used: 0.266 (sec). Leaf size: 28� �
dsolve(diff(y(x),x)^3+exp(-2*y(x))*(exp(2*x)+exp(3*x))*diff(y(x),x)-exp(3*x-2*y(x)) = 0,y(x), singsol=all)� �

y(x) = x−
ln
(
− e2x

(c1+1)(−c1+ex)2

)
2
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3 +Exp[-2*y[x]]*(Exp[2*x]+Exp[3*x])(y'[x])-Exp[3*x-2*y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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35.8 problem 1040
35.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9271

Internal problem ID [4262]
Internal file name [OUTPUT/3755_Sunday_June_05_2022_10_46_26_AM_38935569/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1040.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 + y′

2 − y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−8 + 108y + 12

√
−12y + 81y2

) 1
3

6 + 2

3
(
−8 + 108y + 12

√
−12y + 81y2

) 1
3
− 1

3

(1)

y′ = −
(
−8 + 108y + 12

√
−12y + 81y2

) 1
3

12 − 1

3
(
−8 + 108y + 12

√
−12y + 81y2

) 1
3
− 1

3 +
i
√
3
((

−8+108y+12
√

−12y+81y2
) 1

3

6 − 2

3
(
−8+108y+12

√
−12y+81y2

) 1
3

)
2

(2)

y′ = −
(
−8 + 108y + 12

√
−12y + 81y2

) 1
3

12 − 1

3
(
−8 + 108y + 12

√
−12y + 81y2

) 1
3
− 1

3 −

i
√
3
((

−8+108y+12
√

−12y+81y2
) 1

3

6 − 2

3
(
−8+108y+12

√
−12y+81y2

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 6
(
−8 + 108y + 12

√
81y2 − 12y

) 1
3(

−8 + 108y + 12
√
81y2 − 12y

) 2
3 − 2

(
−8 + 108y + 12

√
81y2 − 12y

) 1
3 + 4

dy =
∫

dx

6

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3(

−8 + 108_a+ 12
√
81_a2 − 12_a

) 2
3 − 2

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 + 4

d_a


= x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3(

−8 + 108_a+ 12
√
81_a2 − 12_a

) 2
3 − 2

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 + 4

d_a


= x+ c1

Verification of solutions

6

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3(

−8 + 108_a+ 12
√
81_a2 − 12_a

) 2
3 − 2

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 + 4

d_a


= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

∫ 12
(
−8 + 108y + 12

√
81y2 − 12y

) 1
3

i
(
−8 + 108y + 12

√
81y2 − 12y

) 2
3
√
3− 4−

(
−8 + 108y + 12

√
81y2 − 12y

) 2
3 − 4

(
−8 + 108y + 12

√
81y2 − 12y

) 1
3 − 4i

√
3
dy

=
∫

dx

12

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3

i
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3
√
3− 4−

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3 − 4

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 − 4i

√
3
d_a


= x+ c2
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Summary
The solution(s) found are the following

(1)12

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3

i
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3
√
3− 4−

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3 − 4

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 − 4i

√
3
d_a


= x+ c2

Verification of solutions

12

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3

i
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3
√
3− 4−

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3 − 4

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 − 4i

√
3
d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives∫
−

12
(
−8 + 108y + 12

√
81y2 − 12y

) 1
3

i
(
−8 + 108y + 12

√
81y2 − 12y

) 2
3
√
3 + 4 +

(
−8 + 108y + 12

√
81y2 − 12y

) 2
3 + 4

(
−8 + 108y + 12

√
81y2 − 12y

) 1
3 − 4i

√
3
dy

=
∫

dx

−12

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3

i
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3
√
3 + 4 +

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3 + 4

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 − 4i

√
3
d_a


= x+ c3

Summary
The solution(s) found are the following

(1)−12

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3

i
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3
√
3 + 4 +

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3 + 4

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 − 4i

√
3
d_a


= x+ c3
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Verification of solutions

−12

∫ y
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3

i
(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3
√
3 + 4 +

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 2
3 + 4

(
−8 + 108_a+ 12

√
81_a2 − 12_a

) 1
3 − 4i

√
3
d_a


= x+ c3

Verified OK.

35.8.1 Maple step by step solution

Let’s solve
y′3 + y′2 − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

−8+108y+12
√

−12y+81y2
) 1

3

6 + 2

3
(
−8+108y+12

√
−12y+81y2

) 1
3
− 1

3

= 1

• Integrate both sides with respect to x∫
y′(

−8+108y+12
√

−12y+81y2
) 1

3

6 + 2

3
(
−8+108y+12

√
−12y+81y2

) 1
3
− 1

3

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

−8+108y+12
√

−12y+81y2
) 1

3

6 + 2

3
(
−8+108y+12

√
−12y+81y2

) 1
3
− 1

3

dx = x+ c1
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 433� �
dsolve(diff(y(x),x)^3+diff(y(x),x)^2-y(x) = 0,y(x), singsol=all)� �
y(x) = 0

3 2 1
3
√
3

∫ y(x) (
9
√
27_a2 − 4_a+ (27_a− 2)

√
3
) 1

3

√
3 2 1

3
(
9
√
27_a2 − 4_a+ (27_a− 2)

√
3
) 1

3 − 3 1
3
(
9
√
27_a2 − 4_a+ (27_a− 2)

√
3
) 2

3 − 3 2
32 2

3

d_a


+ x− c1 = 0

12 2 1
3
√
3

∫ y(x) −
(
9
√

27_a2−4_a+(27_a−2)
√
3
) 1

3(
2
1
3 3

1
3+3

1
6
(
9
√

27_a2−4_a+(27_a−2)
√
3
) 1

3
)(

i3
5
6 2

1
3+2

1
3 3

1
3−2 3

1
6
(
9
√

27_a2−4_a+(27_a−2)
√
3
) 1

3
)d_a

+ (x− c1)
(
1 + i

√
3
)

1 + i
√
3

= 0

12i2 1
3
√
3

∫ y(x)
(
9
√

27_a2−4_a+(27_a−2)
√
3
) 1

3(
2
1
3 3

1
3+3

1
6
(
9
√

27_a2−4_a+(27_a−2)
√
3
) 1

3
)(

i3
5
6 2

1
3+23

1
6
(
9
√

27_a2−4_a+(27_a−2)
√
3
) 1

3−2
1
3 3

1
3

)d_a
+ (x− c1)

(√
3 + i

)
√
3 + i

= 0
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3 Solution by Mathematica
Time used: 105.918 (sec). Leaf size: 515� �
DSolve[(y'[x])^3 + (y'[x])^2 -y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

∫ #1

1

3
√
−27K[1] + 3

√
3
√
K[1](27K[1]− 4) + 2

22/3
(
−27K[1] + 3

√
3
√

K[1](27K[1]− 4) + 2
)2/3

+ 2 3
√

−27K[1] + 3
√
3
√

K[1](27K[1]− 4) + 2 + 2 3
√
2
dK[1]&

[−x

6 +c1
]

y(x)

→ InverseFunction

∫ #1

1

3
√

−27K[2] + 3
√
3
√
K[2](27K[2]− 4) + 2

−i22/3
√
3
(
−27K[2] + 3

√
3
√
K[2](27K[2]− 4) + 2

)2/3
+ 22/3

(
−27K[2] + 3

√
3
√

K[2](27K[2]− 4) + 2
)2/3

− 4 3
√

−27K[2] + 3
√
3
√

K[2](27K[2]− 4) + 2 + 2i 3
√
2
√
3 + 2 3

√
2
dK[2]&

[ x12+c1
]

y(x)

→ InverseFunction

∫ #1

1

3
√

−27K[3] + 3
√
3
√

K[3](27K[3]− 4) + 2

i22/3
√
3
(
−27K[3] + 3

√
3
√
K[3](27K[3]− 4) + 2

)2/3
+ 22/3

(
−27K[3] + 3

√
3
√

K[3](27K[3]− 4) + 2
)2/3

− 4 3
√

−27K[3] + 3
√
3
√

K[3](27K[3]− 4) + 2− 2i 3
√
2
√
3 + 2 3

√
2
dK[3]&

[ x12+c1
]

y(x) → 0
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35.9 problem 1041
35.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9277

Internal problem ID [4263]
Internal file name [OUTPUT/3756_Sunday_June_05_2022_10_46_34_AM_38475086/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1041.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 − y′

2 + y2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
8− 108y2 + 12

√
−12y2 + 81y4

) 1
3

6 + 2

3
(
8− 108y2 + 12

√
−12y2 + 81y4

) 1
3
+ 1

3

(1)

y′ = −
(
8− 108y2 + 12

√
−12y2 + 81y4

) 1
3

12 − 1

3
(
8− 108y2 + 12

√
−12y2 + 81y4

) 1
3
+ 1

3 +
i
√
3
((

8−108y2+12
√

−12y2+81y4
) 1

3

6 − 2

3
(
8−108y2+12

√
−12y2+81y4

) 1
3

)
2

(2)

y′ = −
(
8− 108y2 + 12

√
−12y2 + 81y4

) 1
3

12 − 1

3
(
8− 108y2 + 12

√
−12y2 + 81y4

) 1
3
+ 1

3 −

i
√
3
((

8−108y2+12
√

−12y2+81y4
) 1

3

6 − 2

3
(
8−108y2+12

√
−12y2+81y4

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 6
(
8− 108y2 + 12

√
81y4 − 12y2

) 1
3(

8− 108y2 + 12
√
81y4 − 12y2

) 2
3 + 2

(
8− 108y2 + 12

√
81y4 − 12y2

) 1
3 + 4

dy =
∫

dx

6

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3(

8− 108_a2 + 12
√
81_a4 − 12_a2

) 2
3 + 2

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 + 4

d_a


= x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3(

8− 108_a2 + 12
√
81_a4 − 12_a2

) 2
3 + 2

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 + 4

d_a


= x+ c1

Verification of solutions

6

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3(

8− 108_a2 + 12
√
81_a4 − 12_a2

) 2
3 + 2

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 + 4

d_a


= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

∫ 12
(
8− 108y2 + 12

√
81y4 − 12y2

) 1
3

i
(
8− 108y2 + 12

√
81y4 − 12y2

) 2
3
√
3− 4−

(
8− 108y2 + 12

√
81y4 − 12y2

) 2
3 + 4

(
8− 108y2 + 12

√
81y4 − 12y2

) 1
3 − 4i

√
3
dy

=
∫

dx

12

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3

i
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3
√
3− 4−

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3 + 4

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 − 4i

√
3
d_a


= x+ c2
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Summary
The solution(s) found are the following

(1)12

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3

i
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3
√
3− 4−

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3 + 4

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 − 4i

√
3
d_a


= x+ c2

Verification of solutions

12

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3

i
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3
√
3− 4−

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3 + 4

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 − 4i

√
3
d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives∫
−

12
(
8− 108y2 + 12

√
81y4 − 12y2

) 1
3

i
(
8− 108y2 + 12

√
81y4 − 12y2

) 2
3
√
3 + 4 +

(
8− 108y2 + 12

√
81y4 − 12y2

) 2
3 − 4

(
8− 108y2 + 12

√
81y4 − 12y2

) 1
3 − 4i

√
3
dy

=
∫

dx

−12

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3

i
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3
√
3 + 4 +

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3 − 4

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 − 4i

√
3
d_a


= x+ c3

Summary
The solution(s) found are the following

(1)−12

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3

i
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3
√
3 + 4 +

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3 − 4

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 − 4i

√
3
d_a


= x+ c3
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Verification of solutions

−12

∫ y
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3

i
(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3
√
3 + 4 +

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 2
3 − 4

(
8− 108_a2 + 12

√
81_a4 − 12_a2

) 1
3 − 4i

√
3
d_a


= x+ c3

Verified OK.

35.9.1 Maple step by step solution

Let’s solve
y′3 − y′2 + y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

8−108y2+12
√

−12y2+81y4
) 1

3

6 + 2

3
(
8−108y2+12

√
−12y2+81y4

) 1
3
+ 1

3

= 1

• Integrate both sides with respect to x∫
y′(

8−108y2+12
√

−12y2+81y4
) 1

3

6 + 2

3
(
8−108y2+12

√
−12y2+81y4

) 1
3
+ 1

3

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

8−108y2+12
√

−12y2+81y4
) 1

3

6 + 2

3
(
8−108y2+12

√
−12y2+81y4

) 1
3
+ 1

3

dx = x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 465� �
dsolve(diff(y(x),x)^3-diff(y(x),x)^2+y(x)^2 = 0,y(x), singsol=all)� �
y(x) = 0

−3 3 5
62 2

3

∫ y(x) (
−27

√
3_a2 + 2

√
3 + 9

√
27_a4 − 4_a2

) 1
3

3 5
62 2

3
(
−27

√
3_a2 + 2

√
3 + 9

√
27_a4 − 4_a2

) 1
3 + 3 2

32 1
3
(
−27

√
3_a2 + 2

√
3 + 9

√
27_a4 − 4_a2

) 2
3 + 6

d_a


+ x− c1 = 0

36 3 5
62 2

3

∫ y(x)
(
−27

√
3_a2+2

√
3+9

√
27_a4−4_a2

) 1
3(

3i
√
3+3

5
6 2

2
3
(
−27

√
3_a2+2

√
3+9

√
27_a4−4_a2

) 1
3+3

)(
3
5
6 2

2
3
(
−27

√
3_a2+2

√
3+9

√
27_a4−4_a2

) 1
3−6

)d_a
+ (x− c1)

(
1 + i

√
3
)

1 + i
√
3

= 0

i(x− c1)
√
3 + 36 3 5

62 2
3

∫ y(x)
(
−27

√
3_a2+2

√
3+9

√
27_a4−4_a2

) 1
3(

−3
5
6 2

2
3
(
−27

√
3_a2+2

√
3+9

√
27_a4−4_a2

) 1
3+6

)(
−3i

√
3+3

5
6 2

2
3
(
−27

√
3_a2+2

√
3+9

√
27_a4−4_a2

) 1
3+3

)d_a
− x+ c1

−1 + i
√
3

= 0
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3 Solution by Mathematica
Time used: 47.889 (sec). Leaf size: 583� �
DSolve[(y'[x])^3 - (y'[x])^2 +y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

∫ #1

1

3
√
−27K[1]2 + 3

√
3
√
K[1]2 (27K[1]2 − 4) + 2

22/3
(
−27K[1]2 + 3

√
3
√
K[1]2 (27K[1]2 − 4) + 2

)2/3
+ 2 3
√
−27K[1]2 + 3

√
3
√

K[1]2 (27K[1]2 − 4) + 2 + 2 3
√
2
dK[1]&

[x6 +c1
]

y(x)

→ InverseFunction

∫ #1

1

3
√

−27K[2]2 + 3
√
3
√

K[2]2 (27K[2]2 − 4) + 2

−i22/3
√
3
(
−27K[2]2 + 3

√
3
√

K[2]2 (27K[2]2 − 4) + 2
)2/3

− 22/3
(
−27K[2]2 + 3

√
3
√

K[2]2 (27K[2]2 − 4) + 2
)2/3

+ 4 3
√
−27K[2]2 + 3

√
3
√

K[2]2 (27K[2]2 − 4) + 2 + 2i 3
√
2
√
3− 2 3

√
2
dK[2]&

[ x12+c1
]

y(x)

→ InverseFunction

∫ #1

1

3
√

−27K[3]2 + 3
√
3
√

K[3]2 (27K[3]2 − 4) + 2

i22/3
√
3
(
−27K[3]2 + 3

√
3
√

K[3]2 (27K[3]2 − 4) + 2
)2/3

− 22/3
(
−27K[3]2 + 3

√
3
√
K[3]2 (27K[3]2 − 4) + 2

)2/3
+ 4 3
√

−27K[3]2 + 3
√
3
√
K[3]2 (27K[3]2 − 4) + 2− 2i 3

√
2
√
3− 2 3

√
2
dK[3]&

[ x12+c1
]

y(x) → 0
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35.10 problem 1042
35.10.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9280

Internal problem ID [4264]
Internal file name [OUTPUT/3757_Sunday_June_05_2022_10_46_42_AM_80655978/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1042.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
3 − y′

2 + xy′ − y = 0

35.10.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p3 − p2 + xp− y = 0

Solving for y from the above results in

y = p3 − p2 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = p3 − p2 + xp

= p3 − p2 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = p3 − p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c31 − c21 + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p3 − p2, then
the above equation becomes

x+ g′(p) = 3p2 − 2p+ x

= 0
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Solving the above for p results in

p1 =
1
3 +

√
1− 3x
3

p2 =
1
3 −

√
1− 3x
3

Substituting the above back in (1) results in

y1 =
(6x− 2)

√
1− 3x

27 + x

3 − 2
27

y2 =
(−6x+ 2)

√
1− 3x

27 + x

3 − 2
27

Summary
The solution(s) found are the following

(1)y = c31 − c21 + c1x

(2)y = (6x− 2)
√
1− 3x

27 + x

3 − 2
27

(3)y = (−6x+ 2)
√
1− 3x

27 + x

3 − 2
27

Verification of solutions

y = c31 − c21 + c1x

Verified OK.

y = (6x− 2)
√
1− 3x

27 + x

3 − 2
27

Verified OK.

y = (−6x+ 2)
√
1− 3x

27 + x

3 − 2
27

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 56� �
dsolve(diff(y(x),x)^3-diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = x

3 − 2
27 −

2
√

− (3x− 1)3

27

y(x) = x

3 − 2
27 +

2
√
− (3x− 1)3

27
y(x) = c1

(
c21 − c1 + x

)
3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 74� �
DSolve[(y'[x])^3 - (y'[x])^2 +x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x+ (−1 + c1)c1)

y(x) → 1
27

(
9x− 2

(√
−(3x− 1)3 + 1

))
y(x) → 1

27

(
9x+ 2

√
−(3x− 1)3 − 2

)
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35.11 problem 1043
35.11.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9284

Internal problem ID [4265]
Internal file name [OUTPUT/3758_Sunday_June_05_2022_10_46_56_AM_16666367/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1043.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′
3 − ay′

2 + by = −abx

35.11.1 Solving as dAlembert ode

Let p = y′ the ode becomes

−a p2 + p3 + by = −abx

Solving for y from the above results in

y = −ax− −a p2 + p3

b
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −a

g = p2(a− p)
b

Hence (2) becomes

p+ a =
(
2p(a− p)

b
− p2

b

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ a = 0

Solving for p from the above gives

p = −a

Substituting these in (1A) gives

y = a(2a2 − bx)
b

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x) + a
2p(x)(a−p(x))

b
− p(x)2

b

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

2p(a−p)
b

− p2

b

p+ a
(4)

This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫

p(2a− 3p)
b (p+ a) dp

=
−3p2

2 + 5pa− 5a2 ln (p+ a)
b

+ c2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
−108abx− 108by + 8a3 + 12

√
81a2b2x2 + 162a b2xy − 12a4bx+ 81b2y2 − 12bya3

) 1
3

6 + 2a2

3
(
−108abx− 108by + 8a3 + 12

√
81a2b2x2 + 162a b2xy − 12a4bx+ 81b2y2 − 12bya3

) 1
3
+ a

3

p = −
(
−108abx− 108by + 8a3 + 12

√
81a2b2x2 + 162a b2xy − 12a4bx+ 81b2y2 − 12bya3

) 1
3

12 − a2

3
(
−108abx− 108by + 8a3 + 12

√
81a2b2x2 + 162a b2xy − 12a4bx+ 81b2y2 − 12bya3

) 1
3
+ a

3 +
i
√
3
((

−108abx−108by+8a3+12
√

81a2b2x2+162a b2xy−12a4bx+81b2y2−12bya3
) 1

3

6 − 2a2

3
(
−108abx−108by+8a3+12

√
81a2b2x2+162a b2xy−12a4bx+81b2y2−12bya3

) 1
3

)
2

p = −
(
−108abx− 108by + 8a3 + 12

√
81a2b2x2 + 162a b2xy − 12a4bx+ 81b2y2 − 12bya3

) 1
3

12 − a2

3
(
−108abx− 108by + 8a3 + 12

√
81a2b2x2 + 162a b2xy − 12a4bx+ 81b2y2 − 12bya3

) 1
3
+ a

3 −

i
√
3
((

−108abx−108by+8a3+12
√

81a2b2x2+162a b2xy−12a4bx+81b2y2−12bya3
) 1

3

6 − 2a2

3
(
−108abx−108by+8a3+12

√
81a2b2x2+162a b2xy−12a4bx+81b2y2−12bya3

) 1
3

)
2

Substituting the above in the solution for x found above gives

x

=

−30a2
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln


(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+8
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a+4a2(

8a3−108abx+12
√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

+ (30 ln (2) a2 + 30 ln (3) a2 + 7a2 + 6c2b)
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

+
(
14a3 + 27abx− 3

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b+ 27by

)(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

+ 28a4 − 432x a2b+ 48
√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a− 432yab

6
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b

x

=

i
√
3
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 576i
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a− 1728i

√
3 a2bx+ 112i

√
3 a4 − 1728i

√
3 aby − 64i

√
3
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 240a2
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln

 i

(8a3−108abx+12
√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
−4a2

√
3−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+16

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a−4a2

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

+ 240a2
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln (12) +
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 48
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

bc2 + 56
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

a2 − 64
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 112a4 + 1728x a2b− 192
√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a+ 1728yab

48
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b

x

=

−576a
(
i+

√
3
3

)√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b+ i

(
−
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 64
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 112a4 + 1728x a2b+ 1728yab
)
√
3− 112a4 − 64

(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 + 8

216bx−
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

30 ln

 i

−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+4a2

√
3−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+16

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a−4a2

12
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

− 7


 a2 + 1728yab+

((
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

+ 48c2b
)(

8a3 − 108abx+ 12
√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

48
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b
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Summary
The solution(s) found are the following

(1)y = a(2a2 − bx)
b

(2)x

=

−30a2
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln


(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+8
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a+4a2(

8a3−108abx+12
√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

+ (30 ln (2) a2 + 30 ln (3) a2 + 7a2 + 6c2b)
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

+
(
14a3 + 27abx− 3

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b+ 27by

)(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

+ 28a4 − 432x a2b+ 48
√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a− 432yab

6
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b

(3)x

=

i
√
3
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 576i
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a− 1728i

√
3 a2bx+ 112i

√
3 a4 − 1728i

√
3 aby − 64i

√
3
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 240a2
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln

 i

(8a3−108abx+12
√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
−4a2

√
3−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+16

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a−4a2

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

+ 240a2
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln (12) +
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 48
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

bc2 + 56
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

a2 − 64
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 112a4 + 1728x a2b− 192
√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a+ 1728yab

48
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b

(4)x

=

−576a
(
i+

√
3
3

)√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b+ i

(
−
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 64
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 112a4 + 1728x a2b+ 1728yab
)
√
3− 112a4 − 64

(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 + 8

216bx−
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

30 ln

 i

−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+4a2

√
3−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+16

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a−4a2

12
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

− 7


 a2 + 1728yab+

((
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

+ 48c2b
)(

8a3 − 108abx+ 12
√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

48
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b
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Verification of solutions

y = a(2a2 − bx)
b

Verified OK.
x

=

−30a2
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln


(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+8
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a+4a2(

8a3−108abx+12
√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

+ (30 ln (2) a2 + 30 ln (3) a2 + 7a2 + 6c2b)
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

+
(
14a3 + 27abx− 3

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b+ 27by

)(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

+ 28a4 − 432x a2b+ 48
√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a− 432yab

6
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b

Warning, solution could not be verified
x

=

i
√
3
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 576i
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a− 1728i

√
3 a2bx+ 112i

√
3 a4 − 1728i

√
3 aby − 64i

√
3
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 240a2
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln

 i

(8a3−108abx+12
√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
−4a2

√
3−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+16

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a−4a2

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

+ 240a2
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

ln (12) +
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 48
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

bc2 + 56
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

a2 − 64
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 112a4 + 1728x a2b− 192
√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b a+ 1728yab

48
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b

Warning, solution could not be verified
x

=

−576a
(
i+

√
3
3

)√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b+ i

(
−
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 4
3

+ 64
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 − 112a4 + 1728x a2b+ 1728yab
)
√
3− 112a4 − 64

(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 1
3

a3 + 8

216bx−
(
8a3 − 108abx+ 12

√
3
√
−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

30 ln

 i

−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+4a2

√
3−
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 2
3
+16

(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3
a−4a2

12
(
8a3−108abx+12

√
3
√

−4
(
a3− 27abx

4 − 27by
4

)
(ax+y)b−108by

) 1
3

− 7


 a2 + 1728yab+

((
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

+ 48c2b
)(

8a3 − 108abx+ 12
√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

48
(
8a3 − 108abx+ 12

√
3
√

−4
(
a3 − 27abx

4 − 27by
4

)
(ax+ y) b− 108by

) 2
3

b

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 132� �
dsolve(diff(y(x),x)^3-a*diff(y(x),x)^2+b*y(x)+a*b*x = 0,y(x), singsol=all)� �
y(x)

= 2a3 − 5 eRootOf
(
−10_Z a2−3 e2_Z+16a e_Z+2c1b−13a2−2bx

)
a2 + 4 e2RootOf

(
−10_Z a2−3 e2_Z+16a e_Z+2c1b−13a2−2bx

)
a− e3RootOf

(
−10_Z a2−3 e2_Z+16a e_Z+2c1b−13a2−2bx

)
− abx

b
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3 Solution by Mathematica
Time used: 0.63 (sec). Leaf size: 398� �
DSolve[(y'[x])^3 - a*(y'[x])^2 +b*y[x]+a*b*x==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve




x=

5a


3

√
2a3 +

√
(2a3 − 27abx− 27by(x))2 − 4a6 − 27abx− 27by(x)

3
3
√
2

+
3
√
2a2

3
3

√
2a3 +

√
(2a3 − 27abx− 27by(x))2 − 4a6 − 27abx− 27by(x)

+ a
3

− 3
2


3

√
2a3 +

√
(2a3 − 27abx− 27by(x))2 − 4a6 − 27abx− 27by(x)

3
3
√
2

+
3
√
2a2

3
3

√
2a3 +

√
(2a3 − 27abx− 27by(x))2 − 4a6 − 27abx− 27by(x)

+ a
3


2

− 5a2 log


3

√
2a3 +

√
(2a3 − 27abx− 27by(x))2 − 4a6 − 27abx− 27by(x)

3
3
√
2

+
3
√
2a2

3
3

√
2a3 +

√
(2a3 − 27abx− 27by(x))2 − 4a6 − 27abx− 27by(x)

+ 4a
3


b

+ c1


, y(x)
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35.12 problem 1044
35.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9294

Internal problem ID [4266]
Internal file name [OUTPUT/3759_Sunday_June_05_2022_10_47_39_AM_48305456/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1044.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 + a0 y′2 + a1 y′ + a3 y = − a2

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a13−3 a12 a02−54 a0 a1 a3 y − 54 a0 a1 a2+81 a32 y2 + 162 a3 y a2+12 a3 y a03+81 a22+12 a2 a03

) 1
3

6 −
6
(

a1
3 − a02

9

)
(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a13−3 a12 a02−54 a0 a1 a3 y − 54 a0 a1 a2+81 a32 y2 + 162 a3 y a2+12 a3 y a03+81 a22+12 a2 a03

) 1
3
− a0

3

(1)

y′ = −

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a13−3 a12 a02−54 a0 a1 a3 y − 54 a0 a1 a2+81 a32 y2 + 162 a3 y a2+12 a3 y a03+81 a22+12 a2 a03

) 1
3

12 +
a1−a02

3(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a13−3 a12 a02−54 a0 a1 a3 y − 54 a0 a1 a2+81 a32 y2 + 162 a3 y a2+12 a3 y a03+81 a22+12 a2 a03

) 1
3
− a0

3 +
i
√
3
((

36 a0 a1−108 a3 y−108 a2−8 a03 +12
√

12 a13 −3 a12 a02 −54 a0 a1 a3 y−54 a0 a1 a2+81 a32 y2+162 a3 y a2+12 a3 y a03 +81 a22 +12 a2 a03
) 1

3

6 + 2 a1− 2 a02
3(

36 a0 a1−108 a3 y−108 a2−8 a03 +12
√

12 a13 −3 a12 a02 −54 a0 a1 a3 y−54 a0 a1 a2+81 a32 y2+162 a3 y a2+12 a3 y a03 +81 a22 +12 a2 a03
) 1

3

)
2

(2)

y′ = −

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a13−3 a12 a02−54 a0 a1 a3 y − 54 a0 a1 a2+81 a32 y2 + 162 a3 y a2+12 a3 y a03+81 a22+12 a2 a03

) 1
3

12 +
a1−a02

3(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a13−3 a12 a02−54 a0 a1 a3 y − 54 a0 a1 a2+81 a32 y2 + 162 a3 y a2+12 a3 y a03+81 a22+12 a2 a03

) 1
3
− a0

3 −

i
√
3
((

36 a0 a1−108 a3 y−108 a2−8 a03 +12
√

12 a13 −3 a12 a02 −54 a0 a1 a3 y−54 a0 a1 a2+81 a32 y2+162 a3 y a2+12 a3 y a03 +81 a22 +12 a2 a03
) 1

3

6 + 2 a1− 2 a02
3(

36 a0 a1−108 a3 y−108 a2−8 a03 +12
√

12 a13 −3 a12 a02 −54 a0 a1 a3 y−54 a0 a1 a2+81 a32 y2+162 a3 y a2+12 a3 y a03 +81 a22 +12 a2 a03
) 1

3

)
2

(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Integrating both sides gives

∫ 6
(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 1
3

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 2
3 − 2 a0

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 1
3 + 4a02−12 a1

dy

=
∫

dx

6

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 2 a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 + 4a02−12 a1

d_a


= x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 2 a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 + 4a02−12 a1

d_a


= x+ c1

Verification of solutions

6

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 2 a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 + 4a02−12 a1

d_a


= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

∫ 12
(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1−

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 2
3 − 4 a0

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 1
3 − 4 a02+12 a1

dy

=
∫

dx
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12

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1−

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4 a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 − 4 a02+12 a1

d_a


= x+ c2

Summary
The solution(s) found are the following

(1)12

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1−

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4 a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 − 4 a02+12 a1

d_a


= x+ c2

Verification of solutions

12

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1−

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4 a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 − 4 a02+12 a1

d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives∫

−
12
(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1+

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 2
3 + 4a0

(
36 a0 a1−108 a3 y − 108 a2−8 a03+12

√
12 a3 y a03+12 a2 a03−3 a12 a02−54 a0 a1 a3 y + 81 a32 y2 − 54 a0 a1 a2+12 a13+162 a3 y a2+81 a22

) 1
3 + 4a02−12 a1

dy

=
∫

dx

−12

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1+

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 + 4a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 + 4a02−12 a1

d_a


= x+ c3
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Summary
The solution(s) found are the following

(1)−12

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1+

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 + 4a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 + 4a02−12 a1

d_a


= x+ c3

Verification of solutions

−12

∫ y

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3

i
√
3
(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 − 4i

√
3 a02+12i

√
3 a1+

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 2
3 + 4a0

(
36 a0 a1−108 a3_a− 108 a2−8 a03+12

√
12_a a03 a3+81_a2 a32−54_a a0 a1 a3+12 a2 a03−3 a12 a02+162_a a2 a3−54 a0 a1 a2+12 a13+81 a22

) 1
3 + 4a02−12 a1

d_a


= x+ c3

Verified OK.

35.12.1 Maple step by step solution

Let’s solve
y′3 + a0y′2 + a1y′ + a3y = −a2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

36a0a1−108a3y−108a2−8a03+12
√

12a13−3a12a02−54a0a1a3y−54a0a1a2+81a32y2+162a3ya2+12a3ya03+81a22+12a2 a03
) 1

3

6 −
6
(

a1
3 − a02

9

)
(
36a0a1−108a3y−108a2−8a03+12

√
12a13−3a12a02−54a0a1a3y−54a0a1a2+81a32y2+162a3ya2+12a3ya03+81a22+12a2 a03

) 1
3
− a0

3

= 1

• Integrate both sides with respect to x∫
y′(

36a0a1−108a3y−108a2−8a03+12
√

12a13−3a12a02−54a0a1a3y−54a0a1a2+81a32y2+162a3ya2+12a3ya03+81a22+12a2 a03
) 1

3

6 −
6
(

a1
3 − a02

9

)
(
36a0a1−108a3y−108a2−8a03+12

√
12a13−3a12a02−54a0a1a3y−54a0a1a2+81a32y2+162a3ya2+12a3ya03+81a22+12a2 a03

) 1
3
− a0

3

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

36a0a1−108a3y−108a2−8a03+12
√

12a13−3a12a02−54a0a1a3y−54a0a1a2+81a32y2+162a3ya2+12a3ya03+81a22+12a2 a03
) 1

3

6 −
6
(

a1
3 − a02

9

)
(
36a0a1−108a3y−108a2−8a03+12

√
12a13−3a12a02−54a0a1a3y−54a0a1a2+81a32y2+162a3ya2+12a3ya03+81a22+12a2 a03

) 1
3
− a0

3

dx = x+ c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 981� �
dsolve(diff(y(x),x)^3+a0*diff(y(x),x)^2+a1*diff(y(x),x)+a2+a3*y(x) = 0,y(x), singsol=all)� �
x

−6

∫ y(x)
(
36 a1 a0−108 a3_a− 108 a2−8 a03+12

√
12 (a3_a+ a2) a03−3 a12 a02−54 a1 (a3_a+ a2) a0+81_a2 a32+162_a a2 a3+12 a13+81 a22

) 1
3

(
36 a1 a0−108 a3_a− 108 a2−8 a03+12

√
12 (a3_a+ a2) a03−3 a12 a02−54 a1 (a3_a+ a2) a0+81_a2 a32+162_a a2 a3+12 a13+81 a22

) 2
3 − 2 a0

(
36 a1 a0−108 a3_a− 108 a2−8 a03+12

√
12 (a3_a+ a2) a03−3 a12 a02−54 a1 (a3_a+ a2) a0+81_a2 a32+162_a a2 a3+12 a13+81 a22

) 1
3 + 4a02−12 a1

d_a


− c1 = 0

−12

∫ y(x)
(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 1
3

i

(
a0
(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 1
3+2a02 −6 a1

)
√
3−
(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 2
3−a0

(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 1
3+2a02 −6 a1

d_a

+ i(x− c1)
√
3 + x− c1

1 + i
√
3

= 0

−12

∫ y(x)
(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 1
3

i

(
a0
(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 1
3+2a02 −6 a1

)
√
3+
(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 2
3+a0

(
36 a1 a0−108 a3_a−108 a2−8 a03 +12

√
12(a3_a+a2) a03 −3 a12 a02 −54 a1(a3_a+a2) a0+81_a2 a32 +162_a a2 a3+12 a13 +81 a22

) 1
3−2 a02 +6a1

d_a

+ i(x− c1)
√
3− x+ c1

−1 + i
√
3

= 0

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3 + a0*(y'[x])^2 +a1*y'[x]+a2 +a3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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35.13 problem 1046
35.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9299

Internal problem ID [4267]
Internal file name [OUTPUT/3760_Sunday_June_05_2022_10_47_52_AM_9668248/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1046.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 + (1− 3x) y′2 − x(1− 3x) y′ = x3 + 1

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

6 −
6
(
x
3 −

1
9

)
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3
− 1

3 + x

(1)

y′ = −
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

12 +
x− 1

3(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3
− 1

3 + x+
i
√
3
((

36x+100+12
√
12x3−3x2+54x+69

) 1
3

6 + 2x− 2
3(

36x+100+12
√
12x3−3x2+54x+69

) 1
3

)
2

(2)

y′ = −
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

12 +
x− 1

3(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3
− 1

3 + x−

i
√
3
((

36x+100+12
√
12x3−3x2+54x+69

) 1
3

6 + 2x− 2
3(

36x+100+12
√
12x3−3x2+54x+69

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

y =
∫ (

36x+ 100 + 12
√
12x3 − 3x2 + 54x+ 69

) 2
3 + 6x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 2

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

6
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

=
∫ (

36x+ 100 + 12
√
12x3 − 3x2 + 54x+ 69

) 2
3 + 6x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 2

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

6
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx+ c1

Summary
The solution(s) found are the following

(1)y

=
∫ (

36x+ 100 + 12
√
12x3 − 3x2 + 54x+ 69

) 2
3 + 6x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 2

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

6
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

+ c1

Verification of solutions
y

=
∫ (

36x+ 100 + 12
√
12x3 − 3x2 + 54x+ 69

) 2
3 + 6x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 2

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

6
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3−

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 12x− 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

=
∫

i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3−

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 12x− 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx+ c2

Summary
The solution(s) found are the following

(1)y

=
∫

i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3−

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 12x− 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

+ c2
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Verification of solutions
y

=
∫

i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3−

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 12x− 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−
i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3 +

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 − 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

=
∫

−
i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3 +

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 − 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx+ c3

Summary
The solution(s) found are the following

(1)y =
∫

−
i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3 +

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 − 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

+ c3

Verification of solutions

y =
∫

−
i
√
3
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 + 12i

√
3x− 4i

√
3 +

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 2
3 − 12x

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 + 4

(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3 − 12x+ 4

12
(
36x+ 100 + 12

√
12x3 − 3x2 + 54x+ 69

) 1
3

dx

+ c3

Verified OK.
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35.13.1 Maple step by step solution

Let’s solve
y′3 + (1− 3x) y′2 − x(1− 3x) y′ = x3 + 1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′3 + (1− 3x) y′2 − x(1− 3x) y′

)
dx =

∫
(x3 + 1) dx+ c1

• Cannot compute integral∫ (
y′3 + (1− 3x) y′2 − x(1− 3x) y′

)
dx = 1

4x
4 + x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 380� �
dsolve(diff(y(x),x)^3+(1-3*x)*diff(y(x),x)^2-x*(1-3*x)*diff(y(x),x)-1-x^3 = 0,y(x), singsol=all)� �
y(x) =

−

∫
(
1+i

√
3
)(

12
√
3
√
4x3−x2+18x+23+36x+100

) 2
3+12

(
x− 1

3
)(

i
√
3−
(
12

√
3
√
4x3−x2+18x+23+36x+100

) 1
3−1

)
(
12

√
3
√
4x3−x2+18x+23+36x+100

) 1
3

dx


12

+ c1
y(x)

=

∫
(
−1+i

√
3
)(

12
√
3
√
4x3−x2+18x+23+36x+100

) 2
3+12

(
x− 1

3
)(

i
√
3+
(
12

√
3
√
4x3−x2+18x+23+36x+100

) 1
3+1

)
(
12

√
3
√
4x3−x2+18x+23+36x+100

) 1
3

dx


12

+ c1
y(x)

=

∫ 4+6
(
−2+

(
12

√
3
√
4x3−x2+18x+23+36x+100

) 1
3
)
x+
(
12

√
3
√
4x3−x2+18x+23+36x+100

) 2
3−2

(
12

√
3
√
4x3−x2+18x+23+36x+100

) 1
3

(
12

√
3
√
4x3−x2+18x+23+36x+100

) 1
3

dx


6

+ c1
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3 Solution by Mathematica
Time used: 110.523 (sec). Leaf size: 379� �
DSolve[(y'[x])^3+(1-3*x)(y'[x])^2-x*(1-3*x)*y'[x]-1 -x^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
∫ x

1

1
6

6K[1]− 22/3 3
√

−9K[1] + 3
√

12K[1]3 − 3K[1]2 + 54K[1] + 69− 25

+ 2 3
√
2(3K[1]− 1)

3
√

−9K[1] + 3
√

12K[1]3 − 3K[1]2 + 54K[1] + 69− 25
− 2

 dK[1] + c1

y(x) →
∫ x

1

1
12

12K[2]

+ 22/3
(
1− i

√
3
)

3
√

−9K[2] + 3
√
12K[2]3 − 3K[2]2 + 54K[2] + 69− 25

−
2i 3
√
2
(
−i+

√
3
)
(3K[2]− 1)

3
√

−9K[2] + 3
√

12K[2]3 − 3K[2]2 + 54K[2] + 69− 25
− 4

 dK[2] + c1

y(x) →
∫ x

1

1
12

12K[3]

+ 22/3
(
1 + i

√
3
)

3
√

−9K[3] + 3
√
12K[3]3 − 3K[3]2 + 54K[3] + 69− 25

+
2i 3
√
2
(
i+

√
3
)
(3K[3]− 1)

3
√

−9K[3] + 3
√

12K[3]3 − 3K[3]2 + 54K[3] + 69− 25
− 4

 dK[3] + c1
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35.14 problem 1047
35.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9305

Internal problem ID [4268]
Internal file name [OUTPUT/3761_Sunday_June_05_2022_10_47_58_AM_15168427/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1047.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 − yy′

2 + y2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−108y2 + 8y3 + 12

√
81y4 − 12y5

) 1
3

6 + 2y2

3
(
−108y2 + 8y3 + 12

√
81y4 − 12y5

) 1
3
+ y

3

(1)

y′ = −
(
−108y2 + 8y3 + 12

√
81y4 − 12y5

) 1
3

12 − y2

3
(
−108y2 + 8y3 + 12

√
81y4 − 12y5

) 1
3
+ y

3 +
i
√
3
((

−108y2+8y3+12
√

81y4−12y5
) 1

3

6 − 2y2

3
(
−108y2+8y3+12

√
81y4−12y5

) 1
3

)
2

(2)

y′ = −
(
−108y2 + 8y3 + 12

√
81y4 − 12y5

) 1
3

12 − y2

3
(
−108y2 + 8y3 + 12

√
81y4 − 12y5

) 1
3
+ y

3 −

i
√
3
((

−108y2+8y3+12
√

81y4−12y5
) 1

3

6 − 2y2

3
(
−108y2+8y3+12

√
81y4−12y5

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 6
(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 1
3(

−108y2 + 8y3 + 12
√
−12y5 + 81y4

) 2
3 + 2y

(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 1
3 + 4y2

dy

=
∫

dx

6

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3(

−108_a2 + 8_a3 + 12
√
−12_a5 + 81_a4

) 2
3 + 2_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 + 4_a2

d_a


= x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3(

−108_a2 + 8_a3 + 12
√
−12_a5 + 81_a4

) 2
3 + 2_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 + 4_a2

d_a


= x+ c1

Verification of solutions

6

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3(

−108_a2 + 8_a3 + 12
√
−12_a5 + 81_a4

) 2
3 + 2_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 + 4_a2

d_a


= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives∫
−

12
(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 1
3

4i
√
3 y2 − i

(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 2
3
√
3 + 4y2 − 4y

(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 1
3 +

(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 2
3
dy

=
∫

dx

−12

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3

4i_a2
√
3− i

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
√
3 + 4_a2 − 4_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 +

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
d_a


= x+ c2
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Summary
The solution(s) found are the following

(1)−12

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3

4i_a2
√
3− i

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
√
3 + 4_a2 − 4_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 +

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
d_a


= x+ c2

Verification of solutions

−12

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3

4i_a2
√
3− i

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
√
3 + 4_a2 − 4_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 +

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

∫ 12
(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 1
3

4i
√
3 y2 + 4y

(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 1
3 − 4y2 − i

(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 2
3
√
3−

(
−108y2 + 8y3 + 12

√
−12y5 + 81y4

) 2
3
dy

=
∫

dx

12

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3

4i_a2
√
3 + 4_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 − 4_a2 − i

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
√
3−

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
d_a


= x+ c3

Summary
The solution(s) found are the following

(1)12

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3

4i_a2
√
3 + 4_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 − 4_a2 − i

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
√
3−

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
d_a


= x+ c3

Verification of solutions

12

∫ y
(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3

4i_a2
√
3 + 4_a

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 1
3 − 4_a2 − i

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
√
3−

(
−108_a2 + 8_a3 + 12

√
−12_a5 + 81_a4

) 2
3
d_a


= x+ c3

Verified OK.
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35.14.1 Maple step by step solution

Let’s solve
y′3 − yy′2 + y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

−108y2+8y3+12
√

81y4−12y5
) 1

3

6 + 2y2

3
(
−108y2+8y3+12

√
81y4−12y5

) 1
3
+ y

3

= 1

• Integrate both sides with respect to x∫
y′(

−108y2+8y3+12
√

81y4−12y5
) 1

3

6 + 2y2

3
(
−108y2+8y3+12

√
81y4−12y5

) 1
3
+ y

3

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

−108y2+8y3+12
√

81y4−12y5
) 1

3

6 + 2y2

3
(
−108y2+8y3+12

√
81y4−12y5

) 1
3
+ y

3

dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 420� �
dsolve(diff(y(x),x)^3-y(x)*diff(y(x),x)^2+y(x)^2 = 0,y(x), singsol=all)� �
y(x) = 0
x

−6

∫ y(x) (
8_a3 − 108_a2 + 12

√
3
√
−4_a5 + 27_a4

) 1
3(

8_a3 − 108_a2 + 12
√
3
√
−4_a5 + 27_a4

) 2
3 + 2

(
8_a3 − 108_a2 + 12

√
3
√
−4_a5 + 27_a4

) 1
3 _a+ 4_a2

d_a


− c1 = 0

12

∫ y(x)
(
8_a3−108_a2+12

√
3
√

−4_a5+27_a4
) 1

3(
i_a√3+

(
8_a3−108_a2+12

√
3
√

−4_a5+27_a4
) 1

3+_a
)((

8_a3−108_a2+12
√
3
√

−4_a5+27_a4
) 1

3−2_a
)d_a

+ i(x− c1)
√
3 + x− c1

1 + i
√
3

= 0

12

∫ y(x)
(
8_a3−108_a2+12

√
3
√

−4_a5+27_a4
) 1

3(
−i_a√3+

(
8_a3−108_a2+12

√
3
√

−4_a5+27_a4
) 1

3+_a
)(

−
(
8_a3−108_a2+12

√
3
√

−4_a5+27_a4
) 1

3+2_a
)d_a

+ i(x− c1)
√
3− x+ c1

−1 + i
√
3

= 0
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3 Solution by Mathematica
Time used: 56.7 (sec). Leaf size: 653� �
DSolve[(y'[x])^3 -y[x]*(y'[x])^2+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

∫ #1

1

3
√
2K[1]3 − 27K[1]2 + 3

√
3
√

−K[1]4(4K[1]− 27)

2 3
√
2K[1]2 + 2 3

√
2K[1]3 − 27K[1]2 + 3

√
3
√
−K[1]4(4K[1]− 27)K[1] + 22/3

(
2K[1]3 − 27K[1]2 + 3

√
3
√
−K[1]4(4K[1]− 27)

)2/3dK[1]&

[x6 +c1
]

y(x)

→ InverseFunction

∫ #1

1

3
√
2K[2]3 − 27K[2]2 + 3

√
3
√

−K[2]4(4K[2]− 27)

2i 3
√
2
√
3K[2]2 − 2 3

√
2K[2]2 + 4 3

√
2K[2]3 − 27K[2]2 + 3

√
3
√

−K[2]4(4K[2]− 27)K[2]− i22/3
√
3
(
2K[2]3 − 27K[2]2 + 3

√
3
√

−K[2]4(4K[2]− 27)
)2/3

− 22/3
(
2K[2]3 − 27K[2]2 + 3

√
3
√
−K[2]4(4K[2]− 27)

)2/3dK[2]&

[ x12+c1
]

y(x)

→ InverseFunction

∫ #1

1

3
√

2K[3]3 − 27K[3]2 + 3
√
3
√

−K[3]4(4K[3]− 27)

−2i 3
√
2
√
3K[3]2 − 2 3

√
2K[3]2 + 4 3

√
2K[3]3 − 27K[3]2 + 3

√
3
√
−K[3]4(4K[3]− 27)K[3] + i22/3

√
3
(
2K[3]3 − 27K[3]2 + 3

√
3
√
−K[3]4(4K[3]− 27)

)2/3
− 22/3

(
2K[3]3 − 27K[3]2 + 3

√
3
√

−K[3]4(4K[3]− 27)
)2/3dK[3]&

[ x12+c1
]

y(x) → 0
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35.15 problem 1048
35.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9310

Internal problem ID [4269]
Internal file name [OUTPUT/3762_Sunday_June_05_2022_10_48_07_AM_55650450/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1048.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 + (cos (x) cot (x)− y) y′2 − (1 + y cos (x) cot (x)) y′ + y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = sin (x) (1)

y′ = − 1
sin (x) (2)

y′ = y (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

sin (x) dx

= − cos (x) + c1

Summary
The solution(s) found are the following

(1)y = − cos (x) + c1
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Verification of solutions

y = − cos (x) + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− 1
sin (x) dx

= − ln (csc (x)− cot (x)) + c2

Summary
The solution(s) found are the following

(1)y = − ln (csc (x)− cot (x)) + c2

Verification of solutions

y = − ln (csc (x)− cot (x)) + c2

Verified OK.
Solving equation (3)

Integrating both sides gives ∫ 1
y
dy = x+ c3

ln (y) = x+ c3

y = ex+c3

y = c3ex

Summary
The solution(s) found are the following

(1)y = c3ex

Verification of solutions

y = c3ex

Verified OK.
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35.15.1 Maple step by step solution

Let’s solve
y′3 + (cos (x) cot (x)− y) y′2 − (1 + y cos (x) cot (x)) y′ + y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
1dx+ c1

• Evaluate integral
ln (y) = x+ c1

• Solve for y
y = ex+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)^3+(cos(x)*cot(x)-y(x))*diff(y(x),x)^2-(1+y(x)*cos(x)*cot(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = c1ex
y(x) = − ln (csc (x)− cot (x)) + c1
y(x) = − cos (x) + c1

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 32� �
DSolve[(y'[x])^3 +(Cos[x]*Cot[x]-y[x])*(y'[x])^2-(1+y[x]*Cos[x]*Cot[x])*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → arctanh(cos(x)) + c1
y(x) → − cos(x) + c1
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35.16 problem 1049
35.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9314

Internal problem ID [4270]
Internal file name [OUTPUT/3763_Sunday_June_05_2022_10_48_19_AM_15230443/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1049.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
3 +

(
2x− y2

)
y′

2 − 2xy2y′ = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 0 (1)
y′ = y2 (2)
y′ = −2x (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Verification of solutions
y = c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
y2

dy = x+ c2

−1
y
= x+ c2

Solving for y gives these solutions

y1 = − 1
x+ c2

Summary
The solution(s) found are the following

(1)y = − 1
x+ c2

Verification of solutions

y = − 1
x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−2x dx

= −x2 + c3

Summary
The solution(s) found are the following

(1)y = −x2 + c3

Verification of solutions

y = −x2 + c3

Verified OK.
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35.16.1 Maple step by step solution

Let’s solve
y′3 + (2x− y2) y′2 − 2xy2y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′3 + (2x− y2) y′2 − 2xy2y′

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′3 + (2x− y2) y′2 − 2xy2y′

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)^3+(2*x-y(x)^2)*diff(y(x),x)^2-2*x*y(x)^2*diff(y(x),x) = 0,y(x), singsol=all)� �

y(x) = 1
c1 − x

y(x) = −x2 + c1
y(x) = c1

3 Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 31� �
DSolve[(y'[x])^3 +(2*x-y[x]^2)*(y'[x])^2 -2*x*y[x]^2 y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
x+ c1

y(x) → c1
y(x) → −x2 + c1
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35.17 problem 1050
35.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9319

Internal problem ID [4271]
Internal file name [OUTPUT/3764_Sunday_June_05_2022_10_48_29_AM_5863767/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1050.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
3 −

(
y2 + 2x

)
y′

2 +
(
x2 − y2 + 2y2x

)
y′ −

(
x2 − y2

)
y2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y2 (1)
y′ = −y + x (2)
y′ = y + x (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
y2

dy = x+ c1

−1
y
= x+ c1

Solving for y gives these solutions

y1 = − 1
x+ c1
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Summary
The solution(s) found are the following

(1)y = − 1
x+ c1

Verification of solutions

y = − 1
x+ c1

Verified OK.
Solving equation (2)

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = x

Hence the ode is

y′ + y = x

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ) (x)
d
dx(e

xy) = (ex) (x)

d(exy) = (x ex) dx

Integrating gives

exy =
∫

x ex dx

exy = (x− 1) ex + c2
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Dividing both sides by the integrating factor µ = ex results in

y = e−x(x− 1) ex + c2e−x

which simplifies to

y = x− 1 + c2e−x

Summary
The solution(s) found are the following

(1)y = x− 1 + c2e−x

Verification of solutions

y = x− 1 + c2e−x

Verified OK.
Solving equation (3)

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = x

Hence the ode is

y′ − y = x

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x

The ode becomes

d
dx(µy) = (µ) (x)

d
dx
(
e−xy

)
=
(
e−x
)
(x)

d
(
e−xy

)
=
(
x e−x

)
dx

9318



Integrating gives

e−xy =
∫

x e−x dx

e−xy = −(x+ 1) e−x + c3

Dividing both sides by the integrating factor µ = e−x results in

y = −ex(x+ 1) e−x + c3ex

which simplifies to

y = −x− 1 + c3ex

Summary
The solution(s) found are the following

(1)y = −x− 1 + c3ex

Verification of solutions

y = −x− 1 + c3ex

Verified OK.

35.17.1 Maple step by step solution

Let’s solve
y′3 − (y2 + 2x) y′2 + (x2 − y2 + 2y2x) y′ − (x2 − y2) y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2
= 1

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
1dx+ c1

• Evaluate integral
− 1

y
= x+ c1

• Solve for y
y = − 1

x+c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(diff(y(x),x)^3-(2*x+y(x)^2)*diff(y(x),x)^2+(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2)*y(x)^2 = 0,y(x), singsol=all)� �

y(x) = 1
c1 − x

y(x) = −x− 1 + c1ex
y(x) = x− 1 + e−xc1

3 Solution by Mathematica
Time used: 0.153 (sec). Leaf size: 48� �
DSolve[(y'[x])^3 -(2*x+y[x]^2)*(y'[x])^2 +(x^2 -y[x]^2+2* x* y[x]^2)* y'[x]-(x^2-y[x]^2)*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
x+ c1

y(x) → x+ c1e
−x − 1

y(x) → −x+ c1e
x − 1

y(x) → 0
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35.18 problem 1051
35.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9323

Internal problem ID [4272]
Internal file name [OUTPUT/3765_Sunday_June_05_2022_10_48_45_AM_66858234/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1051.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
3 −

(
x2 + yx+ y2

)
y′

2 + xy
(
x2 + yx+ y2

)
y′ − y3x3 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x2 (1)
y′ = y2 (2)
y′ = yx (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

x2 dx

= x3

3 + c1

Summary
The solution(s) found are the following

(1)y = x3

3 + c1
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Verification of solutions

y = x3

3 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
y2

dy = x+ c2

−1
y
= x+ c2

Solving for y gives these solutions

y1 = − 1
x+ c2

Summary
The solution(s) found are the following

(1)y = − 1
x+ c2

Verification of solutions

y = − 1
x+ c2

Verified OK.
Solving equation (3)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy
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Where f(x) = x and g(y) = y. Integrating both sides gives

1
y
dy = x dx∫ 1

y
dy =

∫
x dx

ln (y) = x2

2 + c3

y = ex2
2 +c3

= c3e
x2
2

Summary
The solution(s) found are the following

(1)y = c3e
x2
2

Verification of solutions

y = c3e
x2
2

Verified OK.

35.18.1 Maple step by step solution

Let’s solve
y′3 − (x2 + yx+ y2) y′2 + xy(x2 + yx+ y2) y′ − y3x3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′3 − (x2 + yx+ y2) y′2 + xy(x2 + yx+ y2) y′ − y3x3) dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′3 − (x2 + yx+ y2) y′2 + xy(x2 + yx+ y2) y′ − y3x3) dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)^3-(x^2+x*y(x)+y(x)^2)*diff(y(x),x)^2+x*y(x)*(x^2+x*y(x)+y(x)^2)*diff(y(x),x)-x^3*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = x3

3 + c1

y(x) = 1
c1 − x

y(x) = c1e
x2
2
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3 Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 48� �
DSolve[(y'[x])^3 -(x^2+x y[x]+ y[x]^2) (y'[x])^2 +x y[x](x^2 +x y[x]+ y[x]^2) y'[x]-x^3 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
x+ c1

y(x) → c1e
x2
2

y(x) → x3

3 + c1

y(x) → 0
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35.19 problem 1052
35.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9329

Internal problem ID [4273]
Internal file name [OUTPUT/3766_Sunday_June_05_2022_10_48_55_AM_57294556/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1052.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "exact", "riccati", "quadrature",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
3 −

(
x2 + y2x+ y4

)
y′

2 + xy2
(
x2 + y2x+ y4

)
y′ − y6x3 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x2 (1)
y′ = y4 (2)
y′ = y2x (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

x2 dx

= x3

3 + c1

Summary
The solution(s) found are the following

(1)y = x3

3 + c1
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Verification of solutions

y = x3

3 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
y4

dy = x+ c2

− 1
3y3 = x+ c2

Solving for y gives these solutions

y1 =
(
−9(x+ c2)2

) 1
3

3x+ 3c2

y2 = −
(
−9(x+ c2)2

) 1
3

6 (x+ c2)
−

i
√
3
(
−9(x+ c2)2

) 1
3

6 (x+ c2)

y3 = −
(
−9(x+ c2)2

) 1
3

6 (x+ c2)
+

i
√
3
(
−9(x+ c2)2

) 1
3

6x+ 6c2

Summary
The solution(s) found are the following

(1)y =
(
−9(x+ c2)2

) 1
3

3x+ 3c2

(2)y = −
(
−9(x+ c2)2

) 1
3

6 (x+ c2)
−

i
√
3
(
−9(x+ c2)2

) 1
3

6 (x+ c2)

(3)y = −
(
−9(x+ c2)2

) 1
3

6 (x+ c2)
+

i
√
3
(
−9(x+ c2)2

) 1
3

6x+ 6c2
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Verification of solutions

y =
(
−9(x+ c2)2

) 1
3

3x+ 3c2

Verified OK.

y = −
(
−9(x+ c2)2

) 1
3

6 (x+ c2)
−

i
√
3
(
−9(x+ c2)2

) 1
3

6 (x+ c2)

Verified OK.

y = −
(
−9(x+ c2)2

) 1
3

6 (x+ c2)
+

i
√
3
(
−9(x+ c2)2

) 1
3

6x+ 6c2

Verified OK.
Solving equation (3)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x y2

Where f(x) = x and g(y) = y2. Integrating both sides gives

1
y2

dy = x dx∫ 1
y2

dy =
∫

x dx

−1
y
= x2

2 + c3

Which results in

y = − 2
x2 + 2c3

Summary
The solution(s) found are the following

(1)y = − 2
x2 + 2c3
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Verification of solutions

y = − 2
x2 + 2c3

Verified OK.

35.19.1 Maple step by step solution

Let’s solve
y′3 − (x2 + y2x+ y4) y′2 + xy2(x2 + y2x+ y4) y′ − y6x3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′3 − (x2 + y2x+ y4) y′2 + xy2(x2 + y2x+ y4) y′ − y6x3) dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′3 − (x2 + y2x+ y4) y′2 + xy2(x2 + y2x+ y4) y′ − y6x3) dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 75� �
dsolve(diff(y(x),x)^3-(x^2+x*y(x)^2+y(x)^4)*diff(y(x),x)^2+x*y(x)^2*(x^2+x*y(x)^2+y(x)^4)*diff(y(x),x)-x^3*y(x)^6 = 0,y(x), singsol=all)� �

y(x) = x3

3 + c1

y(x) = 1
(−3x+ c1)

1
3

y(x) = − 1 + i
√
3

2 (−3x+ c1)
1
3

y(x) = −1 + i
√
3

2 (−3x+ c1)
1
3

y(x) = − 2
x2 − 2c1

3 Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 110� �
DSolve[(y'[x])^3 -(x^2+x y[x]^2+ y[x]^4) (y'[x])^2 +x y[x]^2(x^2 +x y[x]^2+ y[x]^4) y'[x]-x^3 y[x]^6==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3

√
−1
3

3
√
−x− c1

y(x) → 1
3
√
3 3
√
−x− c1

y(x) → (−1)2/3
3
√
3 3
√
−x− c1

y(x) → x3

3 + c1

y(x) → − 2
x2 + 2c1

y(x) → 0
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35.20 problem 1053
35.20.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9331

Internal problem ID [4274]
Internal file name [OUTPUT/3767_Sunday_June_05_2022_10_49_05_AM_7421695/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1053.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

2y′3 + xy′ − 2y = 0

35.20.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2p3 + xp− 2y = 0

Solving for y from the above results in

y = p3 + 1
2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2
g = p3

Hence (2) becomes
p

2 =
(x
2 + 3p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)
x+ 6p (x)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p) + 6p2

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −1
p

q(p) = 6p

9332



Hence the ode is
d

dp
x(p)− x(p)

p
= 6p

The integrating factor µ is

µ = e
∫
− 1

p
dp

= 1
p

The ode becomes
d
dp(µx) = (µ) (6p)

d
dp

(
x

p

)
=
(
1
p

)
(6p)

d
(
x

p

)
= 6dp

Integrating gives
x

p
=
∫

6 dp
x

p
= 6p+ c1

Dividing both sides by the integrating factor µ = 1
p
results in

x(p) = c1p+ 6p2

which simplifies to

x(p) = p(c1 + 6p)

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
108y + 6

√
6x3 + 324y2

) 1
3

6 − x(
108y + 6

√
6x3 + 324y2

) 1
3

p = −
(
108y + 6

√
6x3 + 324y2

) 1
3

12 + x

2
(
108y + 6

√
6x3 + 324y2

) 1
3
+

i
√
3
((

108y+6
√

6x3+324y2
) 1

3

6 + x(
108y+6

√
6x3+324y2

) 1
3

)
2

p = −
(
108y + 6

√
6x3 + 324y2

) 1
3

12 + x

2
(
108y + 6

√
6x3 + 324y2

) 1
3
−

i
√
3
((

108y+6
√

6x3+324y2
) 1

3

6 + x(
108y+6

√
6x3+324y2

) 1
3

)
2
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Substituting the above in the solution for x found above gives

x

=

((
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)((
108y + 6

√
6x3 + 324y2

) 2
3 + c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
6
(
108y + 6

√
6x3 + 324y2

) 2
3

x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 + 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

Summary
The solution(s) found are the following

(1)y = 0
(2)x

=

((
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)((
108y + 6

√
6x3 + 324y2

) 2
3 + c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
6
(
108y + 6

√
6x3 + 324y2

) 2
3

(3)x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 + 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

(4)x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3
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Verification of solutions

y = 0

Verified OK.
x

=

((
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)((
108y + 6

√
6x3 + 324y2

) 2
3 + c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
6
(
108y + 6

√
6x3 + 324y2

) 2
3

Verified OK.
x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 + 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

Warning, solution could not be verified
x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

Warning, solution could not be verified

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
dsolve(2*diff(y(x),x)^3+x*diff(y(x),x)-2*y(x) = 0,y(x), singsol=all)� �

y(x) = (−c21 − 24x)
√

c21 + 24x
432 − c31

432 − c1x

12

y(x) = (c21 + 24x)
3
2

432 − c31
432 − c1x

12

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[2 (y'[x])^3 +x y'[x]-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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35.21 problem 1054
35.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9340

Internal problem ID [4275]
Internal file name [OUTPUT/3768_Sunday_June_05_2022_10_49_30_AM_19401399/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1054.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

2y′3 + y′
2 − y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−1 + 54y + 6

√
−3y + 81y2

) 1
3

6 + 1

6
(
−1 + 54y + 6

√
−3y + 81y2

) 1
3
− 1

6 (1)

y′ = −
(
−1 + 54y + 6

√
−3y + 81y2

) 1
3

12 − 1

12
(
−1 + 54y + 6

√
−3y + 81y2

) 1
3
− 1

6 +
i
√
3
((

−1+54y+6
√

−3y+81y2
) 1

3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

) 1
3

)
2

(2)

y′ = −
(
−1 + 54y + 6

√
−3y + 81y2

) 1
3

12 − 1

12
(
−1 + 54y + 6

√
−3y + 81y2

) 1
3
− 1

6 −

i
√
3
((

−1+54y+6
√

−3y+81y2
) 1

3

6 − 1

6
(
−1+54y+6

√
−3y+81y2

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

∫ 6
(
−1 + 54y + 6

√
81y2 − 3y

) 1
3(

−1 + 54y + 6
√
81y2 − 3y

) 2
3 −

(
−1 + 54y + 6

√
81y2 − 3y

) 1
3 + 1

dy =
∫

dx

6

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3(

−1 + 54_a+ 6
√
81_a2 − 3_a

) 2
3 −

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 + 1

d_a


= x+ c1

Summary
The solution(s) found are the following

(1)6

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3(

−1 + 54_a+ 6
√
81_a2 − 3_a

) 2
3 −

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 + 1

d_a


= x+ c1

Verification of solutions

6

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3(

−1 + 54_a+ 6
√
81_a2 − 3_a

) 2
3 −

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 + 1

d_a


= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

∫ 12
(
−1 + 54y + 6

√
81y2 − 3y

) 1
3

i
(
−1 + 54y + 6

√
81y2 − 3y

) 2
3
√
3− 1−

(
−1 + 54y + 6

√
81y2 − 3y

) 2
3 − 2

(
−1 + 54y + 6

√
81y2 − 3y

) 1
3 − i

√
3
dy

=
∫

dx

12

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3

i
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3
√
3− 1−

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3 − 2

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 − i

√
3
d_a


= x+ c2
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Summary
The solution(s) found are the following

(1)12

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3

i
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3
√
3− 1−

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3 − 2

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 − i

√
3
d_a


= x+ c2

Verification of solutions

12

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3

i
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3
√
3− 1−

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3 − 2

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 − i

√
3
d_a


= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives∫
−

12
(
−1 + 54y + 6

√
81y2 − 3y

) 1
3

i
(
−1 + 54y + 6

√
81y2 − 3y

) 2
3
√
3 + 1 +

(
−1 + 54y + 6

√
81y2 − 3y

) 2
3 + 2

(
−1 + 54y + 6

√
81y2 − 3y

) 1
3 − i

√
3
dy

=
∫

dx

−12

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3

i
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3
√
3 + 1 +

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3 + 2

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 − i

√
3
d_a


= x+ c3

Summary
The solution(s) found are the following

(1)−12

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3

i
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3
√
3 + 1 +

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3 + 2

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 − i

√
3
d_a


= x+ c3
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Verification of solutions

−12

∫ y
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3

i
(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3
√
3 + 1 +

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 2
3 + 2

(
−1 + 54_a+ 6

√
81_a2 − 3_a

) 1
3 − i

√
3
d_a


= x+ c3

Verified OK.

35.21.1 Maple step by step solution

Let’s solve
2y′3 + y′2 − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(

−1+54y+6
√

−3y+81y2
) 1

3

6 + 1

6
(
−1+54y+6

√
−3y+81y2

) 1
3
− 1

6

= 1

• Integrate both sides with respect to x∫
y′(

−1+54y+6
√

−3y+81y2
) 1

3

6 + 1

6
(
−1+54y+6

√
−3y+81y2

) 1
3
− 1

6

dx =
∫
1dx+ c1

• Cannot compute integral∫
y′(

−1+54y+6
√

−3y+81y2
) 1

3

6 + 1

6
(
−1+54y+6

√
−3y+81y2

) 1
3
− 1

6

dx = x+ c1
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 393� �
dsolve(2*diff(y(x),x)^3+diff(y(x),x)^2-y(x) = 0,y(x), singsol=all)� �
y(x) = 0

6
√
3

∫ y(x) (
18
√
27_a2 − _a+ (54_a− 1)

√
3
) 1

3

−3 1
3
(
18
√
27_a2 − _a+ (54_a− 1)

√
3
) 2

3 +
√
3
(
18
√
27_a2 − _a+ (54_a− 1)

√
3
) 1

3 − 3 2
3

d_a


+ x− c1 = 0

24i
√
3

∫ y(x)
(
18
√

27_a2−_a+(54_a−1)
√
3
) 1

3(
3
1
3+3

1
6
(
18
√

27_a2−_a+(54_a−1)
√
3
) 1

3
)(

i3
5
6+3

1
3−2 3

1
6
(
18
√

27_a2−_a+(54_a−1)
√
3
) 1

3
)d_a

+ (x− c1)
(
−i+

√
3
)

−i+
√
3

= 0

24i
√
3

∫ y(x)
(
18
√

27_a2−_a+(54_a−1)
√
3
) 1

3(
i3

5
6−3

1
3+23

1
6
(
18
√

27_a2−_a+(54_a−1)
√
3
) 1

3
)(

3
1
3+3

1
6
(
18
√

27_a2−_a+(54_a−1)
√
3
) 1

3
)d_a

+ (x− c1)
(√

3 + i
)

√
3 + i

= 0

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[2 (y'[x])^3 + (y'[x])^2 - y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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35.22 problem 1055
Internal problem ID [4276]
Internal file name [OUTPUT/3769_Sunday_June_05_2022_10_49_55_AM_79355686/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1055.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

3y′3 − x4y′ + 2x3y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

(−9y +
√
−x6 + 81y2

) 1
3

3 + x2

3
(
−9y +

√
−x6 + 81y2

) 1
3

x (1)

y′ =

−
(
−9y +

√
−x6 + 81y2

) 1
3

6 − x2

6
(
−9y +

√
−x6 + 81y2

) 1
3
+

i
√
3
((

−9y+
√

−x6+81y2
) 1

3

3 − x2

3
(
−9y+

√
−x6+81y2

) 1
3

)
2

x

(2)

y′ =

−
(
−9y +

√
−x6 + 81y2

) 1
3

6 − x2

6
(
−9y +

√
−x6 + 81y2

) 1
3
−

i
√
3
((

−9y+
√

−x6+81y2
) 1

3

3 − x2

3
(
−9y+

√
−x6+81y2

) 1
3

)
2

x

(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Writing the ode as

y′ =
x
((

−9y +
√
−x6 + 81y2

) 2
3 + x2

)
3
(
−9y +

√
−x6 + 81y2

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
x
((

−9y +
√
−x6 + 81y2

) 2
3 + x2

)
(b3 − a2)

3
(
−9y +

√
−x6 + 81y2

) 1
3

−
x2
((

−9y +
√
−x6 + 81y2

) 2
3 + x2

)2
a3

9
(
−9y +

√
−x6 + 81y2

) 2
3

−


(
−9y +

√
−x6 + 81y2

) 2
3 + x2

3
(
−9y +

√
−x6 + 81y2

) 1
3

+
x

(
− 2x5(

−9y+
√

−x6+81y2
) 1

3√−x6+81y2
+ 2x

)
3
(
−9y +

√
−x6 + 81y2

) 1
3

+
x6
((

−9y +
√
−x6 + 81y2

) 2
3 + x2

)
3
(
−9y +

√
−x6 + 81y2

) 4
3
√
−x6 + 81y2

 (xa2 + ya3 + a1)

−

 2x
(
−9 + 81y√

−x6+81y2

)
9
(
−9y +

√
−x6 + 81y2

) 2
3

−
x
((

−9y +
√
−x6 + 81y2

) 2
3 + x2

)(
−9 + 81y√

−x6+81y2

)
9
(
−9y +

√
−x6 + 81y2

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−
−108

√
−x6 + 81y2 x3a2y − 81

√
−x6 + 81y2 x2a1y − 9x9a2 − 6x8a1 + 3x9b3 − 9

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3 x2b2 + 36

√
−x6 + 81y2 x3yb3 + 81

(
−9y +

√
−x6 + 81y2

) 2
3 x2yb2 + 81

(
−9y +

√
−x6 + 81y2

) 2
3 x y2b3 − 9

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3 xb1 + 81

(
−9y +

√
−x6 + 81y2

) 2
3 xyb1 + 2

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 4
3 x4a3 +

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3 x6a3 − 3

(
−9y +

√
−x6 + 81y2

) 2
3 x6ya3 + 6

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 5
3 xa2 − 3

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 5
3 xb3 + 3

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 5
3 ya3 + 972x3y2a2 − 729x2y3a3 + 729x2y2a1 + 9

√
−x6 + 81y2 x3b1 + (−x6 + 81y2)

3
2 x2a3 + 12x8ya3 − 81x4yb2 − 324x3y2b3 − 81x3yb1 − 3

(
−9y +

√
−x6 + 81y2

) 2
3 x7a2 − 3

(
−9y +

√
−x6 + 81y2

) 2
3 x6a1 + 3

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 5
3 a1 − 9b2

(
−9y +

√
−x6 + 81y2

) 4
3
√
−x6 + 81y2 + 9

√
−x6 + 81y2 x4b2 − 9

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3 xyb3

9
(
−9y +

√
−x6 + 81y2

) 4
3
√
−x6 + 81y2

= 0
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Setting the numerator to zero gives

108
√

−x6 + 81y2 x3a2y + 81
√

−x6 + 81y2 x2a1y + 9x9a2

+ 6x8a1 − 3x9b3 + 9
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
x2b2

− 36
√

−x6 + 81y2 x3yb3 − 81
(
−9y +

√
−x6 + 81y2

) 2
3
x2yb2

− 81
(
−9y +

√
−x6 + 81y2

) 2
3
x y2b3 + 9

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3
xb1

− 81
(
−9y +

√
−x6 + 81y2

) 2
3
xyb1 − 2

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 4
3
x4a3

−
√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3
x6a3 + 3

(
−9y +

√
−x6 + 81y2

) 2
3
x6ya3

− 6
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 5
3
xa2

+ 3
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 5
3
xb3

− 3
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 5
3
ya3 − 972x3y2a2

+ 729x2y3a3 − 729x2y2a1 − 9
√

−x6 + 81y2 x3b1 −
(
−x6 + 81y2

) 3
2 x2a3

− 12x8ya3 + 81x4yb2 + 324x3y2b3 + 81x3yb1 + 3
(
−9y +

√
−x6 + 81y2

) 2
3
x7a2

+ 3
(
−9y +

√
−x6 + 81y2

) 2
3
x6a1 − 3

√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 5
3
a1

+ 9b2
(
−9y +

√
−x6 + 81y2

) 4
3 √−x6 + 81y2 − 9

√
−x6 + 81y2 x4b2

+ 9
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
xyb3 = 0

(6E)
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Simplifying the above gives

(6E)

−3x9a2 − 3x8a1

+ 9
√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3
x2b2

− 9
√

−x6 + 81y2 x3yb3 − 81
(
−9y+

√
−x6 + 81y2

) 2
3
x2yb2

− 81
(
−9y +

√
−x6 + 81y2

) 2
3
x y2b3

+ 9
√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3
xb1

− 81
(
−9y +

√
−x6 + 81y2

) 2
3
xyb1

−
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

)2
x2a3

− 2
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 4
3
x4a3

−
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
x6a3

+ 3
(
−9y +

√
−x6 + 81y2

) 2
3
x6ya3

− 6
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 5
3
xa2

+ 3
√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 5
3
xb3

− 3
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 5
3
ya3

− 12
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

)
x3a2

+ 3
√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

)
x3b3

− 9
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

)
x2a1

− 9
√

−x6 + 81y2 x3b1 − 3x8ya3 + 81x4yb2 + 81x3y2b3

+ 81x3yb1 + 3
(
−9y +

√
−x6 + 81y2

) 2
3
x7a2

+ 3
(
−9y +

√
−x6 + 81y2

) 2
3
x6a1

− 3
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 5
3
a1

+ 9b2
(
−9y +

√
−x6 + 81y2

) 4
3 √−x6 + 81y2

− 9
√

−x6 + 81y2 x4b2

− 9
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

)
x2ya3

+ 9
√
−x6 + 81y2

(
−9y +

√
−x6 + 81y2

) 2
3
xyb3 = 0
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Since the PDE has radicals, simplifying gives

108
√

−x6 + 81y2 x3a2y + 81
√
−x6 + 81y2 x2a1y

+ 18
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 1
3
x4a3y

+ 54
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
xa2y + 9x9a2

+ 6x8a1 − 3x9b3 − 486x
(
−9y +

√
−x6 + 81y2

) 2
3
y2a2

+ 9
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
x2b2

− 36
√

−x6 + 81y2 x3yb3 − 81
(
−9y +

√
−x6 + 81y2

) 2
3
x2yb2

+ 162
(
−9y +

√
−x6 + 81y2

) 2
3
x y2b3

+ 9
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
xb1

− 81
(
−9y +

√
−x6 + 81y2

) 2
3
xyb1

− 243
(
−9y +

√
−x6 + 81y2

) 2
3
y2a1

+ 729
(
−9y +

√
−x6 + 81y2

) 1
3
y2b2

+ 2x10
(
−9y +

√
−x6 + 81y2

) 1
3
a3

− 3x7
(
−9y +

√
−x6 + 81y2

) 2
3
b3

− 9x6
(
−9y +

√
−x6 + 81y2

) 1
3
b2

− 243
(
−9y +

√
−x6 + 81y2

) 2
3
y3a3 + x8

√
−x6 + 81y2 a3

−
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
x6a3

+ 6
(
−9y +

√
−x6 + 81y2

) 2
3
x6ya3 − 972x3y2a2 + 729x2y3a3

− 729x2y2a1 − 9
√

−x6 + 81y2 x3b1 − 12x8ya3 + 81x4yb2

+ 324x3y2b3 + 81x3yb1 + 9
(
−9y +

√
−x6 + 81y2

) 2
3
x7a2

+ 6
(
−9y +

√
−x6 + 81y2

) 2
3
x6a1 − 9

√
−x6 + 81y2 x4b2

+ 27
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
a1y

− 81b2
(
−9y +

√
−x6 + 81y2

) 1
3 √−x6 + 81y2 y

−162x4
(
−9y+

√
−x6 + 81y2

) 1
3
y2a3−81x2

√
−x6 + 81y2 y2a3

+ 27
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
y2a3

− 18
√

−x6 + 81y2
(
−9y +

√
−x6 + 81y2

) 2
3
xyb3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−9y +

√
−x6 + 81y2

) 1
3
,
(
−9y +

√
−x6 + 81y2

) 2
3
,
√

−x6 + 81y2
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−9y +

√
−x6 + 81y2

) 1
3 = v3,

(
−9y

+
√

−x6 + 81y2
) 2

3 = v4,
√
−x6 + 81y2 = v5

}

The above PDE (6E) now becomes

(7E)

2v101 v3a3 + 9v91a2 − 12v81v2a3 + v81v5a3 − 3v91b3 + 6v81a1 + 9v4v71a2
+ 6v4v61v2a3 − v5v4v

6
1a3 − 3v71v4b3 + 6v4v61a1 − 162v41v3v22a3

+ 18v5v3v41a3v2 − 9v61v3b2 − 972v31v22a2 + 108v5v31a2v2 + 729v21v32a3
− 81v21v5v22a3 + 81v41v2b2 − 9v5v41b2 + 324v31v22b3 − 36v5v31v2b3
− 729v21v22a1 + 81v5v21a1v2 − 486v1v4v22a2 + 54v5v4v1a2v2
− 243v4v32a3 + 27v5v4v22a3 + 81v31v2b1 − 9v5v31b1 − 81v4v21v2b2
+ 9v5v4v21b2 + 162v4v1v22b3 − 18v5v4v1v2b3 − 243v4v22a1 + 27v5v4a1v2
− 81v4v1v2b1 + 9v5v4v1b1 + 729v3v22b2 − 81b2v3v5v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)

(−972a2+324b3) v31v22+(54a2−18b3) v1v2v4v5+6v81a1+(9a2−3b3) v71v4
+ (108a2 − 36b3) v31v2v5 + (−486a2 + 162b3) v1v22v4 + (9a2 − 3b3) v91
− 243v4v22a1 + 729v3v22b2 + 2v101 v3a3 − 9v61v3b2 − 243v4v32a3 + v81v5a3
+ 729v21v32a3 − 729v21v22a1 − 9v5v31b1 − 12v81v2a3 + 81v41v2b2 + 81v31v2b1
+6v4v61a1 − 9v5v41b2 +81v5v21a1v2 +9v5v4v21b2 − 81v4v21v2b2 +9v5v4v1b1
− 81v4v1v2b1 − v5v4v

6
1a3 + 6v4v61v2a3 + 27v5v4a1v2 − 81b2v3v5v2

− 162v41v3v22a3 − 81v21v5v22a3 + 27v5v4v22a3 + 18v5v3v41a3v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
−729a1 = 0
−243a1 = 0

6a1 = 0
27a1 = 0
81a1 = 0

−243a3 = 0
−162a3 = 0
−81a3 = 0
−12a3 = 0
−a3 = 0
2a3 = 0
6a3 = 0
18a3 = 0
27a3 = 0
729a3 = 0
−81b1 = 0
−9b1 = 0
9b1 = 0
81b1 = 0

−81b2 = 0
−9b2 = 0
9b2 = 0
81b2 = 0
729b2 = 0

−972a2 + 324b3 = 0
−486a2 + 162b3 = 0

9a2 − 3b3 = 0
54a2 − 18b3 = 0
108a2 − 36b3 = 0

9349



Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 3y
x

= 3y
x

This is easily solved to give

y = c1x
3

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x3
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And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
x
((

−9y +
√
−x6 + 81y2

) 2
3 + x2

)
3
(
−9y +

√
−x6 + 81y2

) 1
3

Evaluating all the partial derivatives gives

Rx = −3y
x4

Ry =
1
x3

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

3
(
−9y +

√
−x6 + 81y2

) 1
3 x3

x2
(
−9y +

√
−x6 + 81y2

) 2
3 + x4 − 9

(
−9y +

√
−x6 + 81y2

) 1
3 y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

3
(√

81R2 − 1− 9R
) 1

3(√
81R2 − 1− 9R

) 2
3 − 9

(√
81R2 − 1− 9R

) 1
3 R + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 3

(√
81R2 − 1− 9R

) 1
3(√

81R2 − 1− 9R
) 2

3 − 9
(√

81R2 − 1− 9R
) 1

3 R + 1
dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x3 3
(√

81_a2 − 1− 9_a
) 1

3(√
81_a2 − 1− 9_a

) 2
3 − 9

(√
81_a2 − 1− 9_a

) 1
3 _a+ 1

d_a+ c1

Which simplifies to

ln (x) =
∫ y

x3 3
(√

81_a2 − 1− 9_a
) 1

3(√
81_a2 − 1− 9_a

) 2
3 − 9

(√
81_a2 − 1− 9_a

) 1
3 _a+ 1

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

x3 3
(√

81_a2 − 1− 9_a
) 1

3(√
81_a2 − 1− 9_a

) 2
3 − 9

(√
81_a2 − 1− 9_a

) 1
3 _a+ 1

d_a+ c1

Verification of solutions

ln (x) =
∫ y

x3 3
(√

81_a2 − 1− 9_a
) 1

3(√
81_a2 − 1− 9_a

) 2
3 − 9

(√
81_a2 − 1− 9_a

) 1
3 _a+ 1

d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
x
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 −

(
−9y +

√
−x6 + 81y2

) 2
3 − x2

)
6
(
−9y +

√
−x6 + 81y2

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+
x
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 −

(
−9y +

√
−x6 + 81y2

) 2
3 − x2

)
(b3 − a2)

6
(
−9y +

√
−x6 + 81y2

) 1
3

−
x2
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 −

(
−9y +

√
−x6 + 81y2

) 2
3 − x2

)2
a3

36
(
−9y +

√
−x6 + 81y2

) 2
3

−


i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 −

(
−9y +

√
−x6 + 81y2

) 2
3 − x2

6
(
−9y +

√
−x6 + 81y2

) 1
3

+
x

(
− 2i

√
3x5(

−9y+
√

−x6+81y2
) 1

3√−x6+81y2
− 2i

√
3x+ 2x5(

−9y+
√

−x6+81y2
) 1

3√−x6+81y2
− 2x

)
6
(
−9y +

√
−x6 + 81y2

) 1
3

+
x6
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 −

(
−9y +

√
−x6 + 81y2

) 2
3 − x2

)
6
(
−9y +

√
−x6 + 81y2

) 4
3
√
−x6 + 81y2

 (xa2

+ ya3 + a1)−


x

2i
√
3
(
−9+ 81y√

−x6+81y2

)

3
(
−9y+

√
−x6+81y2

) 1
3
−

2
(
−9+ 81y√

−x6+81y2

)

3
(
−9y+

√
−x6+81y2

) 1
3


6
(
−9y +

√
−x6 + 81y2

) 1
3

−
x
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 −

(
−9y +

√
−x6 + 81y2

) 2
3 − x2

)(
−9 + 81y√

−x6+81y2

)
18
(
−9y +

√
−x6 + 81y2

) 4
3


(xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−9y +

√
−x6 + 81y2

) 1
3
,
(
−9y +

√
−x6 + 81y2

) 2
3
,
√

−x6 + 81y2
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−9y +

√
−x6 + 81y2

) 1
3 = v3,

(
−9y

+
√

−x6 + 81y2
) 2

3 = v4,
√
−x6 + 81y2 = v5

}
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The above PDE (6E) now becomes

(7E)

72v3v5v41a3v2 − 2i
√
3 v81v5a3 + 24i

√
3 v81v2a3

+ 1944i
√
3 v31v22a2 − 648i

√
3 v31v22b3 − 1458i

√
3 v21v32a3

+ 1458i
√
3 v21v22a1 + 972v1v4v22a2 − 54v4v5a1v2

− 324b2v3v5v2 − 54v4v5v22a3 + 162v21v5v22a3 + 2v4v5v61a3
− 12v4v61v2a3 − 18v4v5v21b2 + 162v4v21v2b2 − 324v4v1v22b3
+ 72v5v31v2b3 − 18v4v5v1b1 + 162v4v1v2b1 − 216v5v31a2v2
− 162v5v21a1v2 + 36v4v5v1v2b3 − 108v4v5v1a2v2
+ 54i

√
3 v4v5v22a3 + 54i

√
3 v4v5a1v2 + 162i

√
3 v21v5v22a3

− 216i
√
3 v5v31a2v2 + 72i

√
3 v5v31v2b3 − 162i

√
3 v5v21a1v2

+ 12i
√
3 v4v61v2a3 − 972i

√
3 v1v4v22a2 + 324i

√
3 v4v1v22b3

− 2i
√
3 v4v5v61a3 + 18i

√
3 v4v5v21b2 − 162i

√
3 v4v21v2b2

+ 18i
√
3 v4v5v1b1 − 162i

√
3 v4v1v2b1 − 648v41v3v22a3

+ 18i
√
3 v5v41b2 − 162i

√
3 v41v2b2 + 18i

√
3 v5v31b1

− 162i
√
3 v31v2b1 + 18i

√
3 v4v71a2 − 6i

√
3 v71v4b3

+ 12i
√
3 v4v61a1 − 486i

√
3 v4v32a3 − 486i

√
3 v4v22a1

− 18i
√
3 v91a2 + 6i

√
3 v91b3 − 12i

√
3 v81a1 + 6v91b3 − 18v91a2

− 12v81a1 + 1944v31v22a2 − 1458v21v32a3 + 1458v21v22a1
+ 24v81v2a3 − 162v41v2b2 − 648v31v22b3 − 162v31v2b1
− 18v4v71a2 − 12v4v61a1 + 18v5v41b2 + 18v5v31b1 + 8v101 v3a3
+6v71v4b3−36v61v3b2+486v4v32a3+486v4v22a1+2916v3v22b2
− 2v81v5a3 − 36i

√
3 v4v5v1v2b3 + 108i

√
3 v4v5v1a2v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

72v3v5v41a3v2 +
(
12i

√
3 a3 − 12a3

)
v61v2v4 +

(
−2i

√
3 a3 + 2a3

)
v61v4v5

+
(
−216i

√
3 a2 + 72i

√
3 b3 − 216a2 + 72b3

)
v31v2v5 +

(
162i

√
3 a3 + 162a3

)
v21v

2
2v5

+
(
−162i

√
3 b2 + 162b2

)
v21v2v4 +

(
−162i

√
3 a1 − 162a1

)
v21v2v5

+
(
18i

√
3 b2 − 18b2

)
v21v4v5 +

(
−972i

√
3 a2 + 324i

√
3 b3 + 972a2 − 324b3

)
v1v

2
2v4

+
(
−162i

√
3 b1 + 162b1

)
v1v2v4 +

(
18i

√
3 b1 − 18b1

)
v1v4v5

+
(
54i

√
3 a3 − 54a3

)
v22v4v5 +

(
54i

√
3 a1 − 54a1

)
v2v4v5

− 324b2v3v5v2 +
(
108i

√
3 a2 − 36i

√
3 b3 − 108a2 + 36b3

)
v1v2v4v5

− 648v41v3v22a3 +
(
−18i

√
3 a2 + 6i

√
3 b3 − 18a2 + 6b3

)
v91

+
(
−12i

√
3 a1 − 12a1

)
v81 +

(
24i

√
3 a3 + 24a3

)
v81v2 +

(
−2i

√
3 a3 − 2a3

)
v81v5

+
(
18i

√
3 a2 − 6i

√
3 b3 − 18a2 + 6b3

)
v71v4 +

(
12i

√
3 a1 − 12a1

)
v61v4

+
(
−162i

√
3 b2 − 162b2

)
v41v2 +

(
18i

√
3 b2 + 18b2

)
v41v5

+
(
1944i

√
3 a2 − 648i

√
3 b3 + 1944a2 − 648b3

)
v31v

2
2 +

(
−162i

√
3 b1 − 162b1

)
v31v2

+
(
18i

√
3 b1 + 18b1

)
v31v5 +

(
−1458i

√
3 a3 − 1458a3

)
v21v

3
2

+
(
1458i

√
3 a1 + 1458a1

)
v21v

2
2 +

(
−486i

√
3 a3 + 486a3

)
v32v4

+
(
−486i

√
3 a1 + 486a1

)
v22v4 + 8v101 v3a3 − 36v61v3b2 + 2916v3v22b2 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve
−648a3 = 0

8a3 = 0
72a3 = 0

−324b2 = 0
−36b2 = 0
2916b2 = 0

−1458i
√
3 a3 − 1458a3 = 0

−486i
√
3 a1 + 486a1 = 0

−486i
√
3 a3 + 486a3 = 0

−162i
√
3 a1 − 162a1 = 0

−162i
√
3 b1 − 162b1 = 0

−162i
√
3 b1 + 162b1 = 0

−162i
√
3 b2 − 162b2 = 0

−162i
√
3 b2 + 162b2 = 0

−12i
√
3 a1 − 12a1 = 0

−2i
√
3 a3 − 2a3 = 0

−2i
√
3 a3 + 2a3 = 0

12i
√
3 a1 − 12a1 = 0

12i
√
3 a3 − 12a3 = 0

18i
√
3 b1 − 18b1 = 0

18i
√
3 b1 + 18b1 = 0

18i
√
3 b2 − 18b2 = 0

18i
√
3 b2 + 18b2 = 0

24i
√
3 a3 + 24a3 = 0

54i
√
3 a1 − 54a1 = 0

54i
√
3 a3 − 54a3 = 0

162i
√
3 a3 + 162a3 = 0

1458i
√
3 a1 + 1458a1 = 0

−972i
√
3 a2 + 324i

√
3 b3 + 972a2 − 324b3 = 0

−216i
√
3 a2 + 72i

√
3 b3 − 216a2 + 72b3 = 0

−18i
√
3 a2 + 6i

√
3 b3 − 18a2 + 6b3 = 0

18i
√
3 a2 − 6i

√
3 b3 − 18a2 + 6b3 = 0

108i
√
3 a2 − 36i

√
3 b3 − 108a2 + 36b3 = 0

1944i
√
3 a2 − 648i

√
3 b3 + 1944a2 − 648b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
x
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 +

(
−9y +

√
−x6 + 81y2

) 2
3 + x2

)
6
(
−9y +

√
−x6 + 81y2

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−
x
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 +

(
−9y +

√
−x6 + 81y2

) 2
3 + x2

)
(b3 − a2)

6
(
−9y +

√
−x6 + 81y2

) 1
3

−
x2
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 +

(
−9y +

√
−x6 + 81y2

) 2
3 + x2

)2
a3

36
(
−9y +

√
−x6 + 81y2

) 2
3

−

−
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 +

(
−9y +

√
−x6 + 81y2

) 2
3 + x2

6
(
−9y +

√
−x6 + 81y2

) 1
3

−

x

(
− 2i

√
3x5(

−9y+
√

−x6+81y2
) 1

3√−x6+81y2
− 2i

√
3x− 2x5(

−9y+
√

−x6+81y2
) 1

3√−x6+81y2
+ 2x

)
6
(
−9y +

√
−x6 + 81y2

) 1
3

−
x6
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 +

(
−9y +

√
−x6 + 81y2

) 2
3 + x2

)
6
(
−9y +

√
−x6 + 81y2

) 4
3
√
−x6 + 81y2

 (xa2

+ ya3 + a1)−


−

x

2i
√
3
(
−9+ 81y√

−x6+81y2

)

3
(
−9y+

√
−x6+81y2

) 1
3
+

−6+ 54y√
−x6+81y2(

−9y+
√

−x6+81y2
) 1

3


6
(
−9y +

√
−x6 + 81y2

) 1
3

+
x
(
i
√
3
(
−9y +

√
−x6 + 81y2

) 2
3 − i

√
3x2 +

(
−9y +

√
−x6 + 81y2

) 2
3 + x2

)(
−9 + 81y√

−x6+81y2

)
18
(
−9y +

√
−x6 + 81y2

) 4
3


(xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−9y +

√
−x6 + 81y2

) 1
3
,
(
−9y +

√
−x6 + 81y2

) 2
3
,
√

−x6 + 81y2
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−9y +

√
−x6 + 81y2

) 1
3 = v3,

(
−9y

+
√

−x6 + 81y2
) 2

3 = v4,
√
−x6 + 81y2 = v5

}
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The above PDE (6E) now becomes

(7E)

−18v91a2 − 12v81a1 + 6v91b3 + 36i
√
3 v4v5v1v2b3

− 108i
√
3 v4v5v1a2v2 + 18i

√
3 v91a2 − 6i

√
3 v91b3

+ 12i
√
3 v81a1 + 486i

√
3 v4v32a3 + 486i

√
3 v4v22a1

+ 72v3v5v41a3v2 − 108v4v5v1a2v2 + 36v4v5v1v2b3
+ 2v4v5v61a3 − 12v4v61v2a3 − 18v4v5v21b2 + 162v4v21v2b2
− 324v4v1v22b3 + 72v5v31v2b3 − 18v4v5v1b1 + 162v4v1v2b1
−216v5v31a2v2−162v5v21a1v2−648v41v3v22a3+972v1v4v22a2
− 54v4v5a1v2 − 324b2v3v5v2 − 54v4v5v22a3 + 162v21v5v22a3
+ 486v4v22a1 + 2916v3v22b2 + 8v101 v3a3 + 6v71v4b3 − 2v81v5a3
+ 1944v31v22a2 − 1458v21v32a3 + 1458v21v22a1 + 24v81v2a3
− 162v41v2b2 − 648v31v22b3 − 162v31v2b1 − 18v4v71a2
− 12v4v61a1 + 18v5v41b2 + 18v5v31b1 − 36v61v3b2 + 486v4v32a3
+ 2i

√
3 v81v5a3 − 24i

√
3 v81v2a3 − 1944i

√
3 v31v22a2

+ 648i
√
3 v31v22b3 + 1458i

√
3 v21v32a3 − 1458i

√
3 v21v22a1

− 18i
√
3 v5v41b2 + 162i

√
3 v41v2b2 − 18i

√
3 v5v31b1

+ 162i
√
3 v31v2b1 − 18i

√
3 v4v71a2 + 6i

√
3 v71v4b3

− 12i
√
3 v4v61a1 − 12i

√
3 v4v61v2a3 + 972i

√
3 v1v4v22a2

− 324i
√
3 v4v1v22b3 − 162i

√
3 v21v5v22a3 + 216i

√
3 v5v31a2v2

− 72i
√
3 v5v31v2b3 + 162i

√
3 v5v21a1v2 + 2i

√
3 v4v5v61a3

− 18i
√
3 v4v5v21b2 + 162i

√
3 v4v21v2b2 − 18i

√
3 v4v5v1b1

+162i
√
3 v4v1v2b1− 54i

√
3 v4v5v22a3− 54i

√
3 v4v5a1v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(
18i

√
3 a2 − 6i

√
3 b3 − 18a2 + 6b3

)
v91 +

(
12i

√
3 a1 − 12a1

)
v81

+
(
−12i

√
3 a3 − 12a3

)
v61v2v4 +

(
2i
√
3 a3 + 2a3

)
v61v4v5

+
(
216i

√
3 a2 − 72i

√
3 b3 − 216a2 + 72b3

)
v31v2v5 +

(
−162i

√
3 a3 + 162a3

)
v21v

2
2v5

+
(
162i

√
3 b2+162b2

)
v21v2v4+

(
162i

√
3 a1−162a1

)
v21v2v5+

(
−18i

√
3 b2−18b2

)
v21v4v5

+
(
972i

√
3 a2 − 324i

√
3 b3 + 972a2 − 324b3

)
v1v

2
2v4 +

(
162i

√
3 b1 + 162b1

)
v1v2v4

+
(
−18i

√
3 b1−18b1

)
v1v4v5+

(
−54i

√
3 a3−54a3

)
v22v4v5+

(
−54i

√
3 a1−54a1

)
v2v4v5

+ 72v3v5v41a3v2 − 648v41v3v22a3 − 324b2v3v5v2 +
(
−24i

√
3 a3 + 24a3

)
v81v2

+
(
2i
√
3 a3 − 2a3

)
v81v5 +

(
−18i

√
3 a2 + 6i

√
3 b3 − 18a2 + 6b3

)
v71v4

+
(
−12i

√
3 a1 − 12a1

)
v61v4 +

(
162i

√
3 b2 − 162b2

)
v41v2 +

(
−18i

√
3 b2 + 18b2

)
v41v5

+
(
−1944i

√
3 a2 + 648i

√
3 b3 + 1944a2 − 648b3

)
v31v

2
2 +

(
162i

√
3 b1 − 162b1

)
v31v2

+
(
−18i

√
3 b1+18b1

)
v31v5+

(
1458i

√
3 a3−1458a3

)
v21v

3
2+
(
−1458i

√
3 a1+1458a1

)
v21v

2
2

+
(
486i

√
3 a3 + 486a3

)
v32v4 +

(
486i

√
3 a1 + 486a1

)
v22v4 + 2916v3v22b2 + 8v101 v3a3

− 36v61v3b2 +
(
−108i

√
3 a2 + 36i

√
3 b3 − 108a2 + 36b3

)
v1v2v4v5 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve
−648a3 = 0

8a3 = 0
72a3 = 0

−324b2 = 0
−36b2 = 0
2916b2 = 0

−1458i
√
3 a1 + 1458a1 = 0

−162i
√
3 a3 + 162a3 = 0

−54i
√
3 a1 − 54a1 = 0

−54i
√
3 a3 − 54a3 = 0

−24i
√
3 a3 + 24a3 = 0

−18i
√
3 b1 − 18b1 = 0

−18i
√
3 b1 + 18b1 = 0

−18i
√
3 b2 − 18b2 = 0

−18i
√
3 b2 + 18b2 = 0

−12i
√
3 a1 − 12a1 = 0

−12i
√
3 a3 − 12a3 = 0

2i
√
3 a3 − 2a3 = 0

2i
√
3 a3 + 2a3 = 0

12i
√
3 a1 − 12a1 = 0

162i
√
3 a1 − 162a1 = 0

162i
√
3 b1 − 162b1 = 0

162i
√
3 b1 + 162b1 = 0

162i
√
3 b2 − 162b2 = 0

162i
√
3 b2 + 162b2 = 0

486i
√
3 a1 + 486a1 = 0

486i
√
3 a3 + 486a3 = 0

1458i
√
3 a3 − 1458a3 = 0

−1944i
√
3 a2 + 648i

√
3 b3 + 1944a2 − 648b3 = 0

−108i
√
3 a2 + 36i

√
3 b3 − 108a2 + 36b3 = 0

−18i
√
3 a2 + 6i

√
3 b3 − 18a2 + 6b3 = 0

18i
√
3 a2 − 6i

√
3 b3 − 18a2 + 6b3 = 0

216i
√
3 a2 − 72i

√
3 b3 − 216a2 + 72b3 = 0

972i
√
3 a2 − 324i

√
3 b3 + 972a2 − 324b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = (-y(x)^5+9*y(x)*x^2)/(-y(x)^4*x+9*x^3), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 34� �
dsolve(3*diff(y(x),x)^3-x^4*diff(y(x),x)+2*x^3*y(x) = 0,y(x), singsol=all)� �

y(x) = −x3

9
y(x) = x3

9
y(x) = c21x

2 − 3
2c31

3 Solution by Mathematica
Time used: 87.281 (sec). Leaf size: 15992� �
DSolve[3 (y'[x])^3 - x^4 y'[x]+2 x^3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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35.23 problem 1056
35.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9371

Internal problem ID [4277]
Internal file name [OUTPUT/3770_Sunday_June_05_2022_10_50_03_AM_56370326/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1056.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

4y′3 + 4y′ = x

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
27x+ 3

√
81x2 + 192

) 1
3

6 − 2(
27x+ 3

√
81x2 + 192

) 1
3

(1)

y′ = −
(
27x+ 3

√
81x2 + 192

) 1
3

12 + 1(
27x+ 3

√
81x2 + 192

) 1
3
+

i
√
3
((

27x+3
√
81x2+192

) 1
3

6 + 2(
27x+3

√
81x2+192

) 1
3

)
2

(2)

y′ = −
(
27x+ 3

√
81x2 + 192

) 1
3

12 + 1(
27x+ 3

√
81x2 + 192

) 1
3
−

i
√
3
((

27x+3
√
81x2+192

) 1
3

6 + 2(
27x+3

√
81x2+192

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives

y =
∫ (

27x+ 3
√
81x2 + 192

) 2
3 − 12

6
(
27x+ 3

√
81x2 + 192

) 1
3

dx

=
∫ (

27x+ 3
√
81x2 + 192

) 2
3 − 12

6
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫ (

27x+ 3
√
81x2 + 192

) 2
3 − 12

6
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c1

Verification of solutions

y =
∫ (

27x+ 3
√
81x2 + 192

) 2
3 − 12

6
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3−

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3 + 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx

=
∫

i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3−

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3 + 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c2

Summary
The solution(s) found are the following

y =
∫

i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3−

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3 + 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c2

(1)
Verification of solutions

y =
∫

i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3−

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3 + 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c2

Verified OK.
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Solving equation (3)

Integrating both sides gives

y =
∫

−
i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3 +

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3− 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx

=
∫

−
i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3 +

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3− 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c3

Summary
The solution(s) found are the following

y =
∫

−
i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3 +

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3− 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c3

(1)
Verification of solutions

y =
∫

−
i
(
27x+ 3

√
81x2 + 192

) 2
3
√
3 +

(
27x+ 3

√
81x2 + 192

) 2
3 + 12i

√
3− 12

12
(
27x+ 3

√
81x2 + 192

) 1
3

dx+ c3

Verified OK.

35.23.1 Maple step by step solution

Let’s solve
4y′3 + 4y′ = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
4y′3 + 4y′

)
dx =

∫
xdx+ c1

• Cannot compute integral∫ (
4y′3 + 4y′

)
dx = x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 183� �
dsolve(4*diff(y(x),x)^3+4*diff(y(x),x) = x,y(x), singsol=all)� �

y(x) =

(∫ (
−1+i

√
3
)(

27x+3
√
81x2+192

) 2
3+12i

√
3+12(

27x+3
√
81x2+192

) 1
3

dx

)
12 + c1

y(x) = −

(∫ i
√
3
(
27x+3

√
81x2+192

) 2
3+12i

√
3+
(
27x+3

√
81x2+192

) 2
3−12(

27x+3
√
81x2+192

) 1
3

dx

)
12 + c1

y(x) =

(∫ (
27x+3

√
81x2+192

) 2
3−12(

27x+3
√
81x2+192

) 1
3

dx

)
6 + c1

9372



3 Solution by Mathematica
Time used: 3.014 (sec). Leaf size: 376� �
DSolve[4 (y'[x])^3 +4 y'[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
i
(√

3− i
) (

−27x2 + 3
√
81x2 + 192x− 16

)
2 3
√
3
(√

81x2 + 192− 9x
)4/3

+
(
1− i

√
3
) (

−27x2 + 3
√
81x2 + 192x+ 32

)
16 32/3

(√
81x2 + 192− 9x

)2/3 + c1

y(x) →
i
(√

3 + i
) (

−27x2 + 3
√
81x2 + 192x− 16

)
2 3
√
3
(√

81x2 + 192− 9x
)4/3

+
(
1 + i

√
3
) (

−27x2 + 3
√
81x2 + 192x+ 32

)
16 32/3

(√
81x2 + 192− 9x

)2/3 + c1

y(x) →
(√

81x2 + 192− 9x
)4/3

48 32/3 − 8
32/3

(√
81x2 + 192− 9x

)2/3
+ −27 32/3x2 + 9 6

√
3
√
27x2 + 64x− 16 32/3

3
(√

81x2 + 192− 9x
)4/3 + c1
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35.24 problem 1057
35.24.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9374

Internal problem ID [4278]
Internal file name [OUTPUT/3771_Sunday_June_05_2022_10_50_11_AM_89133414/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1057.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

8y′3 + 12y′2 − 27y = 27x

35.24.1 Solving as dAlembert ode

Let p = y′ the ode becomes

8p3 + 12p2 − 27y = 27x

Solving for y from the above results in

y = 8
27p

3 + 4
9p

2 − x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1

g = 8
27p

3 + 4
9p

2

Hence (2) becomes

p+ 1 =
(
8
9p

2 + 8
9p
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ 1 = 0

Solving for p from the above gives

p = −1

Substituting these in (1A) gives

y = 4
27 − x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x) + 1
8p(x)2

9 + 8p(x)
9

(3)

This ODE is now solved for p(x). Integrating both sides gives∫ 8p
9 dp = x+ c1

4p2
9 = x+ c1

Solving for p gives these solutions

p1 = −3
√
x+ c1
2

p2 =
3
√
x+ c1
2

Substituing the above solution for p in (2A) gives

y = −(x+ c1)
3
2 + c1

y = (x+ c1)
3
2 + c1
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Summary
The solution(s) found are the following

(1)y = 4
27 − x

(2)y = −(x+ c1)
3
2 + c1

(3)y = (x+ c1)
3
2 + c1

Verification of solutions

y = 4
27 − x

Verified OK.

y = −(x+ c1)
3
2 + c1

Verified OK.

y = (x+ c1)
3
2 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 43� �
dsolve(8*diff(y(x),x)^3+12*diff(y(x),x)^2 = 27*x+27*y(x),y(x), singsol=all)� �

y(x) = −x+ 4
27

y(x) = (c1 − x)
√
x− c1 − c1

y(x) = (x− c1)
3
2 − c1

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[8 (y'[x])^3 + 12 (y'[x])^2 ==27(x+y[x]),y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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35.25 problem 1058
35.25.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9378

Internal problem ID [4279]
Internal file name [OUTPUT/3772_Sunday_June_05_2022_10_50_34_AM_99997116/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1058.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

xy′
3 − yy′

2 = −a

35.25.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

x p3 − y p2 = −a

Solving for y from the above results in

y = x p3 + a

p2
(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ a

p2

= px+ a

p2
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = a

p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ a

c21

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = a
p2
, then the

above equation becomes

x+ g′(p) = x− 2a
p3

= 0
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Solving the above for p results in

p1 =
2 1

3 (x2a)
1
3

x

p2 = −2 1
3 (x2a)

1
3

2x + i
√
3 2 1

3 (x2a)
1
3

2x

p3 = −2 1
3 (x2a)

1
3

2x − i
√
3 2 1

3 (x2a)
1
3

2x

Substituting the above back in (1) results in

y1 =
3x2a2 1

3

2 (x2a)
2
3

y2 = − 3x2a2 1
3

(x2a)
2
3
(
1 + i

√
3
)

y3 =
3x2a2 1

3

(x2a)
2
3
(
−1 + i

√
3
)

Summary
The solution(s) found are the following

(1)y = c1x+ a

c21

(2)y = 3x2a2 1
3

2 (x2a)
2
3

(3)y = − 3x2a2 1
3

(x2a)
2
3
(
1 + i

√
3
)

(4)y = 3x2a2 1
3

(x2a)
2
3
(
−1 + i

√
3
)

9380



Verification of solutions

y = c1x+ a

c21

Verified OK.

y = 3x2a2 1
3

2 (x2a)
2
3

Verified OK.

y = − 3x2a2 1
3

(x2a)
2
3
(
1 + i

√
3
)

Verified OK.

y = 3x2a2 1
3

(x2a)
2
3
(
−1 + i

√
3
)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 76� �
dsolve(x*diff(y(x),x)^3-y(x)*diff(y(x),x)^2+a = 0,y(x), singsol=all)� �

y(x) = 3 2 1
3 (a x2)

1
3

2

y(x) = −
3 2 1

3 (a x2)
1
3
(
1 + i

√
3
)

4

y(x) =
3 2 1

3 (a x2)
1
3
(
−1 + i

√
3
)

4
y(x) = c31x+ a

c21

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 89� �
DSolve[x (y'[x])^3 - y[x] (y'[x])^2 +a==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a

c12
+ c1x

y(x) → 3 3
√
ax2/3

22/3

y(x) → −3 3
√
−1 3

√
ax2/3

22/3

y(x) → 3(−1)2/3 3
√
ax2/3

22/3
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35.26 problem 1060
35.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9385

Internal problem ID [4280]
Internal file name [OUTPUT/3773_Sunday_June_05_2022_10_50_52_AM_50794920/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1060.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

xy′
3 −

(
x+ x2 + y

)
y′

2 +
(
x2 + y + yx

)
y′ − yx = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 (1)
y′ = x (2)

y′ = y

x
(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

1 dx

= x+ c1

Summary
The solution(s) found are the following

(1)y = x+ c1
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Verification of solutions

y = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

x dx

= x2

2 + c2

Summary
The solution(s) found are the following

(1)y = x2

2 + c2

Verification of solutions

y = x2

2 + c2

Verified OK.
Solving equation (3)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x

Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c3

y = eln(x)+c3

= c3x

Summary
The solution(s) found are the following

(1)y = c3x
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Verification of solutions
y = c3x

Verified OK.

35.26.1 Maple step by step solution

Let’s solve
xy′3 − (x+ x2 + y) y′2 + (x2 + y + yx) y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
xy′3 − (x+ x2 + y) y′2 + (x2 + y + yx) y′ − yx

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
xy′3 − (x+ x2 + y) y′2 + (x2 + y + yx) y′ − yx

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x*diff(y(x),x)^3-(x+x^2+y(x))*diff(y(x),x)^2+(x^2+y(x)+x*y(x))*diff(y(x),x)-x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1x
y(x) = x+ c1

y(x) = x2

2 + c1

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 36� �
DSolve[x (y'[x])^3 - (x+x^2+y[x])(y'[x])^2 + (x^2+y[x]+x y[x]) y'[x]-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
y(x) → x+ c1

y(x) → x2

2 + c1

y(x) → 0
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35.27 problem 1061
Internal problem ID [4281]
Internal file name [OUTPUT/3774_Sunday_June_05_2022_10_51_02_AM_35366318/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1061.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

xy′
3 − 2y′2y = −4x2

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3

3x + 4y2

3x
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3
+ 2y

3x

(1)

y′ = −
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3

6x − 2y2

3x
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3
+ 2y

3x +
i
√
3
((

−54x4+8y3+6
√

81x4−24y3 x2
) 1

3

3x − 4y2

3x
(
−54x4+8y3+6

√
81x4−24y3 x2

) 1
3

)
2

(2)

y′ = −
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3

6x − 2y2

3x
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3
+ 2y

3x −

i
√
3
((

−54x4+8y3+6
√

81x4−24y3 x2
) 1

3

3x − 4y2

3x
(
−54x4+8y3+6

√
81x4−24y3 x2

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 2

3 + 2y
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3 + 4y2

3x
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

9388



Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3
,
(
−54x4

+ 8y3 + 6
√

81x4 − 24y3 x2
) 2

3
,
√

81x4 − 24y3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3 = v3,

(
−54x4

+ 8y3 + 6
√

81x4 − 24y3 x2
) 2

3 = v4,
√
81x4 − 24y3 = v5

}

The above PDE (6E) now becomes

(7E)

52488v101 a3 + 7776v71v22a2 − 5832v5v81a3 − 17496v61v32a3
− 2916v61v3v22a3 − 11664v81v2b2 + 1458v81v3b2 − 5832v71v22b3
+ 13608v61v22a1 + 2916v61v3v2a1 − 1944v4v71a2 − 864v5v51v22a2
− 1152v31v52a2 − 2430v4v61v2a3 + 1080v5v41v32a3
+ 324v41v5v3v22a3 + 1728v21v62a3 + 864v21v3v52a3 − 11664v71v2b1
− 2916v71v3b1 + 1296v5v61v2b2 − 162v61v5v3b2 + 2592v41v42b2
− 432v41v3v32b2 + 1458v71v4b3 + 648v5v51v22b3 + 864v31v52b3
− 486v4v61a1 − 1512v5v41v22a1 − 324v41v5v3v2a1 − 2880v21v52a1
− 864v21v3v42a1 + 216v5v4v51a2 + 288v4v31v32a2 + 270v5v4v41v2a3
+ 432v4v21v42a3 − 96v5v62a3 − 48v5v3v52a3 + 1296v5v51v2b1
+ 324v51v5v3b1 + 2592v31v42b1 + 864v31v3v32b1 + 216v4v41v22b2
− 96v5v21v42b2 + 24v21v5v3v32b2 − 162v51v5v4b3 − 216v4v31v32b3
+ 54v5v4v41a1 − 144v4v21v32a1 + 96v5v52a1 + 48v5v3v42a1
− 24v5v4v42a3 + 216v4v31v22b1 − 96v5v1v42b1 − 48v1v5v3v32b1
− 24v5v4v21v22b2 + 24v5v4v32a1 − 24v5v4v1v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

52488v101 a3 − 2916v61v3v22a3 + (−864a2 + 648b3) v51v22v5
+ (216a2 − 162b3) v51v4v5 + (288a2 − 216b3) v31v32v4
+ 324v51v5v3b1 − 48v5v3v52a3 + 24v5v4v32a1 + 48v5v3v42a1
+ 864v31v3v32b1 − 864v21v3v42a1 − 162v61v5v3b2 + 1296v5v61v2b2
+ 432v4v21v42a3 + 1296v5v51v2b1 − 144v4v21v32a1 − 96v5v1v42b1
− 2430v4v61v2a3 + 1080v5v41v32a3 + 216v4v41v22b2 + 54v5v4v41a1
− 24v5v4v42a3 − 1512v5v41v22a1 − 96v5v21v42b2 + 216v4v31v22b1
+ (7776a2 − 5832b3) v71v22 + (−1944a2 + 1458b3) v71v4
+ (−1152a2 + 864b3) v31v52 + 2916v61v3v2a1 − 432v41v3v32b2
+ 864v21v3v52a3 + 1458v81v3b2 − 2916v71v3b1 − 11664v81v2b2
− 11664v71v2b1 − 17496v61v32a3 + 13608v61v22a1 + 2592v41v42b2
+ 2592v31v42b1 − 486v4v61a1 + 1728v21v62a3 − 2880v21v52a1
− 5832v5v81a3 − 96v5v62a3 + 96v5v52a1 + 270v5v4v41v2a3
− 24v5v4v21v22b2 − 24v5v4v1v22b1 + 324v41v5v3v22a3
− 324v41v5v3v2a1 + 24v21v5v3v32b2 − 48v1v5v3v32b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−2880a1 = 0
−1512a1 = 0
−864a1 = 0
−486a1 = 0
−324a1 = 0
−144a1 = 0

24a1 = 0
48a1 = 0
54a1 = 0
96a1 = 0

2916a1 = 0
13608a1 = 0

−17496a3 = 0
−5832a3 = 0
−2916a3 = 0
−2430a3 = 0
−96a3 = 0
−48a3 = 0
−24a3 = 0
270a3 = 0
324a3 = 0
432a3 = 0
864a3 = 0
1080a3 = 0
1728a3 = 0
52488a3 = 0

−11664b1 = 0
−2916b1 = 0
−96b1 = 0
−48b1 = 0
−24b1 = 0
216b1 = 0
324b1 = 0
864b1 = 0
1296b1 = 0
2592b1 = 0

−11664b2 = 0
−432b2 = 0
−162b2 = 0
−96b2 = 0
−24b2 = 0
24b2 = 0
216b2 = 0
1296b2 = 0
1458b2 = 0
2592b2 = 0

−1944a2 + 1458b3 = 0
−1152a2 + 864b3 = 0
−864a2 + 648b3 = 0
216a2 − 162b3 = 0
288a2 − 216b3 = 0

7776a2 − 5832b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
3b3
4

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
4

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
3x
4

= 4y
3x

This is easily solved to give

y = c1x
4
3

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
4
3
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And S is found from

dS = dx

ξ

= dx
3x
4

Integrating gives

S =
∫

dx

T

= 4 ln (x)
3

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 2

3 + 2y
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3 + 4y2

3x
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3

Evaluating all the partial derivatives gives

Rx = − 4y
3x 7

3

Ry =
1
x

4
3

Sx = 4
3x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

4x 4
3
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 2
3 − 2y

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3 + 4y2

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

42 1
3
(
−27 + 4R3 + 3i

√
3
√
8R3 − 27

) 1
3(

−27 + 4R3 + 3i
√
3
√
8R3 − 27

) 2
3 2 2

3 − 2
(
−27 + 4R3 + 3i

√
3
√
8R3 − 27

) 1
3 2 1

3R + 4R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 4

(
−54 + 8R3 + 6i

√
24R3 − 81

) 1
3

4 1
3

((
−27 + 4R3 + 3i

√
24R3 − 81

)2) 1
3 − 2R

(
−54 + 8R3 + 6i

√
24R3 − 81

) 1
3 + 4R2

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

4 ln (x)
3 =

∫ y

x
4
3 4

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3

4 1
3

((
−27 + 4_a3 + 3i

√
24_a3 − 81

)2) 1
3 − 2_a

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3 + 4_a2

d_a+ c1

Which simplifies to

4 ln (x)
3 − 4

∫ y

x
4
3

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3

4_a2 − 2_a
(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3 +

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 2
3
d_a

− c1 = 0

Summary
The solution(s) found are the following

(1)4 ln (x)
3

−4

∫ y

x
4
3

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3

4_a2 − 2_a
(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3 +

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 2
3
d_a


− c1 = 0
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Verification of solutions

4 ln (x)
3

−4

∫ y

x
4
3

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3

4_a2 − 2_a
(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 1
3 +

(
−54 + 8_a3 + 6i

√
24_a3 − 81

) 2
3
d_a


− c1 = 0

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
4iy2

√
3− i

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 2

3
√
3 + 4y2 − 4y

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3 +
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 2

3

6x
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3
,
(
−54x4

+ 8y3 + 6
√

81x4 − 24y3 x2
) 2

3
,
√

81x4 − 24y3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3 = v3,

(
−54x4

+ 8y3 + 6
√

81x4 − 24y3 x2
) 2

3 = v4,
√
81x4 − 24y3 = v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−3456a1 = 0
−1296a1 = 0

192a1 = 0
11664a1 = 0

−11664a3 = 0
−192a3 = 0
1296a3 = 0
3456a3 = 0

−11664b1 = 0
−192b1 = 0
1296b1 = 0
3456b1 = 0

−1728b2 = 0
−648b2 = 0

96b2 = 0
5832b2 = 0

−104976i
√
3 a3 − 104976a3 = 0

−27216i
√
3 a1 − 27216a1 = 0

−5184i
√
3 b1 − 5184b1 = 0

−5184i
√
3 b2 − 5184b2 = 0

−4860i
√
3 a3 + 4860a3 = 0

−3456i
√
3 a3 − 3456a3 = 0

−2592i
√
3 b1 − 2592b1 = 0

−2592i
√
3 b2 − 2592b2 = 0

−2160i
√
3 a3 − 2160a3 = 0

−972i
√
3 a1 + 972a1 = 0

−288i
√
3 a1 + 288a1 = 0

−192i
√
3 a1 − 192a1 = 0

−48i
√
3 a3 + 48a3 = 0

−48i
√
3 b1 + 48b1 = 0

−48i
√
3 b2 + 48b2 = 0

48i
√
3 a1 − 48a1 = 0

108i
√
3 a1 − 108a1 = 0

192i
√
3 a3 + 192a3 = 0

192i
√
3 b1 + 192b1 = 0

192i
√
3 b2 + 192b2 = 0

432i
√
3 b1 − 432b1 = 0

432i
√
3 b2 − 432b2 = 0

540i
√
3 a3 − 540a3 = 0

864i
√
3 a3 − 864a3 = 0

3024i
√
3 a1 + 3024a1 = 0

5760i
√
3 a1 + 5760a1 = 0

11664i
√
3 a3 + 11664a3 = 0

23328i
√
3 b1 + 23328b1 = 0

23328i
√
3 b2 + 23328b2 = 0

34992i
√
3 a3 + 34992a3 = 0

−15552i
√
3 a2 + 11664i

√
3 b3 − 15552a2 + 11664b3 = 0

−3888i
√
3 a2 + 2916i

√
3 b3 + 3888a2 − 2916b3 = 0

432i
√
3 a2 − 324i

√
3 b3 − 432a2 + 324b3 = 0

576i
√
3 a2 − 432i

√
3 b3 − 576a2 + 432b3 = 0

1728i
√
3 a2 − 1296i

√
3 b3 + 1728a2 − 1296b3 = 0

2304i
√
3 a2 − 1728i

√
3 b3 + 2304a2 − 1728b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
3b3
4

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
4

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ =
4iy2

√
3 + 4y

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 1

3 − 4y2 − i
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 2

3
√
3−

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2) 2

3

6x
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3
,
(
−54x4

+ 8y3 + 6
√

81x4 − 24y3 x2
) 2

3
,
√

81x4 − 24y3
}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−54x4 + 8y3 + 6

√
81x4 − 24y3 x2

) 1
3 = v3,

(
−54x4

+ 8y3 + 6
√

81x4 − 24y3 x2
) 2

3 = v4,
√
81x4 − 24y3 = v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−3456a1 = 0
−1296a1 = 0

192a1 = 0
11664a1 = 0

−11664a3 = 0
−192a3 = 0
1296a3 = 0
3456a3 = 0

−11664b1 = 0
−192b1 = 0
1296b1 = 0
3456b1 = 0

−1728b2 = 0
−648b2 = 0

96b2 = 0
5832b2 = 0

−34992i
√
3 a3 + 34992a3 = 0

−23328i
√
3 b1 + 23328b1 = 0

−23328i
√
3 b2 + 23328b2 = 0

−11664i
√
3 a3 + 11664a3 = 0

−5760i
√
3 a1 + 5760a1 = 0

−3024i
√
3 a1 + 3024a1 = 0

−864i
√
3 a3 − 864a3 = 0

−540i
√
3 a3 − 540a3 = 0

−432i
√
3 b1 − 432b1 = 0

−432i
√
3 b2 − 432b2 = 0

−192i
√
3 a3 + 192a3 = 0

−192i
√
3 b1 + 192b1 = 0

−192i
√
3 b2 + 192b2 = 0

−108i
√
3 a1 − 108a1 = 0

−48i
√
3 a1 − 48a1 = 0

48i
√
3 a3 + 48a3 = 0

48i
√
3 b1 + 48b1 = 0

48i
√
3 b2 + 48b2 = 0

192i
√
3 a1 − 192a1 = 0

288i
√
3 a1 + 288a1 = 0

972i
√
3 a1 + 972a1 = 0

2160i
√
3 a3 − 2160a3 = 0

2592i
√
3 b1 − 2592b1 = 0

2592i
√
3 b2 − 2592b2 = 0

3456i
√
3 a3 − 3456a3 = 0

4860i
√
3 a3 + 4860a3 = 0

5184i
√
3 b1 − 5184b1 = 0

5184i
√
3 b2 − 5184b2 = 0

27216i
√
3 a1 − 27216a1 = 0

104976i
√
3 a3 − 104976a3 = 0

−2304i
√
3 a2 + 1728i

√
3 b3 + 2304a2 − 1728b3 = 0

−1728i
√
3 a2 + 1296i

√
3 b3 + 1728a2 − 1296b3 = 0

−576i
√
3 a2 + 432i

√
3 b3 − 576a2 + 432b3 = 0

−432i
√
3 a2 + 324i

√
3 b3 − 432a2 + 324b3 = 0

3888i
√
3 a2 − 2916i

√
3 b3 + 3888a2 − 2916b3 = 0

15552i
√
3 a2 − 11664i

√
3 b3 − 15552a2 + 11664b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
3b3
4

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 3x
4

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = (-3*x^5-3*(x^4+32*y(x))^(1/2)*x^3-32*x*y(x))/(16*x^2+8*(x^4+32*y(x))^(1/2)), y(

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-> Calling odsolve with the ODE`, diff(y(x), x) = (-3*x^5+3*(x^4+32*y(x))^(1/2)*x^3-32*x*y(x))/(16*x^2-8*(x^4+32*y(x))^(1/2)), y(
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 800� �
dsolve(x*diff(y(x),x)^3-2*y(x)*diff(y(x),x)^2+4*x^2 = 0,y(x), singsol=all)� �
y(x) = 3x 4

3

2

y(x) = −
3x 4

3
(
1 + i

√
3
)

4

y(x) =
3x 4

3
(
−1 + i

√
3
)

4
y(x) = c31 + 128x2

32c1
y(x) = c31 − 128x2

32c1

y(x) =
c1
(
−1728x2 + c31 + 24

√
6
√

−x2 (c31 − 864x2)
) 1

3

96
+ c31

96
(
−1728x2 + c31 + 24

√
6
√

−x2 (c31 − 864x2)
) 1

3
+ c21

96

y(x) =
c1
(
c31 + 24

√
6
√

x2 (c31 + 864x2) + 1728x2
) 1

3

96
+ c31

96
(
c31 + 24

√
6
√
x2 (c31 + 864x2) + 1728x2

) 1
3
+ c21

96

y(x)

=

(
c1 −

(
−1728x2 + c31 + 24

√
6
√

−c31x
2 + 864x4

) 1
3
)
c1

(
i

((
−1728x2 + c31 + 24

√
6
√

−c31x
2 + 864x4

) 1
3 + c1

)√
3− c1 +

(
−1728x2 + c31 + 24

√
6
√

−c31x
2 + 864x4

) 1
3
)

192
(
−1728x2 + c31 + 24

√
6
√

−c31x
2 + 864x4

) 1
3

y(x) =

(
−1 + i

√
3
)
c1
(
−1728x2 + c31 + 24

√
3
√
2
√
−c31x

2 + 864x4
) 1

3

192

−

(
i
√
3 c1 + c1 − 2

(
−1728x2 + c31 + 24

√
3
√
2
√

−c31x
2 + 864x4

) 1
3
)
c21

192
(
−1728x2 + c31 + 24

√
3
√
2
√

−c31x
2 + 864x4

) 1
3

y(x)

=

(
c1 −

(
c31 + 24

√
6
√

c31x
2 + 864x4 + 1728x2

) 1
3
)
c1

(
i

((
c31 + 24

√
6
√

c31x
2 + 864x4 + 1728x2

) 1
3 + c1

)√
3− c1 +

(
c31 + 24

√
6
√

c31x
2 + 864x4 + 1728x2

) 1
3
)

192
(
c31 + 24

√
6
√

c31x
2 + 864x4 + 1728x2

) 1
3

y(x) =

(
−1 + i

√
3
)
c1
(
c31 + 24

√
3
√
2
√

c31x
2 + 864x4 + 1728x2

) 1
3

192

−

(
i
√
3 c1 + c1 − 2

(
c31 + 24

√
3
√
2
√

c31x
2 + 864x4 + 1728x2

) 1
3
)
c21

192
(
c31 + 24

√
3
√
2
√

c31x
2 + 864x4 + 1728x2

) 1
3
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3 Solution by Mathematica
Time used: 169.538 (sec). Leaf size: 15120� �
DSolve[x (y'[x])^3 - 2 y[x](y'[x])^2 + 4 x^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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35.28 problem 1062
35.28.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9406

Internal problem ID [4282]
Internal file name [OUTPUT/3775_Sunday_June_05_2022_10_51_13_AM_27026136/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1062.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

2xy′3 − 3yy′2 = x

35.28.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2x p3 − 3y p2 = x

Solving for y from the above results in

y = x(2p3 − 1)
3p2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p3 − 1
3p2

g = 0

Hence (2) becomes

p− 2p3 − 1
3p2 = x

(
2− 2(2p3 − 1)

3p3

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 2p3 − 1
3p2 = 0

Solving for p from the above gives

p = −1

p = 1
2 − i

√
3

2

p = 1
2 + i

√
3

2

Substituting these in (1A) gives

y = −x

y = − 4x
−2i

√
3− 2

y = − 4x
−2 + 2i

√
3

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 2p(x)3−1

3p(x)2

x

(
2−

2
(
2p(x)3−1

)
3p(x)3

) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)
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Where here

p(x) = − 1
2x

q(x) = 0

Hence the ode is

p′(x)− p(x)
2x = 0

The integrating factor µ is

µ = e
∫
− 1

2xdx

= 1√
x

The ode becomes
d
dxµp = 0

d
dx

(
p√
x

)
= 0

Integrating gives
p√
x
= c1

Dividing both sides by the integrating factor µ = 1√
x
results in

p(x) = c1
√
x

Substituing the above solution for p in (2A) gives

y = 2c31x
3
2 − 1

3c21

Summary
The solution(s) found are the following

(1)y = −x

(2)y = − 4x
−2i

√
3− 2

(3)y = − 4x
−2 + 2i

√
3

(4)y = 2c31x
3
2 − 1

3c21
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Verification of solutions

y = −x

Verified OK.

y = − 4x
−2i

√
3− 2

Verified OK.

y = − 4x
−2 + 2i

√
3

Verified OK.

y = 2c31x
3
2 − 1

3c21

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

9409



3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 79� �
dsolve(2*x*diff(y(x),x)^3-3*y(x)*diff(y(x),x)^2-x = 0,y(x), singsol=all)� �

y(x) = −
(
−1 + i

√
3
)
x

2

y(x) =
(
1 + i

√
3
)
x

2
y(x) = −x

y(x) =
2x√c1x− c21

3c1
y(x) =

−c21 − 2x√c1x

3c1

3 Solution by Mathematica
Time used: 28.499 (sec). Leaf size: 4317� �
DSolve[2 x (y'[x])^3 - 3 y[x] (y'[x])^2 -x==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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35.29 problem 1063
35.29.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9411

Internal problem ID [4283]
Internal file name [OUTPUT/3776_Sunday_June_05_2022_10_51_33_AM_54343832/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1063.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

4xy′3 − 6yy′2 + 3y = x

35.29.1 Solving as dAlembert ode

Let p = y′ the ode becomes

4x p3 − 6y p2 + 3y = x

Solving for y from the above results in

y = x(4p3 − 1)
6p2 − 3 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 4p3 − 1
6p2 − 3

g = 0

Hence (2) becomes

p− 4p3 − 1
6p2 − 3 = x

(
12p2

6p2 − 3 − 12(4p3 − 1) p
(6p2 − 3)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 4p3 − 1
6p2 − 3 = 0

Solving for p from the above gives

p = 1

p =
√
3
2 − 1

2

p = −1
2 −

√
3
2

Substituting these in (1A) gives

y = x

y = −
√
3x− 2x

1 +
√
3

y = −
√
3x+ 2x√
3− 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 4p(x)3−1

6p(x)2−3

x

(
12p(x)2

6p(x)2−3 −
12
(
4p(x)3−1

)
p(x)(

6p(x)2−3
)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

12p2
6p2−3 −

12
(
4p3−1

)
p

(6p2−3)2

)
p− 4p3−1

6p2−3

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 4p
2p2 − 1

q(p) = 0

Hence the ode is

d

dp
x(p)− 4px(p)

2p2 − 1 = 0

The integrating factor µ is

µ = e
∫
− 4p

2p2−1dp

= 1
2p2 − 1

The ode becomes

d
dpµx = 0

d
dp

(
x

2p2 − 1

)
= 0

Integrating gives
x

2p2 − 1 = c3

Dividing both sides by the integrating factor µ = 1
2p2−1 results in

x(p) = c3
(
2p2 − 1

)
Now we need to eliminate p between the above and (1A). One way to do this is by
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solving (1) for p. This results in

p =
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3

2x + y2

2x
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3
+ y

2x

p = −
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3

4x − y2

4x
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3
+ y

2x +
i
√
3
((

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2x − y2

2x
(
y3−3x2y+x3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

) 1
3

)
2

p = −
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3

4x − y2

4x
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3
+ y

2x −

i
√
3
((

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2x − y2

2x
(
y3−3x2y+x3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

) 1
3

)
2

Substituting the above in the solution for x found above gives

x = c3

−1

+

((
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3 + y2(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3
+ y

)2

2x2


x

=

(
(−2x2 + 3y2)

(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 −

(
x3−3x2y+3y3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

)(
1+i

√
3
)(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2 + y
(
−1 + i

√
3
) (

x3 − 3x2y + 3y3
2 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

))
c3

2
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 x2

x =

−

(
(2x2 − 3y2)

(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 −

(
x3−3x2y+3y3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

)(
−1+i

√
3
)(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2 + y
(
1 + i

√
3
) (

x3 − 3x2y + 3y3
2 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

))
c3

2
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 x2

9414



Summary
The solution(s) found are the following

(1)y = x

(2)y = −
√
3x− 2x

1 +
√
3

(3)y = −
√
3x+ 2x√
3− 1

(4)x = c3

−1

+

((
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3 + y2(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3
+ y

)2

2x2


(5)x

=

(
(−2x2 + 3y2)

(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 −

(
x3−3x2y+3y3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

)(
1+i

√
3
)(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2 + y
(
−1 + i

√
3
) (

x3 − 3x2y + 3y3
2 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

))
c3

2
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 x2

(6)x =

−

(
(2x2 − 3y2)

(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 −

(
x3−3x2y+3y3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

)(
−1+i

√
3
)(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2 + y
(
1 + i

√
3
) (

x3 − 3x2y + 3y3
2 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

))
c3

2
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 x2
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Verification of solutions
y = x

Verified OK.

y = −
√
3x− 2x

1 +
√
3

Verified OK.

y = −
√
3x+ 2x√
3− 1

Verified OK.

x = c3

−1

+

((
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 1
3 + y2(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3
+ y

)2

2x2


Verified OK.
x

=

(
(−2x2 + 3y2)

(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 −

(
x3−3x2y+3y3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

)(
1+i

√
3
)(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2 + y
(
−1 + i

√
3
) (

x3 − 3x2y + 3y3
2 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

))
c3

2
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 x2

Verified OK.
x =

−

(
(2x2 − 3y2)

(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 −

(
x3−3x2y+3y3+

√
−6y4+2xy3+9y2x2−6yx3+x4 x

)(
−1+i

√
3
)(

y3−3x2y+x3+
√

−6y4+2xy3+9y2x2−6yx3+x4 x
) 1

3

2 + y
(
1 + i

√
3
) (

x3 − 3x2y + 3y3
2 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

))
c3

2
(
y3 − 3x2y + x3 +

√
−6y4 + 2xy3 + 9y2x2 − 6yx3 + x4 x

) 2
3 x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 84� �
dsolve(4*x*diff(y(x),x)^3-6*y(x)*diff(y(x),x)^2-x+3*y(x) = 0,y(x), singsol=all)� �

y(x) = −
(
1 +

√
3
)
x

2

y(x) =
(√

3− 1
)
x

2
y(x) = x

y(x) = −(x+ c1)
√
2
√

c1 (x+ c1)− c21
3c1

y(x) = (x+ c1)
√
2
√

c1 (x+ c1)− c21
3c1

3 Solution by Mathematica
Time used: 1.317 (sec). Leaf size: 79� �
DSolve[4 x (y'[x])^3 -6 y[x] (y'[x])^2-x +3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2
√

c1(x+ c1)3 + c1
2

3c1

y(x) → −
c1

2 −
√
2
√

c1(x+ c1)3
3c1

y(x) → Indeterminate
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36 Various 36
36.1 problem 1064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9419
36.2 problem 1065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9427
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36.29problem 1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9715
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36.1 problem 1064
36.1.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9419

Internal problem ID [4284]
Internal file name [OUTPUT/3777_Sunday_June_05_2022_10_51_54_AM_53054742/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1064.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

8xy′3 − 12yy′2 + 9y = 0

36.1.1 Solving as dAlembert ode

Let p = y′ the ode becomes

8x p3 − 12y p2 + 9y = 0

Solving for y from the above results in

y = 8x p3
3 (4p2 − 3) (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 8p3
12p2 − 9

g = 0

Hence (2) becomes

p− 8p3
12p2 − 9 = x

(
24p2

12p2 − 9 − 192p4

(12p2 − 9)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 8p3
12p2 − 9 = 0

Solving for p from the above gives

p = 0

p = 3
2

p = −3
2

Substituting these in (1A) gives

y = 0

y = −3x
2

y = 3x
2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 8p(x)3

12p(x)2−9

x

(
24p(x)2

12p(x)2−9 −
192p(x)4(

12p(x)2−9
)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

24p2
12p2−9 −

192p4
(12p2−9)2

)
p− 8p3

12p2−9

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 8p
4p2 − 3

q(p) = 0

Hence the ode is

d

dp
x(p)− 8px(p)

4p2 − 3 = 0

The integrating factor µ is

µ = e
∫
− 8p

4p2−3dp

= 1
4p2 − 3

The ode becomes

d
dpµx = 0

d
dp

(
x

4p2 − 3

)
= 0

Integrating gives
x

4p2 − 3 = c3

Dividing both sides by the integrating factor µ = 1
4p2−3 results in

x(p) = c3
(
4p2 − 3

)
Now we need to eliminate p between the above and (1A). One way to do this is by
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solving (1) for p. This results in

p =
4 1

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3

4x + y24 2
3

4x
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 1
3
+ y

2x

p = −
4 1

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3

8x − y24 2
3

8x
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 1
3
+ y

2x +
i
√
3
(

4
1
3
(
y
(
2y2+3

√
−4y2+9x2 x−9x2

)) 1
3

2x − y24
2
3

2x
(
y
(
2y2+3

√
−4y2+9x2 x−9x2

)) 1
3

)
4

p = −
4 1

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3

8x − y24 2
3

8x
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 1
3
+ y

2x −

i
√
3
(

4
1
3
(
y
(
2y2+3

√
−4y2+9x2 x−9x2

)) 1
3

2x − y24
2
3

2x
(
y
(
2y2+3

√
−4y2+9x2 x−9x2

)) 1
3

)
4

Substituting the above in the solution for x found above gives

x

= c3


(
2 2

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

3 + 2y22 1
3 + 2y

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

4x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3

− 3



x = c3

−3

+

(
−i
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3
√
3 + 2i2 1

3
√
3 y2 + 2 2

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

3 + 2y22 1
3 − 4y

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

16x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3


x =

−c3


(
−
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3
√
3 + 2 2 1

3
√
3 y2 + i

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3 + 2iy22 1

3 − 4iy
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

16x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3

+ 3
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Summary
The solution(s) found are the following

(1)y = 0

(2)y = −3x
2

(3)y = 3x
2

(4)x

= c3


(
2 2

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

3 + 2y22 1
3 + 2y

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

4x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3

− 3


(5)x = c3

−3

+

(
−i
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3
√
3 + 2i2 1

3
√
3 y2 + 2 2

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

3 + 2y22 1
3 − 4y

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

16x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3


(6)x =

−c3


(
−
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3
√
3 + 2 2 1

3
√
3 y2 + i

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3 + 2iy22 1

3 − 4iy
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

16x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3

+ 3
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Verification of solutions

y = 0

Verified OK.

y = −3x
2

Verified OK.

y = 3x
2

Verified OK.
x

= c3


(
2 2

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

3 + 2y22 1
3 + 2y

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

4x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3

− 3


Verified OK.

x = c3

−3

+

(
−i
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3
√
3 + 2i2 1

3
√
3 y2 + 2 2

3
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

3 + 2y22 1
3 − 4y

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

16x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3


Verified OK.
x =

−c3


(
−
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3
√
3 + 2 2 1

3
√
3 y2 + i

(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 2

32 2
3 + 2iy22 1

3 − 4iy
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2)) 1

3
)2

16x2
(
y
(
2y2 + 3

√
−4y2 + 9x2 x− 9x2

)) 2
3

+ 3


Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 61� �
dsolve(8*x*diff(y(x),x)^3-12*y(x)*diff(y(x),x)^2+9*y(x) = 0,y(x), singsol=all)� �

y(x) = −3x
2

y(x) = 3x
2

y(x) = 0

y(x) = −
(3c1 + x)

√
c1 (3c1 + x)

3c1

y(x) = (3c1 + x)
√

c1 (3c1 + x)
3c1
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3 Solution by Mathematica
Time used: 0.453 (sec). Leaf size: 77� �
DSolve[8 x (y'[x])^3 -12 y[x] (y'[x])^2 + 9 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −(x+ 3c1)3/2
3√c1

y(x) → (x+ 3c1)3/2
3√c1

y(x) → 0
y(x) → Indeterminate

y(x) → −3x
2

y(x) → 3x
2
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36.2 problem 1065
36.2.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9427

Internal problem ID [4285]
Internal file name [OUTPUT/3778_Sunday_June_05_2022_10_53_03_AM_11700470/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1065.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

x2y′
3 − 2xyy′2 + y2y′ = −1

36.2.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

x2p3 − 2xy p2 + y2p = −1

Solving for y from the above results in

y = px
√
−p− 1√
−p

(1A)

y = px
√
−p+ 1√
−p

(2A)

Each of the above ode’s is a Clairaut ode which is now solved. Solving ode 1A We start
by replacing y′ by p which gives

y = px− 1√
−p

= px− 1√
−p
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = − 1√
−p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− 1√
−c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = − 1√
−p

, then the
above equation becomes

x+ g′(p) = x− 1
2 (−p)

3
2

= 0
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Solving the above for p results in

p1 = −4 2
3 (x2)

2
3

4x2

p2 = −

(
−4 1

3 (x2)
1
3

4x + i
√
3 4 1

3 (x2)
1
3

4x

)2

p3 = −

(
−4 1

3 (x2)
1
3

4x − i
√
3 4 1

3 (x2)
1
3

4x

)2

Substituting the above back in (1) results in

y1 = −

 (
x2) 23

√(
x2
) 2
3

x2

2 + x

 2 1
3

√
(x2)

2
3

x2 x

y2 =
(
1 + i

√
3
)
2 1

3 (x2)
2
3

√
−

(x2)
2
3
(
1+i

√
3
)

x2 − 4 2 5
6x

4

√
−

(x2)
2
3
(
1+i

√
3
)

x2 x

y3 = −

(
−1 + i

√
3
)
2 1

3 (x2)
2
3

√
(x2)

2
3
(
−1+i

√
3
)

x2 + 42 5
6x

4

√
(x2)

2
3
(
−1+i

√
3
)

x2 x

Solving ode 2A We start by replacing y′ by p which gives

y = px+ 1√
−p

= px+ 1√
−p

Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)
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Then we see that

g = 1√
−p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c2x+ 1√
−c2

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 1√
−p

, then the
above equation becomes

x+ g′(p) = x+ 1
2 (−p)

3
2

= 0

Solving the above for p results in

p1 = −(−4x2)
2
3

4x2

p2 = −

(
−(−4x2)

1
3

4x − i
√
3 (−4x2)

1
3

4x

)2

p3 = −

(
−(−4x2)

1
3

4x + i
√
3 (−4x2)

1
3

4x

)2
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Substituting the above back in (1) results in

y1 = −
2 1

3

(
(−x2)

2
3

√
(−x2)

2
3

x2 − 2x
)

2x
√

(−x2)
2
3

x2

y2 = −
2 5

6

((
i
√
6−

√
2
)
(−x2)

2
3

√
(−x2)

2
3
(
−1+i

√
3
)

x2 − 8x
)

8

√
(−x2)

2
3
(
−1+i

√
3
)

x2 x

y3 =

(
(−x2)

2
3
(
i
√
6 +

√
2
)√

−
(−x2)

2
3
(
1+i

√
3
)

x2 + 8x
)
2 5

6

8

√
−

(−x2)
2
3
(
1+i

√
3
)

x2 x
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Summary
The solution(s) found are the following

(1)y = c1x− 1√
−c1

(2)y = −

 (
x2) 23

√(
x2
) 2
3

x2

2 + x

 2 1
3

√
(x2)

2
3

x2 x

(3)y =
(
1 + i

√
3
)
2 1

3 (x2)
2
3

√
−

(x2)
2
3
(
1+i

√
3
)

x2 − 4 2 5
6x

4

√
−

(x2)
2
3
(
1+i

√
3
)

x2 x

(4)y = −

(
−1 + i

√
3
)
2 1

3 (x2)
2
3

√
(x2)

2
3
(
−1+i

√
3
)

x2 + 42 5
6x

4

√
(x2)

2
3
(
−1+i

√
3
)

x2 x

(5)y = c2x+ 1√
−c2

(6)y = −
2 1

3

(
(−x2)

2
3

√
(−x2)

2
3

x2 − 2x
)

2x
√

(−x2)
2
3

x2

(7)y = −
2 5

6

((
i
√
6−

√
2
)
(−x2)

2
3

√
(−x2)

2
3
(
−1+i

√
3
)

x2 − 8x
)

8

√
(−x2)

2
3
(
−1+i

√
3
)

x2 x

(8)y =

(
(−x2)

2
3
(
i
√
6 +

√
2
)√

−
(−x2)

2
3
(
1+i

√
3
)

x2 + 8x
)
2 5

6

8

√
−

(−x2)
2
3
(
1+i

√
3
)

x2 x
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Verification of solutions

y = c1x− 1√
−c1

Verified OK.

y = −

 (
x2) 23

√(
x2
) 2
3

x2

2 + x

 2 1
3

√
(x2)

2
3

x2 x

Verified OK.

y =
(
1 + i

√
3
)
2 1

3 (x2)
2
3

√
−

(x2)
2
3
(
1+i

√
3
)

x2 − 4 2 5
6x

4

√
−

(x2)
2
3
(
1+i

√
3
)

x2 x

Verified OK.

y = −

(
−1 + i

√
3
)
2 1

3 (x2)
2
3

√
(x2)

2
3
(
−1+i

√
3
)

x2 + 42 5
6x

4

√
(x2)

2
3
(
−1+i

√
3
)

x2 x

Verified OK.

y = c2x+ 1√
−c2

Verified OK.

y = −
2 1

3

(
(−x2)

2
3

√
(−x2)

2
3

x2 − 2x
)

2x
√

(−x2)
2
3

x2

Verified OK.

y = −
2 5

6

((
i
√
6−

√
2
)
(−x2)

2
3

√
(−x2)

2
3
(
−1+i

√
3
)

x2 − 8x
)

8

√
(−x2)

2
3
(
−1+i

√
3
)

x2 x

Verified OK.

y =

(
(−x2)

2
3
(
i
√
6 +

√
2
)√

−
(−x2)

2
3
(
1+i

√
3
)

x2 + 8x
)
2 5

6

8

√
−

(−x2)
2
3
(
1+i

√
3
)

x2 x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 82� �
dsolve(x^2*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^2+y(x)^2*diff(y(x),x)+1 = 0,y(x), singsol=all)� �

y(x) = 3 2 1
3 (−x)

1
3

2

y(x) = −
3 2 1

3 (−x)
1
3
(
1 + i

√
3
)

4

y(x) =
3 2 1

3 (−x)
1
3
(
−1 + i

√
3
)

4
y(x) = c1x− 1√

−c1

y(x) = c1x+ 1√
−c1

3 Solution by Mathematica
Time used: 65.79 (sec). Leaf size: 33909� �
DSolve[x^2 (y'[x])^3 -2 x y[x] (y'[x])^2 + y[x]^2 y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.3 problem 1066
36.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9437

Internal problem ID [4286]
Internal file name [OUTPUT/3779_Sunday_June_05_2022_10_54_19_AM_92282471/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1066.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
a2 − x2) y′3 + bx

(
a2 − x2) y′2 − y′ = bx

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1√
a2 − x2

(1)

y′ = − 1√
a2 − x2

(2)

y′ = −bx (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1√

a2 − x2
dx

= arctan
(

x√
a2 − x2

)
+ c1
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Summary
The solution(s) found are the following

(1)y = arctan
(

x√
a2 − x2

)
+ c1

Verification of solutions

y = arctan
(

x√
a2 − x2

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− 1√
a2 − x2

dx

= − arctan
(

x√
a2 − x2

)
+ c2

Summary
The solution(s) found are the following

(1)y = − arctan
(

x√
a2 − x2

)
+ c2

Verification of solutions

y = − arctan
(

x√
a2 − x2

)
+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫

−bx dx

= −b x2

2 + c3

Summary
The solution(s) found are the following

(1)y = −b x2

2 + c3
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Verification of solutions

y = −b x2

2 + c3

Verified OK.

36.3.1 Maple step by step solution

Let’s solve
(a2 − x2) y′3 + bx(a2 − x2) y′2 − y′ = bx

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
(a2 − x2) y′3 + bx(a2 − x2) y′2 − y′

)
dx =

∫
bxdx+ c1

• Cannot compute integral∫ (
(a2 − x2) y′3 + bx(a2 − x2) y′2 − y′

)
dx = b x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 52� �
dsolve((a^2-x^2)*diff(y(x),x)^3+b*x*(a^2-x^2)*diff(y(x),x)^2-diff(y(x),x)-b*x = 0,y(x), singsol=all)� �

y(x) = −b x2

2 + c1

y(x) = arctan
(

x√
a2 − x2

)
+ c1

y(x) = − arctan
(

x√
a2 − x2

)
+ c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 64� �
DSolve[(a^2-x^2) (y'[x])^3 +b x (a^2-x^2) (y'[x])^2 -y'[x] -b x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −bx2

2 + c1

y(x) → − arctan
(

x√
a2 − x2

)
+ c1

y(x) → arctan
(

x√
a2 − x2

)
+ c1
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36.4 problem 1067
Internal problem ID [4287]
Internal file name [OUTPUT/3780_Sunday_June_05_2022_10_54_27_AM_22729367/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1067.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

xy′
3 − 3x2yy′

2 + x
(
x5 + 3y2

)
y′ − 2yx5 − y3 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
((
−108yx7 + 216y3x4 + 216yx5 − 324y3x2 + 108y3 + 12

√
3
√
4x17 − 9y2x14 − 72y2x12 + 162y4x9 + 108y2x10 − 270y4x7 + 27y6x4 + 108y4x5 − 54y6x2 + 27y6

)
x2) 1

3

6x −
6
(

x5

3 + y2 − y2x2
)
x((

−108yx7 + 216y3x4 + 216yx5 − 324y3x2 + 108y3 + 12
√
3
√
4x17 − 9y2x14 − 72y2x12 + 162y4x9 + 108y2x10 − 270y4x7 + 27y6x4 + 108y4x5 − 54y6x2 + 27y6

)
x2
) 1

3
+ yx

(1)

y′ = −
((
−108yx7 + 216y3x4 + 216yx5 − 324y3x2 + 108y3 + 12

√
3
√
4x17 − 9y2x14 − 72y2x12 + 162y4x9 + 108y2x10 − 270y4x7 + 27y6x4 + 108y4x5 − 54y6x2 + 27y6

)
x2) 1

3

12x +
3
(

x5

3 + y2 − y2x2
)
x((

−108yx7 + 216y3x4 + 216yx5 − 324y3x2 + 108y3 + 12
√
3
√
4x17 − 9y2x14 − 72y2x12 + 162y4x9 + 108y2x10 − 270y4x7 + 27y6x4 + 108y4x5 − 54y6x2 + 27y6

)
x2
) 1

3
+ yx+

i
√
3
(((

−108yx7+216y3x4+216yx5−324y3x2+108y3+12
√
3
√

4x17−9y2x14−72y2x12+162y4x9+108y2x10−270y4x7+27y6x4+108y4x5−54y6x2+27y6
)
x2
) 1

3

6x +
6
(

x5
3 +y2−y2x2

)
x((

−108yx7+216y3x4+216yx5−324y3x2+108y3+12
√
3
√

4x17−9y2x14−72y2x12+162y4x9+108y2x10−270y4x7+27y6x4+108y4x5−54y6x2+27y6
)
x2
) 1

3

)
2

(2)

y′ = −
((
−108yx7 + 216y3x4 + 216yx5 − 324y3x2 + 108y3 + 12

√
3
√
4x17 − 9y2x14 − 72y2x12 + 162y4x9 + 108y2x10 − 270y4x7 + 27y6x4 + 108y4x5 − 54y6x2 + 27y6

)
x2) 1

3

12x +
3
(

x5

3 + y2 − y2x2
)
x((

−108yx7 + 216y3x4 + 216yx5 − 324y3x2 + 108y3 + 12
√
3
√
4x17 − 9y2x14 − 72y2x12 + 162y4x9 + 108y2x10 − 270y4x7 + 27y6x4 + 108y4x5 − 54y6x2 + 27y6

)
x2
) 1

3
+ yx−

i
√
3
(((

−108yx7+216y3x4+216yx5−324y3x2+108y3+12
√
3
√

4x17−9y2x14−72y2x12+162y4x9+108y2x10−270y4x7+27y6x4+108y4x5−54y6x2+27y6
)
x2
) 1

3

6x +
6
(

x5
3 +y2−y2x2

)
x((

−108yx7+216y3x4+216yx5−324y3x2+108y3+12
√
3
√

4x17−9y2x14−72y2x12+162y4x9+108y2x10−270y4x7+27y6x4+108y4x5−54y6x2+27y6
)
x2
) 1

3

)
2

(3)

Now each one of the above ODE is solved.

9439



Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (3)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 4`� �
7 Solution by Maple� �
dsolve(x*diff(y(x),x)^3-3*x^2*y(x)*diff(y(x),x)^2+x*(x^5+3*y(x)^2)*diff(y(x),x)-2*x^5*y(x)-y(x)^3 = 0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x (y'[x])^3 -3 x^2 y[x] (y'[x])^2 +x(x^5+3 y[x]^2) y'[x]-2 x^5 y[x]- y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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36.5 problem 1068
Internal problem ID [4288]
Internal file name [OUTPUT/3781_Sunday_June_05_2022_10_55_16_AM_94817250/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1068.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

2x3y′
3 + 6x2yy′

2 − (1− 6yx) yy′ + 2y3 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =

(
−6y

(
−
√
3
√

y(27yx−2)
x

+ 9y
)
x2
) 1

3

6x2 + y

x

(
−6y

(
−
√
3
√

y(27yx−2)
x

+ 9y
)
x2
) 1

3
− y

x

(1)

y′ = −

(
−6y

(
−
√
3
√

y(27yx−2)
x

+ 9y
)
x2
) 1

3

12x2 − y

2x
(
−6y

(
−
√
3
√

y(27yx−2)
x

+ 9y
)
x2
) 1

3
− y

x
+

i
√
3

(
−6y

(
−
√
3
√

y(27yx−2)
x

+9y
)
x2
) 1

3

6x2 − y

x

(
−6y

(
−
√
3
√

y(27yx−2)
x

+9y
)
x2
) 1

3


2

(2)

y′ = −

(
−6y

(
−
√
3
√

y(27yx−2)
x

+ 9y
)
x2
) 1

3

12x2 − y

2x
(
−6y

(
−
√
3
√

y(27yx−2)
x

+ 9y
)
x2
) 1

3
− y

x
−

i
√
3

(
−6y

(
−
√
3
√

y(27yx−2)
x

+9y
)
x2
) 1

3

6x2 − y

x

(
−6y

(
−
√
3
√

y(27yx−2)
x

+9y
)
x2
) 1

3


2

(3)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −
6yx
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

− 6xy −
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 2

3

6x2
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

x, y,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 1
3

,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 2
3

,

√
y (27xy − 2)

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 1
3

= v3,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 2
3

= v4,

√
y (27xy − 2)

x
= v5
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The above PDE (6E) now becomes

(7E)

−36v21v2
(
30
√
3 6 1

3v3v1v
3
2a3 +12v56

2
3v4v1v2a1 +54v56

1
3v3v

3
1v2b1

− 54v56
1
3v3v

2
1v

2
2a1 + 12

√
3 6 1

3v3v
2
1v2b1 − 12

√
3 6 1

3v3v1v
2
2a1

− 18v56
1
3v3v1v

2
2a3 − 324

√
3 6 1

3v3v
4
1v

2
2b2 + 324

√
3 6 1

3v3v
2
1v

4
2a3

− 162
√
3 6 1

3v3v
3
1v

2
2b1 + 162

√
3 6 1

3v3v
2
1v

3
2a1 + 18 6 2

3v4
√
3 v31v2b2

− 9 6 2
3v4

√
3 v21v22a2 − 9 6 2

3v4
√
3 v21v22b3 − 90 6 2

3v4
√
3 v1v32a3

+ 18 6 2
3v4

√
3 v21v2b1 − 36 6 2

3v4
√
3 v1v22a1 + 30 6 2

3v4v5v1v
2
2a3

−108
√
3 v31v32a2−108

√
3 v31v32b3−1080

√
3 v21v42a3+54

√
3 v31v22b1

− 270
√
3 v21v32a1 − 18v5v41v2b2 + 36v5v31v22a2 + 36v5v31v22b3

+ 360v5v21v32a3 − 6
√
3 v31v2b2 + 6

√
3 v21v22a2 + 6

√
3 v21v22b3

+ 78
√
3 v1v32a3 − 18v5v31v2b1 + 90v5v21v22a1 − 6

√
3 v21v2b1

+ 18
√
3 v1v22a1 − 6v5v1v22a3 − 6v56

2
3v4v

3
1b2 −

√
3 6 2

3v4v
2
1b2

+ 7
√
3 6 2

3v4v
2
2a3 − 6v56

2
3v4v

2
1b1 −

√
3 6 2

3v4v1b1 + 3
√
3 6 2

3v4v2a1

+ v56
2
3v4v2a3− 4

√
3 6 1

3v3v
2
2a3+3v56

2
3v4v

2
1v2a2+3v56

2
3v4v

2
1v2b3

+ 108v56
1
3v3v

4
1v2b2 − 108v56

1
3v3v

2
1v

3
2a3 +

√
3 6 2

3v4v1v2a2

+
√
3 6 2

3v4v1v2b3 + 24
√
3 6 1

3v3v
3
1v2b2 + 54

√
3 v41v22b2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

−2808
√
3 a3v31v42 + 216a3v5v31v32 − 648

√
3 a1v31v32 +

(
−36

√
3 6 2

3a2 − 36
√
3 6 2

3 b3
)
v4v

3
1v

2
2

+ 1296
√
3 6 2

3a1v4v
3
1v

3
2 − 432 6 2

3a1v4v5v
3
1v

2
2 + 36

√
3 6 2

3 b1v4v
3
1v2

+ 144
√
3 6 1

3a3v3v
2
1v

3
2 − 252

√
3 6 2

3a3v4v
2
1v

3
2 − 36 6 2

3a3v4v5v
2
1v

2
2 − 108

√
3 6 2

3a1v4v
2
1v

2
2

+
(
−108 6 2

3a2 − 108 6 2
3 b3
)
v4v5v

4
1v

2
2 +38880

√
3 a3v41v52 − 12960a3v5v41v42 +9720

√
3 a1v41v42

+
(
324

√
3 6 2

3a2 + 324
√
3 6 2

3 b3
)
v4v

4
1v

3
2 − 3240a1v5v41v32 +

(
−216

√
3 a2 − 216

√
3 b3
)
v41v

3
2

+ 216
√
3 b1v41v22 − 648

√
3 6 2

3 b2v4v
5
1v

2
2 + 216 6 2

3 b2v4v5v
5
1v2 − 11664

√
3 6 1

3a3v3v
4
1v

5
2

+ 3888 6 1
3a3v3v5v

4
1v

4
2 − 5832

√
3 6 1

3a1v3v
4
1v

4
2 + 1944 6 1

3a1v3v5v
4
1v

3
2 − 432

√
3 6 1

3 b1v3v
4
1v

2
2

− 648
√
3 6 2

3 b1v4v
4
1v

2
2 + 216 6 2

3 b1v4v5v
4
1v2 + 36

√
3 6 2

3 b2v4v
4
1v2 − 1080

√
3 6 1

3a3v3v
3
1v

4
2

+ 3240
√
3 6 2

3a3v4v
3
1v

4
2 + 648 6 1

3a3v3v5v
3
1v

3
2 + 432

√
3 6 1

3a1v3v
3
1v

3
2 − 1080 6 2

3a3v4v5v
3
1v

3
2

+
(
3888

√
3 a2 + 3888

√
3 b3
)
v51v

4
2 + (−1296a2 − 1296b3) v5v51v32 − 1944

√
3 b1v51v32

+ 648b1v5v51v22 + 216
√
3 b2v51v22 − 1944

√
3 b2v61v32 + 648b2v5v61v22 + 11664

√
3 6 1

3 b2v3v
6
1v

3
2

− 3888 6 1
3 b2v3v5v

6
1v

2
2 + 5832

√
3 6 1

3 b1v3v
5
1v

3
2 − 1944 6 1

3 b1v3v5v
5
1v

2
2 − 864

√
3 6 1

3 b2v3v
5
1v

2
2 = 0
(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve
−3240a1 = 0
−12960a3 = 0

216a3 = 0
648b1 = 0
648b2 = 0

−648
√
3 a1 = 0

9720
√
3 a1 = 0

−2808
√
3 a3 = 0

38880
√
3 a3 = 0

−1944
√
3 b1 = 0

216
√
3 b1 = 0

−1944
√
3 b2 = 0

216
√
3 b2 = 0

1944 6 1
3a1 = 0

648 6 1
3a3 = 0

3888 6 1
3a3 = 0

−1944 6 1
3 b1 = 0

−3888 6 1
3 b2 = 0

−432 6 2
3a1 = 0

−1080 6 2
3a3 = 0

−36 6 2
3a3 = 0

216 6 2
3 b1 = 0

216 6 2
3 b2 = 0

−5832
√
3 6 1

3a1 = 0
432

√
3 6 1

3a1 = 0
−11664

√
3 6 1

3a3 = 0
−1080

√
3 6 1

3a3 = 0
144

√
3 6 1

3a3 = 0
−432

√
3 6 1

3 b1 = 0
5832

√
3 6 1

3 b1 = 0
−864

√
3 6 1

3 b2 = 0
11664

√
3 6 1

3 b2 = 0
−108

√
3 6 2

3a1 = 0
1296

√
3 6 2

3a1 = 0
−252

√
3 6 2

3a3 = 0
3240

√
3 6 2

3a3 = 0
−648

√
3 6 2

3 b1 = 0
36
√
3 6 2

3 b1 = 0
−648

√
3 6 2

3 b2 = 0
36
√
3 6 2

3 b2 = 0
−1296a2 − 1296b3 = 0

−216
√
3 a2 − 216

√
3 b3 = 0

3888
√
3 a2 + 3888

√
3 b3 = 0

−108 6 2
3a2 − 108 6 2

3 b3 = 0
−36

√
3 6 2

3a2 − 36
√
3 6 2

3 b3 = 0
324

√
3 6 2

3a2 + 324
√
3 6 2

3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−x

= −y

x

This is easily solved to give

y = c1
x

Where now the coordinate R is taken as the constant of integration. Hence

R = xy
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And S is found from

dS = dx

ξ

= dx

−x

Integrating gives

S =
∫

dx

T

= − ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
6yx
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

− 6xy −
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 2

3

6x2
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

Evaluating all the partial derivatives gives

Rx = y

Ry = x

Sx = −1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

(
−9
(
−

√
3
√

27x y2−2y
x

9 + y

)
y x2

) 1
3

6 2
3

yx6 1
3 +

(
−9
(
−

√
3
√

27x y2−2y
x

9 + y

)
y x2

) 2
3

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

(√
3
√
27R− 2− 9

√
R
) 1

3 6 2
3

√
R

((√
3
√
27R− 2− 9

√
R
) 2

3 + 6 1
3

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

−

(
36
√
81R− 6− 324

√
R
) 1

3((√
81R− 6− 9

√
R
) 2

3 + 6 1
3

)√
R

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) =
∫ yx

−
(
36
√
81_a− 6− 324√_a

) 1
3((√

81_a− 6− 9√_a
) 2

3 + 6 1
3

)√_a
d_a+ c1

Which simplifies to

− ln (x) =
∫ yx

−
(
36
√
81_a− 6− 324√_a

) 1
3((√

81_a− 6− 9√_a
) 2

3 + 6 1
3

)√_a
d_a+ c1

Summary
The solution(s) found are the following

(1)− ln (x) =
∫ yx

−
(
36
√
81_a− 6− 324√_a

) 1
3((√

81_a− 6− 9√_a
) 2

3 + 6 1
3

)√_a
d_a+ c1

Verification of solutions

− ln (x) =
∫ yx

−
(
36
√
81_a− 6− 324√_a

) 1
3((√

81_a− 6− 9√_a
) 2

3 + 6 1
3

)√_a
d_a+ c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −
6i
√
3 yx− i

√
3
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 2

3

+ 12yx
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

+ 6xy +
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 2

3

12x2
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

x, y,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 1
3

,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 2
3

,

√
y (27xy − 2)

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 1
3

= v3,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 2
3

= v4,

√
y (27xy − 2)

x
= v5


The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
7776 6 1

3a1 = 0
2592 6 1

3a3 = 0
15552 6 1

3a3 = 0
−7776 6 1

3 b1 = 0
−15552 6 1

3 b2 = 0
−23328

√
3 6 1

3a1 = 0
1728

√
3 6 1

3a1 = 0
−46656

√
3 6 1

3a3 = 0
−4320

√
3 6 1

3a3 = 0
576

√
3 6 1

3a3 = 0
−1728

√
3 6 1

3 b1 = 0
23328

√
3 6 1

3 b1 = 0
−3456

√
3 6 1

3 b2 = 0
46656

√
3 6 1

3 b2 = 0
−233280ia3 − 77760

√
3 a3 = 0

−58320ia1 − 19440
√
3 a1 = 0

−1296ib1 − 432
√
3 b1 = 0

−1296ib2 − 432
√
3 b2 = 0

3888ia1 + 1296
√
3 a1 = 0

11664ib1 + 3888
√
3 b1 = 0

11664ib2 + 3888
√
3 b2 = 0

16848ia3 + 5616
√
3 a3 = 0

−3888i6 2
3 b1 + 1296

√
3 6 2

3 b1 = 0
−3888i6 2

3 b2 + 1296
√
3 6 2

3 b2 = 0
−1512i6 2

3a3 + 504
√
3 6 2

3a3 = 0
−1296i

√
3 b1 − 1296b1 = 0

−1296i
√
3 b2 − 1296b2 = 0

−648i6 2
3a1 + 216

√
3 6 2

3a1 = 0
−432i

√
3 a3 − 432a3 = 0

216i6 2
3 b1 − 72

√
3 6 2

3 b1 = 0
216i6 2

3 b2 − 72
√
3 6 2

3 b2 = 0
6480i

√
3 a1 + 6480a1 = 0

7776i6 2
3a1 − 2592

√
3 6 2

3a1 = 0
19440i6 2

3a3 − 6480
√
3 6 2

3a3 = 0
25920i

√
3 a3 + 25920a3 = 0

−2160i
√
3 6 2

3a3 + 2160 6 2
3a3 = 0

−864i
√
3 6 2

3a1 + 864 6 2
3a1 = 0

−72i
√
3 6 2

3a3 + 72 6 2
3a3 = 0

432i
√
3 6 2

3 b1 − 432 6 2
3 b1 = 0

432i
√
3 6 2

3 b2 − 432 6 2
3 b2 = 0

−23328ia2 − 23328ib3 − 7776
√
3 a2 − 7776

√
3 b3 = 0

1296ia2 + 1296ib3 + 432
√
3 a2 + 432

√
3 b3 = 0

−216i6 2
3a2 − 216i6 2

3 b3 + 72
√
3 6 2

3a2 + 72
√
3 6 2

3 b3 = 0
1944i6 2

3a2 + 1944i6 2
3 b3 − 648

√
3 6 2

3a2 − 648
√
3 6 2

3 b3 = 0
2592i

√
3 a2 + 2592i

√
3 b3 + 2592a2 + 2592b3 = 0

−216i
√
3 6 2

3a2 − 216i
√
3 6 2

3 b3 + 216 6 2
3a2 + 216 6 2

3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ =
6i
√
3 yx− i

√
3
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 2

3

− 12yx
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

− 6xy −
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 2

3

12x2
(
−6y

(
−
√
3
√

y(27xy−2)
x

+ 9y
)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.x, y,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 1
3

,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 2
3

,

√
y (27xy − 2)

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 1
3

= v3,

(
y

(
√
3
√

y (27xy − 2)
x

−9y
)
x2

) 2
3

= v4,

√
y (27xy − 2)

x
= v5


9455



The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
7776 6 1

3a1 = 0
2592 6 1

3a3 = 0
15552 6 1

3a3 = 0
−7776 6 1

3 b1 = 0
−15552 6 1

3 b2 = 0
−23328

√
3 6 1

3a1 = 0
1728

√
3 6 1

3a1 = 0
−46656

√
3 6 1

3a3 = 0
−4320

√
3 6 1

3a3 = 0
576

√
3 6 1

3a3 = 0
−1728

√
3 6 1

3 b1 = 0
23328

√
3 6 1

3 b1 = 0
−3456

√
3 6 1

3 b2 = 0
46656

√
3 6 1

3 b2 = 0
−16848ia3 + 5616

√
3 a3 = 0

−11664ib1 + 3888
√
3 b1 = 0

−11664ib2 + 3888
√
3 b2 = 0

−3888ia1 + 1296
√
3 a1 = 0

1296ib1 − 432
√
3 b1 = 0

1296ib2 − 432
√
3 b2 = 0

58320ia1 − 19440
√
3 a1 = 0

233280ia3 − 77760
√
3 a3 = 0

−25920i
√
3 a3 + 25920a3 = 0

−19440i6 2
3a3 − 6480

√
3 6 2

3a3 = 0
−7776i6 2

3a1 − 2592
√
3 6 2

3a1 = 0
−6480i

√
3 a1 + 6480a1 = 0

−216i6 2
3 b1 − 72

√
3 6 2

3 b1 = 0
−216i6 2

3 b2 − 72
√
3 6 2

3 b2 = 0
432i

√
3 a3 − 432a3 = 0

648i6 2
3a1 + 216

√
3 6 2

3a1 = 0
1296i

√
3 b1 − 1296b1 = 0

1296i
√
3 b2 − 1296b2 = 0

1512i6 2
3a3 + 504

√
3 6 2

3a3 = 0
3888i6 2

3 b1 + 1296
√
3 6 2

3 b1 = 0
3888i6 2

3 b2 + 1296
√
3 6 2

3 b2 = 0
−432i

√
3 6 2

3 b1 − 432 6 2
3 b1 = 0

−432i
√
3 6 2

3 b2 − 432 6 2
3 b2 = 0

72i
√
3 6 2

3a3 + 72 6 2
3a3 = 0

864i
√
3 6 2

3a1 + 864 6 2
3a1 = 0

2160i
√
3 6 2

3a3 + 2160 6 2
3a3 = 0

−1296ia2 − 1296ib3 + 432
√
3 a2 + 432

√
3 b3 = 0

23328ia2 + 23328ib3 − 7776
√
3 a2 − 7776

√
3 b3 = 0

−2592i
√
3 a2 − 2592i

√
3 b3 + 2592a2 + 2592b3 = 0

−1944i6 2
3a2 − 1944i6 2

3 b3 − 648
√
3 6 2

3a2 − 648
√
3 6 2

3 b3 = 0
216i6 2

3a2 + 216i6 2
3 b3 + 72

√
3 6 2

3a2 + 72
√
3 6 2

3 b3 = 0
216i

√
3 6 2

3a2 + 216i
√
3 6 2

3 b3 + 216 6 2
3a2 + 216 6 2

3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
trying an integrating factor from the invariance group
<- integrating factor successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 3.766 (sec). Leaf size: 1755� �
dsolve(2*x^3*diff(y(x),x)^3+6*x^2*y(x)*diff(y(x),x)^2-(1-6*x*y(x))*y(x)*diff(y(x),x)+2*y(x)^3 = 0,y(x), singsol=all)� �

y(x) = 0
Expression too large to display
Expression too large to display
Expression too large to display

3 Solution by Mathematica
Time used: 62.111 (sec). Leaf size: 179� �
DSolve[2 x^3 (y'[x])^3 +6 x^2 y[x] (y'[x])^2 -(1-6 x y[x])y[x] y'[x]+2 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
∫ x

1

InverseFunction
− 2

√
#12

−8#13
arctan

(√
8#1−1

)

#1
√

8#1−1
−14 log

(
#12

(8#1−1)
)
+log

(
#114

(8#1−1)15/2
(
#1−

√
#12

−8#13
))

+log
(
#112

(8#1−1)13/2
(
#1+

√
#12

−8#13
))

+
3

√
#12

−8#13

#1 &

[c1+2 log(K[1])]

K[1] dK[1]
x
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36.6 problem 1070
Internal problem ID [4289]
Internal file name [OUTPUT/3782_Sunday_June_05_2022_10_55_29_AM_84450341/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1070.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

x4y′
3 − x3yy′

2 − x2y2y′ + xy3 = 1

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

((
−64xy3+12

√
−96xy3+81+108

)
x2
) 1

3

6x + 8y2x

3
((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3
+ y

3

x
(1)

y′ =
−
((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3

12x − 4y2x

3
((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3
+ y

3 +
i
√
3


((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3

6x − 8y2x

3
((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3


2

x
(2)

y′ =
−
((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3

12x − 4y2x

3
((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3
+ y

3 −

i
√
3


((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3

6x − 8y2x

3
((

−64xy3+12
√

−96xy3+81+108
)
x2
) 1

3


2

x
(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Writing the ode as

y′ =
16y2x2 + 2yx

((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 1

3 +
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 2

3

6x2
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 1

3
,
((

−16x y3 + 3
√
−96x y3 + 81 + 27

)
x2
) 2

3
,
√
−96x y3 + 81

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 1

3 = v3,
((

−16x y3 + 3
√
−96x y3 + 81 + 27

)
x2
) 2

3 = v4,
√

−96x y3 + 81= v5

}

The above PDE (6E) now becomes

(7E)

48v31
(
128v5v51v42b2 + 3456v51v42b2 + 384v41v52a2 + 1152v41v52b3

− 3456v31v62a3 + 3456v41v42b1 − 1920v31v52a1 − 3888v41v2b2
− 648v31v22a2 − 1944v31v22b3 + 7776v21v32a3 − 3888v31v2b1
+ 1296v21v22a1 + 324v42

1
3a1 − 486v5v1a3 − 4374v1a3

− 32v3v52
2
3v41v

3
2b2 + 32v3v52

2
3v21v

5
2a3 + 16v3v52

2
3v31v

3
2b1

− 16v3v52
2
3v21v

4
2a1 + 16v4v52

1
3v31v

2
2b2 − 16v4v52

1
3v1v

4
2a3

+ 16v4v52
1
3v21v

2
2b1 − 16v4v52

1
3v1v

3
2a1 − 54v3v52

2
3v1v

2
2a3

+ 27v3v52
2
3v1v2a1 − 128v5v31v62a3 + 128v5v41v42b1 − 128v5v31v52a1

+ 486v32
2
3v31b2 − 432v5v41v2b2 − 72v5v31v22a2 − 216v5v31v22b3

+ 576v5v21v32a3 − 243v32
2
3v21b1 − 432v5v31v2b1 + 144v5v21v22a1

+ 36v4v52
1
3a1 − 576v32

2
3v41v

3
2b2 + 576v32

2
3v21v

5
2a3

+ 288v32
2
3v31v

3
2b1 − 288v32

2
3v21v

4
2a1 + 144v42

1
3v31v

2
2b2

− 48v42
1
3v21v

3
2a2 − 144v42

1
3v21v

3
2b3 − 144v42

1
3v1v

4
2a3

+ 144v42
1
3v21v

2
2b1 − 336v42

1
3v1v

3
2a1 + 54v3v52

2
3v31b2

− 27v3v52
2
3v21b1 − 486v32

2
3v1v

2
2a3 + 9v4v52

1
3v1a2

+ 27v4v52
1
3v1b3 + 18v4v52

1
3v2a3 + 243v32

2
3v1v2a1

+ 81v42
1
3v1a2 + 243v42

1
3v1b3 + 162v42

1
3v2a3

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−1536 2 2
3 b2v

3
2v3v5v

7
1 + (−31104a2 − 93312b3) v22v61

− 186624b1v2v61 + 373248a3v32v51 + 62208a1v22v51
+
(
3888 2 1

3a2 + 11664 2 1
3 b3
)
v4v

4
1 − 23328a3v5v41

+ 768 2 2
3 b1v

3
2v3v5v

6
1 + 768 2 1

3 b2v
2
2v4v5v

6
1 + 1536 2 2

3a3v
5
2v3v5v

5
1

− 768 2 2
3a1v

4
2v3v5v

5
1 + 768 2 1

3 b1v
2
2v4v5v

5
1 − 768 2 1

3a3v
4
2v4v5v

4
1

− 768 2 1
3a1v

3
2v4v5v

4
1 − 2592 2 2

3a3v
2
2v3v5v

4
1

+ 1296 2 2
3a1v2v3v5v

4
1 + 864 2 1

3a3v2v4v5v
3
1

− 27648 2 2
3 b2v

3
2v3v

7
1 + 13824 2 2

3 b1v
3
2v3v

6
1 + 6912 2 1

3 b2v
2
2v4v

6
1

+ 2592 2 2
3 b2v3v5v

6
1 + 27648 2 2

3a3v
5
2v3v

5
1 − 13824 2 2

3a1v
4
2v3v

5
1

+ 6912 2 1
3 b1v

2
2v4v

5
1 − 1296 2 2

3 b1v3v5v
5
1 − 6912 2 1

3a3v
4
2v4v

4
1

− 16128 2 1
3a1v

3
2v4v

4
1 +

(
432 2 1

3a2 + 1296 2 1
3 b3
)
v4v5v

4
1

+ 6912a1v22v5v51 − 11664 2 2
3 b1v3v

5
1 − 6144a3v62v5v61

− 6144a1v52v5v61 + (−3456a2 − 10368b3) v22v5v61
− 20736b1v2v5v61 + 23328 2 2

3 b2v3v
6
1

+
(
−2304 2 1

3a2 − 6912 2 1
3 b3
)
v32v4v

5
1 + 27648a3v32v5v51

+ 6144b2v42v5v81 + 6144b1v42v5v71 − 20736b2v2v5v71
+ 15552 2 1

3a1v4v
3
1 − 23328 2 2

3a3v
2
2v3v

4
1 + 11664 2 2

3a1v2v3v
4
1

+ 7776 2 1
3a3v2v4v

3
1 + 1728 2 1

3a1v4v5v
3
1 + 165888b2v42v81

+ (18432a2 + 55296b3) v52v71 + 165888b1v42v71 − 186624b2v2v71
− 165888a3v62v61 − 92160a1v52v61 − 209952a3v41 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−92160a1 = 0
−6144a1 = 0
6912a1 = 0
62208a1 = 0

−209952a3 = 0
−165888a3 = 0
−23328a3 = 0
−6144a3 = 0
27648a3 = 0
373248a3 = 0

−186624b1 = 0
−20736b1 = 0

6144b1 = 0
165888b1 = 0

−186624b2 = 0
−20736b2 = 0

6144b2 = 0
165888b2 = 0

−16128 2 1
3a1 = 0

−768 2 1
3a1 = 0

1728 2 1
3a1 = 0

15552 2 1
3a1 = 0

−6912 2 1
3a3 = 0

−768 2 1
3a3 = 0

864 2 1
3a3 = 0

7776 2 1
3a3 = 0

768 2 1
3 b1 = 0

6912 2 1
3 b1 = 0

768 2 1
3 b2 = 0

6912 2 1
3 b2 = 0

−13824 2 2
3a1 = 0

−768 2 2
3a1 = 0

1296 2 2
3a1 = 0

11664 2 2
3a1 = 0

−23328 2 2
3a3 = 0

−2592 2 2
3a3 = 0

1536 2 2
3a3 = 0

27648 2 2
3a3 = 0

−11664 2 2
3 b1 = 0

−1296 2 2
3 b1 = 0

768 2 2
3 b1 = 0

13824 2 2
3 b1 = 0

−27648 2 2
3 b2 = 0

−1536 2 2
3 b2 = 0

2592 2 2
3 b2 = 0

23328 2 2
3 b2 = 0

−31104a2 − 93312b3 = 0
−3456a2 − 10368b3 = 0
18432a2 + 55296b3 = 0

−2304 2 1
3a2 − 6912 2 1

3 b3 = 0
432 2 1

3a2 + 1296 2 1
3 b3 = 0

3888 2 1
3a2 + 11664 2 1

3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −3b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−3x
= − y

3x

This is easily solved to give

y = c1

x
1
3

Where now the coordinate R is taken as the constant of integration. Hence

R = y x
1
3
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And S is found from

dS = dx

ξ

= dx

−3x
Integrating gives

S =
∫

dx

T

= − ln (x)
3

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
16y2x2 + 2yx

((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 1

3 +
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 2

3

6x2
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2
) 1

3

Evaluating all the partial derivatives gives

Rx = y

3x 2
3

Ry = x
1
3

Sx = − 1
3x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2x 2
3
((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2) 1

3

8 2 1
3x2y2 + 2 2

3
((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 2

3 + 4
((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 1

3xy

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

2
(
−16R3 + 3

√
−96R3 + 81 + 27

) 1
3(

−16R3 + 3
√
−96R3 + 81 + 27

) 2
3 2 2

3 + 82 1
3R2 + 4

(
−16R3 + 3

√
−96R3 + 81 + 27

) 1
3 R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

−
2
(
−16R3 + 3

√
−96R3 + 81 + 27

) 1
3(

−16R3 + 3
√
−96R3 + 81 + 27

) 2
3 2 2

3 + 82 1
3R2 + 4

(
−16R3 + 3

√
−96R3 + 81 + 27

) 1
3 R

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x)
3 =

∫ yx
1
3

−
2
(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3(

−16_a3 + 3
√
−96_a3 + 81 + 27

) 2
3 2 2

3 + 82 1
3_a2 + 4

(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3 _a

d_a+ c1

Which simplifies to

− ln (x)
3 =

∫ yx
1
3

−
2
(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3(

−16_a3 + 3
√
−96_a3 + 81 + 27

) 2
3 2 2

3 + 82 1
3_a2 + 4

(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3 _a

d_a+ c1

Summary
The solution(s) found are the following

(1)− ln (x)
3 =

∫ yx
1
3

−
2
(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3(

−16_a3 + 3
√
−96_a3 + 81 + 27

) 2
3 2 2

3 + 82 1
3_a2 + 4

(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3 _a

d_a

+ c1

Verification of solutions

− ln (x)
3 =

∫ yx
1
3

−
2
(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3(

−16_a3 + 3
√
−96_a3 + 81 + 27

) 2
3 2 2

3 + 82 1
3_a2 + 4

(
−16_a3 + 3

√
−96_a3 + 81 + 27

) 1
3 _a

d_a

+ c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −
16i

√
3 y2x2 + 16y2x2 − i

((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 2

3
√
3− 4yx

((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 1

3 +
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 2

3

12x2
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 1

3
,
((

−16x y3 + 3
√
−96x y3 + 81 + 27

)
x2
) 2

3
,
√
−96x y3 + 81

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 1

3 = v3,
((

−16x y3 + 3
√
−96x y3 + 81 + 27

)
x2
) 2

3 = v4,
√

−96x y3 + 81= v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−55296 2 2

3a1 = 0
−3072 2 2

3a1 = 0
5184 2 2

3a1 = 0
46656 2 2

3a1 = 0
−93312 2 2

3a3 = 0
−10368 2 2

3a3 = 0
6144 2 2

3a3 = 0
110592 2 2

3a3 = 0
−46656 2 2

3 b1 = 0
−5184 2 2

3 b1 = 0
3072 2 2

3 b1 = 0
55296 2 2

3 b1 = 0
−110592 2 2

3 b2 = 0
−6144 2 2

3 b2 = 0
10368 2 2

3 b2 = 0
93312 2 2

3 b2 = 0
−746496i

√
3 a3 − 746496a3 = 0

−331776i
√
3 b1 − 331776b1 = 0

−331776i
√
3 b2 − 331776b2 = 0

−124416i
√
3 a1 − 124416a1 = 0

−55296i
√
3 a3 − 55296a3 = 0

−13824i
√
3 a1 − 13824a1 = 0

−12288i
√
3 b1 − 12288b1 = 0

−12288i
√
3 b2 − 12288b2 = 0

12288i
√
3 a1 + 12288a1 = 0

12288i
√
3 a3 + 12288a3 = 0

41472i
√
3 b1 + 41472b1 = 0

41472i
√
3 b2 + 41472b2 = 0

46656i
√
3 a3 + 46656a3 = 0

184320i
√
3 a1 + 184320a1 = 0

331776i
√
3 a3 + 331776a3 = 0

373248i
√
3 b1 + 373248b1 = 0

373248i
√
3 b2 + 373248b2 = 0

419904i
√
3 a3 + 419904a3 = 0

−32256i2 1
3
√
3 a1 + 32256 2 1

3a1 = 0
−13824i2 1

3
√
3 a3 + 13824 2 1

3a3 = 0
−1536i2 1

3
√
3 a1 + 1536 2 1

3a1 = 0
−1536i2 1

3
√
3 a3 + 1536 2 1

3a3 = 0
1536i2 1

3
√
3 b1 − 1536 2 1

3 b1 = 0
1536i2 1

3
√
3 b2 − 1536 2 1

3 b2 = 0
1728i2 1

3
√
3 a3 − 1728 2 1

3a3 = 0
3456i2 1

3
√
3 a1 − 3456 2 1

3a1 = 0
13824i2 1

3
√
3 b1 − 13824 2 1

3 b1 = 0
13824i2 1

3
√
3 b2 − 13824 2 1

3 b2 = 0
15552i2 1

3
√
3 a3 − 15552 2 1

3a3 = 0
31104i2 1

3
√
3 a1 − 31104 2 1

3a1 = 0
−36864i

√
3 a2 − 110592i

√
3 b3 − 36864a2 − 110592b3 = 0

6912i
√
3 a2 + 20736i

√
3 b3 + 6912a2 + 20736b3 = 0

62208i
√
3 a2 + 186624i

√
3 b3 + 62208a2 + 186624b3 = 0

−4608i2 1
3
√
3 a2 − 13824i2 1

3
√
3 b3 + 4608 2 1

3a2 + 13824 2 1
3 b3 = 0

864i2 1
3
√
3 a2 + 2592i2 1

3
√
3 b3 − 864 2 1

3a2 − 2592 2 1
3 b3 = 0

7776i2 1
3
√
3 a2 + 23328i2 1

3
√
3 b3 − 7776 2 1

3a2 − 23328 2 1
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −3b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ =
16i

√
3 y2x2 − 16y2x2 − i

((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 2

3
√
3 + 4yx

((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 1

3 −
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2) 2

3

12x2
((
−64x y3 + 12

√
−96x y3 + 81 + 108

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 1

3
,
((

−16x y3 + 3
√
−96x y3 + 81 + 27

)
x2
) 2

3
,
√
−96x y3 + 81

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

((
−16x y3 + 3

√
−96x y3 + 81 + 27

)
x2
) 1

3 = v3,
((

−16x y3 + 3
√
−96x y3 + 81 + 27

)
x2
) 2

3 = v4,
√

−96x y3 + 81= v5

}
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The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−55296 2 2

3a1 = 0
−3072 2 2

3a1 = 0
5184 2 2

3a1 = 0
46656 2 2

3a1 = 0
−93312 2 2

3a3 = 0
−10368 2 2

3a3 = 0
6144 2 2

3a3 = 0
110592 2 2

3a3 = 0
−46656 2 2

3 b1 = 0
−5184 2 2

3 b1 = 0
3072 2 2

3 b1 = 0
55296 2 2

3 b1 = 0
−110592 2 2

3 b2 = 0
−6144 2 2

3 b2 = 0
10368 2 2

3 b2 = 0
93312 2 2

3 b2 = 0
−419904i

√
3 a3 + 419904a3 = 0

−373248i
√
3 b1 + 373248b1 = 0

−373248i
√
3 b2 + 373248b2 = 0

−331776i
√
3 a3 + 331776a3 = 0

−184320i
√
3 a1 + 184320a1 = 0

−46656i
√
3 a3 + 46656a3 = 0

−41472i
√
3 b1 + 41472b1 = 0

−41472i
√
3 b2 + 41472b2 = 0

−12288i
√
3 a1 + 12288a1 = 0

−12288i
√
3 a3 + 12288a3 = 0

12288i
√
3 b1 − 12288b1 = 0

12288i
√
3 b2 − 12288b2 = 0

13824i
√
3 a1 − 13824a1 = 0

55296i
√
3 a3 − 55296a3 = 0

124416i
√
3 a1 − 124416a1 = 0

331776i
√
3 b1 − 331776b1 = 0

331776i
√
3 b2 − 331776b2 = 0

746496i
√
3 a3 − 746496a3 = 0

−31104i2 1
3
√
3 a1 − 31104 2 1

3a1 = 0
−15552i2 1

3
√
3 a3 − 15552 2 1

3a3 = 0
−13824i2 1

3
√
3 b1 − 13824 2 1

3 b1 = 0
−13824i2 1

3
√
3 b2 − 13824 2 1

3 b2 = 0
−3456i2 1

3
√
3 a1 − 3456 2 1

3a1 = 0
−1728i2 1

3
√
3 a3 − 1728 2 1

3a3 = 0
−1536i2 1

3
√
3 b1 − 1536 2 1

3 b1 = 0
−1536i2 1

3
√
3 b2 − 1536 2 1

3 b2 = 0
1536i2 1

3
√
3 a1 + 1536 2 1

3a1 = 0
1536i2 1

3
√
3 a3 + 1536 2 1

3a3 = 0
13824i2 1

3
√
3 a3 + 13824 2 1

3a3 = 0
32256i2 1

3
√
3 a1 + 32256 2 1

3a1 = 0
−62208i

√
3 a2 − 186624i

√
3 b3 + 62208a2 + 186624b3 = 0

−6912i
√
3 a2 − 20736i

√
3 b3 + 6912a2 + 20736b3 = 0

36864i
√
3 a2 + 110592i

√
3 b3 − 36864a2 − 110592b3 = 0

−7776i2 1
3
√
3 a2 − 23328i2 1

3
√
3 b3 − 7776 2 1

3a2 − 23328 2 1
3 b3 = 0

−864i2 1
3
√
3 a2 − 2592i2 1

3
√
3 b3 − 864 2 1

3a2 − 2592 2 1
3 b3 = 0

4608i2 1
3
√
3 a2 + 13824i2 1

3
√
3 b3 + 4608 2 1

3a2 + 13824 2 1
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −3b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
`, `-> Computing symmetries using: way = 4`[-3*x, y]� �
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3 Solution by Maple
Time used: 0.672 (sec). Leaf size: 698� �
dsolve(x^4*diff(y(x),x)^3-x^3*y(x)*diff(y(x),x)^2-x^2*y(x)^2*diff(y(x),x)+x*y(x)^3 = 1,y(x), singsol=all)� �
y(x) = 3 2 1

3 (x2)
1
3

4x

y(x) = −
3 2 1

3 (x2)
1
3
(
1 + i

√
3
)

8x

y(x) =
3 2 1

3 (x2)
1
3
(
−1 + i

√
3
)

8x
y(x)

=
RootOf

(
− ln (x) + 6

(∫ _Z
(
−32_a3+6

√
−96_a3+81+54

) 1
3

8 2
2
3_a2+2

1
3
(
−32_a3+6

√
−96_a3+81+54

) 2
3+4_a

(
−32_a3+6

√
−96_a3+81+54

) 1
3
d_a

)
+ c1

)
x

1
3

y(x)

=
RootOf

(
3i
√
3
(∫ _Z

(
−32_a3+6

√
−96_a3+81+54

) 1
3

4i
√
3 2

2
3_a2−2i_a√3

(
−32_a3+6

√
−96_a3+81+54

) 1
3+42

2
3_a2−2

1
3
(
−32_a3+6

√
−96_a3+81+54

) 2
3+2_a

(
−32_a3+6

√
−96_a3+81+54

) 1
3
d_a

)
+ ln (x)− 3

(∫ _Z
(
−32_a3+6

√
−96_a3+81+54

) 1
3

4i
√
3 2

2
3_a2−2i_a√3

(
−32_a3+6

√
−96_a3+81+54

) 1
3+42

2
3_a2−2

1
3
(
−32_a3+6

√
−96_a3+81+54

) 2
3+2_a

(
−32_a3+6

√
−96_a3+81+54

) 1
3
d_a

)
− c1

)
x

1
3

y(x)

=
RootOf

(
3i
√
3
(∫ _Z

(
−32_a3+6

√
−96_a3+81+54

) 1
3

4i
√
3 2

2
3_a2−2i_a√3

(
−32_a3+6

√
−96_a3+81+54

) 1
3−4 2

2
3_a2+2

1
3
(
−32_a3+6

√
−96_a3+81+54

) 2
3−2_a

(
−32_a3+6

√
−96_a3+81+54

) 1
3
d_a

)
+ ln (x) + 3

(∫ _Z
(
−32_a3+6

√
−96_a3+81+54

) 1
3

4i
√
3 2

2
3_a2−2i_a√3

(
−32_a3+6

√
−96_a3+81+54

) 1
3−4 2

2
3_a2+2

1
3
(
−32_a3+6

√
−96_a3+81+54

) 2
3−2_a

(
−32_a3+6

√
−96_a3+81+54

) 1
3
d_a

)
− c1

)
x

1
3

3 Solution by Mathematica
Time used: 84.141 (sec). Leaf size: 67473� �
DSolve[x^4 (y'[x])^3 -x^3 y[x] (y'[x])^2 - x^2 y[x]^2 y'[x]+x y[x]^3==1,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.7 problem 1071
Internal problem ID [4290]
Internal file name [OUTPUT/3783_Sunday_June_05_2022_10_55_56_AM_40290720/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1071.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

x6y′
3 − xy′ − y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

6x2 + 2

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

x
(1)

y′ =

−

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

12x2 − 1

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3
+

i
√
3


((

108yx+12
√
3
√

27y2x3−4
x

)
x2
) 1

3

6x2 − 2

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3


2

x
(2)

y′ =

−

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

12x2 − 1

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3
−

i
√
3


((

108yx+12
√
3
√

27y2x3−4
x

)
x2
) 1

3

6x2 − 2

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3


2

x
(3)
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Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)
(b3 − a2)

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

−

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)2

a3

36x6
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

−



2

108y+
6
√
3
(
81x y2− 27x3y2−4

x2

)
√

27x3y2−4
x

x2

3 +
4
(
108xy+12

√
3
√

27x3y2−4
x

)
x

3((
108xy+12

√
3
√

27x3y2−4
x

)
x2
) 1

3
+ 12

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

−

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

2x4
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

−

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)((

108y +
6
√
3
(
81x y2− 27x3y2−4

x2

)
√

27x3y2−4
x

)
x2 + 2

(
108xy + 12

√
3
√

27x3y2−4
x

)
x

)

18x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 4

3


(xa2

+ ya3 + a1)−


108x+ 324

√
3x2y√

27x3y2−4
x

9
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

x

−

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)(

108x+ 324
√
3x2y√

27x3y2−4
x

)

18x
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 4

3

 (xb2

+ yb3 + b1) = 0 9481



Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

x, y,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

,

√
27x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

= v3,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

= v4,

√
27x3y2 − 4

x
= v5
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The above PDE (6E) now becomes

(7E)

−72v21
(
−108

√
3 v71v2b2 − 36v5v61b2 − 36v5v51b1 + 72

√
3 v31a2

+ 48
√
3 v31b3 + 120

√
3 v21a1 − 24v5v1a3 + 412 2

3v4
√
3 v21b3

+ 10 12 2
3v4

√
3 v1a1 + 312 2

3v4v5v
5
1b2 + 312 2

3v4v5v
4
1b1

+ 24 12 1
3v3

√
3 v51b2 + 612 2

3v4
√
3 v21a2 − 162 12 1

3v3
√
3 v81v22b2

+ 912 2
3v4

√
3 v61v2b2 − 27 12 2

3v4
√
3 v51v22a2 − 18 12 2

3v4
√
3 v51v22b3

− 54 12 2
3v4

√
3 v41v32a3 + 912 2

3v4
√
3 v51v2b1 − 54 12 2

3v4
√
3 v41v22a1

− 54 12 1
3v3v5v

7
1v2b2 − 9 12 2

3v4v5v
4
1v2a2 − 6 12 2

3v4v5v
4
1v2b3

− 18 12 2
3v4v5v

3
1v

2
2a3 − 18 12 2

3v4v5v
3
1v2a1 + 108 12 1

3v3
√
3 v31v22a3

+ 10 12 2
3v4

√
3 v1v2a3 + 36 12 1

3v3v5v
2
1v2a3 − 648

√
3 v61v22a2

− 432
√
3 v61v22b3 − 108

√
3 v61v2b1 − 972

√
3 v51v22a1

− 216v5v51v2a2 − 144v5v51v2b3 − 324v5v41v2a1
+ 212 2

3v4v5a3 − 24
√
3 v21v2a3 − 16 12 1

3v3
√
3 a3
)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−1728 12 1
3
√
3 b2v3v71 − 216 12 2

3 b2v4v5v
7
1

+
(
648 12 2

3a2 + 432 12 2
3 b3
)
v2v4v5v

6
1 − 216 12 2

3 b1v4v5v
6
1

− 720 12 2
3
√
3 a1v4v31 + 1152 12 1

3
√
3 a3v3v21 − 144 12 2

3a3v4v5v
2
1

+ 11664 12 1
3
√
3 b2v22v3v101 + 3888 12 1

3 b2v2v3v5v
9
1

− 648 12 2
3
√
3 b2v2v4v81 − 648 12 2

3
√
3 b1v2v4v71 + 7776

√
3 b2v2v91

+ 7776
√
3 b1v2v81 +

(
1944 12 2

3
√
3 a2 + 1296 12 2

3
√
3 b3
)
v22v4v

7
1

+ 69984
√
3 a1v22v71 + (15552a2 + 10368b3) v2v5v71 + 23328a1v2v5v61

+ 1728
√
3 a3v2v41 +

(
−5184

√
3 a2 − 3456

√
3 b3
)
v51

+
(
−432 12 2

3
√
3 a2 − 288 12 2

3
√
3 b3
)
v4v

4
1 − 8640

√
3 a1v41

+ 1728a3v5v31 +
(
46656

√
3 a2 + 31104

√
3 b3
)
v22v

8
1

+ 2592b2v5v81 + 2592b1v5v71 + 3888 12 2
3
√
3 a3v32v4v61

+ 3888 12 2
3
√
3 a1v22v4v61 − 7776 12 1

3
√
3 a3v22v3v51

+ 1296 12 2
3a3v

2
2v4v5v

5
1 + 1296 12 2

3a1v2v4v5v
5
1

− 2592 12 1
3a3v2v3v5v

4
1 − 720 12 2

3
√
3 a3v2v4v31 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
23328a1 = 0
1728a3 = 0
2592b1 = 0
2592b2 = 0

−8640
√
3 a1 = 0

69984
√
3 a1 = 0

1728
√
3 a3 = 0

7776
√
3 b1 = 0

7776
√
3 b2 = 0

−2592 12 1
3a3 = 0

3888 12 1
3 b2 = 0

1296 12 2
3a1 = 0

−144 12 2
3a3 = 0

1296 12 2
3a3 = 0

−216 12 2
3 b1 = 0

−216 12 2
3 b2 = 0

−7776 12 1
3
√
3 a3 = 0

1152 12 1
3
√
3 a3 = 0

−1728 12 1
3
√
3 b2 = 0

11664 12 1
3
√
3 b2 = 0

−720 12 2
3
√
3 a1 = 0

3888 12 2
3
√
3 a1 = 0

−720 12 2
3
√
3 a3 = 0

3888 12 2
3
√
3 a3 = 0

−648 12 2
3
√
3 b1 = 0

−648 12 2
3
√
3 b2 = 0

15552a2 + 10368b3 = 0
−5184

√
3 a2 − 3456

√
3 b3 = 0

46656
√
3 a2 + 31104

√
3 b3 = 0

648 12 2
3a2 + 432 12 2

3 b3 = 0
−432 12 2

3
√
3 a2 − 288 12 2

3
√
3 b3 = 0

1944 12 2
3
√
3 a2 + 1296 12 2

3
√
3 b3 = 09485



Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−2x
3

= −3y
2x

This is easily solved to give

y = c1

x
3
2

Where now the coordinate R is taken as the constant of integration. Hence

R = x
3
2y
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And S is found from

dS = dx

ξ

= dx

−2x
3

Integrating gives

S =
∫

dx

T

= −3 ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

Evaluating all the partial derivatives gives

Rx = 3
√
x y

2
Ry = x

3
2

Sx = − 3
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

9
√
x

(
x2√3

√
27x3y2−4

x
+ 9x3y

) 1
3

9
(
x2
√
3
√

27x3y2−4
x

+ 9x3y

) 1
3

x2y + 12 2
3x+ 12 1

3

(
x2
√
3
√

27x3y2−4
x

+ 9x3y

) 2
3

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

9
(√

3
√
27R2 − 4 + 9R

) 1
3

12 1
3
(√

3
√
27R2 − 4 + 9R

) 2
3 + 12 2

3 + 9
(√

3
√
27R2 − 4 + 9R

) 1
3 R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

−
9
(√

81R2 − 12 + 9R
) 1

3

12 1
3

((√
81R2 − 12 + 9R

)2) 1
3 + 12 2

3 + 9
(√

81R2 − 12 + 9R
) 1

3 R

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−3 ln (x)
2 =

∫ x
3
2 y

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a+ c1

Which simplifies to

−3 ln (x)
2 =

∫ x
3
2 y

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a+ c1

Summary
The solution(s) found are the following

(1)

−3 ln (x)
2

=
∫ x

3
2 y

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a

+ c1
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Verification of solutions

−3 ln (x)
2

=
∫ x

3
2 y

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

− 12i
√
3x−

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

− 12x

12x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display
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Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

x, y,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

,

√
27x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

= v3,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

= v4,

√
27x3y2 − 4

x
= v5


The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−10368 12 1

3a3 = 0
15552 12 1

3 b2 = 0
−31104 12 1

3
√
3 a3 = 0

4608 12 1
3
√
3 a3 = 0

−6912 12 1
3
√
3 b2 = 0

46656 12 1
3
√
3 b2 = 0

−419904ia1 − 139968
√
3 a1 = 0

−46656ib1 − 15552
√
3 b1 = 0

−46656ib2 − 15552
√
3 b2 = 0

−10368ia3 − 3456
√
3 a3 = 0

51840ia1 + 17280
√
3 a1 = 0

−46656i
√
3 a1 − 46656a1 = 0

−5184i
√
3 b1 − 5184b1 = 0

−5184i
√
3 b2 − 5184b2 = 0

−4320i12 2
3a1 + 1440 12 2

3
√
3 a1 = 0

−4320i12 2
3a3 + 1440 12 2

3
√
3 a3 = 0

−3888i12 2
3 b1 + 1296 12 2

3
√
3 b1 = 0

−3888i12 2
3 b2 + 1296 12 2

3
√
3 b2 = 0

−3456i
√
3 a3 − 3456a3 = 0

23328i12 2
3a1 − 7776 12 2

3
√
3 a1 = 0

23328i12 2
3a3 − 7776 12 2

3
√
3 a3 = 0

−432i12 2
3
√
3 b1 + 432 12 2

3 b1 = 0
−432i12 2

3
√
3 b2 + 432 12 2

3 b2 = 0
−288i12 2

3
√
3 a3 + 288 12 2

3a3 = 0
2592i12 2

3
√
3 a1 − 2592 12 2

3a1 = 0
2592i12 2

3
√
3 a3 − 2592 12 2

3a3 = 0
−279936ia2 − 186624ib3 − 93312

√
3 a2 − 62208

√
3 b3 = 0

31104ia2 + 20736ib3 + 10368
√
3 a2 + 6912

√
3 b3 = 0

−31104i
√
3 a2 − 20736i

√
3 b3 − 31104a2 − 20736b3 = 0

−2592i12 2
3a2 − 1728i12 2

3 b3 + 864 12 2
3
√
3 a2 + 576 12 2

3
√
3 b3 = 0

11664i12 2
3a2 + 7776i12 2

3 b3 − 3888 12 2
3
√
3 a2 − 2592 12 2

3
√
3 b3 = 0

1296i12 2
3
√
3 a2 + 864i12 2

3
√
3 b3 − 1296 12 2

3a2 − 864 12 2
3 b3 = 09491



Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

− 12i
√
3x+

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

12x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.x, y,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

,

√
27x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

= v3,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

= v4,

√
27x3y2 − 4

x
= v5
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The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−1296i12 2

3
√
3 a2 − 864i12 2

3
√
3 b3

− 1296 12 2
3a2 − 864 12 2

3 b3
)
v2v4v5v

6
1

+
(
−2592i12 2

3
√
3 a3 − 2592 12 2

3a3
)
v22v4v5v

5
1

+
(
−2592i12 2

3
√
3 a1 − 2592 12 2

3a1
)
v2v4v5v

5
1

+
(
−31104ia2 − 20736ib3 + 10368

√
3 a2

+ 6912
√
3 b3
)
v51 +

(
−51840ia1 + 17280

√
3 a1
)
v41

+ 46656 12 1
3
√
3 b2v22v3v101 + 15552 12 1

3 b2v2v3v5v
9
1

− 6912 12 1
3
√
3 b2v3v71 + 4608 12 1

3
√
3 a3v3v21

+
(
2592i12 2

3a2 + 1728i12 2
3 b3

+ 864 12 2
3
√
3 a2 + 576 12 2

3
√
3 b3
)
v4v

4
1

+
(
4320i12 2

3a1 + 1440 12 2
3
√
3 a1
)
v4v

3
1

+
(
3456i

√
3 a3 − 3456a3

)
v5v

3
1

+
(
419904ia1 − 139968

√
3 a1
)
v22v

7
1

+
(
5184i

√
3 b1 − 5184b1

)
v5v

7
1

+
(
46656ib2 − 15552

√
3 b2
)
v2v

9
1 +

(
279936ia2

+ 186624ib3 − 93312
√
3 a2 − 62208

√
3 b3
)
v22v

8
1

+
(
46656ib1 − 15552

√
3 b1
)
v2v

8
1

+
(
5184i

√
3 b2 − 5184b2

)
v5v

8
1

+
(
10368ia3 − 3456

√
3 a3
)
v2v

4
1

+
(
4320i12 2

3a3 + 1440 12 2
3
√
3 a3
)
v2v4v

3
1

+
(
288i12 2

3
√
3 a3 + 288 12 2

3a3
)
v4v5v

2
1

+
(
3888i12 2

3 b2 + 1296 12 2
3
√
3 b2
)
v2v4v

8
1

+
(
−11664i12 2

3a2 − 7776i12 2
3 b3

− 3888 12 2
3
√
3 a2 − 2592 12 2

3
√
3 b3
)
v22v4v

7
1

+
(
3888i12 2

3 b1 + 1296 12 2
3
√
3 b1
)
v2v4v

7
1

+
(
31104i

√
3 a2 + 20736i

√
3 b3

− 31104a2 − 20736b3
)
v2v5v

7
1

+
(
432i12 2

3
√
3 b2 + 432 12 2

3 b2
)
v4v5v

7
1

+
(
−23328i12 2

3a3 − 7776 12 2
3
√
3 a3
)
v32v4v

6
1

+
(
−23328i12 2

3a1 − 7776 12 2
3
√
3 a1
)
v22v4v

6
1

+
(
46656i

√
3 a1 − 46656a1

)
v2v5v

6
1

+
(
432i12 2

3
√
3 b1 + 432 12 2

3 b1
)
v4v5v

6
1

− 31104 12 1
3
√
3 a3v22v3v51 − 10368 12 1

3a3v2v3v5v
4
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−10368 12 1

3a3 = 0
15552 12 1

3 b2 = 0
−31104 12 1

3
√
3 a3 = 0

4608 12 1
3
√
3 a3 = 0

−6912 12 1
3
√
3 b2 = 0

46656 12 1
3
√
3 b2 = 0

−51840ia1 + 17280
√
3 a1 = 0

10368ia3 − 3456
√
3 a3 = 0

46656ib1 − 15552
√
3 b1 = 0

46656ib2 − 15552
√
3 b2 = 0

419904ia1 − 139968
√
3 a1 = 0

−23328i12 2
3a1 − 7776 12 2

3
√
3 a1 = 0

−23328i12 2
3a3 − 7776 12 2

3
√
3 a3 = 0

3456i
√
3 a3 − 3456a3 = 0

3888i12 2
3 b1 + 1296 12 2

3
√
3 b1 = 0

3888i12 2
3 b2 + 1296 12 2

3
√
3 b2 = 0

4320i12 2
3a1 + 1440 12 2

3
√
3 a1 = 0

4320i12 2
3a3 + 1440 12 2

3
√
3 a3 = 0

5184i
√
3 b1 − 5184b1 = 0

5184i
√
3 b2 − 5184b2 = 0

46656i
√
3 a1 − 46656a1 = 0

−2592i12 2
3
√
3 a1 − 2592 12 2

3a1 = 0
−2592i12 2

3
√
3 a3 − 2592 12 2

3a3 = 0
288i12 2

3
√
3 a3 + 288 12 2

3a3 = 0
432i12 2

3
√
3 b1 + 432 12 2

3 b1 = 0
432i12 2

3
√
3 b2 + 432 12 2

3 b2 = 0
−31104ia2 − 20736ib3 + 10368

√
3 a2 + 6912

√
3 b3 = 0

279936ia2 + 186624ib3 − 93312
√
3 a2 − 62208

√
3 b3 = 0

−11664i12 2
3a2 − 7776i12 2

3 b3 − 3888 12 2
3
√
3 a2 − 2592 12 2

3
√
3 b3 = 0

2592i12 2
3a2 + 1728i12 2

3 b3 + 864 12 2
3
√
3 a2 + 576 12 2

3
√
3 b3 = 0

31104i
√
3 a2 + 20736i

√
3 b3 − 31104a2 − 20736b3 = 0

−1296i12 2
3
√
3 a2 − 864i12 2

3
√
3 b3 − 1296 12 2

3a2 − 864 12 2
3 b3 = 09496



Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = ((x^2*y(x)^5-1)*y(x)+2*x^2*y(x)^6)/(-6*x^3*y(x)^5+2*x), y(x)` *** Sublevel

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 36� �
dsolve(x^6*diff(y(x),x)^3-x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −2
√
3

9x 3
2

y(x) = 2
√
3

9x 3
2

y(x) = c31 −
c1
x

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x^6 (y'[x])^3 -x y'[x] - y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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36.8 problem 1072
36.8.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9500

Internal problem ID [4291]
Internal file name [OUTPUT/3784_Sunday_June_05_2022_10_56_08_AM_32669184/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1072.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

yy′
3 − 3xy′ + 3y = 0

36.8.1 Solving as dAlembert ode

Let p = y′ the ode becomes

y p3 − 3xp+ 3y = 0

Solving for y from the above results in

y = 3xp
p3 + 3 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p
p3 + 3

g = 0

Hence (2) becomes

p− 3p
p3 + 3 = x

(
3

p3 + 3 − 9p3

(p3 + 3)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 3p
p3 + 3 = 0

Solving for p from the above gives

p = 0
p = 0
p = 0
p = 0

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 3p(x)

p(x)3+3

x

(
3

p(x)3+3 −
9p(x)3(

p(x)3+3
)2
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

3
p3+3 −

9p3
(p3+3)2

)
p− 3p

p3+3
(4)

This ODE is now solved for x(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − −6p3 + 9
p4 (p3 + 3)

q(p) = 0

Hence the ode is

d

dp
x(p)− (−6p3 + 9)x(p)

p4 (p3 + 3) = 0

The integrating factor µ is

µ = e
∫
− −6p3+9

p4
(
p3+3

)dp

= e− ln
(
p3+3

)
+3 ln(p)+ 1

p3

Which simplifies to

µ = p3e
1
p3

p3 + 3

The ode becomes

d
dpµx = 0

d
dp

(
p3e

1
p3 x

p3 + 3

)
= 0

Integrating gives

p3e
1
p3 x

p3 + 3 = c2

Dividing both sides by the integrating factor µ = p3e
1
p3

p3+3 results in

x(p) = c2(p3 + 3) e−
1
p3

p3
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =

((
−12y + 4

√
−−9y3+4x3

y

)
y2
) 1

3

2y + 2x((
−12y + 4

√
−−9y3+4x3

y

)
y2
) 1

3

p = −

((
−12y + 4

√
−−9y3+4x3

y

)
y2
) 1

3

4y − x((
−12y + 4

√
−−9y3+4x3

y

)
y2
) 1

3
+

i
√
3


((

−12y+4
√

−−9y3+4x3
y

)
y2

) 1
3

2y − 2x((
−12y+4

√
−−9y3+4x3

y

)
y2

) 1
3


2

p = −

((
−12y + 4

√
−−9y3+4x3

y

)
y2
) 1

3

4y − x((
−12y + 4

√
−−9y3+4x3

y

)
y2
) 1

3
−

i
√
3


((

−12y+4
√

−−9y3+4x3
y

)
y2

) 1
3

2y − 2x((
−12y+4

√
−−9y3+4x3

y

)
y2

) 1
3


2

Substituting the above in the solution for x found above gives

x =
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

−
4y5

(
−3y+

√
9y3−4x3

y

)
2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
+2yx


3

(
2 1

3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3 + 2yx

)2

x

=
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

−
32y5

(
−3y+

√
9y3−4x3

y

)
i

√
3 2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
−2i

√
3 xy−2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
−2yx


3

−

(
i
√
3−1

)
2
1
3

(
−3y3+y2

√
9y3−4x3

y

) 2
3

2 +
(
1 + i

√
3
)
yx


2
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x =
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

96y6−32
√

9y3−4x3
y y5

8

−
2
1
3
(
1+i

√
3
)(

−3y3+y2
√

9y3−4x3
y

) 2
3

2 +yx
(
i
√
3−1

)


3

−
2
1
3
(
1+i

√
3
)(

−3y3+y2
√

9y3−4x3
y

) 2
3

2 + yx
(
i
√
3− 1

)
2

Summary
The solution(s) found are the following

(1)y = 0

(2)x =
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

−
4y5

(
−3y+

√
9y3−4x3

y

)
2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
+2yx


3

(
2 1

3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3 + 2yx

)2

(3)x

=
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

−
32y5

(
−3y+

√
9y3−4x3

y

)
i

√
3 2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
−2i

√
3 xy−2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
−2yx


3

−

(
i
√
3−1

)
2
1
3

(
−3y3+y2

√
9y3−4x3

y

) 2
3

2 +
(
1 + i

√
3
)
yx


2

(4)x =
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

96y6−32
√

9y3−4x3
y y5

8

−
2
1
3
(
1+i

√
3
)(

−3y3+y2
√

9y3−4x3
y

) 2
3

2 +yx
(
i
√
3−1

)


3

−
2
1
3
(
1+i

√
3
)(

−3y3+y2
√

9y3−4x3
y

) 2
3

2 + yx
(
i
√
3− 1

)
2
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Verification of solutions

y = 0

Verified OK.

x =
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

−
4y5

(
−3y+

√
9y3−4x3

y

)
2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
+2yx


3

(
2 1

3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3 + 2yx

)2

Warning, solution could not be verified
x

=
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

−
32y5

(
−3y+

√
9y3−4x3

y

)
i

√
3 2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
−2i

√
3 xy−2

1
3
(
−3y3+y2

√
9y3−4x3

y

) 2
3
−2yx


3

−

(
i
√
3−1

)
2
1
3

(
−3y3+y2

√
9y3−4x3

y

) 2
3

2 +
(
1 + i

√
3
)
yx


2

Warning, solution could not be verified

x =
6c2y2

1
3

(
−3y3 + y2

√
9y3−4x3

y

) 2
3
x e

96y6−32
√

9y3−4x3
y y5

8

−
2
1
3
(
1+i

√
3
)(

−3y3+y2
√

9y3−4x3
y

) 2
3

2 +yx
(
i
√
3−1

)


3

−
2
1
3
(
1+i

√
3
)(

−3y3+y2
√

9y3−4x3
y

) 2
3

2 + yx
(
i
√
3− 1

)
2

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.203 (sec). Leaf size: 607� �
dsolve(y(x)*diff(y(x),x)^3-3*x*diff(y(x),x)+3*y(x) = 0,y(x), singsol=all)� �
y(x) = 0

y(x) = RootOf

−2 ln (x)

+
∫ _Z −2

(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3
_a3 − 8_a3 +

(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 2
3
+ 2
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3
+ 4

_a4
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3

d_a

+ 2c1

x

y(x) = RootOf

−4 ln (x)

+
∫ _Z 8i

√
3_a3 + i

√
3
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 2
3
− 4
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3
_a3 + 8_a3 − 4i

√
3−

(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 2
3
+ 4
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3
− 4

_a4
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3

d_a

+ 4c1

x

y(x) = RootOf

−4 ln (x)

−

∫ _Z 8i
√
3_a3 + i

√
3
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 2
3
+ 4
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3
_a3 − 8_a3 − 4i

√
3 +

(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 2
3
− 4
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3
+ 4

_a4
(
4
√

9_a3−4
_a _a5 + 12_a6 − 24_a3 + 8

) 1
3

d_a


+ 4c1

x
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3 Solution by Mathematica
Time used: 152.094 (sec). Leaf size: 8706� �
DSolve[y[x] (y'[x])^3 -3 x y'[x] + 3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.9 problem 1073
36.9.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9509

Internal problem ID [4292]
Internal file name [OUTPUT/3785_Sunday_June_05_2022_10_56_27_AM_58818420/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1073.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

2yy′3 − 3xy′ + 2y = 0

36.9.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2y p3 − 3xp+ 2y = 0

Solving for y from the above results in

y = 3xp
2 (p3 + 1) (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p
2p3 + 2

g = 0

Hence (2) becomes

p− 3p
2p3 + 2 = x

(
3

2p3 + 2 − 18p3

(2p3 + 2)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 3p
2p3 + 2 = 0

Solving for p from the above gives

p = 0

p = 2 2
3

2

p = −2 2
3

4 + i
√
3 2 2

3

4

p = −2 2
3

4 − i
√
3 2 2

3

4

Substituting these in (1A) gives

y = 0

y = 2 2
3x

2

y = −i2 2
3
√
3x

4 − 2 2
3x

4

y = i2 2
3
√
3x

4 − 2 2
3x

4

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 3p(x)

2p(x)3+2

x

(
3

2p(x)3+2 −
18p(x)3(

2p(x)3+2
)2
) (3)
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This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

3
2p3+2 −

18p3
(2p3+2)2

)
p− 3p

2p3+2
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3
p4 + p

q(p) = 0

Hence the ode is
d

dp
x(p) + 3x(p)

p4 + p
= 0

The integrating factor µ is

µ = e
∫ 3

p4+p
dp

= e3 ln(p)−ln
(
p2−p+1

)
−ln(p+1)

Which simplifies to

µ = p3

(p2 − p+ 1) (p+ 1)

The ode becomes
d
dpµx = 0

d
dp

(
p3x

(p2 − p+ 1) (p+ 1)

)
= 0

Integrating gives

p3x

(p2 − p+ 1) (p+ 1) = c3
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Dividing both sides by the integrating factor µ = p3

(p2−p+1)(p+1) results in

x(p) = c3(p2 − p+ 1) (p+ 1)
p3

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =

((
−4y + 2

√
−2(−2y3+x3)

y

)
y2
) 1

3

2y + x((
−4y + 2

√
−2(−2y3+x3)

y

)
y2
) 1

3

p = −

((
−4y + 2

√
−2(−2y3+x3)

y

)
y2
) 1

3

4y − x

2
((

−4y + 2
√

−2(−2y3+x3)
y

)
y2
) 1

3
+

i
√
3


((

−4y+2

√
−

2
(
−2y3+x3

)
y

)
y2

) 1
3

2y − x((
−4y+2

√
−

2
(
−2y3+x3

)
y

)
y2

) 1
3


2

p = −

((
−4y + 2

√
−2(−2y3+x3)

y

)
y2
) 1

3

4y − x

2
((

−4y + 2
√

−2(−2y3+x3)
y

)
y2
) 1

3
−

i
√
3


((

−4y+2

√
−

2
(
−2y3+x3

)
y

)
y2

) 1
3

2y − x((
−4y+2

√
−

2
(
−2y3+x3

)
y

)
y2

) 1
3


2

Substituting the above in the solution for x found above gives

x

=

(2x+ 2y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

−

x+ y −

√
−2x3+4y3

y

2

 2 2
3

(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + 2 1

3

(
x2 + 2y2 − y

√
−2x3+4y3

y

) y

(2 1
3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 + y

(
2 2

3x+ 2
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3
))

c3y

(
x2 1

3y +
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3
)3

x

=

2
((

1− i
√
3
)
2 1

3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

(
−4
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + x2 2

3
(
1 + i

√
3
))

y

)(4x+ 4y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

x+ y −

√
−2x3+4y3

y

2

 2 2
3
(
1 + i

√
3
) (

−2y3 + y2
√

−2x3+4y3
y

) 1
3 +

(
x2 + 2y2 − y

√
−2x3+4y3

y

)
2 1

3
(
i
√
3− 1

) y

 c3y

((
1− i

√
3
) (

−2y3 + y2
√

−2x3+4y3
y

) 2
3 + 2 1

3x
(
1 + i

√
3
)
y

)3
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x =

−

2

(−4x− 4y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

x+ y −

√
−2x3+4y3

y

2

(i√3− 1
)
2 2

3

(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 +

(
x2 + 2y2 − y

√
−2x3+4y3

y

)
2 1

3
(
1 + i

√
3
) y

((−i
√
3− 1

)
2 1

3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

(
4
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + x

(
i
√
3− 1

)
2 2

3

)
y

)
c3y

((
−i

√
3− 1

) (
−2y3 + y2

√
−2x3+4y3

y

) 2
3 + 2 1

3x
(
i
√
3− 1

)
y

)3

Summary
The solution(s) found are the following

(1)y = 0

(2)y = 2 2
3x

2

(3)y = −i2 2
3
√
3x

4 − 2 2
3x

4

(4)y = i2 2
3
√
3x

4 − 2 2
3x

4
(5)x

=

(2x+ 2y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

−

x+ y −

√
−2x3+4y3

y

2

 2 2
3

(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + 2 1

3

(
x2 + 2y2 − y

√
−2x3+4y3

y

) y

(2 1
3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 + y

(
2 2

3x+ 2
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3
))

c3y

(
x2 1

3y +
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3
)3

(6)x

=

2
((

1− i
√
3
)
2 1

3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

(
−4
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + x2 2

3
(
1 + i

√
3
))

y

)(4x+ 4y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

x+ y −

√
−2x3+4y3

y

2

 2 2
3
(
1 + i

√
3
) (

−2y3 + y2
√

−2x3+4y3
y

) 1
3 +

(
x2 + 2y2 − y

√
−2x3+4y3

y

)
2 1

3
(
i
√
3− 1

) y

 c3y

((
1− i

√
3
) (

−2y3 + y2
√

−2x3+4y3
y

) 2
3 + 2 1

3x
(
1 + i

√
3
)
y

)3

(7)x =

−

2

(−4x− 4y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

x+ y −

√
−2x3+4y3

y

2

(i√3− 1
)
2 2

3

(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 +

(
x2 + 2y2 − y

√
−2x3+4y3

y

)
2 1

3
(
1 + i

√
3
) y

((−i
√
3− 1

)
2 1

3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

(
4
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + x

(
i
√
3− 1

)
2 2

3

)
y

)
c3y

((
−i

√
3− 1

) (
−2y3 + y2

√
−2x3+4y3

y

) 2
3 + 2 1

3x
(
i
√
3− 1

)
y

)3
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Verification of solutions

y = 0

Verified OK.

y = 2 2
3x

2

Verified OK.

y = −i2 2
3
√
3x

4 − 2 2
3x

4

Verified OK.

y = i2 2
3
√
3x

4 − 2 2
3x

4

Verified OK.
x

=

(2x+ 2y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

−

x+ y −

√
−2x3+4y3

y

2

 2 2
3

(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + 2 1

3

(
x2 + 2y2 − y

√
−2x3+4y3

y

) y

(2 1
3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 + y

(
2 2

3x+ 2
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3
))

c3y

(
x2 1

3y +
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3
)3

Warning, solution could not be verified
x

=

2
((

1− i
√
3
)
2 1

3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

(
−4
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + x2 2

3
(
1 + i

√
3
))

y

)(4x+ 4y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

x+ y −

√
−2x3+4y3

y

2

 2 2
3
(
1 + i

√
3
) (

−2y3 + y2
√

−2x3+4y3
y

) 1
3 +

(
x2 + 2y2 − y

√
−2x3+4y3

y

)
2 1

3
(
i
√
3− 1

) y

 c3y

((
1− i

√
3
) (

−2y3 + y2
√

−2x3+4y3
y

) 2
3 + 2 1

3x
(
1 + i

√
3
)
y

)3

Warning, solution could not be verified
x =

−

2

(−4x− 4y)
(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

x+ y −

√
−2x3+4y3

y

2

(i√3− 1
)
2 2

3

(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 +

(
x2 + 2y2 − y

√
−2x3+4y3

y

)
2 1

3
(
1 + i

√
3
) y

((−i
√
3− 1

)
2 1

3

(
−2y3 + y2

√
−2x3+4y3

y

) 2
3 +

(
4
(
−2y3 + y2

√
−2x3+4y3

y

) 1
3 + x

(
i
√
3− 1

)
2 2

3

)
y

)
c3y

((
−i

√
3− 1

) (
−2y3 + y2

√
−2x3+4y3

y

) 2
3 + 2 1

3x
(
i
√
3− 1

)
y

)3

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
<- symmetries for implicit equations successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 734� �
dsolve(2*y(x)*diff(y(x),x)^3-3*x*diff(y(x),x)+2*y(x) = 0,y(x), singsol=all)� �
y(x) = 2 2

3x

2

y(x) = −
2 2

3
(
1 + i

√
3
)
x

4

y(x) =
2 2

3
(
−1 + i

√
3
)
x

4
y(x) = 0

y(x) = RootOf

− ln (x) +
∫ _Z

−
2
((√

2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3_a3 + 2_a3 −

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 2
3 −

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3 − 1

_a (2_a3 − 1)
((√

2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3

d_a

+ c1

x

y(x) = RootOf

−2 ln (x)

+
∫ _Z 2i

√
3_a3 + i

√
3
((√

2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 2
3 − 4

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3_a3 + 2_a3 − i

√
3−

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 2
3 + 2

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3 − 1((√

2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3_a (2_a3 − 1)

d_a

+ 2c1

x

y(x) = RootOf

−2 ln (x)

−

∫ _Z 2i
√
3_a3 + i

√
3
((√

2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 2
3 + 4

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3_a3 − 2_a3 − i

√
3 +

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 2
3 − 2

((√
2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3 + 1

_a (2_a3 − 1)
((√

2
√

1
_a(2_a3−1

) _a2 + 1
)
(2_a3 − 1)2

) 1
3

d_a


+ 2c1

x
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3 Solution by Mathematica
Time used: 172.826 (sec). Leaf size: 10331� �
DSolve[2 y[x] (y'[x])^3 -3 x y'[x]+2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.10 problem 1076
36.10.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9518
36.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9521

Internal problem ID [4293]
Internal file name [OUTPUT/3786_Sunday_June_05_2022_10_56_54_AM_77427436/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1076.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_quadrature]

(2y + x) y′3 + 3(x+ y) y′2 + (2x+ y) y′ = 0

36.10.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(2y + x) p3 + 3(x+ y) p2 + (2x+ y) p = 0

Solving for y from the above results in

y = −(p+ 2)x
2p+ 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p− 2
2p+ 1

g = 0

Hence (2) becomes

p− −p− 2
2p+ 1 = x

(
− 1
2p+ 1 − 2(−p− 2)

(2p+ 1)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −p− 2
2p+ 1 = 0

Solving for p from the above gives

p = −1
2 + i

√
3

2

p = −1
2 − i

√
3

2

Substituting these in (1A) gives

y = −x

2 − i
√
3x
2

y = −x

2 + i
√
3x
2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −p(x)−2

2p(x)+1

x
(
− 1

2p(x)+1 −
2(−p(x)−2)
(2p(x)+1)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

2p+1 −
2(−p−2)
(2p+1)2

)
p− −p−2

2p+1
(4)

This ODE is now solved for x(p).
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Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 3
4 (p2 + p+ 1)

(
p+ 1

2

)
q(p) = 0

Hence the ode is
d

dp
x(p)− 3x(p)

4 (p2 + p+ 1)
(
p+ 1

2

) = 0

The integrating factor µ is

µ = e
∫
− 3

4
(
p2+p+1

)(
p+1

2
)dp

= e− ln(2p+1)+
ln
(
p2+p+1

)
2

Which simplifies to

µ =
√
p2 + p+ 1
2p+ 1

The ode becomes
d
dpµx = 0

d
dp

(√
p2 + p+ 1x
2p+ 1

)
= 0

Integrating gives
√
p2 + p+ 1x
2p+ 1 = c3

Dividing both sides by the integrating factor µ =
√

p2+p+1
2p+1 results in

x(p) = c3(2p+ 1)√
p2 + p+ 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −2x+ y

2y + x
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Substituting the above in the solution for x found above gives

x = − c3x
√
3

(2y + x)
√

x2+xy+y2

(2y+x)2

Summary
The solution(s) found are the following

(1)y = −x

2 − i
√
3x
2

(2)y = −x

2 + i
√
3x
2

(3)x = − c3x
√
3

(2y + x)
√

x2+xy+y2

(2y+x)2

Verification of solutions

y = −x

2 − i
√
3x
2

Verified OK.

y = −x

2 + i
√
3x
2

Verified OK.

x = − c3x
√
3

(2y + x)
√

x2+xy+y2

(2y+x)2

Verified OK.

36.10.2 Maple step by step solution

Let’s solve
(2y + x) y′3 + 3(x+ y) y′2 + (2x+ y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
(2y + x) y′3 + 3(x+ y) y′2 + (2x+ y) y′

)
dx =

∫
0dx+ c1
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• Cannot compute integral∫ (
(2y + x) y′3 + 3(x+ y) y′2 + (2x+ y) y′

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 65� �
dsolve((x+2*y(x))*diff(y(x),x)^3+3*(x+y(x))*diff(y(x),x)^2+(2*x+y(x))*diff(y(x),x) = 0,y(x), singsol=all)� �

y(x) = c1 − x

y(x) = −c1x−
√

−3c21x2 + 4
2c1

y(x) = −c1x+
√

−3c21x2 + 4
2c1

y(x) = c1
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3 Solution by Mathematica
Time used: 0.471 (sec). Leaf size: 130� �
DSolve[(x+2 y[x])(y'[x])^3+3 (x+y[x]) (y'[x])^2+ (2 x+y[x]) y'[x] ==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−x−

√
−3x2 + 4ec1

)
y(x) → 1

2

(
−x+

√
−3x2 + 4ec1

)
y(x) → c1
y(x) → −x+ c1

y(x) → 1
2

(
−
√
3
√
−x2 − x

)
y(x) → 1

2

(√
3
√
−x2 − x

)
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36.11 problem 1077
Internal problem ID [4294]
Internal file name [OUTPUT/3787_Sunday_June_05_2022_10_57_04_AM_22201326/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1077.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y2y′
3 − xy′ + y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

6y + 2x

y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

(1)

y′ = −
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

12y − x

y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3
+

i
√
3
((

−108y2+12
√
3
√

27y4−4x3
) 1

3

6y − 2x

y
(
−108y2+12

√
3
√

27y4−4x3
) 1

3

)
2

(2)

y′ = −
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

12y − x

y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3
−

i
√
3
((

−108y2+12
√
3
√

27y4−4x3
) 1

3

6y − 2x

y
(
−108y2+12

√
3
√

27y4−4x3
) 1

3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

6y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

b2 +

((
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

)
(b3 − a2)

6y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

−

((
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

)2
a3

36y2
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3

−


− 48

√
3x2(

−108y2+12
√
3
√

27y4−4x3
) 1

3√27y4−4x3
+ 12

6y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

+
4
((

−108y2 + 12
√
3
√
27y4 − 4x3

) 2
3 + 12x

)√
3x2

y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3
√
27y4 − 4x3

 (xa2 + ya3 + a1)

−

 −216y + 648
√
3 y3√

27y4−4x3

9y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
−
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

6y2
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

−

((
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

)(
−216y + 648

√
3 y3√

27y4−4x3

)
18y

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3

 (xb2+yb3+b1) = 0

(5E)

Putting the above in normal form gives

−216
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
3 y5b3 +

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 5
3
√
27y4 − 4x3 xb2 −

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 5
3
√
27y4 − 4x3 ya2 + 2

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 5
3
√
27y4 − 4x3 yb3 + 6b2

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3 y2

√
27y4 − 4x3 − 216

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
3 y4b1 + 6480

√
3x2y4b2 + 10368

√
3x y5b3 − 4

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3
√
27y4 − 4x3 xa3 + 72

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
27y4 − 4x3 y3b3 + 864

√
3x4ya2 − 1440

√
3x3y2a3 + 6480

√
3x y4b1 − 24

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
27y4 − 4x3 x2a3 + 72

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
27y4 − 4x3 y2b1 − 216

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
3x y4b2 + 24

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
3x3ya2 + 24

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
3x2y2a3 + 24

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
3x2ya1 + 72

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3
√
27y4 − 4x3 x y2b2 + 7776

√
3 y6a3 − 576

√
3x5b2 − 3888

√
3 y5a1 − 576

√
3x4b1 +

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 5
3
√
27y4 − 4x3 b1 − 648

√
27y4 − 4x3 y4a3 + 1296

√
27y4 − 4x3 y3a1 + 2592

√
27y4 − 4x3 x y3a2 − 7776

√
3x y5a2 − 1152

√
3x4yb3 + 288

√
3x3ya1 − 2160

√
27y4 − 4x3 x2y2b2 − 3456

√
27y4 − 4x3 x y3b3 − 2160

√
27y4 − 4x3 x y2b1 − 72(27y4 − 4x3)

3
2 a3

6
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3 y2

√
27y4 − 4x3

= 0
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Setting the numerator to zero gives

−216
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √3 y5b3

+
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 5

3 √27y4 − 4x3 xb2

−
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 5

3 √27y4 − 4x3 ya2

+ 2
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 5

3 √27y4 − 4x3 yb3

+ 6b2
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 4

3
y2
√

27y4 − 4x3

− 216
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √3 y4b1 + 6480
√
3x2y4b2

+ 10368
√
3x y5b3 − 4

(
−108y2 + 12

√
3
√

27y4 − 4x3
) 4

3 √27y4 − 4x3 xa3

+72
(
−108y2+12

√
3
√

27y4 − 4x3
) 2

3 √27y4 − 4x3 y3b3+864
√
3x4ya2−1440

√
3x3y2a3

+ 6480
√
3x y4b1 − 24

(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √27y4 − 4x3 x2a3

+ 72
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √27y4 − 4x3 y2b1

− 216
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √3x y4b2

+ 24
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √3x3ya2

+ 24
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √3x2y2a3

+ 24
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √3x2ya1

+ 72
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 2

3 √27y4 − 4x3 x y2b2 + 7776
√
3 y6a3 − 576

√
3x5b2

− 3888
√
3 y5a1 − 576

√
3x4b1 +

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 5
3 √27y4 − 4x3 b1

− 648
√

27y4 − 4x3 y4a3 + 1296
√
27y4 − 4x3 y3a1 + 2592

√
27y4 − 4x3 x y3a2

− 7776
√
3x y5a2 − 1152

√
3x4yb3 + 288

√
3x3ya1 − 2160

√
27y4 − 4x3 x2y2b2

− 3456
√
27y4 − 4x3 x y3b3 − 2160

√
27y4 − 4x3 x y2b1 − 72

(
27y4 − 4x3) 3

2 a3 = 0
(6E)

Simplifying the above gives

(6E)Expression too large to display
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Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−108y2+12

√
3
√

27y4 − 4x3
) 1

3
,
(
−108y2+12

√
3
√
27y4 − 4x3

) 2
3
,
√
27y4 − 4x3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 1

3 = v3,
(
−108y2

+ 12
√
3
√

27y4 − 4x3
) 2

3 = v4,
√
27y4 − 4x3 = v5

}

The above PDE (6E) now becomes

(7E)

2592v4
√
3 v52b3+648v4

√
3 v42b1+38880

√
3 v21v42b2+62208

√
3 v1v52b3

−864v4v5v32b3+5184
√
3 v41v2a2−8640

√
3 v31v22a3+38880

√
3 v1v42b1

− 144v4v5v21a3 − 216v4v5v22b1 + 15552v5v1v32a2 − 46656
√
3 v1v52a2

− 6912
√
3 v41v2b3 − 1944

√
3 v4v52a2 + 11664

√
3 v3v62b2

− 288
√
3 v41v4b2+1152

√
3 v41v3a3− 288

√
3 v31v4b1+1728

√
3 v31v2a1

− 12960v5v21v22b2 − 20736v5v1v32b3 − 12960v5v1v22b1 + 648v5v4v32a2
− 3888v5v3v42b2 + 648v4

√
3 v1v42b2 + 432v4

√
3 v31v2a2

+ 144v4
√
3 v21v22a3 + 144v4

√
3 v21v2a1 − 216v4v5v1v22b2

− 576
√
3 v31v4v2b3 − 1728

√
3 v31v3v22b2 − 7776

√
3 v1v3v42a3

+ 2592v1v5v3v22a3 − 3456
√
3 v51b2 − 3456

√
3 v41b1 + 46656

√
3 v62a3

− 23328
√
3 v52a1 − 15552v5v42a3 + 7776v5v32a1 + 1728v31v5a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
432

√
3 a2 − 576

√
3 b3
)
v31v2v4 +

(
5184

√
3 a2 − 6912

√
3 b3
)
v41v2

+
(
−46656

√
3 a2 + 62208

√
3 b3
)
v1v

5
2

+
(
−1944

√
3 a2+2592

√
3 b3
)
v52v4+648v4

√
3 v42b1+38880

√
3 v21v42b2

− 8640
√
3 v31v22a3 + 38880

√
3 v1v42b1 − 144v4v5v21a3 − 216v4v5v22b1

+ 11664
√
3 v3v62b2 − 288

√
3 v41v4b2 + 1152

√
3 v41v3a3 − 288

√
3 v31v4b1

+ 1728
√
3 v31v2a1 − 12960v5v21v22b2 − 12960v5v1v22b1 − 3888v5v3v42b2

+ 648v4
√
3 v1v42b2 + 144v4

√
3 v21v22a3 + 144v4

√
3 v21v2a1

− 216v4v5v1v22b2 − 1728
√
3 v31v3v22b2 − 7776

√
3 v1v3v42a3

+ 2592v1v5v3v22a3 − 3456
√
3 v51b2 − 3456

√
3 v41b1 + 46656

√
3 v62a3

− 23328
√
3 v52a1 − 15552v5v42a3 + 7776v5v32a1 + 1728v31v5a3

+ (15552a2 − 20736b3) v1v32v5 + (648a2 − 864b3) v32v4v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
7776a1 = 0

−15552a3 = 0
−144a3 = 0
1728a3 = 0
2592a3 = 0

−12960b1 = 0
−216b1 = 0

−12960b2 = 0
−3888b2 = 0
−216b2 = 0

−23328
√
3 a1 = 0

144
√
3 a1 = 0

1728
√
3 a1 = 0

−8640
√
3 a3 = 0

−7776
√
3 a3 = 0

144
√
3 a3 = 0

1152
√
3 a3 = 0

46656
√
3 a3 = 0

−3456
√
3 b1 = 0

−288
√
3 b1 = 0

648
√
3 b1 = 0

38880
√
3 b1 = 0

−3456
√
3 b2 = 0

−1728
√
3 b2 = 0

−288
√
3 b2 = 0

648
√
3 b2 = 0

11664
√
3 b2 = 0

38880
√
3 b2 = 0

648a2 − 864b3 = 0
15552a2 − 20736b3 = 0

−46656
√
3 a2 + 62208

√
3 b3 = 0

−1944
√
3 a2 + 2592

√
3 b3 = 0

432
√
3 a2 − 576

√
3 b3 = 0

5184
√
3 a2 − 6912

√
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
4x
3

= 3y
4x

This is easily solved to give

y = c1x
3
4

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
3
4
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And S is found from

dS = dx

ξ

= dx
4x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)
4

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

6y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

Evaluating all the partial derivatives gives

Rx = − 3y
4x 7

4

Ry =
1
x

3
4

Sx = 3
4x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

9x 3
4y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

2
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 x− 9y2

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3 + 24x2

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

9R12 1
3
(√

3
√
27R4 − 4− 9R2) 1

3

2
(√

3
√
27R4 − 4− 9R2

) 2
3 12 2

3 − 9
(√

3
√
27R4 − 4− 9R2

) 1
3 12 1

3R2 + 24

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 9R

(
12
√
81R4 − 12− 108R2) 1

3

4 18 1
3

((√
81R4 − 12− 9R2

)2) 1
3 − 9R2

(
12
√
81R4 − 12− 108R2

) 1
3 + 24

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
12
√
81_a4 − 12− 108_a2

) 1
3

4 18 1
3

((√
81_a4 − 12− 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 − 12− 108_a2

) 1
3 + 24

d_a+ c1

Which simplifies to

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
12
√
81_a4 − 12− 108_a2

) 1
3

4 18 1
3

((√
81_a4 − 12− 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 − 12− 108_a2

) 1
3 + 24

d_a+ c1

Summary
The solution(s) found are the following

(1)3 ln (x)
4

=
∫ y

x
3
4 9_a

(
12
√
81_a4 − 12− 108_a2

) 1
3

4 18 1
3

((√
81_a4 − 12− 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 − 12− 108_a2

) 1
3 + 24

d_a

+ c1
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Verification of solutions

3 ln (x)
4

=
∫ y

x
3
4 9_a

(
12
√
81_a4 − 12− 108_a2

) 1
3

4 18 1
3

((√
81_a4 − 12− 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 − 12− 108_a2

) 1
3 + 24

d_a

+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x−

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12x

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x−

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12x

)
(b3 − a2)

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

−

(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x−

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12x

)2
a3

144y2
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3

−


− 144ix2(

−108y2+12
√
3
√

27y4−4x3
) 1

3√27y4−4x3
− 12i

√
3 + 48

√
3x2(

−108y2+12
√
3
√

27y4−4x3
) 1

3√27y4−4x3
− 12

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

+
2
(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x−

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12x

)√
3x2

y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3
√
27y4 − 4x3

 (xa2

+ ya3 + a1)−


2i
√
3
(
−216y+ 648

√
3 y3√

27y4−4x3

)

3
(
−108y2+12

√
3
√

27y4−4x3
) 1

3
−

2
(
−216y+ 648

√
3 y3√

27y4−4x3

)

3
(
−108y2+12

√
3
√

27y4−4x3
) 1

3

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

−
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x−

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12x

12y2
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

−

(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x−

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12x

)(
−216y + 648

√
3 y3√

27y4−4x3

)
36y

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−108y2+12

√
3
√

27y4 − 4x3
) 1

3
,
(
−108y2+12

√
3
√
27y4 − 4x3

) 2
3
,
√
27y4 − 4x3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 1

3 = v3,
(
−108y2

+ 12
√
3
√

27y4 − 4x3
) 2

3 = v4,
√
27y4 − 4x3 = v5

}
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The above PDE (6E) now becomes

(7E)

51840iv31v22a3 − 10368
√
3 v41v2a2 + 17280

√
3 v31v22a3

− 77760
√
3 v1v42b1 + 1728v5v4v32b3 − 3456

√
3 v31v2a1

+ 432v5v4v22b1 + 25920v5v21v22b2 + 41472v5v1v32b3
+ 25920v5v1v22b1 + 93312

√
3 v1v52a2 − 31104v5v1v32a2

+ 288v5v4v21a3 − 5184
√
3 v4v52b3 − 1296

√
3 v4v42b1

− 77760
√
3 v21v42b2 − 124416

√
3 v1v52b3

+ 13824
√
3 v41v2b3 − 1296v4v5v32a2 − 15552v3v5v42b2

− 233280iv1v42b1 − 10368iv31v2a1 − 11664iv4v52a2
+ 15552iv4v52b3 − 1728iv41v4b2 + 3888iv4v42b1
− 1728iv31v4b1 − 233280iv21v42b2 + 279936iv1v52a2
− 373248iv1v52b3 − 31104iv41v2a2 + 41472iv41v2b3
− 279936iv62a3 + 20736iv41b1 + 20736iv51b2
+ 139968iv52a1 + 46656

√
3 v3v62b2 + 576

√
3 v41v4b2

+ 4608
√
3 v41v3a3 + 576

√
3 v31v4b1 + 3888

√
3 v4v52a2

− 3456v31v5a3 + 31104v5v42a3 − 15552v5v32a1
− 93312

√
3 v62a3 + 6912

√
3 v51b2 + 46656

√
3 v52a1

+ 6912
√
3 v41b1 + 10368v1v3v5v22a3 + 1152

√
3 v31v4v2b3

− 6912
√
3 v31v3v22b2 − 31104

√
3 v1v3v42a3

−1296
√
3 v4v1v42b2−864

√
3 v4v31v2a2−288

√
3 v4v21v22a3

−288
√
3 v4v21v2a1+432v5v4v1v22b2−432i

√
3 v5v4v1v22b2

+ 31104i
√
3 v5v42a3 − 3456i

√
3 v31v5a3

− 15552i
√
3 v5v32a1 + 3888iv4v1v42b2 + 2592iv4v31v2a2

− 3456iv31v4v2b3 + 864iv4v21v22a3 + 864iv4v21v2a1
+ 41472i

√
3 v5v1v32b3 + 25920i

√
3 v5v1v22b1

+ 1296i
√
3 v4v5v32a2 − 1728i

√
3 v5v4v32b3

− 432i
√
3 v5v4v22b1 − 288i

√
3 v5v4v21a3

+ 25920i
√
3 v5v21v22b2 − 31104i

√
3 v5v1v32a2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−15552v3v5v42b2+
(
−31104ia2+41472ib3− 10368

√
3 a2

+ 13824
√
3 b3
)
v41v2 +

(
−1728ib2 + 576

√
3 b2
)
v41v4

+
(
51840ia3 + 17280

√
3 a3
)
v31v

2
2

+
(
−10368ia1 − 3456

√
3 a1
)
v31v2

+
(
−1728ib1 + 576

√
3 b1
)
v31v4

+
(
−3456i

√
3 a3 − 3456a3

)
v31v5

+
(
−233280ib2 − 77760

√
3 b2
)
v21v

4
2

+
(
279936ia2 − 373248ib3 + 93312

√
3 a2

− 124416
√
3 b3
)
v1v

5
2 + 46656

√
3 v3v62b2

+ 4608
√
3 v41v3a3 +

(
−233280ib1 − 77760

√
3 b1
)
v1v

4
2

+
(
−11664ia2+15552ib3+3888

√
3 a2−5184

√
3 b3
)
v52v4

+
(
3888ib1 − 1296

√
3 b1
)
v42v4

+
(
31104i

√
3 a3 + 31104a3

)
v42v5

+
(
−15552i

√
3 a1 − 15552a1

)
v32v5

+ 10368v1v3v5v22a3 − 6912
√
3 v31v3v22b2

− 31104
√
3 v1v3v42a3 +

(
20736ib2 + 6912

√
3 b2
)
v51

+
(
20736ib1 + 6912

√
3 b1
)
v41

+
(
−279936ia3 − 93312

√
3 a3
)
v62

+
(
139968ia1 + 46656

√
3 a1
)
v52

+
(
3888ib2 − 1296

√
3 b2
)
v1v

4
2v4 +

(
−31104i

√
3 a2

+ 41472i
√
3 b3 − 31104a2 + 41472b3

)
v1v

3
2v5

+
(
25920i

√
3 b1 + 25920b1

)
v1v

2
2v5

+
(
1296i

√
3 a2 − 1728i

√
3 b3 − 1296a2 + 1728b3

)
v32v4v5

+
(
−432i

√
3 b1 + 432b1

)
v22v4v5

+
(
2592ia2 − 3456ib3 − 864

√
3 a2 + 1152

√
3 b3
)
v31v2v4

+
(
864ia3 − 288

√
3 a3
)
v21v

2
2v4

+
(
25920i

√
3 b2 + 25920b2

)
v21v

2
2v5

+
(
864ia1 − 288

√
3 a1
)
v21v2v4

+
(
−288i

√
3 a3 + 288a3

)
v21v4v5

+
(
−432i

√
3 b2 + 432b2

)
v1v

2
2v4v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
10368a3 = 0

−15552b2 = 0
−31104

√
3 a3 = 0

4608
√
3 a3 = 0

−6912
√
3 b2 = 0

46656
√
3 b2 = 0

−279936ia3 − 93312
√
3 a3 = 0

−233280ib1 − 77760
√
3 b1 = 0

−233280ib2 − 77760
√
3 b2 = 0

−10368ia1 − 3456
√
3 a1 = 0

−1728ib1 + 576
√
3 b1 = 0

−1728ib2 + 576
√
3 b2 = 0

864ia1 − 288
√
3 a1 = 0

864ia3 − 288
√
3 a3 = 0

3888ib1 − 1296
√
3 b1 = 0

3888ib2 − 1296
√
3 b2 = 0

20736ib1 + 6912
√
3 b1 = 0

20736ib2 + 6912
√
3 b2 = 0

51840ia3 + 17280
√
3 a3 = 0

139968ia1 + 46656
√
3 a1 = 0

−15552i
√
3 a1 − 15552a1 = 0

−3456i
√
3 a3 − 3456a3 = 0

−432i
√
3 b1 + 432b1 = 0

−432i
√
3 b2 + 432b2 = 0

−288i
√
3 a3 + 288a3 = 0

25920i
√
3 b1 + 25920b1 = 0

25920i
√
3 b2 + 25920b2 = 0

31104i
√
3 a3 + 31104a3 = 0

−31104ia2 + 41472ib3 − 10368
√
3 a2 + 13824

√
3 b3 = 0

−11664ia2 + 15552ib3 + 3888
√
3 a2 − 5184

√
3 b3 = 0

2592ia2 − 3456ib3 − 864
√
3 a2 + 1152

√
3 b3 = 0

279936ia2 − 373248ib3 + 93312
√
3 a2 − 124416

√
3 b3 = 0

−31104i
√
3 a2 + 41472i

√
3 b3 − 31104a2 + 41472b3 = 0

1296i
√
3 a2 − 1728i

√
3 b3 − 1296a2 + 1728b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x+

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x+

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

)
(b3 − a2)

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

−

(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x+

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

)2
a3

144y2
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3

−

−

− 144ix2(
−108y2+12

√
3
√

27y4−4x3
) 1

3√27y4−4x3
− 12i

√
3− 48

√
3x2(

−108y2+12
√
3
√

27y4−4x3
) 1

3√27y4−4x3
+ 12

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

−
2
(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x+

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

)√
3x2

y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3
√
27y4 − 4x3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(
−216y+ 648

√
3 y3√

27y4−4x3

)

3
(
−108y2+12

√
3
√

27y4−4x3
) 1

3
+

−144y+ 432
√
3 y3√

27y4−4x3(
−108y2+12

√
3
√

27y4−4x3
) 1

3

12y
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

+
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x+

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

12y2
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 1
3

+

(
i
√
3
(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 − 12i

√
3x+

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 2
3 + 12x

)(
−216y + 648

√
3 y3√

27y4−4x3

)
36y

(
−108y2 + 12

√
3
√
27y4 − 4x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−108y2+12

√
3
√

27y4 − 4x3
) 1

3
,
(
−108y2+12

√
3
√
27y4 − 4x3

) 2
3
,
√
27y4 − 4x3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−108y2 + 12

√
3
√

27y4 − 4x3
) 1

3 = v3,
(
−108y2

+ 12
√
3
√

27y4 − 4x3
) 2

3 = v4,
√
27y4 − 4x3 = v5

}
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The above PDE (6E) now becomes

(7E)

1728i
√
3 v4v5v32b3+432i

√
3 v4v5v22b1+288i

√
3 v4v5v21a3

− 25920i
√
3 v5v21v22b2 + 31104i

√
3 v5v1v32a2

− 41472i
√
3 v5v1v32b3 − 25920i

√
3 v5v1v22b1

− 1296i
√
3 v4v5v32a2 − 1296v4v5v32a2 − 15552v3v5v42b2

+ 3888
√
3 v4v52a2 + 46656

√
3 v3v62b2 + 576

√
3 v41v4b2

+ 4608
√
3 v41v3a3 + 576

√
3 v31v4b1 + 93312

√
3 v1v52a2

+ 13824
√
3 v41v2b3 + 288v4v5v21a3 − 5184

√
3 v4v52b3

− 1296
√
3 v4v42b1− 77760

√
3 v21v42b2− 124416

√
3 v1v52b3

−10368
√
3 v41v2a2+17280

√
3 v31v22a3−77760

√
3 v1v42b1

+ 1728v4v5v32b3 − 3456
√
3 v31v2a1 + 432v4v5v22b1

+ 25920v5v21v22b2 + 41472v5v1v32b3 + 25920v5v1v22b1
− 31104v5v1v32a2 + 11664iv4v52a2 − 15552iv4v52b3
+ 1728iv41v4b2 − 3888iv4v42b1 + 1728iv31v4b1
+ 10368iv31v2a1 + 233280iv21v42b2 − 279936iv1v52a2
+ 373248iv1v52b3 + 31104iv41v2a2 − 41472iv41v2b3
− 51840iv31v22a3 + 233280iv1v42b1 − 2592iv4v31v2a2
+ 3456iv31v4v2b3 − 31104i

√
3 v5v42a3 + 3456i

√
3 v31v5a3

+ 15552i
√
3 v5v32a1 − 1296

√
3 v4v1v42b2

− 864
√
3 v4v31v2a2 − 288

√
3 v4v21v22a3 − 288

√
3 v4v21v2a1

+ 432v4v5v1v22b2 + 1152
√
3 v31v4v2b3 − 6912

√
3 v31v3v22b2

− 31104
√
3 v1v3v42a3 + 10368v1v3v5v22a3

− 864iv4v21v22a3 − 864iv4v21v2a1 − 3888iv4v1v42b2
+ 432i

√
3 v4v5v1v22b2 − 3456v31v5a3 + 31104v5v42a3

− 15552v5v32a1 − 93312
√
3 v62a3 + 6912

√
3 v51b2

+ 46656
√
3 v52a1 + 6912

√
3 v41b1 − 139968iv52a1

+ 279936iv62a3 − 20736iv51b2 − 20736iv41b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−15552v3v5v42b2 + 46656
√
3 v3v62b2 + 4608

√
3 v41v3a3

+
(
−2592ia2 + 3456ib3 − 864

√
3 a2 + 1152

√
3 b3
)
v31v2v4

+
(
−864ia3 − 288

√
3 a3
)
v21v

2
2v4

+
(
−25920i

√
3 b2 + 25920b2

)
v21v

2
2v5

+
(
−864ia1 − 288

√
3 a1
)
v21v2v4

+
(
288i

√
3 a3 + 288a3

)
v21v4v5

+
(
−3888ib2 − 1296

√
3 b2
)
v1v

4
2v4

+
(
31104i

√
3 a2 − 41472i

√
3 b3 − 31104a2

+ 41472b3
)
v1v

3
2v5 +

(
−25920i

√
3 b1 + 25920b1

)
v1v

2
2v5

+
(
−1296i

√
3 a2+1728i

√
3 b3−1296a2+1728b3

)
v32v4v5

+
(
432i

√
3 b1 + 432b1

)
v22v4v5 − 6912

√
3 v31v3v22b2

− 31104
√
3 v1v3v42a3 + 10368v1v3v5v22a3

+
(
31104ia2−41472ib3−10368

√
3 a2+13824

√
3 b3
)
v41v2

+
(
1728ib2 + 576

√
3 b2
)
v41v4

+
(
−51840ia3 + 17280

√
3 a3
)
v31v

2
2

+
(
10368ia1 − 3456

√
3 a1
)
v31v2

+
(
1728ib1 + 576

√
3 b1
)
v31v4

+
(
3456i

√
3 a3 − 3456a3

)
v31v5

+
(
233280ib2 − 77760

√
3 b2
)
v21v

4
2 +

(
−279936ia2

+ 373248ib3 + 93312
√
3 a2 − 124416

√
3 b3
)
v1v

5
2

+
(
233280ib1 − 77760

√
3 b1
)
v1v

4
2

+
(
11664ia2 − 15552ib3 + 3888

√
3 a2 − 5184

√
3 b3
)
v52v4

+
(
−3888ib1 − 1296

√
3 b1
)
v42v4

+
(
−31104i

√
3 a3 + 31104a3

)
v42v5

+
(
15552i

√
3 a1 − 15552a1

)
v32v5

+
(
−20736ib2 + 6912

√
3 b2
)
v51

+
(
−20736ib1 + 6912

√
3 b1
)
v41

+
(
279936ia3 − 93312

√
3 a3
)
v62

+
(
−139968ia1 + 46656

√
3 a1
)
v52

+
(
432i

√
3 b2 + 432b2

)
v1v

2
2v4v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
10368a3 = 0

−15552b2 = 0
−31104

√
3 a3 = 0

4608
√
3 a3 = 0

−6912
√
3 b2 = 0

46656
√
3 b2 = 0

−139968ia1 + 46656
√
3 a1 = 0

−51840ia3 + 17280
√
3 a3 = 0

−20736ib1 + 6912
√
3 b1 = 0

−20736ib2 + 6912
√
3 b2 = 0

−3888ib1 − 1296
√
3 b1 = 0

−3888ib2 − 1296
√
3 b2 = 0

−864ia1 − 288
√
3 a1 = 0

−864ia3 − 288
√
3 a3 = 0

1728ib1 + 576
√
3 b1 = 0

1728ib2 + 576
√
3 b2 = 0

10368ia1 − 3456
√
3 a1 = 0

233280ib1 − 77760
√
3 b1 = 0

233280ib2 − 77760
√
3 b2 = 0

279936ia3 − 93312
√
3 a3 = 0

−31104i
√
3 a3 + 31104a3 = 0

−25920i
√
3 b1 + 25920b1 = 0

−25920i
√
3 b2 + 25920b2 = 0

288i
√
3 a3 + 288a3 = 0

432i
√
3 b1 + 432b1 = 0

432i
√
3 b2 + 432b2 = 0

3456i
√
3 a3 − 3456a3 = 0

15552i
√
3 a1 − 15552a1 = 0

−279936ia2 + 373248ib3 + 93312
√
3 a2 − 124416

√
3 b3 = 0

−2592ia2 + 3456ib3 − 864
√
3 a2 + 1152

√
3 b3 = 0

11664ia2 − 15552ib3 + 3888
√
3 a2 − 5184

√
3 b3 = 0

31104ia2 − 41472ib3 − 10368
√
3 a2 + 13824

√
3 b3 = 0

−1296i
√
3 a2 + 1728i

√
3 b3 − 1296a2 + 1728b3 = 0

31104i
√
3 a2 − 41472i

√
3 b3 − 31104a2 + 41472b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

9547



Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (1/2)*(-2*y(x)*x^3+1)/x^4, y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 133� �
dsolve(y(x)^2*diff(y(x),x)^3-x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = 0

y(x) = −
2
√

−24c31 + 27c1x− 3
√

(4c21 − 3x)3

9

y(x) =
2
√

−24c31 + 27c1x− 3
√

(4c21 − 3x)3

9

y(x) = −
2
√

−24c31 + 27c1x+ 3
√

(4c21 − 3x)3

9

y(x) =
2
√

−24c31 + 27c1x+ 3
√

(4c21 − 3x)3

9

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y[x]^2 (y'[x])^3- x y'[x] + y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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36.12 problem 1078
Internal problem ID [4295]
Internal file name [OUTPUT/3788_Sunday_June_05_2022_10_57_13_AM_48197580/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1078.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y2y′
3 + 2xy′ − y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

6y − 4x

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

(1)

y′ = −
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

12y + 2x

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3
+

i
√
3
((

108y2+12
√
3
√

27y4+32x3
) 1

3

6y + 4x

y
(
108y2+12

√
3
√

27y4+32x3
) 1

3

)
2

(2)

y′ = −
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

12y + 2x

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3
−

i
√
3
((

108y2+12
√
3
√

27y4+32x3
) 1

3

6y + 4x

y
(
108y2+12

√
3
√

27y4+32x3
) 1

3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)

9550



Writing the ode as

y′ =
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

((
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)
(b3 − a2)

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

((
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)2
a3

36y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−


384

√
3x2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
− 24

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−
32
((

108y2 + 12
√
3
√
27y4 + 32x3

) 2
3 − 24x

)√
3x2

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

 (xa2 + ya3 + a1)

−

 216y + 648
√
3 y3√

27y4+32x3

9y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

6y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

((
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)(
216y + 648

√
3 y3√

27y4+32x3

)
18y

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−
216
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x y4b2 + 192

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x3ya2 + 192

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x2y2a3 + 72

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 x y2b2 + 192

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x2ya1 −

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 b1 − 648

√
27y4 + 32x3 y4a3 − 2592

√
27y4 + 32x3 y3a1 + 3888

√
3 y6a3 + 72(27y4 + 32x3)

3
2 a3 − 15552

√
3x y5a2 + 18432

√
3x4yb3 − 5184

√
27y4 + 32x3 x y3a2 + 216

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3 y5b3 −

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 xb2 +

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 ya2 − 2

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 yb3 − 6b2y2

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3 + 216

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3 y4b1 + 12960

√
3x2y4b2 + 20736

√
3x y5b3 − 8

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3 xa3 + 72

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 y3b3 − 13824

√
3x4ya2 + 9216

√
3x3y2a3 + 12960

√
3x y4b1 + 96

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 x2a3 + 72

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 y2b1 + 4320

√
27y4 + 32x3 x2y2b2 + 6912

√
27y4 + 32x3 x y3b3 − 4608

√
3x3ya1 + 4320

√
27y4 + 32x3 x y2b1 + 9216

√
3x5b2 − 7776

√
3 y5a1 + 9216

√
3x4b1

6y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

= 0
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Setting the numerator to zero gives

(6E)

−216
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 √3x y4b2

− 192
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3x3ya2

− 192
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3x2y2a3

− 72
√

27y4 + 32x3
(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3
x y2b2

− 192
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3x2ya1

+
√

27y4 + 32x3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3
b1

+ 648
√
27y4 + 32x3 y4a3 + 2592

√
27y4 + 32x3 y3a1

− 3888
√
3 y6a3 − 72

(
27y4 +32x3) 3

2 a3 +15552
√
3x y5a2

− 18432
√
3x4yb3 + 5184

√
27y4 + 32x3 x y3a2

− 216
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3 y5b3

+
√

27y4 + 32x3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3
xb2

−
√

27y4 + 32x3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3
ya2

+ 2
√

27y4 + 32x3
(
108y2 + 12

√
3
√

27y4 + 32x3
) 5

3
yb3

+ 6b2y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3 √27y4 + 32x3

− 216
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3 y4b1
− 12960

√
3x2y4b2 − 20736

√
3x y5b3

+ 8
√

27y4 + 32x3
(
108y2 + 12

√
3
√

27y4 + 32x3
) 4

3
xa3

− 72
√

27y4 + 32x3
(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3
y3b3

+ 13824
√
3x4ya2 − 9216

√
3x3y2a3

− 12960
√
3x y4b1 − 96

√
27y4 + 32x3

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3
x2a3

−72
√

27y4 + 32x3
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
y2b1

−4320
√

27y4 + 32x3 x2y2b2−6912
√

27y4 + 32x3 x y3b3

+ 4608
√
3x3ya1 − 4320

√
27y4 + 32x3 x y2b1

− 9216
√
3x5b2 + 7776

√
3 y5a1 − 9216

√
3x4b1 = 0
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

(
108y2+12

√
3
√

27y4 + 32x3
) 1

3
,
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
,
√

27y4 + 32x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 = v3,

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3 = v4,
√
27y4 + 32x3 = v5

}
The above PDE (6E) now becomes

(7E)

−1944
√
3 v4v52a2 + 11664

√
3 v3v62b2 + 2304

√
3 v41v4b2

+ 18432
√
3 v41v3a3 + 2304

√
3 v31v4b1 − 648v4v5v32a2 + 3888v3v5v42b2

+ 93312
√
3 v1v52a2 − 110592

√
3 v41v2b3 + 31104v5v1v32a2

+ 2592v4
√
3 v52b3 + 648v4

√
3 v42b1 − 77760

√
3 v21v42b2

− 124416
√
3 v1v52b3 + 864v5v4v32b3 + 82944

√
3 v41v2a2

− 55296
√
3 v31v22a3 − 77760

√
3 v1v42b1 − 576v5v4v21a3 +216v5v4v22b1

− 25920v5v21v22b2 − 41472v5v1v32b3 + 27648
√
3 v31v2a1

− 25920v5v1v22b1 − 7776v5v42a3 − 13824v31v5a3 + 15552v5v32a1
− 23328

√
3 v62a3 − 55296

√
3 v51b2 + 46656

√
3 v52a1 − 55296

√
3 v41b1

+ 648v4
√
3 v1v42b2 − 3456v4

√
3 v31v2a2 − 1152v4

√
3 v21v22a3

+ 216v5v4v1v22b2 − 1152v4
√
3 v21v2a1 + 5184v1v3v5v22a3

+ 4608
√
3 v31v4v2b3 + 13824

√
3 v31v3v22b2 + 15552

√
3 v1v3v42a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−3456

√
3 a2 + 4608

√
3 b3
)
v31v2v4 + (31104a2 − 41472b3) v1v32v5

+ (−648a2 + 864b3) v32v4v5 + 11664
√
3 v3v62b2 + 2304

√
3 v41v4b2

+18432
√
3 v41v3a3+2304

√
3 v31v4b1+3888v3v5v42b2+648v4

√
3 v42b1

− 77760
√
3 v21v42b2 − 55296

√
3 v31v22a3 − 77760

√
3 v1v42b1

− 576v5v4v21a3 + 216v5v4v22b1 − 25920v5v21v22b2 + 27648
√
3 v31v2a1

− 25920v5v1v22b1 +
(
82944

√
3 a2 − 110592

√
3 b3
)
v41v2

+
(
93312

√
3 a2 − 124416

√
3 b3
)
v1v

5
2

+
(
−1944

√
3 a2 + 2592

√
3 b3
)
v52v4 − 7776v5v42a3

− 13824v31v5a3 + 15552v5v32a1 − 23328
√
3 v62a3 − 55296

√
3 v51b2

+ 46656
√
3 v52a1 − 55296

√
3 v41b1 + 648v4

√
3 v1v42b2

− 1152v4
√
3 v21v22a3 + 216v5v4v1v22b2 − 1152v4

√
3 v21v2a1

+ 5184v1v3v5v22a3 + 13824
√
3 v31v3v22b2 + 15552

√
3 v1v3v42a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
15552a1 = 0

−13824a3 = 0
−7776a3 = 0
−576a3 = 0
5184a3 = 0

−25920b1 = 0
216b1 = 0

−25920b2 = 0
216b2 = 0
3888b2 = 0

−1152
√
3 a1 = 0

27648
√
3 a1 = 0

46656
√
3 a1 = 0

−55296
√
3 a3 = 0

−23328
√
3 a3 = 0

−1152
√
3 a3 = 0

15552
√
3 a3 = 0

18432
√
3 a3 = 0

−77760
√
3 b1 = 0

−55296
√
3 b1 = 0

648
√
3 b1 = 0

2304
√
3 b1 = 0

−77760
√
3 b2 = 0

−55296
√
3 b2 = 0

648
√
3 b2 = 0

2304
√
3 b2 = 0

11664
√
3 b2 = 0

13824
√
3 b2 = 0

−648a2 + 864b3 = 0
31104a2 − 41472b3 = 0

−3456
√
3 a2 + 4608

√
3 b3 = 0

−1944
√
3 a2 + 2592

√
3 b3 = 0

82944
√
3 a2 − 110592

√
3 b3 = 0

93312
√
3 a2 − 124416

√
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
4x
3

= 3y
4x

This is easily solved to give

y = c1x
3
4

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
3
4
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And S is found from

dS = dx

ξ

= dx
4x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)
4

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

Evaluating all the partial derivatives gives

Rx = − 3y
4x 7

4

Ry =
1
x

3
4

Sx = 3
4x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

9x 3
4y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 x− 9y2

(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 − 48x2

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

9R12 1
3
(√

3
√
27R4 + 32 + 9R2) 1

3

2 12 2
3
(√

3
√
27R4 + 32 + 9R2

) 2
3 − 9 12 1

3
(√

3
√
27R4 + 32 + 9R2

) 1
3 R2 − 48

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 9R

(
12
√
81R4 + 96 + 108R2) 1

3

4 18 1
3

((√
81R4 + 96 + 9R2

)2) 1
3 − 9R2

(
12
√
81R4 + 96 + 108R2

) 1
3 − 48

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a+ c1

Which simplifies to

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a+ c1

Summary
The solution(s) found are the following

(1)3 ln (x)
4

=
∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a

+ c1
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Verification of solutions

3 ln (x)
4

=
∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a

+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)
(b3 − a2)

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)2
a3

144y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−


1152ix2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
+ 24i

√
3− 384

√
3x2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
+ 24

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−
16
(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)√
3x2

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

 (xa2

+ ya3 + a1)−


2i
√
3
(
216y+ 648

√
3 y3√

27y4+32x3

)

3
(
108y2+12

√
3
√

27y4+32x3
) 1

3
−

2
(
216y+ 648

√
3 y3√

27y4+32x3

)

3
(
108y2+12

√
3
√

27y4+32x3
) 1

3

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

12y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)(
216y + 648

√
3 y3√

27y4+32x3

)
36y

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
108y2+12

√
3
√

27y4 + 32x3
) 1

3
,
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
,
√

27y4 + 32x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 = v3,

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3 = v4,
√
27y4 + 32x3 = v5

}
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The above PDE (6E) now becomes

(7E)

15552v5v42a3 − 31104v5v32a1 + 46656
√
3 v62a3

+ 110592
√
3 v51b2 − 93312

√
3 v52a1 + 110592

√
3 v41b1

+ 27648v31v5a3 + 331776iv51b2 + 139968iv62a3
− 279936iv52a1 + 331776iv41b1 + 432i

√
3 v4v5v1v22b2

− 62208v5v1v32a2 + 3888
√
3 v4v52a2 + 46656

√
3 v3v62b2

− 4608
√
3 v41v4b2 + 73728

√
3 v41v3a3 − 4608

√
3 v31v4b1

− 186624
√
3 v1v52a2 + 1152v4v5v21a3 − 5184

√
3 v4v52b3

− 1296
√
3 v4v42b1 + 155520

√
3 v21v42b2

+ 248832
√
3 v1v52b3 − 165888

√
3 v41v2a2

+ 110592
√
3 v31v22a3 + 155520

√
3 v1v42b1 − 1728v4v5v32b3

− 55296
√
3 v31v2a1 − 432v4v5v22b1 + 51840v5v21v22b2

+ 82944v5v1v32b3 + 51840v5v1v22b1 + 1296v5v4v32a2
+ 15552v5v3v42b2 + 221184

√
3 v41v2b3 − 11664iv4v52a2

+ 15552iv4v52b3 + 466560iv21v42b2 − 559872iv1v52a2
+ 746496iv1v52b3 − 497664iv41v2a2 + 663552iv41v2b3
+ 331776iv31v22a3 + 466560iv1v42b1 + 13824iv41v4b2
+ 3888iv4v42b1 + 13824iv31v4b1 − 165888iv31v2a1
− 1296

√
3 v4v1v42b2 + 6912

√
3 v4v31v2a2

+ 2304
√
3 v4v21v22a3 + 2304

√
3 v4v21v2a1

− 432v4v5v1v22b2 +20736v1v5v3v22a3 − 9216
√
3 v31v4v2b3

+ 55296
√
3 v31v3v22b2 + 62208

√
3 v1v3v42a3

− 31104i
√
3 v5v32a1 − 6912iv4v21v22a3 − 6912iv4v21v2a1

+ 15552i
√
3 v5v42a3 + 27648i

√
3 v31v5a3 + 3888iv4v1v42b2

− 1296i
√
3 v5v4v32a2 + 1728i

√
3 v4v5v32b3

+ 432i
√
3 v4v5v22b1 + 51840i

√
3 v5v21v22b2

− 62208i
√
3 v5v1v32a2 + 82944i

√
3 v5v1v32b3

+ 51840i
√
3 v5v1v22b1 − 1152i

√
3 v4v5v21a3

− 20736iv4v31v2a2 + 27648iv31v4v2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
6912

√
3 a2 − 9216

√
3 b3 − 20736ia2 + 27648ib3

)
v31v2v4

+
(
2304

√
3 a3 − 6912ia3

)
v21v

2
2v4

+
(
51840i

√
3 b2 + 51840b2

)
v21v

2
2v5

+
(
2304

√
3 a1 − 6912ia1

)
v21v2v4

+
(
−1152i

√
3 a3 + 1152a3

)
v21v4v5

+
(
−1296

√
3 b2 + 3888ib2

)
v1v

4
2v4

+
(
−62208i

√
3 a2 + 82944i

√
3 b3 − 62208a2

+ 82944b3
)
v1v

3
2v5 +

(
51840i

√
3 b1 + 51840b1

)
v1v

2
2v5

+
(
−1296i

√
3 a2+1728i

√
3 b3+1296a2−1728b3

)
v32v4v5

+
(
432i

√
3 b1 − 432b1

)
v22v4v5

+
(
432i

√
3 b2 − 432b2

)
v1v

2
2v4v5 + 46656

√
3 v3v62b2

+ 73728
√
3 v41v3a3 + 15552v5v3v42b2

+
(
−165888

√
3 a2 + 221184

√
3 b3 − 497664ia2

+ 663552ib3
)
v41v2 +

(
−4608

√
3 b2 + 13824ib2

)
v41v4

+
(
110592

√
3 a3 + 331776ia3

)
v31v

2
2

+
(
−55296

√
3 a1 − 165888ia1

)
v31v2

+
(
−4608

√
3 b1 + 13824ib1

)
v31v4

+
(
27648i

√
3 a3 + 27648a3

)
v31v5

+
(
155520

√
3 b2 + 466560ib2

)
v21v

4
2

+
(
−186624

√
3 a2 + 248832

√
3 b3 − 559872ia2

+ 746496ib3
)
v1v

5
2 +

(
155520

√
3 b1 + 466560ib1

)
v1v

4
2

+
(
3888

√
3 a2 − 5184

√
3 b3 − 11664ia2 + 15552ib3

)
v52v4

+
(
−1296

√
3 b1 + 3888ib1

)
v42v4

+
(
15552i

√
3 a3 + 15552a3

)
v42v5

+
(
−31104i

√
3 a1 − 31104a1

)
v32v5

+ 20736v1v5v3v22a3 + 55296
√
3 v31v3v22b2

+ 62208
√
3 v1v3v42a3 +

(
110592

√
3 b2 + 331776ib2

)
v51

+
(
110592

√
3 b1 + 331776ib1

)
v41

+
(
46656

√
3 a3 + 139968ia3

)
v62

+
(
−93312

√
3 a1 − 279936ia1

)
v52 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
20736a3 = 0
15552b2 = 0

62208
√
3 a3 = 0

73728
√
3 a3 = 0

46656
√
3 b2 = 0

55296
√
3 b2 = 0

−93312
√
3 a1 − 279936ia1 = 0

−55296
√
3 a1 − 165888ia1 = 0

2304
√
3 a1 − 6912ia1 = 0

2304
√
3 a3 − 6912ia3 = 0

46656
√
3 a3 + 139968ia3 = 0

110592
√
3 a3 + 331776ia3 = 0

−4608
√
3 b1 + 13824ib1 = 0

−1296
√
3 b1 + 3888ib1 = 0

110592
√
3 b1 + 331776ib1 = 0

155520
√
3 b1 + 466560ib1 = 0

−4608
√
3 b2 + 13824ib2 = 0

−1296
√
3 b2 + 3888ib2 = 0

110592
√
3 b2 + 331776ib2 = 0

155520
√
3 b2 + 466560ib2 = 0

−31104i
√
3 a1 − 31104a1 = 0

−1152i
√
3 a3 + 1152a3 = 0

432i
√
3 b1 − 432b1 = 0

432i
√
3 b2 − 432b2 = 0

15552i
√
3 a3 + 15552a3 = 0

27648i
√
3 a3 + 27648a3 = 0

51840i
√
3 b1 + 51840b1 = 0

51840i
√
3 b2 + 51840b2 = 0

−186624
√
3 a2 + 248832

√
3 b3 − 559872ia2 + 746496ib3 = 0

−165888
√
3 a2 + 221184

√
3 b3 − 497664ia2 + 663552ib3 = 0

3888
√
3 a2 − 5184

√
3 b3 − 11664ia2 + 15552ib3 = 0

6912
√
3 a2 − 9216

√
3 b3 − 20736ia2 + 27648ib3 = 0

−62208i
√
3 a2 + 82944i

√
3 b3 − 62208a2 + 82944b3 = 0

−1296i
√
3 a2 + 1728i

√
3 b3 + 1296a2 − 1728b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)
(b3 − a2)

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)2
a3

144y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−

−

1152ix2(
108y2+12

√
3
√

27y4+32x3
) 1

3√27y4+32x3
+ 24i

√
3 + 384

√
3x2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
− 24

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

+
16
(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)√
3x2

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(
216y+ 648

√
3 y3√

27y4+32x3

)

3
(
108y2+12

√
3
√

27y4+32x3
) 1

3
+

144y+ 432
√
3 y3√

27y4+32x3(
108y2+12

√
3
√

27y4+32x3
) 1

3

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

+
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

12y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

+

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)(
216y + 648

√
3 y3√

27y4+32x3

)
36y

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
108y2+12

√
3
√

27y4 + 32x3
) 1

3
,
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
,
√

27y4 + 32x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 = v3,

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3 = v4,
√
27y4 + 32x3 = v5

}
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The above PDE (6E) now becomes

(7E)

6912
√
3 v4v31v2a2 + 2304

√
3 v4v21v22a3

+ 2304
√
3 v4v21v2a1 − 432v4v5v1v22b2 + 20736v1v5v3v22a3

− 9216
√
3 v31v4v2b3 + 55296

√
3 v31v3v22b2

+ 62208
√
3 v1v3v42a3 + 6912iv4v21v22a3 + 6912iv4v21v2a1

− 15552i
√
3 v5v42a3 − 27648i

√
3 v31v5a3

− 3888iv4v1v42b2 + 20736iv4v31v2a2 − 27648iv31v4v2b3
+ 31104i

√
3 v5v32a1 − 139968iv62a3 − 331776iv41b1

− 331776iv51b2 + 279936iv52a1 + 27648v31v5a3
+ 15552v5v42a3 − 31104v5v32a1 + 46656

√
3 v62a3

+ 110592
√
3 v51b2 − 93312

√
3 v52a1 + 110592

√
3 v41b1

+ 1152i
√
3 v4v5v21a3 − 51840i

√
3 v5v21v22b2

+ 62208i
√
3 v5v1v32a2 − 82944i

√
3 v5v1v32b3

− 51840i
√
3 v5v1v22b1 + 1296i

√
3 v5v4v32a2

− 1728i
√
3 v4v5v32b3 − 432i

√
3 v4v5v22b1

− 1296
√
3 v4v1v42b2 − 432i

√
3 v4v5v1v22b2

+ 221184
√
3 v41v2b3 − 186624

√
3 v1v52a2

+ 1296v5v4v32a2 + 15552v5v3v42b2 + 3888
√
3 v4v52a2

+ 46656
√
3 v3v62b2 − 4608

√
3 v41v4b2 + 73728

√
3 v41v3a3

− 4608
√
3 v31v4b1 − 62208v5v1v32a2 + 1152v4v5v21a3

− 5184
√
3 v4v52b3 − 1296

√
3 v4v42b1 + 155520

√
3 v21v42b2

+ 248832
√
3 v1v52b3 − 165888

√
3 v41v2a2

+ 110592
√
3 v31v22a3 + 155520

√
3 v1v42b1 − 1728v4v5v32b3

− 55296
√
3 v31v2a1 − 432v4v5v22b1 + 51840v5v21v22b2

+ 82944v5v1v32b3 + 51840v5v1v22b1 − 466560iv21v42b2
+ 559872iv1v52a2 − 746496iv1v52b3 + 497664iv41v2a2
− 663552iv41v2b3 − 331776iv31v22a3 − 466560iv1v42b1
− 3888iv4v42b1 − 13824iv31v4b1 + 11664iv4v52a2
− 15552iv4v52b3 − 13824iv41v4b2 + 165888iv31v2a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
46656

√
3 a3 − 139968ia3

)
v62

+
(
−93312

√
3 a1 + 279936ia1

)
v52

+
(
110592

√
3 b2 − 331776ib2

)
v51

+
(
110592

√
3 b1 − 331776ib1

)
v41

+
(
−432i

√
3 b2 − 432b2

)
v1v

2
2v4v5 + 20736v1v5v3v22a3

+ 55296
√
3 v31v3v22b2 + 62208

√
3 v1v3v42a3

+
(
6912

√
3 a2−9216

√
3 b3+20736ia2−27648ib3

)
v31v2v4

+
(
2304

√
3 a3 + 6912ia3

)
v21v

2
2v4

+
(
−51840i

√
3 b2 + 51840b2

)
v21v

2
2v5

+
(
2304

√
3 a1 + 6912ia1

)
v21v2v4

+
(
1152i

√
3 a3 + 1152a3

)
v21v4v5

+
(
−1296

√
3 b2 − 3888ib2

)
v1v

4
2v4 +

(
62208i

√
3 a2

− 82944i
√
3 b3 − 62208a2 + 82944b3

)
v1v

3
2v5

+
(
−51840i

√
3 b1 + 51840b1

)
v1v

2
2v5

+
(
1296i

√
3 a2 − 1728i

√
3 b3 + 1296a2 − 1728b3

)
v32v4v5

+
(
−432i

√
3 b1 − 432b1

)
v22v4v5

+
(
155520

√
3 b2 − 466560ib2

)
v21v

4
2

+
(
−186624

√
3 a2 + 248832

√
3 b3 + 559872ia2

− 746496ib3
)
v1v

5
2 +

(
155520

√
3 b1 − 466560ib1

)
v1v

4
2

+
(
3888

√
3 a2 − 5184

√
3 b3 + 11664ia2 − 15552ib3

)
v52v4

+
(
−1296

√
3 b1 − 3888ib1

)
v42v4

+
(
−15552i

√
3 a3 + 15552a3

)
v42v5

+
(
31104i

√
3 a1 − 31104a1

)
v32v5

+
(
−165888

√
3 a2 + 221184

√
3 b3 + 497664ia2

− 663552ib3
)
v41v2 +

(
−4608

√
3 b2 − 13824ib2

)
v41v4

+
(
110592

√
3 a3 − 331776ia3

)
v31v

2
2

+
(
−55296

√
3 a1 + 165888ia1

)
v31v2

+
(
−4608

√
3 b1 − 13824ib1

)
v31v4

+
(
−27648i

√
3 a3 + 27648a3

)
v31v5 + 15552v5v3v42b2

+ 46656
√
3 v3v62b2 + 73728

√
3 v41v3a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
20736a3 = 0
15552b2 = 0

62208
√
3 a3 = 0

73728
√
3 a3 = 0

46656
√
3 b2 = 0

55296
√
3 b2 = 0

−93312
√
3 a1 + 279936ia1 = 0

−55296
√
3 a1 + 165888ia1 = 0

2304
√
3 a1 + 6912ia1 = 0

2304
√
3 a3 + 6912ia3 = 0

46656
√
3 a3 − 139968ia3 = 0

110592
√
3 a3 − 331776ia3 = 0

−4608
√
3 b1 − 13824ib1 = 0

−1296
√
3 b1 − 3888ib1 = 0

110592
√
3 b1 − 331776ib1 = 0

155520
√
3 b1 − 466560ib1 = 0

−4608
√
3 b2 − 13824ib2 = 0

−1296
√
3 b2 − 3888ib2 = 0

110592
√
3 b2 − 331776ib2 = 0

155520
√
3 b2 − 466560ib2 = 0

−51840i
√
3 b1 + 51840b1 = 0

−51840i
√
3 b2 + 51840b2 = 0

−27648i
√
3 a3 + 27648a3 = 0

−15552i
√
3 a3 + 15552a3 = 0

−432i
√
3 b1 − 432b1 = 0

−432i
√
3 b2 − 432b2 = 0

1152i
√
3 a3 + 1152a3 = 0

31104i
√
3 a1 − 31104a1 = 0

−186624
√
3 a2 + 248832

√
3 b3 + 559872ia2 − 746496ib3 = 0

−165888
√
3 a2 + 221184

√
3 b3 + 497664ia2 − 663552ib3 = 0

3888
√
3 a2 − 5184

√
3 b3 + 11664ia2 − 15552ib3 = 0

6912
√
3 a2 − 9216

√
3 b3 + 20736ia2 − 27648ib3 = 0

1296i
√
3 a2 − 1728i

√
3 b3 + 1296a2 − 1728b3 = 0

62208i
√
3 a2 − 82944i

√
3 b3 − 62208a2 + 82944b3 = 0

9572



Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-2*y(x)^2*x^3-y(x))/(2*y(x)*x^4+x), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 97� �
dsolve(y(x)^2*diff(y(x),x)^3+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −2(−x3)
1
4 6 1

4

3

y(x) = 2(−x3)
1
4 6 1

4

3

y(x) = −2i(−x3)
1
4 6 1

4

3

y(x) = 2i(−x3)
1
4 6 1

4

3
y(x) = 0

y(x) =
√
c1 (c21 + 2x)

y(x) = −
√

c1 (c21 + 2x)

3 Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 119� �
DSolve[y[x]^2 (y'[x])^3+2 x y'[x] -y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2c1x+ c13

y(x) →
√

2c1x+ c13

y(x) → (−1− i)
(
2
3

)3/4

x3/4

y(x) → (1− i)
(
2
3

)3/4

x3/4

y(x) → (−1 + i)
(
2
3

)3/4

x3/4

y(x) → (1 + i)
(
2
3

)3/4

x3/4
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36.13 problem 1079
Internal problem ID [4296]
Internal file name [OUTPUT/3789_Sunday_June_05_2022_10_57_23_AM_85912762/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1079.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

4y2y′3 − 2xy′ + y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

6y + x

y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

(1)

y′ = −
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

12y − x

2y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3
+

i
√
3
((

−27y2+3
√
3
√

27y4−8x3
) 1

3

6y − x

y
(
−27y2+3

√
3
√

27y4−8x3
) 1

3

)
2

(2)

y′ = −
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

12y − x

2y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3
−

i
√
3
((

−27y2+3
√
3
√

27y4−8x3
) 1

3

6y − x

y
(
−27y2+3

√
3
√

27y4−8x3
) 1

3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

6y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

((
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

)
(b3 − a2)

6y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

−

((
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

)2
a3

36y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3

−


− 24

√
3x2(

−27y2+3
√
3
√

27y4−8x3
) 1

3√27y4−8x3
+ 6

6y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

+
2
((

−27y2 + 3
√
3
√
27y4 − 8x3

) 2
3 + 6x

)√
3x2

y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3
√
27y4 − 8x3

 (xa2 + ya3 + a1)

−

 −54y + 162
√
3 y3√

27y4−8x3

9y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3

−
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

6y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

−

((
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

)(
−54y + 162

√
3 y3√

27y4−8x3

)
18y

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−
108
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
√
3x y4b2 − 24

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
√
3x3ya2 − 24

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
√
3x2y2a3 − 36

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 x y2b2 − 24

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
√
3x2ya1 + 108

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
√
3 y5b3 − 2

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 5
3 xb2 + 2

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 5
3 ya2 − 4

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 5
3 yb3 − 12b2y2

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3
√
27y4 − 8x3 + 108

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
√
3 y4b1 − 1620

√
3x2y4b2 − 2592

√
3x y5b3 + 4

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3 xa3 − 36

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 y3b3 − 432

√
3x4ya2 + 288

√
3x3y2a3 − 1620

√
3x y4b1 + 12

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 x2a3 − 36

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 y2b1 + 540

√
27y4 − 8x3 x2y2b2 + 864

√
27y4 − 8x3 x y3b3 − 144

√
3x3ya1 + 540

√
27y4 − 8x3 x y2b1 − 2

√
27y4 − 8x3

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 5
3 b1 − 81

√
27y4 − 8x3 y4a3 − 324

√
27y4 − 8x3 y3a1 − 486

√
3 y6a3 + 288

√
3x5b2 + 972

√
3 y5a1 + 288

√
3x4b1 − 648

√
27y4 − 8x3 x y3a2 + 1944

√
3x y5a2 + 576

√
3x4yb3 + 9(27y4 − 8x3)

3
2 a3

12y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3
√
27y4 − 8x3

= 0
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Setting the numerator to zero gives

(6E)

−108
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 2

3 √3x y4b2

+ 24
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 √3x3ya2

+ 24
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 √3x2y2a3

+ 36
√

27y4 − 8x3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
x y2b2

+ 24
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 √3x2ya1

− 108
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 2

3 √3 y5b3

+ 2
√

27y4 − 8x3
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 5

3
xb2

− 2
√

27y4 − 8x3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 5
3
ya2

+ 4
√

27y4 − 8x3
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 5

3
yb3

+ 12b2y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3 √27y4 − 8x3

− 108
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 2

3 √3 y4b1
+ 1620

√
3x2y4b2 + 2592

√
3x y5b3

− 4
√

27y4 − 8x3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3
xa3

+ 36
√

27y4 − 8x3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
y3b3

+ 432
√
3x4ya2 − 288

√
3x3y2a3 + 1620

√
3x y4b1

− 12
√

27y4 − 8x3
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 2

3
x2a3

+ 36
√

27y4 − 8x3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
y2b1

− 540
√

27y4 − 8x3 x2y2b2 − 864
√
27y4 − 8x3 x y3b3

+ 144
√
3x3ya1 − 540

√
27y4 − 8x3 x y2b1

+ 2
√

27y4 − 8x3
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 5

3
b1

+ 81
√

27y4 − 8x3 y4a3 + 324
√

27y4 − 8x3 y3a1

+ 486
√
3 y6a3 − 288

√
3x5b2 − 972

√
3 y5a1 − 288

√
3x4b1

+ 648
√
27y4 − 8x3 x y3a2 − 1944

√
3x y5a2

− 576
√
3x4yb3 − 9

(
27y4 − 8x3) 3

2 a3 = 0
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−27y2 + 3

√
3
√

27y4 − 8x3
) 1

3
,
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
,
√

27y4 − 8x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 1

3 = v3,
(
−27y2

+ 3
√
3
√

27y4 − 8x3
) 2

3 = v4,
√
27y4 − 8x3 = v5

}

The above PDE (6E) now becomes

(7E)

162v4
√
3 v42b1 + 4860

√
3 v21v42b2 + 7776

√
3 v1v52b3 − 216v5v4v32b3

+ 1296
√
3 v41v2a2 − 864

√
3 v31v22a3 + 4860

√
3 v1v42b1

− 36v5v4v21a3 − 54v5v4v22b1 − 1620v5v21v22b2 − 2592v5v1v32b3
+ 432

√
3 v31v2a1 − 1620v5v1v22b1 − 486

√
3 v4v52a2 + 2916

√
3 v3v62b2

− 144
√
3 v41v4b2 + 288

√
3 v41v3a3 − 144

√
3 v31v4b1 + 1944v5v1v32a2

− 5832
√
3 v1v52a2 − 1728

√
3 v41v2b3 + 162v5v4v32a2 − 972v5v3v42b2

+ 324v1v5v3v22a3 + 162v4
√
3 v1v42b2 + 216v4

√
3 v31v2a2

+ 72v4
√
3 v21v22a3 − 54v5v4v1v22b2 + 72v4

√
3 v21v2a1

− 288
√
3 v31v4v2b3 − 864

√
3 v31v3v22b2 − 972

√
3 v1v3v42a3

+ 648v4
√
3 v52b3 + 216v31v5a3 + 1458

√
3 v62a3 − 486v5v42a3

+ 972v5v32a1 − 864
√
3 v51b2 − 2916

√
3 v52a1 − 864

√
3 v41b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−5832

√
3 a2 + 7776

√
3 b3
)
v1v

5
2 +

(
−486

√
3 a2 + 648

√
3 b3
)
v52v4

+ 162v4
√
3 v42b1 + 4860

√
3 v21v42b2 − 864

√
3 v31v22a3 + 4860

√
3 v1v42b1

− 36v5v4v21a3 − 54v5v4v22b1 − 1620v5v21v22b2 + 432
√
3 v31v2a1

− 1620v5v1v22b1 + 2916
√
3 v3v62b2 − 144

√
3 v41v4b2 + 288

√
3 v41v3a3

− 144
√
3 v31v4b1 − 972v5v3v42b2 + 324v1v5v3v22a3 + 162v4

√
3 v1v42b2

+ 72v4
√
3 v21v22a3 − 54v5v4v1v22b2 + 72v4

√
3 v21v2a1 − 864

√
3 v31v3v22b2

− 972
√
3 v1v3v42a3 +

(
1296

√
3 a2 − 1728

√
3 b3
)
v41v2

+
(
216

√
3 a2 − 288

√
3 b3
)
v31v2v4 + (1944a2 − 2592b3) v1v32v5

+ (162a2 − 216b3) v32v4v5 + 216v31v5a3 + 1458
√
3 v62a3 − 486v5v42a3

+ 972v5v32a1 − 864
√
3 v51b2 − 2916

√
3 v52a1 − 864

√
3 v41b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
972a1 = 0

−486a3 = 0
−36a3 = 0
216a3 = 0
324a3 = 0

−1620b1 = 0
−54b1 = 0

−1620b2 = 0
−972b2 = 0
−54b2 = 0

−2916
√
3 a1 = 0

72
√
3 a1 = 0

432
√
3 a1 = 0

−972
√
3 a3 = 0

−864
√
3 a3 = 0

72
√
3 a3 = 0

288
√
3 a3 = 0

1458
√
3 a3 = 0

−864
√
3 b1 = 0

−144
√
3 b1 = 0

162
√
3 b1 = 0

4860
√
3 b1 = 0

−864
√
3 b2 = 0

−144
√
3 b2 = 0

162
√
3 b2 = 0

2916
√
3 b2 = 0

4860
√
3 b2 = 0

162a2 − 216b3 = 0
1944a2 − 2592b3 = 0

−5832
√
3 a2 + 7776

√
3 b3 = 0

−486
√
3 a2 + 648

√
3 b3 = 0

216
√
3 a2 − 288

√
3 b3 = 0

1296
√
3 a2 − 1728

√
3 b3 = 09582



Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
4x
3

= 3y
4x

This is easily solved to give

y = c1x
3
4

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
3
4
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And S is found from

dS = dx

ξ

= dx
4x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)
4

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

6y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

Evaluating all the partial derivatives gives

Rx = − 3y
4x 7

4

Ry =
1
x

3
4

Sx = 3
4x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

9x 3
4y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 x− 9y2

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3 + 12x2

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

9R3 1
3
(√

3
√
27R4 − 8− 9R2) 1

3

2 3 2
3
(√

3
√
27R4 − 8− 9R2

) 2
3 − 9 3 1

3
(√

3
√
27R4 − 8− 9R2

) 1
3 R2 + 12

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 9R

(
3
√
81R4 − 24− 27R2) 1

3

2 9 1
3

((√
81R4 − 24− 9R2

)2) 1
3 − 9R2

(
3
√
81R4 − 24− 27R2

) 1
3 + 12

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
3
√
81_a4 − 24− 27_a2

) 1
3

2 9 1
3

((√
81_a4 − 24− 9_a2

)2) 1
3 − 9_a2

(
3
√
81_a4 − 24− 27_a2

) 1
3 + 12

d_a+ c1

Which simplifies to

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
3
√
81_a4 − 24− 27_a2

) 1
3

2 9 1
3

((√
81_a4 − 24− 9_a2

)2) 1
3 − 9_a2

(
3
√
81_a4 − 24− 27_a2

) 1
3 + 12

d_a+ c1

Summary
The solution(s) found are the following

3 ln (x)
4

=
∫ y

x
3
4 9_a

(
3
√
81_a4 − 24− 27_a2

) 1
3

2 9 1
3

((√
81_a4 − 24− 9_a2

)2) 1
3 − 9_a2

(
3
√
81_a4 − 24− 27_a2

) 1
3 + 12

d_a

+ c1
(1)
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Verification of solutions

3 ln (x)
4

=
∫ y

x
3
4 9_a

(
3
√
81_a4 − 24− 27_a2

) 1
3

2 9 1
3

((√
81_a4 − 24− 9_a2

)2) 1
3 − 9_a2

(
3
√
81_a4 − 24− 27_a2

) 1
3 + 12

d_a

+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x−

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6x

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x−

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6x

)
(b3 − a2)

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

−

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x−

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6x

)2
a3

144y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3

−


− 72ix2(

−27y2+3
√
3
√

27y4−8x3
) 1

3√27y4−8x3
− 6i

√
3 + 24

√
3x2(

−27y2+3
√
3
√

27y4−8x3
) 1

3√27y4−8x3
− 6

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

+

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x−

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6x

)√
3x2

y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3
√
27y4 − 8x3

 (xa2

+ ya3 + a1)−


2i
√
3
(
−54y+ 162

√
3 y3√

27y4−8x3

)

3
(
−27y2+3

√
3
√

27y4−8x3
) 1

3
−

2
(
−54y+ 162

√
3 y3√

27y4−8x3

)

3
(
−27y2+3

√
3
√

27y4−8x3
) 1

3

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

−
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x−

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6x

12y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

−

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x−

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6x

)(
−54y + 162

√
3 y3√

27y4−8x3

)
36y

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−27y2 + 3

√
3
√

27y4 − 8x3
) 1

3
,
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
,
√

27y4 − 8x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 1

3 = v3,
(
−27y2

+ 3
√
3
√

27y4 − 8x3
) 2

3 = v4,
√
27y4 − 8x3 = v5

}
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The above PDE (6E) now becomes

(7E)

−3888v5v1v32a2 − 324v5v4v32a2 − 3888v5v3v42b2
+ 72v5v4v21a3 − 1296

√
3 v4v52b3 − 324

√
3 v4v42b1

− 9720
√
3 v21v42b2 − 15552

√
3 v1v52b3 − 2592

√
3 v41v2a2

+ 1728
√
3 v31v22a3 − 9720

√
3 v1v42b1 + 432v5v4v32b3

− 864
√
3 v31v2a1 + 108v5v4v22b1 + 3240v5v21v22b2

+ 5184v5v1v32b3 + 3240v5v1v22b1 + 3456
√
3 v41v2b3

+ 11664
√
3 v1v52a2 + 11664

√
3 v3v62b2 + 288

√
3 v41v4b2

+ 1152
√
3 v41v3a3 + 288

√
3 v31v4b1 + 972

√
3 v4v52a2

− 29160iv21v42b2 + 34992iv1v52a2 − 46656iv1v52b3
− 7776iv41v2a2 + 10368iv41v2b3 + 5184iv31v22a3
− 29160iv1v42b1 − 2592iv31v2a1 − 2916iv4v52a2
+ 3888iv4v52b3 − 864iv41v4b2 + 972iv4v42b1 − 864iv31v4b1
− 108i

√
3 v5v4v1v22b2 − 8748iv62a3 + 5184iv51b2

+ 17496iv52a1 + 5184iv41b1 + 576
√
3 v31v4v2b3

− 3456
√
3 v31v3v22b2− 3888

√
3 v1v3v42a3+1296v1v5v3v22a3

− 324
√
3 v4v1v42b2 − 432

√
3 v4v31v2a2 − 144

√
3 v4v21v22a3

− 144
√
3 v4v21v2a1 + 108v5v4v1v22b2 − 432i

√
3 v5v4v32b3

− 108i
√
3 v5v4v22b1 + 3240i

√
3 v5v21v22b2

− 3888i
√
3 v5v1v32a2 + 5184i

√
3 v5v1v32b3

+3240i
√
3 v5v1v22b1 +324i

√
3 v5v4v32a2 − 72i

√
3 v5v4v21a3

− 2916
√
3 v62a3 + 1728

√
3 v41b1 + 1728

√
3 v51b2

+ 5832
√
3 v52a1 + 972v5v42a3 − 1944v5v32a1

− 432v31v5a3 + 972iv4v1v42b2 + 1296iv4v31v2a2
− 1728iv31v4v2b3 + 972i

√
3 v5v42a3 − 432i

√
3 v31v5a3

− 1944i
√
3 v5v32a1 + 432iv4v21v22a3 + 432iv4v21v2a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−3888v5v3v42b2 + 11664
√
3 v3v62b2 + 1152

√
3 v41v3a3

+
(
1296ia2 − 1728ib3 − 432

√
3 a2 + 576

√
3 b3
)
v31v2v4

+
(
432ia3 − 144

√
3 a3
)
v21v

2
2v4

+
(
3240i

√
3 b2 + 3240b2

)
v21v

2
2v5

+
(
432ia1 − 144

√
3 a1
)
v21v2v4

+
(
−72i

√
3 a3 + 72a3

)
v21v4v5

+
(
972ib2 − 324

√
3 b2
)
v1v

4
2v4

+
(
−3888i

√
3 a2 + 5184i

√
3 b3 − 3888a2 + 5184b3

)
v1v

3
2v5

+
(
3240i

√
3 b1 + 3240b1

)
v1v

2
2v5

+
(
324i

√
3 a2 − 432i

√
3 b3 − 324a2 + 432b3

)
v32v4v5

+
(
−108i

√
3 b1 + 108b1

)
v22v4v5

+
(
972i

√
3 a3 + 972a3

)
v42v5

+
(
−1944i

√
3 a1 − 1944a1

)
v32v5

+
(
−7776ia2 + 10368ib3 − 2592

√
3 a2 + 3456

√
3 b3
)
v41v2

+
(
−864ib2 + 288

√
3 b2
)
v41v4

+
(
5184ia3 + 1728

√
3 a3
)
v31v

2
2

+
(
−2592ia1 − 864

√
3 a1
)
v31v2

+
(
−864ib1 + 288

√
3 b1
)
v31v4

+
(
−432i

√
3 a3 − 432a3

)
v31v5

+
(
−29160ib2 − 9720

√
3 b2
)
v21v

4
2

+
(
34992ia2 − 46656ib3 +11664

√
3 a2 − 15552

√
3 b3
)
v1v

5
2

+
(
−29160ib1 − 9720

√
3 b1
)
v1v

4
2

+
(
−2916ia2 + 3888ib3 + 972

√
3 a2 − 1296

√
3 b3
)
v52v4

+
(
972ib1 − 324

√
3 b1
)
v42v4

+
(
−108i

√
3 b2 + 108b2

)
v1v

2
2v4v5

− 3456
√
3 v31v3v22b2 − 3888

√
3 v1v3v42a3 + 1296v1v5v3v22a3

+
(
5184ib1+1728

√
3 b1
)
v41 +

(
−8748ia3−2916

√
3 a3
)
v62

+
(
17496ia1 + 5832

√
3 a1
)
v52

+
(
5184ib2 + 1728

√
3 b2
)
v51 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
1296a3 = 0

−3888b2 = 0
−3888

√
3 a3 = 0

1152
√
3 a3 = 0

−3456
√
3 b2 = 0

11664
√
3 b2 = 0

−29160ib1 − 9720
√
3 b1 = 0

−29160ib2 − 9720
√
3 b2 = 0

−8748ia3 − 2916
√
3 a3 = 0

−2592ia1 − 864
√
3 a1 = 0

−864ib1 + 288
√
3 b1 = 0

−864ib2 + 288
√
3 b2 = 0

432ia1 − 144
√
3 a1 = 0

432ia3 − 144
√
3 a3 = 0

972ib1 − 324
√
3 b1 = 0

972ib2 − 324
√
3 b2 = 0

5184ia3 + 1728
√
3 a3 = 0

5184ib1 + 1728
√
3 b1 = 0

5184ib2 + 1728
√
3 b2 = 0

17496ia1 + 5832
√
3 a1 = 0

−1944i
√
3 a1 − 1944a1 = 0

−432i
√
3 a3 − 432a3 = 0

−108i
√
3 b1 + 108b1 = 0

−108i
√
3 b2 + 108b2 = 0

−72i
√
3 a3 + 72a3 = 0

972i
√
3 a3 + 972a3 = 0

3240i
√
3 b1 + 3240b1 = 0

3240i
√
3 b2 + 3240b2 = 0

−7776ia2 + 10368ib3 − 2592
√
3 a2 + 3456

√
3 b3 = 0

−2916ia2 + 3888ib3 + 972
√
3 a2 − 1296

√
3 b3 = 0

1296ia2 − 1728ib3 − 432
√
3 a2 + 576

√
3 b3 = 0

34992ia2 − 46656ib3 + 11664
√
3 a2 − 15552

√
3 b3 = 0

−3888i
√
3 a2 + 5184i

√
3 b3 − 3888a2 + 5184b3 = 0

324i
√
3 a2 − 432i

√
3 b3 − 324a2 + 432b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x+

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

9592



The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x+

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

)
(b3 − a2)

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

−

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x+

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

)2
a3

144y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3

−

−

− 72ix2(
−27y2+3

√
3
√

27y4−8x3
) 1

3√27y4−8x3
− 6i

√
3− 24

√
3x2(

−27y2+3
√
3
√

27y4−8x3
) 1

3√27y4−8x3
+ 6

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

−

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x+

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

)√
3x2

y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3
√
27y4 − 8x3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(
−54y+ 162

√
3 y3√

27y4−8x3

)

3
(
−27y2+3

√
3
√

27y4−8x3
) 1

3
+

−36y+ 108
√
3 y3√

27y4−8x3(
−27y2+3

√
3
√

27y4−8x3
) 1

3

12y
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

+
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x+

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

12y2
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 1
3

+

(
i
√
3
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 − 6i

√
3x+

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3 + 6x

)(
−54y + 162

√
3 y3√

27y4−8x3

)
36y

(
−27y2 + 3

√
3
√
27y4 − 8x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−27y2 + 3

√
3
√

27y4 − 8x3
) 1

3
,
(
−27y2 + 3

√
3
√
27y4 − 8x3

) 2
3
,
√

27y4 − 8x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−27y2 + 3

√
3
√

27y4 − 8x3
) 1

3 = v3,
(
−27y2

+ 3
√
3
√

27y4 − 8x3
) 2

3 = v4,
√
27y4 − 8x3 = v5

}
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The above PDE (6E) now becomes

(7E)

−3240i
√
3 v5v21v22b2 + 3888i

√
3 v5v1v32a2

− 5184i
√
3 v5v1v32b3 − 3240i

√
3 v5v1v22b1

+ 72i
√
3 v4v5v21a3 + 108i

√
3 v4v5v22b1 − 324i

√
3 v4v5v32a2

+ 432i
√
3 v4v5v32b3 + 7776iv41v2a2 − 10368iv41v2b3

− 5184iv31v22a3 + 29160iv1v42b1 + 2592iv31v2a1
+ 2916iv4v52a2 − 3888iv4v52b3 + 864iv41v4b2 − 972iv4v42b1
+ 864iv31v4b1 + 108i

√
3 v4v5v1v22b2 − 144

√
3 v4v21v22a3

− 144
√
3 v4v21v2a1 + 108v4v5v1v22b2 − 324

√
3 v4v1v42b2

− 432
√
3 v4v31v2a2 + 576

√
3 v31v4v2b3 − 3456

√
3 v31v3v22b2

− 3888
√
3 v1v3v42a3 + 1296v1v3v5v22a3 − 432iv4v21v22a3

− 432iv4v21v2a1 − 972iv4v1v42b2 − 1296iv4v31v2a2
+ 1728iv31v4v2b3 + 1944i

√
3 v5v32a1 − 972i

√
3 v5v42a3

+ 432i
√
3 v31v5a3 − 2916

√
3 v62a3 + 1728

√
3 v41b1

+ 1728
√
3 v51b2 + 5832

√
3 v52a1 + 972v5v42a3

− 1944v5v32a1 − 432v31v5a3 − 3888v5v1v32a2
+ 288

√
3 v41v4b2 + 1152

√
3 v41v3a3 + 288

√
3 v31v4b1

+ 972
√
3 v4v52a2 + 11664

√
3 v3v62b2 + 11664

√
3 v1v52a2

+ 3456
√
3 v41v2b3 − 324v4v5v32a2 − 3888v3v5v42b2

+ 72v4v5v21a3 − 1296
√
3 v4v52b3 − 324

√
3 v4v42b1

− 9720
√
3 v21v42b2 − 15552

√
3 v1v52b3 − 2592

√
3 v41v2a2

+ 1728
√
3 v31v22a3 − 9720

√
3 v1v42b1 + 432v4v5v32b3

− 864
√
3 v31v2a1 + 108v4v5v22b1 + 3240v5v21v22b2

+ 5184v5v1v32b3 + 3240v5v1v22b1 + 29160iv21v42b2
− 34992iv1v52a2 + 46656iv1v52b3 + 8748iv62a3
− 5184iv51b2 − 17496iv52a1 − 5184iv41b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
2592ia1 − 864

√
3 a1
)
v31v2 +

(
864ib1 + 288

√
3 b1
)
v31v4

+
(
432i

√
3 a3 − 432a3

)
v31v5

+
(
29160ib2 − 9720

√
3 b2
)
v21v

4
2 +

(
−34992ia2

+ 46656ib3 + 11664
√
3 a2 − 15552

√
3 b3
)
v1v

5
2

+
(
29160ib1 − 9720

√
3 b1
)
v1v

4
2

+
(
2916ia2 − 3888ib3 + 972

√
3 a2 − 1296

√
3 b3
)
v52v4

+
(
−972ib1 − 324

√
3 b1
)
v42v4

+
(
−972i

√
3 a3 + 972a3

)
v42v5

+
(
1944i

√
3 a1 − 1944a1

)
v32v5

− 3456
√
3 v31v3v22b2 − 3888

√
3 v1v3v42a3

+ 1296v1v3v5v22a3 +
(
−5184ib2 + 1728

√
3 b2
)
v51

+
(
−5184ib1+1728

√
3 b1
)
v41 +

(
8748ia3−2916

√
3 a3
)
v62

+
(
−17496ia1 + 5832

√
3 a1
)
v52 + 1152

√
3 v41v3a3

+ 11664
√
3 v3v62b2 − 3888v3v5v42b2

+
(
108i

√
3 b2 + 108b2

)
v1v

2
2v4v5

+
(
−1296ia2 + 1728ib3 − 432

√
3 a2 + 576

√
3 b3
)
v31v2v4

+
(
−432ia3 − 144

√
3 a3
)
v21v

2
2v4

+
(
−3240i

√
3 b2 + 3240b2

)
v21v

2
2v5

+
(
−432ia1 − 144

√
3 a1
)
v21v2v4

+
(
72i

√
3 a3 + 72a3

)
v21v4v5

+
(
−972ib2 − 324

√
3 b2
)
v1v

4
2v4

+
(
3888i

√
3 a2 − 5184i

√
3 b3 − 3888a2 + 5184b3

)
v1v

3
2v5

+
(
−3240i

√
3 b1 + 3240b1

)
v1v

2
2v5

+
(
−324i

√
3 a2 + 432i

√
3 b3 − 324a2 + 432b3

)
v32v4v5

+
(
108i

√
3 b1 + 108b1

)
v22v4v5

+
(
7776ia2 − 10368ib3 − 2592

√
3 a2 + 3456

√
3 b3
)
v41v2

+
(
864ib2 + 288

√
3 b2
)
v41v4

+
(
−5184ia3 + 1728

√
3 a3
)
v31v

2
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
1296a3 = 0

−3888b2 = 0
−3888

√
3 a3 = 0

1152
√
3 a3 = 0

−3456
√
3 b2 = 0

11664
√
3 b2 = 0

−17496ia1 + 5832
√
3 a1 = 0

−5184ia3 + 1728
√
3 a3 = 0

−5184ib1 + 1728
√
3 b1 = 0

−5184ib2 + 1728
√
3 b2 = 0

−972ib1 − 324
√
3 b1 = 0

−972ib2 − 324
√
3 b2 = 0

−432ia1 − 144
√
3 a1 = 0

−432ia3 − 144
√
3 a3 = 0

864ib1 + 288
√
3 b1 = 0

864ib2 + 288
√
3 b2 = 0

2592ia1 − 864
√
3 a1 = 0

8748ia3 − 2916
√
3 a3 = 0

29160ib1 − 9720
√
3 b1 = 0

29160ib2 − 9720
√
3 b2 = 0

−3240i
√
3 b1 + 3240b1 = 0

−3240i
√
3 b2 + 3240b2 = 0

−972i
√
3 a3 + 972a3 = 0

72i
√
3 a3 + 72a3 = 0

108i
√
3 b1 + 108b1 = 0

108i
√
3 b2 + 108b2 = 0

432i
√
3 a3 − 432a3 = 0

1944i
√
3 a1 − 1944a1 = 0

−34992ia2 + 46656ib3 + 11664
√
3 a2 − 15552

√
3 b3 = 0

−1296ia2 + 1728ib3 − 432
√
3 a2 + 576

√
3 b3 = 0

2916ia2 − 3888ib3 + 972
√
3 a2 − 1296

√
3 b3 = 0

7776ia2 − 10368ib3 − 2592
√
3 a2 + 3456

√
3 b3 = 0

−324i
√
3 a2 + 432i

√
3 b3 − 324a2 + 432b3 = 0

3888i
√
3 a2 − 5184i

√
3 b3 − 3888a2 + 5184b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

9599



Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-8*y(x)^2*x^3+y(x))/(8*y(x)*x^4-x), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 100� �
dsolve(4*y(x)^2*diff(y(x),x)^3-2*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = −2 3
43 1

4x
3
4

3

y(x) = 2 3
43 1

4x
3
4

3

y(x) = −i2 3
43 1

4x
3
4

3

y(x) = i2 3
43 1

4x
3
4

3
y(x) = 0

y(x) =
√
2
√
c1 (−2c21 + x)

y(x) = −
√
2
√

c1 (−2c21 + x)

3 Solution by Mathematica
Time used: 83.677 (sec). Leaf size: 11250� �
DSolve[4 y[x]^2 (y'[x])^3 - 2 x y'[x] +y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.14 problem 1080
Internal problem ID [4297]
Internal file name [OUTPUT/3790_Sunday_June_05_2022_10_57_31_AM_68371786/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1080.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

16y2y′3 + 2xy′ − y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

12y − x

2y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

(1)

y′ = −
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

24y + x

4y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3
+

i
√
3
((

54y2+6
√
3
√

27y4+2x3
) 1

3

6y + x

y
(
54y2+6

√
3
√

27y4+2x3
) 1

3

)
4

(2)

y′ = −
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

24y + x

4y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3
−

i
√
3
((

54y2+6
√
3
√

27y4+2x3
) 1

3

6y + x

y
(
54y2+6

√
3
√

27y4+2x3
) 1

3

)
4

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

12y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

((
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)
(b3 − a2)

12y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−

((
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)2
a3

144y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3

−


12

√
3x2(

54y2+6
√
3
√

27y4+2x3
) 1

3√27y4+2x3
− 6

12y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−

((
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)√
3x2

2y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3
√
27y4 + 2x3

 (xa2 + ya3 + a1)

−

 108y + 324
√
3 y3√

27y4+2x3

18y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3

−
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

12y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−

((
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)(
108y + 324

√
3 y3√

27y4+2x3

)
36y

(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−
9(27y4 + 2x3)

3
2 a3 + 108

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3
√
3x y4b2 + 6

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3
√
3x3ya2 + 6

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3
√
3x2y2a3 + 36

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 x y2b2 + 6

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3
√
3x2ya1 + 486

√
3 y6a3 + 72

√
3x5b2 − 972

√
3 y5a1 + 72

√
3x4b1 −

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 5
3 b1 − 81

√
27y4 + 2x3 y4a3 − 324

√
27y4 + 2x3 y3a1 + 108

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3
√
3 y5b3 −

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 5
3 xb2 +

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 5
3 ya2 − 2

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 5
3 yb3 − 12b2y2

(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3
√
27y4 + 2x3 + 108

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3
√
3 y4b1 + 1620

√
3x2y4b2 + 2592

√
3x y5b3 −

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3 xa3 + 36

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 y3b3 − 108

√
3x4ya2 + 72

√
3x3y2a3 + 1620

√
3x y4b1 + 3

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 x2a3 + 36

√
27y4 + 2x3

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 y2b1 + 540

√
27y4 + 2x3 x2y2b2 + 864

√
27y4 + 2x3 x y3b3 − 36

√
3x3ya1 + 540

√
27y4 + 2x3 x y2b1 − 648

√
27y4 + 2x3 x y3a2 − 1944

√
3x y5a2 + 144

√
3x4yb3

12y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3
√
27y4 + 2x3

= 0
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Setting the numerator to zero gives

(6E)

−9
(
27y4 + 2x3) 3

2 a3

− 108
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3 √3x y4b2

− 6
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3 √3x3ya2

− 6
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3 √3x2y2a3

− 36
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3
x y2b2

− 6
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3 √3x2ya1

− 486
√
3 y6a3 − 72

√
3x5b2 + 972

√
3 y5a1 − 72

√
3x4b1

+
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 5

3
b1

+ 81
√

27y4 + 2x3 y4a3 + 324
√

27y4 + 2x3 y3a1

− 108
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3 √3 y5b3

+
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 5

3
xb2

−
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 5

3
ya2

+ 2
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 5

3
yb3

+ 12b2y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3 √27y4 + 2x3

− 108
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3 √3 y4b1
− 1620

√
3x2y4b2 − 2592

√
3x y5b3

+
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 4

3
xa3

− 36
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3
y3b3

+ 108
√
3x4ya2 − 72

√
3x3y2a3 − 1620

√
3x y4b1

− 3
√

27y4 + 2x3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3
x2a3

− 36
√

27y4 + 2x3
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3
y2b1

− 540
√

27y4 + 2x3 x2y2b2

− 864
√

27y4 + 2x3 x y3b3 + 36
√
3x3ya1

− 540
√

27y4 + 2x3 x y2b1 + 648
√
27y4 + 2x3 x y3a2

+ 1944
√
3x y5a2 − 144

√
3x4yb3 = 0
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
54y2 + 6

√
3
√

27y4 + 2x3
) 1

3
,
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3
,
√
27y4 + 2x3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3 = v3,

(
54y2

+ 6
√
3
√

27y4 + 2x3
) 2

3 = v4,
√

27y4 + 2x3 = v5

}

The above PDE (6E) now becomes

(7E)

−648v5v4v32a2 + 288
√
3 v31v4v2b3 + 1728

√
3 v31v3v22b2

+ 1944
√
3 v1v3v42a3 + 648v1v5v3v22a3 + 648v4

√
3 v1v42b2

− 216v4
√
3 v31v2a2 − 72v4

√
3 v21v22a3 + 216v5v4v1v22b2

− 72v4
√
3 v21v2a1 − 6480v5v1v22b1 + 7776v5v1v32a2 − 1944

√
3 v4v52a2

+ 23328
√
3 v3v62b2 + 144

√
3 v41v4b2 + 144

√
3 v41v3a3 + 144

√
3 v31v4b1

+ 23328
√
3 v1v52a2 − 1728

√
3 v41v2b3 − 5832

√
3 v62a3 − 864

√
3 v41b1

− 864
√
3 v51b2 + 11664

√
3 v52a1 − 1944v5v42a3 + 3888v5v32a1

− 216v31v5a3 + 7776v5v3v42b2 + 2592v4
√
3 v52b3 + 648v4

√
3 v42b1

− 19440
√
3 v21v42b2 − 31104

√
3 v1v52b3 + 864v5v4v32b3

+ 1296
√
3 v41v2a2 − 864

√
3 v31v22a3 − 19440

√
3 v1v42b1 − 36v5v4v21a3

+ 216v5v4v22b1 − 6480v5v21v22b2 − 10368v5v1v32b3 + 432
√
3 v31v2a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

1728
√
3 v31v3v22b2 + 1944

√
3 v1v3v42a3 + 648v1v5v3v22a3

+ 648v4
√
3 v1v42b2 − 72v4

√
3 v21v22a3 + 216v5v4v1v22b2

− 72v4
√
3 v21v2a1 − 6480v5v1v22b1 + 23328

√
3 v3v62b2 + 144

√
3 v41v4b2

+ 144
√
3 v41v3a3 + 144

√
3 v31v4b1 − 5832

√
3 v62a3 − 864

√
3 v41b1

− 864
√
3 v51b2 + 11664

√
3 v52a1 − 1944v5v42a3 + 3888v5v32a1

− 216v31v5a3 + 7776v5v3v42b2 + 648v4
√
3 v42b1 − 19440

√
3 v21v42b2

− 864
√
3 v31v22a3 − 19440

√
3 v1v42b1 − 36v5v4v21a3 + 216v5v4v22b1

− 6480v5v21v22b2 + 432
√
3 v31v2a1 + (7776a2 − 10368b3) v1v32v5

+ (−648a2 + 864b3) v32v4v5 +
(
−216

√
3 a2 + 288

√
3 b3
)
v31v2v4

+
(
1296

√
3 a2−1728

√
3 b3
)
v41v2+

(
23328

√
3 a2−31104

√
3 b3
)
v1v

5
2

+
(
−1944

√
3 a2 + 2592

√
3 b3
)
v52v4 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
3888a1 = 0

−1944a3 = 0
−216a3 = 0
−36a3 = 0
648a3 = 0

−6480b1 = 0
216b1 = 0

−6480b2 = 0
216b2 = 0
7776b2 = 0

−72
√
3 a1 = 0

432
√
3 a1 = 0

11664
√
3 a1 = 0

−5832
√
3 a3 = 0

−864
√
3 a3 = 0

−72
√
3 a3 = 0

144
√
3 a3 = 0

1944
√
3 a3 = 0

−19440
√
3 b1 = 0

−864
√
3 b1 = 0

144
√
3 b1 = 0

648
√
3 b1 = 0

−19440
√
3 b2 = 0

−864
√
3 b2 = 0

144
√
3 b2 = 0

648
√
3 b2 = 0

1728
√
3 b2 = 0

23328
√
3 b2 = 0

−648a2 + 864b3 = 0
7776a2 − 10368b3 = 0

−1944
√
3 a2 + 2592

√
3 b3 = 0

−216
√
3 a2 + 288

√
3 b3 = 0

1296
√
3 a2 − 1728

√
3 b3 = 0

23328
√
3 a2 − 31104

√
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
4x
3

= 3y
4x

This is easily solved to give

y = c1x
3
4

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
3
4
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And S is found from

dS = dx

ξ

= dx
4x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)
4

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

12y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

Evaluating all the partial derivatives gives

Rx = − 3y
4x 7

4

Ry =
1
x

3
4

Sx = 3
4x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

9x 3
4y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3(

54y2 + 6
√
3
√
27y4 + 2x3

) 2
3 x− 9y2

(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3 − 6x2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

9R6 1
3
(√

3
√
27R4 + 2 + 9R2) 1

3

6 2
3
(√

3
√
27R4 + 2 + 9R2

) 2
3 − 9 6 1

3
(√

3
√
27R4 + 2 + 9R2

) 1
3 R2 − 6
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 9R

(
6
√
81R4 + 6 + 54R2) 1

3

36 1
3

((√
81R4 + 6 + 9R2

)2) 1
3 − 9R2

(
6
√
81R4 + 6 + 54R2

) 1
3 − 6

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
6
√
81_a4 + 6 + 54_a2

) 1
3

36 1
3

((√
81_a4 + 6 + 9_a2

)2) 1
3 − 9_a2

(
6
√
81_a4 + 6 + 54_a2

) 1
3 − 6

d_a+ c1

Which simplifies to

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
6
√
81_a4 + 6 + 54_a2

) 1
3

36 1
3

((√
81_a4 + 6 + 9_a2

)2) 1
3 − 9_a2

(
6
√
81_a4 + 6 + 54_a2

) 1
3 − 6

d_a+ c1

Summary
The solution(s) found are the following

3 ln (x)
4

=
∫ y

x
3
4 9_a

(
6
√
81_a4 + 6 + 54_a2

) 1
3

36 1
3

((√
81_a4 + 6 + 9_a2

)2) 1
3 − 9_a2

(
6
√
81_a4 + 6 + 54_a2

) 1
3 − 6

d_a+c1

(1)
Verification of solutions

3 ln (x)
4

=
∫ y

x
3
4 9_a

(
6
√
81_a4 + 6 + 54_a2

) 1
3

36 1
3

((√
81_a4 + 6 + 9_a2

)2) 1
3 − 9_a2

(
6
√
81_a4 + 6 + 54_a2

) 1
3 − 6

d_a+c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ =
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x−

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6x

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x−

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6x

)
(b3 − a2)

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x−

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6x

)2
a3

576y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3

−


36ix2(

54y2+6
√
3
√

27y4+2x3
) 1

3√27y4+2x3
+ 6i

√
3− 12

√
3x2(

54y2+6
√
3
√

27y4+2x3
) 1

3√27y4+2x3
+ 6

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x−

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6x

)√
3x2

4y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3
√
27y4 + 2x3

 (xa2

+ ya3 + a1)−


2i
√
3
(
108y+ 324

√
3 y3√

27y4+2x3

)

3
(
54y2+6

√
3
√

27y4+2x3
) 1

3
−

2
(
108y+ 324

√
3 y3√

27y4+2x3

)

3
(
54y2+6

√
3
√

27y4+2x3
) 1

3

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x−

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6x

24y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x−

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6x

)(
108y + 324

√
3 y3√

27y4+2x3

)
72y

(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
54y2 + 6

√
3
√

27y4 + 2x3
) 1

3
,
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3
,
√
27y4 + 2x3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3 = v3,

(
54y2

+ 6
√
3
√

27y4 + 2x3
) 2

3 = v4,
√

27y4 + 2x3 = v5

}
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The above PDE (6E) now becomes

(7E)

−139968iv1v52a2 + 186624iv1v52b3 − 7776iv41v2a2
+ 10368iv41v2b3 + 5184iv31v22a3 + 116640iv1v42b1
−72iv5v4

√
3 v21a3+432iv5v4

√
3 v22b1−1296i

√
3 v5v4v32a2

+ 1728iv5v4
√
3 v32b3 + 12960iv5

√
3 v21v22b2

− 15552iv5
√
3 v1v32a2 + 20736iv5

√
3 v1v32b3

+ 12960iv5
√
3 v1v22b1 − 46656

√
3 v1v52a2 + 3456

√
3 v41v2b3

+ 576
√
3 v41v3a3 − 288

√
3 v31v4b1 + 432v4

√
3 v31v2a2

+ 144v4
√
3 v21v22a3 − 432v5v4v1v22b2 + 144v4

√
3 v21v2a1

− 432iv4v21v22a3 − 432iv4v21v2a1 + 3888iv4v1v42b2
− 1296iv4v31v2a2 + 1728iv31v4v2b3 + 3888iv5

√
3 v42a3

+ 432i
√
3 v31v5a3 − 7776iv5

√
3 v32a1 + 432iv5v4

√
3 v1v22b2

+ 2592v1v5v3v22a3 − 576
√
3 v31v4v2b3 + 6912

√
3 v31v3v22b2

+ 7776
√
3 v1v3v42a3 − 1296v4

√
3 v1v42b2 + 72v5v4v21a3

− 5184v4
√
3 v52b3 − 1296v4

√
3 v42b1 + 38880

√
3 v21v42b2

+ 62208
√
3 v1v52b3 − 1728v5v4v32b3 − 2592

√
3 v41v2a2

+ 1728
√
3 v31v22a3 + 38880

√
3 v1v42b1 − 432v5v4v22b1

+ 12960v5v21v22b2 + 20736v5v1v32b3 − 864
√
3 v31v2a1

+ 12960v5v1v22b1 + 3888
√
3 v4v52a2 + 93312

√
3 v3v62b2

− 288
√
3 v41v4b2 − 15552v5v1v32a2 + 1296v5v4v32a2

+ 31104v5v3v42b2 − 11664iv4v52a2 + 15552iv4v52b3
+ 864iv41v4b2 + 3888iv4v42b1 + 864iv31v4b1
− 2592iv31v2a1 + 116640iv21v42b2 + 3888v5v42a3
− 7776v5v32a1 + 11664

√
3 v62a3 + 1728

√
3 v51b2

− 23328
√
3 v52a1 + 1728

√
3 v41b1 + 432v31v5a3

+ 5184iv51b2 + 5184iv41b1 + 34992iv62a3 − 69984iv52a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−1296ia2 + 1728ib3 + 432

√
3 a2 − 576

√
3 b3
)
v31v2v4

+
(
−432ia3 + 144

√
3 a3
)
v21v

2
2v4

+
(
12960i

√
3 b2 + 12960b2

)
v21v

2
2v5

+
(
−432ia1 + 144

√
3 a1
)
v21v2v4

+
(
−72i

√
3 a3 + 72a3

)
v21v4v5

+
(
3888ib2 − 1296

√
3 b2
)
v1v

4
2v4 + 576

√
3 v41v3a3

+ 2592v1v5v3v22a3 + 6912
√
3 v31v3v22b2

+ 7776
√
3 v1v3v42a3 +

(
−2592ia1 − 864

√
3 a1
)
v31v2

+
(
864ib1 − 288

√
3 b1
)
v31v4 +

(
432i

√
3 a3 + 432a3

)
v31v5

+
(
116640ib2 + 38880

√
3 b2
)
v21v

4
2 +

(
−139968ia2

+ 186624ib3 − 46656
√
3 a2 + 62208

√
3 b3
)
v1v

5
2

+
(
116640ib1 + 38880

√
3 b1
)
v1v

4
2

+
(
−11664ia2 + 15552ib3 + 3888

√
3 a2 − 5184

√
3 b3
)
v52v4

+
(
3888ib1 − 1296

√
3 b1
)
v42v4

+
(
3888i

√
3 a3 + 3888a3

)
v42v5

+
(
−7776i

√
3 a1 − 7776a1

)
v32v5

+
(
−7776ia2 + 10368ib3 − 2592

√
3 a2 + 3456

√
3 b3
)
v41v2

+
(
864ib2−288

√
3 b2
)
v41v4+

(
5184ia3+1728

√
3 a3
)
v31v

2
2

+
(
5184ib2 + 1728

√
3 b2
)
v51 +

(
5184ib1 + 1728

√
3 b1
)
v41

+
(
34992ia3 + 11664

√
3 a3
)
v62

+
(
−69984ia1 − 23328

√
3 a1
)
v52 + 93312

√
3 v3v62b2

+ 31104v5v3v42b2 +
(
−15552i

√
3 a2

+ 20736i
√
3 b3 − 15552a2 + 20736b3

)
v1v

3
2v5

+
(
12960i

√
3 b1 + 12960b1

)
v1v

2
2v5

+
(
−1296i

√
3 a2 + 1728i

√
3 b3 + 1296a2 − 1728b3

)
v32v4v5

+
(
432i

√
3 b1 − 432b1

)
v22v4v5

+
(
432i

√
3 b2 − 432b2

)
v1v

2
2v4v5 = 09616



Setting each coefficients in (8E) to zero gives the following equations to solve
2592a3 = 0
31104b2 = 0

576
√
3 a3 = 0

7776
√
3 a3 = 0

6912
√
3 b2 = 0

93312
√
3 b2 = 0

−69984ia1 − 23328
√
3 a1 = 0

−2592ia1 − 864
√
3 a1 = 0

−432ia1 + 144
√
3 a1 = 0

−432ia3 + 144
√
3 a3 = 0

864ib1 − 288
√
3 b1 = 0

864ib2 − 288
√
3 b2 = 0

3888ib1 − 1296
√
3 b1 = 0

3888ib2 − 1296
√
3 b2 = 0

5184ia3 + 1728
√
3 a3 = 0

5184ib1 + 1728
√
3 b1 = 0

5184ib2 + 1728
√
3 b2 = 0

34992ia3 + 11664
√
3 a3 = 0

116640ib1 + 38880
√
3 b1 = 0

116640ib2 + 38880
√
3 b2 = 0

−7776i
√
3 a1 − 7776a1 = 0

−72i
√
3 a3 + 72a3 = 0

432i
√
3 a3 + 432a3 = 0

432i
√
3 b1 − 432b1 = 0

432i
√
3 b2 − 432b2 = 0

3888i
√
3 a3 + 3888a3 = 0

12960i
√
3 b1 + 12960b1 = 0

12960i
√
3 b2 + 12960b2 = 0

−139968ia2 + 186624ib3 − 46656
√
3 a2 + 62208

√
3 b3 = 0

−11664ia2 + 15552ib3 + 3888
√
3 a2 − 5184

√
3 b3 = 0

−7776ia2 + 10368ib3 − 2592
√
3 a2 + 3456

√
3 b3 = 0

−1296ia2 + 1728ib3 + 432
√
3 a2 − 576

√
3 b3 = 0

−15552i
√
3 a2 + 20736i

√
3 b3 − 15552a2 + 20736b3 = 0

−1296i
√
3 a2 + 1728i

√
3 b3 + 1296a2 − 1728b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x+

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x+

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)
(b3 − a2)

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

−

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x+

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)2
a3

576y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3

−

−

36ix2(
54y2+6

√
3
√

27y4+2x3
) 1

3√27y4+2x3
+ 6i

√
3 + 12

√
3x2(

54y2+6
√
3
√

27y4+2x3
) 1

3√27y4+2x3
− 6

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

+

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x+

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)√
3x2

4y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3
√
27y4 + 2x3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(
108y+ 324

√
3 y3√

27y4+2x3

)

3
(
54y2+6

√
3
√

27y4+2x3
) 1

3
+

72y+ 216
√
3 y3√

27y4+2x3(
54y2+6

√
3
√

27y4+2x3
) 1

3

24y
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

+
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x+

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

24y2
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3

+

(
i
√
3
(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 + 6i

√
3x+

(
54y2 + 6

√
3
√
27y4 + 2x3

) 2
3 − 6x

)(
108y + 324

√
3 y3√

27y4+2x3

)
72y

(
54y2 + 6

√
3
√
27y4 + 2x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
54y2 + 6

√
3
√

27y4 + 2x3
) 1

3
,
(
54y2 + 6

√
3
√

27y4 + 2x3
) 2

3
,
√
27y4 + 2x3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
54y2 + 6

√
3
√
27y4 + 2x3

) 1
3 = v3,

(
54y2

+ 6
√
3
√

27y4 + 2x3
) 2

3 = v4,
√

27y4 + 2x3 = v5

}

9621



The above PDE (6E) now becomes

(7E)

−432i
√
3 v4v5v1v22b2 − 34992iv62a3 − 5184iv51b2

+ 69984iv52a1 − 5184iv41b1 + 144
√
3 v4v21v22a3

+ 144
√
3 v4v21v2a1 + 2592v1v5v3v22a3 − 432v4v5v1v22b2

− 3888i
√
3 v5v42a3 − 432i

√
3 v31v5a3 + 432iv4v21v22a3

+ 432iv4v21v2a1 + 7776i
√
3 v5v32a1 − 3888iv4v1v42b2

+ 1296iv4v31v2a2 − 1728iv31v4v2b3 − 288
√
3 v41v4b2

+ 576
√
3 v41v3a3 − 288

√
3 v31v4b1 + 11664iv4v52a2

− 15552iv4v52b3 − 864iv41v4b2 − 3888iv4v42b1 − 864iv31v4b1
+ 2592iv31v2a1 − 116640iv21v42b2 + 139968iv1v52a2
− 186624iv1v52b3 + 7776iv41v2a2 − 10368iv41v2b3
− 5184iv31v22a3 − 116640iv1v42b1 + 1296i

√
3 v5v4v32a2

− 1728i
√
3 v4v5v32b3− 432i

√
3 v4v5v22b1+72i

√
3 v4v5v21a3

− 12960i
√
3 v5v21v22b2 + 15552i

√
3 v5v1v32a2

− 20736i
√
3 v5v1v32b3 − 12960i

√
3 v5v1v22b1

− 576
√
3 v31v4v2b3+6912

√
3 v31v3v22b2+7776

√
3 v1v3v42a3

− 1296
√
3 v4v1v42b2 + 432

√
3 v4v31v2a2 + 31104v5v3v42b2

− 46656
√
3 v1v52a2 + 72v4v5v21a3 − 5184

√
3 v4v52b3

− 1296
√
3 v4v42b1 + 38880

√
3 v21v42b2 + 62208

√
3 v1v52b3

− 2592
√
3 v41v2a2 + 1728

√
3 v31v22a3 + 38880

√
3 v1v42b1

− 1728v4v5v32b3 − 864
√
3 v31v2a1 − 432v4v5v22b1

+ 12960v5v21v22b2 + 20736v5v1v32b3 + 12960v5v1v22b1
+ 3456

√
3 v41v2b3 − 15552v5v1v32a2 + 3888

√
3 v4v52a2

+ 93312
√
3 v3v62b2 + 1296v5v4v32a2 + 432v31v5a3

+ 11664
√
3 v62a3 + 3888v5v42a3 − 7776v5v32a1

+ 1728
√
3 v51b2 − 23328

√
3 v52a1 + 1728

√
3 v41b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(
−2592

√
3 a2 + 3456

√
3 b3 + 7776ia2 − 10368ib3

)
v41v2

+
(
−288

√
3 b2 − 864ib2

)
v41v4 +

(
1728

√
3 a3 − 5184ia3

)
v31v

2
2

+
(
−864

√
3 a1 + 2592ia1

)
v31v2 +

(
−288

√
3 b1 − 864ib1

)
v31v4

+
(
−432i

√
3 a3 + 432a3

)
v31v5 +

(
38880

√
3 b2 − 116640ib2

)
v21v

4
2

+
(
−46656

√
3 a2 + 62208

√
3 b3 + 139968ia2 − 186624ib3

)
v1v

5
2

+
(
38880

√
3 b1−116640ib1

)
v1v

4
2 +
(
3888

√
3 a2−5184

√
3 b3+11664ia2−15552ib3

)
v52v4

+
(
−1296

√
3 b1 − 3888ib1

)
v42v4 +

(
−3888i

√
3 a3 + 3888a3

)
v42v5

+
(
7776i

√
3 a1 − 7776a1

)
v32v5 +

(
1728

√
3 b2 − 5184ib2

)
v51

+
(
1728

√
3 b1 − 5184ib1

)
v41 +

(
11664

√
3 a3 − 34992ia3

)
v62

+
(
−23328

√
3 a1 + 69984ia1

)
v52 +

(
−432i

√
3 b2 − 432b2

)
v1v

2
2v4v5 + 2592v1v5v3v22a3

+
(
432

√
3 a2 − 576

√
3 b3 + 1296ia2 − 1728ib3

)
v31v2v4 +

(
144

√
3 a3 + 432ia3

)
v21v

2
2v4

+
(
−12960i

√
3 b2 + 12960b2

)
v21v

2
2v5 +

(
144

√
3 a1 + 432ia1

)
v21v2v4

+
(
72i

√
3 a3 + 72a3

)
v21v4v5 +

(
−1296

√
3 b2 − 3888ib2

)
v1v

4
2v4

+
(
15552i

√
3 a2 − 20736i

√
3 b3 − 15552a2 + 20736b3

)
v1v

3
2v5

+
(
−12960i

√
3 b1 + 12960b1

)
v1v

2
2v5

+
(
1296i

√
3 a2−1728i

√
3 b3+1296a2−1728b3

)
v32v4v5+576

√
3 v41v3a3+6912

√
3 v31v3v22b2

+7776
√
3 v1v3v42a3+31104v5v3v42b2+93312

√
3 v3v62b2+

(
−432i

√
3 b1−432b1

)
v22v4v5 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve
2592a3 = 0
31104b2 = 0

576
√
3 a3 = 0

7776
√
3 a3 = 0

6912
√
3 b2 = 0

93312
√
3 b2 = 0

−23328
√
3 a1 + 69984ia1 = 0

−864
√
3 a1 + 2592ia1 = 0

144
√
3 a1 + 432ia1 = 0

144
√
3 a3 + 432ia3 = 0

1728
√
3 a3 − 5184ia3 = 0

11664
√
3 a3 − 34992ia3 = 0

−1296
√
3 b1 − 3888ib1 = 0

−288
√
3 b1 − 864ib1 = 0

1728
√
3 b1 − 5184ib1 = 0

38880
√
3 b1 − 116640ib1 = 0

−1296
√
3 b2 − 3888ib2 = 0

−288
√
3 b2 − 864ib2 = 0

1728
√
3 b2 − 5184ib2 = 0

38880
√
3 b2 − 116640ib2 = 0

−12960i
√
3 b1 + 12960b1 = 0

−12960i
√
3 b2 + 12960b2 = 0

−3888i
√
3 a3 + 3888a3 = 0

−432i
√
3 a3 + 432a3 = 0

−432i
√
3 b1 − 432b1 = 0

−432i
√
3 b2 − 432b2 = 0

72i
√
3 a3 + 72a3 = 0

7776i
√
3 a1 − 7776a1 = 0

−46656
√
3 a2 + 62208

√
3 b3 + 139968ia2 − 186624ib3 = 0

−2592
√
3 a2 + 3456

√
3 b3 + 7776ia2 − 10368ib3 = 0

432
√
3 a2 − 576

√
3 b3 + 1296ia2 − 1728ib3 = 0

3888
√
3 a2 − 5184

√
3 b3 + 11664ia2 − 15552ib3 = 0

1296i
√
3 a2 − 1728i

√
3 b3 + 1296a2 − 1728b3 = 0

15552i
√
3 a2 − 20736i

√
3 b3 − 15552a2 + 20736b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-32*y(x)^2*x^3-y(x))/(32*y(x)*x^4+x), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 104� �
dsolve(16*y(x)^2*diff(y(x),x)^3+2*x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = −(−x3)
1
4 6 1

4

3

y(x) = (−x3)
1
4 6 1

4

3

y(x) = −i(−x3)
1
4 6 1

4

3

y(x) = i(−x3)
1
4 6 1

4

3
y(x) = 0

y(x) =
√
2
√
c1 (8c21 + x)

y(x) = −
√
2
√
c1 (8c21 + x)

3 Solution by Mathematica
Time used: 0.137 (sec). Leaf size: 107� �
DSolve[16 y[x]^2 (y'[x])^3 +2 x y'[x] -y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

c1 (x+ 2c12)

y(x) → −
4
√
−2x3/4

33/4

y(x) → (1− i)x3/4

4
√
233/4

y(x) → i 4
√
−2x3/4

33/4

y(x) →
4
√
−2x3/4

33/4
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36.15 problem 1081
Internal problem ID [4298]
Internal file name [OUTPUT/3791_Sunday_June_05_2022_10_57_40_AM_39744256/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1081.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

xy2y′
3 − y3y′

2 + x
(
x2 + 1

)
y′ − yx2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
8y6 + 72y2x4 − 36y2x2 + 12

√
3
√
4y8 + 8y4x4 + 4x8 − 20y4x2 + 12x6 − y4 + 12x4 + 4x2 x2) 1

3

6yx +
2y4
3 − 2x4 − 2x2

yx
(
8y6 + 72y2x4 − 36y2x2 + 12

√
3
√
4y8 + 8y4x4 + 4x8 − 20y4x2 + 12x6 − y4 + 12x4 + 4x2 x2

) 1
3
+ y

3x

(1)

y′ = −
(
8y6 + 72y2x4 − 36y2x2 + 12

√
3
√
4y8 + 8y4x4 + 4x8 − 20y4x2 + 12x6 − y4 + 12x4 + 4x2 x2) 1

3

12yx − y4 − 3x4 − 3x2

3yx
(
8y6 + 72y2x4 − 36y2x2 + 12

√
3
√
4y8 + 8y4x4 + 4x8 − 20y4x2 + 12x6 − y4 + 12x4 + 4x2 x2

) 1
3
+ y

3x +
i
√
3
((

8y6+72y2x4−36y2x2+12
√
3
√

4y8+8y4x4+4x8−20y4x2+12x6−y4+12x4+4x2 x2
) 1

3

6yx − 2
(
y4−3x4−3x2)

3yx
(
8y6+72y2x4−36y2x2+12

√
3
√

4y8+8y4x4+4x8−20y4x2+12x6−y4+12x4+4x2 x2
) 1

3

)
2

(2)

y′ = −
(
8y6 + 72y2x4 − 36y2x2 + 12

√
3
√
4y8 + 8y4x4 + 4x8 − 20y4x2 + 12x6 − y4 + 12x4 + 4x2 x2) 1

3

12yx − y4 − 3x4 − 3x2

3yx
(
8y6 + 72y2x4 − 36y2x2 + 12

√
3
√
4y8 + 8y4x4 + 4x8 − 20y4x2 + 12x6 − y4 + 12x4 + 4x2 x2

) 1
3
+ y

3x −

i
√
3
((

8y6+72y2x4−36y2x2+12
√
3
√

4y8+8y4x4+4x8−20y4x2+12x6−y4+12x4+4x2 x2
) 1

3

6yx − 2
(
y4−3x4−3x2)

3yx
(
8y6+72y2x4−36y2x2+12

√
3
√

4y8+8y4x4+4x8−20y4x2+12x6−y4+12x4+4x2 x2
) 1

3

)
2

(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (3)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 4`� �

7 Solution by Maple� �
dsolve(x*y(x)^2*diff(y(x),x)^3-y(x)^3*diff(y(x),x)^2+x*(x^2+1)*diff(y(x),x)-x^2*y(x) = 0,y(x), singsol=all)� �

No solution found
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3 Solution by Mathematica
Time used: 0.56 (sec). Leaf size: 399� �
DSolve[x y[x]^2 (y'[x])^3 -y[x]^3 (y'[x])^2 + x (1+x^2) y'[x] -x^2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
c1

(
x2 + 1

1 + c12

)

y(x) →

√
c1

(
x2 + 1

1 + c12

)

y(x) → −

4

√
−8x4 + 20x2 −

√
− (8x2 − 1)3 + 1

23/4

y(x) → −
i

4

√
−8x4 + 20x2 −

√
− (8x2 − 1)3 + 1

23/4

y(x) →
i

4

√
−8x4 + 20x2 −

√
− (8x2 − 1)3 + 1

23/4

y(x) →
4

√
−8x4 + 20x2 −

√
− (8x2 − 1)3 + 1

23/4

y(x) → −

4

√
−8x4 + 20x2 +

√
− (8x2 − 1)3 + 1

23/4

y(x) → −
i

4

√
−8x4 + 20x2 +

√
− (8x2 − 1)3 + 1

23/4

y(x) →
i

4

√
−8x4 + 20x2 +

√
− (8x2 − 1)3 + 1

23/4

y(x) →
4

√
−8x4 + 20x2 +

√
− (8x2 − 1)3 + 1

23/4

9631



36.16 problem 1084
Internal problem ID [4299]
Internal file name [OUTPUT/3792_Sunday_June_05_2022_10_58_05_AM_32368906/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1084.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y3y′
3 − (1− 3x) y2y′2 + 3x2yy′ − y2 = −x3

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

(
108x2+108y2−72x+8+12

√
−12x3+81x4+162x2y2+81y4−108y2x+12y2

) 1
3

6 − 6
( 2x

3 − 1
9
)

(
108x2+108y2−72x+8+12

√
−12x3+81x4+162x2y2+81y4−108y2x+12y2

) 1
3
− x+ 1

3

y
(1)

y′ =
−
(
108x2+108y2−72x+8+12

√
−12x3+81x4+162x2y2+81y4−108y2x+12y2

) 1
3

12 + 2x− 1
3(

108x2+108y2−72x+8+12
√

−12x3+81x4+162x2y2+81y4−108y2x+12y2
) 1

3
− x+ 1

3 +
i
√
3


(
108x2+108y2−72x+8+12

√
−12x3+81x4+162x2y2+81y4−108y2x+12y2

) 1
3

6 + 4x− 2
3(

108x2+108y2−72x+8+12
√

−12x3+81x4+162x2y2+81y4−108y2x+12y2
) 1

3


2

y
(2)

y′ =
−
(
108x2+108y2−72x+8+12

√
−12x3+81x4+162x2y2+81y4−108y2x+12y2

) 1
3

12 + 2x− 1
3(

108x2+108y2−72x+8+12
√

−12x3+81x4+162x2y2+81y4−108y2x+12y2
) 1

3
− x+ 1

3 −

i
√
3


(
108x2+108y2−72x+8+12

√
−12x3+81x4+162x2y2+81y4−108y2x+12y2

) 1
3

6 + 4x− 2
3(

108x2+108y2−72x+8+12
√

−12x3+81x4+162x2y2+81y4−108y2x+12y2
) 1

3


2

y
(3)
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Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (3)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = y(x)*x/(-x^2-1), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 349� �
dsolve(y(x)^3*diff(y(x),x)^3-(1-3*x)*y(x)^2*diff(y(x),x)^2+3*x^2*y(x)*diff(y(x),x)+x^3-y(x)^2 = 0,y(x), singsol=all)� �

y(x) = −

√
−6− 81x2 − 6

√
− (6x− 1)3 + 54x

9

y(x) =

√
−6− 81x2 − 6

√
− (6x− 1)3 + 54x

9

y(x) = −

√
−6− 81x2 + 6

√
− (6x− 1)3 + 54x

9

y(x) =

√
−6− 81x2 + 6

√
− (6x− 1)3 + 54x

9
y(x) =

√
− (c31)

2
3 + 2c1x+ c31 − x2

y(x) = −
√

− (c31)
2
3 + 2c1x+ c31 − x2

y(x) = −

√(
−2i

√
3 + 2

)
(c31)

2
3 − 4i

√
3 c1x+ 4c31 − 4x2 − 4c1x

2

y(x) =

√(
−2i

√
3 + 2

)
(c31)

2
3 − 4i

√
3 c1x+ 4c31 − 4x2 − 4c1x

2

y(x) = −

√(
2i
√
3 + 2

)
(c31)

2
3 + 4i

√
3 c1x+ 4c31 − 4x2 − 4c1x

2

y(x) =

√(
2i
√
3 + 2

)
(c31)

2
3 + 4i

√
3 c1x+ 4c31 − 4x2 − 4c1x

2

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y[x]^3 (y'[x])^3 -(1-3 x) y[x]^2 (y'[x])^2 +3 x^2 y[x] y'[x]+x^3 - y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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36.17 problem 1085
Internal problem ID [4300]
Internal file name [OUTPUT/3793_Sunday_June_05_2022_10_58_24_AM_89539766/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1085.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y4y′
3 − 6xy′ + 2y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−y3 +

√
y6 − 8x3

) 1
3

y2
+ 2x

y2
(
−y3 +

√
y6 − 8x3

) 1
3

(1)

y′ = −
(
−y3 +

√
y6 − 8x3

) 1
3

2y2 − x

y2
(
−y3 +

√
y6 − 8x3

) 1
3
+

i
√
3
((

−y3+
√

y6−8x3
) 1

3

y2
− 2x

y2
(
−y3+

√
y6−8x3

) 1
3

)
2

(2)

y′ = −
(
−y3 +

√
y6 − 8x3

) 1
3

2y2 − x

y2
(
−y3 +

√
y6 − 8x3

) 1
3
−

i
√
3
((

−y3+
√

y6−8x3
) 1

3

y2
− 2x

y2
(
−y3+

√
y6−8x3

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

y2
(
−y3 +

√
y6 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

((
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)
(b3 − a2)

y2
(
−y3 +

√
y6 − 8x3

) 1
3

−

((
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)2
a3

y4
(
−y3 +

√
y6 − 8x3

) 2
3

−


− 8x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
+ 2

y2
(
−y3 +

√
y6 − 8x3

) 1
3

+
4
((

−y3 +
√
y6 − 8x3

) 2
3 + 2x

)
x2

y2
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

 (xa2 + ya3 + a1)

−

 −2y2 + 2y5√
y6−8x3

y2
(
−y3 +

√
y6 − 8x3

) 2
3
−

2
((

−y3 +
√
y6 − 8x3

) 2
3 + 2x

)
y3
(
−y3 +

√
y6 − 8x3

) 1
3

−

((
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)(
−3y2 + 3y5√

y6−8x3

)
3y2
(
−y3 +

√
y6 − 8x3

) 4
3

 (xb2 + yb3 + b1) = 0

9637



Putting the above in normal form gives

√
y6 − 8x3 y6a3 + 2

√
y6 − 8x3 y5a1 − 4x y8a2 − 32x5yb2 − 48x4y2b3 − 32x4yb1 + 6x2y7b2 + 8x y8b3 + 6x y7b1 + 24x4y2a2 − 8x3y3a3 + 8x3y2a1 −

(
−y3 +

√
y6 − 8x3

) 2
3 y8b3 −

(
−y3 +

√
y6 − 8x3

) 2
3 y7b1 − (y6 − 8x3)

3
2 a3 − 2y8a1 + 2

(
−y3 +

√
y6 − 8x3

) 5
3
√
y6 − 8x3 xyb2 +

(
−y3 +

√
y6 − 8x3

) 2
3
√
y6 − 8x3 x y4b2 −

(
−y3 +

√
y6 − 8x3

) 2
3 x y7b2 + b2y

4(−y3 +
√
y6 − 8x3

) 4
3
√
y6 − 8x3 −

(
−y3 +

√
y6 − 8x3

) 5
3
√
y6 − 8x3 y2a2 + 3

(
−y3 +

√
y6 − 8x3

) 5
3
√
y6 − 8x3 y2b3 +

(
−y3 +

√
y6 − 8x3

) 2
3
√
y6 − 8x3 y5b3 + 2

(
−y3 +

√
y6 − 8x3

) 5
3
√
y6 − 8x3 yb1 +

(
−y3 +

√
y6 − 8x3

) 2
3
√
y6 − 8x3 y4b1 + 4

(
−y3 +

√
y6 − 8x3

) 2
3 x3y2a2 + 4

(
−y3 +

√
y6 − 8x3

) 2
3 x2y3a3 − 6

√
y6 − 8x3 x2y4b2 − 8

√
y6 − 8x3 x y5b3 − 4

(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3 xa3 + 4

(
−y3 +

√
y6 − 8x3

) 2
3 x2y2a1 − 6

√
y6 − 8x3 x y4b1 − 4

(
−y3 +

√
y6 − 8x3

) 2
3
√
y6 − 8x3 x2a3 + 4

√
y6 − 8x3 x y5a2

y4
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

= 0
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Setting the numerator to zero gives

(6E)

√
y6 − 8x3 y6a3 + 2

√
y6 − 8x3 y5a1 − 4x y8a2 − 32x5yb2

− 48x4y2b3 − 32x4yb1 + 6x2y7b2 + 8x y8b3 + 6x y7b1

+ 24x4y2a2 − 8x3y3a3 + 8x3y2a1 −
(
−y3 +

√
y6 − 8x3

) 2
3
y8b3

−
(
−y3 +

√
y6 − 8x3

) 2
3
y7b1 −

(
y6 − 8x3) 3

2 a3

− 2y8a1 + 2
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 xyb2

+
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 x y4b2

−
(
−y3 +

√
y6 − 8x3

) 2
3
x y7b2

+ b2y
4
(
−y3 +

√
y6 − 8x3

) 4
3 √

y6 − 8x3

−
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 y2a2

+ 3
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 y2b3

+
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 y5b3

+ 2
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 yb1

+
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 y4b1

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x3y2a2

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y3a3 − 6

√
y6 − 8x3 x2y4b2

− 8
√

y6 − 8x3 x y5b3 − 4
(
−y3 +

√
y6 − 8x3

) 4
3 √

y6 − 8x3 xa3

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y2a1 − 6

√
y6 − 8x3 x y4b1

− 4
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 x2a3

+ 4
√
y6 − 8x3 x y5a2 = 0
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Simplifying the above gives

(6E)

2x2y7b2 + 2x y8b3 + 2x y7b1 − 8x4y2a2 − 8x3y3a3 − 8x3y2a1

−
(
−y3 +

√
y6 − 8x3

) 2
3
y8b3 −

(
−y3 +

√
y6 − 8x3

) 2
3
y7b1

−
(
−y3 +

√
y6 − 8x3

)2√
y6 − 8x3 a3

+ 2
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 xyb2

+
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 x y4b2

+ 4
(
−y3 +

√
y6 − 8x3

)√
y6 − 8x3 x2yb2

− 4
(
−y3 +

√
y6 − 8x3

)√
y6 − 8x3 x y2a2

+ 6
(
−y3 +

√
y6 − 8x3

)√
y6 − 8x3 x y2b3

+ 4
(
−y3 +

√
y6 − 8x3

)√
y6 − 8x3 xyb1

−
(
−y3 +

√
y6 − 8x3

) 2
3
x y7b2

+ b2y
4
(
−y3 +

√
y6 − 8x3

) 4
3 √

y6 − 8x3

−
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 y2a2

+ 3
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 y2b3

+
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 y5b3

+ 2
(
−y3 +

√
y6 − 8x3

) 5
3 √

y6 − 8x3 yb1

− 2
(
−y3 +

√
y6 − 8x3

)√
y6 − 8x3 y3a3

+
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 y4b1

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x3y2a2

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y3a3

− 2
√

y6 − 8x3 x2y4b2 − 2
√

y6 − 8x3 x y5b3

− 4
(
−y3 +

√
y6 − 8x3

) 4
3 √

y6 − 8x3 xa3

− 2
(
−y3 +

√
y6 − 8x3

)√
y6 − 8x3 y2a1

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y2a1 − 2

√
y6 − 8x3 x y4b1

− 4
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 x2a3 = 0
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Since the PDE has radicals, simplifying gives

2
√

y6 − 8x3 y5a1 − 4x y8a2 − 32x5yb2 − 48x4y2b3 − 32x4yb1
+ 6x2y7b2 + 8x y8b3 + 6x y7b1 + 24x4y2a2 − 8x3y3a3 + 8x3y2a1

+ 2
(
−y3 +

√
y6 − 8x3

) 2
3
y8b3 +

(
−y3 +

√
y6 − 8x3

) 2
3
y7b1

− 2y8a1 + 4x
(
−y3 +

√
y6 − 8x3

) 1
3 √

y6 − 8x3 y3a3

−
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 x y4b2

+
(
−y3 +

√
y6 − 8x3

) 2
3
x y7b2

− 2
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 y5b3

−
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 y4b1

+ 12
(
−y3 +

√
y6 − 8x3

) 2
3
x3y2a2 + 4

(
−y3 +

√
y6 − 8x3

) 2
3
x2y3a3

− 6
√

y6 − 8x3 x2y4b2 − 8
√

y6 − 8x3 x y5b3

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y2a1 − 6

√
y6 − 8x3 x y4b1

− 4
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 x2a3

+ 32x4
(
−y3 +

√
y6 − 8x3

) 1
3
a3 + 8x3

√
y6 − 8x3 a3

+
(
−y3 +

√
y6 − 8x3

) 1
3
y10b2 −

(
−y3 +

√
y6 − 8x3

) 2
3
y8a2

−
(
−y3 +

√
y6 − 8x3

) 1
3 √

y6 − 8x3 y7b2

+
(
−y3 +

√
y6 − 8x3

) 2
3 √

y6 − 8x3 y5a2

− 8x3
(
−y3 +

√
y6 − 8x3

) 1
3
y4b2 − 4x

(
−y3 +

√
y6 − 8x3

) 1
3
y6a3

− 16x4
(
−y3 +

√
y6 − 8x3

) 2
3
yb2 − 24x3

(
−y3 +

√
y6 − 8x3

) 2
3
y2b3

− 16x3
(
−y3 +

√
y6 − 8x3

) 2
3
yb1 + 4

√
y6 − 8x3 x y5a2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−y3 +

√
y6 − 8x3

) 1
3
,
(
−y3 +

√
y6 − 8x3

) 2
3
,
√

y6 − 8x3
}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

(
−y3+

√
y6 − 8x3

) 1
3 = v3,

(
−y3+

√
y6 − 8x3

) 2
3 = v4,

√
y6 − 8x3 = v5

}

The above PDE (6E) now becomes

(7E)

v3v
10
2 b2 − 4v1v82a2 − v4v

8
2a2 + 6v21v72b2 + v4v1v

7
2b2 − v3v5v

7
2b2

+ 8v1v82b3 + 2v4v82b3 − 2v82a1 − 4v1v3v62a3 + 6v1v72b1 + v4v
7
2b1

− 8v31v3v42b2 + 4v5v1v52a2 + v4v5v
5
2a2 − 6v5v21v42b2 − v4v5v1v

4
2b2

− 8v5v1v52b3 − 2v4v5v52b3 + 2v5v52a1 + 24v41v22a2 + 12v4v31v22a2 − 8v31v32a3
+ 4v4v21v32a3 + 4v1v3v5v32a3 − 6v5v1v42b1 − v4v5v

4
2b1 − 32v51v2b2

− 16v41v4v2b2 − 48v41v22b3 − 24v31v4v22b3 + 8v31v22a1 + 4v4v21v22a1
+ 32v41v3a3 − 32v41v2b1 − 16v31v4v2b1 + 8v31v5a3 − 4v4v5v21a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)

(12a2 − 24b3) v31v22v4 + (4a2 − 8b3) v1v52v5 + (a2 − 2b3) v52v4v5
+(−4a2+8b3) v1v82+(−a2+2b3) v82v4−v4v5v

4
2b1+4v4v21v32a3−6v5v21v42b2

+4v4v21v22a1−6v5v1v42b1−4v4v5v21a3−v3v5v
7
2b2−8v31v3v42b2−4v1v3v62a3

−16v41v4v2b2−16v31v4v2b1+4v1v3v5v32a3−v4v5v1v
4
2b2−2v82a1+v4v1v

7
2b2

+(24a2−48b3) v41v22+2v5v52a1−32v51v2b2−32v41v2b1+6v21v72b2+6v1v72b1
− 8v31v32a3 + 8v31v22a1 + v4v

7
2b1 + 32v41v3a3 + 8v31v5a3 + v3v

10
2 b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−2a1 = 0
2a1 = 0
4a1 = 0
8a1 = 0

−8a3 = 0
−4a3 = 0
4a3 = 0
8a3 = 0
32a3 = 0

−32b1 = 0
−16b1 = 0
−6b1 = 0
−b1 = 0
6b1 = 0

−32b2 = 0
−16b2 = 0
−8b2 = 0
−6b2 = 0
−b2 = 0
6b2 = 0

−4a2 + 8b3 = 0
−a2 + 2b3 = 0
a2 − 2b3 = 0
4a2 − 8b3 = 0

12a2 − 24b3 = 0
24a2 − 48b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

2x
= y

2x

This is easily solved to give

y = c1
√
x

Where now the coordinate R is taken as the constant of integration. Hence

R = y√
x
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And S is found from

dS = dx

ξ

= dx

2x
Integrating gives

S =
∫

dx

T

= ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

y2
(
−y3 +

√
y6 − 8x3

) 1
3

Evaluating all the partial derivatives gives

Rx = − y

2x 3
2

Ry =
1√
x

Sx = 1
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

√
x y2

(
−y3 +

√
y6 − 8x3

) 1
3

−y3
(
−y3 +

√
y6 − 8x3

) 1
3 + 2

(
−y3 +

√
y6 − 8x3

) 2
3 x+ 4x2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

R2(−R3 +
√
R6 − 8

) 1
3(

−R3 +
√
R6 − 8

) 1
3 R3 − 2

(
−R3 +

√
R6 − 8

) 2
3 − 4
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

R2(−R3 +
√
R6 − 8

) 1
3

−
(
−R3 +

√
R6 − 8

) 1
3 R3 + 2

(
−R3 +

√
R6 − 8

) 2
3 + 4

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Which simplifies to

ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Verification of solutions

ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)
(b3 − a2)

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)2
a3

4y4
(
−y3 +

√
y6 − 8x3

) 2
3

−


− 8i

√
3x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
− 2i

√
3 + 8x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
− 2

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

+
2
(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)
x2

y2
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

 (xa2

+ ya3 + a1)−


2i
√
3
(
−3y2+ 3y5√

y6−8x3

)

3
(
−y3+

√
y6−8x3

) 1
3

−
2
(
−3y2+ 3y5√

y6−8x3

)

3
(
−y3+

√
y6−8x3

) 1
3

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

y3
(
−y3 +

√
y6 − 8x3

) 1
3

−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)(
−3y2 + 3y5√

y6−8x3

)
6y2
(
−y3 +

√
y6 − 8x3

) 4
3

 (xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−y3 +

√
y6 − 8x3

) 1
3
,
(
−y3 +

√
y6 − 8x3

) 2
3
,
√

y6 − 8x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

(
−y3+

√
y6 − 8x3

) 1
3 = v3,

(
−y3+

√
y6 − 8x3

) 2
3 = v4,

√
y6 − 8x3 = v5

}
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The above PDE (6E) now becomes

(7E)

8iv4
√
3 v21v22a1 − 8iv4v5

√
3 v21a3 + 12iv5

√
3 v21v42b2

− 8iv5
√
3 v1v52a2 + 16iv5

√
3 v1v52b3 + 12iv5

√
3 v1v42b1

+ 2i
√
3 v5v4v52a2 − 32i

√
3 v41v4v2b2 + 24iv4

√
3 v31v22a2

− 48i
√
3 v31v4v22b3 − 32i

√
3 v31v4v2b1 + 2iv4

√
3 v1v72b2

− 2iv4v5
√
3 v42b1 + 8i

√
3 v1v82a2 − 16i

√
3 v1v82b3

− 12i
√
3 v1v72b1 + 64i

√
3 v51v2b2 − 48i

√
3 v41v22a2

+96i
√
3 v41v22b3 +64i

√
3 v41v2b1 − 4iv5

√
3 v52a1 − 16i

√
3 v31v5a3

+ 4v82a1 + 16v1v5v3v32a3 + 2v4v5v1v42b2 + 2iv4
√
3 v72b1

− 16i
√
3 v31v22a1 + 16i

√
3 v31v32a3 − 2i

√
3 v4v82a2 + 4iv4

√
3 v82b3

− 12i
√
3 v21v72b2 − 4v5v3v72b2 − 2v5v4v52a2 − 32v31v3v42b2

− 16v1v3v62a3 + 32v41v4v2b2 + 48v31v4v22b3 + 32v31v4v2b1
− 8v4v21v32a3 + 12v5v21v42b2 + 16v5v1v52b3 − 8v4v21v22a1
+12v5v1v42b1 − 2v4v1v72b2 +8v4v5v21a3 +4v4v5v52b3 +2v4v5v42b1
− 24v4v31v22a2 + 4i

√
3 v82a1 − 48v41v22a2 + 16v31v32a3 − 12v21v72b2

− 16v31v22a1 − 16v1v82b3 − 12v1v72b1 − 4v4v82b3 − 2v4v72b1
+ 2v4v82a2 + 128v41v3a3 + 4v3v102 b2 − 16v31v5a3 + 8v1v82a2
+ 64v51v2b2 + 96v41v22b3 + 64v41v2b1 − 4v5v52a1 − 8v5v1v52a2
− 2iv4v5

√
3 v1v42b2 − 4iv4v5

√
3 v52b3 + 8iv4

√
3 v21v32a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
8i
√
3 a3 − 8a3

)
v21v

3
2v4 +

(
8i
√
3 a1 − 8a1

)
v21v

2
2v4

+
(
−8i

√
3 a3 + 8a3

)
v21v4v5 +

(
2i
√
3 b2 − 2b2

)
v1v

7
2v4

+
(
−8i

√
3 a2 + 16i

√
3 b3 − 8a2 + 16b3

)
v1v

5
2v5

+
(
12i

√
3 b1 + 12b1

)
v1v

4
2v5

+
(
2i
√
3 a2 − 4i

√
3 b3 − 2a2 + 4b3

)
v52v4v5

+
(
−2i

√
3 b1 + 2b1

)
v42v4v5 +

(
−2i

√
3 b2 + 2b2

)
v1v

4
2v4v5

+
(
4i
√
3 a1 + 4a1

)
v82 + 16v1v5v3v32a3

+
(
−32i

√
3 b2 + 32b2

)
v41v2v4

+
(
24i

√
3 a2 − 48i

√
3 b3 − 24a2 + 48b3

)
v31v

2
2v4

+
(
−32i

√
3 b1 + 32b1

)
v31v2v4

+
(
12i

√
3 b2 + 12b2

)
v21v

4
2v5 +

(
2i
√
3 b1 − 2b1

)
v72v4

+
(
−4i

√
3 a1 − 4a1

)
v52v5 +

(
64i

√
3 b2 + 64b2

)
v51v2

+
(
−48i

√
3 a2 + 96i

√
3 b3 − 48a2 + 96b3

)
v41v

2
2

+
(
64i

√
3 b1 + 64b1

)
v41v2 +

(
16i

√
3 a3 + 16a3

)
v31v

3
2

+
(
−16i

√
3 a1 − 16a1

)
v31v

2
2

+
(
−16i

√
3 a3 − 16a3

)
v31v5 +

(
−12i

√
3 b2 − 12b2

)
v21v

7
2

+
(
8i
√
3 a2 − 16i

√
3 b3 + 8a2 − 16b3

)
v1v

8
2

+
(
−12i

√
3 b1 − 12b1

)
v1v

7
2

+
(
−2i

√
3 a2 + 4i

√
3 b3 + 2a2 − 4b3

)
v82v4 − 4v5v3v72b2

− 32v31v3v42b2 − 16v1v3v62a3 + 128v41v3a3 + 4v3v102 b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−16a3 = 0
16a3 = 0
128a3 = 0
−32b2 = 0
−4b2 = 0
4b2 = 0

−32i
√
3 b1 + 32b1 = 0

−32i
√
3 b2 + 32b2 = 0

−16i
√
3 a1 − 16a1 = 0

−16i
√
3 a3 − 16a3 = 0

−12i
√
3 b1 − 12b1 = 0

−12i
√
3 b2 − 12b2 = 0

−8i
√
3 a3 + 8a3 = 0

−4i
√
3 a1 − 4a1 = 0

−2i
√
3 b1 + 2b1 = 0

−2i
√
3 b2 + 2b2 = 0

2i
√
3 b1 − 2b1 = 0

2i
√
3 b2 − 2b2 = 0

4i
√
3 a1 + 4a1 = 0

8i
√
3 a1 − 8a1 = 0

8i
√
3 a3 − 8a3 = 0

12i
√
3 b1 + 12b1 = 0

12i
√
3 b2 + 12b2 = 0

16i
√
3 a3 + 16a3 = 0

64i
√
3 b1 + 64b1 = 0

64i
√
3 b2 + 64b2 = 0

−48i
√
3 a2 + 96i

√
3 b3 − 48a2 + 96b3 = 0

−8i
√
3 a2 + 16i

√
3 b3 − 8a2 + 16b3 = 0

−2i
√
3 a2 + 4i

√
3 b3 + 2a2 − 4b3 = 0

2i
√
3 a2 − 4i

√
3 b3 − 2a2 + 4b3 = 0

8i
√
3 a2 − 16i

√
3 b3 + 8a2 − 16b3 = 0

24i
√
3 a2 − 48i

√
3 b3 − 24a2 + 48b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)
(b3 − a2)

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)2
a3

4y4
(
−y3 +

√
y6 − 8x3

) 2
3

−

−

− 8i
√
3x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
− 2i

√
3− 8x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
+ 2

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−
2
(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)
x2

y2
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(
−3y2+ 3y5√

y6−8x3

)

3
(
−y3+

√
y6−8x3

) 1
3

+
−2y2+ 2y5√

y6−8x3(
−y3+

√
y6−8x3

) 1
3

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

+
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

y3
(
−y3 +

√
y6 − 8x3

) 1
3

+

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)(
−3y2 + 3y5√

y6−8x3

)
6y2
(
−y3 +

√
y6 − 8x3

) 4
3

 (xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−y3 +

√
y6 − 8x3

) 1
3
,
(
−y3 +

√
y6 − 8x3

) 2
3
,
√

y6 − 8x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

(
−y3+

√
y6 − 8x3

) 1
3 = v3,

(
−y3+

√
y6 − 8x3

) 2
3 = v4,

√
y6 − 8x3 = v5

}
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The above PDE (6E) now becomes

(7E)

2i
√
3 v4v5v42b1 + 32i

√
3 v41v4v2b2 − 24i

√
3 v4v31v22a2

+ 48i
√
3 v31v4v22b3 + 32i

√
3 v31v4v2b1 − 8i

√
3 v4v21v32a3

− 8i
√
3 v4v21v22a1 + 4v82a1 − 8i

√
3 v1v82a2 + 16i

√
3 v1v82b3

+ 12i
√
3 v1v72b1 − 64i

√
3 v51v2b2 + 48i

√
3 v41v22a2

−96i
√
3 v41v22b3−64i

√
3 v41v2b1−16i

√
3 v31v32a3+2i

√
3 v4v82a2

− 4i
√
3 v4v82b3 + 4i

√
3 v5v52a1 + 16i

√
3 v31v5a3 − 2i

√
3 v4v72b1

+ 16i
√
3 v31v22a1 − 2v4v5v52a2 − 32v31v3v42b2 − 16v1v3v62a3

+ 32v41v4v2b2 + 48v31v4v22b3 + 64v51v2b2 + 64v41v2b1 + 2v4v82a2
+ 128v41v3a3 − 4v5v52a1 − 16v31v5a3 − 48v41v22a2 + 16v31v32a3
− 16v31v22a1 − 12v21v72b2 − 16v1v82b3 − 12v1v72b1 − 4v4v82b3
− 2v4v72b1 − 4v3v5v72b2 + 4v3v102 b2 + 8v1v82a2 + 96v41v22b3
+ 2i

√
3 v4v5v1v42b2 + 32v31v4v2b1 − 2v4v1v72b2 + 8v4v5v21a3

+ 4v4v5v52b3 + 2v4v5v42b1 − 24v4v31v22a2 − 8v4v21v32a3
+ 12v5v21v42b2 + 16v5v1v52b3 − 8v4v21v22a1 + 12v5v1v42b1
− 8v5v1v52a2 − 4i

√
3 v82a1 + 16v1v3v5v32a3 + 2v4v5v1v42b2

+ 12i
√
3 v21v72b2 + 8i

√
3 v4v5v21a3 − 2i

√
3 v4v1v72b2

− 12i
√
3 v5v21v42b2 + 8i

√
3 v5v1v52a2 − 16i

√
3 v5v1v52b3

− 12i
√
3 v5v1v42b1 − 2i

√
3 v4v5v52a2 + 4i

√
3 v4v5v52b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
2i
√
3 a2 − 4i

√
3 b3 +2a2 − 4b3

)
v82v4 +

(
−2i

√
3 b1 − 2b1

)
v72v4

+
(
4i
√
3 a1 − 4a1

)
v52v5 +

(
−64i

√
3 b2 + 64b2

)
v51v2

+
(
48i

√
3 a2 − 96i

√
3 b3 − 48a2 + 96b3

)
v41v

2
2

+
(
−64i

√
3 b1 + 64b1

)
v41v2 − 32v31v3v42b2

− 16v1v3v62a3 +
(
−12i

√
3 b2 + 12b2

)
v21v

4
2v5

+
(
−8i

√
3 a3 − 8a3

)
v21v

3
2v4 +

(
−8i

√
3 a1 − 8a1

)
v21v

2
2v4

+
(
8i
√
3 a3 + 8a3

)
v21v4v5 +

(
−2i

√
3 b2 − 2b2

)
v1v

7
2v4

+
(
8i
√
3 a2 − 16i

√
3 b3 − 8a2 + 16b3

)
v1v

5
2v5

+
(
−12i

√
3 b1 + 12b1

)
v1v

4
2v5

+
(
−2i

√
3 a2 + 4i

√
3 b3 − 2a2 + 4b3

)
v52v4v5

+
(
2i
√
3 b1 + 2b1

)
v42v4v5 +

(
2i
√
3 b2 + 2b2

)
v1v

4
2v4v5

+
(
32i

√
3 b2 + 32b2

)
v41v2v4

+
(
−24i

√
3 a2 + 48i

√
3 b3 − 24a2 + 48b3

)
v31v

2
2v4

+
(
32i

√
3 b1 + 32b1

)
v31v2v4

+
(
−16i

√
3 a3 + 16a3

)
v31v

3
2 +

(
16i

√
3 a1 − 16a1

)
v31v

2
2

+
(
16i

√
3 a3 − 16a3

)
v31v5 +

(
12i

√
3 b2 − 12b2

)
v21v

7
2

+
(
−8i

√
3 a2 + 16i

√
3 b3 + 8a2 − 16b3

)
v1v

8
2

+
(
12i

√
3 b1 − 12b1

)
v1v

7
2 + 128v41v3a3 − 4v3v5v72b2

+ 4v3v102 b2 + 16v1v3v5v32a3 +
(
−4i

√
3 a1 + 4a1

)
v82 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−16a3 = 0
16a3 = 0
128a3 = 0
−32b2 = 0
−4b2 = 0
4b2 = 0

−64i
√
3 b1 + 64b1 = 0

−64i
√
3 b2 + 64b2 = 0

−16i
√
3 a3 + 16a3 = 0

−12i
√
3 b1 + 12b1 = 0

−12i
√
3 b2 + 12b2 = 0

−8i
√
3 a1 − 8a1 = 0

−8i
√
3 a3 − 8a3 = 0

−4i
√
3 a1 + 4a1 = 0

−2i
√
3 b1 − 2b1 = 0

−2i
√
3 b2 − 2b2 = 0

2i
√
3 b1 + 2b1 = 0

2i
√
3 b2 + 2b2 = 0

4i
√
3 a1 − 4a1 = 0

8i
√
3 a3 + 8a3 = 0

12i
√
3 b1 − 12b1 = 0

12i
√
3 b2 − 12b2 = 0

16i
√
3 a1 − 16a1 = 0

16i
√
3 a3 − 16a3 = 0

32i
√
3 b1 + 32b1 = 0

32i
√
3 b2 + 32b2 = 0

−24i
√
3 a2 + 48i

√
3 b3 − 24a2 + 48b3 = 0

−8i
√
3 a2 + 16i

√
3 b3 + 8a2 − 16b3 = 0

−2i
√
3 a2 + 4i

√
3 b3 − 2a2 + 4b3 = 0

2i
√
3 a2 − 4i

√
3 b3 + 2a2 − 4b3 = 0

8i
√
3 a2 − 16i

√
3 b3 − 8a2 + 16b3 = 0

48i
√
3 a2 − 96i

√
3 b3 − 48a2 + 96b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-y(x)^4*x^3+y(x))/(2*y(x)^3*x^4-2*x), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 167� �
dsolve(y(x)^4*diff(y(x),x)^3-6*x*diff(y(x),x)+2*y(x) = 0,y(x), singsol=all)� �

y(x) =
√

x
(
−1− i

√
3
)

y(x) =
√(

−1 + i
√
3
)
x

y(x) = −
√
−
(
1 + i

√
3
)
x

y(x) = −
√(

−1 + i
√
3
)
x

y(x) =
√
2
√
x

y(x) = −
√
2
√
x

y(x) = 0

y(x) = 2 2
3 (−c31 + 6c1x)

1
3

2

y(x) = −
2 2

3 (−c31 + 6c1x)
1
3
(
1 + i

√
3
)

4

y(x) =
2 2

3 (−c31 + 6c1x)
1
3
(
−1 + i

√
3
)

4

3 Solution by Mathematica
Time used: 81.226 (sec). Leaf size: 22649� �
DSolve[y[x]^4 (y'[x])^3 -6 x y'[x] +2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.18 problem 1086
36.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9664

Internal problem ID [4301]
Internal file name [OUTPUT/3794_Sunday_June_05_2022_10_58_33_AM_80034435/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1086.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
4 − (y − a)3 (y − b)2 = 0

Solving the given ode for y′ results in 4 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
y5 − 3y4a− 2y4b+ 3y3a2 + 6y3ab+ y3b2 − y2a3 − 6y2a2b− 3y2a b2 + 2ya3b+ 3ya2b2 − a3b2

) 1
4

(1)

y′ = i
(
y5 − 3y4a− 2y4b+ 3y3a2 + 6y3ab+ y3b2 − y2a3 − 6y2a2b− 3y2a b2 + 2ya3b+ 3ya2b2 − a3b2

) 1
4

(2)

y′ = −
(
y5 − 3y4a− 2y4b+ 3y3a2 + 6y3ab+ y3b2 − y2a3 − 6y2a2b− 3y2a b2 + 2ya3b+ 3ya2b2 − a3b2

) 1
4

(3)

y′ = −i
(
y5 − 3y4a− 2y4b+ 3y3a2 + 6y3ab+ y3b2 − y2a3 − 6y2a2b− 3y2a b2 + 2ya3b+ 3ya2b2 − a3b2

) 1
4

(4)

Now each one of the above ODE is solved.

Solving equation (1)
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Integrating both sides gives∫ 1
(−a3b2 + 2y a3b− y2a3 + 3y a2b2 − 6y2a2b+ 3y3a2 − 3y2a b2 + 6y3ab− 3y4a+ y3b2 − 2y4b+ y5)

1
4
dy

=
∫

dx∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

= x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)
1
4
d_a

= x+ c1

Verification of solutions∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives∫
− i

(−a3b2 + 2y a3b− y2a3 + 3y a2b2 − 6y2a2b+ 3y3a2 − 3y2a b2 + 6y3ab− 3y4a+ y3b2 − 2y4b+ y5)
1
4
dy

=
∫

dx

−i

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c2
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Summary
The solution(s) found are the following

(1)−i

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c2

Verification of solutions

−i

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives∫
− 1
(−a3b2 + 2y a3b− y2a3 + 3y a2b2 − 6y2a2b+ 3y3a2 − 3y2a b2 + 6y3ab− 3y4a+ y3b2 − 2y4b+ y5)

1
4
dy

=
∫

dx

−

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c3

Summary
The solution(s) found are the following

(1)−

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c3

Verification of solutions

−

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c3

Verified OK.
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Solving equation (4)

Integrating both sides gives∫
i

(−a3b2 + 2y a3b− y2a3 + 3y a2b2 − 6y2a2b+ 3y3a2 − 3y2a b2 + 6y3ab− 3y4a+ y3b2 − 2y4b+ y5)
1
4
dy

=
∫

dx

i

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c4

Summary
The solution(s) found are the following

(1)i

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c4

Verification of solutions

i

(∫ y 1
(_a5 − 3_a4a− 2_a4b+ 3_a3a2 + 6_a3ab+ _a3b2 − _a2a3 − 6_a2a2b− 3_a2a b2 + 2_a a3b+ 3_a a2b2 − a3b2)

1
4
d_a

)
= x+ c4

Verified OK.

36.18.1 Maple step by step solution

Let’s solve
y′4 − (y − a)3 (y − b)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(y5−3y4a−2y4b+3y3a2+6y3ab+y3b2−y2a3−6y2a2b−3y2a b2+2ya3b+3ya2b2−a3b2)
1
4
= 1

• Integrate both sides with respect to x∫
y′

(y5−3y4a−2y4b+3y3a2+6y3ab+y3b2−y2a3−6y2a2b−3y2a b2+2ya3b+3ya2b2−a3b2)
1
4
dx =

∫
1dx+ c1
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• Cannot compute integral∫
y′

(y5−3y4a−2y4b+3y3a2+6y3ab+y3b2−y2a3−6y2a2b−3y2a b2+2ya3b+3ya2b2−a3b2)
1
4
dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 133� �
dsolve(diff(y(x),x)^4 = (y(x)-a)^3*(y(x)-b)^2,y(x), singsol=all)� �

y(x) = a
y(x) = b

x−

∫ y(x) 1(
(_a− a)3 (_a− b)2

) 1
4
d_a

− c1 = 0

x− i

∫ y(x) 1(
(_a− a)3 (_a− b)2

) 1
4
d_a

− c1 = 0

x+ i

∫ y(x) 1(
(_a− a)3 (_a− b)2

) 1
4
d_a

− c1 = 0

x+
∫ y(x) 1(

(_a− a)3 (_a− b)2
) 1

4
d_a− c1 = 0
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3 Solution by Mathematica
Time used: 2.363 (sec). Leaf size: 333� �
DSolve[(y'[x])^4 == (y[x]-a)^3 (y[x]-b)^2 ,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

 [− 4
√
−1x

+ c1
]

y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

 [ 4
√
−1x

+ c1
]

y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

 [−(−1)3/4x

+ c1
]

y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

 [(−1)3/4x

+ c1
]

y(x) → a
y(x) → b
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36.19 problem 1087
36.19.1 Solving as first order nonlinear p but separable ode . . . . . . . 9667

Internal problem ID [4302]
Internal file name [OUTPUT/3795_Sunday_June_05_2022_10_58_41_AM_23423857/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1087.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
4 + f(x) (y − a)3 (y − b)2 = 0

36.19.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 4,m = 1, f = f(x) , g = (b− y)2 (a− y)3. Hence the ode is

(y′)4 = f(x) (b− y)2 (a− y)3

Solving for y′ from (1) gives

y′ = (fg)
1
4

y′ = i(fg)
1
4

y′ = −(fg)
1
4

y′ = −i(fg)
1
4

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

f(x) > 0
(b− y)2 (a− y)3 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
4 g

1
4

y′ = if
1
4 g

1
4

y′ = −f
1
4 g

1
4

y′ = −if
1
4 g

1
4

Therefore
1
g

1
4
dy =

(
f

1
4

)
dx

− i

g
1
4
dy =

(
f

1
4

)
dx

− 1
g

1
4
dy =

(
f

1
4

)
dx

i

g
1
4
dy =

(
f

1
4

)
dx

Replacing f(x), g(y) by their values gives
1(

(b− y)2 (a− y)3
) 1

4
dy =

(
f(x)

1
4

)
dx

− i(
(b− y)2 (a− y)3

) 1
4
dy =

(
f(x)

1
4

)
dx

− 1(
(b− y)2 (a− y)3

) 1
4
dy =

(
f(x)

1
4

)
dx

i(
(b− y)2 (a− y)3

) 1
4
dy =

(
f(x)

1
4

)
dx

Integrating now gives the solutions.∫ 1(
(b− y)2 (a− y)3

) 1
4
dy =

∫
f(x)

1
4 dx+ c1∫

− i(
(b− y)2 (a− y)3

) 1
4
dy =

∫
f(x)

1
4 dx+ c1∫

− 1(
(b− y)2 (a− y)3

) 1
4
dy =

∫
f(x)

1
4 dx+ c1∫

i(
(b− y)2 (a− y)3

) 1
4
dy =

∫
f(x)

1
4 dx+ c1
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Integrating gives ∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a =

∫
f(x)

1
4 dx+ c1

−i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

−

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

Therefore ∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a =

∫
f(x)

1
4 dx+ c1

−i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

−

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1(

(b− _a)2 (a− _a)3
) 1

4
d_a =

∫
f(x)

1
4 dx+ c1

(2)−i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

(3)−

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

(4)i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

Verification of solutions∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a =

∫
f(x)

1
4 dx+ c1

Verified OK. {0 < (b-y)^2*(a-y)^3, 0 < f(x)}

−i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

Verified OK. {0 < (b-y)^2*(a-y)^3, 0 < f(x)}

−

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

Verified OK. {0 < (b-y)^2*(a-y)^3, 0 < f(x)}

i

∫ y 1(
(b− _a)2 (a− _a)3

) 1
4
d_a

 =
∫

f(x)
1
4 dx+ c1

Verified OK. {0 < (b-y)^2*(a-y)^3, 0 < f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 4 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 274� �
dsolve(diff(y(x),x)^4+f(x)*(y(x)-a)^3*(y(x)-b)^2 = 0,y(x), singsol=all)� �
∫ y(x) 1

(_a− a)
3
4
√
_a− b

d_a−
∫ x (−f(_a) (y(x)− a)3 (y(x)− b)2

) 1
4 d_a

(y (x)− a)
3
4
√

y (x)− b
+ c1 = 0

∫ y(x) 1
(_a− a)

3
4
√
_a− b

d_a+
i
(∫ x (−f(_a) (y(x)− a)3 (y(x)− b)2

) 1
4 d_a

)
(y (x)− a)

3
4
√
y (x)− b

+ c1 = 0

∫ y(x) 1
(_a− a)

3
4
√
_a− b

d_a−
i
(∫ x (−f(_a) (y(x)− a)3 (y(x)− b)2

) 1
4 d_a

)
(y (x)− a)

3
4
√
y (x)− b

+ c1 = 0

∫ y(x) 1
(_a− a)

3
4
√
_a− b

d_a+
∫ x (−f(_a) (y(x)− a)3 (y(x)− b)2

) 1
4 d_a

(y (x)− a)
3
4
√

y (x)− b
+ c1 = 0
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3 Solution by Mathematica
Time used: 1.878 (sec). Leaf size: 369� �
DSolve[(y'[x])^4 +f[x] (y[x]-a)^3 (y[x]-b)^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

− 4
√
f(K[1])dK[1] + c1

]
y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

−i 4
√
f(K[2])dK[2] + c1

]
y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1
i 4
√
f(K[3])dK[3]

+ c1

]
y(x)

→ InverseFunction

−4 4
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
4 ,

1
2 ,

5
4 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

4
√

f(K[4])dK[4]

+ c1

]
y(x) → a
y(x) → b
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36.20 problem 1088
36.20.1 Solving as first order nonlinear p but separable ode . . . . . . . 9674

Internal problem ID [4303]
Internal file name [OUTPUT/3796_Sunday_June_05_2022_10_58_56_AM_14757405/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1088.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
4 + f(x) (y − a)3 (y − b)3 = 0

36.20.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 4,m = 1, f = −f(x) , g = (b− y)3 (a− y)3. Hence the ode is

(y′)4 = −f(x) (b− y)3 (a− y)3

Solving for y′ from (1) gives

y′ = (fg)
1
4

y′ = i(fg)
1
4

y′ = −(fg)
1
4

y′ = −i(fg)
1
4

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

−f(x) > 0
(b− y)3 (a− y)3 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
4 g

1
4

y′ = if
1
4 g

1
4

y′ = −f
1
4 g

1
4

y′ = −if
1
4 g

1
4

Therefore
1
g

1
4
dy =

(
f

1
4

)
dx

− i

g
1
4
dy =

(
f

1
4

)
dx

− 1
g

1
4
dy =

(
f

1
4

)
dx

i

g
1
4
dy =

(
f

1
4

)
dx

Replacing f(x), g(y) by their values gives
1(

(b− y)3 (a− y)3
) 1

4
dy =

(
(−f(x))

1
4

)
dx

− i(
(b− y)3 (a− y)3

) 1
4
dy =

(
(−f(x))

1
4

)
dx

− 1(
(b− y)3 (a− y)3

) 1
4
dy =

(
(−f(x))

1
4

)
dx

i(
(b− y)3 (a− y)3

) 1
4
dy =

(
(−f(x))

1
4

)
dx

Integrating now gives the solutions.∫ 1(
(b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1∫

− i(
(b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1∫

− 1(
(b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1∫

i(
(b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1
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Integrating gives ∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a =

∫
(−f(x))

1
4 dx+ c1

−i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

−

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Therefore ∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a =

∫
(−f(x))

1
4 dx+ c1

−i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

−

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

9676



Summary
The solution(s) found are the following

(1)
∫ y 1(

(b− _a)3 (a− _a)3
) 1

4
d_a =

∫
(−f(x))

1
4 dx+ c1

(2)−i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

(3)−

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

(4)i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verification of solutions∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a =

∫
(−f(x))

1
4 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^3, 0 < -f(x)}

−i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^3, 0 < -f(x)}

−

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^3, 0 < -f(x)}

i

∫ y 1(
(b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^3, 0 < -f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 4 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 262� �
dsolve(diff(y(x),x)^4+f(x)*(y(x)-a)^3*(y(x)-b)^3 = 0,y(x), singsol=all)� �
∫ y(x) 1

((_a− b) (_a− a))
3
4
d_a−

∫ x (−f(_a) (y(x)− a)3 (y(x)− b)3
) 1

4 d_a
((y (x)− b) (y (x)− a))

3
4

+ c1 = 0

∫ y(x) 1
((_a− b) (_a− a))

3
4
d_a+

i
(∫ x (−f(_a) (y(x)− a)3 (y(x)− b)3

) 1
4 d_a

)
((y (x)− b) (y (x)− a))

3
4

+ c1

= 0∫ y(x) 1
((_a− b) (_a− a))

3
4
d_a−

i
(∫ x (−f(_a) (y(x)− a)3 (y(x)− b)3

) 1
4 d_a

)
((y (x)− b) (y (x)− a))

3
4

+ c1

= 0∫ y(x) 1
((_a− b) (_a− a))

3
4
d_a+

∫ x (−f(_a) (y(x)− a)3 (y(x)− b)3
) 1

4 d_a
((y (x)− b) (y (x)− a))

3
4

+ c1 = 0
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3 Solution by Mathematica
Time used: 2.126 (sec). Leaf size: 385� �
DSolve[(y'[x])^4 +f[x] (y[x]-a)^3 (y[x]-b)^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−4 4
√

a−#1
(#1−b

a−b

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

a−#1
a−b

)
(b−#1)3/4 &

[∫ x

1
− 4
√
−1 4
√

f(K[1])dK[1]+c1

]
y(x)

→ InverseFunction

−4 4
√

a−#1
(#1−b

a−b

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

a−#1
a−b

)
(b−#1)3/4 &

[∫ x

1

4
√
−1 4
√

f(K[2])dK[2]+c1

]
y(x)

→ InverseFunction

−4 4
√

a−#1
(#1−b

a−b

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

a−#1
a−b

)
(b−#1)3/4 &

[∫ x

1
−(−1)3/4 4

√
f(K[3])dK[3]+c1

]
y(x)

→ InverseFunction

−4 4
√

a−#1
(#1−b

a−b

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

a−#1
a−b

)
(b−#1)3/4 &

[∫ x

1
(−1)3/4 4

√
f(K[4])dK[4]+c1

]
y(x) → a
y(x) → b
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36.21 problem 1089
36.21.1 Solving as first order nonlinear p but separable ode . . . . . . . 9681

Internal problem ID [4304]
Internal file name [OUTPUT/3797_Sunday_June_05_2022_10_59_16_AM_7628541/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1089.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
4 + f(x) (y − a)3 (y − b)3 (y − c)2 = 0

36.21.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 4,m = 1, f = −f(x) , g = (c− y)2 (b− y)3 (a− y)3. Hence the ode is

(y′)4 = −f(x) (c− y)2 (b− y)3 (a− y)3

Solving for y′ from (1) gives

y′ = (fg)
1
4

y′ = i(fg)
1
4

y′ = −(fg)
1
4

y′ = −i(fg)
1
4

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

−f(x) > 0
(c− y)2 (b− y)3 (a− y)3 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
4 g

1
4

y′ = if
1
4 g

1
4

y′ = −f
1
4 g

1
4

y′ = −if
1
4 g

1
4

Therefore
1
g

1
4
dy =

(
f

1
4

)
dx

− i

g
1
4
dy =

(
f

1
4

)
dx

− 1
g

1
4
dy =

(
f

1
4

)
dx

i

g
1
4
dy =

(
f

1
4

)
dx

Replacing f(x), g(y) by their values gives
1(

(c− y)2 (b− y)3 (a− y)3
) 1

4
dy =

(
(−f(x))

1
4

)
dx

− i(
(c− y)2 (b− y)3 (a− y)3

) 1
4
dy =

(
(−f(x))

1
4

)
dx

− 1(
(c− y)2 (b− y)3 (a− y)3

) 1
4
dy =

(
(−f(x))

1
4

)
dx

i(
(c− y)2 (b− y)3 (a− y)3

) 1
4
dy =

(
(−f(x))

1
4

)
dx

Integrating now gives the solutions.∫ 1(
(c− y)2 (b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1∫

− i(
(c− y)2 (b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1∫

− 1(
(c− y)2 (b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1∫

i(
(c− y)2 (b− y)3 (a− y)3

) 1
4
dy =

∫
(−f(x))

1
4 dx+ c1
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Integrating gives∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a =

∫
(−f(x))

1
4 dx+ c1

−i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

−

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Therefore ∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a =

∫
(−f(x))

1
4 dx+ c1

−i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

−

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1(

(c− _a)2 (b− _a)3 (a− _a)3
) 1

4
d_a =

∫
(−f(x))

1
4 dx+ c1

(2)−i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

(3)−

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

(4)i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verification of solutions∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a =

∫
(−f(x))

1
4 dx+ c1

Verified OK. {0 < (c-y)^2*(b-y)^3*(a-y)^3, 0 < -f(x)}

−i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verified OK. {0 < (c-y)^2*(b-y)^3*(a-y)^3, 0 < -f(x)}

−

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verified OK. {0 < (c-y)^2*(b-y)^3*(a-y)^3, 0 < -f(x)}

i

∫ y 1(
(c− _a)2 (b− _a)3 (a− _a)3

) 1
4
d_a

 =
∫

(−f(x))
1
4 dx+ c1

Verified OK. {0 < (c-y)^2*(b-y)^3*(a-y)^3, 0 < -f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 92� �
dsolve(diff(y(x),x)^4+f(x)*(y(x)-a)^3*(y(x)-b)^3*(y(x)-c)^2 = 0,y(x), singsol=all)� �∫ y(x) 1

(_a− a)
3
4
√
_a− c (_a− b)

3
4
d_a

−
∫ x (−f(_a) (y(x)− c)2 (y(x)− b)3 (y(x)− a)3

) 1
4 d_a

(y (x)− a)
3
4
√

y (x)− c (y (x)− b)
3
4

+ c1 = 0
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3 Solution by Mathematica
Time used: 23.526 (sec). Leaf size: 562� �
DSolve[(y'[x])^4 +f[x] (y[x]-a)^3 (y[x]-b)^3 (y[x]-c)^2 ==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

4 4
√

a−#1
√
c−#1

(
(b−#1)(a−c)
(c−#1)(a−b)

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

(c−b)(a−#1)
(a−b)(c−#1)

)
(b−#1)3/4(a− c) &

[∫ x

1
− 4
√
−1 4
√

f(K[1])dK[1]+c1

]
y(x)

→ InverseFunction

4 4
√

a−#1
√
c−#1

(
(b−#1)(a−c)
(c−#1)(a−b)

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

(c−b)(a−#1)
(a−b)(c−#1)

)
(b−#1)3/4(a− c) &

[∫ x

1

4
√
−1 4
√

f(K[2])dK[2]+c1

]
y(x)

→ InverseFunction

4 4
√

a−#1
√
c−#1

(
(b−#1)(a−c)
(c−#1)(a−b)

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

(c−b)(a−#1)
(a−b)(c−#1)

)
(b−#1)3/4(a− c) &

[∫ x

1
−(−1)3/4 4

√
f(K[3])dK[3]+c1

]
y(x)

→ InverseFunction

4 4
√

a−#1
√
c−#1

(
(b−#1)(a−c)
(c−#1)(a−b)

)3/4
Hypergeometric2F1

(
1
4 ,

3
4 ,

5
4 ,

(c−b)(a−#1)
(a−b)(c−#1)

)
(b−#1)3/4(a− c) &

[∫ x

1
(−1)3/4 4

√
f(K[4])dK[4]+c1

]
y(x) → a
y(x) → b
y(x) → c

9686



36.22 problem 1090
36.22.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9687

Internal problem ID [4305]
Internal file name [OUTPUT/3798_Sunday_June_05_2022_10_59_25_AM_92678350/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1090.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
4 + xy′ − 3y = 0

36.22.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p4 + xp− 3y = 0

Solving for y from the above results in

y = 1
3p

4 + 1
3xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

3

g = p4

3
Hence (2) becomes

2p
3 =

(
x

3 + 4p3
3

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p
3 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)
3
(

x
3 +

4p(x)3
3

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
2 + 2p3

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1
2p

q(p) = 2p2
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Hence the ode is
d

dp
x(p)− x(p)

2p = 2p2

The integrating factor µ is

µ = e
∫
− 1

2pdp

= 1
√
p

The ode becomes
d
dp(µx) = (µ)

(
2p2
)

d
dp

(
x
√
p

)
=
(

1
√
p

)(
2p2
)

d
(

x
√
p

)
=
(
2p 3

2

)
dp

Integrating gives
x
√
p
=
∫

2p 3
2 dp

x
√
p
= 4p 5

2

5 + c1

Dividing both sides by the integrating factor µ = 1√
p
results in

x(p) = 4p3
5 + c1

√
p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = RootOf
(
_Z4 + x_Z− 3y

)
Substituting the above in the solution for x found above gives

x =
4RootOf

(
_Z4 + x_Z− 3y

)3
5 + c1

√
RootOf

(
_Z4 + x_Z− 3y

)
Summary
The solution(s) found are the following

(1)y = 0

(2)x =
4RootOf

(
_Z4 + x_Z− 3y

)3
5 + c1

√
RootOf

(
_Z4 + x_Z− 3y

)
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Verification of solutions

y = 0

Verified OK.

x =
4RootOf

(
_Z4 + x_Z− 3y

)3
5 + c1

√
RootOf

(
_Z4 + x_Z− 3y

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(diff(y(x),x)^4+x*diff(y(x),x)-3*y(x) = 0,y(x), singsol=all)� �x(_T) = √

_T
(
4_T 5

2 + 5c1
)

5 , y(_T) = 3_T4

5 + _T 3
2 c1
3


7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^4 +x y'[x]-3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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36.23 problem 1092
Internal problem ID [4306]
Internal file name [OUTPUT/3799_Sunday_June_05_2022_11_00_36_AM_75980573/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1092.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

Unable to solve or complete the solution.

y′
4 − 4x2yy′

2 + 16xy2y′ − 16y3 = 0

Solving the given ode for y′ results in 1 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2RootOf
(
−x2y_Z2 + 2xy2_Z+ _Z4 − y3

)
(1)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 120� �
dsolve(diff(y(x),x)^4-4*x^2*y(x)*diff(y(x),x)^2+16*x*y(x)^2*diff(y(x),x)-16*y(x)^3 = 0,y(x), singsol=all)� �
y(x) = x4

16
y(x) = 0

y(x)
(√

x2 − 4
√

y (x)− x

)− 2

√
x2y(x)−4y(x)

3
2√

x2−4
√

y(x)
√

y(x)
(√

x2 − 4
√

y (x) + x

) 2

√
x2y(x)−4y(x)

3
2√

x2−4
√

y(x)
√

y(x) − c1

= 0
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3 Solution by Mathematica
Time used: 32.769 (sec). Leaf size: 519� �
DSolve[(y'[x])^4 -4 x^2 y[x] (y'[x])^2+16 x y[x]^2 y'[x]-16 y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


√(

x2 + 4
√

y(x)
)
y(x) log

(√
x2 + 4

√
y(x)− x

)
√

x2 + 4
√
y(x)

√
y(x)

+ 1
4

log(y(x))−

√
x2 + 4

√
y(x)

√
y(x) log(y(x))√(

x2 + 4
√

y(x)
)
y(x)

 = c1, y(x)



Solve

14

√

x2 + 4
√

y(x)
√

y(x) log(y(x))√(
x2 + 4

√
y(x)

)
y(x)

+ log(y(x))



−

√(
x2 + 4

√
y(x)

)
y(x) log

(√
x2 + 4

√
y(x)− x

)
√

x2 + 4
√

y(x)
√

y(x)
= c1, y(x)



Solve

12

√

x2 − 4
√

y(x)
√

y(x) log(y(x))

2
√

x2y(x)− 4y(x)3/2
+ 1

2 log(y(x))



−

√(
x2 − 4

√
y(x)

)
y(x) log

(√
x2 − 4

√
y(x)− x

)
√

x2 − 4
√
y(x)

√
y(x)

= c1, y(x)



Solve


√(

x2 − 4
√

y(x)
)
y(x) log

(√
x2 − 4

√
y(x)− x

)
√
x2 − 4

√
y(x)

√
y(x)

+

1
4 −

√
x2y(x)− 4y(x)3/2

4
√

x2 − 4
√

y(x)
√

y(x)

 log(y(x)) = c1, y(x)


y(x) → 0

y(x) → x4

16
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36.24 problem 1093
36.24.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9694
36.24.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9695

Internal problem ID [4307]
Internal file name [OUTPUT/3800_Sunday_June_05_2022_11_00_50_AM_64970643/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1093.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
4 + 4yy′3 + 6y2y′2 −

(
1− 4y3

)
y′ −

(
3− y3

)
y = 0

36.24.1 Solving as quadrature ode

Integrating both sides gives∫ 1
RootOf

(
_Z4 + 4y_Z3 + 6y2_Z2 + (4y3 − 1)_Z+ y4 − 3y

)dy =
∫

dx∫ y 1
RootOf

(
_Z4 + 4_a_Z3 + 6_a2_Z2 + (4_a3 − 1)_Z+ _a4 − 3_a

)d_a = x+ c1

Summary
The solution(s) found are the following∫ y 1

RootOf
(
_Z4 + 4_a_Z3 + 6_a2_Z2 + (4_a3 − 1)_Z+ _a4 − 3_a

)d_a = x+ c1

(1)
Verification of solutions∫ y 1

RootOf
(
_Z4 + 4_a_Z3 + 6_a2_Z2 + (4_a3 − 1)_Z+ _a4 − 3_a

)d_a = x+ c1

Verified OK.
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36.24.2 Maple step by step solution

Let’s solve
y′4 + 4yy′3 + 6y2y′2 − (1− 4y3) y′ − (3− y3) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

RootOf
(
_Z4

+4y_Z3
+6y2_Z2

+(4y3−1)_Z+y4−3y
) = 1

• Integrate both sides with respect to x∫
y′

RootOf
(
_Z4

+4y_Z3
+6y2_Z2

+(4y3−1)_Z+y4−3y
)dx =

∫
1dx+ c1

• Evaluate integral

−
ln
(
−14640RootOf

(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)3

y6−39648RootOf
(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)2

y7−36144RootOf
(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)
y8−11072y9−93435RootOf

(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)3

y3−177915RootOf
(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)2

y4−162033RootOf
(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)
y5−8169y6−256RootOf

(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)3

+2048yRootOf
(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)2

−9216y2RootOf
(
_Z4

+4y_Z3
+6y2_Z2

+
(
4y3−1

)_Z+y4−3y
)
+124155y3

)
9 = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 204� �
dsolve(diff(y(x),x)^4+4*y(x)*diff(y(x),x)^3+6*y(x)^2*diff(y(x),x)^2-(1-4*y(x)^3)*diff(y(x),x)-(3-y(x)^3)*y(x) = 0,y(x), singsol=all)� �
x

+
ln
((

−14640y(x)6 − 93435y(x)3 − 256
)
RootOf

(
_Z4 + 4y(x)_Z3 + 6y(x)2_Z2 +

(
4y(x)3 − 1

)
_Z+ y(x)4 − 3y(x)

)3 + (−39648y(x)7 − 177915y(x)4 + 2048y(x)
)
RootOf

(
_Z4 + 4y(x)_Z3 + 6y(x)2_Z2 +

(
4y(x)3 − 1

)
_Z+ y(x)4 − 3y(x)

)2 + (−36144y(x)8 − 162033y(x)5 − 9216y(x)2
)
RootOf

(
_Z4 + 4y(x)_Z3 + 6y(x)2_Z2 +

(
4y(x)3 − 1

)
_Z+ y(x)4 − 3y(x)

)
− 11072y(x)9 − 8169y(x)6 + 124155y(x)3

)
9

− c1 = 0

3 Solution by Mathematica
Time used: 98.115 (sec). Leaf size: 2925� �
DSolve[(y'[x])^4 +4 y[x] (y'[x])^3+6 y[x]^2 (y'[x])^2-(1-4 y[x]^3) y'[x]- (3-y[x]^3) y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.25 problem 1094
36.25.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9697
36.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9698

Internal problem ID [4308]
Internal file name [OUTPUT/3801_Sunday_June_05_2022_11_01_05_AM_42520185/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1094.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

2y′4 − yy′ = 2

36.25.1 Solving as quadrature ode

Integrating both sides gives∫ 1
RootOf

(
2_Z4 − y_Z− 2

)dy =
∫

dx∫ y 1
RootOf

(
2_Z4 − _Z_a− 2

)d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

RootOf
(
2_Z4 − _Z_a− 2

)d_a = x+ c1

Verification of solutions∫ y 1
RootOf

(
2_Z4 − _Z_a− 2

)d_a = x+ c1

Verified OK.
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36.25.2 Maple step by step solution

Let’s solve
2y′4 − yy′ = 2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

RootOf
(
2_Z4

−y_Z−2
) = 1

• Integrate both sides with respect to x∫
y′

RootOf
(
2_Z4

−y_Z−2
)dx =

∫
1dx+ c1

• Evaluate integral

−y2

4 + 2RootOf
(
2_Z4 − y_Z− 2

)2 + yRootOf
(
2_Z4

−y_Z−2
)3

2 = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 217� �
dsolve(2*diff(y(x),x)^4-y(x)*diff(y(x),x)-2 = 0,y(x), singsol=all)� �
y(x)

= −

√
−6
√

(c21 − 2c1x+ x2 + 12)3 − 6c31 + 18c21x+ (−18x2 + 216) c1 + 6x3 − 216x

9

y(x) =

√
−6
√

(c21 − 2c1x+ x2 + 12)3 − 6c31 + 18c21x+ (−18x2 + 216) c1 + 6x3 − 216x

9

y(x) = −

√
6
√

(c21 − 2c1x+ x2 + 12)3 − 6c31 + 18c21x+ (−18x2 + 216) c1 + 6x3 − 216x

9

y(x) =

√
6
√

(c21 − 2c1x+ x2 + 12)3 − 6c31 + 18c21x+ (−18x2 + 216) c1 + 6x3 − 216x

9

3 Solution by Mathematica
Time used: 116.271 (sec). Leaf size: 12753� �
DSolve[2 (y'[x])^4 -y[x] y'[x]-2 ==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.26 problem 1095
Internal problem ID [4309]
Internal file name [OUTPUT/3802_Sunday_June_05_2022_11_01_36_AM_33802752/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1095.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

xy′
4 − 2yy′3 = −12x3

Solving the given ode for y′ results in 1 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = RootOf
(
x_Z4 − 2y_Z3 + 12x3) (1)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = ((18*y(x)+(x^6+324*y(x)^2)^(1/2))^(2/3)*x^7-2*x^9+(x^6+324*y(x)^2)^(1/2)*(18*y(

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Calling odsolve with the ODE`, diff(y(x), x) = (3*(x^4+12*y(x)^2)*y(x)/x-4*y(x)*x^3)/(-x^4+36*y(x)^2), y(x)` *** Sublevel
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.797 (sec). Leaf size: 66� �
dsolve(x*diff(y(x),x)^4-2*y(x)*diff(y(x),x)^3+12*x^3 = 0,y(x), singsol=all)� �

y(x) = 2
√
6 (−x)

3
2

3

y(x) = −2
√
6 (−x)

3
2

3

y(x) = −2
√
6x 3

2

3

y(x) = 2
√
6x 3

2

3
y(x) = 12c41 + x2

2c1

3 Solution by Mathematica
Time used: 42.244 (sec). Leaf size: 30947� �
DSolve[x (y'[x])^4 -2 y[x] (y'[x])^3+12 x^3==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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36.27 problem 1098
36.27.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9703
36.27.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9704

Internal problem ID [4310]
Internal file name [OUTPUT/3803_Sunday_June_05_2022_11_04_39_AM_94272666/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1098.
ODE order: 1.
ODE degree: 5.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

3y′5 − yy′ = −1

36.27.1 Solving as quadrature ode

Integrating both sides gives∫ 1
RootOf

(
3_Z5 − y_Z+ 1

)dy =
∫

dx∫ y 1
RootOf

(
3_Z5 − _Z_a+ 1

)d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

RootOf
(
3_Z5 − _Z_a+ 1

)d_a = x+ c1

Verification of solutions∫ y 1
RootOf

(
3_Z5 − _Z_a+ 1

)d_a = x+ c1

Verified OK.
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36.27.2 Maple step by step solution

Let’s solve
3y′5 − yy′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

RootOf
(
3_Z5

−y_Z+1
) = 1

• Integrate both sides with respect to x∫
y′

RootOf
(
3_Z5

−y_Z+1
)dx =

∫
1dx+ c1

• Evaluate integral

y2

2 +
5RootOf

(
3_Z5

−y_Z+1
)3

2 −
3yRootOf

(
3_Z5

−y_Z+1
)4

2 = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 87� �
dsolve(3*diff(y(x),x)^5-y(x)*diff(y(x),x)+1 = 0,y(x), singsol=all)� �
y(x)

=
5RootOf

(
1 + 8_Z5 + (2c1 − 2x)_Z2)3 + 2c1 − 2x

2RootOf
(
1 + 8_Z5 + (2c1 − 2x)_Z2) (4RootOf

(
1 + 8_Z5 + (2c1 − 2x)_Z2)3 + c1 − x

)
3 Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 176� �
DSolve[3 (y'[x])^5 -y[x] y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[∫ y(x)

1

1
Root

[
3#15 −K[1]#1+ 1&, 1

]dK[1] = x+ c1, y(x)
]

Solve
[∫ y(x)

1

1
Root

[
3#15 −K[2]#1+ 1&, 2

]dK[2] = x+ c1, y(x)
]

Solve
[∫ y(x)

1

1
Root

[
3#15 −K[3]#1+ 1&, 3

]dK[3] = x+ c1, y(x)
]

Solve
[∫ y(x)

1

1
Root

[
3#15 −K[4]#1+ 1&, 4

]dK[4] = x+ c1, y(x)
]

Solve
[∫ y(x)

1

1
Root

[
3#15 −K[5]#1+ 1&, 5

]dK[5] = x+ c1, y(x)
]
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36.28 problem 1099
36.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9711

Internal problem ID [4311]
Internal file name [OUTPUT/3804_Sunday_June_05_2022_11_04_45_AM_69719270/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1099.
ODE order: 1.
ODE degree: 6.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
6 − (y − a)4 (y − b)3 = 0

Solving the given ode for y′ results in 6 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =
(
y7 − 4y6a− 3y6b+ 6y5a2 + 12y5ab+ 3y5b2 − 4y4a3 − 18y4a2b− 12y4a b2 − y4b3 + y3a4 + 12y3a3b+ 18y3a2b2 + 4y3a b3 − 3y2a4b− 12y2a3b2 − 6y2a2b3 + 3ya4b2 + 4ya3b3 − a4b3

) 1
6

(1)

y′ =
(
1
2 + i

√
3

2

)(
y7 − 4y6a− 3y6b+ 6y5a2 + 12y5ab+ 3y5b2 − 4y4a3 − 18y4a2b− 12y4a b2 − y4b3 + y3a4 + 12y3a3b+ 18y3a2b2 + 4y3a b3 − 3y2a4b− 12y2a3b2 − 6y2a2b3 + 3ya4b2 + 4ya3b3 − a4b3

) 1
6

(2)

y′ =
(
−1
2 + i

√
3

2

)(
y7 − 4y6a− 3y6b+ 6y5a2 + 12y5ab+ 3y5b2 − 4y4a3 − 18y4a2b− 12y4a b2 − y4b3 + y3a4 + 12y3a3b+ 18y3a2b2 + 4y3a b3 − 3y2a4b− 12y2a3b2 − 6y2a2b3 + 3ya4b2 + 4ya3b3 − a4b3

) 1
6

(3)

y′ = −
(
y7 − 4y6a− 3y6b+ 6y5a2 + 12y5ab+ 3y5b2 − 4y4a3 − 18y4a2b− 12y4a b2 − y4b3 + y3a4 + 12y3a3b+ 18y3a2b2 + 4y3a b3 − 3y2a4b− 12y2a3b2 − 6y2a2b3 + 3ya4b2 + 4ya3b3 − a4b3

) 1
6

(4)

y′ =
(
−1
2 − i

√
3

2

)(
y7 − 4y6a− 3y6b+ 6y5a2 + 12y5ab+ 3y5b2 − 4y4a3 − 18y4a2b− 12y4a b2 − y4b3 + y3a4 + 12y3a3b+ 18y3a2b2 + 4y3a b3 − 3y2a4b− 12y2a3b2 − 6y2a2b3 + 3ya4b2 + 4ya3b3 − a4b3

) 1
6

(5)

y′ =
(
1
2 − i

√
3

2

)(
y7 − 4y6a− 3y6b+ 6y5a2 + 12y5ab+ 3y5b2 − 4y4a3 − 18y4a2b− 12y4a b2 − y4b3 + y3a4 + 12y3a3b+ 18y3a2b2 + 4y3a b3 − 3y2a4b− 12y2a3b2 − 6y2a2b3 + 3ya4b2 + 4ya3b3 − a4b3

) 1
6

(6)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 1
(−a4b3 + 3y a4b2 − 3y2a4b+ y3a4 + 4y a3b3 − 12y2a3b2 + 12y3a3b− 4y4a3 − 6y2a2b3 + 18y3a2b2 − 18y4a2b+ 6y5a2 + 4y3a b3 − 12y4a b2 + 12y5ab− 4y6a− y4b3 + 3y5b2 − 3y6b+ y7)

1
6
dy

=
∫

dx∫ y 1
(_a7 − 4_a6a− 3_a6b+ 6_a5a2 + 12_a5ab+ 3_a5b2 − 4_a4a3 − 18_a4a2b− 12_a4a b2 − _a4b3 + _a3a4 + 12_a3a3b+ 18_a3a2b2 + 4_a3a b3 − 3_a2a4b− 12_a2a3b2 − 6_a2a2b3 + 3_a a4b2 + 4_a a3b3 − a4b3)

1
6
d_a

= x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

(_a7 − 4_a6a− 3_a6b+ 6_a5a2 + 12_a5ab+ 3_a5b2 − 4_a4a3 − 18_a4a2b− 12_a4a b2 − _a4b3 + _a3a4 + 12_a3a3b+ 18_a3a2b2 + 4_a3a b3 − 3_a2a4b− 12_a2a3b2 − 6_a2a2b3 + 3_a a4b2 + 4_a a3b3 − a4b3)
1
6
d_a

= x+ c1
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Verification of solutions∫ y 1
(_a7 − 4_a6a− 3_a6b+ 6_a5a2 + 12_a5ab+ 3_a5b2 − 4_a4a3 − 18_a4a2b− 12_a4a b2 − _a4b3 + _a3a4 + 12_a3a3b+ 18_a3a2b2 + 4_a3a b3 − 3_a2a4b− 12_a2a3b2 − 6_a2a2b3 + 3_a a4b2 + 4_a a3b3 − a4b3)

1
6
d_a

= x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives∫ 2(
1 + i

√
3
)
(−a4b3 + 3y a4b2 − 3y2a4b+ y3a4 + 4y a3b3 − 12y2a3b2 + 12y3a3b− 4y4a3 − 6y2a2b3 + 18y3a2b2 − 18y4a2b+ 6y5a2 + 4y3a b3 − 12y4a b2 + 12y5ab− 4y6a− y4b3 + 3y5b2 − 3y6b+ y7)

1
6
dy

=
∫

dx

2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
1 + i

√
3

= x+ c2

Summary
The solution(s) found are the following

(1)
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
1 + i

√
3

= x+ c2

Verification of solutions

2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
1 + i

√
3

= x+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives∫ 2(
i
√
3− 1

)
(−a4b3 + 3y a4b2 − 3y2a4b+ y3a4 + 4y a3b3 − 12y2a3b2 + 12y3a3b− 4y4a3 − 6y2a2b3 + 18y3a2b2 − 18y4a2b+ 6y5a2 + 4y3a b3 − 12y4a b2 + 12y5ab− 4y6a− y4b3 + 3y5b2 − 3y6b+ y7)

1
6
dy

=
∫

dx

9708



2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
i
√
3− 1

= x+ c3

Summary
The solution(s) found are the following

(1)
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
i
√
3− 1

= x+ c3

Verification of solutions

2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
i
√
3− 1

= x+ c3

Verified OK.
Solving equation (4)

Integrating both sides gives∫
− 1
(−a4b3 + 3y a4b2 − 3y2a4b+ y3a4 + 4y a3b3 − 12y2a3b2 + 12y3a3b− 4y4a3 − 6y2a2b3 + 18y3a2b2 − 18y4a2b+ 6y5a2 + 4y3a b3 − 12y4a b2 + 12y5ab− 4y6a− y4b3 + 3y5b2 − 3y6b+ y7)

1
6
dy

=
∫

dx

−

(∫ y 1
(_a7 − 4_a6a− 3_a6b+ 6_a5a2 + 12_a5ab+ 3_a5b2 − 4_a4a3 − 18_a4a2b− 12_a4a b2 − _a4b3 + _a3a4 + 12_a3a3b+ 18_a3a2b2 + 4_a3a b3 − 3_a2a4b− 12_a2a3b2 − 6_a2a2b3 + 3_a a4b2 + 4_a a3b3 − a4b3)

1
6
d_a

)
= x+ c4

Summary
The solution(s) found are the following

(1)−

(∫ y 1
(_a7 − 4_a6a− 3_a6b+ 6_a5a2 + 12_a5ab+ 3_a5b2 − 4_a4a3 − 18_a4a2b− 12_a4a b2 − _a4b3 + _a3a4 + 12_a3a3b+ 18_a3a2b2 + 4_a3a b3 − 3_a2a4b− 12_a2a3b2 − 6_a2a2b3 + 3_a a4b2 + 4_a a3b3 − a4b3)

1
6
d_a

)
= x+ c4
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Verification of solutions

−

(∫ y 1
(_a7 − 4_a6a− 3_a6b+ 6_a5a2 + 12_a5ab+ 3_a5b2 − 4_a4a3 − 18_a4a2b− 12_a4a b2 − _a4b3 + _a3a4 + 12_a3a3b+ 18_a3a2b2 + 4_a3a b3 − 3_a2a4b− 12_a2a3b2 − 6_a2a2b3 + 3_a a4b2 + 4_a a3b3 − a4b3)

1
6
d_a

)
= x+ c4

Verified OK.
Solving equation (5)

Integrating both sides gives∫
− 2(

1 + i
√
3
)
(−a4b3 + 3y a4b2 − 3y2a4b+ y3a4 + 4y a3b3 − 12y2a3b2 + 12y3a3b− 4y4a3 − 6y2a2b3 + 18y3a2b2 − 18y4a2b+ 6y5a2 + 4y3a b3 − 12y4a b2 + 12y5ab− 4y6a− y4b3 + 3y5b2 − 3y6b+ y7)

1
6
dy

=
∫

dx

−
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
1 + i

√
3

= x+ c5

Summary
The solution(s) found are the following

(1)−
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
1 + i

√
3

= x+ c5

Verification of solutions

−
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
1 + i

√
3

= x+ c5

Verified OK.
Solving equation (6)
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Integrating both sides gives∫
− 2(

i
√
3− 1

)
(−a4b3 + 3y a4b2 − 3y2a4b+ y3a4 + 4y a3b3 − 12y2a3b2 + 12y3a3b− 4y4a3 − 6y2a2b3 + 18y3a2b2 − 18y4a2b+ 6y5a2 + 4y3a b3 − 12y4a b2 + 12y5ab− 4y6a− y4b3 + 3y5b2 − 3y6b+ y7)

1
6
dy

=
∫

dx

−
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
i
√
3− 1

= x+ c6

Summary
The solution(s) found are the following

(1)−
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
i
√
3− 1

= x+ c6

Verification of solutions

−
2
(∫ y 1(_a7−4_a6a−3_a6b+6_a5a2+12_a5ab+3_a5b2−4_a4a3−18_a4a2b−12_a4a b2−_a4b3+_a3a4+12_a3a3b+18_a3a2b2+4_a3a b3−3_a2a4b−12_a2a3b2−6_a2a2b3+3_a a4b2+4_a a3b3−a4b3

) 1
6
d_a

)
i
√
3− 1

= x+ c6

Verified OK.

36.28.1 Maple step by step solution

Let’s solve
y′6 − (y − a)4 (y − b)3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(y7−4y6a−3y6b+6y5a2+12y5ab+3y5b2−4y4a3−18y4a2b−12y4a b2−y4b3+y3a4+12y3a3b+18y3a2b2+4y3a b3−3y2a4b−12y2a3b2−6y2a2b3+3ya4b2+4ya3b3−a4b3)
1
6
= 1

• Integrate both sides with respect to x
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∫
y′

(y7−4y6a−3y6b+6y5a2+12y5ab+3y5b2−4y4a3−18y4a2b−12y4a b2−y4b3+y3a4+12y3a3b+18y3a2b2+4y3a b3−3y2a4b−12y2a3b2−6y2a2b3+3ya4b2+4ya3b3−a4b3)
1
6
dx =

∫
1dx+ c1

• Cannot compute integral∫
y′

(y7−4y6a−3y6b+6y5a2+12y5ab+3y5b2−4y4a3−18y4a2b−12y4a b2−y4b3+y3a4+12y3a3b+18y3a2b2+4y3a b3−3y2a4b−12y2a3b2−6y2a2b3+3ya4b2+4ya3b3−a4b3)
1
6
dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 281� �
dsolve(diff(y(x),x)^6 = (y(x)-a)^4*(y(x)-b)^3,y(x), singsol=all)� �

y(x) = a
y(x) = b

x−

∫ y(x) 1(
(_a− a)4 (_a− b)3

) 1
6
d_a

− c1 = 0

2
(∫ y(x) 1(

(_a−a)4(_a−b)3
) 1

6
d_a

)
+ i(x− c1)

√
3− c1 + x

1 + i
√
3

= 0

−2
(∫ y(x) 1(

(_a−a)4(_a−b)3
) 1

6
d_a

)
+ i(x− c1)

√
3 + c1 − x

−1 + i
√
3

= 0

2
(∫ y(x) 1(

(_a−a)4(_a−b)3
) 1

6
d_a

)
+ i(x− c1)

√
3 + c1 − x

−1 + i
√
3

= 0

−2
(∫ y(x) 1(

(_a−a)4(_a−b)3
) 1

6
d_a

)
+ i(x− c1)

√
3− c1 + x

1 + i
√
3

= 0

x+
∫ y(x) 1(

(_a− a)4 (_a− b)3
) 1

6
d_a− c1 = 0
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3 Solution by Mathematica
Time used: 2.108 (sec). Leaf size: 489� �
DSolve[(y'[x])^6 == (y[x]-a)^4 (y[x]-b)^3,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

 [c1

− ix]
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

 [ix

+ c1]
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

 [− 6
√
−1x

+ c1
]

y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

 [ 6
√
−1x

+ c1
]

y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

 [−(−1)5/6x

+ c1
]

y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

 [(−1)5/6x

+ c1
]

y(x) → a
y(x) → b
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36.29 problem 1100
36.29.1 Solving as first order nonlinear p but separable ode . . . . . . . 9715

Internal problem ID [4312]
Internal file name [OUTPUT/3805_Sunday_June_05_2022_11_04_58_AM_80301306/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1100.
ODE order: 1.
ODE degree: 6.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
6 + f(x) (y − a)4 (y − b)3 = 0

36.29.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 6,m = 1, f = f(x) , g = (b− y)3 (a− y)4. Hence the ode is

(y′)6 = f(x) (b− y)3 (a− y)4
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Solving for y′ from (1) gives

y′ = (fg)
1
6

y′ =
(
1
2 + i

√
3

2

)
(fg)

1
6

y′ =
(
−1
2 + i

√
3

2

)
(fg)

1
6

y′ = −(fg)
1
6

y′ =
(
−1
2 − i

√
3

2

)
(fg)

1
6

y′ =
(
1
2 − i

√
3

2

)
(fg)

1
6

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

f(x) > 0
(b− y)3 (a− y)4 > 0

Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
6 g

1
6

y′ =
(
1 + i

√
3
)
f

1
6 g

1
6

2

y′ =
(
i
√
3− 1

)
f

1
6 g

1
6

2
y′ = −f

1
6 g

1
6

y′ = −
(
1 + i

√
3
)
f

1
6 g

1
6

2

y′ = −
(
i
√
3− 1

)
f

1
6 g

1
6

2
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Therefore
1
g

1
6
dy =

(
f

1
6

)
dx

2(
1 + i

√
3
)
g

1
6
dy =

(
f

1
6

)
dx

2(
i
√
3− 1

)
g

1
6
dy =

(
f

1
6

)
dx

− 1
g

1
6
dy =

(
f

1
6

)
dx

− 2(
1 + i

√
3
)
g

1
6
dy =

(
f

1
6

)
dx

− 2(
i
√
3− 1

)
g

1
6
dy =

(
f

1
6

)
dx

Replacing f(x), g(y) by their values gives

1(
(b− y)3 (a− y)4

) 1
6
dy =

(
f(x)

1
6

)
dx

2(
1 + i

√
3
) (

(b− y)3 (a− y)4
) 1

6
dy =

(
f(x)

1
6

)
dx

2(
i
√
3− 1

) (
(b− y)3 (a− y)4

) 1
6
dy =

(
f(x)

1
6

)
dx

− 1(
(b− y)3 (a− y)4

) 1
6
dy =

(
f(x)

1
6

)
dx

− 2(
1 + i

√
3
) (

(b− y)3 (a− y)4
) 1

6
dy =

(
f(x)

1
6

)
dx

− 2(
i
√
3− 1

) (
(b− y)3 (a− y)4

) 1
6
dy =

(
f(x)

1
6

)
dx
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Integrating now gives the solutions.∫ 1(
(b− y)3 (a− y)4

) 1
6
dy =

∫
f(x)

1
6 dx+ c1∫ 2(

1 + i
√
3
) (

(b− y)3 (a− y)4
) 1

6
dy =

∫
f(x)

1
6 dx+ c1∫ 2(

i
√
3− 1

) (
(b− y)3 (a− y)4

) 1
6
dy =

∫
f(x)

1
6 dx+ c1∫

− 1(
(b− y)3 (a− y)4

) 1
6
dy =

∫
f(x)

1
6 dx+ c1∫

− 2(
1 + i

√
3
) (

(b− y)3 (a− y)4
) 1

6
dy =

∫
f(x)

1
6 dx+ c1∫

− 2(
i
√
3− 1

) (
(b− y)3 (a− y)4

) 1
6
dy =

∫
f(x)

1
6 dx+ c1

Integrating gives ∫ y 1(
(b− _a)3 (a− _a)4

) 1
6
d_a =

∫
f(x)

1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

−

∫ y 1(
(b− _a)3 (a− _a)4

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1
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Therefore ∫ y 1(
(b− _a)3 (a− _a)4

) 1
6
d_a =

∫
f(x)

1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

−

∫ y 1(
(b− _a)3 (a− _a)4

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1(

(b− _a)3 (a− _a)4
) 1

6
d_a =

∫
f(x)

1
6 dx+ c1

(2)
2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

(3)
2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

(4)−

∫ y 1(
(b− _a)3 (a− _a)4

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

(5)−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

(6)−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1
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Verification of solutions∫ y 1(
(b− _a)3 (a− _a)4

) 1
6
d_a =

∫
f(x)

1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^4, 0 < f(x)}

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^4, 0 < f(x)}

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^4, 0 < f(x)}

−

∫ y 1(
(b− _a)3 (a− _a)4

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^4, 0 < f(x)}

−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^4, 0 < f(x)}

−

2
(∫ y 1(

(b−_a)3(a−_a)4
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^4, 0 < f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 69� �
dsolve(diff(y(x),x)^6+f(x)*(y(x)-a)^4*(y(x)-b)^3 = 0,y(x), singsol=all)� �
∫ y(x) 1

(_a− a)
2
3
√
_a− b

d_a−
∫ x (−f(_a) (y(x)− a)4 (y(x)− b)3

) 1
6 d_a

(y (x)− a)
2
3
√

y (x)− b
+ c1 = 0
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3 Solution by Mathematica
Time used: 1.867 (sec). Leaf size: 561� �
DSolve[(y'[x])^6 +f[x] (y[x]-a)^4 (y[x]-b)^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

− 6
√
f(K[1])dK[1] + c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

6
√

f(K[2])dK[2]

+ c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

− 3
√
−1 6
√
f(K[3])dK[3] + c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

3
√
−1 6
√

f(K[4])dK[4]

+ c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

−(−1)2/3 6
√
f(K[5])dK[5] + c1

]
y(x)

→ InverseFunction

−3 3
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
3 ,

1
2 ,

4
3 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1
(−1)2/3 6

√
f(K[6])dK[6]

+ c1

]
y(x) → a
y(x) → b
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36.30 problem 1101
36.30.1 Solving as first order nonlinear p but separable ode . . . . . . . 9724

Internal problem ID [4313]
Internal file name [OUTPUT/3806_Sunday_June_05_2022_11_05_05_AM_42664741/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1101.
ODE order: 1.
ODE degree: 6.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
6 + f(x) (y − a)5 (y − b)3 = 0

36.30.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 6,m = 1, f = −f(x) , g = (b− y)3 (a− y)5. Hence the ode is

(y′)6 = −f(x) (b− y)3 (a− y)5
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Solving for y′ from (1) gives

y′ = (fg)
1
6

y′ =
(
1
2 + i

√
3

2

)
(fg)

1
6

y′ =
(
−1
2 + i

√
3

2

)
(fg)

1
6

y′ = −(fg)
1
6

y′ =
(
−1
2 − i

√
3

2

)
(fg)

1
6

y′ =
(
1
2 − i

√
3

2

)
(fg)

1
6

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

−f(x) > 0
(b− y)3 (a− y)5 > 0

Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
6 g

1
6

y′ =
(
1 + i

√
3
)
f

1
6 g

1
6

2

y′ =
(
i
√
3− 1

)
f

1
6 g

1
6

2
y′ = −f

1
6 g

1
6

y′ = −
(
1 + i

√
3
)
f

1
6 g

1
6

2

y′ = −
(
i
√
3− 1

)
f

1
6 g

1
6

2
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Therefore
1
g

1
6
dy =

(
f

1
6

)
dx

2(
1 + i

√
3
)
g

1
6
dy =

(
f

1
6

)
dx

2(
i
√
3− 1

)
g

1
6
dy =

(
f

1
6

)
dx

− 1
g

1
6
dy =

(
f

1
6

)
dx

− 2(
1 + i

√
3
)
g

1
6
dy =

(
f

1
6

)
dx

− 2(
i
√
3− 1

)
g

1
6
dy =

(
f

1
6

)
dx

Replacing f(x), g(y) by their values gives

1(
(b− y)3 (a− y)5

) 1
6
dy =

(
(−f(x))

1
6

)
dx

2(
1 + i

√
3
) (

(b− y)3 (a− y)5
) 1

6
dy =

(
(−f(x))

1
6

)
dx

2(
i
√
3− 1

) (
(b− y)3 (a− y)5

) 1
6
dy =

(
(−f(x))

1
6

)
dx

− 1(
(b− y)3 (a− y)5

) 1
6
dy =

(
(−f(x))

1
6

)
dx

− 2(
1 + i

√
3
) (

(b− y)3 (a− y)5
) 1

6
dy =

(
(−f(x))

1
6

)
dx

− 2(
i
√
3− 1

) (
(b− y)3 (a− y)5

) 1
6
dy =

(
(−f(x))

1
6

)
dx
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Integrating now gives the solutions.∫ 1(
(b− y)3 (a− y)5

) 1
6
dy =

∫
(−f(x))

1
6 dx+ c1∫ 2(

1 + i
√
3
) (

(b− y)3 (a− y)5
) 1

6
dy =

∫
(−f(x))

1
6 dx+ c1∫ 2(

i
√
3− 1

) (
(b− y)3 (a− y)5

) 1
6
dy =

∫
(−f(x))

1
6 dx+ c1∫

− 1(
(b− y)3 (a− y)5

) 1
6
dy =

∫
(−f(x))

1
6 dx+ c1∫

− 2(
1 + i

√
3
) (

(b− y)3 (a− y)5
) 1

6
dy =

∫
(−f(x))

1
6 dx+ c1∫

− 2(
i
√
3− 1

) (
(b− y)3 (a− y)5

) 1
6
dy =

∫
(−f(x))

1
6 dx+ c1

Integrating gives ∫ y 1(
(b− _a)3 (a− _a)5

) 1
6
d_a =

∫
(−f(x))

1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1

−

∫ y 1(
(b− _a)3 (a− _a)5

) 1
6
d_a

 =
∫

(−f(x))
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1
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Therefore ∫ y 1(
(b− _a)3 (a− _a)5

) 1
6
d_a =

∫
(−f(x))

1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1

−

∫ y 1(
(b− _a)3 (a− _a)5

) 1
6
d_a

 =
∫

(−f(x))
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1(

(b− _a)3 (a− _a)5
) 1

6
d_a =

∫
(−f(x))

1
6 dx+ c1

(2)
2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

(3)
2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1

(4)−

∫ y 1(
(b− _a)3 (a− _a)5

) 1
6
d_a

 =
∫

(−f(x))
1
6 dx+ c1

(5)−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

(6)−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1
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Verification of solutions∫ y 1(
(b− _a)3 (a− _a)5

) 1
6
d_a =

∫
(−f(x))

1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^5, 0 < -f(x)}

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^5, 0 < -f(x)}

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^5, 0 < -f(x)}

−

∫ y 1(
(b− _a)3 (a− _a)5

) 1
6
d_a

 =
∫

(−f(x))
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^5, 0 < -f(x)}

−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

(−f(x))
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^5, 0 < -f(x)}

−

2
(∫ y 1(

(b−_a)3(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

(−f(x))
1
6 dx+ c1

Verified OK. {0 < (b-y)^3*(a-y)^5, 0 < -f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 69� �
dsolve(diff(y(x),x)^6+f(x)*(y(x)-a)^5*(y(x)-b)^3 = 0,y(x), singsol=all)� �
∫ y(x) 1

(_a− a)
5
6
√
_a− b

d_a−
∫ x (−f(_a) (y(x)− b)3 (y(x)− a)5

) 1
6 d_a

(y (x)− a)
5
6
√

y (x)− b
+ c1 = 0
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3 Solution by Mathematica
Time used: 1.867 (sec). Leaf size: 567� �
DSolve[(y'[x])^6 +f[x] (y[x]-a)^5 (y[x]-b)^3==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−6 6
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
6 ,

1
2 ,

7
6 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

−i 6
√
f(K[1])dK[1] + c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
6 ,

1
2 ,

7
6 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1
i 6
√
f(K[2])dK[2]

+ c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
6 ,

1
2 ,

7
6 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

− 6
√
−1 6
√
f(K[3])dK[3] + c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
6 ,

1
2 ,

7
6 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

6
√
−1 6
√

f(K[4])dK[4]

+ c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
6 ,

1
2 ,

7
6 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1

−(−1)5/6 6
√
f(K[5])dK[5] + c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
√

#1−b

a−b
Hypergeometric2F1

(
1
6 ,

1
2 ,

7
6 ,

a−#1
a−b

)
√
b−#1

&

[∫ x

1
(−1)5/6 6

√
f(K[6])dK[6]

+ c1

]
y(x) → a
y(x) → b
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36.31 problem 1102
36.31.1 Solving as first order nonlinear p but separable ode . . . . . . . 9733

Internal problem ID [4314]
Internal file name [OUTPUT/3807_Sunday_June_05_2022_11_05_12_AM_83543797/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 36
Problem number: 1102.
ODE order: 1.
ODE degree: 6.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′
6 + f(x) (y − a)5 (y − b)4 = 0

36.31.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 6,m = 1, f = f(x) , g = (b− y)4 (a− y)5. Hence the ode is

(y′)6 = f(x) (b− y)4 (a− y)5
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Solving for y′ from (1) gives

y′ = (fg)
1
6

y′ =
(
1
2 + i

√
3

2

)
(fg)

1
6

y′ =
(
−1
2 + i

√
3

2

)
(fg)

1
6

y′ = −(fg)
1
6

y′ =
(
−1
2 − i

√
3

2

)
(fg)

1
6

y′ =
(
1
2 − i

√
3

2

)
(fg)

1
6

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

f(x) > 0
(b− y)4 (a− y)5 > 0

Under the above assumption the differential equations become separable and can be
written as

y′ = f
1
6 g

1
6

y′ =
(
1 + i

√
3
)
f

1
6 g

1
6

2

y′ =
(
i
√
3− 1

)
f

1
6 g

1
6

2
y′ = −f

1
6 g

1
6

y′ = −
(
1 + i

√
3
)
f

1
6 g

1
6

2

y′ = −
(
i
√
3− 1

)
f

1
6 g

1
6

2
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Therefore
1
g

1
6
dy =

(
f

1
6

)
dx

2(
1 + i

√
3
)
g

1
6
dy =

(
f

1
6

)
dx

2(
i
√
3− 1

)
g

1
6
dy =

(
f

1
6

)
dx

− 1
g

1
6
dy =

(
f

1
6

)
dx

− 2(
1 + i

√
3
)
g

1
6
dy =

(
f

1
6

)
dx

− 2(
i
√
3− 1

)
g

1
6
dy =

(
f

1
6

)
dx

Replacing f(x), g(y) by their values gives

1(
(b− y)4 (a− y)5

) 1
6
dy =

(
f(x)

1
6

)
dx

2(
1 + i

√
3
) (

(b− y)4 (a− y)5
) 1

6
dy =

(
f(x)

1
6

)
dx

2(
i
√
3− 1

) (
(b− y)4 (a− y)5

) 1
6
dy =

(
f(x)

1
6

)
dx

− 1(
(b− y)4 (a− y)5

) 1
6
dy =

(
f(x)

1
6

)
dx

− 2(
1 + i

√
3
) (

(b− y)4 (a− y)5
) 1

6
dy =

(
f(x)

1
6

)
dx

− 2(
i
√
3− 1

) (
(b− y)4 (a− y)5

) 1
6
dy =

(
f(x)

1
6

)
dx
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Integrating now gives the solutions.∫ 1(
(b− y)4 (a− y)5

) 1
6
dy =

∫
f(x)

1
6 dx+ c1∫ 2(

1 + i
√
3
) (

(b− y)4 (a− y)5
) 1

6
dy =

∫
f(x)

1
6 dx+ c1∫ 2(

i
√
3− 1

) (
(b− y)4 (a− y)5

) 1
6
dy =

∫
f(x)

1
6 dx+ c1∫

− 1(
(b− y)4 (a− y)5

) 1
6
dy =

∫
f(x)

1
6 dx+ c1∫

− 2(
1 + i

√
3
) (

(b− y)4 (a− y)5
) 1

6
dy =

∫
f(x)

1
6 dx+ c1∫

− 2(
i
√
3− 1

) (
(b− y)4 (a− y)5

) 1
6
dy =

∫
f(x)

1
6 dx+ c1

Integrating gives ∫ y 1(
(b− _a)4 (a− _a)5

) 1
6
d_a =

∫
f(x)

1
6 dx+ c1

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

−

∫ y 1(
(b− _a)4 (a− _a)5

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1
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Therefore ∫ y 1(
(b− _a)4 (a− _a)5

) 1
6
d_a =

∫
f(x)

1
6 dx+ c1

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

−

∫ y 1(
(b− _a)4 (a− _a)5

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1
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Summary
The solution(s) found are the following

(1)
∫ y 1(

(b− _a)4 (a− _a)5
) 1

6
d_a =

∫
f(x)

1
6 dx+ c1

(2)
2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

(3)
2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

(4)−

∫ y 1(
(b− _a)4 (a− _a)5

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

(5)−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

(6)−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1
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Verification of solutions∫ y 1(
(b− _a)4 (a− _a)5

) 1
6
d_a =

∫
f(x)

1
6 dx+ c1

Verified OK. {0 < (b-y)^4*(a-y)^5, 0 < f(x)}

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^4*(a-y)^5, 0 < f(x)}

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^4*(a-y)^5, 0 < f(x)}

−

∫ y 1(
(b− _a)4 (a− _a)5

) 1
6
d_a

 =
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^4*(a-y)^5, 0 < f(x)}

−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
1 + i

√
3

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^4*(a-y)^5, 0 < f(x)}

−

2
(∫ y 1(

(b−_a)4(a−_a)5
) 1

6
d_a

)
i
√
3− 1

=
∫

f(x)
1
6 dx+ c1

Verified OK. {0 < (b-y)^4*(a-y)^5, 0 < f(x)}
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 69� �
dsolve(diff(y(x),x)^6+f(x)*(y(x)-a)^5*(y(x)-b)^4 = 0,y(x), singsol=all)� �
∫ y(x) 1

(_a− a)
5
6 (_a− b)

2
3
d_a−

∫ x (−f(_a) (y(x)− b)4 (y(x)− a)5
) 1

6 d_a
(y (x)− a)

5
6 (y (x)− b)

2
3

+ c1 = 0
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3 Solution by Mathematica
Time used: 1.947 (sec). Leaf size: 561� �
DSolve[(y'[x])^6 +f[x] (y[x]-a)^5 (y[x]-b)^4==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

−6 6
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
6 ,

2
3 ,

7
6 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1
− 6
√

f(K[1])dK[1]+c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
6 ,

2
3 ,

7
6 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1

6
√

f(K[2])dK[2]+c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
6 ,

2
3 ,

7
6 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1
− 3
√
−1 6
√

f(K[3])dK[3]+c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
6 ,

2
3 ,

7
6 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1

3
√
−1 6
√

f(K[4])dK[4]+c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
6 ,

2
3 ,

7
6 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1
−(−1)2/3 6

√
f(K[5])dK[5]+c1

]
y(x)

→ InverseFunction

−6 6
√

a−#1
(#1−b

a−b

)2/3
Hypergeometric2F1

(
1
6 ,

2
3 ,

7
6 ,

a−#1
a−b

)
(b−#1)2/3 &

[∫ x

1
(−1)2/3 6

√
f(K[6])dK[6]+c1

]
y(x) → a
y(x) → b

9741



37 Various 37
37.1 problem 1104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9743
37.2 problem 1115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9747
37.3 problem 1116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9751
37.4 problem 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9755
37.5 problem 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9769
37.6 problem 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9772
37.7 problem 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9775
37.8 problem 1123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9778
37.9 problem 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9782
37.10problem 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9786
37.11problem 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9791
37.12problem 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9800
37.13problem 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9806
37.14problem 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9810
37.15problem 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9813
37.16problem 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9816
37.17problem 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9819
37.18problem 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9824
37.19problem 1140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9832
37.20problem 1141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9835
37.21problem 1143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9838
37.22problem 1144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9840
37.23problem 1145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9844
37.24problem 1146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9849
37.25problem 1147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9853
37.26problem 1148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9857
37.27problem 1149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9861
37.28problem 1150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9866
37.29problem 1152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9870
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37.1 problem 1104
Internal problem ID [4315]
Internal file name [OUTPUT/3808_Sunday_June_05_2022_11_05_19_AM_3254446/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1104.
ODE order: 1.
ODE degree: 6.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

x2
(
y′

6 + 3y4 + 3y2 + 1
)
= a2

Solving the given ode for y′ results in 6 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = (−(3y4x2 + 3y2x2 − a2 + x2)x4)
1
6

x
(1)

y′ =

(
1
2 +

i
√
3

2

)
(−(3y4x2 + 3y2x2 − a2 + x2)x4)

1
6

x
(2)

y′ =

(
−1

2 +
i
√
3

2

)
(−(3y4x2 + 3y2x2 − a2 + x2)x4)

1
6

x
(3)

y′ = −(−(3y4x2 + 3y2x2 − a2 + x2)x4)
1
6

x
(4)

y′ =

(
−1

2 −
i
√
3

2

)
(−(3y4x2 + 3y2x2 − a2 + x2)x4)

1
6

x
(5)

y′ =

(
1
2 −

i
√
3

2

)
(−(3y4x2 + 3y2x2 − a2 + x2)x4)

1
6

x
(6)

Now each one of the above ODE is solved.
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Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (2)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (3)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (4)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (5)

Unable to determine ODE type.

Unable to determine ODE type.

Solving equation (6)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 6 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = -3*x^6*a/(6*y(x)^3*x*a+3*a*y(x)*x+(x^6+3*y(x)^4+3*y(x)^2+1)^(3/2)), y(x)` *** Su

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Calling odsolve with the ODE`, diff(y(x), x) = -18*y(x)^3*x^5/(x*y(x)*(-6*y(x)*((-12*y(x)^2*x^6+12*a^2-3*y(x)^2)^(1/2)+3*y(x)))^(
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 2nd trial
`, `-> Computing symmetries using: way = 4`� �
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7 Solution by Maple� �
dsolve(x^2*(diff(y(x),x)^6+3*y(x)^4+3*y(x)^2+1) = a^2,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x^2 ( (y'[x])^6 +3 (y[x])^4 +3 (y[x])^2 + 1)==a^2,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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37.2 problem 1115
37.2.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9747

Internal problem ID [4316]
Internal file name [OUTPUT/3809_Sunday_June_05_2022_11_05_41_AM_80679532/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1115.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _Clairaut]

2
√

ay′ + xy′ − y = 0

37.2.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

2√ap+ xp− y = 0

Solving for y from the above results in

y = xp+ 2√ap (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ 2√ap

= xp+ 2√ap
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = 2√ap

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ 2√ac1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 2√ap, then the
above equation becomes

x+ g′(p) = x+ a
√
ap

= 0
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Solving the above for p results in

p1 =
a

x2

Substituting the above back in (1) results in

y1 =
2
√

a2

x2 x+ a

x

Summary
The solution(s) found are the following

(1)y = c1x+ 2√ac1

(2)y =
2
√

a2

x2 x+ a

x

Verification of solutions

y = c1x+ 2√ac1

Verified OK.

y =
2
√

a2

x2 x+ a

x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 15� �
dsolve(2*sqrt(a*diff(y(x),x))+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = 2√c1a+ c1x

3 Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 25� �
DSolve[2 Sqrt[a y'[x]]+x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2√ac1 + c1x
y(x) → 0

9750



37.3 problem 1116
37.3.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9751

Internal problem ID [4317]
Internal file name [OUTPUT/3810_Sunday_June_05_2022_11_06_00_AM_33247831/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1116.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

(x− y)
√

y′ − a(1 + y′) = 0

37.3.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(x− y)√p− a(1 + p) = 0

Solving for y from the above results in

y = x+ −ap− a
√
p

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1

g = (−p− 1) a
√
p

Hence (2) becomes

p− 1 =
(
− a
√
p
− (−p− 1) a

2p 3
2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = x− 2a

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1
− a√

p(x) −
(−p(x)−1)a

2p(x)
3
2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

− a√
p
− (−p−1)a

2p
3
2

p− 1 (4)

This ODE is now solved for x(p). Integrating both sides gives

x(p) =
∫

− a

2p 3
2
dp

= a
√
p
+ c2
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =

(
x−y+

√
y2−2xy−4a2+x2

)
x

2a −
(
x−y+

√
y2−2xy−4a2+x2

)
y

2a − a

a

p =
−
(
−x+y+

√
y2−2xy−4a2+x2

)
x

2a +
(
−x+y+

√
y2−2xy−4a2+x2

)
y

2a − a

a

Substituting the above in the solution for x found above gives

x = a
√
2√

x
√

y2−2xy−4a2+x2−y
√

y2−2xy−4a2+x2−2a2+x2−2xy+y2

a2

+ c2

x = a
√
2√

−x
√

y2−2xy−4a2+x2+y
√

y2−2xy−4a2+x2−2a2+x2−2xy+y2

a2

+ c2

Summary
The solution(s) found are the following

(1)y = x− 2a

(2)x = a
√
2√

x
√

y2−2xy−4a2+x2−y
√

y2−2xy−4a2+x2−2a2+x2−2xy+y2

a2

+ c2

(3)x = a
√
2√

−x
√

y2−2xy−4a2+x2+y
√

y2−2xy−4a2+x2−2a2+x2−2xy+y2

a2

+ c2

Verification of solutions

y = x− 2a

Verified OK.

x = a
√
2√

x
√

y2−2xy−4a2+x2−y
√

y2−2xy−4a2+x2−2a2+x2−2xy+y2

a2

+ c2

Verified OK.

x = a
√
2√

−x
√

y2−2xy−4a2+x2+y
√

y2−2xy−4a2+x2−2a2+x2−2xy+y2

a2

+ c2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 48� �
dsolve((x-y(x))*sqrt(diff(y(x),x)) = a*(1+diff(y(x),x)),y(x), singsol=all)� �

y(x) = x− 2a

y(x) = x−
a
(
a2 + (x− c1)2

)√
a2

(c1−x)2 (x− c1)2

3 Solution by Mathematica
Time used: 69.72 (sec). Leaf size: 9683� �
DSolve[(x-y[x])*Sqrt[y'[x]]== a*(1+y'[x]),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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37.4 problem 1117
37.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 9755
37.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 9757
37.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 9761

Internal problem ID [4318]
Internal file name [OUTPUT/3811_Sunday_June_05_2022_11_06_49_AM_62150606/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1117.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2(1 + y)
3
2 + 3xy′ − 3y = 0

37.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
−2(1+y)

3
2

3 + y

x

Where f(x) = 1
x
and g(y) = −2(1+y)

3
2

3 + y. Integrating both sides gives

1

−2(1+y)
3
2

3 + y
dy = 1

x
dx

∫ 1

−2(1+y)
3
2

3 + y
dy =

∫ 1
x
dx
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∫ y 1

−2(1+_a) 32
3 + _a

d_a = ln (x) + c1

Which results in ∫ y 1

−2(1+_a) 32
3 + _a

d_a = ln (x) + c1

The solution is ∫ y 1

−2(1+_a) 32
3 + _a

d_a− ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)
∫ y 1

−2(1+_a) 32
3 + _a

d_a− ln (x)− c1 = 0

Figure 1167: Slope field plot
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Verification of solutions∫ y 1

−2(1+_a) 32
3 + _a

d_a− ln (x)− c1 = 0

Verified OK.

37.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2(1 + y)
3
2 + 3y

3x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

9757



Table 1110: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(1 + y)
3
2 + 3y

3x
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 3

(2y + 2)
√
1 + y − 3y

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

(2R + 2)
√
1 +R− 3R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− 3
2
√
1 +RR + 2

√
1 +R− 3R

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

− 3
2
√
1 + _a_a+ 2

√
1 + _a− 3_a

d_a+ c1

Which simplifies to

ln (x) + 3
(∫ y 1

(2_a+ 2)
√
1 + _a− 3_a

d_a
)
− c1 = 0

This results in

ln (x) + 3
(∫ y 1

(2_a+ 2)
√
1 + _a− 3_a

d_a
)
− c1 = 0

Summary
The solution(s) found are the following

(1)ln (x) + 3
(∫ y 1

(2_a+ 2)
√
1 + _a− 3_a

d_a
)
− c1 = 0
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Figure 1168: Slope field plot

Verification of solutions

ln (x) + 3
(∫ y 1

(2_a+ 2)
√
1 + _a− 3_a

d_a
)
− c1 = 0

Verified OK.

37.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore  1

−2(1+y)
3
2

3 + y

 dy =
(
1
x

)
dx

(
−1
x

)
dx+

 1

−2(1+y)
3
2

3 + y

 dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1

−2(1+y)
3
2

3 + y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And

∂N

∂x
= ∂

∂x

 1

−2(1+y)
3
2

3 + y


= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1

− 2(1+y)
3
2

3 +y

. Therefore equation (4) becomes

(5)1

−2(1+y)
3
2

3 + y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 3
2 (1 + y)

3
2 − 3y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 3
(2y + 2)

√
1 + y − 3y

)
dy

f(y) = −

3
( ∑

_R=RootOf
(
4_Z3+3_Z2+12_Z+4

) _R ln
(
y−_R

)
2_R2

+_R+2

)
2

+

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
(
2_R−3

)
ln
(√

1+y−_R
)

_R2
−_R

)
6

−

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
(
2_R+3

)
ln
(√

1+y−_R
)

_R2
+_R

)
6

−

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
2
ln
(√

1+y−_R
)

_R2
−_R

)
3

+

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
2
ln
(√

1+y−_R
)

_R2
+_R

)
3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)−
3
( ∑

_R=RootOf
(
4_Z3+3_Z2+12_Z+4

) _R ln
(
y−_R

)
2_R2

+_R+2

)
2

+

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
(
2_R−3

)
ln
(√

1+y−_R
)

_R2
−_R

)
6

−

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
(
2_R+3

)
ln
(√

1+y−_R
)

_R2
+_R

)
6

−

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
2
ln
(√

1+y−_R
)

_R2
−_R

)
3

+

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
2
ln
(√

1+y−_R
)

_R2
+_R

)
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)−
3
( ∑

_R=RootOf
(
4_Z3+3_Z2+12_Z+4

) _R ln
(
y−_R

)
2_R2

+_R+2

)
2

+

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
(
2_R−3

)
ln
(√

1+y−_R
)

_R2
−_R

)
6

−

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
(
2_R+3

)
ln
(√

1+y−_R
)

_R2
+_R

)
6

−

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
2
ln
(√

1+y−_R
)

_R2
−_R

)
3

+

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
2
ln
(√

1+y−_R
)

_R2
+_R

)
3
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Summary
The solution(s) found are the following

(1)

− ln (x)−
3
( ∑

_R=RootOf
(
4_Z3+3_Z2+12_Z+4

) _R ln
(
y−_R

)
2_R2

+_R+2

)
2

+

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
(
2_R−3

)
ln
(√

1+y−_R
)

_R2
−_R

)
6

−

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
(
2_R+3

)
ln
(√

1+y−_R
)

_R2
+_R

)
6

−

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
2
ln
(√

1+y−_R
)

_R2
−_R

)
3

+

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
2
ln
(√

1+y−_R
)

_R2
+_R

)
3 = c1

Figure 1169: Slope field plot
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Verification of solutions

− ln (x)−
3
( ∑

_R=RootOf
(
4_Z3+3_Z2+12_Z+4

) _R ln
(
y−_R

)
2_R2

+_R+2

)
2

+

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
(
2_R−3

)
ln
(√

1+y−_R
)

_R2
−_R

)
6

−

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
(
2_R+3

)
ln
(√

1+y−_R
)

_R2
+_R

)
6

−

( ∑
_R=RootOf

(
2_Z3−3_Z2+3

) _R
2
ln
(√

1+y−_R
)

_R2
−_R

)
3

+

( ∑
_R=RootOf

(
2_Z3+3_Z2−3

) _R
2
ln
(√

1+y−_R
)

_R2
+_R

)
3 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve(2*(1+y(x))^(3/2)+3*x*diff(y(x),x)-3*y(x) = 0,y(x), singsol=all)� �

ln (x) + 3
(∫ y(x) 1

(2_a+ 2)
√
_a+ 1− 3_a

d_a
)

+ c1 = 0
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3 Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 55� �
DSolve[2 (1+y[x])^(3/2) + 3 x y'[x]-3 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

1
3RootSum

2#13−3#12+3&,
log
(√

y(x) + 1−#1
)

#1− 1 &

=− log(x)
3 +c1, y(x)
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37.5 problem 1118
37.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9770

Internal problem ID [4319]
Internal file name [OUTPUT/3812_Sunday_June_05_2022_11_06_55_AM_60818045/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1118.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

√
1 + y′2 + ay′ = x

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = ax+
√
a2 + x2 − 1
a2 − 1 (1)

y′ = −−ax+
√
a2 + x2 − 1

a2 − 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

ax+
√
a2 + x2 − 1
a2 − 1 dx

=
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 + a x2

2
a2 − 1 + c1

Summary
The solution(s) found are the following

(1)y =
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 + a x2

2
a2 − 1 + c1
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Verification of solutions

y =
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 + a x2

2
a2 − 1 + c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−−ax+
√
a2 + x2 − 1

a2 − 1 dx

= −
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 − a x2

2
a2 − 1 + c2

Summary
The solution(s) found are the following

(1)y = −
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 − a x2

2
a2 − 1 + c2

Verification of solutions

y = −
x
√
a2+x2−1

2 +
(
4a2−4

)
ln
(
x+

√
a2+x2−1

)
8 − a x2

2
a2 − 1 + c2

Verified OK.

37.5.1 Maple step by step solution

Let’s solve√
1 + y′2 + ay′ = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (√
1 + y′2 + ay′

)
dx =

∫
xdx+ c1

• Cannot compute integral∫ (√
1 + y′2 + ay′

)
dx = x2

2 + c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 113� �
dsolve(sqrt(1+diff(y(x),x)^2)+a*diff(y(x),x) = x,y(x), singsol=all)� �

y(x) =
a x2 + x

√
a2 + x2 − 1 + (a− 1)

(
ln
(
x+

√
a2 + x2 − 1

)
+ 2c1

)
(a+ 1)

2a2 − 2

y(x) =
a x2 − x

√
a2 + x2 − 1− (a− 1) (a+ 1)

(
ln
(
x+

√
a2 + x2 − 1

)
− 2c1

)
2a2 − 2

3 Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 113� �
DSolve[Sqrt[1+(y'[x])^2]+ a y'[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x
(
ax−

√
a2 + x2 − 1

)
a2 − 1 + log

(√
a2 + x2 − 1− x

))
+ c1

y(x) → 1
2

(
x
(√

a2 + x2 − 1 + ax
)

a2 − 1 − log
(√

a2 + x2 − 1− x
))

+ c1
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37.6 problem 1119
Internal problem ID [4320]
Internal file name [OUTPUT/3813_Sunday_June_05_2022_11_07_19_AM_14859581/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1119.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

√
1 + y′2 + ay′ − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = ya+
√
y2 + a2 − 1
a2 − 1 (1)

y′ = ya−
√
y2 + a2 − 1
a2 − 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
a2 − 1

ya+
√
a2 + y2 − 1

dy =
∫

dx∫ y a2 − 1
_aa+

√
_a2 + a2 − 1

d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y a2 − 1

_aa+
√
_a2 + a2 − 1

d_a = x+ c1
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Verification of solutions∫ y a2 − 1
_aa+

√
_a2 + a2 − 1

d_a = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives ∫
a2 − 1

ya−
√
a2 + y2 − 1

dy =
∫

dx∫ y a2 − 1
_aa−

√
_a2 + a2 − 1

d_a = x+ c2

Summary
The solution(s) found are the following

(1)
∫ y a2 − 1

_aa−
√
_a2 + a2 − 1

d_a = x+ c2

Verification of solutions∫ y a2 − 1
_aa−

√
_a2 + a2 − 1

d_a = x+ c2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 112� �
dsolve(sqrt(1+diff(y(x),x)^2)+a*diff(y(x),x) = y(x),y(x), singsol=all)� �

−

(∫ y(x) 1
_aa+

√
_a2 + a2 − 1

d_a
)
a2 +

∫ y(x) 1
_aa+

√
_a2 + a2 − 1

d_a− c1

+ x = 0(∫ y(x) 1
−_aa+

√
_a2 + a2 − 1

d_a
)
a2

−

(∫ y(x) 1
−_aa+

√
_a2 + a2 − 1

d_a
)

− c1 + x = 0

3 Solution by Mathematica
Time used: 0.833 (sec). Leaf size: 210� �
DSolve[Sqrt[1+(y'[x])^2]+ a y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction

a
(
log
(√

#12 + a2 − 1−#1− a+ 1
)
+ log

(√
#12 + a2 − 1−#1+ a− 1

))
− (a+ 1) log

(
(a− 1)

(√
#12 + a2 − 1−#1

))
a2 − 1 &

[ x

a2 − 1

+ c1

]
y(x)

→ InverseFunction

a
(
log
(√

#12 + a2 − 1−#1− a− 1
)
+ log

(√
#12 + a2 − 1−#1+ a+ 1

))
− (a− 1) log

(
(a+ 1)

(√
#12 + a2 − 1−#1

))
a2 − 1 &

[ x

a2 − 1

+ c1

]
y(x) → 1
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37.7 problem 1120
37.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9776

Internal problem ID [4321]
Internal file name [OUTPUT/3814_Sunday_June_05_2022_11_07_38_AM_53689224/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1120.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

√
1 + y′2 − xy′ = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1√
x2 − 1

(1)

y′ = − 1√
x2 − 1

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1√

x2 − 1
dx

= ln
(
x+

√
x2 − 1

)
+ c1

Summary
The solution(s) found are the following

(1)y = ln
(
x+

√
x2 − 1

)
+ c1
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Verification of solutions

y = ln
(
x+

√
x2 − 1

)
+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

− 1√
x2 − 1

dx

= − ln
(
x+

√
x2 − 1

)
+ c2

Summary
The solution(s) found are the following

(1)y = − ln
(
x+

√
x2 − 1

)
+ c2

Verification of solutions

y = − ln
(
x+

√
x2 − 1

)
+ c2

Verified OK.

37.7.1 Maple step by step solution

Let’s solve√
1 + y′2 − xy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (√
1 + y′2 − xy′

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (√
1 + y′2 − xy′

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 33� �
dsolve(sqrt(1+diff(y(x),x)^2) = x*diff(y(x),x),y(x), singsol=all)� �

y(x) = ln
(
x+

√
x2 − 1

)
+ c1

y(x) = − ln
(
x+

√
x2 − 1

)
+ c1

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 89� �
DSolve[Sqrt[1+(y'[x])^2]==x y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
log
(
1− x√

x2 − 1

)
− log

(
x√

x2 − 1
+ 1
)
+ 2c1

)
y(x) → 1

2

(
− log

(
1− x√

x2 − 1

)
+ log

(
x√

x2 − 1
+ 1
)
+ 2c1

)
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37.8 problem 1123
37.8.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9778

Internal problem ID [4322]
Internal file name [OUTPUT/3815_Sunday_June_05_2022_11_08_03_AM_38415039/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1123.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

√
a2 + b2y′2 + xy′ − y = 0

37.8.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes√
b2p2 + a2 + xp− y = 0

Solving for y from the above results in

y = xp+
√
b2p2 + a2 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+
√
b2p2 + a2

= xp+
√
b2p2 + a2
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g =
√

b2p2 + a2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+
√
b2c21 + a2

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g =
√
b2p2 + a2,

then the above equation becomes

x+ g′(p) = x+ b2p√
b2p2 + a2

= 0
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Solving the above for p results in

p1 =
xa√

b2 − x2 b

p2 = − xa√
b2 − x2 b

Substituting the above back in (1) results in

y1 =

√
a2b2

b2−x2

√
b2 − x2 b+ a x2

√
b2 − x2 b

y2 = −
a x2 −

√
a2b2

b2−x2

√
b2 − x2 b

√
b2 − x2 b

Summary
The solution(s) found are the following

(1)y = c1x+
√
b2c21 + a2

(2)y =

√
a2b2

b2−x2

√
b2 − x2 b+ a x2

√
b2 − x2 b

(3)y = −
a x2 −

√
a2b2

b2−x2

√
b2 − x2 b

√
b2 − x2 b

Verification of solutions

y = c1x+
√
b2c21 + a2

Verified OK.

y =

√
a2b2

b2−x2

√
b2 − x2 b+ a x2

√
b2 − x2 b

Verified OK.

y = −
a x2 −

√
a2b2

b2−x2

√
b2 − x2 b

√
b2 − x2 b

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.312 (sec). Leaf size: 21� �
dsolve(sqrt(a^2+b^2*diff(y(x),x)^2)+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) =
√
b2c21 + a2 + c1x

3 Solution by Mathematica
Time used: 0.383 (sec). Leaf size: 37� �
DSolve[Sqrt[a^2+b^2 (y'[x])^2] +x y'[x] -y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

a2 + b2c12 + c1x

y(x) →
√
a2
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37.9 problem 1125
37.9.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9782

Internal problem ID [4323]
Internal file name [OUTPUT/3816_Sunday_June_05_2022_11_08_45_AM_99717579/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1125.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

a
√

1 + y′2 + xy′ − y = 0

37.9.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

a
√
p2 + 1 + xp− y = 0

Solving for y from the above results in

y = a
√

p2 + 1 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = a
√

p2 + 1 + xp

= a
√

p2 + 1 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = a
√

p2 + 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ a
√
c21 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = a
√
p2 + 1, then

the above equation becomes

x+ g′(p) = x+ ap√
p2 + 1

= 0
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Solving the above for p results in

p1 =
x√

a2 − x2

p2 = − x√
a2 − x2

Substituting the above back in (1) results in

y1 =
a
√

a2

a2−x2

√
a2 − x2 + x2

√
a2 − x2

y2 =
a
√

a2

a2−x2

√
a2 − x2 − x2

√
a2 − x2

Summary
The solution(s) found are the following

(1)y = c1x+ a
√

c21 + 1

(2)y =
a
√

a2

a2−x2

√
a2 − x2 + x2

√
a2 − x2

(3)y =
a
√

a2

a2−x2

√
a2 − x2 − x2

√
a2 − x2

Verification of solutions

y = c1x+ a
√
c21 + 1

Verified OK.

y =
a
√

a2

a2−x2

√
a2 − x2 + x2

√
a2 − x2

Verified OK.

y =
a
√

a2

a2−x2

√
a2 − x2 − x2

√
a2 − x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 17� �
dsolve(a*sqrt(1+diff(y(x),x)^2)+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = a
√
c21 + 1 + c1x

3 Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 27� �
DSolve[a Sqrt[1+(y'[x])^2] + x y'[x] -y[x]==0 y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a
√

1 + c12 + c1x
y(x) → a
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37.10 problem 1126
37.10.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9786

Internal problem ID [4324]
Internal file name [OUTPUT/3817_Sunday_June_05_2022_11_09_26_AM_64891679/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1126.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

ax
√

1 + y′2 + xy′ − y = 0

37.10.1 Solving as dAlembert ode

Let p = y′ the ode becomes

ax
√

p2 + 1 + xp− y = 0

Solving for y from the above results in

y =
(√

p2 + 1 a+ p
)
x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f =
√
p2 + 1 a+ p

g = 0

Hence (2) becomes

−
√

p2 + 1 a = x

(
ap√
p2 + 1

+ 1
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−
√
p2 + 1 a = 0

Solving for p from the above gives

p = i

p = −i

Substituting these in (1A) gives

y = −ix

y = ix

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −

√
p (x)2 + 1 a

x

(
ap(x)√
p(x)2+1

+ 1
) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

x(p)
(

ap√
p2+1

+ 1
)

√
p2 + 1 a

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = −−ap−
√
p2 + 1

(p2 + 1) a
q(p) = 0

Hence the ode is
d

dp
x(p)−

(
−ap−

√
p2 + 1

)
x(p)

(p2 + 1) a = 0

The integrating factor µ is

µ = e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

The ode becomes
d
dpµx = 0

d
dp

e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

x

 = 0

Integrating gives

e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

x = c2

Dividing both sides by the integrating factor µ = e
∫
−−ap−

√
p2+1(

p2+1
)
a

dp

results in

x(p) = c2e−
∫ ap+

√
p2+1

p2+1
dp

a

Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −ix
(2)y = ix

Verification of solutions

y = −ix

Verified OK.
y = ix

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 340� �
dsolve(a*x*sqrt(1+diff(y(x),x)^2)+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

x

√
−a2x2+y(x)2a2+2

√
y(x)2−a2x2+x2 ay(x)+x2+y(x)2

(a2−1)2x2 − e
arcsinh


√

y(x)2−a2x2+x2 a+y(x)(
a2−1

)
x


a c1√

−a2x2+y(x)2a2+2
√

y(x)2−a2x2+x2 ay(x)+x2+y(x)2

(a2−1)2x2

= 0

x

√
−a2x2+y(x)2a2−2

√
y(x)2−a2x2+x2 ay(x)+x2+y(x)2

(a2−1)2x2 − e
arcsinh

−
√

y(x)2−a2x2+x2 a+y(x)(
a2−1

)
x


a c1√

−a2x2+y(x)2a2−2
√

y(x)2−a2x2+x2 ay(x)+x2+y(x)2

(a2−1)2x2

= 0
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3 Solution by Mathematica
Time used: 0.992 (sec). Leaf size: 223� �
DSolve[a x Sqrt[1+(y'[x])^2]+x y'[x] -y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


2i arctan

 y(x)

x

√
a2− y(x)2

x2 −1

− 2ia arctan

 ay(x)

x

√
a2− y(x)2

x2 −1

+ a log
(

y(x)2
x2 + 1

)
2a2 − 2 = a log (x− a2x)

1− a2

+ c1, y(x)



Solve


−2i arctan

 y(x)

x

√
a2− y(x)2

x2 −1

+ 2ia arctan

 ay(x)

x

√
a2− y(x)2

x2 −1

+ a log
(

y(x)2
x2 + 1

)
2a2 − 2 = a log (x− a2x)

1− a2

+ c1, y(x)
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37.11 problem 1129
37.11.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9791

Internal problem ID [4325]
Internal file name [OUTPUT/3818_Sunday_June_05_2022_11_09_48_AM_61187672/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1129.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

√
(a x2 + y2)

(
1 + y′2

)
− y′y = ax

37.11.1 Solving as dAlembert ode

Let p = y′ the ode becomes√
(a x2 + y2) (p2 + 1)− py = ax

Solving for y from the above results in

y =
(
ap+

√
a2p2 − a p2 + a2 − a

)
x (1A)

y =
(
ap−

√
a2p2 − a p2 + a2 − a

)
x (2A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = ap+
√

a (p2 + 1) (a− 1)
g = 0

Hence (2) becomes

p− ap−
√

a (p2 + 1) (a− 1) = x

(
a+ ap(a− 1)√

a (p2 + 1) (a− 1)

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− ap−
√

a (p2 + 1) (a− 1) = 0

Solving for p from the above gives

p =
√
−a

p = −
√
−a

Substituting these in (1A) gives

y = −(−a)
3
2 x+

√
−a3 + 2a2 − a x

y = (−a)
3
2 x+

√
−a3 + 2a2 − a x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− ap(x)−

√
a
(
p (x)2 + 1

)
(a− 1)

x

a+ ap(x)(a−1)√
a
(
p(x)2+1

)
(a−1)

 (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −
√

a (p2 + 1) (a− 1)
ax
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Where f(x) = − 1
ax

and g(p) =
√

a (p2 + 1) (a− 1). Integrating both sides gives

1√
a (p2 + 1) (a− 1)

dp = − 1
ax

dx

∫ 1√
a (p2 + 1) (a− 1)

dp =
∫

− 1
ax

dx

ln
(

a(a−1)p√
a(a−1) +

√
a (a− 1) p2 + a (a− 1)

)
√

a (a− 1)
= − ln (x)

a
+ c1

Raising both side to exponential gives

e
ln
(

a(a−1)p√
a(a−1)

+
√

a(a−1)p2+a(a−1)
)

√
a(a−1) = e−

ln(x)
a

+c1

Which simplifies to(
a2p+

√
a (p2 + 1) (a− 1)

√
a (a− 1)− ap√

a (a− 1)

) 1√
a(a−1)

= c2e−
ln(x)

a

Substituing the above solution for p in (2A) gives

y =


a

(
e−

2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a − a2 + a

)
e
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a

2
√

a (a− 1)
+

√√√√√√√√a


(
e−

2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a − a2 + a

)2

e
2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a

4a (a− 1) + 1

 (a− 1)

x

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = ap−
√
a (p2 + 1) (a− 1)

g = 0

9793



Hence (2) becomes

p− ap+
√

a (p2 + 1) (a− 1) = x

(
a− ap(a− 1)√

a (p2 + 1) (a− 1)

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− ap+
√
a (p2 + 1) (a− 1) = 0

Solving for p from the above gives

p =
√
−a

p = −
√
−a

Substituting these in (1A) gives

y = −(−a)
3
2 x−

√
−a3 + 2a2 − a x

y = (−a)
3
2 x−

√
−a3 + 2a2 − a x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− ap(x) +

√
a
(
p (x)2 + 1

)
(a− 1)

x

a− ap(x)(a−1)√
a
(
p(x)2+1

)
(a−1)

 (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

=
√

a (p2 + 1) (a− 1)
ax

Where f(x) = 1
ax

and g(p) =
√
a (p2 + 1) (a− 1). Integrating both sides gives

1√
a (p2 + 1) (a− 1)

dp = 1
ax

dx

∫ 1√
a (p2 + 1) (a− 1)

dp =
∫ 1

ax
dx

ln
(

a(a−1)p√
a(a−1) +

√
a (a− 1) p2 + a (a− 1)

)
√

a (a− 1)
= ln (x)

a
+ c3
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Raising both side to exponential gives

e
ln
(

a(a−1)p√
a(a−1)

+
√

a(a−1)p2+a(a−1)
)

√
a(a−1) = e

ln(x)
a

+c3

Which simplifies to(
a2p+

√
a (p2 + 1) (a− 1)

√
a (a− 1)− ap√

a (a− 1)

) 1√
a(a−1)

= c4e
ln(x)

a

Substituing the above solution for p in (2A) gives

y = x


a

(
e−

2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)
e
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

2
√
a (a− 1)

−

√√√√√√√√a


(
e−

2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)2

e
2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

4a (a− 1) + 1

 (a− 1)
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Summary
The solution(s) found are the following

(1)y = −(−a)
3
2 x+

√
−a3 + 2a2 − a x

(2)y = (−a)
3
2 x+

√
−a3 + 2a2 − a x

(3)y =


a

(
e−

2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a − a2 + a

)
e
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a

2
√

a (a− 1)

+

√√√√√√√√a


(
e−

2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a − a2 + a

)2

e
2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a

4a (a− 1) + 1

 (a− 1)

x

(4)y = −(−a)
3
2 x−

√
−a3 + 2a2 − a x

(5)y = (−a)
3
2 x−

√
−a3 + 2a2 − a x

(6)y = x


a

(
e−

2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)
e
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

2
√

a (a− 1)

−

√√√√√√√√a


(
e−

2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)2

e
2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

4a (a− 1) + 1

 (a− 1)
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Verification of solutions

y = −(−a)
3
2 x+

√
−a3 + 2a2 − a x

Verified OK.

y = (−a)
3
2 x+

√
−a3 + 2a2 − a x

Verified OK.

y =


a

(
e−

2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a − a2 + a

)
e
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a

2
√

a (a− 1)

+

√√√√√√√√a


(
e−

2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a − a2 + a

)2

e
2
√

a(a−1)
(
ln
(

1
c2

)
a−ac1+ln(x)

)
a

4a (a− 1) + 1

 (a− 1)

x

Verified OK.

y = −(−a)
3
2 x−

√
−a3 + 2a2 − a x

Verified OK.

y = (−a)
3
2 x−

√
−a3 + 2a2 − a x

Verified OK.

y = x


a

(
e−

2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)
e
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

2
√

a (a− 1)

−

√√√√√√√√a


(
e−

2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a − a2 + a

)2

e
2
√

a(a−1)
(
ln
(

1
c4

)
a−c3a−ln(x)

)
a

4a (a− 1) + 1

 (a− 1)


Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 1.203 (sec). Leaf size: 142� �
dsolve(((a*x^2+y(x)^2)*(1+diff(y(x),x)^2))^(1/2)-y(x)*diff(y(x),x)-a*x = 0,y(x), singsol=all)� �

y(x) =
√
−a x

y(x) = −
√
−a x

y(x) = −a2(a− 1)x
−
√

a(a−1)+a
a − x

a+
√

a(a−1)
a c21

2
√
a (a− 1) c1

y(x) = −−x
−
√

a(a−1)+a
a c21 + x

a+
√

a(a−1)
a a2(a− 1)

2
√

a (a− 1) c1

3 Solution by Mathematica
Time used: 0.701 (sec). Leaf size: 241� �
DSolve[((a x^2+y[x]^2)(1+(y'[x])^2))^(1/2) -y[x] y'[x]-a x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
√
ae−c1x1−

√
a−1
a

(
x2
√

a−1
a − e2c1

)
y(x) → 1

2
√
ae−c1x1−

√
a−1
a

(
−x2

√
a−1
a + e2c1

)
y(x) → −1

2
√
ae−c1x1−

√
a−1
a

(
−1 + e2c1x2

√
a−1
a

)
y(x) → 1

2
√
ae−c1x1−

√
a−1
a

(
−1 + e2c1x2

√
a−1
a

)
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37.12 problem 1130
37.12.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9800

Internal problem ID [4326]
Internal file name [OUTPUT/3819_Sunday_June_05_2022_11_11_47_AM_91272228/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1130.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[_Clairaut]

a
(
1 + y′

3
) 1

3 + xy′ − y = 0

37.12.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

a
(
p3 + 1

) 1
3 + xp− y = 0

Solving for y from the above results in

y = a
(
p3 + 1

) 1
3 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = a
(
p3 + 1

) 1
3 + xp

= a
(
p3 + 1

) 1
3 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = a
(
p3 + 1

) 1
3

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ a
(
c31 + 1

) 1
3

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = a(p3 + 1)
1
3 , then

the above equation becomes

x+ g′(p) = x+ a p2

(p3 + 1)
2
3

= 0
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Solving the above for p results in

p1 =

(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3

a3 + x3

p2 =

(
−1

2 +
i
√
3

2

)(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3

a3 + x3

p3 =

(
−1

2 −
i
√
3

2

)(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3

a3 + x3

p4 =

(
−x
(√

−ax a+ x2) (a3 + x3)2
) 1

3

a3 + x3

p5 =

(
−1

2 +
i
√
3

2

)(
−x
(√

−ax a+ x2) (a3 + x3)2
) 1

3

a3 + x3

p6 =

(
−1

2 −
i
√
3

2

)(
−x
(√

−ax a+ x2) (a3 + x3)2
) 1

3

a3 + x3

Substituting the above back in (1) results in

y1 =

(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3
x+ (a4 + a x3)

(
a
(√

−ax x+a2
)

a3+x3

) 1
3

a3 + x3

y2 =

(
i
√
3− 1

)
x
(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3 + (2a4 + 2a x3)
(

a
(√

−ax x+a2
)

a3+x3

) 1
3

2a3 + 2x3

y3 =
(2a4 + 2a x3)

(
a
(√

−ax x+a2
)

a3+x3

) 1
3 − x

(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3 (1 + i
√
3
)

2a3 + 2x3

y4 =

(
−x
(√

−ax a+ x2) (a3 + x3)2
) 1

3
x+ (a4 + a x3)

(
a
(
a2−

√
−ax x

)
a3+x3

) 1
3

a3 + x3

y5 = lim

p→

(
i
√
3−1

)(
−x
(√

−ax a+x2
)(

a3+x3
)2) 1

3

2a3+2x3

(
a
(
p3 + 1

) 1
3 + xp

)

y6 = lim

p→−

(
1+i

√
3
)(

−x
(√

−ax a+x2
)(

a3+x3
)2) 1

3

2a3+2x3

(
a
(
p3 + 1

) 1
3 + xp

)
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Summary
The solution(s) found are the following

(1)y = c1x+ a
(
c31 + 1

) 1
3

(2)y =

(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3
x+ (a4 + a x3)

(
a
(√

−ax x+a2
)

a3+x3

) 1
3

a3 + x3

(3)y =

(
i
√
3− 1

)
x
(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3 + (2a4 + 2a x3)
(

a
(√

−ax x+a2
)

a3+x3

) 1
3

2a3 + 2x3

(4)y =
(2a4 + 2a x3)

(
a
(√

−ax x+a2
)

a3+x3

) 1
3 − x

(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3 (1 + i
√
3
)

2a3 + 2x3

(5)y =

(
−x
(√

−ax a+ x2) (a3 + x3)2
) 1

3
x+ (a4 + a x3)

(
a
(
a2−

√
−ax x

)
a3+x3

) 1
3

a3 + x3

(6)y = lim

p→

(
i
√
3−1

)(
−x
(√

−ax a+x2
)(

a3+x3
)2) 1

3

2a3+2x3

(
a
(
p3 + 1

) 1
3 + xp

)

(7)y = lim

p→−

(
1+i

√
3
)(

−x
(√

−ax a+x2
)(

a3+x3
)2) 1

3

2a3+2x3

(
a
(
p3 + 1

) 1
3 + xp

)
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Verification of solutions

y = c1x+ a
(
c31 + 1

) 1
3

Verified OK.

y =

(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3
x+ (a4 + a x3)

(
a
(√

−ax x+a2
)

a3+x3

) 1
3

a3 + x3

Verified OK.

y =

(
i
√
3− 1

)
x
(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3 + (2a4 + 2a x3)
(

a
(√

−ax x+a2
)

a3+x3

) 1
3

2a3 + 2x3

Verified OK.

y =
(2a4 + 2a x3)

(
a
(√

−ax x+a2
)

a3+x3

) 1
3 − x

(
x
(√

−ax a− x2) (a3 + x3)2
) 1

3 (1 + i
√
3
)

2a3 + 2x3

Verified OK.

y =

(
−x
(√

−ax a+ x2) (a3 + x3)2
) 1

3
x+ (a4 + a x3)

(
a
(
a2−

√
−ax x

)
a3+x3

) 1
3

a3 + x3

Verified OK.

y = lim

p→

(
i
√
3−1

)(
−x
(√

−ax a+x2
)(

a3+x3
)2) 1

3

2a3+2x3

(
a
(
p3 + 1

) 1
3 + xp

)

Verified OK.

y = lim

p→−

(
1+i

√
3
)(

−x
(√

−ax a+x2
)(

a3+x3
)2) 1

3

2a3+2x3

(
a
(
p3 + 1

) 1
3 + xp

)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.5 (sec). Leaf size: 17� �
dsolve(a*(1+diff(y(x),x)^3)^(1/3)+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)� �

y(x) = a
(
c31 + 1

) 1
3 + c1x

3 Solution by Mathematica
Time used: 0.176 (sec). Leaf size: 27� �
DSolve[a (1+ (y'[x])^3)^(1/3) +x y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a 3
√
1 + c13 + c1x

y(x) → a

9805



37.13 problem 1132
37.13.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9806

Internal problem ID [4327]
Internal file name [OUTPUT/3820_Sunday_June_05_2022_11_14_27_AM_58673927/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1132.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[_Clairaut]

cos (y′) + xy′ − y = 0

37.13.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

cos (p) + xp− y = 0

Solving for y from the above results in

y = xp+ cos (p) (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ cos (p)
= xp+ cos (p)

Writing the ode as

y = xp+ g(p)
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We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = cos (p)

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ cos (c1)

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = cos (p), then
the above equation becomes

x+ g′(p) = x− sin (p)
= 0

Solving the above for p results in

p1 = arcsin (x)
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Substituting the above back in (1) results in

y1 = x arcsin (x) +
√
−x2 + 1

Summary
The solution(s) found are the following

(1)y = c1x+ cos (c1)
(2)y = x arcsin (x) +

√
−x2 + 1

Verification of solutions

y = c1x+ cos (c1)

Verified OK.

y = x arcsin (x) +
√
−x2 + 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- 1st order, parametric methods successful
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve(cos(diff(y(x),x))+x*diff(y(x),x) = y(x),y(x), singsol=all)� �

y(x) = arcsin (x)x+
√
−x2 + 1

y(x) = cos (c1) + c1x
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3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 18� �
DSolve[Cos[y'[x]]+x*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x+ cos(c1)
y(x) → 1
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37.14 problem 1133
37.14.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9810
37.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9811

Internal problem ID [4328]
Internal file name [OUTPUT/3821_Sunday_June_05_2022_11_14_38_AM_70354851/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1133.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

a cos (y′) + by′ = −x

37.14.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

RootOf (a cos (_Z) + _Zb+ x) dx

=
∫

RootOf (a cos (_Z) + _Zb+ x) dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫

RootOf (a cos (_Z) + _Zb+ x) dx+ c1

Verification of solutions

y =
∫

RootOf (a cos (_Z) + _Zb+ x) dx+ c1

Verified OK.
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37.14.2 Maple step by step solution

Let’s solve
a cos (y′) + by′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(a cos (y′) + by′) dx =

∫
−xdx+ c1

• Cannot compute integral∫
(a cos (y′) + by′) dx = −x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(a*cos(diff(y(x),x))+b*diff(y(x),x)+x = 0,y(x), singsol=all)� �

y(x) =
∫

RootOf (a cos (_Z) + _Zb+ x) dx+ c1

3 Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 49� �
DSolve[a Cos[y'[x]] + b y'[x]+x ==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[{

y(x) = a sin(K[1])− aK[1] cos(K[1])− 1
2bK[1]2

+ c1, x = −a cos(K[1])− bK[1]
}
, {y(x), K[1]}

]
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37.15 problem 1134
37.15.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9813
37.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9814

Internal problem ID [4329]
Internal file name [OUTPUT/3822_Sunday_June_05_2022_11_14_43_AM_2079065/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1134.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

sin (y′) + y′ = x

37.15.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

RootOf (sin (_Z) + _Z− x) dx

=
∫

RootOf (sin (_Z) + _Z− x) dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫

RootOf (sin (_Z) + _Z− x) dx+ c1

Verification of solutions

y =
∫

RootOf (sin (_Z) + _Z− x) dx+ c1

Verified OK.
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37.15.2 Maple step by step solution

Let’s solve
sin (y′) + y′ = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(sin (y′) + y′) dx =

∫
xdx+ c1

• Cannot compute integral∫
(sin (y′) + y′) dx = x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(sin(diff(y(x),x))+diff(y(x),x) = x,y(x), singsol=all)� �

y(x) =
∫

RootOf (sin (_Z) + _Z− x) dx+ c1

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 38� �
DSolve[Sin[y'[x]]+ y'[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[{

x = K[1] + sin(K[1]), y(x) = K[1]2
2

+K[1] sin(K[1]) + cos(K[1]) + c1

}
, {y(x), K[1]}

]
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37.16 problem 1135
37.16.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9816
37.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9817

Internal problem ID [4330]
Internal file name [OUTPUT/3823_Sunday_June_05_2022_11_14_47_AM_88999366/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1135.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ sin (y′) + cos (y′)− y = 0

37.16.1 Solving as quadrature ode

Integrating both sides gives∫ 1
RootOf (_Z sin (_Z) + cos (_Z)− y)dy =

∫
dx∫ y 1

RootOf (_Z sin (_Z) + cos (_Z)− _a)d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

RootOf (_Z sin (_Z) + cos (_Z)− _a)d_a = x+ c1

Verification of solutions∫ y 1
RootOf (_Z sin (_Z) + cos (_Z)− _a)d_a = x+ c1

Verified OK.

9816



37.16.2 Maple step by step solution

Let’s solve
y′ sin (y′) + cos (y′)− y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

RootOf
(
_Z sin

(
_Z

)
+cos

(
_Z

)
−y
) = 1

• Integrate both sides with respect to x∫
y′

RootOf
(
_Z sin

(
_Z

)
+cos

(
_Z

)
−y
)dx =

∫
1dx+ c1

• Cannot compute integral∫
y′

RootOf
(
_Z sin

(
_Z

)
+cos

(
_Z

)
−y
)dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.171 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)*sin(diff(y(x),x))+cos(diff(y(x),x)) = y(x),y(x), singsol=all)� �

y(x) = 1

x−

(∫ y(x) 1
RootOf (_Z sin (_Z) + cos (_Z)− _a)d_a

)
− c1 = 0

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 28� �
DSolve[y'[x] Sin[y'[x]]+ Cos[y'[x]]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve[{x = sin(K[1]) + c1, y(x) = K[1] sin(K[1]) + cos(K[1])}, {y(x), K[1]}]
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37.17 problem 1137
37.17.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9819

Internal problem ID [4331]
Internal file name [OUTPUT/3824_Sunday_June_05_2022_11_15_33_AM_21912412/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1137.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_dAlembert]

y′
2(x+ sin (y′))− y = 0

37.17.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2(x+ sin (p))− y = 0

Solving for y from the above results in

y = p2x+ p2 sin (p) (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

9819



Comparing the form y = xf + g to (1A) shows that

f = p2

g = p2 sin (p)

Hence (2) becomes

−p2 + p =
(
2xp+ 2p sin (p) + p2 cos (p)

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = sin (1) + x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
2p (x)x+ 2p (x) sin (p (x)) + p (x)2 cos (p (x))

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = 2x(p) p+ 2p sin (p) + p2 cos (p)

−p2 + p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p− 1

q(p) = − cos (p) p− 2 sin (p)
p− 1
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Hence the ode is

d

dp
x(p) + 2x(p)

p− 1 = − cos (p) p− 2 sin (p)
p− 1

The integrating factor µ is

µ = e
∫ 2

p−1dp

= (p− 1)2

The ode becomes

d
dp(µx) = (µ)

(
− cos (p) p− 2 sin (p)

p− 1

)
d
dp
(
(p− 1)2 x

)
=
(
(p− 1)2

)(− cos (p) p− 2 sin (p)
p− 1

)
d
(
(p− 1)2 x

)
= ((− cos (p) p− 2 sin (p)) (p− 1)) dp

Integrating gives

(p− 1)2 x =
∫

(− cos (p) p− 2 sin (p)) (p− 1) dp

(p− 1)2 x = −p2 sin (p)− cos (p) + p sin (p) + c1

Dividing both sides by the integrating factor µ = (p− 1)2 results in

x(p) = −p2 sin (p)− cos (p) + p sin (p)
(p− 1)2

+ c1

(p− 1)2

which simplifies to

x(p) = (−p2 + p) sin (p) + c1 − cos (p)
(p− 1)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = RootOf
(
sin (_Z)_Z2 + _Z2x− y

)
Substituting the above in the solution for x found above gives

x

=

(
−RootOf

(
sin (_Z)_Z2 + _Z2x− y

)2 +RootOf
(
sin (_Z)_Z2 + _Z2x− y

))
sin
(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

))
+ c1 − cos

(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

))
(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

)
− 1
)2
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Summary
The solution(s) found are the following

(1)y = 0
(2)y = sin (1) + x
(3)x

=

(
−RootOf

(
sin (_Z)_Z2 + _Z2x− y

)2 +RootOf
(
sin (_Z)_Z2 + _Z2x− y

))
sin
(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

))
+ c1 − cos

(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

))
(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

)
− 1
)2

Verification of solutions

y = 0

Verified OK.

y = sin (1) + x

Verified OK.
x

=

(
−RootOf

(
sin (_Z)_Z2 + _Z2x− y

)2 +RootOf
(
sin (_Z)_Z2 + _Z2x− y

))
sin
(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

))
+ c1 − cos

(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

))
(
RootOf

(
sin (_Z)_Z2 + _Z2x− y

)
− 1
)2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.359 (sec). Leaf size: 56� �
dsolve(diff(y(x),x)^2*(x+sin(diff(y(x),x))) = y(x),y(x), singsol=all)� �

y(x) = 0[
x(_T) =

(
−_T2 + _T

)
sin (_T)− cos (_T) + c1

(_T− 1)2
, y(_T) =

−((_T− 1) sin (_T) + cos (_T)− c1)_T2

(_T− 1)2

]

3 Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 61� �
DSolve[(y'[x])^2 (x+Sin[y'[x]])==y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[{

x = −(K[1]− 1)K[1] sin(K[1])− cos(K[1])
(K[1]− 1)2

+ c1
(K[1]− 1)2 , y(x) = xK[1]2 +K[1]2 sin(K[1])

}
, {y(x), K[1]}

]
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37.18 problem 1138
37.18.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9824

Internal problem ID [4332]
Internal file name [OUTPUT/3825_Sunday_June_05_2022_11_15_56_AM_20963168/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1138.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[_Clairaut]

(
1 + y′

2
)
sin (−y + xy′)2 = 1

37.18.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes(
p2 + 1

)
sin (xp− y)2 = 1

Solving for y from the above results in

y = xp− arcsin
(

1√
p2 + 1

)
(1A)

y = xp+ arcsin
(

1√
p2 + 1

)
(2A)

Each of the above ode’s is a Clairaut ode which is now solved. Solving ode 1A We start
by replacing y′ by p which gives

y = xp− arcsin
(

1√
p2 + 1

)
= xp− arcsin

(
1√

p2 + 1

)
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = − arcsin
(

1√
p2 + 1

)
Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− arcsin
(

1√
c21 + 1

)

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = − arcsin
(

1√
p2+1

)
,

then the above equation becomes

x+ g′(p) = x+ p

(p2 + 1)
3
2
√
− 1

p2+1 + 1

= 0
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Solving the above for p results in

p1 = −
√

1
x

√
1− x

p2 =
√

−1
x

√
x+ 1

Substituting the above back in (1) results in

y1 = −
√

1
x

√
1− xx− arcsin

 1√
1
x


y2 =

√
−1
x

√
x+ 1x− arcsin

 1√
− 1

x


Solving ode 2A We start by replacing y′ by p which gives

y = xp+ arcsin
(

1√
p2 + 1

)
= xp+ arcsin

(
1√

p2 + 1

)
Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = arcsin
(

1√
p2 + 1

)
Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

9826



Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c2x+ arcsin
(

1√
c22 + 1

)

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = arcsin
(

1√
p2+1

)
,

then the above equation becomes

x+ g′(p) = x− p

(p2 + 1)
3
2
√

− 1
p2+1 + 1

= 0

Solving the above for p results in

p1 =
√

1
x

√
1− x

p2 = −
√
−1
x

√
x+ 1

Substituting the above back in (1) results in

y1 =
√

1
x

√
1− xx+ arcsin

 1√
1
x


y2 = −

√
−1
x

√
x+ 1x+ arcsin

 1√
− 1

x
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Summary
The solution(s) found are the following

(1)y = c1x− arcsin
(

1√
c21 + 1

)

(2)y = −
√

1
x

√
1− xx− arcsin

 1√
1
x


(3)y =

√
−1
x

√
x+ 1x− arcsin

 1√
− 1

x


(4)y = c2x+ arcsin

(
1√

c22 + 1

)

(5)y =
√

1
x

√
1− xx+ arcsin

 1√
1
x


(6)y = −

√
−1
x

√
x+ 1x+ arcsin

 1√
− 1

x
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Verification of solutions

y = c1x− arcsin
(

1√
c21 + 1

)

Verified OK.

y = −
√

1
x

√
1− xx− arcsin

 1√
1
x


Verified OK.

y =
√

−1
x

√
x+ 1x− arcsin

 1√
− 1

x


Verified OK.

y = c2x+ arcsin
(

1√
c22 + 1

)

Verified OK.

y =
√

1
x

√
1− xx+ arcsin

 1√
1
x


Verified OK.

y = −
√

−1
x

√
x+ 1x+ arcsin

 1√
− 1

x


Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- 1st order, parametric methods successful
<- dAlembert successful
<- 1st order, parametric methods successful
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 139� �
dsolve((1+diff(y(x),x)^2)*sin(y(x)-x*diff(y(x),x))^2 = 1,y(x), singsol=all)� �

y(x) = −x

√
1
x

√
1− x− arcsin

 1√
1
x


y(x) = x

√
1
x

√
1− x+ arcsin

 1√
1
x


y(x) = −x

√
−1
x

√
x+ 1 + arcsin

 1√
− 1

x


y(x) = x

√
−1
x

√
x+ 1− arcsin

 1√
− 1

x


y(x) = c1x− arcsin

(
1√

c21 + 1

)

y(x) = c1x+ arcsin
(

1√
c21 + 1

)
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3 Solution by Mathematica
Time used: 0.335 (sec). Leaf size: 77� �
DSolve[(1+(y'[x])^2) (Sin[y[x]-x y'[x]])^2==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x− 1
2 arccos

(
−1 + c1

2

1 + c12

)
y(x) → 1

2 arccos
(
−1 + c1

2

1 + c12

)
+ c1x

y(x) → −π

2
y(x) → π

2
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37.19 problem 1140
37.19.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9832
37.19.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9833

Internal problem ID [4333]
Internal file name [OUTPUT/3826_Sunday_June_05_2022_11_16_29_AM_17498399/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1140.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
1 + y′

2
)
(arctan (y′) + ax) + y′ = 0

37.19.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

tan
(
RootOf

(
ax tan (_Z)2 + tan (_Z)2_Z+ ax+ tan (_Z) + _Z

))
dx

=
∫

tan
(
RootOf

(
ax tan (_Z)2 + tan (_Z)2_Z+ ax+ tan (_Z) + _Z

))
dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫

tan
(
RootOf

(
ax tan (_Z)2 + tan (_Z)2_Z+ ax+ tan (_Z) + _Z

))
dx+ c1

Verification of solutions

y =
∫

tan
(
RootOf

(
ax tan (_Z)2 + tan (_Z)2_Z+ ax+ tan (_Z) + _Z

))
dx+ c1

Warning, solution could not be verified
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37.19.2 Maple step by step solution

Let’s solve(
1 + y′2

)
(arctan (y′) + ax) + y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ ((
1 + y′2

)
(arctan (y′) + ax) + y′

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ ((
1 + y′2

)
(arctan (y′) + ax) + y′

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve((1+diff(y(x),x)^2)*(arctan(diff(y(x),x))+a*x)+diff(y(x),x) = 0,y(x), singsol=all)� �

y(x) =
∫

tan (RootOf (ax+ sin (_Z) cos (_Z) + _Z)) dx+ c1

3 Solution by Mathematica
Time used: 1.199 (sec). Leaf size: 58� �
DSolve[(1+(y'[x])^2)(ArcTan[y'[x]]+a x)+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[{

y(x) = 1
a (K[1]2 + 1)

+ c1, x = K[1]2(− arctan(K[1]))− arctan(K[1])−K[1]
a (K[1]2 + 1)

}
, {y(x), K[1]}

]
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37.20 problem 1141
37.20.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9835
37.20.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9836

Internal problem ID [4334]
Internal file name [OUTPUT/3827_Sunday_June_05_2022_11_16_37_AM_6381708/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1141.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

−y′
2 = −ey′−y − 1

37.20.1 Solving as quadrature ode

Integrating both sides gives∫ 1
RootOf

(
−e_Z−y + _Z2 − 1

)dy =
∫

dx∫ y 1
RootOf

(
−e_Z−_a + _Z2 − 1

)d_a = x+ c1

Summary
The solution(s) found are the following

(1)
∫ y 1

RootOf
(
−e_Z−_a + _Z2 − 1

)d_a = x+ c1

Verification of solutions∫ y 1
RootOf

(
−e_Z−_a + _Z2 − 1

)d_a = x+ c1

Verified OK.

9835



37.20.2 Maple step by step solution

Let’s solve
−y′2 = −ey′−y − 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

RootOf
(
−e_Z−y+_Z2

−1
) = 1

• Integrate both sides with respect to x∫
y′

RootOf
(
−e_Z−y+_Z2

−1
)dx =

∫
1dx+ c1

• Cannot compute integral∫
y′

RootOf
(
−e_Z−y+_Z2

−1
)dx = x+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 31� �
dsolve(exp(diff(y(x),x)-y(x))-diff(y(x),x)^2+1 = 0,y(x), singsol=all)� �

x−

(∫ y(x) 1
RootOf

(
−e_Z−_a + _Z2 − 1

)d_a)− c1 = 0

3 Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 44� �
DSolve[Exp[y'[x]-y[x]]-(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[{

x = − log(1−K[1]) + log(K[1]) + log(K[1] + 1)
+ c1, y(x) = K[1]− log

(
K[1]2 − 1

)}
, {y(x), K[1]}

]
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37.21 problem 1143
37.21.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9838
37.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9839

Internal problem ID [4335]
Internal file name [OUTPUT/3828_Sunday_June_05_2022_11_16_42_AM_61032335/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1143.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

ln (y′) + xy′ = −a

37.21.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

e−LambertW
(
x e−a

)
−a dx

= LambertW (x e−a)2

2 + LambertW
(
x e−a

)
+ c1

Summary
The solution(s) found are the following

(1)y = LambertW (x e−a)2

2 + LambertW
(
x e−a

)
+ c1

Verification of solutions

y = LambertW (x e−a)2

2 + LambertW
(
x e−a

)
+ c1

Verified OK.
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37.21.2 Maple step by step solution

Let’s solve
ln (y′) + xy′ = −a

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(ln (y′) + xy′) dx =

∫
−adx+ c1

• Cannot compute integral∫
(ln (y′) + xy′) dx = −ax+ c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(ln(diff(y(x),x))+x*diff(y(x),x)+a = 0,y(x), singsol=all)� �

y(x) = LambertW (x e−a)2

2 + LambertW
(
x e−a

)
+ c1

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 30� �
DSolve[Log[y'[x]]+x y'[x]+ a ==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2W

(
e−ax

)2 +W
(
e−ax

)
+ c1
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37.22 problem 1144
37.22.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9840

Internal problem ID [4336]
Internal file name [OUTPUT/3829_Sunday_June_05_2022_11_16_48_AM_67727971/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1144.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

ln (y′) + xy′ − y = −a

37.22.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

ln (p) + xp− y = −a

Solving for y from the above results in

y = xp+ ln (p) + a (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ ln (p) + a

= xp+ ln (p) + a

Writing the ode as

y = xp+ g(p)
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We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = ln (p) + a

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ ln (c1) + a

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = ln (p) + a, then
the above equation becomes

x+ g′(p) = x+ 1
p

= 0

Solving the above for p results in

p1 = −1
x
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Substituting the above back in (1) results in

y1 = ln
(
−1
x

)
+ a− 1

Summary
The solution(s) found are the following

(1)y = c1x+ ln (c1) + a

(2)y = ln
(
−1
x

)
+ a− 1

Verification of solutions

y = c1x+ ln (c1) + a

Verified OK.

y = ln
(
−1
x

)
+ a− 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- 1st order, parametric methods successful
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(ln(diff(y(x),x))+x*diff(y(x),x)+a = y(x),y(x), singsol=all)� �

y(x) = ln
(
−1
x

)
+ a− 1

y(x) = ln (c1) + c1x+ a
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3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 27� �
DSolve[Log[y'[x]]+x y'[x]+ a ==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a+ c1x+ log(c1)

y(x) → a+ log
(
−1
x

)
− 1
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37.23 problem 1145
37.23.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9844

Internal problem ID [4337]
Internal file name [OUTPUT/3830_Sunday_June_05_2022_11_17_00_AM_79033441/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1145.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

ln (y′) + xy′ + by = −a

37.23.1 Solving as dAlembert ode

Let p = y′ the ode becomes

ln (p) + xp+ by = −a

Solving for y from the above results in

y = −px

b
− ln (p) + a

b
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p

b

g = − ln (p)− a

b

Hence (2) becomes

p+ p

b
=
(
−x

b
− 1

pb

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p

b
= 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = ∞
signum (b)

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)

b

−x
b
− 1

p(x)b
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−x(p)
b

− 1
pb

p+ p
b

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
p (b+ 1)

q(p) = − 1
p2 (b+ 1)
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Hence the ode is

d

dp
x(p) + x(p)

p (b+ 1) = − 1
p2 (b+ 1)

The integrating factor µ is

µ = e
∫ 1

p(b+1)dp

= e
ln(p)
b+1

Which simplifies to

µ = p
1

b+1

The ode becomes

d
dp(µx) = (µ)

(
− 1
p2 (b+ 1)

)
d
dp

(
p

1
b+1x

)
=
(
p

1
b+1

)(
− 1
p2 (b+ 1)

)
d
(
p

1
b+1x

)
=
(
−p

−2b−1
b+1

b+ 1

)
dp

Integrating gives

p
1

b+1x =
∫

−p
−2b−1
b+1

b+ 1 dp

p
1

b+1x = p1−
2b+1
b+1

b
+ c1

Dividing both sides by the integrating factor µ = p
1

b+1 results in

x(p) = p−
1

b+1p1−
2b+1
b+1

b
+ c1p

− 1
b+1

which simplifies to

x(p) = 1
pb

+ c1p
− 1

b+1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = e−LambertW
(
x e−by−a

)
−by−a
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Substituting the above in the solution for x found above gives

x =
c1
(

LambertW
(
x e−by−a

)
x

)− 1
b+1 LambertW

(
x e−by−a

)
b+ x

LambertW (x e−by−a) b

Summary
The solution(s) found are the following

(1)y = ∞
signum (b)

(2)x =
c1
(

LambertW
(
x e−by−a

)
x

)− 1
b+1 LambertW

(
x e−by−a

)
b+ x

LambertW (x e−by−a) b
Verification of solutions

y = ∞
signum (b)

Warning, solution could not be verified

x =
c1
(

LambertW
(
x e−by−a

)
x

)− 1
b+1 LambertW

(
x e−by−a

)
b+ x

LambertW (x e−by−a) b

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 73� �
dsolve(ln(diff(y(x),x))+x*diff(y(x),x)+a+b*y(x) = 0,y(x), singsol=all)� �

−
((

LambertW
(
x e−by(x)−a

)
x

)− 1
b+1

c1 − x

)
bLambertW

(
x e−by(x)−a

)
− x

bLambertW (x e−by(x)−a) = 0

3 Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 59� �
DSolve[Log[y'[x]]+x y'[x]+ a +b y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
b

(
(b+ 1) log

(
1− bW

(
xe−a−by(x)))

b2
+

W
(
xe−a−by(x))

b

)
+ by(x) = c1, y(x)

]
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37.24 problem 1146
37.24.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9849

Internal problem ID [4338]
Internal file name [OUTPUT/3831_Sunday_June_05_2022_11_17_22_AM_99093381/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1146.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

ln (y′) + 4xy′ − 2y = 0

37.24.1 Solving as dAlembert ode

Let p = y′ the ode becomes

ln (p) + 4xp− 2y = 0

Solving for y from the above results in

y = 2xp+ ln (p)
2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p

g = ln (p)
2

Hence (2) becomes

−p =
(
2x+ 1

2p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = −∞

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
2x+ 1

2p(x)
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

2x(p) + 1
2p

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = − 1
2p2
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Hence the ode is
d

dp
x(p) + 2x(p)

p
= − 1

2p2

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ)

(
− 1
2p2

)
d
dp
(
p2x
)
=
(
p2
)(

− 1
2p2

)
d
(
p2x
)
= −1

2 dp

Integrating gives

p2x =
∫

−1
2 dp

p2x = −p

2 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) = − 1
2p + c1

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = e−LambertW
(
4x e2y

)
+2y

Substituting the above in the solution for x found above gives

x = −2x(−8c1x+ LambertW (4x e2y))
LambertW (4x e2y)2

Summary
The solution(s) found are the following

(1)y = −∞

(2)x = −2x(−8c1x+ LambertW (4x e2y))
LambertW (4x e2y)2
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Verification of solutions

y = −∞

Warning, solution could not be verified

x = −2x(−8c1x+ LambertW (4x e2y))
LambertW (4x e2y)2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 75� �
dsolve(ln(diff(y(x),x))+4*x*diff(y(x),x)-2*y(x) = 0,y(x), singsol=all)� �

y(x) = − ln (2) +
ln
(

−1+
√
16c1x+1
x

)
2 − 1

2 +
√
16c1x+ 1

2

y(x) = − ln (2) +
ln
(

−1−
√
16c1x+1
x

)
2 − 1

2 −
√
16c1x+ 1

2

3 Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 36� �
DSolve[Log[y'[x]]+4 x y'[x]-2 y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
W
(
4xe2y(x)

)
− log

(
W
(
4xe2y(x)

)
+ 2
)
− 2y(x) = c1, y(x)

]
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37.25 problem 1147
37.25.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9853

Internal problem ID [4339]
Internal file name [OUTPUT/3832_Sunday_June_05_2022_11_17_38_AM_22689658/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1147.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

ln (y′) + a(−y + xy′) = 0

37.25.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

ln (p) + a(xp− y) = 0

Solving for y from the above results in

y = axp+ ln (p)
a

(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ ln (p)
a

= xp+ ln (p)
a
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = ln (p)
a

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ ln (c1)
a

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = ln(p)
a

, then the
above equation becomes

x+ g′(p) = x+ 1
pa

= 0
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Solving the above for p results in

p1 = − 1
ax

Substituting the above back in (1) results in

y1 =
ln
(
− 1

ax

)
− 1

a

Summary
The solution(s) found are the following

(1)y = c1x+ ln (c1)
a

(2)y =
ln
(
− 1

ax

)
− 1

a

Verification of solutions

y = c1x+ ln (c1)
a

Verified OK.

y =
ln
(
− 1

ax

)
− 1

a

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- 1st order, parametric methods successful
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(ln(diff(y(x),x))+a*(x*diff(y(x),x)-y(x)) = 0,y(x), singsol=all)� �

y(x) =
ln
(
− 1

ax

)
− 1

a

y(x) = c1x+ ln (c1)
a

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 36� �
DSolve[Log[y'[x]]+a*( x*y'[x]-y[x])==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(c1)
a

+ c1x

y(x) →
log
(
− 1

ax

)
− 1

a
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37.26 problem 1148
37.26.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 9857

Internal problem ID [4340]
Internal file name [OUTPUT/3833_Sunday_June_05_2022_11_17_50_AM_21286791/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1148.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

a(ln (y′)− y′) + y = x

37.26.1 Solving as dAlembert ode

Let p = y′ the ode becomes

a(ln (p)− p) + y = x

Solving for y from the above results in

y = −a ln (p) + ap+ x (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 1
g = a(p− ln (p))

Hence (2) becomes

p− 1 = a

(
1− 1

p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

y = a+ x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− 1
a
(
1− 1

p(x)

) (3)

This ODE is now solved for p(x). Integrating both sides gives∫
a

p
dp =

∫
dx

a ln (p) = x+ c1

Raising both side to exponential gives

ea ln(p) = ex+c1

Which simplifies to

pa = c2ex

Substituing the above solution for p in (2A) gives

y = x+ a
(
(c2ex)

1
a − ln

(
(c2ex)

1
a

))
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Summary
The solution(s) found are the following

(1)y = a+ x

(2)y = x+ a
(
(c2ex)

1
a − ln

(
(c2ex)

1
a

))
Verification of solutions

y = a+ x

Verified OK.

y = x+ a
(
(c2ex)

1
a − ln

(
(c2ex)

1
a

))
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(a*(ln(diff(y(x),x))-diff(y(x),x))-x+y(x) = 0,y(x), singsol=all)� �

y(x) = a+ x

y(x) = −a ln
(
e

x−c1
a

)
+ a e

x−c1
a + x
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3 Solution by Mathematica
Time used: 0.39 (sec). Leaf size: 22� �
DSolve[a*(Log[y'[x]]-y'[x])-x+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ae
x−c1

a + c1
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37.27 problem 1149
37.27.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 9861
37.27.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 9862
37.27.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 9864

Internal problem ID [4341]
Internal file name [OUTPUT/3834_Sunday_June_05_2022_11_18_03_AM_52578100/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1149.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "separable", "homogeneousTypeD2"

Maple gives the following as the ode type
[_separable]

y ln (y′) + y′ − y ln (y)− xy = 0

37.27.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= e−LambertW(ex)+xy

Where f(x) = e−LambertW(ex)+x and g(y) = y. Integrating both sides gives
1
y
dy = e−LambertW(ex)+x dx∫ 1

y
dy =

∫
e−LambertW(ex)+x dx

ln (y) = LambertW (ex)2

2 + LambertW (ex) + c1

y = e
LambertW

(
ex
)2

2 +LambertW(ex)+c1

= c1e
LambertW

(
ex
)2

2 +LambertW(ex)
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Summary
The solution(s) found are the following

(1)y = c1e
LambertW

(
ex
)2

2 +LambertW(ex)

Figure 1170: Slope field plot

Verification of solutions

y = c1e
LambertW

(
ex
)2

2 +LambertW(ex)

Verified OK.

37.27.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x ln (u′(x)x+ u(x)) + u′(x)x+ u(x)− u(x)x ln (u(x)x)− x2u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(xLambertW (ex)− 1)
x
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Where f(x) = xLambertW(ex)−1
x

and g(u) = u. Integrating both sides gives

1
u
du = xLambertW (ex)− 1

x
dx∫ 1

u
du =

∫
xLambertW (ex)− 1

x
dx

ln (u) = LambertW (ex)2

2 + LambertW (ex)− ln (x) + c2

u = e
LambertW

(
ex
)2

2 +LambertW(ex)−ln(x)+c2

= c2e
LambertW

(
ex
)2

2 +LambertW(ex)−ln(x)

Therefore the solution y is

y = ux

= xc2e
LambertW

(
ex
)2

2 +LambertW(ex)−ln(x)

Summary
The solution(s) found are the following

(1)y = xc2e
LambertW

(
ex
)2

2 +LambertW(ex)−ln(x)

Figure 1171: Slope field plot
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Verification of solutions

y = xc2e
LambertW

(
ex
)2

2 +LambertW(ex)−ln(x)

Verified OK.

37.27.3 Maple step by step solution

Let’s solve
y ln (y′) + y′ − y ln (y)− xy = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= e−LambertW (ex)+x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
e−LambertW (ex)+xdx+ c1

• Evaluate integral

ln (y) = LambertW (ex)2
2 + LambertW (ex) + c1

• Solve for y

y = e
LambertW

(
ex
)2

2 +LambertW (ex)+c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 17� �
dsolve(y(x)*ln(diff(y(x),x))+diff(y(x),x)-y(x)*ln(y(x))-x*y(x) = 0,y(x), singsol=all)� �

y(x) = c1e
LambertW

(
ex
)(

LambertW
(
ex
)
+2
)

2

3 Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 24� �
DSolve[y[x] Log[y'[x]] + y'[x] -y[x] Log[y[x]] -x y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
1
2W (ex)(W (ex)+2)
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37.28 problem 1150
37.28.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9866

Internal problem ID [4342]
Internal file name [OUTPUT/3835_Sunday_June_05_2022_11_18_15_AM_69679522/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1150.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′ ln (y′)− (x+ 1) y′ + y = 0

37.28.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p ln (p)− (x+ 1) p+ y = 0

Solving for y from the above results in

y = −p ln (p) + px+ p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p ln (p) + px+ p

= −p ln (p) + px+ p

Writing the ode as

y = px+ g(p)
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We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = −p ln (p) + p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− c1 ln (c1) + c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p ln (p) + p,
then the above equation becomes

x+ g′(p) = x− ln (p)
= 0

Solving the above for p results in

p1 = ex
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Substituting the above back in (1) results in

y1 = ex(1− ln (ex) + x)

Summary
The solution(s) found are the following

(1)y = c1x− c1 ln (c1) + c1
(2)y = ex(1− ln (ex) + x)

Figure 1172: Slope field plot

Verification of solutions

y = c1x− c1 ln (c1) + c1

Verified OK.

y = ex(1− ln (ex) + x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- 1st order, parametric methods successful
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)*ln(diff(y(x),x))-(1+x)*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

y(x) = ex
y(x) = c1(− ln (c1) + x+ 1)

3 Solution by Mathematica
Time used: 1.646 (sec). Leaf size: 21� �
DSolve[y'[x] Log[y'[x]] -(1+x) y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x+ 1− log(c1))
y(x) → 0
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37.29 problem 1152
37.29.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 9870

Internal problem ID [4343]
Internal file name [OUTPUT/3836_Sunday_June_05_2022_11_18_27_AM_73736312/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1152.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[_Clairaut]

y′ ln
(
y′ +

√
a+ y′2

)
−
√
1 + y′2 − xy′ + y = 0

37.29.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p ln
(
p+

√
p2 + a

)
−
√
p2 + 1− xp+ y = 0

Solving for y from the above results in

y = −p ln
(
p+

√
p2 + a

)
+ xp+

√
p2 + 1 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p ln
(
p+

√
p2 + a

)
+ xp+

√
p2 + 1

= −p ln
(
p+

√
p2 + a

)
+ xp+

√
p2 + 1
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = −p ln
(
p+

√
p2 + a

)
+
√
p2 + 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x− c1 ln
(
c1 +

√
c21 + a

)
+
√
c21 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p ln
(
p+

√
p2 + a

)
+√

p2 + 1, then the above equation becomes

x+ g′(p) = x− ln
(
p+

√
p2 + a

)
−

p
(
1 + p√

p2+a

)
p+

√
p2 + a

+ p√
p2 + 1

= 0
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Solving the above for p results in

p1 = Expression too large to display

Substituting the above back in (1) results in

y1 = Expression too large to display

Summary
The solution(s) found are the following

(1)y = c1x− c1 ln
(
c1 +

√
c21 + a

)
+
√

c21 + 1

(2)Expression too large to display
Verification of solutions

y = c1x− c1 ln
(
c1 +

√
c21 + a

)
+
√

c21 + 1

Verified OK.
Expression too large to display

Warning, solution could not be verified

7 Solution by Maple� �
dsolve(diff(y(x),x)*ln(diff(y(x),x)+sqrt(a+diff(y(x),x)^2))-sqrt(1+diff(y(x),x)^2)-x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 60.03 (sec). Leaf size: 38� �
DSolve[y'[x]*Log[y'[x]+Sqrt[a+(y'[x])^2]]-Sqrt[1+(y'[x])^2]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c1 log
(√

a+ c12 + c1
)
+ c1x+

√
1 + c12
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37.30 problem 1153
Internal problem ID [4344]
Internal file name [OUTPUT/3837_Sunday_June_05_2022_11_20_11_AM_23093656/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1153.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_dAlembert]

Unable to solve or complete the solution.

ln (cos (y′)) + y′ tan (y′)− y = 0

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful`� �

9873



3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 33� �
dsolve(ln(cos(diff(y(x),x)))+diff(y(x),x)*tan(diff(y(x),x)) = y(x),y(x), singsol=all)� �

y(x) = 0

x−

(∫ y(x) 1
RootOf (ln (cos (_Z)) + _Z tan (_Z)− _a)d_a

)
− c1 = 0

3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 29� �
DSolve[Log[Cos[y'[x]]]+y'[x] Tan[y'[x]]==y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve[{x = tan(K[1]) + c1, y(x) = K[1] tan(K[1]) + log(cos(K[1]))}, {y(x), K[1]}]
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